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ABSTRACT

We present precision measurements of the inclusive semileptonic branching fraction of the

B mesons from ����	 fb�� of 
��S
 data collected with the CLEO�II detector� By �tting the

inclusive lepton spectra to the re�ned quark model of Altarelli et al�� we obtain B�B � X��
 �

����������������
�� With a modi�ed version of the form�factor model of Isgur et al�� in which

the fraction of B � D���� is allowed to �oat� we �nd B�B � X��
 � ������� ���	� ����
��

The original Isgur model yields a lower branching ratio� B�B � X��
 � ����������������
��

but with a higher ���

To reduce the dependence on theoretical models and sensitivity to possible non�B �B decays

of the 
��S
� we have made a second measurement with dilepton events� In events with a high

momentum lepton tag and an electron we use charge and kinematic correlations to separate

the electron spectra of B decays and secondary charm decays� With a small extrapolation to

account for the undetected part of the spectrum at low momentum� we obtain B�B � Xe�
 �

������ � ���	 � ����
�� This measurement is largely independent of theoretical models and

assumptions about possible non�B �B decays of the 
��S
�

Based on our branching ratio results� we have also measured the CKM matrix element jVcbj

with precision and con�rmed the CLEO measurement of jVubj�
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Chapter �

Semileptonic Decay of B Mesons

Overview� This thesis approaches the question� what is the fraction of time that a B

meson decays to a lepton and its antineutrino� In this chapter� we review the basic

physics that leads to this question�

��� Particles and Interactions

Elementary particle physics is the science that studies the fundamental building blocks

of matter and their interactions� Ever since the beginning of our civilization� the human

quest for this knowledge has been progressing� from Democritus�s concept of atoms� to

Newton�s formulation of gravity� to Maxwell�s uni�cation of the electric and magnetic

forces� and so on� To date� we have reached a basic understanding of the world we live

in� We know that visible matter in our universe consists of quarks and leptons� and

they interact through the four fundamental forces� strong� electromagnetic� weak and

gravitational�

Quarks and leptons have spin ��� and are therefore Fermions� They are naturally

put into three generations� or families� as listed in Table ���� The �rst two leptons

are very light ��� �me � ��
�MeV�c� and m� � ���MeV�c��� while the � is much

�



heavier �m� � ����MeV�c
� ����� The neutrinos have very little or no mass� The up�

down and strange quarks �u� d and s� are relatively light� Their masses range from

a few to a few hundred MeV�c�� The charm� bottom and top quarks �c� b and t� are

heavier� with mc � ��	 � ��
 GeV�c�� mb � ��� � 
�� GeV�c�� Evidence of the top
quark has recently been observed by the CDF experiment at Fermilab�s Tevatron p�p

collider �	�� and its mass has been inferred to be ������ GeV�c�� The bottom quark is
the main constituent of the B mesons which are the subject of the research described

in this thesis� As the partner of the top quark� the b is the lighter member of the

heaviest quark doublet� Since it cannot decay to its own partner� the b quark must

decay intergenerationally� How the b quark resolves the choice between possible decay

modes provides a unique glimpse into the inner workings of our theory of fundamental

interactions� This is the root of much of the importance and excitement of b�quark

physics�

Table ���� Fermions and their Electric Charges�

leptons

�
e

	e

� �
�

	�

� �
�

	�

�
�e
�

quarks

�
u

d

� �
c

s

� �
t

b

�
��
�e

��
�e

Quarks and leptons are considered fundamental for two obvious but nontrivial rea�

sons� First� they and their antiparticles make up matter� Atoms for example� are made

up of electrons and nuclei� Nuclei consist of nucleons �protons and neutrons�� which in

turn are made of quarks� In an oversimpli�ed picture� a proton consists of two up quarks

and one down quark� p � uud� Similarly� a neutron�s composition is n � udd� The B

meson we study in this thesis is composed of a bottom quark and a light antiquark� i�e�

B� � b�u and �B� � b �d� The second reason we consider the Fermions fundamental is that

�



they are not decomposable� Both leptons and quarks are smaller than �����m� many

orders of magnitude smaller than the size of atoms� which is approximately �����m�

At the current experimental level� no compositeness has been observed�

The four interactions between the Fermions are carried by gauge bosons� as listed

in Table ���� Gluons mediate the strong interactions between any two quarks� photons

carry the electromagnetic force between any two quarks or charged leptons� the W�

and Z� mediate the weak interaction within one and between two families of Fermions�

and �nally the gravitons carry the gravitational force between any two particles with

mass� The word gauge arises from the mathematical formalism of quantum �eld theory�

in which every interaction is a consequence of a fundamental symmetry in nature� We

now discuss the gauge symmetries that give rise to the four types of interactions within

our current theoretical framework � the Standard Model�

Table ���� Fundamental Forces and Gauge Bosons

Force Boson Symbol Charge Spin Mass � GeV�c��

Strong gluon g � � �
Electromagnetic photon � � � �

Weak W W� �e � ��
Z Z� � � 
�

Gravitational graviton G � � �

��� Theoretical Description of Interactions

The fundamental interactions are formulated mathematically by quantum �eld theory�

Like any other physical system� the Lagrangian de�nes the dynamics of the interacting

particles ���� The Lagrangian of a certain interaction is constructed from the funda�

mental nature of that force � gauge symmetry� For a particle with wave function  �

the choice of an arbitrary phase �or gauge� �� changes the wave function to ei� � but

	



does not change the observable� the probability j j�� Gauge symmetry is simply the
property that the Lagrangian is invariant under a gauge transformation 
�
x� t�

 �
x� t�� ei���x�t� �
x� t�� �����

The theory of strong interactions� quantum chromodynamics �QCD�� arises from a

special unitary symmetry SU�	�� The three basic dimensions are named after three

colors� red� green and blue� This convention takes advantage of aspects of color theory

in optics to represent similar features of the properties of the strong �color� interaction�

Quarks are color singlet� and the Lagrangian decribing the !color" force between quark

q� of color � and quark q� of color � is given by

LQCD � g�
�

X
�q��

��	��q�G
	
�� �����

In this equation G is the force carrier � the gluon �eld� g� is the coupling strength� and

� and � are the Dirac and Gell�Mann matrices describing the spin of the quarks and

color of the gluons� respectively� The mediating gluon between quarks q� and q� must

contain both color � and �� The gluons which mediate the strong force bring about

color transformations� From the three colors eight independent gluon combinations can

be constructed�

r�b� r�g� b�g� g�r�
�p
�
�r�r� b�b��

�p
�
�r�r � b�b� g�g�� ���	�

where r� g and b signify the colors� and �r� �b� �g the corresponding anticolors�

An important feature of the combination is color con�nement� When quarks form

matter� the particles formed �hadrons� are color singlets �colorless�� The color�triplet

quarks have been observed to form only two types of hadrons� mesons and baryons� A

meson consists of a quark and an antiquark with opposite colors�

q� �q� �
�p
	
�r�r � b�b� g�g�� �����

Examples include light mesons �� � u �d� �� � �ud� �� � �p
�
�u�u � d �d�� K� � �su�

K� � s�u� K� � s �d� �K� � �sd and heavy mesons D� � c �d� D� � �cd� D� � c�u and

�



�D� � �cu� The B mesons we study in this thesis contain a b�quark and a light quark�

B� � b�u� B� � �bu� �B� � b �d and B� � �bd� A baryon consists of three quarks� with the

color combination

q�q�q� �
�p
�

�����������

r� r� r�

b� b� b�

g� g� g�

�����������
� ���
�

These include the proton p � uud� neutron n � udd and charmed baryon ��c � cuu�

and their antiparticle parteners �p � �u�u �d� �n � �u �d �d and ��c � �c�u�u�

Another important feature of QCD is asymptotic freedom� The coupling strength

decreases as the momentum involved in the interaction increases� and at in�nite mo�

mentum the coupling vanishes� This� on one hand� makes it possible to do perturbative

expansions when calculating many processes� The much stronger coupling at smaller

momenta� on the other hand� is yet to be understood� As B�meson decays involve

momentum transfers in the nonperturbative region� phenomenological models are in�

troduced in our discussion in the next section�

The electromagnetic and the weak interactions have been uni�ed into a combined

SU����U��� symmetry� The electroweak Lagrangian for the �rst generation of Fermions�
for instance� is

LEW �
X
f	l�q

eQf� �f�
�f�A�

�
g�

cos �W

X
f	l�q

h
�fL�

�fL�T
�
f � Qf sin

� �W � � �fR�
�fR��Qf sin

� �W �
i
Z�

�
g�p
�

h
� �uL�

�dL � �	eL�
�eL�W

�
� � �Hermitian Conjugate�

i
� �����

where A� Z and W are the �elds for the photon and the two weak gauge bosons Z

and W � g� is the weak charge or coupling strength� L and R are the helicities of the

Fermions �the left� or right�handedness of their spins with respect to their direction of

motion�� T is a matrix which combines the electric and weak charge for Fermions� The

Weinberg angle �W represents the relative strength of the electromagnetic interaction






g� in the uni�ed theory�

sin �W �
g�q

g�� � g��

� �����

so that e � g� cos �W � g� sin �W � At the energy scale below ���GeV� sin
� �W � ���	�

The interactions represented by the Lagrangian can be expressed graphically with the

Feynman diagrams� in which the Fermion �elds are straight lines� and the intermediate

bosons curly lines� They interact by a connected vertex or !current"� The photon and

Z boson carry the neutral current between a Fermion and its anti�Fermion� as shown in

Fig� ���a� The W bosons carry the charged currents� as in Fig� ���b� This interaction

γ

Z 0

f

f
_

W
_

e

ν
_
e

d

u
_

(a).  Neutral Current (b). Charged Current

_

Figure ���� Electroweak currents�

results in the change of quark #avors� or the interchange of leptons and their neutrinos�

The charged current for leptons is expressed as

J� � � �	e �	� �	� ������ �
�

�
BBBBB�

e

�

�

�
CCCCCA � �����

The charged current happens not only to Fermions within a family� but also between

di�erent quark families� When a b quark decays� for example� it can decay either to

a charm quark� b � cW�� or to an up quark� b � uW�� as in Fig� ���� The charged

�
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Figure ���� Spectator decays of B mesons�

current for quarks is similar to Eq� ��� except for the additional factor Vij �

J� � ��u �c �t������ �
�Vij

�
BBBBB�

d

s

b

�
CCCCCA � ���
�

The Vij are elements of the Cabibbo�Kobayashi�Maskawa matrix� This unitary ma�

trix describes quark mixing� and can be approximately represented by the following

parametrization suggested by Wolfenstein��
BBBBB�

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

�
CCCCCA �

�
BBBBB�

�� �
��

� � A����� i��

�� �� �
��

� A��

A����� �� i�� �A�� �

�
CCCCCA � ������

The parameters must be determined experimentally� It is found that both A and �

are smaller than one� with A � ��
� � ���� and � � ����� As shown in the above

parametrization� the diagonal elements Vud� Vcs� Vtb are close to unity ���
�������� and

the farther away an element is from the diagonal� the smaller its magnitude� The am�

plitudes of the two b�quark decay processes in Fig� ���� for instance� are proportional

to Vcb and Vub� One of the goals of the analyses described in this thesis is the determi�

nation of the values of these two CKM elements through our measurement of the decay

rates of b� qW�� W� � �� �	l for q � c and u�

�



The existence of the CKM matrix is a direct consequence of the fact that the weak

interaction eigenstates are not exactly the mass eigenstates� Quark mixing occurs via

this inter�family coupling� Its existence is essential for the electroweak theory to hold�

as it is the only way to allow charge�parity symmetry violation� CP violation is observed

in neutral kaon decays� in which the width of K� and that of its anti�particle �K� di�er

by about �$� A similar di�erence is expected in neutral B�meson decays� Under

the assumption that CPT is a good symmetry� the violation of CP also demands the

non�conservation of time reversal T� In quantum theory� time is the observable of the

operator t in e�
i
h
Et� If time reversal symmetry is broken� our theory must contain a

complex phase� This is exactly incorporated in Vub � A����� i�� in the CKM matrix�

The tiny amount of CP asymmetry may hold the key to the question of why there is

an excess of matter in our universe over antimatter� While we have a description of CP

violation in the Standard Model� its underlying origin is yet to be understood�

In spite of the tremendous success we have achieved so far� we must concede that our

understanding of the fundamental interactions is primitive� We are compelled to �nd

the answers to many important unanswered questions� One of the most crucial is what

gives mass to the Fermions� The gauge symmetry SU����U��� is invariant only if the
Fermions are massless� The very fact that they have mass breaks the symmetry at our

energy scale� The Higgs mechanism was proposed to explain this symmetry breaking�

We hope that the Large Hadron Collider �LHC�� being planned at the European particle

physics laboratory �CERN�� will lead to an understanding of this mechanism� Another

fundamental question was raised above� what is the nature of CP violation� The B

factories under construction at the Stanford Linear Accelerator Center �SLAC�� and at

the Japanese laboratory KEK� as well as the upgrade of the Cornell Electron Storage

Ring �CESR�� are aimed at seeking the answer� Still another question is why there seem

to be three and only three families of Fermions� Last� we currently do not have either

a theory that includes gravity� or any experimental evidence of gravitational quanta�

�



Just as electricity and magnetism were uni�ed by Maxwell� and electromagnetism and

the weak forces were uni�ed by Weinberg� Salam and Glashow� we seek the ultimate

uni�cation of all of the interactions� At our current laboratory energy scale �below

��� GeV�� the strengths of the four forces come in the order of strong� electromagnetic�

weak and gravitational� The strengths of the interactions g� � � �g� change with changing
energy scale� however� At higher energies� the di�erences decrease� which leads to the

idea of a uni�ed interaction from a very simple symmetry� We believe that the four

interactions are just di�erent manifestations of this symmetry at lower energy scales�

Even though we are far from this goal� we currently have several di�erent theories which

help to expand our horizon� such as supersymmetry and string theory� All of them

greatly demand experimental information� Among many e�orts on the experimental

front� this thesis addresses a very simple but important question� which we discuss next�

what is the probability that a B meson decays to a lepton�

��� Semileptonic Decay of B Mesons

The B meson is a bound state of a b quark and a light antiquark �u or �d� Studying the

decays of B mesons provides information about the interactions of the b quark� since it

dominates the B meson� The lifetime of the B mesons has been measured to be about

��
� �����s� They decay quickly after they are produced� The dominant mechanism
is the weak decay of the b quark to either a c quark or a u quark plus a W boson via

the charged current depicted in Fig� ���� The W boson can in turn decay into lepton

pairs �e� �	e�� ��� �	��� ��� �	�� and quark pairs ��u� d�� ��c� s�� as shown in Fig� ���� The

factors of 	 for the decay modes with quarks are due to the contribution from all three

colors in the strong interaction� Of all the possible decay channels� we study B � X�	�

where � � e or �� There are two principal reasons� First� the quark channels involve

a lot of complicated strong interactions� Second� electrons and muons are the easiest

particles to identify in our experiment with high purity and e�ciency� as we will show






in Chapter �� The question we ask is� what fraction of all B�meson decays are �nal

states with leptons� The quantity we measure is the inclusive semileptonic branching

fraction of the B meson B�B � X�	� for � � e or �� From now on we will use the word

!lepton" for electrons and muons� We will call the � lepton explicitly � �

����� The Inclusive Branching Ratio

Semileptonic decays play important roles in B�meson physics� They are the simplest to

understand� and are the foundation for understanding hadronic decays� They also pro�

vide means to determine the CKMmatrix elements Vcb and Vub� as the decay amplitudes

are proportional to these two elements�

The inclusive semileptonic ratio itself is one of the longstanding puzzles of B physics

as measurements have consistently been signi�cantly smaller than theoretical expec�

tations �
� ��� The latest theoretical advances based on heavy quark expansions have

greatly increased the urgency for understanding this discrepancy ���� If this di�erence

can not be resolved within the framework of the Standard Model� we will be compelled

to attribute it to indications of new physics�

In the simple spectator description �Fig� ����� the b quark decays into lepton pairs

or quark pairs� The decay rate for each one of these pairs is proportional to its phase

space factor r� re#ecting the mass of the pair� The total decay width is then the sum�

%�B� �
G�
F jVcbj�m


b

�
���
�QCD��rl � r� � 	rud � 	rcs� ������

where GF �
p
�g����M

�
W is the Fermi constant� and �QCD � ��
� is a QCD correction

factor ���� The semileptonic fraction for B � X�	 �� � e or �� is therefore simply rl

divided by the sum of the phase space factors�

B�B � X�	� �
rl

�rl � r� � 	rud � 	rcs
� ������

The masses of the leptons are precisely measured� The masses of their neutrinos are

negligiblly small and quite possiblly zero� Therefore rl � ���
 and r� � ���� are

��



well de�ned� The phase space factors for the quark pairs bear ambiguities� due to

the uncertainties of the quark masses� Assigning the mass values from the best of

our knowledge �
�� mu � md � �� ms � ��
 GeV�c�� mc � ��� GeV�c�� we obtain

rud � rl � ���
 and rcs � ����� Substituting these values into Eq� ����� we �nd

B�B � X�	� � ���
$�

The spectator model assumes that the light quark u or d in the B meson does not

participate the interaction� acting only as a spectator� This is very naive� Corrections

must be introduced to account for gluon radiation and exchange between all quarks in

the decay processes ����� This enhances the hadronic channels� and in turn reduces the

semileptonic ratio to

B�B � X�	� �
rl

�rl � r� � ����� 	�rud � rcs�
� ���
$� ����	�

In this equation� the factor ���� is the result of QCD corrections�

After strong indications from earlier measurements that the branching fraction is

lower than this prediction� the estimate of the above equations are reassessed� It was

observed that choosing a lower charm quark mass mc would enhance the �c� s� channel�

and reduce the semileptonic ratio even more� If we stretch the c�quark mass to the

extreme� i�e�� a lower boundary of mc � ��� GeV�c�� we obtain the lower limit of the
theoretical expectation

B�B � X�	� � ���
$� ������

Recent theoretical developments on heavy quark expansion have demonstrated great

potential for calculating B semileptonic and hadronic decays from fundamental princi�

ples� These e�orts led to the same conclusion� that this branching ratio must be greater

than ���
$ with our present knowledge of heavy quark interactions�

All the experimental measurements ��� 
� have been below ���
$ �Table ��	�� Almost

all are signi�cantly below� The two experiments at the B�meson production threshold in

e� e� collisions� CLEO at CESR ���� and ARGUS at the German Electron Synchrotron

��



�DESY� ���� provide the best precision� and the clearest indication of a signi�cant

discrepancy� Before discussing such measurements in great detail� we must �rst review

the theoretical picture of semileptonic B�meson decay more thoroughly�

Table ��	� Results from Previous Experiments

Experiment B�B � X�	��$� EC
M
 � GeV�

Mark�II ����� ��
� ���
MAC �
�
�

���
�
Mark J ���
� ��
� ��	
DELCO ���
� ���� ��� �
&
�
TASSO ����� ���� ���
JADE ����� ���� ��

TPC ����� ���� ���
ALEPH ���	� ���� ��

L	 ���
� ��	� ���

OPAL ����� ��	� ��� M�Z�� � 
�
DELPHI ����� ��
� ���
ARGUS ����� ���� ���
CLEO ��
 ���
� ���� ��� M����S�� � ����

����� Theoretical Work on Semileptonic B Decays

The decay rate of a certain particle reaction such as those we have discussed so far�

is calculated from the scattering matrix element M � The rate is proportional to jM j��
similar to the probability j j� for a particle represented by wave function  in quan�
tum mechanics� The simplicity of B semileptonic decay is re#ected in the factorized

expression of its matrix element

M � Jlep � Jhad� ����
�

where the J �s stand for the leptonic and hadronic currents� The leptonic current is

well understood in electroweak theory� as is expressed in Eq� ���� Calculation of the

hadronic current Jhad from �rst principles is not possible with our present theory� due to

��



the lack of knowledge about the non�perturbative QCD interactions involved� It is pos�

sible� however� to simulate the dynamic system with phenomenological methods� The

hadronic current Jhad can be treated in two di�erent ways� inclusively or exclusively�

Inclusive Models The inclusive models treat B�meson decays at the quark level�

The interaction of the b quark with the spectator and other quarks involved� is described

by

Jhad �� �qjj�hadjb � � ������

The model we use was developed by Altarelli� Cabibbo� Corb'o� Maiani and Mar�

tinelli ��	� �ACCMM�� The B semileptonic width in this model is

d%�B � X�	�

dx
�
G�
F jVcbj�m


b


���
�(�x� ��� G�x� ��� � ������

where x � �E��mb for lepton energy E�� � � mc�mb and ( is a function which describes

the free�quark decay distribution�

(�x� �� �
x���� �� � x��

��� x��

h
��� x��	� �x� � �	� x���

i
� ������

The ACCMM model includes two modi�cations to the free�quark model� the e�ect of

gluon radiation� as represented by function G�x� ��� and the Fermi motion inside the

