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Chapter 1

Introduction

1.1 Particles and their interactions

The dynamics of nature is governed by four fundamentals interactions namely strong

interaction (1), electromagnetic interaction (10−2), weak interaction (10−13) and gravita-

tional interaction (10−38). Here in parentheses, we have indicated the relative strength

of these interactions normalized with respect to the strength of strong interaction. All

the material particles carrying electric charge interact via electromagnetic force which is

responsible for most of the happenings in our day to day life. This interaction is medi-

ated by electrically neutral photons which are the massless gauge bosons resulting due to

the invariance of electromagnetic interaction under local U(1) gauge symmetry. The most

fundamental material particles of nature called quarks and leptons, come in three different

families of six flavors. The dynamics of flavor change gives rise to weak interaction which

gets mediated by three heavy gauge bosons W± and Z0. The idea of unifying different

forces at an extremely high energy and a very small distance scale became a reality due to

the discovery of the principle of gauge invariance for non-abelian Yang-Mills theories. The

weak and electromagnetic interactions got unified in a single framework of electroweak

theory with SUL(2)×UY (1) gauge group and Higgs mechanism of spontaneous symmetry
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breaking for giving mass to the massive gauge bosons [1–3]. Now the Standard Model of

particle physics has a firm grounding in sound theoretical principles with largely verifi-

able experimental predictions. Leaving the gravitational interaction aside, the Standard

Model gives a unified description of strong interaction with the electroweak interaction

in the framework of SUC(3) × SUL(2) × UY (1) gauge invariant grand unified quantum

field theory. Strong interaction is special in the sense that it can be cleanly detached

from the rest of the Standard Model and studied separately as an individual theory. The

proper theory of strong interaction is known as Quantum Chromodynamics (QCD) with

the gauge group of SUC(3) for colour(C) charges. In nature, the formation of nuclei and

interaction of nucleons (neutrons and protons) is governed by the strong force. Residual

strong interaction among the nucleons, leads to the formation of nuclei and the QCD dy-

namics of the most fundamental particles called quarks and gluons, leads to the formation

of composites known as nucleons. The particle content of the standard model has been

shown in Fig.1.1.

The hadronic vacuum of the low energy QCD, is populated by light mesons (pions,

etas and kaons starting with mπ = 140MeV) and heavy baryons (protons, neutrons,

deltas, sigmas, lambdas, cascades and omegas starting with mN = 1GeV). According

to the similarity of their masses and other properties (like charge, isospin, strangeness,

etc. ), baryons and mesons were grouped into definite geometrical patterns known as the

eightfold way which was invented by Gell-Mann and Ne’eman in 1961. Fig.1.2. shows the

ordering for the meson and baryon octet. Later in 1964, Gell-Mann proposed that different

geometrical patterns, emerging from the similarity in the properties of hadrons (baryons

and mesons), can be explained as multiplets which result due to the different kinds of

combinations of the three flavors of quarks (antiquarks) occurring in the fundamental

representation of global SUf(3) flavor symmetry. The existence of ∆++ with three up

quarks and parallel spins was mysterious because it was violating the Pauli exclusion

principle. Y. Nambu and O. W. Greenberg working independently, resolved this mystery
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Figure 1.1: Particle content of the standard model

in 1970s by postulating an additional SU(3)C local gauge degree of freedom responsible

for strong interaction dynamics. Later, this was renamed as colour charge.

Quarks and gluons are the basic units that carry the colour charge of strong in-

teraction symbolically known as colour charge C. Quarks come in three colours namely

red, blue and green and they continuously change their colour by the exchange of gluons

which are eight massless vector gauge bosons mediating the strong interaction. We can

not observe isolated quarks and gluons in experiments. Three quarks of different colours

form colour singlet baryons while mesons are colourless combination of a quark and an

antiquark. Thus the colour charge of strong interaction remains confined within the ra-

dius (∼ 1 fm) of observed hadrons. This peculiar property of QCD is known as colour

confinement [4, 5].

We do not have a proper understanding of colour confinement because it is a non-
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Figure 1.2: Baryon decuplet, baryon and meson octet, and quark antiquark triplet.

perturbative feature of QCD. In the low energy regime of QCD, when momentum transfer

is very small (q2 << (100 MeV)2) or the distance of resolution is large, the running QCD

coupling constant becomes large (αs ≫ 1) and the field theoretic perturbative expansion

in the powers of coupling constant fails. As a consequence, the force between quarks and

gluons becomes confining and shows a strong linear increase with the distance. The phe-

nomenon of confinement is also witnessed in the results of numerical simulations of QCD

on a discrete space-time lattice (lattice QCD) but still, we do not have a mathematical

proof for it.

Since unlike photons, gluons themselves are charge carriers of strong force, their

interaction with each other makes QCD a highly nonlinear theory with strikingly different

behaviour at low and high energy scales. In the regime of very high energy and large

momentum transfer (q2 >> (100 MeV)2) at very small distance resolutions, QCD becomes

an asymptotically free theory [4,5] and the running coupling constant becomes quite small

(αs ≪ 1). The interaction among the quarks and gluons becomes weak at small distances

and the perturbative expansion works very well. The predictions of perturbative QCD
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Figure 1.3: Theoretical values of running QCD coupling obtained from the perturbation

theory compared with experimental values. Figure taken from [6].

have been widely confirmed in Deep Inelastic Scattering (DIS) experiments. In 1973,

D. Gross, D. Politzer and F. Wilczek discovered the phenomenon of asymptotic freedom

and they were awarded noble prize for this discovery in 2004. The variation of running

coupling constant αs with respect to the momentum transfer Q has been shown in Fig.1.3.

In the regime of large momenta where the perturbation theory is well behaved, we observe

a good agreement of the theory with the experiments. However, the running coupling

constant moves towards the Landau pole in perturbation theory for small momenta and

the perturbation theory predicts its own breakdown at this scale.

QCD is essentially well understood in the low as well as high energy limits. But,

the connection between these two extremes, is not known even today and the QCD in the

nonperturbative regime is still an open sector of the standard model.
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1.2 Quark hadron phase transition: a motivation

Traditional particle physics essentially dealt only with the intrinsic structure of near

ground state hadrons while traditional nuclear physics could throw light only onto the

ground state of the extended QCD nuclear matter. What happens to the normal hadronic

matter (collection of hadrons/nuclei) when it is heated or compressed to very high tem-

peratures or densities? Hagedorn in his seminal work exploring the “statistical bootstrap

model“ [7] of hadronic/resonant/fireball matter arrived at the limits of hadronic matter

stability and calculated the limiting energy density of about 1GeV/fm3 corresponding

to the Hagedorn limiting temperature in the vicinity of T ∼ 160 − 170 MeV [8] beyond

which hadronic matter becomes unstable. Studies of extended strongly interacting matter

started looking beyond the limits of hadronic matter stability when it was realized that

partons i.e. quarks and gluons are the elementary carriers of the colour charge of strong

interaction. Owing to the property of asymptotic freedom, QCD now implies a partonic

matter phase beyond these limits in which the individual hadrons get dissolved into their

constituents and produce a collective form of matter known as the quark gluon plasma

(QGP). Thus one has to consider a phase transition occurring from hadronic phase to

the QGP phase along the quark hadron phase boundary. Analogous to the insulator con-

ductor transition in the atomic matter, the deconfinement transition generates a colour

conducting medium of quarks and gluons where the colour charge of strong interaction

gets liberated over large distances (∼ 20 fm).

Comprehensive understanding of QCD confinement-deconfinement transition is of

a fundamental importance also for understanding the primordial cosmological expansion

of the early universe that passed through the QCD colour confining phase transition to

hadrons at about five microseconds after the Big Bang. When the temperature was very

high (at about T ∼ 150 − 200 MeV ∼ 1012 K), the Big Bang matter evolved towards

hadronization featuring a quark over antiquark density excess of 10−9 only resulting in

a very small density (small chemical potential) of baryonic matter. Research in the
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Figure 1.4: Schematic diagram showing the QGP formation in heavy ion collision exper-

iments.

area of astrophysics gives another interesting impetus for studying quark hadron phase

transition which is expected to take place in the very late stages of an evolving star

(supernovae, hypernovae) when it is not able to sufficiently resist its gravitational collapse.

