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Abstract

The interdependence between long range correlations and topological signatures in fermionic arrays
is examined. End-to-end correlations, in particular those accounting for the hopping between the
chain edges, maintain a characteristic pattern in the presence of delocalized excitations. This feature
can be used as an operational criterion to identify Majorana fermions in one-dimensional systems.
The study discusses how to obtain the chain eigenstates in tensor-state representation as well as the
correlations. Outstandingly, the final result can be written as a simple analytical expression that
underlines the link with the system’s topological phases.

1. Introduction

Majorana fermions [1, 2] are described by a highly versatile formalism that provides conceptual- as well as
technical-tools, so much so that Majorana particles can be found in solid state systems incarnated as collective
phenomena. One particular scenario where this identification takes place is the Kitaev chain [3], a one-
dimensional fermionic system that displays topologically protected Majorana excitations. The open chain
displays two distinct topological phases, so that neither phase can be transformed into the other by an unitary
operation. The bulk of the chain defines the boundary separating the phases, one of which contains Majorana
particleslocalized at edges. This approach has been rather successful in giving a qualitative characterization of
the Kitaev chain, and the discovery has been attracting a lot of attention over the past decades due to its potential
applications in quantum information, prompting experimental verification in state-of-the-art setups, usually in
the form of zero-bias conductance peaks on the edges of one-dimensional structures, as for instance in [4—6] to
mention only the most subject-related studies.

It can be said that the Kitaev chain is well understood in terms of its topological structure and as such the
correlation between topological invariants associated to the bulk and the expectation values calculated in the
open chain become relevant. Such a description is useful to thoroughly characterize the behavior of the state’s
observables in the topological phase. This characterization can then be used on other systems where lack of
integrability does not allow a direct identification of Majorana excitations [7]. The fundamental observation is
that since the excitations supported by Majorana fermions are highly delocalized, it is reasonable to expect they
enhance the correlations between the end sites of the chain. If that is indeed the case, experimental verification
could be improved if it were possible to simultaneously test electron density on both of the chain ends. The study
of edge correlations in fermion chains has been addressed from different perspectives in various contributions,
some of which cited here. References [8—11], for example, focus on the analytical aspects of the problem, while
references [ 12—16] survey the relation with Majorana quasiparticles in number conserving systems. Here the
analysis covers the whole range of parameters and is conceptually exact, albeit with a numerical component.
This approach allows to find a generalized expression for the correlations that complements analytical results
currently available in the literature.

The fact that the Kitaev chain is an integrable model does not preclude the need for numerical analysis.
Although a diagonalization in terms of Bogoliubov operators is possible and in fact quite convenient for the
periodic chain, such a procedure delivers only the diagonal modes and their eigenenergies. While this can be
enough in many cases, the element carrying the complete description of the system is the many-body state,
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which must be constructed using all of the eigenmodes and as such might display scaling issues. Complications
arise because the chain’s Hilbert space grows as 2", being N the number of sites, and many features manifest
exclusively in the thermodynamic limit. These complications can be circumvented by the use of tensor state
techniques. Such techniques can be implemented in different ways. One such way is Density Matrix
Renormalization Group (DMRG) [7, 8, 17, 18], which minimizes the energy over the space of eigenstates of the
chain’slocal density matrices. Another approach is to use a tensor representation as a variational network in an
abstract way. This is characteristic of the method known as Matrix Product States (MPS) [19, 20]. The way tensor
state techniques are applied here is different from these two, and is more in accordance with the updating
protocols introduced in reference [21]. A family of methods based on such protocols is known as Time Evolving
Block Decimation (TEBD). However, the path followed in this report differs from this denomination. First,
time-evolving- or step-integration is not incorporated, and second, the implementation is theoretically exact, so
that numerical approximations like splittings of operator exponentials, which are huge error-contributors to
TEBD, are not employed whatsoever. The techniques applied here to fermion chains have been first developed in
the context of bosonic arrays in [22, 23], although with some key differences, the most important one being the
inclusion of pairing terms integrally in the current formalism, which is possible thanks to the decomposition of
fermionic operators in terms of Majorana operators. Another aspect that contrasts with other works is that the
tensor state formulation is carried completely in the fermionic Fock-space, without the extra work of
incorporating the so called Wigner-Jordan transformation to reformulate the problem in terms of a spin chain,
as seems to be frequent in DMRG applications to fermion systems.