B meson� First� gluon corrections account for higher order QCD e�ects� We show

two typical Feynman diagrams in Fig� ��	� The one on the left represents real gluon
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Figure ��	� QCD radiative corrections�

radiation� and the one on the right� virtual gluon exchanges or corrections on the vertex�

�	



The resulting correction ���� to the free�quark calculation is a complicated function

G�x� �� that changes the free�quark lepton spectrum only slightly for most values of x�

In the end�point region� where x � xM � � � ��� the correction is signi�cant since G

involves a logarithmic divergence�

G�x� �� � ��nite terms� � � ln�xM � x� ��xM � ��� xM � ln��� xM�� � ����
�

The choice of the b�quark mass in Eq� ���� introduces sizable uncertainties due to

the 
th power of mb� In the ACCMM description� the B meson is a two�body system

of the b quark and the spectator quark qsp� The internal meson dynamics is described

phemonenologically by introducing relative motion characterized by a quark momentum


p� Since the e�ects represent a nonperturbative region of QCD� the momentum p cannot

be uniquely speci�ed� It is modelled statistically with a gaussian distribution�

��j
pj� � �p
�P �

F

exp��j
pj
�

P �
F

�� ������

where the width PF is called the Fermi momentum� This parameter must be determined

from our data� To satisfy energy�momentum conservation in B�meson decay� the b�

quark mass is allowed to vary� It is replaced in Eq� ���� with the expression

m�
b � m�

B �m�
qsp � �mB

q
p� �m�

sp� ������

In Fig� ���a&c we show on an arbitrary scale the electron spectra from the AC�

CMM model for the three main processes that contribute leptons in ���S� events� In

the �gure� we used pF � 	��MeV�c for b� c�	 and b� u�	 as an example� For

b� c� x�	 � we used ���MeV�c� as this value was favored by data from a previous

experiment ���� �to be described in Chapter 	��

Exclusive Models The exclusive models all assume that B semileptonic decays are

saturated by a few resonant �nal states� After the b�quark decays into a c quark� the

c quark recombines with the spectator to form hadrons� Possible �nal states include

the ground state ��S� �the D meson�� the �rst excited state ��S� �the D��� and the

��



higher states such as ��P�� �
�P�� �

�P�� �
�P�� �

�S� and �
�S� �collectively re�erred to

as D���� The hadronic current Jhad for the exclusive channels is expressed in terms of

form factors� In the case of b� c�	� for a hadronic current j� � V� �A�� they are

� DjA�j �B � � � ������

� DjV�j �B � � f��pB � pD�� � f��pB � pD�� ����	�

� D�jA�j �B � � f��� � a���
� � pB��pB � pD��� � a���� � pB��pB � pD���������

� D�jV�j �B � � ig���
��
���pB � pD��
�pB � pD���� ����
�

Calculation of these unknown form factors a� f and g varies from model to model� They

are generally functions of the ��momentum transfer �q�� between the initial� and the

�nal�state mesons� The quantity q� in B semileptonic decays is just the mass of the

virtual W �virtual� because there is not enough energy to produce a real W boson��

The models choose a convenient q� to calculate the form factors� and then extrapolate

to other q� values�

Isgur� Scora� Grinstein and Wise �ISGW� ��
� argue that the heaviness of the b quark

makes it possible to use nonrelativistic approximations in modelling B�meson decay� At

minimum recoil of the �nal�state meson� or equivalently maximum q�� the form factors

are obtained by solving the Schr)odinger equation with a Coulumb plus linear potential

for the bound state B�

V �r� � ���s
	r

� c� br� ������

where �s � ��
� c � ����� GeV and b � ���� GeV�c�� The q� dependence of the form
factors F is modelled to be exponential�

F �q�� � F �q�max� exp�
q� � q�max

�Q�
�� ������

where � is a parameter introduced to account for relativistic e�ects� ISGW determined

a value � � ��� from measured pion form factors� The resulting relative fractions of

the three B semileptonic decay channels are ��$� ��$ and ��$ for D�	� D��	 and

�




D���	 respectively� as is shown in Fig� ��
� The ISGW prediction for the overall lepton

momentum spectrum is also shown in Fig� ����

Other form�factor models also exist� such as the Wirbel�Stech�Bauer �WSB� ����

and the K)orner�Schuler �KS� ���� models� The WSB model calculates form factors

at minimum q� and extrapolates them according to pole dominance� The KS model is

particularly designed to study polarizations of the D� for B � D��	 decays� We choose

to use the ISGW model since it is the only model that has included the D�� states�

(a). b→c→seν

Electron Momentum  (GeV/c)

(b). b→ceν

(c). b→ueν

0 1 2 3

(d). b→c→seν

Lepton Momentum  (GeV/c)

(e). b→ceν

(f). b→ueν

0 1 2 3

Figure ���� Lepton spectra and electroweak radiative corrections� On the left� the
ACCMM �solid� and ISGW �dashed� spectra are shown� On the right� relative spec�
tral changes due to electroweak corrections are shown for electrons �solid� and muons
�dashed��
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Figure ��
� Lepton spectra for b� c�	 in ISGW model�

Recent Theoretical Progress Even though� it is very di�cult to calculate B de�

cays from fundamental principles� two important theoretical advancements have been

made in the last couple of years� the discovery of heavy quark symmetry� which led

to the heavy quark e�ective theory �HQET� for exclusive decays� and the heavy quark

expansion method for inclusive decays�

For a meson made of a heavy quark Q �t� b or c� and a light antiquark �q �u� d or s�� the

dynamics is controlled by an SU�	� #avor symmetry and an SU��� spin symmetry �����

In the limit that the heavy quarks are in�nitely heavy� the light quark and the remainder

of the meson behave the same way regardless of the #avor of Q �quark type� either t� b

or c�� regardless of the spin of Q �spin ���� or ������ This is very similar to atomic
hydrogen� The orbiting electron does not notice the di�erence if more neutrons are

added into the nucleus or if the nuclear spin is #ipped� Based on this symmetry� an

��



e�ective �eld theory has been developed� It expresses all of the form factors in terms

of a single universal function� called the Isgur�Wise function� This greatly reduces the

model dependence of the exclusive calculations� especially for B � D��	 � which is used

for detemination of jVcbj ��
�� The form of this function is not known� and the need

to consider several alternative forms introduces some model dependence� Besides� the

B � D���	 calculations are not yet available� and work is still in progress to correct

for the fact that the b and the c quarks are not in�nitely heavy� We therefore have to

wait until the future to use the full power of HQET in our inclusive analyses�

The heavy quark expansion method also takes advantage of the heaviness of the b

quark and the large amount of energy release in b � cW and b � uW decays �����

It is a breakthrough in inclusive heavy quark decay theory� The method is based on

expanding the weak transition operator into a series of local operators of increasing

dimensions� The coe�cients of this series contain increasing powers of ��mQ� similar

to a Taylor expansion� With this method it is possible to interpret the ACCMM model

at a fundamental level and to go beyond� Its derived lepton spectrum for b � cl	�

for example� is very close to that from the ACCMM model� which �ts data well� as

we discuss in Chapter 	� This QCD expansion explains the Fermi motion in terms of

kinetic energy� Yet it reveals that the ACCMM modeling of the internal motion is not

consistent with QCD� as the momentum distribution of internal motion in QCD should

be asymmetric instead of being gaussian� The expansion method is unable to derive

this distribution� just as HQET does not itself give rise to the form of the Isgur�Wise

function� Approximations must be used� with input from the mass di�erence of the

B� and B mesons to �x the color magnetic moment of the b quark Gb� and from the

mass di�erence of the B and D mesons to estimate the kinetic energy Kb� Technically�

the lepton spectrum derived from this Wilson Operator Product Expansion contains �

functions which diverge near the high momentum end�point region� Even though the

theory can calculate the integrated rate in this region� this is di�cult to use in �tting

��



data� We therefore did not use it in measuring B�B � X�	�� We will� however� use

it in calculating the CKM matrix element Vcb in Chapter � and discuss it in Capter 


when reviewing the result of our measurements�

����� Electroweak Radiative Corrections

The last theoretical ingredient of our measurement is the electroweak radiative correc�

tions for the processes we have described� They are calculated to account for higher

order e�ects� similar to those shown in Fig���	� except that this time the loop lines are

for electroweak gauge bosons � and Z� instead of gluons� This is a second order e�ect�

supressed by g�� and g��� but it amounts to a few percent� and is very important due

to the precision nature of our measurement� One requirement of #avor symmetry is

lepton universality� In our case� the measured electron and muon branching fractions

must be consistent� With the high statistics of our data sample� this correction must

be implemented to demonstrate lepton universality�

Atwood and Marciano ���� calculated the three main e�ects of this type� virtual

loops at higher energies� Coulomb interaction for the initial meson if it is neutral� such

as B� or D�� and low energy bremsstrahlung� The �rst two change the total decay rate

or normalization� and only the last changes the shape of lepton spectrum for X � Y �	�

In our measurement described in Chapter 	� we use the lepton spectral shapes from

theoretical models to �t the data� The �tted normalization gives the branching fraction�

So only the third correction� internal bremsstrahlung� a�ects our measurement�

Although the calcuation itself is complicated� it is easily implemented in our analyses�

The correction can be simply expressed by ����

EWcor � �
Emax �El

CEl
�r � ������

in which

r �
��

�

�
ln�
�El

ml
�� �

�
� ����
�

�




In these equations the ml and El are lepton mass and energy� C is a factor that changes

the shape of the spectrum� but not the normalization� which is speci�ed in terms of the

maximum and average energies of the lepton spectrum

C �
Emax � �El

�El
� ���	��

This correction introduces a ����$ di�erence in the spectrum for muons and electrons�

depending on the momentum� as is illustrated in Fig� ��� by the solid and dashed curves

for electrons and muons� respectively�

��� Experimental Techniques and Objectives

In this last section� we outline how the measurements of semileptonic B decay have been

carried out� including the production of B mesons in the laboratory� and the techniques

we used in detecting the decays�

����� Production of B Mesons

Our sample of B mesons has been obtained with the Cornell Electron Storage Ring

CESR� and studied with the CLEO�II detector� The production mechanism is electron�

positron annihilation through the ���S� resonance� e�e� � �� � ���S�� B �B � where

the �� represent a virtual photon� As is shown schematically in Fig� ���� CESR has

three main components� A linear accelerator �linac� uses a continuous line of small

radio frequency cavities to accelerate electrons emitted from an electron gun cathode

to approximately ��� MeV� It can also produce positrons� when its electron beam is

directed at a tungsten target� and the resulting positrons are collected and themselves

accelerated to ���MeV� The electrons and positrons are injected into the synchrotron

for acceleration to approximately 
 GeV� In the synchrotron the e� and e� beams are

accelerated by the same few megawatt RF cavities as they travel in circular orbits in

a high vacuum chamber� A periodic arrangement of dipole and quadrupole magnets

��



keep the electrons in their orbits� con�ned within small well formed bunches� After

they achieve full energy the bunches are transferred to the storage ring� which shares

the synchrotron underground tunnel� The storage ring functions in much the same way

as the synchrotron� except that its RF system primarily restores the energy lost to

synchrotron radiation� and its extremely good vacuum and optics allow stored beams

to be maintained for several hours�

LINAC

SYNCHROTRON

CESR

CHESSWEST CLEO
CHESS

EAST

N

e -

e +

BUNCH OF POSITRONS

BUNCH OF ELECTRONS

WEST
TRANSFER

LINE
TRANSFER

LINE

EAST

Figure ���� The Cornell Electron Storage Ring�

The typical stored beam in CESR represents a current of about ���mA� The bunches

are roughly the size of a #attened needle �����mm� ���mm� ���mm in the horizontal�

vertical and the beam motion directions�� Filling the machine takes ��&	� minutes in

normal operation and each !�ll" lasts approximately one hour�

The bunches of e� and e� circulating in the storage ring are then brought into

��



collision once every revolution at the interaction point in the center of the CLEO detec�

tor� The detector electronically collects information about the debris of the collisions�

conducts online analyses� and stores the data for subsequent detailed analyses� By re�

peating this procedure� millions of B events have been recorded� providing a huge data

sample for B physics analyses�

The rate of e� e� collision is described by the peak luminosity de�ned as ����

L � nf
N�e��N�e��
A�e�e��

���	��

where N � ���� is the number of electrons�positrons in a bunch and A�e�e�� �

 � ����cm� is the e�ective area of the beams� The number of bunches n was � for

most of the data runs we used� and 
 for the rest� The orbital frequency for the

electron and positron bunches in CESR is f � ��� kHz� Typical peak luminosity at

CESR during this period of operation was L � ��� 	�� ����cm��s��� The integrated

luminosity over time determines the total number of events collected for any process�

For example� the number of multihadron events is given by Nhad � �
R Ldt� where � is

the cross section of the reaction �unit is barn� � b � ������cm����

The hadronic cross section in the e�e� annihilation energy region near �� GeV is

shown in Fig� ���� At a center�of�mass energy of ���
�GeV� the total hadronic cross

section is about � nb where one quarter is due to resonant production of the b�b bound

state ���S� and the remaining 	 nb is due to !continuum" production of lighter quarks�

A data sample with an integrated luminosity of ��fb� for instance� contains about one

million ���S� decays to B �B pairs� In order to estimate the continuum contamination

from the other 	 million events� we also collect data at a lower energy� about �� MeV

below the ���S�� As this energy is about 	� MeV below the production threshold of

B �B pairs �m�B� � 
����MeV�c��� no B mesons are produced� It thus provides a good

estimate of the continuum contribution underneath the ���S� peak to any process of

interest� In the following context� we call the data samples collected on the ���S� the

!ON" samples� and those collected �� MeV below the resonance the !OFF" samples�

��
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Figure ���� The � resonance states�

����� Objectives of the Measurements

The objective of our measurement is to count the number of leptons from B decays and

the number of B events� We interpret the ratio of the two as the semileptonic branching

fraction of the B mesons� If the ���S� meson decays only to B �B pairs� the denominator

is simply the number of ���S� events� determined by integrated luminosity and cross

section� as was described in the previous section� The numerator would be the number

of detected leptons if only B mesons give rise to leptons at the ���S�� Unfortunately�

the D mesons produced in B decays can also decay semileptonically� contributing to the

leptons collected� We name semileptonic decays of the B !primary" and those of the D

!secondary"� Our goal is to measure the portion of primary leptons in ���S� events by

separating the primary spectra b� c�	 and b� u�	 from the secondary b� c� x�	 �

In our �rst analysis� described in Chapter 	� we separate the primary from the

secondary with the help of theoretical models� As is shown in Fig� ���� the primary and

secondary lepton spectra have distinctive shapes and dominate the higher and lower

�	



momentum regions� respectively� By �tting the inclusive lepton spectra with predicted

spectral shapes from models� we can use the overal normalization to measure the B

semileptonic branching fraction in a model�dependent way�

In our second analysis� described in Chapter �� we use an additional high momentum

lepton as a tag of the decay of the second B meson in the event� This ensures that

the denominator in the branching ratio calculation is the number of B mesons in our

sample� Taking advantage of charge and kinematic correlations of leptons from the two

B mesons� we separate the primary lepton spectrum from that of the secondary� By

integrating over the primary spectrum we obtain the numerator� The B semileptonic

branching fraction is therefore measured by experimental means� without having to rely

on theoretical models�
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Chapter �

Lepton Detection

Overview� We brie#y review the CLEO�II detector in this chapter and describe the

lepton identi�cation used in our analyses�

��� Objectives of the Detector

The B mesons decay within a few picoseconds after they are produced in CESR� Among

the possible decay products� the charged particles e�� ��� ��� K�� p and �p� and

the neutral particle � are directly detectable through their interactions with detector

material� The other particles either can not be easily detected �for example� 	� n and

K�
L�� or like the B�s they decay too quickly to be observed� Among these latter particles

are the charmed mesons �D�� D�� �D�� D�
s �� many other mesons and baryons ��

�
c � J���

��� K�
s � �

�� �� �� etc�� and the �� lepton� Although these particles are not directly

detectable� their production can be inferred from the information about the detected

particles in an event� The J��� for example� decays to ���� or e�e�� each about �$

of the time� These leptons are particularly important� because they contribute to the

background of our measurements� We can recognize and suppress this background by

computing the e�ective mass of the detected lepton pairs� and identifying as likely J��

�




decay products those pairs which are near the known mass� Even the B meson itself

can be reconstructed from many di�erent decay channels� ranging from the relatively

favored modes such as B � D�� or B � J��K� to the rare decays �B� � K����

�B� � ���� and B � K���

CLEO II is a general�purpose magnetic spectrometer ��	�� Its primary objectives

are the detection of e�� ��� ��� K�� p� �p� and �� The speci�c information we would

like to obtain include all of the following� ��� position measurement �trajectory recon�

struction�� ��� momentum measurement� �	� energy measurement� ��� identity among

the possible types of detectable particles listed above� To obtain as complete a picture

of the event as possible� we would like to accomplish these tasks with maximum solid

angle coverage� and good e�ciency� The CLEO�II detector achieves these goals within

technological and economic constraints�

��� The CLEO	II Detector

CLEO�II is made of the following components �shown in Fig� ��� and ����� central

tracking detectors �CD�� time�of�#ight scintilators �TF�� and crystal calorimeters �CC��

All of these components reside inside a ��
�Tesla magnetic �eld provided by a super�

conducting solenoidal magnet� Outside the magnetic �eld the only active components

are the muon detectors �MU�� We discuss the principles and some technical details of

these components in succeeding subsections� Brie#y� the tracking chambers inside the

magnetic �eld measure the momenta of e�� ��� ��� K�� p and �p� and distinguish the

positively charged from the negative� The inner chambers also provide information

about the origin� or vertex� of these charged particles� The calorimeter simultaneously

measures the energy deposit and the position for photons and charged particles� Com�

plicated particle identi�cation involves essentially all elements of the detector�
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����� Tracking

Charged particles are detected by the central tracking chambers� PT �the precision

tracker�� VD �the vertex detector�� and DR �the outter drift chamber�� The particle

trajectories through these devices are helical� because of the ��
�Tesla magnetic �eld�

When a charged particle travels through a volume of gas� it ionizes gas atoms� thus

leaving a trail of electrons and ions � a track in the gas� All the three chambers

work by collecting and amplifying this ionization� Take the DR as an example� It is

a cylindrical volume �radius �m� length �m� �lled with a gas mixture of Argon �
�$�

and Ethane �
�$�� Thousands of ���m gold�plated tungsten sense and anode wires are

stretched along the axis of the cylinder� and applied with a potential of a few thousand

volts� The free electrons from ionization drift forward to the nearest anode� As they

gain energy in the electric �eld of the anode wire and the surrounding �eld�shaping

wires� secondary ionization occurs and a detectable !avalanche" forms� The resulting

electronic pulse is detected by electronics at both ends of the wires� If the pulse is large

enough� it is called a !hit"� When viewed from the end of the cylinder� as shown in

Fig� ��	� a track is a sequence of consecutive hits in the r � � plane� where z is along

the axis of the cylinder�

When the magnetic �eld along the z axis is applied� charged particles are bent in

the r � � plane by the Lorentz force� The clockwise or counterclockwise bending of

the track naturally tells its charge� The radius of its curvature is the measure of its

momentum pt transverse to the beam axis� There is no bending in the r � z plane� so

the direction �the polar angle � with respect to the z�axis�� combined with pt� provide

a measurement of the magnetude of the momentum� The determination of � involves

three techniques� ��� Every sixth layer of sense wires is inclined at a small angle �	��o�
with respect to the z�axis� The hit position in the r� � plane is slightly di�erent from

what would be observed in an axial layer� The resulting !small�angle stereo" e�ect

provides the z information needed� ��� On the inner and outer DR and VD walls�

�




cathode strips are wrapped around along the � direction� The signal induced on a strip

by nearby ionization tells the z position of a track going through that wall� �	� The

pulses produced on a wire by a particle�induced avalanche travel to both ends of the

wire� The relative sizes of charge signals collected at the two ends can also be used to

obtain information about the z position of the track on this wire� This e�ect is used in

the VD�

CleoXD
Run: 45621 Event: 22049
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Figure ��	� An event display viewed from end�

The geometry and potential of the sense and �eld wire are designed to to make the

electric �eld as uniform as possible so that there is a simple connection between the

measured elapsed time and the position in the cell� To make an accurate measurement

of the trajectory� these position measurements must be as precise as possible� and there

must be a large number of space points� In total� we have 
� layers of wires in the DR�

�� in the VD and � in the PT� The inner two chambers also provide information about

	�



where a track originates� This information is necessary to reconstruct vertices � where

a short�lived particle decayed to charged tracks� such as K�
s � ���� and �� p���

Two factors determine the tracking resolution� in addition to the intrinsic uncertainty

in the position measurements� At low momenta� the track hits only a small number of

layers� This reduces the precision of the curvature measurement� At higher momenta

the curve is distorted from a helix �circle in r��� by multiple scattering of the charged

particle with material in the chambers� including gases� wires and walls� The momentum

resolution is approximately modelled as

��p�p�� � �������pt�
� � ��������� �����

for p in GeV�c� For tracks at 
 GeV�c� this is fairly close to the measured value