It is expected that such stars may crush down to such high densities that nucleons do not

remain in their hadronic state. Thus one may get a cold but highly dense blob of quark

matter in the neutron star interiors or in the matter formed by the neutron star mergers.

Convergence of questions arising from astrophysics, cosmology (neutron star inte-

rior, supernovae dynamics, cosmological evolution in the early universe) and fundamental

nuclear/hadronic physics (extended nuclear matter and its collective properties, excited

hadronic matter and its limits of existence) led to the birth of research field known as

Relativistic Heavy Ion Collision Physics in the late 1960’s [8]. The behaviour of strongly

interacting matter under extreme conditions of temperatures and densities can be studied

experimentally using collisions between heavy nuclear projectiles at relativistic energies.

In such collisions an initial dynamics of compression and heating converts the incident,

cold nuclear ground state matter into a fireball of hadronic or partonic matter, thus pop-

ulating the QCD matter phase diagram with the deconfined state of QGP which exists

over a wide domain of temperature and density [9–13]. The energy available at Super

Proton Synchrotron (SPS at CERN) or at collider facilities; Relativistic Heavy Ion Col-

lider (RHIC at BNL), Large Hadron Collider (LHC at CERN), suffices to reach plasma
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Figure 1.5: Stages of QGP evolution in heavy ion collision experiments.

temperature up to 1 GeV, i.e. far beyond the quark hadron phase transition critical

temperature, of about 170 MeV. Fig.1.4 shows a schematic diagram for the formation of

QGP in a head on (zero impact parameter) ultra-relativistic collision of two heavy nuclei

of pancake shape which happen to pass through each other. The QGP produced is known

as the baryon less (nearly zero chemical potential) plasma in this case. Recently, it was

shown that the new state of matter produced at RHIC is far away from the hot QGP

which is asymptotically free. This RHICE nuclear matter has indicated a strongly cou-

pled regime of QGP which is called strongly coupled quark gluon plasma (sQGP) [14–17].

Recent developments in QGP physics can be found in reviews, e.g., see ref. [9, 18–23].

The QGP produced in these experiments is a transient state which exists for a

very short period of time. It gets converted quickly into hadrons after a brief evolu-

tion passing through the stages of hydrodynamic expansion, thermalization, chemical and

thermal freeze out. Information regarding different stages of the QGP evolution is ob-

tained through the analysis of the particles captured by the detectors. This makes the

interpretation of experimental results extremely difficult. The proper understanding of

these results, require a detailed study of the thermodynamics of the system. Different sta-
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tistical tools of analysis are used to study the system. Fig.1.5 shows the different stages

of formation and evolution of QGP.

1.3 QCD phase transition and order parameters

The study of the different aspects of quark hadron phase transition is a tough and chal-

lenging task because it requires the understanding of inputs and ideas from research in

diverse fields like statistical mechanics, condensed matter physics, nuclear physics, cos-

mology, astrophysics, finite temperature version of Yang-Mills quantum field theories,

symmetry breaking phase transitions leading to the formation of topological objects and

structures, etc.

Common example of the phase transitions are change of substance from solid to

liquid (melting) or from liquid to gas (boiling or evaporation). Their inverse processes i.e.

freezing and condensations respectively, also represent such transitions. Ferromagnetic

materials exhibit a long range ordering phenomenon at the atomic level which causes the

unpaired electron spins to line up parallel with each other in a region called domain. Each

domain has a net magnetic moment but the bulk material will usually be demagnetized

because of the random orientation of different domains with respect to each other. Even

an extremely small external magnetic field, causes magnetic domains to line up with each

other and material shows up net magnetism. This long range order vanishes above the

Curie temperature (≃ 1000 K for iron) and there is a phase transition of the system to

the disordered phase of paramagnetic state. Another example is that of superconductiv-

ity where resistance of some metals like mercury and lead, becomes zero below a certain

critical temperature. Then there is the phenomenon of superfluidity, liquid helium be-

haves like a normal fluid unless cooled below some critical temperature when it becomes

superfluid where the viscous drag becomes zero. Yet another such fascinating system is

liquid crystal, above certain temperature it behaves like isotropic liquid and below that
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it also shows partly crystal like properties.

For equilibrium phase transitions, the phases of system are well defined and one can

draw a phase diagram in the plane of intrinsic parameters of the system like temperature,

pressure, density (chemical potential) etc. In the language of statistical mechanics, the

system should be in its lowest free energy state (ground state). In equilibrium situations,

free energy is analytic almost over the whole phase diagram and the regions where it

becomes non analytic are called phase boundaries which demarcate different phases. Phase

transitions result, when the system is driven from one phase to another across the phase

boundary by the change of parameters like temperature, chemical potential etc.

The physics of phase transitions is often associated with the spontaneous breakdown

of certain continuous symmetries. Spontaneous symmetry breaking occurs in a situation

where the interaction governing physics of the system remains invariant under certain

symmetry transformation while the system settles down spontaneously in one of the vari-

ous possible equivalent ground states allowed by that transformation. Symmetry breaking

phase transition can always be characterized by an order parameter (OP) which is nonzero

in one phase and becomes zero in the other. The long range order of atomic magnets in

the ferromagnetic phase is given by magnetization vector which is an example of order

parameter (OP). The rotational symmetry of magnetization vector which is zero in para-

magnetic state, gets spontaneously broken when nonzero value of the magnetization in

a domain, chooses certain orientation in the ferromagnetic phase of the substance below

the Curie temperature. The set of values of OP field which minimize the free energy of

the system in a particular phase, constitute the order parameter space. The OP field is

usually called the Higgs field, and the OP space is called the vacuum manifold. When

we change the parameters like temperature, chemical potential etc., the OP field may

either jump discontinuously or change continuously when the system goes through the

phase transition. Discontinuous jump of the OP field signals a first order phase transition

while continuous change in the OP field gives rise to second order or continuous phase
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Figure 1.6: Spontaneous symmetry breaking: cartoon of the effective potential con-

structed in the plane of x → σ, y → ~π fields.

transition.

We need suitable order parameters for constructing the theory of quark hadron

phase transition. Hence we look for the continuous and discrete global symmetries of

the QCD. In the zero quark mass limit, QCD can be studied by a characteristic known

as chiral symmetry. In the infinite quark mass limit, the discrete global Z(3) symmetry

of QCD at finite temperature allows us to study the phenomenon of colour confining -

deconfining phase transition. In the extremely high density limit, QCD phase transition

can be studied as colour super-conductivity. The understanding of colour confinement

and UA(1) axial symmetry breaking is also being attempted in terms of instantons of

SU(3) gauge theory [24].
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1.4 Chiral symmetry breaking/restoring phase tran-

sition

Here we will discuss the chiral symmetry in brief. It is well known that the basic QCD