The Kitaev chain, also known as the Majorana chain, is described by the following Hamiltonian [3]

N
H= Z — w(é Cip1+¢C JHCJ) — u(@ G — ) + A + A +1c (1)
j=1

Constant wis the next-neighbor hopping intensity, while 1 is the chemical potential, which relates to the total
number of fermions in the wire. Parameter A is the intensity of the pairing and is known as the superconducting
gap. Creation and annihilation operators follow fermionic anticommutation rules {¢;, &} = 0and

¢, 6,3'} = 6?. Open or periodic boundary conditions are enforced by taking ¢y, = 0 or &y = ¢ respectively.
The model describes a 1D p-wave superconducting nanowire, which is achieved by combining a semiconducting
nanowire with strong spin-orbit field perpendicular to an external magnetic field and nearby the surface of an
s-wave superconductor [1-3]. The model can also describe a spin-polarized 1-D superconductor, since only one
spin component is being considered and the pairing term mixes modes with opposite crystal momentum, as can
be shown by switching to a momentum basis. Independently of boundary conditions, Hamiltonian (1)
commutes with the parity operator

N
“ iy efe
M=e =2 )
The symmetry associated to this operator is not spatial, instead, it is a parity associated to number of particles. Let
us now introduce the Majorana operators (MOs) corresponding to site j:

A1 =& + &, 3)

Aoj = —itj + it]. (4)

A key feature of these MOs is that they are hermitian, ﬁ/kT = 4,. It can be shown that the anticommutation

relations are given by {4, 4;} = 261, 50 that 4; = 1.Since there are two Majorana modes for every site, the total
number of modes doubles. Equations (3) and (4) can be inverted and the result can be used to write Hamiltonian
(1)as

. N

A= ; D (i ity + (A = WAz + (AL + WA 3500 (5)
Whenw = A = 0, this Hamiltonian becomes diagonal in the Fock basis with a non-degenerate spectrum and a
ground state that depends on the sign of .. From (5) it can be seen that such a particular case corresponds to a
chain where MOs from the same site pair up. This behavior is the generic signature of the trivial phase. In
contrast, when w = |A]| > 0and p = 0, the pairing takes place between Majorana operators from neighbor
sites, as can be seen in the transformed Hamiltonian
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N-—1
H=iw) %% (6)
=1

A key feature of this expression is that it lacks both 4, and 4, , which are unpaired. From these one can build an
uncoupled mode,

fN = %(’3’1 + N, (7)

satisfying { fN , fI\TI} = 1. Thisis a highly delocalized fermionic mode, having equitable contributions on the

edges. The simplest physical operator that can be in this way built is f;] fN, which consequently commutes with
the Hamiltonian. The Hilbert space associated to such a term contains two states, one occupied and one empty.
As the Hamiltonian does not include terms that could operate on neither of these, it is energetically equivalent to
have many-body eigenstates with or without a particle on the aforementioned mode, i.e., the energy cost
associated to this mode is zero, being that the reason why fN isknown as a Zero Mode, while 4, and 4, ; are
known as Majorana Zero Modes (MZMs) [1] or Edge Modes. As a consequence, the whole spectrum of (6)
becomes two-fold degenerate. The fact that neither 4, nor 4, ,, appear in the Hamiltonian implies that they do
not pick up oscillatory phases in the Heisenberg picture, which makes them robust against this kind of
decoherence mechanism. From the previous arguments it can be deduced that (6) commutes with the symmetry
operator

A NN ~t 2
Qr =N =2f fy — 1 (8)

It can be noticed that Qg is unitary and its eigenvalues are 1 for a filled mode and —1 for an unfilled one. Unlike
I1, Qg determines a symmetry only for a specific set of parameters. In spite of the spectrum being degenerate in
this case, it is possible to build ground states |¢/g) of (6) that are also eigenstates of (8), so that

|6, Qripe)| = 1. ©)

Performing the same calculation with any normalized state that is not an eigenstate of Qg would result in a lower
value, so that the maximum is linked to eigenstates of Hamiltonians having unpaired MOs completely localized

at the ends. A totally analogous case would be obtained if focus is made on the point w = —|A| < Oand ¢t = 0,
yielding
A N-1
H = —i‘W Z ’3/2]'_ 1’3/2]'_'_2. (10)

j=1
This time itis 4, and 4,,_, which do not appear in the Hamiltonian, thus giving rise to the symmetry operator
Qu = HrYan—1, (€3))

which follows a relation analogous to (9). According to reference [3], there are unpaired MOs, or Majorana
fermions, over the region in parameter space surrounding the particular cases studied above as long as the gap of
the equivalent periodic chain does not vanish. Following this argument it can be shown that unpaired MOs
prevail in the region defined by 2|w| < |u/. In the general case such operators only become completely unpaired
in the thermodynamic limit, although with exponential convergence, and they are not completely, but still
highly, localized at the ends.