�p � �
MeV�c� The angular resolution is �� � � mrad and �� � � mrad� The bigger
�� is expected� as there is only one stereo layer for every �ve axial layers� These tracking

resolutions serve our experiment very well� Right now� the PT is being upgraded to

a 	�layer double�sided silicon vertex detector that will improve the vertex position

resolution�

����� Calorimetry

The calorimeter records the passage of charged particles� and measures the energy

of photons and electrons in the CLEO�II detector� When a photon is incident on a

block of material three processes can occur� If the photon energy E� is low� up to

approximately ��� KeV� production of photoelectrons from the atoms of the material

dominates� As E� goes higher� Compton scattering of the photon with atomic electrons

takes over� Once E� passes the threshold of �me � ����MeV� e�e� pair creation from
the interaction of the photon with the material nuclei becomes the main process� At

our energy scale typical photon energies are in the range ��MeV � 
 GeV� so the
photons immediately produce e�e� pairs� The electrons and positrons in turn undergo

bremsstrahlung leading to a !shower" of particles� until the energy is totally dissipated
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in the material� At CLEO� we use cesium iodide �CsI� crystals doped with thallium

as the calorimeter material� The light produced by scintillation caused by the many

electrons and positrons in the shower can be collected as a measure of the energy of

the incident particle� The 	� cm depth of crystals is about �� radiation lengths� This

ensures that nearly all of the energy of electrons and photons in our 
 GeV range is

deposited in the calorimeter�

Muons have a much smaller cross section in material than electrons and hadrons�

Typically only �������MeV is lost through electromagnetic interactions in the calorime�

ter� The electromagnetic energy loss for charged hadrons� �� K� p and �p� is similar�

Sometimes� these hadrons will initiate a hadronic shower when they undergo nuclear

interactions with the crystal nuclei� It is rare even in this case� however� for hadrons

to deposit all of their energy in the calorimeter� except low�energy �p�s� which annhilate

with protons in the crystal and leave an excess of energy� This is one of the backgrounds

in our electron identi�cation�

The ���� invidual CsI crystals �
cm � 
cm � 	�cm� in the CLEO�II calorimeter
provide energy resolution which is unequaled among general purpose detectors� about

��
$ at 
 GeV and 	��$ at ���MeV for the best part of the acceptance �barrel region��

In the endcap region it is slightly worse� about ���$ at 
 GeV and 
$ at ��� MeV� due

to the amount of material between the calorimeter and tracking chambers� The �ne

granularity also gives good position resolution for showers� which is vital for electron

identi�cation and �� reconstruction� In the barrel region� �� � 	 � 
mrad� and �� �
��
 � �mrad� The angular resolution is slightly worse in the endcap region� and the
detailed performance depends on the energy of the shower�

����� Hadron Identi�cation

Identifying charged hadron species ���� K� and p��p� has been one of the most di�cult

challenges in collider experiments� In the current CLEO�II detector� two components
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are used for particle identi�cation� the time�of�#ight detector �TF� and drift chamber

measurement of the rate of energy loss due to ionization �dE�dx��

The time�of�#ight detector measures the time interval between a beam crossing and

when the particle strikes the outer shell of the drift chamber� It consists of strips

of plastic scintilators in the barrel� and pie�shaped pieces in the endcap� The beam

crossing is timed by two !beam buttons" at the ends of the interaction region near the

beam pipe� These register a small induced electric pulse when the electron and positron

beams pass� When a particle strikes the TF detector� the plastic scintilates� The #ight

time is determined from the time that the light output is collected by photomultipliers

at both ends of the scintilator� with corrections for propagation delay and other factors�

For our barrel TF system� the resolution varies from �	
 ps for 
 GeV electrons to �



ps for pions in hadronic events�

Knowing the arc length of a track in CD� the time of #ight can be determined as

the reciprocal of the velocity of the particle ���� At the same momentum� p� K and

� have di�erent masses and thus di�erent velocities� As shown in Fig� ���� their ���

distributions give good separation of the three species below ��
 GeV�c� The separation

is poor at higher momenta� as the particles become highly relativistic� In short� the

combination of momentum and velocity of a charged track provides a meaurement of

its mass�

The second technique in particle identi�cation is the measurement of dE�dx by the

outer drift chamber� When a charged particle goes through the tracking chamber gas�

it loses a small amount of energy to ionize the gas atoms� The energy loss per unit

distance is a function of the particle mass� as is illustrated in Fig� ���� The separation

of p� K and � is generally good below ���&���GeV�c�

Combining the two constraints on particle mass results in adequate identi�cation

of p� K and � below ��
 GeV�c� Above that the present CLEO�II detector is inca�

pable of separating K and �� Such separation would be very useful� for example� in
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Figure ���� Time�of�Flight and dE�dx distributions�

distinguishing the important decay channels B � K� and B � ��� Improved particle

identi�cation using Cerenkov light is a hope for a future CLEO upgrade�

����� Data Taking and Simulation

CESR beams cross once every ��
 �s� a rate of ��� kHz� Interesting collision reactions

do not happen on every crossing� and our data acquisition system can only read in

about ��&
� events per second� These two factors require us to �lter online to reduce

the event rate from ��� kHz to �� Hz by selectively triggering the electronics when

there are reactions we are interested in� The criteria used include energy deposition in

the CC� hits in the TF� track segments in the CD and inner chambers� and hits in the

MU� Once an interesting reaction triggers the read�out electronics� the data acquisition

system digitizes all electronic channels connected to the hits in the detector components�

The digital records of this !event" are analyzed online� and subsequently written on

tapes for more detailed o��line analysis� On average� we collect 	���
�� nb�� for each
beam �ll� corresponding to about an hour and a half� Since we run the accelerator in

excess of ��� days per year� this results in an annual data sample of ����� ���� pb���
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In order to estimate the detection e�ciencies and backgrounds� Monte Carlo simu�

lations of data are systematically produced in parallel with data taking� This usually

involves three steps� First� a physics generator �QQ�� produces interesting particle reac�

tions and generates �nal state particles in an event� for example e�e� � ���S�� B �B

and B � X�	� Second� the generated particles are put through a simulated detector by

the CLEO GEANTMonte Carlo package CLEOG� This simulates all the interactions of

the particles with detector material� such as ionization in CD gas� and electromagnetic

showering in the CC� The output of CLEOG is almost identical to the raw data we col�

lected in real data taking runs� Finally� the simulated data are processed in the same

way as e�e� annihilation data were through the data compressing program PASS��

So now� knowing the input to QQ and output of PASS� on our Monte Carlo� we can

calculate the e�ciencies and study background contributions� More detail on e�ciency

and background determination will be discussed in Chapters 	 and ��

��� Lepton Identi
cation

The remainder of this chapter discusses the lepton�identi�cation methods as well as

their e�ciencies and misidenti�cation probabilities� This is the most crucial aspect of

the detector performance for this thesis� since our analyses involve mostly leptons�

����� Muon Identi�caion

Muon identi�cation ���� is performed by the outermost part of CLEO II � the muon

detector �MU�� It takes advantage of the fact that e� deposit nearly all of their energy in

the calorimeter� and ��� K�� p and �p experience nuclear interactions in the calorimeter

and #ux return iron surrounding the magnet� The muon detector consists of three

layers of proportional wire chambers embedded in the iron absorbers at thickness of

	�� �� and ��� cm� The iron thickness are roughly equivalent to 	� 
 and � nuclear

absorption lengths� In the endcap region� there is only one layer of chambers� installed

	




at a depth of roughly � absorption lengths� The three layers of chambers provide the

detector with #exibility� Depending on the need of a speci�c measurement� one can

maximize e�ciency at the expense of higher background �depth 	�� maximize purity

at the expense of e�ciency �depth ��� or strike a compromise �depth 
�� Each of the

three chamber layers contains three wire layers� providing a level of redundancy which

ensures high detection e�ciency� The wires in the rectangular MU cells are stretched

along the z direction� similar to the those in the CD� A hit therefore clearly marks the

coordinates in the r�� projection� The z position is derived from the induced current

in copper strips aligned perpendicularly with respect to the wires� and also from charge

division at both ends of each wire hit�

The identi�cation procedure has two steps� First� each charged track in the CD is

extrapolated into the muon chambers� Then a search is made in the muon chambers

to see if there are hits within a few centimeters of the track projection� For our mea�

surement of semileptonic B decays� we require that a muon candidate have hits at a

depth of at least 
 absorption lengths� We restrict our sample to the barrel region�

which covers j cos���j � ����� In this region we have all three layers of chambers� with
a well understood acceptance and e�ciency� The rest of the MU� in the polar angle

range j cos���j � ���� to ����� is less well understood and less appropriate for precision
studies�

����� Electron Identi�caion

The electron identi�cation package ��
� combines information from di�erent parts of

the detector to calculate a likelihood ratio�

R�ELEC �
X
i

ln�Pe�Ph�i �����

where i represents the several information sources used� These include the ratio of the

CC energy deposit to the measured momentum �E�p�� dE�dx� track�shower matching�

shower shape� and TF information� Pe and Ph are the probabilities of a charged track

	�



being identi�ed as an electron or hadron based on that source i� They are determined

from a data sample of pure electrons from Bhabha events �e�e� � e�e�� and a pure

sample of hadrons from ���S� decays� The electron and hadron samples have distinc�

tive distributions for each one of the sources we use in electron identi�cation� E�p� for

example� shows a narrow disribution near � for electrons� For hadrons� E�p is most

often small� with a large tail corresponding to hadronic showers� This is the principal

tool we have to discriminate electrons from hadrons� The second most powerful handle

is dE�dx� As shown in Fig� ���� there is separation of electrons from hadrons at lower

energies� The showers caused by hadrons are in general more widely distributed than

electron showers� which are narrowly contained in a few crystals� Additional informa�

tion which contribute to the disciminating power of R�ELEC is obtained from several

sources� Some TF information is included� simple cuts on the time of #ight which help

reject K� at lower energies� Based on our studies of the e�ciencies and background

discrimination of our electron identi�cation package� we have standardized our R�ELEC

selection criteria� In the barrel region j�j � �
� 
�o� we require R�ELEC � 	�� for an

electron candidate�

����� E�ciencies

The e�ciency for muon identi�cation is determined by the chamber e�ciencies and the

momentum�dependent energy loss experienced by muons in the material in front of each

chamber �mainly iron absorber�� Our Monte Carlo simulates the chamber e�ciency for

each layer to within ��$� The energy loss in the material is more di�cult� but is now
understood at a level of ��MeV ����� We plot the Monte Carlo muon identifcation

e�ciencies in Fig� ��
� Overall� the MC simulation provides excellent agreement with

data in muon e�ciency� with an estimated systematic error of less than �$�

Measuring the e�ciency of electron identi�cation is a di�cult task� We choose

tracks from radiative Bhabha events in data and embed them into hadronic events from
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data to assess electron identi�cation in the evironment of B �B events� The measured

e�ciencies for embedded tracks are shown in Fig� ��
� They are generally above 
�$�

The systematic error in this e�ciency has been estimated to be ��$ from the di�erence
of the e�ciencies before and after embedding�
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Figure ��
� Lepton identi�cation e�ciencies�

����� Fake Rates

Fakes are hadronic tracks misidenti�ed as leptons� Fake rates are the probabilities of

misidenti�cation� They are generally momentum and charge dependent� To determine

the average misidenti�cation probability for tracks from ���S� decays� we need to

know the individual misidenti�cation probabilities for pions� kaons and protons� and

their abundances� The appropriate fake rate can thus be expressed by the following

weighted sums�

f�� �
p� �
X

i	p�K��

Y �
i �
p� � f ��i �
p� ���	�

	�



where Yi is the fractional abundance of particle i� and f
��
i is the probability of i� being

misidenti�ed as ���

Pure p� �p� K� and �� samples are �rst selected from data by using speci�c decay

processes which provide these particles� The individual fake probabilities are then

determined by running lepton identi�cation on these hadronic tracks� The cuts we use

in selecting the hadron samples are listed in Appendix B� Brie#y� we identify protons

from � � p� secondary�decay vertices using the vertex �nder� From the combined

ON and OFF data samples �	���� p and �p were selected� The candidate mass peak�

Fig� B��a� demonstrates that the sample of � candidates has a negligible contamination�

The p and �p fake probabilities as functions of momentum are shown in Figs� B��a and

B��b� The peak for f e
�

�p around ��� GeV�c for �p is due to the crossing of the electron

and proton dE�dx bands� together with the large E�p values which can result from �p

annihilations in the calorimeter�

Pions are selected by the vertex �nder from the secondary vertices of K�
s � �����

Our sample includes about 	
����� K�
s with very good purity� as indicated by the mass

peak in Fig� B��b� The pion fake probabilities are shown in Figs� B��e and f�

We select charged kaons from the decay chain D�� � D���� D� � K���� By

cutting on the D�� � D� mass di�erence and then applying cuts to the resulting D�

mass peak� we obtain a sample of ������ kaons with a small contamination due to

random combinations� as is shown in Fig� B��c� The kaon fake probabilities are shown

in Fig� B��c and B��d�

The above fake probabilities of p� K and � are then combined together� using the

measured abundances for the ���S� ����� which are shown in Fig� B�	� In Fig� ��� we

show the resulting fake rates as a function of momentum with the dots and error bars�

The size of the error bars clearly re#ects the low e�ciency for selecting kaons� While

this procedure in principle o�ers the best estimate of the fake rates� in practice it is

limited by our ability to obtain large pure samples of tagged hadrons� As an alternative�
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we chose to evaluate our fake rates by using a data sample collected at the ���S��

Unlike the ���S�� hadronic decays of the ���S� are not expected to produce leptons�

Therefore fake rates can be calculated simply by counting tracks which are selected by

the lepton identi�cation packages� The high cross section at the ���S� makes this proce�

dure feasible even with a limited ���S� data sample� We expect that the only source of

real leptons is from the decay ���S�� ��� q�q� These single virtual photon processes

represent the same physics as the continuum� and contribute a calculable enhancement

to the usual continuum rate� We can remove this source of real leptons together with

the continuum contribution by using our OFF data sample� The appropriate luminosity

scale factor is as follows�

�L��S� �
R L��S�dtR L�OFF �dt E

�
beam�OFF �

E�
beam��S�

�� � r� � �����

where the !over�subtraction" factor r � ��
�� ���� is calculated in Appendix C�
Other lepton contributions from ���S� decays include electrons from converted pho�

tons in the beampipe and in the material between the tracking devices� electrons from

�� Dalitz decays and lepton pairs from J�� decays� These are all corrected in the ���S�

fake�rate study by using methods identical to those we describe in Chapters 	 and ��

The lepton identi�cation fake rates from the ���S� are illustrated as the histograms

in Fig� ���� The overlaying of the ���S� fake rates on these plots clearly shows both

the agreement and the lack of statistics for the ���S� study� We have chosen to use the

���S� fake rates in this analysis� We estimate the systematic errors from the di�erence

between the ���S� and ���S� measurements�

Conclusion� The basic ideas and techniques in our experiment have been intro�

duced� In the next two chapters we discuss the two measurements in detail� As CLEO

terminology can not be easily avoided� we use typewriter style to distinguish them�

They can be looked up from Appendix A for reference� though they will in most cases

be explained when they �rst appear�

��



Chapter �

Measurement with Spectral

Fitting

AbstractWe report a model�dependent measurement of the inclusive B�meson semilep�

tonic branching fraction from ���
� fb�� of ���S� data collected with the CLEO�II

detector� By �tting the inclusive lepton spectra to the re�ned quark model of Altarelli

et al�� we obtain B�B � X�	� � ����
������������$� With a modi�ed version of the
form�factor model of Isgur et al�� in which the fraction of B � D���	 is allowed to #oat�

we �nd B�B � X�	� � ����
�� ����� �����$� The original Isgur model yields a lower
branching ratio� B�B � X�	� � ������� ���	� �����$� but with a higher 
�� Using
the measured semileptonic branching ratios� we have also obtained the CKM matrix

element jVcbj and con�rmed the CLEO measurement of jVub�Vcbj�

��� Introduction

Semileptonic decay of B�mesons plays an important role in understanding both the

electroweak and strong interactions� This process provides a straightforward �if model

��



dependent� way to measure the CKM matrix elements Vcb and Vub and to probe non�

perturbative QCD �
�� Previous measurements of the B�meson semileptonic branching

fraction have given values which are signi�cantly below theoretical expectations� as

reviewed in Chapter �� The simple spectator quark model predicts this branching

ratios to be ���
$� and while QCD corrections can bring this down to ���
$ or so�

the experimental values have consistently been below ��$� This chapter presents the

results of our study of B�meson semileptonic decays with CLEO II ����� In addition

to the intrinsic physics interest of the B semileptonic decay momentum spectrum and

branching fraction� this study also provides a rigorous test of the performance and our

understanding of CLEO�s lepton identi�cation�

This chapter presents a detailed description of our analysis� It parallels the proce�

dures we followed� We �rst discuss the data sample and the speci�c event� and lepton�

selection criteria� Discussion of corrections to the observed lepton spectra follows�

beginning with the estimation of !fakes"� hadrons misidenti�ed as lepton candidates�

We then describe the subtraction of leptons from processes� which are not of interest

to this analysis� and the correction for identi�cation e�ciency� After the discussion of

these corrections� we describe the �tting procedure which we use to measure the direct

contribution of semileptonic B decays �primary leptons�� and of semileptonic decays

of the charmed mesons produced in B decays �secondary leptons�� We then discuss

the theoretical framework used to develop the functions which we employ to extract

the branching ratios� summarize the systematics of the measurement� and present our

results� To conclude we calculate the CKM matrix elements jVcbj and jVubj�

��� Data Sample and Lepton Selection

The data sample used for this analysis consists of ���
� pb�� collected at the ���S�

�ON�� and 

� pb�� taken at CM energies � �� MeV below resonance �OFF�� The ON
data include �� ���� ���� ��� ��� ���S� decay events� In this study we assume that all

�	



the ���S� mesons decay into BB pairs� We studied e�ciencies and backgrounds with 


million generic ���S�� BB Monte Carlo events� In addition� about �� pb�� of ���S�

data were used to estimate the lepton identi�cation fake rates�

Lepton candidates are selected from multihadron events �referred to as KLASGL �

���� with �ve or more charged tracks� We put the candidates into two categories�

!identi�ed" leptons� which pass stringent identi�cation requirements� are used for the

signal� and !loose" leptons� which are less stringently identi�ed� are used for background

studies� Since most of the background sources give two oppositely charged leptons

�such as J�� � ����� and �� � e�e���� looser cuts on the second lepton increase the

e�ciency for determining these backgrounds� For this analysis our primary objective is

to study semileptonic B decay with minimal background and maximum understanding

of e�ciencies and systematic e�ects� In what follows !lepton" will signify !identi�ed

lepton" except as explicitly indicated�

For both lepton categories we require the candidate track to have good quality ��
��

We reject !ghost" tracks which result when the hits produced by a single charged

particle are erroneously reconstructed as two tracks� We also eliminate !curlers"� low

momentum tracks that spiral in the CD� and are therefore reconstructed as several

tracks� The !residual" of the track �t is required to be less than � mm �RESICD � �mm��

The track is required to originate near the expected vertex� with an impact parameter

in the r � � plane of less than 
 mm � jDBCDj � 
mm�� and an impact parameter in

the r � z plane of less than 
 cm �jZ�CDj � 
cm�� Finally� we require that there be at
least one valid hit in the PT and VD �NHITPT� NHITVD � ��� and that no fewer than

��$ of the DR layers which should have hits for a particular track actually registered

valid hits �RHITDR � ����� These track�quality cuts individually are not extremely

stringent� Identi�ed leptons are required to satisfy all four of these requirements� while

loose leptons need only satisfy any three�

After the track quality cuts� we apply the standard CLEO�II lepton identi�cation

��



packages with the selection criteria listed in Table 	��� As described in Chapter ��

electrons are identi�ed with a likelihood ratio R�ELEC that combines information on

E�p� dE�dx� TF and shower shapes� Muon candidates are selected from tracks matched

to all expected muon chamber hits �with quality code muqal � ��� In order to reduce

misidenti�cation from kaons and pions that have penetrated the inner absorber� we

require hits beyond 
 absorption lengths �dpthmu � 
�� We use only the good�barrel

part of the calorimeter for signal electrons� Similarly we select muon candidates from

only the barrel region of the muon detector� where we have all three layers of muon

chambers� The end�cap regions are not used for signal leptons because of inferior track