Lagrangian has the global SUR+L(Nf) × SUR−L(Nf) symmetry for Nf flavors of mass-

less quarks. The axial (A=R-L) part of this symmetry known as the chiral symmetry, is

spontaneously broken by the formation of a chiral condensate in the low energy hadronic

vacuum of QCD and one gets (N2
f − 1) massless Goldstone bosons according to the Gold-

stone’s theorem. Chiral condensate which works as the order parameter field of the

chiral symmetry breaking phase transition at low temperatures is nothing but the Bose

condensate of the underlying quark degrees of freedom much like the Cooper pairs in

superconductors and liquid He3 and electrons in superfluids [25]. The order of the chiral

symmetry restoring phase transition at high temperature depends on the number of quark

flavors and their masses. The SUL(2)×SUR(2) group describing chiral symmetry for two

massless flavors in QCD, is isomorphic to the O(4) group of the rotational symmetry for

magnetization vector in ferromagnet [26]. In both cases continuous symmetry is spon-

taneously broken and we get spin waves in ferromagnets and massless pions in the two

flavour QCD as massless Goldstone modes. Fig.1.6 shows the cartoon of effective potential

constructed in plane of x → σ, y → ~π fields. The effective potential which is symmetric

in (σ, ~π) fields in Fig.1.6(a), represents chiral symmetry restored phase. Effective poten-

tial in Fig.1.6(b), shows the spontaneous break down of the chiral symmetry where pions

are zero energy massless excitations in the valley and for three independent directions

of pions, the valley represents a three sphere (S3). Since the ferromagnetic transition is

of second order, the two massless flavours chiral transition at high temperature and zero

baryon chemical potential, turns second order in the presence of UA(1) anomaly by the

powerful universality arguments. For three massless quarks, Nf = 3, the chiral transition

is always first order [26, 27]. Just as an external magnetic field breaks the rotational
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symmetry of the ferromagnet, small quark masses in real life explicitly break the chiral

symmetry of the QCD Lagrangian. However, the observed lightness of pions in nature

suggests that we have an approximate chiral symmetry for QCD with two flavors of light

u and d quarks. Small finite quark masses make the chiral transition a rapid/smooth

crossover in some ranges of baryon chemical potential and temperature.

1.5 Confinement-Deconfinement (C-D) phase transi-

tion

QCD is a non abelian gauge theory where quarks coming in three colours, constitute

the fundamental representation of SUC(3) colour group while gluons form the adjoint

representation and hence come in eight types. The low energy structure of the QCD

vacuum is confining where colour charge of the strong interaction is confined inside the

hadrons. At extremely high temperature and densities corresponding to energy den-

sity of 1GeV/fm3, the phase transition from hadronic matter to QGP is termed as the

confinement-deconfinement (C-D) transition. The gluon dynamics is responsible for the

colour confinement due to its self interaction. If the masses of the quarks are consid-

ered infinite, finite temperature QCD in the absence of dynamical quarks, behaves as a

pure SUC(3) hot gauge theory which shows the invariance under the global ZC(3) center

symmetric transformations of the colour gauge group. The Center symmetry which is a

symmetry of hadronic vacuum, gets spontaneously broken in the high temperature regime

of QGP.

The thermal expectation value of the Wilson line (Polyakov loop) 〈l(x)〉 is related

to the free energy of a static colour charge. It vanishes in the low temperature confining

phase. If one interprets 〈l(x)〉 ∼ exp−FQ/T where FQ is the free energy of an infinitely

heavy quark [12,28], then 〈l(x)〉 = 0 implies that the free energy is infinite corresponding

to the confinement of colour charges. Non zero value of 〈l(x)〉 in the high temperature
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phase implies that the free energy is finite. This means that colour degrees of freedom have

got liberated signaling transition to the deconfining phase. Therefore the Polyakov loop

expectation value 〈l(x)〉 can serve as the order parameter of C-D phase transition [29].

For Nc colours SU(Nc) pure gauge Yang-Mills theory, the action has a global Z(Nc)

symmetry. This symmetry is also broken spontaneously by the non zero expectation

value of the Polyakov loop in the high temperature phase. The pure gluonic theory for

Nc = 2 and 3, have been studied in lattice gauge simulations with the finite-size scaling

analysis [30, 31]. It has been shown that there is a second-order phase transition for

Nc = 2 and a first order phase transition for Nc = 3. For Nc = 2 the critical exponent

has been found to agree with the same universality class as that of Z(2) Ising spin model.

Further, the effective potential for the Polyakov loop constructed in the Landau - Ginzburg

approach, has a cubic invariant for Nc = 3 hence one naturally gets first order phase

transition [31–33]. Recent studies of the pure gluonic theory with Nc = 4, 6, 8, 10 indicate

that the transition is of first order for Nc ≥ 3 and becomes stronger as Nc increases [34,35].

This behaviour is similar to that of the 3D Nc-state Potts model [36]. Effective theory

analysis which accounts for the effect of dynamical quarks in the results of pure gauge

Nc = 3 lattice simulations, concludes that the real life C-D transition in QCD is a rapid

crossover [37]. Even though the center symmetry in the real life QCD is always broken

with the inclusion of dynamical quarks in the pure gauge QCD system, one can regard

the Polyakov loop as an approximate order parameter because it is a good indicator of a

rapid crossover in the C-D transition [9, 37, 38].

The first principle lattice QCD Monte Carlo simulations [39–54] give us important

information and insights regarding various aspects of the quark hadron phase transition,

like the restoration of chiral symmetry in QCD, order of the C-D phase transition, richness

of the QCD phase structure and mapping of the phase diagram. Unfortunately progress

in lattice QCD calculations has got severely hampered due to the QCD action becoming

complex on account of the fermion sign problem [39] when baryon density/chemical po-
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tential is non zero. Though several methods have been developed to circumvent the sign

problem at small baryon chemical potentials, a general solution to the sign problem for all

chemical potentials is yet to be devised. Further since lattice calculations are technically

involved and various issues are not conclusively settled within the lattice community, one

resorts to the calculations within the ambit of phenomenological models where the effec-

tive potential is constructed in terms of effective degrees of freedom. These models serve

to complement the lattice simulations and give much needed insight about the regions of

phase diagram inaccessible to lattice simulations.

1.6 Thesis overview

In recent years, effective potential models, having the pattern of chiral symmetry break-

ing as that of QCD like the linear sigma models (LSM) [55–62] the quark-meson (QM)

models(see e.g. [61, 63–72] and Nambu-Jona-Lasinio (NJL) type models [63, 73–78] have

led to the investigation of the properties and structure of chiral symmetry restoring phase

transition at sufficiently high temperature and density. Later these models were extended

to incorporate the features of C-D transition where chiral condensate and Polyakov loop

got simultaneously coupled to the quark degrees of freedom. Thus Polyakov loop aug-

mented PNJL models [79–95], Polyakov loop augmented linear sigma models (PLSM)

and Polyakov loop augmented quark meson models (PQM) [96–104] have facilitated the

investigation of the full QCD thermodynamics and phase structure at zero as well as finite

quark chemical potential and it has been shown that bulk thermodynamics of the effective

models agrees well with the lattice QCD data.

In chapter 2, we have discussed the QCD Lagrangian, the formulation of statis-

tical QCD at finite temperature and density in a medium, center symmetry for finite

temperature QCD and its spontaneous as well as explicit break down, C-D transition and

Polyakov loop order parameter, chiral symmetry of QCD Lagrangian and its spontaneous
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as well as explicit break down, Landau-Ginzburg analysis of chiral transition in effective

theory framework, QCD phase structure and phase diagram. Finally, we have given a

brief description of the experimental indications for the QCD phase transition.

In this thesis, the presentation of about two third of the total volume of research

work, is centered around effective model building where the features of spontaneous break-

down of both the chiral symmetry as well as the center Z(3) symmetry of QCD has been

incorporated in one single model. We have combined, the chiral condensate and the

Polyakov loop simultaneously to the quark degrees of freedom in the SUL(2) × SUR(2)

and SUL(3) × SUR(3) linear sigma models. We thus constructed Polyakov quark meson

models for two flavours and three flavours of quark. These models have incorporated the

symmetries and symmetry breaking scenarios of QCD in a realistic way. These are QCD

like theories which can give a realistic description of quark hadron phase transition. We

have investigated in detail the phase structure, phase diagram and the interplay of chiral

symmetry restoration and C-D phase transition.

In chapter 3 we have improved the effective potential of Polyakov loop extended

Quark Meson Model (PQM) for the two quark flavour by considering the contribution

of fermionic vacuum loop and explored the phase structure and thermodynamics of the

resulting PQMVT model (Polyakov Quark Meson Model with Vacuum Term) in detail

at non zero as well as zero chemical potentials. The QCD phase diagram together with

the location of critical end point (CEP) has been obtained in µ, and T plane in both the

models PQMVT and PQM. The PQMVT model analysis has been compared with the

calculations in PQM model in order to bring out the effect of fermionic vacuum term on

the thermodynamics of the physical observables [105].