The above observations suggest that in order to scan for unpaired MOs it is useful to exploit their relation
with the state’s local-symmetries. Let us therefore define the operator

Q= Q1+ Qr = 248 + &né)). (12)

It is reasonable to expect that the expectation values of Q, which actually measure end-to-end single-particle
hopping, determine the degree of localization of MOs at the chain ends, taking extreme values when they are
completely localized and vanishing when there is none. In order to test this conjecture the following measure is
proposed

Z = lim |(Q)I. (13)

N—oo

The numerical calculation of this expression is not always efficient because long-range correlations are involved,
hence a practical approach is desirable. Next section focuses on presenting a way in which the eigenstates of (1) as
well as Z can be effectively calculated.




10P Publishing

J. Phys. Commun. 2 (2018) 105006 JReslen

2. Reduction of the Kitaev chain by a series of unitary transformations

Hamiltonian (5) has the following general structure

A

H= A (14)

PP

1
4

HMZ

where the coefficients Ay, form a real antisymmetric matrix Ay; = — Ay. Following Kitaev [3], H canbe
diagonalized by an unitary transformation that reduces it to
i | &

== Z fk(zzkﬂ&zk - &21:&21(71) = %Z szqu&zk- (15)

k=1

.4;

The {’s are MO that can be expressed as linear combinations of the 4’s

G N
<2 V2
G =Wl (16)

G "

Matrix W is such that it transform A in the following manner

0 g 0 0
. — €1 0 0 0 ...
AW =10 0 0 & .| (17)

0 0 —e O

The single-body energies ¢ are real-and-positive while W is a real orthonormal matrix satisfying WWwh=1.
This factorization is a particular case of a procedure known as Schur decomposition [24]. The diagonalized
Hamiltonian can be written in terms of standard fermionic modes

i= Z fk( i, %)) fAk = %(szfl + izzk)- (18)

This can be checked by replacing &2,(,1 = fk + f,: and 62 = ifk + if]j in (15). The system eigenenergies are
given by

N 1
E = Z q(nk — —), (19)
k=1 2

in such away that n; = {0, 1}. The system’s ground state corresponds to the case where all 1,=0, therefore
Ec= -1, E—Zk If there are one or more single-body vanishing-energies ¢, = 0, the spectrum becomes
degenerate, because there is no energy difference between occupied and unoccupied zero modes.

In order to obtain the eigenstates an approach similar to that in reference [25] is adopted. First, Hamiltonian
(18)is written as

N 2N 2N 2N 2N 1
= E ZWZk L = L Wak i | | 22 Wake 7 + 12 Wk = | (20)

j=1 =1 j=1 j=1

The W ;s are the components of matrix W, as defined by (17). An unitary transformation acting on two
consecutive MOs can be defined as

T, (21)

Ol — o
. . e - A1 ] ns

The effect of this transformation on the Hamiltonian is calculated through A — UV A UY), This can be

performed by applying the same transformation on every operator composing H. The operation over a linear

combination of consecutive MOs is written as

ATi1—1 ~ ~ A1 ~ ~
U[]] (‘/ijl’}/jfl + W"){]) U[]] — W_;’Y] + WJ"—]’Y]’*I) (22)
where W Wjcos® — W;_sinfand W;_; = W,_; cos + W;sin 0. The contribution of ’y] can be taken out

by choosmg
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tan@ = , (23)
W,

in such a way that W]/ =0.IfW; _; = 0and W, = 0,then 0 = % Ifboth W;_; and W are zero, then 6 = 01is
enforced. In any other case the angle is well defined because the W’s are real. It is practical to choose the angle §

so that sign(sin ) = sign(W;) and sign(cos 0) = sign(W,_,). In this way WJ{,I = . sz,l + sz, leavinga
positive coefficient. In order to highlight the dependence of 6 with respect to Wjand W; _ 1, 6;is used from now
on. When this operation is applied on the whole Hamiltonian, the mechanism can be described as an overall
action on the diagonal modes:

o

51 = [WianTen + Wion-av 1 [+ Wian—2Fen—2 -+ WiiH
G = [WaanFon + Waoon—1Yan—1[+Waon—2Yan—2- -+ Wa i