�nding and lepton identi�cation�

Table 	��� Lepton Identi�cation

Lepton Candidates Loose Leptons

e �
� 	 � 	 �	
� �
� 	 � 	 �

�
R�ELEC 
 	�� R�ELEC 
 ���
jcos�j 	 ���� jcos�j 	 ����

� muqal � � muqal � � or muqal 
 ���
dpthmu 
 
�� dpthmu 
 	��

Using the lepton�identi�cation criteria described above� we obtain the raw uncor�

rected lepton spectra shown in Figs� 	�� �electrons� and 	�� �muons�� The OFF spectra

are used to estimate the shape and amount of the contribution from continuum processes

to the ON spectra� It is usually possible to use criteria based on overall event topology

to supress the continuum contribution� In this study� no continuum�suppression cuts

have been employed� because the statistical error introduced by the continuum subtrac�

tion is not a signi�cant limitation on the precision of our measurement� and the use of

continuum suppression might alter the spectral shape in ways which are not perfectly

modeled by Monte Carlo� The scale factor for the continuum subtraction is given by

�L��S� �
R L�ON�dtR L�OFF �dt E

�
beam�OFF �

E�
beam�ON�

� ������ ����� �	���

Figs� 	��b and 	��b show the result of this subtraction� i�e� leptons from ���S� BB

�
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�shaded�� and �b� for the ���S�� The histograms are ��� and the dots are ���

��



decays� Table 	�� shows the total number of raw lepton candidates in the momentum

and geometric region used in this study�

Table 	��� Lepton Candidate Raw Yields

e� e� �� ��

p�GeV�c� ��� & 	�
 ��	 & 	�

geometry jcos���j 	 ���� jcos���j 	 ����
ON �

�	�� 	���
�� 
���
� ����
�

continuum ������� �����	� �
��	
 ���
��

���S� �
��
�	 �
����� ������ ������

��� Fake Corrections

Fakes are hadronic tracks misidenti�ed as leptons� The following equation describes

the relationship between the true numbers of electrons� muons� and hadrons� and the

numbers of detected electrons� muons and charged tracks�	
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The quantities appearing in this equation are de�ned as follows�

� Nh� Ne� N� are the true numbers of hadrons� electrons and muons�

� nt� ne� n� are the numbers of detected tracks� identi�ed electrons and muons�

� fe and f� are the fake rates for electron and muon identi�cation�

� �e and �� are the lepton identi�cation e�ciencies�

The fake contamination in the identi�ed lepton sample can be estimated by multiplying

the fake probability per track by the number of hadron tracks�

N ��
fake � f�� �N�

h � �	�	�

��



where � � e� �� All the above quantities are functions of lepton momentum� In other

words� N�
� or N�

h are actually the momentum spectra of leptons and hadrons� In�

troducing R��e � N��Ne as the ratio of muon and electron yields� we solve Eq�	�� to

obtain

Nh �
nt � �� � R��e� � �ne��eID�
�� �� � R��e� � �fe��eID�

� �	���

In the following subsections� we describe the procedures to determine the parameters

which appear in these equations�

����� Fake Rates

Fake rate is the average probability of misidentifying a hadron as an electron or muon�

It is charge and momentum dependent� As described in Chapter �� we studied the fake

rates with a data sample of hadron tracks at the ���S� and a sample at the ���S��

As is shown in Figs� ���� fe in the barrel region is about ���$ above ��� GeV�c� and

between ���$ and ���$ at lower momenta� f� is about �$ in the barrel� Due to the

lack of statistics for the ���S� sample� we use the fake rates obtained from the ���S�

sample� There is good agreement between the two measurements� and we have used

the di�erence as an estimate of the systematic error in the fake correction�

����� Yields Ratio of � and e

In principle� R��e is equal to �� as a result of lepton universality� Three factors con�

tribute to its deviation from �� First� bremsstrahlung for electrons and muons is dif�

ferent� Second� at lower momenta the processes �� � e�e�� and � conversions con�

tribute only to the electron yield� Finally� the electroweak radiative corrections to the

lepton spectrum are di�erent for electrons and muons� According to Atwood and Mar�

ciano ����� this makes R��e rise by 
���$ at high momentum� and drop by the same

amount at low momentum�

The �rst two factors in R��e are estimated by using generic ���S� � BB Monte

�




Carlo� We obtain this by a simple division of the spectra for tagged prompt muons and

electrons from the Monte Carlo� with our track quality cuts applied� Fig� 	�	a shows

the result of this division�
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b) Rμ/e from Electroweak Corrections
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Figure 	�	� Yields ratio of e and �� R��e�p�� Note the zero of the vertical scale�

To simulate the radiative e�ect we �rst use the ACCMM model ��	� to generate

lepton spectra for primary and secondary decays� We then apply the electroweak ra�

diative corrections for electrons and muons� as prescribed by Atwood and Marciano�

The primary and secondary lepton spectra are then combined according to the branch�

ing ratios from previous measurements to get the inclusive electron and muon spectra�

By dividing them we get the correction on R��e due to radiative e�ects� as shown in

Fig� 	�	b� The function in Fig� 	�	c is the combined R��e which we use in this analysis�
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����� Computation of Fake Correction

The remaining ingredient needed for Eq� 	�� is the electron identi�cation e�ciency �eID �

We use the results from a data sample made by embedding radiative Bhabha tracks

into ���S� hadronic events ��
�� as is discussed in Chapter ��

With the above momentum dependent functions R��e� f
�
l and ��e � we subtract the

fakes according to Eqs� 	�	 and 	��� The tracks and fakes are shown in Fig� 	��� The

correction is summarized in Table 	�	� For convenience we have presented the results
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Figure 	��� Spectra of tracks �a�� �b�� fake electrons �c�� �d� and fake muons �e�� �f��

in two coarse momentum regions� low �������	 GeV�c� and high ���	�	�
 GeV�c��
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Table 	�	� Summary of Fake Correction

lepton low e� low e� high e� high e� high �� high ��

nt ��������� ����
�
�� �	��
�� �	
���	
Nh �������
� ����
���� ������
 ����
�� ������� ����	�

Nf 	�
	� ����� 	�� ��	 ��	
� �����

nraw ������� ������� �����	 ���
�� ������ ������

��� Background Corrections

We de�ne all sources of leptons other than B � X�	 �primary leptons� or B �
DX�D � Y �	 �secondary leptons� as background leptons� We remove each source

separately as described below�

����� J��� ����

The decay chain B � J��X � J�� � ���� contributes both electrons and muons

between ��� and ��� GeV�c� This is a major background to the higher momentum side

of the inclusive spectra� and thus particularly a�ects the b� u�	 piece of the spectrum�

We combine each lepton candidate with any accompanying oppositely charged loose

leptons of the same #avor to calculate the two�body invariant mass M������ which is

shown in Fig� 	�
� No corrections for energy loss in the tracking chamber have been

applied to the tracks when calculating the dilepton mass� A second�order polynomial

and a bifurcated Gaussian are used to �t each mass plot� The parameters of the

J�� �ts are 	� �

���

���

� MeV�c
� and 	� �
������
����

 MeV�c

� for electrons and muons

respectively� From these �ts we de�ne the 	� J�� mass peak and its sidebands in such

a way that a sideband is separated from the peak by another ��

We determine the momentum spectra for leptons from detected J���s by a sideband

subtraction� To account for the contribution of J���s which are not detected� we correct

by the e�ciency for detecting leptons from inclusive J���s which we determine from
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Figure 	�
� Correction for lepton pairs from � decays� Dielectron mass is �a� and
dimuon �b�� The e�ciencies are shown in �c� and �d��

Monte Carlo� This e�ciency is approximately ��	� ��$ for the dielectron decays� and
�

� ��$ for the dimuon decays� as is shown in Fig� 	�
c&d� The e�ciency�corrected

spectra of leptons from J�� are shown in Fig� 	��a&b� They are directly subtracted

from the inclusive lepton spectra�

����� Photon Conversion Correction

There is a signi�cant contribution to the low momentum electron signal from the conver�

sion of photons in the beam pipe and in material between the tracking chambers� Our

track quality cuts eliminate 

$ of the conversions� The remainder must be subtracted
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Figure 	��� Background corrections which are subtracted from the inclusive lepton
spectra� Leptons from B � J��X� J�� � ���� are shown in �a� and �b�� electrons
from �� Dalitz decays and from photon conversions are shown in �c� and �d��

from the electron spectra� just as the fakes are�

The pair�conversion �nder �	�� is used to #ag identi�ed electrons which are the

product of photon conversions� Its e�ciency rises linearly from 
�$ at ��
 GeV�c to

one at ��	 GeV�c� The photon conversion correction is obtained by correcting the

observed momentum spectrum of vetoed electrons by the conversion �nder e�ciency�

The resulting correction is shown in Fig� 	��c�

����� �� Dalitz Decays

At lower momentum� the Dalitz decay �� � e�e�� is another background which pro�

duces e�e� pairs� We deal with it in almost the same way as the J�� background�

except that we form a three�body invariant mass M�e�e��� instead of M�e�e��� The


�



selection criteria for the photons are listed below�

� shower not matched to a track� � energy � �
 MeV� � �
� 	 � 	 �	
�

� photon not from �� � �� � shower contained mostly in 	� 	 crystals

The three�body mass is �tted with a Gaussian and a second�order polynomial to get

the width of the ��� and to de�ne sidebands for subtraction� as was described in the

previous subsection� We obtain m���� � �	
� � MeV and the e�ciency from Monte

Carlo is ��	 � 	�$� Due to the lack of statistics� we use the Monte Carlo momentum
spectrum shape of such electrons� This spectrum is then normalized to the number of

such Dalitz decays found in data with the above invariant mass method� The subtracted

electron spectrum from Dalitz decays is shown in Fig� 	��d�

����� Leptons from Ds and �c

Leptons from the decay B � DsX � Ds � �Y are subtracted by using the Monte

Carlo sample� The momentum spectrum of Ds is tuned to match that from data and

normalized to the measured branching ratio B�B � DsX� � ����������	���
��$ �
���
The spectrum of electrons from Ds is shown in Fig� 	��a�

Similarly� leptons from charmed baryons� mainly �c� are also subtracted by using

Monte Carlo� The production of �c from B decays is modeled to include ��$ charmed

baryon pair production through the channel B � *c��c n�� in addition to the decays

B � �c�p��n�n�� The �c spectrum from this model matches data in both shape and

rate B�B � �cX� � ����� ����$ �
��� The subtracted leptons from charmed baryons

are shown in Fig� 	��b�

����	 � Decays and Other Backgrounds

The contribution of leptons from B � X�	� � � �		 can be calculated from the inclu�

sive B � X�	 branching ratio� We use the previously measured result B�B � X�	� ����

combined with the phase space factor for B � X�	� which gives B�B � X�	� � ��
$�







(a) e from Ds

0.5 1.75 3
0

1000

2000

Lepton Momentum  (GeV/c)

(b) e from Λc

0.5 1.75 3
0

80

160

240

(c) e from τ

0.5 1.75 3
0

500

1000
(d) e from η and Ψ(2S)

0.5 1.75 3
0

100

200

Figure 	��� Electrons from �a� Ds� �b� �c� �c� � and �d� � �at lower momenta� and
���S� �higher momenta��

This is in good agreement with a recent measurement of this quantity by the ALEPH

experiment �	��� The calculated spectra of e and � from � decays are subtracted from

the inclusive spectra as in Fig� 	��c�

Contributions from other background sources� such as B � ���S�X � ���S�� ����

and B � �X � � � e�e��� are also subtracted by using Monte Carlo� They are plotted

in Fig� 	��d�

����
 Summary of Backgrounds

We summarize the above background corrections in Table 	��� In the high momentum

region� leptons from charmonium states are the main contributions� At lower momenta�
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Table 	��� Summary of Background Leptons

Sources e ���&��� GeV�c � ��	&��� GeV�c

J�� 	� ���� ��� �� �
�� 


�� �� ��	� �� 	�� �
� 	� ��	� 	�� �

Ds ��� 	��� �� 

�� 	�
�c ���� �� �
� �� ���� 
� 	��� ��

���S� ��
� � ���� �
� 	��� �� �

total �
� ���� �� 	
� 	� ���� ���

all other sources contribute� The small errors re#ect the high statistics of the Monte

Carlo sample� We also list in Table 	�
 leptons in three momentum regions after these

background corrections� B�meson decays at the ���S� can not produce tracks with

momentum above ��� GeV�c� Our results are consistent with this expectation�

Table 	�
� Number of Leptons from Background Subtracted Spectra

p GeV�c ������	 ��	���� ����	�


e ���� ��
� �� �	� ���� ��
� ��
 ��� ��

� ���� �	�� 

� �
� ���

��� E�ciency Corrections

We must correct the lepton spectra for the ine�ciencies in event selection and lepton

identi�cation� The overall e�ciency is given by the following equation�

� � ��K�� � �tr
� �z �
�evt

� � �geo � ��tracking � �TQ � ��ID� �z �
��

�� �	�
�

From our Monte Carlo sample� the e�ciency for choosing class �� events with at least


 charged tracks is determined to be �evt � �
��� � ����$ for generic B �B events and


�



slightly lower at 
��
$ for events with leptons� This di�erence in event selection is

taken into account in the correction procedure� The geometric acceptance �geo is ����

and ���� for electrons and muons� respectively�

The lepton �nding e�ciency �� includes a slightly momentum dependent track �nding

and quality requirement e�ciency of �
�� ��$� and a strongly momentum dependent

e�ciency of the lepton identi�cation packages� This is particularly the case for muon

detection� as ��ID turns on starting from ��	 GeV�c� ��ID is determined by Monte

Carlo� It has been shown ���� that there is good agreement between the simulation and

data� The e�ciency of the electron identi�cation package �eID was determined with a

sample of radiative Bhabha tracks embedded in ���S� hadronic events ��
�� We show

�� and e�ciency corrected lepton spectra in Fig� 	��� These e�ciencies do not include

any radiative corrections�
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Figure 	��� E�ciencies �� and e�ciency corrected lepton spectra for electrons �a�� �c�
and muons �b�� �d� respectively�
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��
 Normalization of the Spectra

After the e�ciency corrections� we normalize the lepton spectra to the total number of

B decays� There are �������
� events passed our event selection in the ON data sample�

and ���
����� events in the OFF sample� By using the luminosity scale factor derived

from equation 	��� we �nd the total number of ���S� events that are hadronic� class ��

with at least 
 charged tracks� to be �� ��	� �	�� ��� ���� This ��
$ error comes from

the uncertainties in the luminosity and beam energy in calculating �L��S��

The absolutely normalized spectra for electrons and muons are shown in Fig� 	�
 �also

tabulated in Appendix D after corrections for detector bremsstrahlung�� The di�erence
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0.00
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e+-

μ+-

Figure 	�
� Inclusive lepton spectra normalized to the total number of ���S� events
after all corrections�

between e and � is due to internal and external bremsstrahlung� These spectra contain

leptons from primary and secondary decays of the B mesons� Theoretical models must

next be used to determine how many are directly from B decay� so that the inclusive

B semileptonic branching fraction can be extracted�







��� Theoretical Functions

The inclusive lepton spectra contain contributions of leptons from primary B decays

b� c�	 and b� u�	� and from secondary decays B � DX followed by D � Y �	� We

use theoretical models and available experimental data to calculate the shape of the

lepton spectrum expected for each decay process� By �tting our measured specta with

these shapes� we can extract information about the B � X�	 branching ratio�

The theoretical models fall into two categories� inclusive and exclusive� as is discussed

in Chapter �� The inclusive models calculate decay rates at the quark level� The

simplest is the free�quark model� When the b quark decays to a c quark and a W��

the W� can decay to the following pairs� �e�� �	e�� ���� �	��� ���� �	� �� ��u� d� and ��c� s��

The latter two each enter with a color factor of 	� Naively� we expect the total width to

be shared equally by the 
 pairs� except for phase space modi�cations for the massive

�nal states ���� �	� � and ��c� s�� This gives an expected semileptonic rate of ���
$� as

described in Chapter �� The smaller measured values suggest that diagrams other than

the spectator process contribute signi�cantly to B decays� Altarelli et al�� introduced

phenomenological internal motion inside the B mesons� as well as QCD corrections� to

describe B decays ��	�� Recent work based on heavy quark expansion ���� has advanced

the calculation in non�perturbative QCD by describing the Fermi motion in terms of the

kinetic energy of the b quark� It also demonstrated that the derived lepton spectrum

is well represented by the ACCMM prescription in most of the momentum range� This

heavy quark expansion diverges� however� near the endpoint region� We therefore did

not use it to �t the data in this study�

The exclusive models calculate decay rates based on explicit �nal meson states� under

the assumption that the decays are resonance dominated� The total rates are the sum

over a few �nal�state mesons according to QCD sum rules by Bjorken and Shifman�

Voloshin� The calculations are only possible phenomenologically by de�ning unknown

form factors as functions of momentum transfer q�� The dependence on q� di�ers

��



among models such as ISGW ��
�� WSB ���� and KS ����� The form�factor dependence

is simpli�ed by the Heavy Quark E�ective Theory �HQET� as it expresses the form

factors in terms of a single universal function� It provides a means to derive the CKM

matrix element Vcb by measuring the exclusive semileptonic decays for heavy�light quark

systems� It can further be combined with chiral symmetry to calculate nonresonant �nal

states and can be factorized for hadronic decays when applicable� For our study� we

use the ISGW model� since it is the only exclusive model currently avalable which takes

into account the higher spin states� the D���s�

����� The ACCMM Model

The model of Altarelli et al� �ACCMM� ��	� uses a Gaussian distribution to describe

the internal motion inside the B mesons� The root mean square of this momentum

distribution is called the Fermi momentum PF � As a consequence� we do not need to

use the initial quark mass as in the free quark model� only the initial meson mass and

the Fermi momentum� The �nal quark mass� however� is not determined� and is left

as a second parameter in this model� We determine both the Fermi momentum and

�nal quark mass from the �ts to data in the next section� In addition� QCD internal

radiation corrections to the free�quark model are included in the ACCMM model�

����� The ISGW Model

The model of Isgur et al� �ISGW� ��
�� is the �rst of the exclusive models� In this

model� the initial state meson decays semileptonically into �nal state mesons including

the pseudoscalar� vector and a few higher spin states� In the case of b� c�	� the �nal

states are the D� D� and four D�� states�

The decay rate for pseudoscalar to pseudoscalar transitions �P � P � is determined

by two form factors and that for pseudoscalar to vector �P � V � by �ve� The form

factors and their q� dependence are simulated by a mock meson similar to a hydrogen

��



atom� in which the wave functions at zero recoil are determined from a Coulomb plus

linear potential in the Schr)odinger equation� To modify this for relativistic e�ect� a

multiplicative constant � is introduced which controls the slope of the q� dependence�

This can be treated as a parameter in the ISGW model�

����� Electroweak Radiative Corrections

Atwood and Marciano ���� suggest three types of electroweak radiative corrections�

virtual loop corrections at high energy� low energy photon internal bremsstrahlung

and loops� and Coulomb corrections for neutral initial state mesons� We implement

the second into our analysis� as described in Chapter �� since it is the only one that

a�ects the shape of the momentum spectrum for semileptonic decays� This internal

bremsstrahlung correction changes the shape of the spectrum� but not the normal�

ization� It is speci�ed in terms of the maximum and average energies of the lepton

spectrum� It introduces a ����$ di�erence varying with momentum for muons and

electrons� as is illustrated in Fig� ����

����� Procedure to Generate Theoretical Functions

For each model� we construct the theoretical lepton momentum spectra for b� c�	�

b� u�	� and b� c� x�	 in four steps �����

� generate the spectra in the B or D rest frame�

� apply electroweak corrections�
� boost into the lab frame� using the B or D momentum distribution�

� smear the spectra to account for detector resolution and bremsstrahlung�
The �rst two steps� models and electroweak corrections� have been described in

Chapter � and summarized in the previous section� We boost the resulting lepton

spectra from B decays into the lab with B momenta appropriate for our ���S� sample�

To boost the secondary lepton spectra into the lab� we use the measured momentum

��



spectra for D� and D� mesons �
��� as is shown in Fig� 	���� We combine the two

boosts using the branching ratio information listed in Table 	�� �
�� 
���
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Figure 	���� Inclusive D meson spectra measured by CLEO� �a� D� and �D� and �b�
D�� The vertical scale is arbitrary�

Table 	��� Branching Ratios for Secondary Leptons

D B�B � DX�$ B�D � Y �	�$ B�b� c� y�	�$

D� ����� ��� ���� ��� ���� ���
D� �	�
� 	�� ���
� ��� ��	� ���
sum ���� ��


We simulate the e�ect of bremsstrahlung and momentum resolution in the detector

with response functions determined by Monte Carlo� For each identi�ed lepton track

in the Monte Carlo sample we increment an element of a two�dimensional array which

corresponds to its generated momentum PSAV and its measured momentum PQCD� This

array is then normalized column by column to produce the smearing matrix� Each

entry in the matrix has an associated error which re#ects the limited Monte Carlo

statistics� These errors are propagated through the smearing process into the �nal

smeared spectra�

After the theoretical functions are generated by the above procedure� we normalize

the three shapes to ��binwidth � �����
 GeV�c� so that the coe�cients determined by