In chapter 4 we have investigated the influence of Polyakov loop on meson mass

and mixing angle calculations in scalar and pseudoscalar sector, in the framework of

generalized 2+1 flavor quark meson linear sigma model enlarged with the inclusion of

the Polyakov loop [101]. Since we are lacking in the experimental information on the
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behaviour of mass and mixing angle observables in the medium, a comparative study of

these quantities in different models and circumstances becomes all the more desirable. We

have derived the modification of meson masses due to the q̄q contribution in the presence

of Polyakov loop. We have studied how the inclusion of Polyakov loop, qualitatively and

quantitatively affects the convergence of the masses of chiral partners, when the parity

doubling takes place as the temperature is increased through Tc and the partial restoration

of chiral symmetry is achieved. We will also be studying the effect of Polyakov loop on

the interplay of SUA(3) chiral symmetry and UA(1) symmetry restoration.

Very recently, an interesting line of investigation has been opened up in our current

research work where the non trivial topology of spontaneously broken Z(3) symmetric

vacuum of pure gauge QCD, has been exploited to study the dynamics of C-D phase

transition in the context of relativistic heavy ion collision experiments [106–108]. It is

well known from the condensed matter systems that the spontaneous breaking of the

continuous or discrete symmetry, leads to the formation of topological defects. These are

solitonic solutions of the classical field equations for the system. Non trivial topology of

the vacuum manifold (OP space) brings topological defects into the existence. Topological

arguments being universal in nature, do not depend on the details of the phase transition

dynamics but only on the symmetry of the system. Common example of the topological

defects are domain walls, cosmic strings and monopoles that could have formed during

the cosmological phase transitions at different stages in the evolution of universe. In

the case of C-D transition in pure gauge QCD, spontaneous break down of the Z(3)

symmetry in the high temperature phase of QGP, gives rise to three different Z(3) vacua

which are degenerate. The interpolation of the Polyakov loop order parameter field 〈l(x)〉
between three different degenerate Z(3) vacua leads to the formation of domain walls

(Z(3) interfaces). The line like intersection of three different Z(3) interfaces lead to the

formation of topological string called QGP string where the order parameter l(x) becomes

zero. Thus the core of such string is in confining phase [107]. Detailed field theoretic
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numerical simulations for the complex scalar field (Polyakov loop) have been carried

out in ref. [107] to study the dynamics C-D phase transition which starts during the

pre-equilibrium stage in relativistic heavy-ion collision experiments. A simple model of

quasi-equilibrium system was assumed for this stage with an effective temperature which

first rises (with rapid particle production) to a maximum temperature T0 > Tc, and then

decreases due to continued plasma expansion. The formation of Z(3) walls and associated

strings in the initial transition from confining (hadronic) phase to denconfining phase,

has been investigated via the so called Kibble mechanism [109]. The essential physics

of the Kibble mechanism is contained in a sort of domain structure arising after any

phase transition which represents random variation of the order parameter at distances

beyond the typical correlation length. Using the results of lattice gauge theory, Pisarski’s

phenomenological construction of effective potential for Polyakov loop [37,110–112] shows

a weak first order phase transition. This potential has been used to implement the domain

structure where the weak first order C-D transition proceeds via bubble nucleation, leading

to the well defined domain structure. The field configurations corresponding to the bubble

profile got numerically generated using the Coleman technique [113]. QGP bubbles having

different Z(3) vacua inside them, are randomly nucleated on the lattice in the false vacuum

background of the hadronic phase and evolved through the equation of motion. In the

course of their time evolution, expanding QGP bubbles of different Z(3) vacua come

close and then coalesce with each other. The coalescence of QGP bubbles, leads to the

formation of Z(3) walls and strings. The evolution of Z(3) walls and string networks can

be numerically seen and studied in these simulations. Possible experimental signatures

resulting from the presence of Z(3) wall networks and associated strings in relativistic

heavy ion collision experiments, have been discussed in ref. [107].

In the chapter 5 of the thesis, we have reported our novel work of numerical sim-

ulation of first order quark hadron phase transition via bubble nucleation (which may be

appropriate, for example, at finite baryon chemical potential) in the context of relativistic
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heavy ion collision experiments. We have investigated, the effects of explicit breaking of

Z(3) symmetry due to the presence of dynamical quarks on the formation and evolution

of Z(3) walls and associated QGP strings within the Polyakov loop model. We calculated

the bubble profiles using Coleman’s technique of bounce solution, for the true vacuum as

well as for the metastable Z(3) vacua, and estimated the associated nucleation probabil-

ities. These different bubbles are randomly nucleated on the lattice in the false vacuum

background of the hadronic phase and then evolved by the equation of motion calculated

from the Polyakov loop effective potential. The resulting formation and dynamics of Z(3)

walls and QGP strings, has been studied. Further, we analyzed various implications of

the existence of these Z(3) interfaces and the QGP strings, especially in view of the effects

of the explicit breaking of the Z(3) symmetry on the formation and dynamical evolution

of these objects. Finally, we discussed possible experimental signatures of Z(3) walls and

strings with explicit symmetry breaking [114]. Chapter 6 summarizes conclusions and

appendix given in chapter 7 contains formulae for the first and second derivatives of the

grand potential with respect to temperature and chemical potential.



Chapter 2

Symmetries of QCD and its phase

structure

Quantum Chromodynamics (QCD) which is commonly accepted as the correct description

of strong interaction, is a non abelian gauge theory. In the extremely high energy domain,

the non abelian nature of the gauge theory makes the strong interaction very weak and the

theory becomes perturbative. This property known as asymptotic freedom has got strong

verification in deep inelastic electron-proton and proton-proton collision experiments. The

constant that couples the most basic units of QCD (quarks and gluons), becomes large

in low energy domain. The theory turns non-perturbative and confining. The observed

degrees of freedom in nature for low energy domain are hadrons which are composite

structures of quarks and gluons where they always remain confined. We do not have

a proper understanding of strong interaction physics in the intermediate energy domain

which connects the non perturbative hadronic vacuum to the vacuum of perturbative

QCD.

In order to understand the transition from ordinary hadronic matter to the plasma

of quarks and gluons at very high temperature and baryon densities, we need to know the

collective behaviour of statistical QCD in the bulk of hot and dense medium. The quark
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hadron phase transition may be the result of a non analytic change in the bulk properties

of QCD in certain temperature and density (chemical potential) regimes. We need to con-

struct proper order parameters for QCD that distinguish two phases (QGP and hadronic)

by their non analytic behaviour at the phase boundary. Order parameters are often as-

sociated with the spontaneous breakdown of some internal symmetry that distinguishes

two thermodynamic phases at the microscopic level of the interaction dynamics. Hence

one needs to study the symmetry structure (local as well as global) of strong interaction

dynamics in order to construct order parameter for the QCD phase transition. QCD is

a highly complex theory which reveals rich phase structure in different energy regimes.

In certain approximations, the symmetry structure of QCD Lagrangian allows for the

construction of at least three order parameters for quark deconfinement, chiral symmetry

restoration and colour superconducting phase transitions in different temperature/density

regimes.

The current chapter gives a brief description of statistical QCD in a medium , the

symmetry structure of the QCD Lagrangian, the phase structure of QCD and finally

the experimental indications for QCD phase transition. First we shall introduce the QCD

Lagrangian with the most striking property of gauge invariance under a SUc(3) local gauge

transformation in section 2.1. Next we will give a brief description of the finite temperature

formulation of statistical QCD in section 2.2. The center symmetry Z(3) of SUc(3) gauge

group is very useful for the construction of order parameter for confinement-deconfinement

phase transition. We will present its discussion in the next section 2.3. For massless

quarks, QCD Lagrangian exhibits the property of chiral symmetry. In real life, QCD shows

an approximate chiral symmetry for light flavours of quarks. The experimentally observed

hadronic spectrum at low energy gives a strong evidence for the spontaneous breakdown

of chiral symmetry. The next section 2.4 describes chiral symmetry, its explicit as well as

spontaneous breakdown. We will also be giving a brief description of the Landau-Ginzburg

analysis of the chiral transition based on universality arguments in the framework of linear
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sigma model. Next we will describe the phase structure of QCD and the construction of

phase diagram in the temperature and chemical potential plane in section 2.5. We will

give a brief description of experimental indications for QCD transition in the end.