Asaresult, 4, vanishes from 61 and the vertically aligned coefficients are in some way affected. The process
continues by applying another transformation aimed at canceling the next component, which generates a
similar effect on the stack of coefficients The process is repeated, removing one component in each step and
advancing toward #,. The last transformation eliminates 4, and leaves only 4, multiplied by

W, = \/ W2, + W, + ... + W,y = 1.Because all the transformations are unitary, the orthogonality of the
coefficients must be preserved. Hence, if only 4, remains in the top row, there cannot be 4;-terms in the rest of
the stack. The last operation then leaves the following arrangement

A

"N
Woan"Fon + oo + Wo3"45 + Wi,

Waonon"Jon + oo + Won 353 + Wan "2

A similar series of operations can be devised to reduce the second row, this time avoiding any transformation
involving 4, in order to keep the first mode folded. The process can be repeated with the same intended effect in
each step. However, the last transformation brings up an additional issue. Let us notice that before the last
operation the stack of components looks like

Won—12892N +Wan —128-1928-1
Wan,2NY2N + Wan,aN- ran—1

Transformation Ul 17 isaimed at folding the antepenultimate row, however, due to the orthonormality of the
original modes, it folds the last row too. However, there is no guarantee that the resulting coefficient is positive,
since the transformation only takes care of the sign of the coefficients of the row being folded. Consequently,
after the folding is finished, there are two possible states of the stack
h ol
or -

V2N —V2N

In the first case, when all the coefficients are positive, the transformed Hamiltonian becomes

N N
N 1
doe ( (Yak—1 — 1720 (Yak—1 + 1726) — —) > fk(C;j Ck — E) (24)
k=1 k=1
The eigenstates of this Hamiltonian can be identified as occupation states,
N
o) = H 1)m0), (25)

and the corresponding eigenergies are given by (19). The vacuum |0), or state without fermions, is
simultaneously the system’s ground state.
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With regard to the second case, let us first point out that fermionic operators are given in terms of MO by the
relation

i ip

A

e 2 T AT ez . T a
G = T(’Yzj—l + ), & = 7(%]‘—1 — ).

It can be seen that a negative sign in 4, induces a particle-hole transformation, &; <> &y, in such a way that
after passing to the fermionic basis the reduced Hamiltonian becomes

N—-1 1 1
AT/\ /\TA

elc e — =1 — enléien — — |- 26

(k 2) N(NN 2) ( )

k=1

The eigenstates of this reduced Hamiltonian can be built as in (25), but taking into account that the ground state
is not the vacuum but the state with one fermion in the N-th site

N—
lg) = H &) EN0... 01). 27)

Likewise, the expression for the associated eigenenergy is (19). To obtain the eigenstates of the original Kitaev
chain, |¢);), one applies the transformations in reverse order over the states (25) or (27), depending on the result
of the folding. The operation can be written as

1

2N
wy =TI | II O |- (28)

k=2N—1 \j=k+1

Both |¢;) and | ;) are eigenstates corresponding to Ej, because unitary transformations do not change
eigenvalues. Using (3) and (4) it can be shown that the transformations that appear in (28) are given by

NT NG
Uk[]] —e 412 , if jiseven, (29)

and
i1 _ iej,k i n N R
U = exp T(—ezc%l +er c] D (ezcm + ez c]+1 , if j is odd. (30)

Transformations with j even operate only on site % and in matrix form they can be written as

]

ALl e 0
Uk - 05 . (3 1)
0 e 2
This matrix is written with respect to occupation states with the order |0), |1). Transformations with j odd

operate non-trivially on consecutive sites % and % through the following matrix representation

0; . .6
cos £ 0 0 isin 2%
2 2
0% . . 0
Al _ 0 cos ]Tk isin ]Tk 0
U ' ‘ . (32)
0 isin G cos G 0
2 2
.. b 0,
isin JTk 0 0 cos JTk

In this case the basis order is |00), |01), |10), |11) (the first position for site 1= 5 ! and the second for site 2 5 th
The reducibility of the matrix underlines the fact that the Hamiltonian commutes with the parity operator (2)
and therefore the eigenvectors inhabit spaces with even or odd parity. Because these matrices only mix states
with the same parity, |1/;) and | ;) have equal parity.