�	



�tting the functions to the absolutely normalized data spectra are the branching ratios

for the three decay processes�

��� Fitting

For each theoretical model we �rst �t the electron and muon spectra separately to check

consistency with lepton universality� Because of the momentum cut�o� at ��	 GeV�c�

the muon �t is quite insensitive to the secondary semileptonic branching ratio� which

is dominated by the low momentum part of the electron spectrum� For this reason we

constrain the muon secondary branching ratio to be the same as the result of that from

the electron �t� B�b � c � y�	� � B�b� c� ye	�� Once the agreement between e

and � is established� as will be shown in the next section� we then �t the two spectra

simultaneously to extract branching ratios� We put lepton universality constraints in

the simultaneous �t so that the three branching ratios � two primary ratios� B�b� c�	�

and B�b� u�	�� one secondary B�b� c� y�	� � for electrons and muons are the same�

In all the �ts the allowed regions are ���&���GeV�c for electrons and ��	&���GeV�c for

muons�

����� Fit with ACCMM

In �tting to the ACCMM model we have �ve parameters to be determined� In addition

to the branching ratios for b� c�	� b� u�	 � and b� c� x�	� we must determine the

best values of the Fermi momentum and the mass of the �nal�state charm quark� �In

a separate step the corresponding quantities for the charm decays are determined by

�tting to lower energy data�� Two other parameters of the model� the spectator quark

mass� and the u�quark mass� cannot be adequately constrained� We therefore set them

both to be �
�MeV�c�� We vary the combination of PF and mc to �nd the best values

of these parameters from the 
� distributions�

��



The parameters for secondary decays are obtained by using DELCO data �		� for

��	���� � D �D and D � X�	� The two parameters to be determined are PF for

the D mesons and mx for the �nal�state quark� which is mostly strange� with a small

Cabibbo�suppressed d�quark component� We generate ACCMM shapes following the

steps described in the previous section� except that we do not smear the theoretical spec�

tra by the CLEO�II detector response matrices� The boost for the DELCO spectrum is

the mass di�erence between ��	���� and a D �D pair� The parameter space we explore

ranges from �
 to 
�� MeV�c in �� MeV�c steps for PF � and 
� to ���� MeV�c
� in �


MeV�c� steps formx� The best �t to the DELCO lepton inclusive spectrum �Fig� 	�����

yields the parameter values PF � ��� � �
MeV�c and mx � 
�
����
�
� MeV�c

�� The s�
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Figure 	���� Fit to the DELCO lepton spectrum with the ACCMM model� The pa�
rameters for this �t are PF � ���� �
 MeV�c and ms � 
�

����
�
� MeV�c��

quark mass is somewhat smaller than we would expect� although the uncertainty is

large� This may have re#ected the fact that the models do not work so well for charm

decays�

�




To determine the parameters for primary decays we generate ACCMM shapes ac�

cording to the procedure in the previous section� We vary PF from � to 
�� MeV�c in


MeV�c steps� andmc from ����� to �����MeV�c in 
MeV�c steps� From the separate

�ts to electrons and muons� and from the simultaneous �t� we obtain three groups of

values for the two parameters� They are listed in Table 	��� We show in Fig� 	��� the
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Figure 	���� 	�D and ��D views of the 
� �on the left� and con�dence level in $ �on
the right� as a function of �PF � mc� for the e � � simultaneous �ts�


� and con�dence level distributions in the �pF � mc� plane� Also� we show in Fig� 	��	

the 
� projections onto the PF and mc axes� Fig� 	��� shows the result of the best

simultaneous �t of the electron and muon spectra to the ACCMM model� The corre�

sponding branching ratios are listed in Table 	��� with only the statistical errors shown�

��



Figure 	��	� 
� projections� On the left� 
��PF � for mc in �
MeV�c
� steps is shown�

On the right� 
��mc� for PF in �
 MeV�c steps is plotted�

In this table �u�c is the error correlation between the b� u�	 and b� c�	 branching

fractions� which is used to determine the error in the overall inclusive branching ratios�

Using the parameters from the best �t� we calculate the mass di�erence between the

bottom and charm quark to be mb �mc � 	�	
 GeV�c�� This agrees with the QCD

based heavy quark expansion prediction ��� ��� 	��� though the de�nition of quark mass

varies�

Table 	��� ACCMM Parameters for B Decays

Fit e � e � �

PF � MeV�c� ���� �
 ��
� �
 ��
� �

mc � MeV�c

�� �� �
�� �
 �� �
�� �
 �� ���� �
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Figure 	���� Fit to the ���S� lepton spectra with the ACCMM model� This shows
the electron part of the best simultaneous �t with the muon spectrum overlaid� In
showing the �tting result� detector bremsstrahlung has been corrected for all spectra
and functions� The parameters and branching ratios determined from this �t are listed
in Table 	�� and Table 	���
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Table 	��� Fitting Results

Model Quantity e � e� �


��d�o�f� 	��	���� 	 �����	�� � 

�
���� 	
C�L�$ ���� ���	 ����

pF MeV�c ��� ��
 ��

mc MeV�c� �� �
� �� �
� �� ���
B�b� c�	�$ ���	
� ���� ������ ���� ������ ����

ACCMM B�b� u�	�$ ����� ���	 ���	� ���� ����� ����
B�b� c� x�	�$ ��
�� ���
 ��

 ��
�� ����

�u�c ����� ����� �����
B�b� x�	�$ ���
�� ���� ���

� ���
 ���
�� ����

��d�o�f� ��������� 	 �����	�� � ��
�
���� 	
C�L�$ ��� ��� ���

B�b� c�	�$ ������ ���� ������ ���
 ������ ���

ISGW B�b� u�	�$ ���	� ���	 ���� ����� ���	

B�b� c� x�	�$ ������ ���� ����� ����
� ����
�u�c ����� & �����

B�b� x�	�$ ����
� ���� ������ ���
 ������ ���	

��d�o�f� 	������� � �����	�� 	 ���
���� �
C�L�$ ���� ���
 
��


B�B � D�D���	�$ ����� ���� ��	�� ���	 ��	�� ����
B�B � D���	�$ ���
� ���
 ��

� ���� ��
�� ���	
B�b� u�	�$ ����� ���� ����� ���
 ����� ���	
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�D�D���u ����� ����� ����
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����� Fit with ISGW

Fitting with the original ISGW model is straightforward� since the branching ratios are

the only free parameters to be determined� The secondary lepton spectrum is already

�xed by the model in the D rest frame and by its boost� theD spectra from CLEO data�

The results are listed in Table 	��� The �t to the muon spectrum favored a small negative

value for B�b� u�	� within errors� we thus forced it to be zero in the �t� It is found that

the ISGW �ts give unsatisfactory con�dence levels� however� as is shown in Table 	��

and Fig� 	��
� This implies that the model needs to be modi�ed to �t the shape of our

data� As originally presented� the ISGW model predicts the proportion of the three

categories of exclusive decays to be B�B � D�	� � B�B � D��	� � B�B � D���	� �

��$ � ��$ � ��$� B�B � D��	� has been measured to be �&
�
$ �	
� by fully or

partially reconstructing the missing mass to match the undetected neutrino� The latest

CLEO result gives B� �B� � D�����	� � ���
� ����� �����$� Similarly� B�B � D�	� is

measured to be ����� ����$ ���� Evidence for B � D���	 has only been seen in one or

two of the D�� states� It is the least understood� and not all of the D�� states have been

well measured or even observed yet� While the model has di�culty in �tting the lepton

spectra� its vector�to�pseudoscalar ratio B�B � D��	��B�B � D�	� � ��	 is in good

agreement with results from exclusive measurements� We therefore make a very simple

modi�cation of the model by �xing this ratio to the model prediction and allowing the

B � D���	 branching fraction to #oat in the �t� This technique was �rst used for a

previous CLEO measurement� and was dubbed ISGW�� �����

With this modi�cation� the 
� value improves� yielding much higher con�dence lev�

els� as is shown in Table 	�� and Fig� 	���� It is possible to relax the constraints of the

ISGW further� by allowing the proportions of B � D�	� B � D��	� and B � D���	

to be completely free� while constrain B � u�	 to measured values of jVub�Vcbj �	���
Such free �t to the electron spectrum gives branching ratios very close to those from

ISGW�� with comparable errors and con�dence level� It favors a vector�to�pseudoscalar

��
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Figure 	��
� Fit to lepton spectra with the original ISGW model� This shows the
electron part of the simultaneous �t with the muon spectrum overlaid� In showing the
�tting result� detector bremsstrahlung has been corrected for all spectra and functions�
The branching ratios determined from this �t are listed in Table 	���
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Figure 	���� Fit to lepton spectra with the ISGW�� model� which treats the proportion
of B � D���	 as a free parameter� This shows the electron part of the simultaneous �t
with the muon spectrum overlaid� In showing the �tting result� detector bremsstrahlung
has been corrected for all spectra and functions� The branching ratios from this �t are
listed in Table 	��� The fraction of B � D���	 from this �t is ��	 � ��$ �statistical
error only��
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ratio exactly ��	 as in the ISGW model� But the muon spectrum favors a much lower

fraction of B � D�	 decays compared to the measured B�B � D�	�� This clearly

demonstrates that our inclusive data spectra alone cannot determine these fractions�

We therefore do not change the D and D� parts of the model� keeping both the spectral

shapes and the vector�to�pseudoscalar ratio of ��	�

The amount of D�� favored by the ISGW�� �ts is ��	� ��$ �statistical error only��
considerably di�erent from the ��$ in the original ISGW model� One must interpret

this result cautiously� however� because of the possibility of higher spin states and non�

resonant contributions� which are not included in the model� The systematic error on

the D�� fraction will be estimated in the next section�

����� b� u�� from the Fits

The b� u�	 fractions are positive for most of the cases considered� except the ISGW

muon �t� which is consistent with zero �Table 	���� If we force B�b� u�	� � � in the

�ts� the con�dence levels drop in all cases� To understand the implication� we �rst

check the end�point region of the spectra and �ts� which are shown in Fig� 	���� They

are consistent with the CLEO b� u�	 lepton spectrum end�point analysis �	��� This

consistency check is the prerequisite for extracting jVub�Vcbj at the end of this chapter�
Furthermore� we can use the results of jVub�Vcbj from the end�point analysis to constrain
B�b� u�	� in our �ts �Table 	�
�� The results are consistent with those in Table 	���

but with reduced degree of freedom�

����� Inclusive Semileptonic Branching Ratios

The inclusive B semileptonic branching ratios from the �ts are summarized in Table 	���

with statistical errors only� The results are consistent with lepton universality within

statistical errors for each model�

�	



Table 	�
� jVub�Vcbj constrained �ts compared to free �ts�
Model Quantity constrained free


��d�o�f� �������� � 

�
���� 	
C�L�$ �	�� ����

B�b� c�	�$ ����	� ���	 ������ ����
ACCMM B�b� u�	�$ ���	 ����� ����

B�b� c� x�	�$ ��
�� ���� ��
�� ����
B�b� x�	�$ ���
�� ���	 ���
�� ����

��d�o�f� ��
������ � ��
�
���� 	
C�L�$ ��� ���

B�b� c�	�$ ����
� ���	 ������ ���

ISGW B�b� u�	�$ ���� ����� ���	

B�b� c� x�	�$ ����
� ���� ����
� ����
B�b� x�	�$ ����
� ���	 ������ ���	

��d�o�f� �
������ 	 ���
���� �
C�L�$ 
��� 
��


B�B � D�D���	�$ ��	�� ���� ��	�� ����
B�B � D���	�$ ���
� ���� ��
�� ���	
B�b� u�	�$ ���� ����� ���	

ISGW�� B�b� c� x�	�$ ����� ���� ���	� ���	
�D�D���D�� ���
	 �����
B�b� c�	�$ ����	� ���� ������ ����
B�b� x�	�$ ���
	� ���� ���
�� ����

B�B � D���	�
B�b� c�	� $ ����� ��� �	��� ���
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(a) ACCMM fit
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Figure 	���� Lepton spectrum and �t with ACCMM �a�� and ISGW�� �b� in the end�
point region� The spectrum shown is the average of electrons and muons� The solid
curves are the �ts while the dashed show the b� u�	 part of the �ts�

��� Systematic Studies

We study the systematic errors with the following procedure� For each source of sys�

tematic error we vary this quantity up and down by the amount of uncertainty� and

repeat the analysis procedure to obtain the results from the �ts� The bigger of the two

is taken to be the systematic error due to this source� These uncertainties are mostly

uncorrelated� so all contributing errors are summed in quadrature to determine the com�

bined systematic error� We list these sources� their uncertainties� and the associated

systematic errors in the branching ratios in Table 	����

�




Table 	���� B�B � X�	��$� for � � e� � and combined�

Model e � e � �

ACCMM ���
�� ���� ���

� ���
 ���
�� ����
ISGW ����
� ���� ������ ���
 ������ ���	
ISGW�� ���
�� ���
 ������ ���� ���
�� ����

In this table� we have made a conservative estimate of the uncertainty in fake rates�

taking into account the di�erence in the two measurements of fake rates in Chapter ��

The uncertainty in ��ID has been discussed in Chapter �� That for �eID is estimated

from the di�erence in the e�ciency for �nding electrons from radiative Bhabha events

before and after they are embedded in hadronic events� The systematic errors in the

J����
�
� correction include the internal radiation of the J����

�
�� The uncertainty in

�� Dalitz decays is estimated by using Monte Carlo� This includes a small contribution

from uncertainty of the � Dalitz decay correction�

The error in the photon conversion correction is obtained by using a simple veto

without applying the e�ciency correction as was described earlier� For the deviation

of R��e from � we estimate the error by forcing R��e � �� A conservatively estimated

beam energy shift of � MeV would cause a change of �
 MeV�c in the boost of the B�

This is also included in the systematic error�

The dependence of the �ts on the minimum momentum is studied by changing the

low end of the �tting range from ��
 GeV�c to ��� GeV�c in 
� MeV�c steps for

electrons� and from ��	 GeV�c to ��� GeV�c in 
� MeV�c steps for muons� The �tting

results are quite stable� The di�erence between our standard result and the average

of all the alternative �ts is taken to be the systematic error associated with the �tting

range� The e�ect due to the uncertainty in the shape of the secondary spectrum was

conservatively estimated by shifting the boosted theoretical curves up and down by ���


GeV�c�

��



Table 	���� Systematic Errors

Source +X�X +B�b� c�	� +B�b� u�	� +B�b� x�	�
X $ or as noted $ $ $

fe �
� ����
 ����� ���	

f� ��
 ����� ����� �����
�eID ���� ���	� ����� ���		
��ID ���� ����	 ����� �����

�tracking ���� ����
 ����� �����
��L� ���
 ����� ����
 �����

J������ �	� ���	
 ����	 �����
����� ��
 ����� ����	 �����
� �	� ����
 ����	 ����

� �
� ����� ����� �����
Ds �	� ����	 ����� �����
�c �	� ����� ����� �����

R��e forced to � ����� ����� �����
Ebeam �� MeV ����� ���	� �����
pmin
e ���
 GeV�c ���	� ����
 ����

pmin
� ���
 GeV�c ����� ����� ���	�

b� c� y�	 shape ����
 GeV�c ����	 ����� �����
EW ��
 ����� ����� ���	


Sum ����
 ���	� �����

The systematic error in the inclusive branching ratio is clearly dominated by the

uncertainties in the e�ciency for tracking and lepton identi�cation� In the case of

b� u�	 both the B boost and the J�� correction contribute sizable uncertainties� The

overall systematic error for the primary B�semileptonic branching fraction is ����$�

and that for the secondary ����$� The later is summarized in Table 	����

It is beyond the scope of this analysis to assess the theoretical uncertainties of the

models considered� It is appropriate� however� to assess the systematic errors in our

determination of the free parameters in these models�

The lack of knowledge of the D�� states makes it very di�cult to clearly de�ne

the fraction of B � D���	� This fraction is sensitive to our understanding of the

��



Table 	���� Systematic Errors in the Fraction of D���	 and B�b� c� y�	��

Source +X�X +B�b� c� y�	� +B�B � D���	�
B�b� c�	�

X $ or as noted $ $

fe �
� ����� ����
f� ��
 ����� ����
�eID ���� ����� ��
	
��ID ���� ����
 ��
�

�tracking ���� ���
� ����
��L� ���
 ����� ����

J������ �	� ����� ����
����� ��
 ����� ���

� �	� ����� ����
� �
� ����� ��
�
Ds �	� ��	�
 ����
�c �	� ���	� ���	

R��e froced to � ����� ����
Ebeam �� MeV ����� ����
pmin
e ���
 GeV�c � ��	�
pmin
� ���
 GeV�c � ��	�

b� c� y�	 shape ����
 GeV�c � ����
EW ��
 ����
 ����

D��	�D�	 �����	�
� � ����

Sum ���	
 
���

form factors for B � D�	 and B � D��	 and the uncertainties in the charm con�

tribution to the inclusive spectra� In addition to the other contributions� we vary the

vector�pseudoscalar ratio D��	�D�	 within the current experimental bound as listed

in Table 	���� It dominates the estimated 
��$ uncertainty� Again� exclusive measure�

ments are needed to study the decays B � D���	�

��



���� Branching Fractions and CKM Matrix Elements

We summarize the B semileptonic branching ratios from the simultaneous �ts to elec�

trons and muons in Table 	��	� where the errors are statistical and systematic� respec�

tively� From these results� we can extract the CKM matrix elements jVcbj and jVub�Vcbj�

Table 	��	� Summary of B Semileptonic Branching Ratios

Model B�b� c�	�$ B�b� u�	�$ B�b� x�	�$

ACCMM ������ ����� ���� ����� ����� ���� ���
�� ����� ����
ISGW ������ ���
� ���� ����� ���	� ���� ������ ���	� ����
ISGW�� ������ ����� ���� ����� ���	� ���� ���
�� ����� ����

The semileptonic width of the B meson is given by the sum of the two partial widths�

%�B � X�	� � %�b� c�	� � %�b� u�	�� �	���

where

%�b� q�	� �
B�b� q�	�

�B
� �qjVqbj�� �	���

for q � c or u� The factor �q must be determined theoretically� From the branching

ratios in Table 	��	 and the average B lifetime �
��� �B � ���
	�� ������� ����� s�
we calculate the matrix element Vcb and the ratio jVub�Vcbj with di�erent models� and
list them in Table 	���� The �rst error in each matrix element is due to the error in

Table 	���� CKM Matrix Elements

Model �c�ps
��� B�b� c�	�$ jVcbj

ACCMM 	
��� ��� ������ ����� ���� ������� �����
� ������
ISGW ���	� ��	 ������ ���
� ���� ������� �����
� ������
ISGW�� ���
� 
�	 ������ ����� ���� ���	�
� �����
� ����	

Model �u��c B�b� u�	�$ jVub�Vcbj
ACCMM ����� ���� ����� ����� ���� ������ ����	� �����
ISGW�� ��
	� ���
 ����� ���	� ���� ������ ������ �����

our branching ratio measurement and in the measured B lifetime� The second error

�




corresponds to an assumed ��$ uncertainty in �q� as suggested by the authors� In

calculating jVub�Vcbj some of the systematic uncertainties cancel� The values for jVcbj
are consistent with the previous inclusive measurement� with slightly smaller statistical

errors� The jVub�Vcbj values are consistent with the lepton end�point b� u�	 analysis�

Recently� a less model dependent approach has been proposed �	�� to measure jVcbj
from the inclusive semileptonic branching ratio� This will be discussed in Chapter ��

���� Conclusion

We have made a new measurement of the inclusive B semileptonic branching fractions

by �tting the inclusive lepton spectra from ���S� decays using ���
� fb�� of data

collected by CLEO�II� With this substantially larger data sample and upgraded de�

tector we have improved this measurement both statistically and systematically� We

�nd B�B � X�	� � ����
�� ����� �����$ with the re�ned quark model by Altarelli

et al�� and B�B � X�	� � ����
� � ���� � �����$ with a modi�ed version of the

form factor model by Isgur et al�� in which the D��l	 fraction is allowed to #oat�

The fraction of B � D���	 from this �t is ��	 � � � 
�$� somewhat larger than the
model prediction� The �t to the original Isgur model yields a lower branching ratio�

B�B � X�	� � ������� ���	� �����$� with a higher 
�� Our result supports previous
measurement with improved precision� The good agreement of the electron and muon

results is a convincing demonstration of the performance and our understanding of the

CLEO�II detector� Further progress requires reduction of the systematic and theoretical

uncertainties in this measurement� In the next chapter we describe a complementary

analysis which uses lepton�tagged B�decay events to achieve such improvements�

��



Chapter �

Measurement with Lepton Tags

Abstract We present a new measurement of B�B � Xe	� with dilepton events from

���
�fb�� of ���S� data collected with the CLEO�II detector� In events with a high

momentum lepton tag and an electron we use charge and kinematic correlations to

separate the electron spectra of B decays and secondary charm decays� With a small

extrapolation to account for the undetected part of the spectrum at low momentum� we

obtain B�B � Xe	� � ���������������	�$� This measurement is largely independent
of theoretical models and assumptions about possible non�B �B decays of the ���S�� The

resulting CKM matrix element jVcbj is ������ ������ ������ By measuring the ratio
of inclusive electrons and tagged electrons� we found that the non�B �B fraction is less

than �$ at 

$ C�L�� assuming no lepton production from such decays �	���

��� Introduction

The semileptonic branching fraction of the B mesons has been an unsettled question�

as experimental measurements have consistently been smaller than theoretical pre�

dictions ��� ��� Recent theoretical developments� based on heavy quark expansion in