2.1 QCD Lagrangian

The QCD Lagrangian is given by the following expression

LQCD = Ψ̄ (iγµDµ − M) Ψ − 1

4
F a

µνF
µν
a (2.1)

The quark field spinor Ψ(x) is a 4NcNf component column matrix. Nc is the number

of colours, Nf is the number of flavours and 4 corresponds to the Dirac components of

the spinor field. M is quark mass matrix, γµ are the Dirac matrices and the covariant

derivative Dµ is defined by

Dµ = ∂µ − igsAµ (2.2)

where Aµ = Aa
µT

a, T a = λa/2, are the (N2
c − 1) generators of SU(Nc) symmetry, λa are

the Gell-Mann matrices. The gluon degrees of freedom Aµ are coupled to the fermionic

field by the strong coupling constant gs. QCD Lagrangian is invariant under the following

local gauge symmetry transformations for the quark and gluon fields

Ψ(x) → Ψ
′

(x) = U(x)Ψ(x) Aµ(x) → A
′

µ(x) = U(x)

(

Aµ(x) +
i

gs
∂µ

)

U †(x) (2.3)

where U(x) = e−iT aαa(x) ∈ SU(Nc) and αa(x) are space time dependent (N2
c − 1) inde-

pendent parameters of the SU(Nc) group. The gluon field strength tensor Fµν is given

as

F a
µν = ∂µAa

ν − ∂νA
a
µ + gsf

abcAb
µA

c
ν (2.4)

where fabc are the structure constants for SU(3). The transformation law for the field

strength is written as

F a
µν T a → U(x)F a

µν T a U †(x) (2.5)
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Notice that the F a
µν is not a gauge invariant quantity since there are eight field strengths

(for Nc = 3 colours), each associated with an independent direction corresponding to

eight generators for SUc(3) symmetry transformation. However, the gauge invariant com-

bination −1
2
Trc[

(

F a
µν

)2
] = −1

4
F a

µνF
µν
a gives the kinetic energy term for the vector gluonic

fields Aµ.

In contrast to photons in Quantum Electrodynamics (QED), gluons themselves are

the carries of colour charge and hence they interact with each other. Consequently the

QCD Lagrangian contains cubic and quartic terms in Aµ arising from the term 1
4
FµνF

µν .

This makes QCD, a very nontrivial interacting field theory with strikingly different prop-

erties in the high and low energy domains.

2.2 Statistical QCD In Medium

In order to know the properties of statistical QCD in the hot and dense medium, one

needs to evaluate the density matrix (ρ) at finite temperatures T and chemical potentials

µ

ρ = e−β(H−µN ) (2.6)

where β is the inverse temperature, H is the Hamiltonian of the system and N is the

particle number operator. The thermal expectation value of an operator A can be obtained

as

〈A〉β =
1

ZTr[A ρ] (2.7)

The normalization factor (Z) called grand canonical partition function is defined as

Z = Tr [ρ] = Tr
[

e−β(H−µN )
]

(2.8)

In the standard approach, the statistical density operator ρ is regarded as the time evolu-

tion operator in imaginary time τ = it over the interval [0, β]. For the case of scalar field,
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the partition function can be expressed in terms of the following Euclidean path integral

Z(T, V ) =

∮

Dφ exp

[

−
∫ β

0

dτ

∫

V

d3xLE [φ(x, τ)]

]

(2.9)

where LE is the Euclidean Lagrangian for the scalar field and the field φ satisfies the

periodic boundary conditions for bosons, φ(x, 0) = φ(x, β). Fermionic fields have to

obey antiperiodic boundary conditions Ψ(x, 0) = −Ψ(x, β) due to their spinor nature.

Finite temperature field theory, thus becomes equivalent to a Euclidean field theory in

a four dimensional space time with the time component compactified on a ring with

circumference β = 1
T
. The thermal expectation value of the operator A[φ] in contact with

a heat bath can be written as

〈A〉β =
1

Z

∮

DφA[φ] exp

[

−
∫ β

0

dτ

∫

V

d3xLE [φ(x, τ)]

]

(2.10)

Since the Eq.(2.9) is similar to the generating functional Z[J ] for vanishing external source

J at zero temperature, both perturbative Feynman diagram calculations and lattice gauge

theory techniques can be easily adopted to evaluate 〈A〉β.

In order to obtain the expression for QCD partition function, the trace of density

matrix is evaluated by summing over all possible quantum states which satisfy the Gauss’

law for the colour fields. The expression for QCD partition function ZQCD(T, V, µ) follows

as [115]

ZQCD(T, V, µ) =

∫

DΨDΨDAµ exp

[

−
∫ β

0

dτ

∫

V

d3x
(

LE
QCD − µN

)

]

(2.11)

where LE
QCD is the Euclidean version of the QCD Lagrangian, µ is the quark chemical

potential and N = Ψ†Ψ.

Different calculational frameworks arise due to the various choices possible for time

path in Eq.(2.11). We are using the so called imaginary time formalism in our work which

results due to the simple choice of direct path. The major advantage of this formalism

comes from the Fourier language of the finite temperature Feynman rules which are very
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similar to those of vacuum theory, except that the propagators now have imaginary and

discrete energies. The loop integrals are replaced by

∫

d4p

(2π)4
→ iT

+∞
∑

n=−∞

∫

d3p

(2π)3
(2.12)

where the summations runs over discrete set of Matsubara frequencies ωn. The delta

functions conserving energy momentum become

(2π)4 δ4(p)→ (2π)3

iT
δn,0 δ3(p) (2.13)

The Matsubara frequencies appear due to the following replacement of p0

p0 → ωn =







2πi
β

n for bosons

πi
β

(2n + 1) for fermions

The center Z(Nc) of the gauge group SU(Nc) can be separated as a global symmetry in

the finite temperature treatment due to the requirement of periodic boundary conditions

for gauge bosons. The center symmetry Z(3) for QCD turns out to be very useful in

understanding confinement.

2.3 Z(3) Symmetry And Confinement

The center symmetry can be studied by considering a system without quarks i. e. pure

gauge Yang-Mills theory. The partition function for this can be written as

Zg(β) =

∫

DAµe
−Sg[A] (2.14)

where Aµ is the gauge field and the action for pure gauge theory

Sg[A] = − 1

2

∫ β

0

dτ

∫

d3x Tr [F a
µνF

µν
a ] (2.15)

In Eq.(2.14) the gluonic fields are obeying periodic boundary conditions in the Euclidean

time direction

Aµ(x, τ + β) = Aµ(x, τ) (2.16)
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The principle of gauge invariance demands the invariance of action Sg[A] under the trans-

formation

Aµ(x, τ) → A
′

µ(x, τ) = U(x, τ)

(

Aµ(x, τ) +
i

gs
∂µ

)

U †(x, τ) (2.17)

where U(x, τ) ∈ SU(Nc).

The boundary condition (2.16) is to be satisfied by the transformed gauge fields

also.