In order to obtain the eigenstates of the Kitaev chain, first matrix W is gotten using standard numerical
routines. The entries of this matrix are then used to get the folding angles ; x from equation (23). These angles
are then employed to build the transformations composing expression (28) in matricial form. Since such
transformations involve neighbor sites only, expression (28) can be computed using the updating protocols
described in [21], so that the final result is expressed in tensorial representation. A detailed description of how to
incorporate tensor product tecniques particularly on this problem is given in appendix A.

6
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d103 Ground State ——
/ First Excited —=—

0 10 20 30 40 50 60 70 80 90 100
N

Figure 1. Calculation error, |Eye, — Ecqicl, in a periodic chain as delivered by the method described in section 2. Top. For the ground
state and against . at different values of w for N=10. Bottom. Against the chain size for ;1 = w = 1.Inboth figures A = 1.

Mean Number of Particles

Figure 2. Mean number of particles (M) (equation (34)) for the ground state of a periodic chain. The plot floor highlights the zones
where the ground state parity is even (black) and odd (yellow), the latter case also corresponds to the region where the open chain
holds Majorana fermions. In this graphic N = 10and A = 1.

3. Results

Before addressing the study of correlations in the open chain, the numerical approach proposed in the previous
section is tested using the spectrum of the periodic chain. The single-body energies are given by

2
Ef = :I:\/(2w cos(ﬁ) + ,u) + 4|AJ? sin? (2—7Tk) , (33)
N N
forl <k< = Add1t10nally, Ef =2w — pand EN = —2w — p. Such energies are numerically calculated as

aby-product of the Schur decomposition in (17) and then compared against these analytical results. Next,
equation (19) is used to find the ground state energy. The tensorial representation of the ground state is then
obtained following the folding protocol discussed before. The energy of such a ground state is calculated from
this tensorial representation. This can be done as N times the energy of two consecutive sites, but only for
eigenstates with translational symmetry, which is the case as long as such eigenstates are nondegenerate. This
result is then compared with the quantity obtained before as the sum of single-body-energies. Figure 1 shows the
absolute difference between these two estimates. Figure 2 depicts the mean number of particles calculated as the
average of the operator

N
Z cle;. (34)

As can be seen, the profile of (M ) is consistent with the contribution of a zero mode over || = 2|w|.
Having verified the technique, let us now study correlations in the open chain. If the ground state is
nondegenerate, Zin (13) can be determined from

Z= lim | Tr(pn Q)1 (35)
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Table 1. Numerical estimation of Z in equation (35) for the ground state of a Kitaev chain with A = 1. The data
strongly suggests that Z is rational provided wand . be rational too. The hyphen indicates the parameters for
which Z(N) oc N~ %, Otherwise |Z (N) — Z(c0)| oc e V. Fittings pointto 6 ~ 1and n oc 2w — p)2.

p\2w —4 -3 -2 -1 0 1 2 3 4

4 — 0.000 0.000 0.000 0.000 0.000 0.000 0.000 —

3 0.388 — 0.000 0.000 0.000 0.000 0.000 — 0.388
2 0.666 0.533 — 0.000 0.000 0.000 — 0.533 0.666
1 0.833 0.853 0.750 — 0.000 — 0.750 0.853 0.833
0 0.888 0.960 1.000 0.888 — 0.888 1.000 0.960 0.888
-1 0.833 0.853 0.750 — 0.000 — 0.750 0.853 0.833
-2 0.666 0.533 —_ 0.000 0.000 0.000 — 0.533 0.666
-3 0.388 — 0.000 0.000 0.000 0.000 0.000 — 0.388
—4 — 0.000 0.000 0.000 0.000 0.000 0.000 0.000 —

where p, y is the reduced density matrix of the chain ends. The computation of such a matrix from a state written
in tensorial representation is described in appendix B. Matrix Q comes given by

0 0 0 0

2(—1P
T | (36)
0 2(=D7F 0 0

0 0 0 0

QA:

where Pis the ground state’s parity. Z is found as the saturation value of (35) with respect to N. The results are
shown in table 1. The signs of w and 1 do not seem to influence the outcome. The observed behavior is
compatible with the notion that Z is correlated to the contribution of unpaired MOs. The maxima are located at
points with total localization of MOs and vanishing values characterize the trivial phase. One would expect that
the non vanishing values of Z provide an assessment of the level of localization of Majorana fermions at the
edges.