QCD ���� reinforce the conclusion that this fraction cannot be accommodated within

��



the framework of the Standard Model at a level below ���
$� Our latest result from

CLEO�II data� on the other hand� con�rms the previous measurements with greater

statistical signi�cance and improved systematics ����� as was described in Chapter 	�

By �tting the inclusive lepton spectra from ���S� decays to the re�ned quark model

of Altarelli et al� ��	�� for example� we obtain B�B � X�	� � ����
�� ����� �����$�
With a modi�ed version of the form�factor model of Isgur et al� ��
�� in which the frac�

tion of B � D���	 is allowed to #oat� we �nd B�B � X�	� � ����
�� ����� �����$�
Further progress on this pressing issue requires alternative approaches� with reduced

systematic uncertainty� In this chapter we describe a new analysis using dilepton events

in CLEO�II data�

The inclusive lepton spectrum from ���S� decays is shown in Fig� 	���� It con�

sists of mainly two parts� primary leptons from semileptonic B decays� and secondary

leptons from the decays of charmed mesons produced in B decays� In the inclusive

spectrum analysis� the primary part is determined by �tting the spectrum with theo�

retical models that separately describe the primary and secondary semileptonic decays�

This introduces model dependence into the measured B semileptonic branching ratio�

In addition� it requires the assumption that all the ���S� mesons decay to B �B pairs�

when we normalize the lepton spectra to the total number of B mesons�

Sensitivity to these two e�ects can be reduced by using an additional lepton in an

���S� event as a tag� Previous CLEO measurements ���� used events with two leptons

above ��� GeV�c� in which both B mesons decay semileptonically� This eliminates

the need for models in calculating the momentum acceptance� and allows the setting

of an upper limit on non�B �B decays of the ���S�� Extrapolation to the region below

��� GeV�c still requires models� however�

In this analysis� we also use high momentum leptons to tag semileptonic decays of

one of the two B mesons in each event� In events with lepton tags� we select additional

electrons with momenta as small as ��� GeV�c� We are able to separate the primary

��



electrons from the secondary by utilizing the charge correlations between the tag leptons

and the signal electrons� The signi�cant background from events in which both the tag

lepton and the electron are from the same B can be removed by distinguishing the

kinematics of signal and background events� In particular� the opening angle between

the tag lepton and additional electron has distinct features when both of them are

from the same B� as compared to the case when they are from opposite B mesons�

This was demonstrated in a recent ARGUS paper �	��� as well as an earlier CLEO

analysis using lepton�kaon correlations �	
�� Stimulated by these analyses� we explored

the correlations in two dimensions to optimize the separation in a measurement of the

electron spectrum for B decays� The resulting B semileptonic branching ratio is largely

independent of theoretical models and of assumptions about possible non�B �B decays

of the ���S��

In what follows� we �rst analyze the charge and kinematic correlations in dilepton

events from ���S� decays� and then show the data yields and background corrections�

Next� we obtain the electron spectra of primary and secondary decays and the resulting

branching ratios� Last� we study systematic errors and conclude�

��� Analysis with Dilepton Events

The idea of this analysis is to use a high momentum lepton to tag the semileptonic

decay of one of the two B mesons in an ���S� event and observe the semileptonic decay

of the second B� The tag lepton� with a momentum above ��� GeV�c� is most likely

from semileptonic B decay �Fig� 	����� The additional lepton can be from semileptonic

decay of the second B in the event� or� especially at lower energies� it can be from

the semileptonic decay of a D meson produced in the decay of either B� To develop

the speci�c procedure to distinguish these cases� we have studied charge and kinematic

correlations for dilepton events in a sample of 
 million ���S� � B �B Monte Carlo

events�

�	



����� Charge Correlations in Dilepton Events

Leptons in ���S� events come mainly from two types of semileptonic decays� primary

�B � X�	� and secondary �B � DX � D � Y �	�� The combinations of primary and

secondary leptons which contribute to the dilepton yields are summarized in Table ����

In this table� f� and f� stand for the production fractions in ���S� decays of charged

Table ���� Charge Correlations in Dilepton ���S� Events

b� x�	 b� c� y�	

Decays Prob� sign sign side

�D��	 
 B�B� � D���	 unlike same

� � f� unlike

�Y ���	 Y ��	 like oppo�

�D��	 
 B� �B� � D���	 unlike same

� � f���� 
�� unlike

�Y ���	 Y ��	 like oppo�

D��	 
 �B� �B� � D���	 unlike same

� � �
�f�
� like

Y ��	 Y ��	 unlike oppo�

�D��	 
 B�B� � �D���	 unlike same

� � �
�f�
� like

�Y ���	 �Y ���	 unlike oppo�

and neutral B mesons� respectively� The terms !like" and !unlike" are used to indicate

the relationship between the signs of the electric charges of the two leptons� If the two

leptons originate from the same B meson� they are called !same side"� otherwise they

are !opposite side"� The mesons carrying a charm quark �D�� D�� are represented by

D� while those with an anti�charm quark are �D�

The presence in an ���S� event of a lepton with momentum above ��� GeV�c

indicates that at least one of the two B mesons decayed semileptonically� since only

��



primary leptons contribute to the high momentum region� In addition� the sign of

the lepton�s electric charge tags the #avor of its parent B meson� For example� if it is

positive ����� we know that it is from a B meson �B � �bq� �b� x��	��� For ���S�� B �B

�Fig� ���a�� we expect any additional primary electron to be negatively charged� since

this corresponds to the semileptonic decay of a �B meson � �B � b�q� b � xe� �	e�� We

could �nd an e� instead� however� and would naturally interpret this as an evidence for

a secondary decay �b � c � ye�	e�� The charge correlations for B �B events are thus

very clear� primary electrons are unlike�sign� and secondary electrons can give like�sign�

There is one complication to this simple picture� however� Semileptonic decays of both

a B �or �B� meson and the D �or �D� into which it decays lead to an additional unlike�

sign contribution� This unlike�sign� same�B background is quite large� and constitutes

a major background� Fortunately� these events can be suppressed with kinematic cuts�

as is described in the next section�
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Figure ���� Charge correlations with a high�momentum tag ��� and an additional e�

or e�� as described in the text�

This scenario happens most of the time� but does not hold when B� � �B� mixing

occurs� A neutral B meson can oscillate �mix� into its anti�particle through the two box

diagrams in Fig� ���� When one of the two neutral B mesons oscillates we have in this

event decays of B�B� or �B� �B�� instead of B� �B�� In this case �Fig� ���b�� the charge

correlations are #ipped� and primary electrons are like�sign� while secondaries are unlike�

sign� The probability of B� � �B� mixing for neutral B events has been measured to be

�





� � ��$ ����� Since the fraction of neutral B pairs produced at ���S� is f� � 
�$�
the portion of mixed events in our tagged sample is therefore 
 � f�
� � �$� This in
turn reduces the unmixed portion to �� 
 � 
�$�
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Figure ���� B� � �B� mixing diagrams�

The above discussion relies on the prohibition at ���S� of double mixing� in which

both the B� and �B� oscillate� The ���S� is a JPC � ��� state� with an antisymmetric

wave function� Oscillation of one of the B mesons would produce a pair of identical

particles in the same quantum state� in violation of the Pauli exclusion principle� For

this reason mixing of B� or �B� can not occur until the accompanying �B� or B� has

already decayed�

The charge correlations in unlike� and like�sign dileptons from BB events are sum�

marized in the following equations�

dN���e��
dp

� N���p�

�
dB�b�
dp

��� 
� �
dB�c�
dp


 �

�
dB�c�
dp

�
sameB

�
� �����

dN���e��
dp

� N���p�

�
dB�b�
dp


 �
dB�c�
dp

��� 
�

�
� �����

In these equations B�b� � B�b� x�	�� B�c� � B�b� c� y�	�� N� is the number of tag

leptons� ��p� is the momentum dependent e�ciency to �nd the second electron� and


 � f�
�� The third term in Eq� ��� is for primary�secondary combinations from the

same side of an event�

In order to study the semileptonic decay spectrum over nearly the full momentum

range� we use only electrons as the second lepton� For the tag lepton� both high

momentum electrons and muons are used to maximize statistics� The contributions

��



to like� and unlike�sign spectra from a sample of generic BB Monte Carlo events are

plotted in Fig� ��	� The like�sign spectrum is dominated by secondary electrons� The

(a). Unlike-sign Electrons
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(b).   Like-sign Electrons
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Figure ��	� Unlike�sign �a� and like�sign �b� electron spectrum for events with high�
momentum lepton tags selected from a sample of generic BB Monte Carlo events� Both
the total spectrum �points� and the separate constituents are shown� The tag leptons
were required to have momenta above ��� GeV�c� and to be identi�ed in the good barrel
regions of the electron and muon acceptance� The electrons which contribute to this
plot were also identi�ed in the good barrel region of the calorimeter� Note that there
is no like�sign contribution from the same side�

unlike�sign spectrum would be dominated by primaries without the contribution from

the same B� In principle the separate spectra for primary and secondary electrons

could be obtained from the two equations� but the large contribution from the same

B would introduce sizable uncertainties� If we can somehow suppress this term� then

the primary electron spectrum obtained would be less dependent on the uncertainties

associated with the secondary decays� This is studied in the next section�

��



����� Kinematic Correlations in Dilepton Events

Because the B mesons produced at the ���S� are almost at rest� the daughters of

di�erent B�s are almost completely uncorrelated in direction� Particles produced in

the decay of the same B� on the other hand� tend to be produced back�to�back� as

is shown in Fig� ���� The ARGUS analysis �	�� took advantage of this correlation by
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secondary (same B)

Figure ���� The distribution of the opening angle between the tag lepton and an addi�
tional unlike�sign electron in each event� Shown in this plot are electrons with momenta
less than ��� GeV�c from primary decays� and both opposite� and same�side secondary
decays� For electrons at higher momenta� the distributions are similar�

requiring unlike�sign electrons to be from the same hemisphere� For electrons above

��� GeV�c� this eliminated about 
�$ of the unlike�sign electrons from the opposite B�

while suppressing the same B contribution by a factor of �
 �

We have improved on this procedure by exploring cuts in the two dimensional plane

of the electron momentum �pe� and the cosine of the opening angle between the electron

and the tag� �cos��� pe��� The signal considered is unlike�sign opposite�side electrons�

which has an essentially #at distribution in cos��� e� �Fig� ��
a�� The background�

electrons from the same B� exhibits a triangular distribution� with the concentration

of entries at lower momenta and in opposite hemispheres �Fig� ��
b�� This distribution

��



suggests that diagonal cuts in this plane should be investigated�
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Figure ��
� The two dimensional distributions of unlike�sign electrons� Shown in �a�
are electrons from the opposite side to the tag lepton� and in �b� those from the same
side�

The projection of these two dimensional distributions onto electron momentum�

without any cuts� is shown in Fig� ��	a� After a particular cut has been applied in

the �pe� cos��� e�� plane� a second set of projections is obtained� The ratio of the two

projections gives the e�ciency of that cut� Two cases must be considered� For dileptons

produced by di�erent B�s �either primary�primary or primary�secondary�� we label the

e�ciency ��p�� For dileptons from the same B� we label the e�ciency ��p�� With a cut

applied� the unlike�sign spectrum originally given in Eq�� ���� becomes

dN���e��
dp �cut�

� N���p�

�
��p�

�
dB�b�
dp

��� 
� �
dB�c�
dp




�
� ��p�

�
dB�c�

dp �sameB�

��
���	�

The objective for cut design is good suppression of the same B contribution with

acceptable ��p� for the signal� We discuss three possible cuts for comparison� The �rst

is the hemisphere cut� cos���� e�� � �� used by ARGUS for their model�independent

analysis �	��� the second is a diagonal cut� pe � cos���� e�� � �� and the third is a

combination of the two� �cos���� e�� � �� or �pe � cos���� e�� � ��� In Fig� ��� we

�




plot the signal spectrum of unlike�sign opposite�side electrons� In Fig� ��� we plot the

(a). no cut
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(d). diagonal cut
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Figure ���� Spectrum of unlike�sign opposite�side electrons with �a� no cut� �b� the
hemisphere cut� �d� the diagonal cut� and �c� the combined cut�

background spectrum of unlike�sign same�side electrons� By comparing the plots for

each cut to those with no cut� we obtain ��p� and ��p�� By integrating these functions of

pe fromminfpeg���� GeV�c� to maxfpeg����GeV�c� we get the overall e�ciencies E and
+ of signal and background for each cut� which are listed in Table ���� The triangular

distribution in the �cos�l� e�� pe� plane for electrons from the same B suggests stronger

suppression at lower momenta but weaker at higher momenta� Obviously a simple

opening angle cut loses an unnecessarily large amount of signal at high momentum�

Because of the rapid decrease of the same�side contribution as momentum increases

from � GeV�c to � GeV�c� this cut can be loosened� In this region� the diagonal cut

achieves the same suppression of background� but saves about 
�$ more signal� Below

�GeV�c it loses slightly more signal� while cutting the background harder� Even in the

lowest bin we have �
�	�$ of the signal left� as is demonstrated by the functions ��p�

and ��p� in Fig� ���� The combined cut is essentially the diagonal cut above � GeV�c�
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Figure ���� Spectrum of unlike�sign same�side electrons with �a� no cut� �b� the hemi�
sphere cut� �d� the diagonal cut� and �c� the combined cut�

and the opening angle cut below that� Based on the e�ciencies in Fig� ��� and Table ����

we choose the diagonal cut in this analysis�

����� Systematic Errors of Diagonal Cut

The e�ciencies ��p� and ��p� which appear in Eq�� ��	� represent the response to our

cuts of leptons from several distinct sources� It is necessary to assess the dependence

of the diagonal cut e�ciency on reasonable variations in these sources� in both signal

and background�

Primary lepton production� as modeled in our BB Monte Carlo� includes four decay

channels� B � D�	� B � D��	� B � D���	 and B � D�D���n��l	� The �rst three

use the ISGW model ��
�� which describes the lepton spectra very well� The fourth�

nonresonant� is treated as V�A at the quark level� with phase space used to generate
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Figure ���� E�ciency of cuts as a function of momentum for unlike�sign electrons� The
diagonal cut� which is used in this analysis� is shown as the circles� The e�ciency for
unlike�sign opposite�side electrons �a� is ��p�� That for unlike�sign same�side electrons
�b� is ��p��

the �nal�state mesons� The branching fractions for these four modes were taken to be

���$� 
��$� ���$ and ���$ in the Monte Carlo� The �rst two branching ratios are

consistent with exclusive measurements� but the decays into D�� and nonresonant �nal

states are very uncertain� Variation of these fractions may a�ect the e�ciency of the

diagonal cut we use�

We have studied this by separating the generic BB Monte Carlo sample into subsam�

ples corresponding to each of the individual channels� We observe that the e�ciency

��p� is the same for all modes� as is shown in Fig� ��
� No signi�cant deviation in ��p�

for any mode from the combined is present� The e�ciency is therefore independent

of the fraction of D��� and of the details of the nonresonant �nal states studied� The

e�ciency for secondary leptons from the opposite B also agrees with ��p�� From our ob�

servation of no signi�cant variation of this e�ciency within our Monte Carlo statistics�

we conclude that the systematic uncertainty in ��p� is neligible�
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Table ���� Integrated E�ciencies of Cuts

e�c� and cut hemisphere combined diagonal

pe � ��
 GeV�c
E 
�$ ��$ �
$
+ ��$ ��$ 
��$
E�+ 
�� ��� �	��

pe � ��� GeV�c
E 
�$ �
$ ��$
+ ���$ ���$ ���$
E�+ ��
 
�	 ����

The suppression of the same�side component by the diagonal cut must also be con�

sidered� since it is necessary to correct for electrons from this source which leak through

the cut and contribute to the measured spectrum� We divide the electrons from the

same B into four components� according to which of the channels produced the tag

lepton� Because it has both the largest branching fraction and the sti�est lepton spec�

trum� the mode B � D��	 dominates� This is evident in Fig� ����� Table ��	 lists the

contributions mode by mode� in the momentum region ��
 to ��� GeV�c� for a partic�

ular Monte Carlo sample� Of the four types of semileptonic decays� B � D��	 has

Table ��	� Unlike�sign electrons from same B

charm state no cut diagonal cut

D �
��� �� ���� ��
D� ����	� ��� ���� ��
D�� �

�� �� 
	� �

non�resonance ��
� �
 	
� �
total ������ �	� 
�
� 	�

been the most intensely studied� and has the best measured branching fraction with

an error less than ��$� This insures that the uncertainties in the residues of the cut

are well understood� since variations in the other three contribute very little� We are

particularly insensitive to changes in the fraction ofD�� and nonresonant modes for two
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Figure ��
� Diagonal cut e�ciency ��p� for opposite�side electrons� The histogram
is the e�ciency for all channels combined� and the dots represent the e�ciencies for
the individual modes� Nonresonant production is denoted by cqx� The e�ciency for
the small fraction of secondary electrons from the opposite side also agrees with the
histogram�

reasons� Since these decays produce softer primary leptons� potential tags are detected

with lower e�ciency� Furthermore� when these decays occur several ��s carry signi��

cant energy away� leaving less for the secondary electron� and increasing the likelihood

of failing the diagonal cut in the �pe� cos�l� e�� plane� Taking into account all of these

uncertainties� we estimate that the overall uncertainty in the contribution of the same

B after the diagonal cut is less than �
$�

To conclude this section� the charge and kinematic correlations are expressed in

Eqs� ��� and ��	� In principle� we should be able to obtain the spectrum of primary

electrons and that of secondary electrons by solving these two equations� when the third

term in Eq� ���	� is not present� With the diagonal cut� and our thorough understanding

of the residual same�B contribution� we are ready to apply our techniques to data�
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Figure ����� Same�side electrons divided into individual B semileptonic decay channels
that give rise to the tag lepton� The dots are the totals� and the histograms are the
charm states which accompany the tag lepton� The distributions before application of
the diagonal cut are shown in �a�� and those after the cut is applied are shown in �b��
Contributions from D�� and non�resonant modes �marked as cqx� are very small� Their
numerical values are listed in Table ��	�

��� Data Yields and Background Corrections

The results we report with this chapter used the same data samples� event and lepton

selection criteria� as the inclusive lepton spectrum analysis �Chapter 	 and ref� ������ We

brie#y reintroduce them and discuss corrections for fake leptons and other backgrounds

in this section�







����� Data Sample and Dilepton Selection

The data sample for this analysis consists of ���
� pb�� collected at the ���S� resonance

�ON�� and 

� pb�� taken at center�of�mass energies approximately �� MeV below the

resonance �OFF�� The ON data include �� ���� ���� ��� ��� ���S� decay events� The
study of e�ciencies and backgrounds used about 
 million generic ���S�� BB Monte

Carlo events�

The OFF spectra are used to estimate the shape and amount of the contribution

from continuum processes to the ON spectra� No continuum�suppression cuts have

been employed in this study� The scale factor for the continuum subtraction �L��S� �

������ ����� is given by Eq� 	���
Lepton candidates are selected with the same criteria as described in Section 	���

Mainly� we use lepton candidates for signal and loosely identi�ed leptons for background

rejection� In this analysis� a tag lepton is de�ned as either a muon or an electron

candidate with a measured momentum greater than ��� GeV�c� For every event with a

tag lepton� we search for an additional well identi�ed electron candidate� These are then

classi�ed as unlike�sign or like�sign with respect to the tag� For unlike�sign electrons

the diagonal cut pe � cos��� e� � � is applied to suppress those which were produced in

the decay of the same B as the tag�

Using the above selection criteria we obtain the raw spectra of unlike� and like�sign

electrons� both from the ON and the OFF data �Figs� ���� and ������ In the case of

the OFF� we scale the electron momenta by the ratio of beam energies� and subtract

�ON� & �L��S��OFF� to obtain the net contribution from the ���S�� The integrated

yields are summarized in Table ���� These raw spectra include not only the electrons

we wish to measure� but also misidenti�ed electrons and electrons from background

sources� Correction for these contributions is the next step�
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Figure ����� Raw Spectra of unlike�sign electrons with the diagonal cut applied� In �a��
the dots are from the ON data and the shaded area is the luminosity�scaled OFF data�
In �b�� the dots are the net ���S�� and the histogram is B �B Monte Carlo�
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Figure ����� Raw spectra of like�sign electrons� In �a�� the dots are from the ON data
and the shaded area is the luminosity�scaled OFF data� In �b�� the dots are the net
���S�� and the histogram is B �B Monte Carlo�
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Table ���� Raw Electron Yields from Data