We have two types of gauge transformations

U(x, τ + β) = U(x, τ); and U(x, τ + β) = gU(x, τ) (2.18)

where g ∈ SU(Nc) and it is space-time independent with g†g = 1. The periodic transfor-

mations of the first type do not impose any restrictions but if the twisted gauge transfor-

mations of the second type are examined closely, we find

A
′

µ(x, τ) = A
′

µ(x, τ + β)

= U(x, τ + β)
[

Aµ(x, τ + β) +
i

gs
∂µ

]

U †(x, τ + β)

= g U(x, τ)
[

Aµ(x, τ) +
i

gs
∂µ

]

[

U †(x, τ) g†]

= g A
′

µ(x, τ) g† (2.19)

Hence we conclude that the periodic boundary conditions are satisfied by the transformed

vector potential only if g A
′

µ(x, τ) = A
′

µ(x, τ) g . Since only the center of the group SU(Nc)

commutes with all the SU(Nc) gauge transformations, g needs to be a center element i.

e. g ∈ Z(Nc). Such an element commuting with all the elements of group, will be

proportional to the identity matrix and can be written as

g = zI with z = exp

(

2πim

Nc

)

∈ Z(Nc); m ∈ 0, 1, · · · Nc − 1 (2.20)

where I is the identity matrix of dimension Nc. Thus we have identified another symmetry

known as center symmetry under which the pure gauge theory gluonic action for the QCD

remains invariant [116, 117].
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2.3.1 Order parameter for C-D transition: Polyakov loop

For the pure gauge SU(Nc) Yang-Mills theory, the center symmetry Z(Nc) leads to an in-

teresting nontrivial consequence for the Polyakov loop operator which is a Wilson-Wegner

loop in the temporal direction. At zero temperature, the measure of quark confinement

is given by the Wilson-Wegner loop

W = TrP exp

[

i gs

∮

dxµ Aµ

]

(2.21)

here P denotes the path ordering and Aµ is the vector potential that describes the gluon

fields. The action of a Wilson-Wegner loop is proportional to its area for confining theories

while for non confining theories it is proportional to its perimeter [118]. Polyakov loop

operator is defined as

L(x) = P exp

[

i gs

∫ β

0

dτ A0(x, τ)

]

(2.22)

where A0(x, τ) is the time component of the gauge field Aµ in the Euclidean space, τ is

the Euclidean time [29]. After Wick rotating to imaginary time, R4 is replaced by the

space time cylinder S1 × R3 with circumference β.

Here, we define normalized colour traces of Polyakov loop operator as

l(x) =
1

Nc

Trc L(x), l†(x) =
1

Nc

Trc L†(x) (2.23)

The Polyakov loop operator connects a colour source at Euclidean time τ = 0 with a

colour sink at τ = β. Since we have periodicity in Euclidean time, source and sink are

at the equivalent positions. If we calculate the grand canonical thermal average (〈l(x)〉β)

of the Polyakov loop, the path integral is equivalent to the thermodynamic trace over all

states in which there is one static quark at fixed position (x) in the space

〈l(x)〉β =
1

Zg(β)

∮

DAµ l(x) e−Sg[A] (2.24)

The denominator of this expression is equivalent to the canonical partition function of a

thermodynamic system with exactly one quark at position (x) averaged over all colours.

Zq(x)(β) =

∮

DAµ l(x) e−Sg[A] (2.25)
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Thus

〈l(x)〉β =
Zq(x)(β)

Zg(β)
= e−β Fq (2.26)

Φ = 〈l(x)〉β = e−β Fq and Φ̄ = 〈l†(x)〉β = e−β Fq̄ (2.27)

where Fq (Fq̄) is an excess of free energy for an infinitely heavy static quark (anti-quark)

in a hot gluonic medium. Similarly the excess free energy Fqq̄(|x − y|) for an anti-quark

at x and a quark at y is given by

〈l†(x) l(y)〉β = e−β Fqq̄(|x−y|) (2.28)

We notice that Φ = Φ̄ = 0 implies an infinite free energy for a single static quark

source [32, 117, 119, 120]. It means all open colour sources are infinitely suppressed, i. e.

colour is confined. The potential between a quark and an anti-quark increases linearly

at long distances, Fqq̄(r → ∞) → σr with r = (|x − y|) which leads to Φ → 0 and

〈l†(r → ∞) l(0)〉 → 0. σ is the string tension that binds a quark with an anti-quark. On

the other hand, in the deconfined phase, the free energy of a single quark (anti-quark)

becomes finite (Fq(Fq̄) < ∞) giving rise nonzero values to Φ and Φ̄ [23, 121–123]. In

the string picture, the process of deconfinement is viewed as the melting of the string.

Thus we conclude from above discussion that Φ and Φ̄ are useful order parameters for

distinguishing a confining from a deconfining phase in gauge theories without fermions.

The action of pure gauge theory is symmetric under the twisted gauge transforma-

tions but the thermal expectation value of normalized Polyakov loop operator transforms

as

Φ → Φ
′

= zΦ (2.29)

Thus the low energy confining vacuum state for which Φ = 0, is symmetric under the

center Z(Nc) transformations while the center symmetry is spontaneously broken for

nonzero value of Φ. We conclude that the order parameter Φ is associated with the

spontaneous break down of Z(Nc) center symmetry for the pure gauge theory.
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The situation changes in the presence of dynamical quarks. If we consider a Yang-

Mills theory with dynamical quark fields in the fundamental representation of SU(Nc),

the fermionic quark fields have to obey antiperiodic boundary conditions in the Euclidean

time direction

Ψ(x, τ + β) = −Ψ(x, τ) (2.30)

When we apply a gauge transformation U(x, τ), the fermions transform as Ψ(x, τ) →
Ψ

′

(x, τ) = U(x, τ) Ψ(x, τ);

Ψ(x, τ + β) → Ψ
′

(x, τ + β) = U(x, τ + β)Ψ(x, τ + β)

= −z I U(x, τ) Ψ(x, τ)

= −z U(x, τ) Ψ(x, τ) (2.31)

We are forced by this equation to restrict the twisted gauge transformation to z = 1,

if we want to fulfill the boundary condition (2.30). Thus the center symmetry is no

longer respected in the presence of quarks and we say that the center symmetry has been

explicitly broken.

Even if the center symmetry is explicitly broken in the high temperature phase, the

temperature variation of Polyakov loop expectation value shows fast and rapid change

near crossover transition and the Polyakov loop susceptibility shows a peak in lattice

simulations [39]. Hence we consider the Polyakov loop as an approximate order parameter

which is an indicator of the confinement-deconfinement transition.

2.4 The Chiral Symmetry

In the limit of zero quark mass for different flavours of quark, QCD Lagrangian shows a

very interesting property known as the chiral symmetry. In the real world, quarks come in

six flavours, three of them known as up (u), down (d) and strange (s) are light while the

other three charm (c), bottom (b) and top (t) are heavy. Here quark flavours are labeled
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as light and heavy in reference to typical hadronic mass scale of about 1 GeV. Each

quark flavour behaves in the same way under the influence of strong interaction. They

differ only in their masses and mass dependent properties. Quark masses are basically

running parameters in the QCD and the theory can be formulated for any quark mass.

If one considers light quarks as massless in QCD, this approximation is quite close to the

physical situation for two flavours of u (mu = 4 − 6 MeV) and d (md = 8 − 10 MeV)

quarks. The mass of strange quark (ms = 140−200 MeV) is also sufficiently small when it

is compared to 1 GeV scale of hadronic masses. Thus chiral symmetry can be considered

as an approximate symmetry even for three flavours of quarks in QCD. In the massless

world which is known as the chiral limit, QCD Lagrangian can be written in terms of

completely decoupled left handed and right handed quark fields

L0
QCD = ΨLiγµDµΨL + ΨRiγµDµΨR − 1

4
FµνF

µν (2.32)

where

ΨL = PLΨ ΨR = PRΨ Ψ̄L = Ψ̄PR Ψ̄R = Ψ̄PL (2.33)

where PL and PR are left handed and right handed projection operators respectively

and are defined as

PL =
1

2
(1 − γ5) = P †

L PR =
1

2
(1 + γ5) = P †

R (2.34)

The projection operators have the following properties

PL + PR = 1 P 2
L = PL P 2

R = PR

PLPR = PRPL = 0 γµPL = PRγµ γµPR = PLγµ (2.35)

Here ΨL and ΨR are 3 component column matrices representing the 3 left handed

and 3 right handed light quarks respectively. We can easily see that the Lagrangian given
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in Eq.(2.32) is invariant under the unitary transformation UL(3) and UR(3) acting on ΨL

and ΨR respectively.