Interestingly, the numerical values taken by Zin table 1 correspond to rational numbers, which allows to fit
the data to the following analytical function

2
Z= max[LA'(l - (i) ) o]. (37)
(Al + [wl)? 2w
The fact that correlations between the edge sites are conditioned by the existence of unpaired MOs is readily
noticeable in this elementary formula. As can be appreciated, the relation is given in terms of simple algebraic
functions, so that power law coefficients are rational. The calculation of Z for the first excited state yields the
same ground-state values, while for the second excited state it seems to give slightly smaller values. It remains to
be seen whether equation (37) can be derived entirely by analytical means, as can be expected due to the
integrability of the problem. Analytical results available so far correspond to the cases i: A = wand ii: p = 0[8].
Both instances display structural coincidence with Z in spite of differences with the correlation measure. This is
because terms such as ¢ ¢y and its conjugate do not contribute to the expression (i%,4, ) in the thermodynamic
limit.

The presented evidence hints that end-to-end correlations are good indicators of the effects generated by
edge modes in one dimension. Due to the topological features of these systems, it is reasonable to assume that
this result is robust in the presence of disorder or interaction. As a consequence, correlations constitute a useful
inspection mechanism whenever a decomposition in terms of diagonal modes is not feasible or a topological
analysis of the system’s band structure is not practical. Noticeably, the actual correlation measure seems to be
relevant. Entanglement, which accounts for quantum correlations, vanishes exponentially as N grows due to
mixness developed by p, .

4. Conclusions

Arguments supporting the suitability of end-to-end correlations as indicators of unpaired Majorana operators
in the Kitaev chain are discussed. The proposal is verified implementing a folding protocol in combination with
tensor-state representation to numerically find a given correlation criterion. The results can be written asa
consistent analytical expression that evidence the connection with Majorana fermions. These findings support
the hypothesis that the same approach can be used in systems with additional elements like disorder or
interaction. Given the characteristics of the Kitaev chain, it would be interesting to apply similar methodologies
to study Berry phases around the degeneracy points where Majorana fermions are completely localized.

8
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Figure Al. The state of the chain can be written in terms of the Schmidt vectors and a local basis.

It is quite likely the folding mechanism employed here have potential applications besides the Kitaev chain.
First, with some modifications it can be adjusted to calculate time evolution or thermodynamic state. Second, it
can also be applied to chains with long-range hopping or long-range pairing, as the systems studied for example
in reference [26]. However, in the way the method currently works, it can be used only for integrable models,
because it is the diagonal modes what is actually folded. It is therefore desirable to develop a more versatile
technique with a broader field of application. Nonetheless, the protocol can still be useful if interaction terms are
reduced in a mean-field fashion, although it is not known how reliable such an approach is. Similarly, it is
possible the method has applications in the study of open quantum systems and the numerical solution of the
Lindblad equation for Fermi systems [27].
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Appendix A. Tensorial representation of a fermion chain

The reduction scheme presented in the main text can be used to write the state as a product of tensors [21]. The
basic principle behind such a representation is the use of Schmidt vectors [28] that emerge in one-dimensional
systems to build basis states that support the global quantum state. Schematically, the state of a fermion chain
can be represented as in figure A1, using empty circles for unoccupied sites and black circles for sites with one
fermion. Let us initially focus on one site of the chain, arbitrarily chosen. The Hilbert space of that site can be
expanded using alocal basis |k). The elements of such a basis are |0), to represent an empty site, and |1), to
represent an occupied site. To complement the Hilbert space of the chain, one can consider the Schmidt vectors
covering all the sites to the left of |k), plus the Schmidt vectors to the right, as shown in the upper draw of figure
Al. As can be seen, such vectors are represented as |1,_) and |v.), respectively. As these vectors are taken as a basis,
the total quantum state is given as a superposition of such vectors, as follows