�������GeV�c ON scaled OFF ���S�

Unlike Sign �	� ��
� ��
 �� 	�
� 
� ��� ��
� ���
Like Sign �� �

� �� �	�� 	� �� ���� 



����� Fake and Background Corrections

In this analysis we are interested in electrons from semileptonic decays of B and D

mesons in events where the other B decayed to a high momentum tag lepton� In

addition to these electrons� the raw spectra include the following backgrounds�

�� Hadrons misidenti�ed as either the measured electron or the tag�

�� Electrons or tag leptons from pair�type processes in ���S� decays

� J������� ���� or J������� e�e��

� ������ e�e���

� � conversion to e�e� pairs in the detector�

	� Electrons or tag leptons from � �s produced in B decays�

�� Electrons or tag leptons from D�
s or �

�
c produced in B decays�


� Tags which are secondary leptons�

�� Same�side unlike�sign electrons which leak through the diagonal cut�

These backgrounds have been studied by using data and Monte Carlo� and are tabulated

in Table ��
�

The misidenti�cation probability has been studied with enriched samples of pions�

kaons and protons selected in ���S� data ����� The overall fake contribution to the

observed yields is then computed by using hadron spectra obtained from ���S� data�

as was described in Chapter 	�







Table ��
� Backgound Corrections� The errors are statistical� systematic�

������� GeV�c Unlike Sign Like Sign
Source pe � cos��� e� � � no cut

ON ���S� �	� ��
� ��
 �� �

� ��
Continuum �� 	�
� 
�� � �	�� 	�� 	
Fake tag � ���� �� �� �
� �� �	
Fake e ���� 	� ��� 
��� �� ���

Unvetoed tag � or e from J�� ���� �� 	� �	
� 	� ��
Unvetoed tag � or e from �� �
� �� 
 �	�� �� ��
Unvetoed tag � or e from � 
�� 
� �� �
�� �� 	�

Tag � or e from � ���� ��� 
� ��� 
� ��
Tag � or e from �c ��� �� 
 

� �� 	�
Tag � or e from Ds �
�� �	� �� ��� �� �

Tag � or e from �� ��� �� �
 �
� �� 

Tag � or e from � �� 	� � ��� 
� �
Tag � from D ��
� ��� 
� ���� �	� ���
e from same B 	�
� �	� �
 &

Total Background 	� ���� ��� ��	 �� 	��� �	� �
�
Background subtracted 
� 
��� ��
� ��	 
� 	��� 
�� �
�

Real leptons from J�� and �� Dalitz decays� and from photon conversions are re�

jected from data by using kinematic characteristics of these processes� These procedures

are essentially identical to the methods used in the inclusive analysis �Chapter 	�� Most

of the leptons from B � XJ��� J��� ���� decays� for example� are rejected by us�

ing the invariant mass of the lepton pair� For each tag lepton or electron� we pair it

with a loosely identi�ed lepton of the same #avor� but opposite charge� to calculate

the invariant mass� The distribution of this dilepton mass for our ���S� data sample

is shown in Fig� ���	a� The mass peak can be �tted with a bifurcated Gaussian� If

the invariant mass is within 	� of the J�� mass� the event is vetoed� This veto is only

about ��$ e�cient� so we correct by using the e�ciency determined with Monte Carlo�

A similar procedure is used to veto electrons from �� Dalitz decays� The three�body

e�e�� invariant mass distribution is shown in Fig� ���	b� Electrons from photon con�

versions in the beam pipe and chamber walls are rejected by using the geometry of the

���
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Figure ���	� �a� The invariant mass of ���� candidates in our ���S� data sample� The
dots give the e�e� distribution� and the histogram is that for ����� �b� The invariant
mass of e�e�� candidates� where the dots are data� the curve is the �tted Gaussian�
the �tted background is also shown�

pairs �	�� ���� Again� we correct for leakage with the aid of Monte Carlo� The estimated

systematic error for each of these three corrections is below ��$� Background leptons

from �� and � Dalitz decays are subtracted by using Monte Carlo�

The next correction is for B semileptonic decays through � which can contribute to

our yields through the � leptonic decay modes� We estimate these with Monte Carlo

samples scaled to the integrated luminosity of our ���S� sample� Leptons from these

decays are quite soft� so that they mostly contribute only to the electron yields� and

not to the tag leptons� We estimate the uncertainty to be less than ��$�

In the lepton tagged B events� leptons from Ds decays have di�erent charge and

kinematic correlations than those from D� and D�� due to Ds mesons produced from

b � cW� and W� � �cs decays� This is evident in Table ��
� To corrected for

leptons from charmed baryons� the model for B to charmed baryon decays described in

���



Chapter 	 is used� since we use the same Monte Carlo sample� In this model� ��$ of

B to charmed baryon decays go through B � �c�p��n�n� and ��$ go through charmed

baryon pair production� This model is consistent with the measured �c spectrum and

charmed baryon production rates in B events�

Secondary leptons from B � XD� D � Y l	 can occasionally be above ��� GeV�c�

and contribute false tags� About ���$ of all identi�ed leptons above this momentum

are secondaries� We correct for this by using luminosity�scaled Monte Carlo data� again

with an estimated �
$ uncertainty� The last correction is for electrons from the same

B as produced the tag lepton� as described in Section ���� As we discussed there� the

uncertainty is estimated to be less than �
$�

After all the corrections� we are left with 
� 
��� ��
� ��� unlike�sign electrons in
the momentum region ���� ��� GeV�c� and 
� 	��� 
�� �
� like�sign� Their spectra
before and after the corrections are shown in Fig� �����

��� Spectra and Branching Fractions

After the above corrections for backgrounds� the spectra of like� and unlike�sign elec�

trons described by Eqs� ����� and ���	� are now simpli�ed to the following�

dN���e��
dp �cut�

� N���p�

�
dB�b�
dp

��� 
� �
dB�c�
dp




�
��p� �����

dN���e��
dp

� N���p�

�
dB�b�
dp


�
dB�c�
dp

��� 
�

�
���
�

The two spectra dB�b� x�	��dp and dB�b� c� y�	��dp can be obtained bin�by�bin

by solving these two equations� In this section� we follow the steps that lead to the

resulting spectra and branching fractions�

���
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Figure ����� Momentum spectra of electrons in lepton�tagged ���S� events� The dots
are the raw yields� and the open circles are the yields after all background subtractions�

����� B �B Mixing Parameter 	

The B �B mixing parameter 
 � f�
� in Eqs� ����� and ���
� has been measured with

di�erent techniques both at the ���S� and Z� energies� We choose the average of

the latest ARGUS and CLEO results using dilepton samples ����� We obtain 
� �

���

�����
������� Since our analysis uses 
 � f��
�� it is immune to the systematic
error associated with uncertainty of f�� We therefore use 
 � ����� with a �
$ error�

����� Number of Tag Leptons

Before solving Eqs� ����� and ���
�� we calculate the number of tag leptons N� from the

background subtracted inclusive lepton spectra in Chapter 	� Above ��� GeV�c� these

��	



spectra contain a small fraction fc of secondary leptons� fc was determined to be about

���$ with the B� �B� in the mixing analysis ����� We list the calculated number of tag

leptons in Table ���� We have �
�� �
�� �

 tag leptons� about 
�$ electrons and ��$
muons�

Table ���� Number of High Momentum Tag Leptons

p� � ���� ��� GeV�c e � e � �

Ntot ���� ��
� 
�	 ���� 


� 
	

fc ���	$ ����$

N� � Ntot��� fc� ���� ��	� 
�� ��
� ��
� 
�� �
�� �
�� �



We must also correct for possible di�erences in the e�ciencies for selecting hadronic

events with di�erent numbers of leptons� Our hadronic event�selection criteria are

KLASGL���� and at least 
 charged tracks� The number of tag leptons calculated above

is based on events with at least one lepton� For our signal sample we require hadronic

events with a high momentum lepton tag and an additional electron� As the number

of leptons �and neutrinos� in BB events increases� the total charged multiplicity tends

to decrease� and the result is a slightly lower probability to pass the hadronic event

selection� With our sample of 
 million generic ���S� � B �B events� which have been

shown to agree well with data on particle multiplicity� we determine that the relative

e�ciency is �
��
 � ��
�$� with a very small lepton momentum dependence� The

e�ective number of tag leptons is therefore N� � ���� ��
� �	
 �statistical��

����� Results

With both the B �B mixing parameter 
 and the number of tag leptons N�� we solve

Eqs� ����� and ���
� to obtain the primary spectrum of electrons from B decays�

dB�b� x�	��dp� and also the secondary spectrum for electrons from charm decays�

dB�b� c� y�	��dp� In solving the equations we use the e�ciency of the diagonal

cut ��p� �Fig� ����� and the electron e�ciency ��p� �the product of tracking and elec�

tron identi�cation e�ciencies�� The former is well modeled in the Monte Carlo� and

���



the latter is measured with a data sample of radiative Bhabha tracks embedded in

���S� hadronic events ��
�� The separated primary and secondary spectra are shown in

Fig� ���
 �also tabulated in Appendix D after corrections for detector bremsstrahlung��
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Figure ���
� Spectrum of primary electrons� dB�b� x�	��dp �dots�� and of secondary
electrons� dB�b� c� y�	��dp �open circles�� The curves show the �ts to the ISGW��

model� Detector bremsstrahlung has been corrected for both the spectra and functions
shown� The details of �ts are discussed in the text�

The B�meson semileptonic branching fraction can now be obtained by integrating

the primary electron spectrum� We integrate from ��� GeV�c to ��� GeV�c and obtain

B�B � Xe	� p � ���� �
Z �
�

�
�

dB�B � Xe	�

dp
dp � �
��
� �����$� �����

This is a model�independent result� Extracting the total semileptonic branching ratio

��




requires us to extrapolate to momenta below ��� GeV�c� Theoretical models are needed

for this extrapolation� Our procedure to generate the lepton spectrum for a given

model was described in our previous analysis� Brie#y� we generate the spectrum in the

B�meson rest frame and apply electroweak radiative corrections� Then the spectrum

is boosted into the laboratory frame� and smeared to simulate detector resolution and

the e�ect of bremsstrahlung� The two models we use� ACCMM and ISGW� agree well

in the fraction of the spectrum which lies above ��� GeV�c� Averaging the results for

these two models� we �nd

B�B � Xe	� p � ����

B�B � Xe	�
� �
��� ��
�$� �����

where the systematic uncertainty given is just the di�erence between the models� With

this help from theoretical models we obtain the semileptonic branching fraction of the

B mesons�

B�B � Xe	� � ������� �����$� �����

where the error is statistical only� The systematic error will be assessed in the next

section� The model dependence is much smaller than in the inclusive analysis�

The models can be used� however� to �t the spectrum to obtain model�dependent

branching ratios for comparison and consistency checks� The results of �ts are listed

in Table ���� together with the results of the inclusive spectra analysis� The errors

are statistical only� The fraction of b� u�	 has been constrained relative to b� c�	

by using the results of jVub�Vcbj obtained in Chapter 	� The 
��d�o�f� values of the
�ts to the primary spectrum are ��������� for the ACCMM model� ��������� and

���
����� for ISGW and ISGW�� respectively� The details of �ts are in Fig� ����� The

�tted branching ratios in the tagged analysis are consistently somewhat smaller than

those in the inclusive study� Possible explanations include statistical #uctuations and

systematic e�ects which are not common between the two analyses� For the ACCMM

model� parameters pF � 	
�MeV�c and mc � �� ���MeV�c
� are obtained by varying

���



Table ���� Comparison of Fits in Two Analyses

Model Ratio �$� This Inclusive

None B�b� x�	� ������ ���� &

B�b� c�	� ����
� ���� ����	� ���	
B�b� u�	� ���� ���	

ACCMM B�b� c� y�	� ����� ���
 ��
�� ����
B�b� x�	� ������ ���� ���
�� ���	
B�b� c�	� 
���� ���	 ����
� ���	
B�b� u�	� ���
 ����

ISGW B�b� c� y�	� ����� ���� ����
� ����
B�b� x�	�$ 
�
�� ���	 ����
� ���	

B�B � D�D���	� ���	� ���	 ��	�� ����
B�B � D���	� ����� ��	� ���
� ����
B�b� u�	� ���� ����

ISGW�� B�b� c� y�	� ����� ���� ����� ����
B�b� c�	� ���	
� ���� ����	� ����
B�b� x�	� ����
� ���� ���
	� ����

B�B � D���	�
B�b� c�	� �
��� ��� ����� ���

the two parameters in the plane �pF � mc� with the same range and steps as in Chapter 	�

The lepton spectrum in the ACCMM model is dependent on the sum PF �mc as is

shown in Figs� 	��� and 	��	� This sum from the tagged analysis is consistent with that

determined from �ts to the inclusive spectra�

The secondary branching ratio B�b� c� ye	� is obtained by �tting the secondary

electron spectrum with models� These model generated lepton spectral curves also in�

clude electroweak radiative corrections in the D rest frames� the boost to the laboratory

frame� and detector smearing� The boost is performed by convoluting the measured

inclusive D� and D�� �D� momentum spectra from B decays and the electron spectrum

in the D rest frame� For �� � � degrees of freedom� the ACCMM model gives a 
�

of ����� and the ISGW model gives ����� The resulting secondary �ts are shown in

Fig� �����

In this section� we successfully separated the primary electron spectrum from the

���
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Figure ����� Fitting results of the primary electron spectrum dB�b� x�	��dp �dots�
with three di�erent models� ACCMM� ISGW� and ISGW��� The ISGW�� model is
identical to ISGW� except that the fraction of B � D���	 is allowed to #oat�

secondary� We integrated the primary spectrum to obtain B�B � Xe	� � ������ �
�����$� with minimum dependence on theoretical models� The secondary electron

branching fraction is obtained by �tting with models� Both results are consistent with

those of our inclusive lepton spectra analysis�

��� Systematic Errors

The major contributions to the systematic errors in the measured primary and sec�

ondary branching fractions are listed in Table ���� There are contributions from the

background corrections� the B �B mixing parameter� the electron identi�cation e�ciency�

and the extrapolation from ��� GeV�c to zero momentum� The dominant ones are

���
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Figure ����� Fitting results of the secondary electron spectrum dB�b� c� y�	��dp
�open circles� with the ACCMM and the ISGW modesls�

the electron identi�cation e�ciency and the fake probability� The sum in quadra�

ture is taken to be the combined systematic error� The theoretical uncertainty for

B�b� c� ye	� is estimated to be ��
$ by taking the di�erence between the �ts to the

ACCMM and ISGW models�

The measured branching fraction B�B � Xe	� in this analysis is the average of the

semileptonic branching fractions of charged and neutral B mesons B�B� � f�B�B�� �

f�B�B��� This average should be a very good representation for both type of B mesons�

as the lifetimes of the charged and neutral B mesons are measured to be equal within 
�

��$ ����� The di�erences between charged and neutral B decays could a�ect our result

for the secondary electron branching fraction B�b� c� ye	�� which is an average for

the mixture of charmed particles produced in our B�B� and B� �B� events� Questions

would arise if the productions of D� and D� are drastically di�erent in charged and

��




Table ���� Systematic Errors

Source X 	X
X �$� �B�b� xe	��$� �B�b� c� ye	��$�

� fake �
� ����
� ����	�
e fake �
� �����
 ������
J������ �	� �����	 ������
����� ��
 ������ �����

�� ��� ������ ����	�
� ��� ������ ������
�c �	� �����
 ����	�
Ds �	� ����	� ������

�
 D ��
 ����
� ����	�
same B ��
 �����
 ������


 ��
 ������ ������
fc ��
 ������ ����
�

������ ��
 ������ ������
��ID �� �����	 ������

tracking �� ������ ������
theory ��� ������ ���
��
total ������ ������

neutral B decays� Whether our measurement is sensitive to this possibility has been

tested by using a data sample with di�erent fractions of charged and neutral B events�

This sample consists of dilepton events with an additional soft pion that tags the decay

ofB� � D��l	�D�� � D���� It includes about �
$B� �B� and �
$B�B� events �����

very di�erent from our standard ���S� mix� We �nd good agreement between the

primary electron branching ratio measurements made with the two di�erent samples�

To further assess the sensitivity of our analysis to the above question� we studied one

million generator�level B �B events using a generator which incorporates our current

understanding of B decays� We show in Fig� ���� the secondary electrons from B �
XD�� D� � Y e	 and B � XD�� D� � Y e	 for charged and neutral B mesons�

Compared to the average of charged and neutral B mesons� B� produces about ��$

more D�� and �B� produces about ��$ more D�� The production rates for D� in B �B

is about twice that for D�� as is shown in Table 	��� When averaged over D� and

���
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Figure ����� Secondary electron spectra from one million QQ generated B �B events�
Shown in �a� is electrons from D� �D�� �b� from D� and �c� for charged and neutral D
combined� Comparisons are made in each case for B� and B� �B� events�

D�� the secondary lepton spectra of charged or neutral B di�er from their average

B�b� c� ye	� by less than 
$� We conclude that the di�erence in charm production

from charged and neutral B events does not a�ect our measurement�

One important thing we check at this point is the value of fc� We do the check

by integrating the primary and secondary electron spectra in Fig� ���
� The integral

of secondary spectrum between ��� and ��� GeV�c is ����
� � ������� and the sum
of primary and secondary between ��� and ��� GeV�c is ��
��
 � �����	� We thus

���



obtain our measured value fc � ���
	���
��$� which is consistent with the input value
fc � ����� ����$ we used in this analysis�

��
 CKM Matrix Element Vcb

The primary improvement in this lepton�tagged measurement compared to the inclu�

sive analysis is reduced theoretical uncertainty� While the extrapolation to momenta

below ��� GeV�c has some model dependence� this is small compared to the e�ect of

model�to�model variations in the spectral shape used to �t the inclusive distribution�

Recent progress with heavy quark expansion has considerably reduced the theoretical

uncertainty in determining the CKM parameter jVcbj from the experimental measure�

ments� In a recent paper�	��� it was estimated to be 
$ by using the experimental and

theoretical constraints on the quark�mass di�erence mb �mc� Combining its prescrip�

tion� the measured B�meson lifetime �B � ���
	�� ������ ps �
�� and our measured
B�semileptonic branching ratio in this analysis� we obtain jVcbj � ������ ������ ������
Here the �rst error is the combined experimental error� including the errors in the

branching ratio and B�lifetime measurements� The second error is theoretical�

��� Possible Non	B �B Decays of the ���S�

The second most signi�cant improvement is the reduced dependence on the assumption

that the ���S� always decays to B �B � In the inclusive analysis� the lepton spectrum is

normalized to the total number of ���S� events� This correctly gives the B semileptonic

branching fraction as long as there are no ���S� decays to non�B �B �nal states �����

There is no substantial evidence for such decays� but the 
�$ con�dence level upper

limit for non�B �B decays of the ���S�� which was set by CLEO using dilepton events

is �	$ ��	�� At this level such decays would signi�cantly a�ect our inclusive branching

fraction� None of the non�B �B decay models predict signi�cant production of high

���



momentum leptons� however� The sensitivity to the possibility of non�B �B decays is

therefore greatly reduced in the tagged analysis because of the requirement of a high

momentum lepton tag and an additional electron in each event�

We assume e�ectively that all dilepton event are from B decays� Any possible mech�

anism through which non�B �B decays of the ���S� could a�ect this measurement would

have to produce events which are remarkably similar to B �B � with high momentum

leptons� a lepton momentum spectrum which is very similar to that for B decays� and

kinematic characterictics similar to B �B dileptons� While this can not be completely

ruled out� it is unlikely�

Furthermore� we have combined the inclusive electron spectrum from the whole data

set with the like� and unlike�sign electron spectra from the high momentum lepton sub�

sample to set an upper limit on the fraction of non�B �B decays at the ���S�� Assuming

no direct lepton production from non�B �B decays� the inclusive electron spectrum after

all fake and background corrections is expressed as

dN�e��
dp

� �N���S���� f���p�

�
dB�b�
dp

�
dB�c�
dp

�
� ���
�

where f is the assumed fraction of non�B �B � In this equation� we have ignored the small

fraction of b� u�	 since B�b� u�	� � ���$� By substituting the solutions dB�b��dp
and dB�c��dp from equations ����� and ���
� into the above equation� we obtain

dN�e��
dp

�
�N���S�

N�
��� f�

�
�

��p�

dN���e��
dp�cut�

�
dN���e��

dp

�
� ������

The sum of like� and unlike�sign �corrected by ����p� for unlike sign� spectra is compared

with dN�e���dp �scaled by N���N���S�� in Fig� ���
� The good agreement indicates a

non�B �B fraction close to zero� By integrating Eq� ���� from pmin to pmax � ��� GeV�c�

we compute this fraction

f � �� N�

�N���S�

R pmax

pmin

dN�e��
dp dpR pmax

pmin

�
��p�

dN���e��
dp dp�

R pmax

pmin

dN���e��
dp dp

� ������

��	
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Figure ���
� Comparison of inclusive electron spectrum dN�e���dp �scaled by
N���N���S�� with the sum of like� and unlike�sign �corrected by e�cieny of diagonal
cut� electrons from the tagged sample�

The three integrals in this equation are summarized in Table ��
 in two regions� ���&

��� GeV�c and ���&���GeV�c� In Table ���� we list the obtained values of f as a

function of pmin� The errors are statistical and systematic� Most of the systematic

contributions cancel when we take the ratio of the tagged electron spectrum to the

inclusive� except the contribution to theN� calculation� This includes ��
$ uncertainty
in the fraction of leptons from secondary charm decay above ��� GeV�c and ��
$

Table ��
� Lepton and Dilepton Yields as represented by the integrals in Eq� ����

p range � GeV�c� inclusive unlike�sign like�sign

��� & ��� ���� ��
� �� �	� �� ���� �
� �� �
�� �

��� & ��� ���� ��
� 
�	 �� ���� ��� ���� ��
N���S� � �� ��	� �	�� �� 
�� N� � ���� ��
� �	


���



uncertainty in the relative event selection ine�ciency of tagged events over inclusive

lepton events�

Table ����� Fraction of non�B �B decays at the ���S��

pmin non�B �B fraction f Upper Limit �$�

� GeV�c� �$� 
�$ C�L� 

$ C�L�

��� ������ ���	� ���� ���� 	��	

��� ������ ����� ���� ��
� 	���

��� ������ ����� ���� ��	� ���	

The fraction of non�B �B is consistent with zero within errors� We have calculated the


�$ and 

$ con�dence level upper limit using the values of f and listed them in this

table� The limit for f is quite stable when pmin varies from ��� GeV�c to ��� GeV�c�

It is less than �$ at the 

$ con�dence level�

In conclusion� we have set a �$ upper limit for the fraction of non�B �B decays of the

���S� by assuming that there is no lepton production from such decays� The validity of

this assumption should be questioned� as was investigated in an earlier CLEO note ��	��

In that note� all available models were studied� including ���S� decays to c�c� D �DX and

D �DXY � where X and Y are lighter mesons� It concluded that the upper limit either

did not change or increased by no more than �
$ of its value obtained from the ratio

of inclusive leptons to dileptons� We therefore do not expect substantial changes in

the �$ upper limit we obtained in this thesis� when taking into account these possbile

decay modes�

��




��� Conclusion

We have reported a new measurement of the B meson semileptonic branching fractions

with dilepton event samples collected with the CLEO�II detector at the ���S� reso�

nance� In each event we use a high momentum lepton to tag the semileptonic decay of

one of the two B mesons� and collect the electron from the second B� We use kinematic

correlations in this type of event to suppress the background when the electron is from

the same side of the tag in an event� The primary and secondary electron spectra

are separated by using charge correlations to solve the equations for the unlike�sign

and like�sign spectra� We integrate over the primary spectrum to obtain the number

of electrons directly from B semileptonic decays in the momentum acceptance above

��� GeV�c� Theoretical models are only used for extrapolation to lower momenta� Our

measured value is

B�B � Xe	� � ������� ����� ���	�$� ������

where the �rst error is statistical and the second systematic� This measurement is

largely independent of theoretical models and assumptions about possible non�B �B de�

cays of the ���S�� This result strongly supports our measurement with the inclusive

lepton spectra� and most of the results from other experiments� The B�meson semilep�

tonic branching fraction continues to be signi�cantly below the current theoretical pre�

dictions�

From this measurement and the measurements of B�meson lifetime we obtain

jVcbj � ������ ������ ������ ����	�

where the �rst error is experimental and the second one theoretical� By comparing the

inclusive electrons and the tagged electrons we have set a 

$ con�dence level upper

limit on the fraction of ���S� decays to non�B �B �nal states of �$�

���



Chapter �

Conclusion

We have carried out two analyses to answer the question� what is the semileptonic

branching fraction of the B mesons� We draw conclusions in this chapter�

��� Summary of Results

To summarize� we collect in Table 
�� and interpret our results from ���
� fb�� of

data collected by the CLEO detector at the ���S� resonance� With this substantially

larger data sample and upgraded detector we have improved this measurement both

statistically and systematically�

Table 
��� Summary of Results

Model Method B�B � X�	�$ jVcbj
ACCMM ���
�� ����� ���� ������ ������ �����
ISGW �t e� � spectra ������ ���	� ���� ������ ������ �����
ISGW�� ���
�� ����� ���� ���	
� ������ �����
none high j
pj lepton tagged ������ ����� ���	 ������ ������ �����

���



By �tting the inclusive spectra of electrons and muons from ���S� decays to theory�

we �nd B�B � X�	� � ����
������������$with the re�ned quark model by Altarelli
et al�� and B�B � X�	� � ����
�� ����� �����$ with a modi�ed version of the form
factor model by Isgur et al�� in which the D��l	 fraction is allowed to #oat� The fraction

of B � D���	 from this �t is ��	���
�$� somewhat larger than the model prediction�
The �t to the original Isgur model yields a lower branching ratio� B�B � X�	� �

������� ���	� �����$� with a higher 
��
To reduce the dependence on theoretical models and sensitivity to possible non�B �B

decays of the ���S�� we have made a second measurement with dilepton events� In each

event we use a high momentum lepton to tag semileptonic decays of one of the two B

mesons and collect the electron from the second B� We use kinematic correlations to

suppress the background when the electron is from the same side of the tag in this type

of events� The primary and secondary electron spectra are separated by using charge

correlations to solve the equations for unlike�sign and like�sign events� We integrate over

the primary spectrum to obtain the number of electrons directly from B semileptonic

decays in the momentum acceptance above ��� GeV�c� Theoretical models are only used

for extrapolation to lower momenta� We obtain B�B � Xe	� � ���������������	�$�
Based on our branching ratio results� we have also measured the CKM matrix ele�

ment jVcbj with precision� Using predictions from models� we obtain from our �rst anal�
ysis jVcbj � ����������������� with the ACCMM model� jVcbj � �����������������
with the ISGW model and jVcbj � ���	
� ������ ����� with the ISGW�� model� Here

the �rst error is experimental� including the errors in both the branching ratio and life�

time measurements� and the second error is an estimated ��$ uncertainty in the model

calculations� Combining the result from our second analysis and a recent paper based

on operator product expansions�	�� we obtain Vcb � ������ ������ ������ The experi�
mental error in this result is largely model�independent and the theoretical uncertainty

is greatly reduced due to the improved theoretical understanding� In addition� the �ts

���



with ACCMM and ISGW�� showed a b� u�	 component which is consistent with the

CLEO measurement of jVub�Vcbj �	���
The two measurements of B�B � X�	� we made are consistent with each other�

and they both strongly support previous observations that this branching ratio is sig�

ni�cantly below the theoretical expectations� Our measurements are the most precise

which have ever been made� Our lepton�tagged measurement �like that of the ARGUS

experiment� is nearly independent of theoretical models� and is largely immune to the

possibility of non�B �B decays of the ���S�� By comparing the inclusive electron yield

with the tagged electron yields we �nd at 

$ con�dence level that the fraction of

���S� mesons that decay to non�B �B �nal states is less than �$�

��� Discussion

By two di�erent procedures we have measured the B�meson semileptonic branching

fraction to be less than ��$� while the theoretical expectation is ���
$ or more� Our

measurements have relative errors of only a few percent� so this discrepancy is now very

signi�cant� What are the possible ways to account for this con#ict between theory and

experiment�

One possibility is that other semileptonic B decay channels may contribute more

than is expected� So far we have measured B � X�	 for � � e or �� An enhanced

branching fraction for B � X�	 would reduce the semileptonic fraction for electons

and muons� The leptons produced in the decay chain B � X�	� � � �	�	 would have

a substantially softer lepton momentum spectrum than those from B � X�	� This is a

consequence of the energy carried away by the three neutrinos in the � mode� Our lepton

spectra show no evidence of abnormally large contribution from such a low momentum

component� More direct evidence has been obtained by the ALEPH experiment� They

have measured B�B � X�	� � ������ ����� ���	�$� which is very consistent with the
expectation in the Standard Model �	���

��




B semileptonic decay to baryons are another possible semileptonic mode which our

analysis might miss� At CLEO we have searched for decays B� � ��c �p�
��	 by fully

reconstructing the missing mass of the event to check its consistency with a neutrino�

We also studied the charge and kinematic correlations of leptons and baryons to see if

they are from the same B meson� So far� we have observed no evidence for semileptonic

decays with baryons� setting an upper limit on the branching fraction of ����� The

ARGUS experiment went further� by looking for the coexistence of a lepton and a

proton in events with an additional high momentum lepton tag� No evidence was

found� leading to an upper limit of ����$ for such decays �����

Another possible explanation for a too�small semileptonic branching fraction is en�

hancement in decay channels other than the semileptonic� These include the quark�pair

channels in B weak decays �Fig� ����� As was discussed in Chapter �� lowering the charm

quark mass will increase the predicted rate for the nonleptonic b� c�cs transition� and

thus reduce the semileptonic branching ratio� By using mc�mb values within the range

of our present knowledge we �nd that the expected charm quark content per B decay

is ��� & ���� Any e�ort to reduce the semileptonic branching ratio by lowering mc will

result in higher charm content� in contradiction with data ���
	�� ���� charm quarks

per B decay from ARGUS and ������ ���
� from CLEO ������
Charmless hadronic transitions and non�spectator processes that do not produce

charm states could be another candidate� if their branching ratios were signi�cantly

larger than expectations� The non�spectator modes include pure leptonic decays and

!penguin" type decays� Pure leptonic decays B � ��	 are heavily supressed by jVub�Vcbj��
They are expected to contribute only below the ���� level� CLEO has set an upper

limit for the � � � channel� B�B � �	� � ����� The channels for � � e and � are

helicity suppressed with upper limits of about ���
 ��
�� Penguin decays are transitions

through loop diagrams� They are higher order processes� and are generally expected to

have branching ratios below ����� The electromagnetic penguin decay B � K�� has

���



been observed by CLEO at the ���
 level ����� Charmless hadronic decays B � K�

and B � �� are mixtures of hadronic penguin and b � u transitions� Evidence for

these two�body decays has been seen at CLEO� with branching ratio upper limits at the

���
 level ����� These small upper limits demonstrate convincingly that these modes

cannot explain the small semileptonic branching fraction

Even though we have reduced the sensitivity to non�B �B decays of the ���S�� there

is still a small possibility that this type of unexpected decay could change our nor�

malization� and thus reduce the semileptonic branching fraction� None of the plausible

theoretical descriptions predicts signi�cant lepton production in non�B �B decays� Our

tagged analysis required the presence of an electron and an additional high�momentum

lepton tag to ensure that our leptons were indeed from B decay� This interpretation

can be questioned only to the extent that non�B �B decays of the ���S� give rise to

dileptons with momentum distributions and charge and kinematic correlations similar

to those in B events� While this has not been completely ruled out� it is very unlikely�

It is beyond the scope of this thesis to assess the theoretical work that led to the

predictions for semileptonic heavy quark decays� It is appropriate� however� to highlight

some of the remaining uncertainties that could allow a lower semileptonic branching

fraction for the B mesons ����

The �rst is the perturbative correction to the parton description� It is by far the

largest correction� and has reduced the prediction from ���
$ to a signi�cantly lower

level� The next�to�leading order correction �proportional to ��s � or g
�
�� could be unex�

pectedly large� and thereby decrease the semileptonic branching ratio further�

The non�perturbative correction is based on expanding the weak transition operator

into a series of local operators with increasing dimensions� The coe�cients of this series

contain increasing powers of ��mQ� So far it has been computed to order of ��m
�
Q�

Several operators at order ��m�
Q have also been analyzed� If the ��m�

Q correction

proves to be larger than expected� the lifetimes of the B�� B�� Bs�b�s� and �b�buu�

���



would be quite di�erent� CLEO has measured the lifetime ratio for B� and B� �������

to be ���
� ����� ���
 ����� Both the LEP experiments at CERN and the Tevatron
experiments at Fermilab have been measuring the lifetimes� and they do not observe

deviations in ����� from the expectation of ����� � � � ���
� within statistics �����
In short� no signi�cant di�erence in lifetimes of the charged and neutral B mesons has

been observed� Lifetime measurements with increased data samples will provide more

stringent tests for this correction�

An additional possible shortcoming in the current theoretical treatment is the some�

what questionable applicability of quark�level QCD calculations� This approach e�ec�

tively averages over all exclusive �nal states� This may not be completely appropriate

in B semileptonic decay� where a small number of exclusive �nal states �D� D�� D���

dominate�

Still another possible scenario for resolving the theory�experiment con#ict is that

several e�ects could each contribute a few percent� These would likely include some

of those discussed above� but might also include other e�ects which we have not yet

identi�ed�

An intriguing possibility has been recently suggested� and� one might conclude�

hoped for ���� This is the intervention of physics beyond our current understanding�

the Standard Model� As we have just discussed� it is very di�cult to adjust theoretical

calculations to both a shortage of leptons and a shortage in the charm quark content

of B decays� One speculation� for example� is that there might be some type of in�

termediate in new physics which interacts only with the lighter quarks� but with not

leptons and charm� This might provide a successful� and revolutionary� explanation for

our mystery�

However exciting the new physics may be� we must continue to pursue our e�orts

to determine if the measured B�semileptonic fraction can be accommodated by current

���



theory� This shall be carried out with experimental work as well as theoretical� Com�

plementing our inclusive studies� we foresee precision measurements of the lifetimes of

B�� B�� Bs and �b at LEP and the Tevatron� These will provide stringent constraints

on the heavy quark expansion calculations� On a di�erent front� CLEO is reaching

the statistical capability to measure the form factors which describe semileptonic B

decay� At the same time� heavy quark e�ective theory has made it possible not only

to calculate leptonic decays� but also hadronic decays� when it is combined with chiral

symmetry� The global e�ort to address these and other related questions is certain to

result in great strides in our understanding of heavy quark decays and all fundamental

interactions�
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Appendix A

CLEO Terminology

�	 General

KLASGL event class�

� �� � QED� ��� cosmic ray events� etc��

�� � hadronic events�

�� � beam gas events�

Ebeam beam energy of the collider run�

Lumin integrated luminosity of dataset�

�	 Vertex

IDTX vertex type�

� � primary�

� � K�
s �

� � ���

� � ���

CHITX 
� of �t to vertex�

RBMTX vertex displacement from interaction point�

VMTX mass of particle decayed at vertex�

���



�	 Track

NTRKCD number of charged tracks in CD �PT�VD�DR��

PQCD track momentum with electric charge as sign�

CZCD cos � of track where z is beam axis�

DBCD track impact parameter in r � ��

Z�CD track impact parameter in r � z�

RESICD residue in tracking �tting�

TRKMAN program to kill false tracks�

KINCD general quality of track candidate�

� � track from primary vertex�

� � track from secondary vertex�

IQALDI quality of dE�dx for a track�

� � good� more than �� hits�

NHITPT number of hits in PT for a track�

NHITVD number of hits in VD for a track�

RHITDR pecentage of DR hits over expected for a track�

�	 Shower

E��E�� ratio of energy deposit within the centeral 
 crystals

over that of the centeral �
 crystals�

�	 Lepton Identi
cation

R�ELEC likelihood for electron candidates�

MUQAL quality of muon chamber hits matching CD track�

� � good� match in all layers�

��K � fair� unsatisfactory match in one layer�

DPTHMU depth of MU hits in unit of nuclear interaction length�


	 Monte Carlo

PSAV generated ��momentum of a particle�
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Appendix B

Fake Rate Study from the

Tagged Track Samples

The criteria for selecting p�p� K� and �� are listed below� These particles were selected

as daughters of �� K�
s and D�� D��� The e�ective mass distributions for candidates

are shown in Fig� B���

�� p and �p Selection�

Vertex �� p�

� IDTX � � or �

� CHITX 	 	��

� RBMTX 
 ����

� jVMTX� �����j 	 ����	

� cos�
p���� 
p�vertex�� 
 ��



Both p and � tracks

� KINCD 
 �

���



� jDBCDj 
 �����

� IQALDI � �

�� �� Selection�

Vertex K�
s � ����

� IDTX � �

� CHITX 	 	��

� RBMTX 
 ����

� jVMTX� ���
��j 	 �����

� cos�
p�K�
s�� 
p�vertex�� 
 ��



Both �� and �� tracks

� KINCD 
 �

� jDBCDj 
 �����

� IQALDI � �

	� K� Selection�

D�� � D��s and D� � K���

K� � �� and ��s tracks

� KINCD � �

� jDBCDj 	 ����


� jCZCDj 	 ���


� IQALDI � �

���



Masses are calculated using particle assumptions

� jm�K����� �����
j 	 ����


� j�m�K�����s ��m�K������� ����

j 	 �����
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Figure B��� Mass constraints for selecting p�p� K� and �� for fake�probability studies�

The individual lepton misidenti�cation probabilities are shown in Fig� B��� They

are then combined according to the particle abundances at ���S� from Monte Carlo�

as shown in Fig� B�	� to give the results in Figs� ��� in Chapter ��
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Figure B��� Probabilities of misidentifying hadrons as leptons as a function of mo�
mentum� The the electron fake probabilities are shown on the left and the muon fake
probabilities on the right� The histograms are for positive charge tracks and the dots
are for negative�
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Figure B�	� Particle abundances at the ���S� as a function of momentum� The his�
tograms are from Monte Carlo and the dots are measured from data �����

We also made a cross check by combining the p� K� � fake probabilities with their

measured abundance at ���S� ���� and comparing the results with the fake rates mea�

sured directly from ���S� which was described in Chapter �� As is demonstrated by

Fig� B��� the agreement between the two measurements of lepton fakes at ���S� is

adequate�
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are from the direct measurement described in Chapter � and the dots are from combined
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Appendix C

Over�Subtraction Factor r in

���S� Fake Rate Study

The contribution to the ���S� lepton spectra due to ���S�� ��� q�q decay processes

is excluded in the ���S� fake rate study by over subtracting the continuum� The over

subtraction factor r in Equation ��� in Section 	�� is de�ned as follows�

r �
�had����S�� ���
�had�continuum�

�C���

�
Rhad����S���

res����S�� �����
�had�continuum�

�C���

� Rhad����S��B������S�� �restot ����S��

�hadtot �continuum�
�C�	�

where the quantities with subscript !had" are hadronic and thsese with !res" are from

the ���S� resonance� By using

%tot����S�� �
%had����S��

�� 	B�� �C���

we obtain

r � Rhad����S��
B������S��

�� 	B��
�reshad����S��

�had�continuum�
�C�
�

where B�� � B����S�� ������
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Now we list the values for the quantities involved in the above equation and calculate

the value for r�

From the weighted average of the measurements��
� shown in Tab� C�� we obtain

Rhad����S�� � 	��	� ����

�

Table C��� Measurements of Rhad at ���S� Region

Experiment Rhad Energy�GeV�

PLUTO 	���� ���	� ���
 
��
DASP�II 	��	� ����� ���� 
�

LENA 	�	�� ����� ���� ����
��
CUSB 	��	� ����� ��	� ��������

CLEO 	���� ����� ���� ��������


Average 	��	� ����

The weighted average of � � � and e from ��� gives

B���� � ��
�� ����$

which are listed in Tab� C���

Table C��� PDG�
� B�� Values
mode B�����$�
���� ��
�� ��	

���� ����� ����
e�e� ��
�� ����
���� ��
�� ����

The value for �had�continuum� is derived from��� �
�

�had�continuum� � Rhad����S����e
�e� � ����� �C���

�		



� �	��	� ������ ����

�
����� ������� �C���

� 	�
�� �����nb� �C���

Last� the resonance hadronic cross section at the ���S� has been measured both in

CLEO and CUSB� From Plunkett�s thesis�
�� in CLEO� we have

�reshad����S�� �
�
����nb�

��� ��$�
� �
�	
�nb�

The average of this CLEO result and the CUSB result ���� nb is ���� �nb�� which agrees

with the value ���

 nb estimated from CLEO II data� Thus we use

�reshad����S�� � ����� ����nb�

in the calculation of r�

By using the values of the above four quantities we �nally obtain

r � ��
�� ����

�
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Appendix D

Tabulated Spectra

Table D��� Inclusive muon spectrum in Chapter 	�

p dN��dp ��dN��dp� p dN��dp ��dN��dp�

� GeV�c� � GeV�c��� � GeV�c��� � GeV�c� � GeV�c��� � GeV�c���
��	� 
�
��e�� ����e�	 ��	
 
��	�e�� ���	e�	
���� 
�	�
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�
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Table D��� Inclusive electron spectrum in Chapter 	�

p dNe�dp ��dNe�dp� p dNe�dp ��dNe�dp�

� GeV�c� � GeV�c��� � GeV�c��� � GeV�c� � GeV�c��� � GeV�c���
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Table D�	� Primary electron spectrum in Chapter ��

p dNe�dp ��dNe�dp� p dNe�dp ��dNe�dp�
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