ΨL → Ψ
′

L = ULΨL ; UL = e−i(
P8

a=1 αa
LT a+αLI) (2.36)

ΨR → Ψ
′

R = URΨR ; UR = e−i(
P8

a=1 αa
R

T a+αRI)

where αa
L and αa

R are parameters for the left and right handed transformations. The

T a = λa/2, λa are (a = 1, 2, . . . 8) Gell Mann matrices in flavour space. αL and αR

represent a global phase change for all the flavours of left handed and right handed fields.

Noether’s theorem says that there are total 2 × (8 + 1) = 18 conserved currents and

conserved charges. The left handed and right handed currents for SUL(Nf) × SUR(Nf )

transformations can be written as

jµ,a
R, L(x) = ΨR, L(x) γµ λa

2
ΨR, L(x) (2.37)

We know that U(Nf ) can be written as the product of SU(Nf ) and a complex phase

U(1). The complete symmetry group of Lagrangian can be decomposed into an equivalent

set of vector (V = R + L) and axial vector (A = R − L) transformations

UL(3) × UR(3) ∼= SUV (3) × SUA(3) × UV (1) × UA(1) (2.38)

and the corresponding vector and axial vector currents are

V µ,a = jµ,a
R (x) + jµ,a

L (x) = Ψγµ λa

2
Ψ; Aµ,a = jµ,a

R (x) − jµ,a
L (x) = Ψγµγ5λa

2
Ψ

V µ = jµ
R(x) + jµ

L(x) = ΨγµIΨ; Aµ = jµR(x) − jµL(x) = Ψγµγ5IΨ (2.39)

The flavour singlet vector current V µ resulting due to UV (1) symmetry, gives the

conservation of net baryonic charge. The flavour singlet axial vector current Aµ does not

remain conserved, due to the anomalous breaking of UA(1) symmetry by quantum effects.

∂µA
µ =

Nc g2
s

32 π2
ǫµνρσ F µν

a F ρσ
a , ǫ0123 = 1 (2.40)
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It has been shown that the UA(1) symmetry is broken to ZA(3) symmetry by instan-

ton effects [124, 125]. However, instantons get screened at sufficiently high temperature

and hence UA(1) symmetry can be restored in this regime. The mass splitting of η and η
′

mesons together with the singlet octet mixing angles, are connected to the UA(1) anomaly.

In chapter four (4), we will be exploring the pattern of UA(1) restoration and its interplay

with the chiral symmetry (SUA(3)) restoration trend at high temperatures.

The mass term LM
QCD = −ΨMΨ with the mass matrix M = diag (mu, md, ms),

mixes left and right handed quarks in the QCD Lagrangian as given below

Ψ
i
MijΨ

j = Ψ
i

RMijΨ
j
L + Ψ

i

LMijΨ
j
R (2.41)

where i, j = 1, 2 · · ·Nf . If one takes, mu = md = ms = m, the vector current

representing flavour symmetry SUV (3) remains conserved while a nonzero value of m

leads to the explicit breaking of SUA(3) chiral symmetry and axial current diverges.

Divergences of axial vector and vector currents are given below

∂µAµ, a = i Ψ {T a, M} γ5 Ψ

∂µV µ, a = − i Ψ [M, T a] Ψ

∂µV µ, a = 0 if mu = md = ms = m (2.42)

In the observed mass spectrum of hadrons, pions are the lightest particle with masses

of mπ = 140 MeV which are much lighter than the other hadrons mH ≥ 1 GeV. This mass

gap and the fact that hadrons do not appear in the parity doublet, strongly suggest that

the chiral symmetry is broken spontaneously at low energies [9,126–128]. The spontaneous

breaking of chiral symmetry means that the low energy hadronic vacuum of QCD does

not possess the chiral symmetry while the QCD Lagrangian does. Vector symmetry is

intact in the low energy vacuum while the axial vector symmetry is not, it means vector

charges annihilate the QCD vacuum while the axial vector charges do not.

Qa
V |0 〉 = 0, Qa

A |0 〉 6= 0 (2.43)
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Further, since Qa
A |0 〉 6= 0, states |φa〉 must exist such that,

|φa〉 = Qa
A |0 〉 (2.44)

These states are energetically degenerate with the vacuum since [H, Qa
A] = 0.

Because Qa
A’s are axial charge, the states |φa〉 represent eight pseudoscalar mesons

which are massless. We remind that index ’a’ counts the number of broken symmetry

generators. These massless excitations are the so called Goldstone bosons ((N2
f − 1) in

number) which result due to the spontaneous breaking of chiral symmetry SUL(Nf) ×
SUR(Nf) → SUV (Nf ). For Nf = 2 three pions are Goldstone bosons. Since chiral

symmetry is explicitly broken by a small amount due to the presence of very small u and

d current quark masses in the QCD Lagrangian, the pions observed in nature are not

completely massless. Hence they are termed as pseudo-Goldstone bosons. For Nf = 3

flavours, the pseudo-Goldstone bosons are represented by the pseudoscalar meson octet,

comprising pions, kaons and the eta meson. Since chiral symmetry is more strongly

broken by the larger strange quark mass, the pseudoscalar mesons carrying strangeness

are heavier than the pions [9, 55].

In spin models with ferromagnetic interactions having zero external magnetic field

in the background, the rotational symmetry of the system is spontaneously broken due to

the appearance of nonzero magnetization M 6= 0 in the low temperature phase of ferro-

magnetism. Analogously, in the low temperature QCD vacuum, the spontaneous breaking

of chiral symmetry results due to the appearance of nonzero vacuum expectation value

〈Ψi
Ψj〉vac. 6= 0 for the chiral condensate. We introduce another effective representation

for the so called chiral condensate and its complex conjugate, via

Φij ∼ 〈Ψi

LΨj
R〉 , Φij† ∼ 〈Ψi

RΨj
L〉 (2.45)

A nonvanishing expectation value 〈Ψi
Ψj〉 6= 0 is then equivalent to Φij + Φij† 6= 0.

Φij is Nf ×Nf matrix in flavour space and under flavour chiral rotation UL(Nf)×UR(Nf),

it transforms as Φ → Φ
′

= ULΦU †
R. The components of the matrix field Φ represent, the
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effective mesonic degrees of freedom in the pseudo scalar and scalar sectors. Nonzero

value of the chiral condensate breaks the chiral symmetry similar to the effect of mass

term in the QCD Lagrangian. Since nothing distinguishes one quark flavour from another

in the chiral limit (Mij = 0), the vacuum expectation value Φij
vac. = φ0δ

ij (other possible

spontaneous chiral symmetry breaking scenarios are discussed in detail in ref [55, 129].

This chiral condensate breaks the chiral UL(Nf) × UR(Nf) symmetry spontaneously to

UV (Nf ).

The rotational symmetry in spin models, gets restored above some critical temper-

ature and the magnetization vanishes in the high temperature paramagnetic phase of the

system. For this ferromagnetic to paramagnetic phase transition, magnetization serves

as the order parameter. Similarly in the high temperature phase of QCD, one expects

that Φij will become zero above some critical temperature. The symmetry of the ground

state will then be restored to the original chiral symmetry, i. e., SUL(Nf) × SUR(Nf),

if the UA(1) anomaly is still present, or SUL(Nf) × SUR(Nf ) × UA(1), if instantons are

sufficiently screened at the transition temperature such that the UA(1) symmetry is effec-

tively restored. These expectations are indeed fulfilled in the lattice gauge theory QCD

calculations [39]: there is a phase transition between the chiral symmetry broken low tem-

perature phase to the high temperature phase where it is restored. We thus conclude that

the chiral condensate Φij is the order parameter for the so called chiral phase transition.