Z > Z AR Al ) 1) 12 (A1)

v k=0

The variables A, and ), are Schmidt coefficients and as such are real and positive. Although these coefficients can
in principle be absorbed in the definition of the I's, their inclusion is an integral part of the protocol. The
superposition coefficients are stored in the components of tensor I‘i‘w. Asaresult this tensor is in general
complex. Notice that the Schmidt vectors are orthogonal

(") = 8 and (') = 67, (A2)

If the same expansion is done for each place of the chain, a set of tensors with no apparent connection among
them is created and can serve as a representation of |1)). One positive aspect of this representation is that a local
unitary operation like (31) acting on site / has a simple implementation

g gy =S z A €GN L ) k) ) = S0 Z T8 Aol ) 1) ). (A3)

no v k=0 nwo v k=0
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The change involves redefining the tensors as follows

%) = eu-Hrk (A4)

e

To see how coefficients from different sites relate, let us take vector |_) and write it as a product of the local
basis, | j), and the Schmidt vectors to theleft, |€, ), as indicated in the middle sketch of figure A1. In addition, let
us represent this expansion in the following manner

) = ZZ A¢ 5;,|fk [7)- (A5)

& j=0

Replacing this expression in (A1) it results

H-TYY Y Ag(z o Tk ]mm K1) = ZA,,[zi T ][z STk AR m] *6)
v 13

13 j=0k=0 I j=0 v k=0

In the last expression the chain has been divided as a Schmidt decomposition with Schmidt coefficients A,,.
This implies that the set of vectors

1
) = > >0 TRk ), (A7)
v k=0

must be a set of Schmidt vectors to the right, making (. |/)) = 6l‘f/. The Schmidt decomposition of the state can
then be written in the familiar form

7/’) = Z A;Ll/"LF> |/1/4> . (A8)
Iz
Let us now consider an unitary operation acting on consecutive sites /and / + 1, as for instance transformation
(32). The operation can be represented as

11 )
O ) =357 30 37 [Aeh ZZU/KJkZFéMuFZV €T 1K) ). (A9)
& v J=0K=0

j=0k=0

The resulting expression is no longer an evident Schmidt decomposition but it can be rearranged as one in
the next manner: Let us first write the operation in parenthesis as

11

)\5 Ay Z Z Z (JIK,jk]-—‘é# )\/1 Pﬁy = Mﬂ,Kl/ = M(:z,ﬁ

j=0k=0 p

In the last step the pairs of indices (&, J) and (K, v) have been replaced by single indices o and 3. Notice that
grouping indices is essentially a notation change. It resorts to the possibility of joining Hilbert spaces from
adjacent sections of the chain. Matrix M,,, S has no restrictions apart from normalization. It is in general
complex and is not necessarily square. Such a matrix can be written as a product of (less arbitrary) matrices
applying a singular value decomposition (SVD) [28]

Ma',ﬁ = Z Z T(y,a’Aa’,ﬂ’TB’,ﬁ- (A10)

Both T, o and Ty g (different matrices) are complex and unitary, their rows (or columns) being orthogonal
vectors. They are also square matrices. Matrix A,/ g is real and diagonal.

A0 0
0 N 0 ..
Ay g = All
T 0 A (A1D
Normalization requires A{ + A3 + A} + .. = L. Allthe \’sare positive. In many numerical applications the

number of \’s is artificially fixed. Here the number of coefficients is handled dynamically and only those below
numerical precision are discarded.
The double sum in (A10) can be reduced to a single sum
M(x,ﬂ = Z ’Ey,,u,’ )\/1”1—;1’,{3- (A12)

’

1
One can in addition write the labels a and Bin terms of the original labels

Mo =3 Tguwre Tk = D AL AT A (A13)
#/

W

10
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In the last step the components of the T°s have been renamed. Notice that the I’s in the last sum are different
from the ones appearing in the initial state. No emphasized distinction is made in order not to overload the
notation, but tensors with y’ are all new. Also notice that neither A¢ nor A, have changed. As Jand K are integer
labels without explicit meaning, it is valid to rename them with their lower-case equivalents j and k. Introducing
the final expression in (A9) gives

TR 5 S oY | R T LT

The state is in ‘canonical form’, i.e., written with respect to the (new) Schmidt vectors of the chain, since the
states formed as

1 .
') = D220 ATLIE017), (A14)
¢ j=0
and
') =3 Z L, Aulk) (1), (A15)
v k=0

are orthogonal and normalized because they are the entries of matrices T, - and Ty 3 respectively.
This representation is very convenient to calculate local expectation values. Using (A1) it can be shown that
the reduced density matrix of a given site is

= 3 30 5 NATLLAIN (k) (A16)
k=0k'=0 pu v
An expectation value corresponding to a matrix 7 that operates exclusively on that site can be found as
(7) = Tr(p). (A17)

One can work in an analogous way in the space of two consecutive positions using the corresponding reduced
density matrix. It can be shown that this matrix can be written as

Pikjrie = ZZZZJYIE LY ik) ('K, (A18)
]k ]/k/ v
such that
. .
Yy = AA Y l“fﬂ)\ r (A19)

oA
I

Sometimes it is also useful to know how to obtain the state coefficients in the Fock basis in terms of this tensor
representation. Such a relation can be derived following the arguments in reference [21], thus yielding

Chikyky = ZZ ZF"lA TR, AT (A20)

These operations can be efficiently computed as long as the number of Schmidt coefficients involved is not too
large.

A.1. Example
Let us initially consider a chain with no fermions. In the Fock basis the state is given by

1) = [000...0). (A21)
When this state is split in adjacent parts, the corresponding Schmidt decomposition is trivial: There is one vector

to the left, one vector to the right and the only Schmidt coefficient is 1. From this observation the canonical
decomposition can be built directly

A=1, T}, =1, I'}j;=0. (A22)

The same pattern repeats for every place of the chain. Now let us consider the following unitary operation

N 1
U=— A23

—~. O O
O == O

O = =~ O
—_ 0 O w.

11
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For simplicity let us suppose that U acts on the first two places. The action of this operator on the state is

0™y = —=(100) + i]11))[0...0). (A24)

f

To build a canonical decomposition (the canonical decomposition is not unique), one sees the state asa
composition of alocal basis plus the Schmidt vectors to the right and left. Taking the local basis of the first site,
the state can be written as

~[3] . L .
Uy = ﬁ(|o>|oo...o> + 4]1)]10.... 0)). (A25)

Vectors |v) = 00...0)and |v,) = |10... 0) are normalized and orthogonal, therefore, they are valid Schmidt
vectors. In this form it is possible to read out the canonical coefficients, finding

1 1
M= — M= | (A26)
1 27 J2
o — g i = (A27)
it = o, F””—z (A28)

The superscript [1] is added to emphasize that these coefficients correspond to the first site. With respect to this
decomposition, the estate can be visualized in the following manner (with the superscript omitted)

U[3J|7/’> = NTDI0) [11) + AThI1) [vs). (A29)

This case has been sufficiently simple to allow a direct determination of the canonical representation. In other
circumstances the protocol presented in the previous section can be used to build a representation in accordance
with the original proposal using a systematic approach.

Appendix B. Reduced density matrix of the chain ends

To find the reduced density matrix the state is written as a tensor product making explicit reference to the
components of each site

)= > laea)M ). Jay sy )N ay - jon)M, (B1)

where

Iakal [n] — Z 1"]["] )\[nl (B2)

kg

The superscript in square brackets is used to specify the position in the chain associated to the corresponding
tensor. Such a superscript is dropped in the subsequent development to simplify the notation. The reduction can
be effectuated by bracketing corresponding spaces

piv = Tz, n-1y(|19) (Y = Z lccgon) <a6a/1|<041/043|a10é2> <0/2043/|042043>
( Q1 X2y ..y N1 ]
a',aly,. . nalno
- (a2 ilan—2an—1) lan—1an) (@' n—1an"]. (B3)

The above expression can also be written as a concatenation of index contractions

/ /
Yo lagan) (apa!ilMia,al) (ol Miasad) fasal) - Miax sy} tax- 1oy} lon—10w) (y_jon’l. (B4)
01>0f{>0¢N71>(¥§\1 1

Thus, it all can be written as a single connecting matrix

IalN = Z |050041> <Olooz llM {auaf} {an_10y_1) |04N—1OZN> <OZ$V,1OC§\]|. (B5)
anal,aN 1,081

The calculation of M4, a} {ay_al_,} unavoidably involves all the tensors in the bulk of the representation and
is the numerically heaviest task of the procedure. The resulting expressionisa4 x 4 matrix in the Fock basis of
the chain edges.

12
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