2.4.1 Landau-Ginzburg analysis of chiral transition: σ model

Using universality arguments of the Landau-Ginzburg analysis, one can analyze the order

of chiral phase transition in the framework of linear sigma model for the order parameter

field Φij , when the quarks are considered to have no mass. The linear sigma model is an

effective theory where all the terms allowed by the original chiral symmetry must appear
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in the effective Lagrangian [9].

Leff = Tr
(

∂0Φ
† ∂0Φ

)

− v2Tr
(

∇Φ† .∇Φ
)

− Veff(Φ) (2.46)

Here the ground state of the theory is determined by the effective potential written

in terms of the matrix field Φ which represents effective mesonic degrees of freedom:

Veff(Φ) = m2 Tr
(

Φ† Φ
)

+ λ1

[

Tr
(

Φ† Φ
)]2

+ λ2Tr
(

Φ† Φ
)2 − c

(

detΦ† + detΦ
)

(2.47)

The first term of Eq.(2.46) is canonically normalized. The coefficient v2 in Eq.(2.46)

may in general be different from one because Lorentz symmetry is broken explicitly at

nonzero temperature in a medium. The chiral symmetry for Eq.(2.46) is SUL(Nf) ×
SUR(Nf) for c 6= 0 and it is SUL(Nf) × SUR(Nf) × UA(1) for c = 0. Thus the UA(1)

anomaly is present for c 6= 0 and absent for c = 0. While these chiral symmetries are

manifest in Lagrangian (2.46), the ground state of theory respects them only for c = 0

and m2 > 0. For c = 0 and m2 < 0 the chiral symmetry gets spontaneously broken

as the order parameter assumes a nonzero vacuum expectation value. Thus we notice

that the chiral transition can be studied in the framework of the linear sigma model only

by ensuring m2 < 0 for c = 0. Further there are two ways of symmetry breaking, if

λ2 > 0 the ground state is given by Φij
vac. = φ0δ

ij while for λ2 < 0 the ground state is

given by Φij
vac. = φ0δ

i1 δj1 (the choice of 1-direction in left and right handed flavour space

is arbitrary) [129]. Nature chooses the first method of symmetry breaking. No general

arguments can be constructed for the c 6= 0 case; whether the ground state of the theory

breaks chiral symmetry spontaneously depends on the particular values for the coupling

constants c, λ1, λ2 and the number of flavours Nf .

For Nf = 2, and in the presence of the UA(1) anomaly, the SUL(Nf ) × SUR(Nf )

chiral symmetry, is isomorphic to O(4). The effective theory for the order parameter is

in universality class of the O(4) Heisenberg magnet. Consequently, the transition is of

second order [26]. If the UA(1) symmetry is effectively restored at the phase transition
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temperature, the symmetry group is larger, SUL(Nf ) × SUR(Nf ) × UA(1), which is iso-

morphic to O(4) × O(2), and the transition is of first order. Lattice QCD calculations

determine the transition temperature to be Tc ≃ 172 MeV [39, 130]. For Nf = 3, the

chiral transition is of first order in both the cases when the UA(1) symmetry is explicitly

broken by the instantons or when it is effectively restored at the transition. In the first

case, the effective theory features a cubic invariant in the order parameter field (the term

∼ detΦ + detΦ†), which drives the chiral transition first order [26]. In the second case,

the transition is of fluctuation-induced first order [26,131]. Whether the UA(1) symmetry

is explicitly broken or not, the chiral transition is of fluctuation-induced first order for all

flavours Nf ≥ 4. Lattice QCD calculations for three flavours, find the transition temper-

ature to be Tc ∼ 155 MeV [130]. It is to be noted that nonvanishing quark masses can

also be accounted for by adding a term

LH ≡ Tr
[

H(Φ + Φ†)
]

(2.48)

to the right side of Eq.(2.46). Hij’s are the explicit symmetry breaking parameters

and these are proportional to quark masses.

In chapter three and chapter four of the present thesis, we have studied the thermo-

dynamics and phase structure of quark hadron phase transition in the framework of two

flavour and three flavour linear sigma model. We have constructed effective models by

combining the features of spontaneous break down of both the chiral symmetry as well

as the center Z(3) symmetry of QCD. In these models (termed as Polyakov quark meson

model (PQM)), the Polyakov loop which represents the dynamics of confinement and the

chiral condensate, are simultaneously coupled to the quark degrees of freedom.

2.5 QCD phase structure and its phase diagram

The properties of strong interaction can be investigated in the approximation of zero and

infinite quark mass where the finite temperature QCD has two different global symmetries
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namely chiral symmetry and the Z(3) symmetry. In the zero quark mass limit, chiral con-

densate 〈qq〉 works as the order parameter for the chiral symmetry breaking/restoration

transition and in the infinite quark mass limit, the thermal expectation value of the

Polyakov loop 〈l(x)〉β serves as the order parameter for the confinement-deconfinement

phase transition. Quark hadron phase transition is investigated in terms of these two

transitions either separately or in a unified framework where these transitions are entan-

gled [50]. In the real life situation, the investigation of QCD phase structure becomes

a complex and challenging task because the non perturbative techniques which rely on

the global symmetries of the interaction, face handicap due to explicit breaking of these

symmetries because of the finite and nonzero quark masses. There is no known order pa-

rameter for the finite quark masses [117]. We consider the chiral condensate and Polyakov

loop as approximate order parameters which indicate rapid changes in the thermodynamic

quantities signifying a rapid crossover for finite and dynamical quark masses. Although

the chiral symmetry phase transition and the deconfinement phase transition are different

phenomenon and occur in the different quark mass limits, they may have the common

phase boundary in the phase diagram. The lattice results confirm that the chiral sym-

metry restoration transition and deconfinement transition indeed has a common tran-

sition temperature, at zero chemical potential [132, 133]. For finite chemical potential,

recently it was proposed that the chiral transition do not coincide with the confinement-

deconfinement transition and there emerges another phase consisting of massless, but

confined quarks. Thus chiral symmetry is restored while the system is still confined. Such

form of quark matter has been speculated to constitute the quarkyonic phase [134, 135]

and no experimental hints, for its existence have yet been found.

In this section we will be discussing the QCD phase structure and its phase diagram

in the plane of temperature and chemical potential. At present relatively firm statements

regarding phase structure, can be made only for limited cases - 1) at finite T with small

baryon density µB << T , 2) at asymptotically high densities µB >> λQCD.
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2.5.1 Inputs from lattice QCD

The quark hadron phase transition at finite temperature and zero chemical potential

has been studied extensively in the first principle QCD lattice gauge theory numerical

simulations. Results are dependent on the number of colours and flavours as expected

from the effective theory analysis in the framework of the renormalization group together

with the universality [26, 136]. For Nc = 3 and Nf = 0 a first order deconfinement

transition has been established (with critical temperature Tc ≃ 270 MeV) from the finite

size scaling analysis on the lattice [31]. Since the Z(3) symmetry is explicitly broken

by the presence of dynamical quarks, the deconfinement transition for realistic case with

Nc = 3, Nf = 3 of QCD has been constructed to be a rapid crossover [9,39]. Chiral phase

transition can be more appropriately addressed when we have Nf > 0 light flavours. The

recent lattice gauge theory calculations using staggered fermions and Wilson fermions for

chiral quarks, indicate a crossover from the hadronic phase to the QGP phase for realistic

u, d, s quark masses.

In lattice QCD simulations, the method of importance sampling is used to carry out

the functional integration (for evaluating partition function) on a discretized space-time

lattice with lattice spacing a and lattice volume V (large number of points for spatial di-

mensions (N) than for temporal direction (Nτ ), decide the lattice size which is N3 ×Nτ ).

Physical results are obtained by the extrapolation to the thermodynamic limit (V → ∞)

and continuum limit (a → 0). Importance sampling generates statistical errors while

extrapolations generate systematic errors. Further, the reconciliation of chiral symme-

try with the lattice discretization, generates different prescriptions; namely 1) Wilson

fermions, 2) staggered fermions, 3) domain-wall fermions and 4) overlap fermions, for

defining the light quarks on lattice [137]. Depending on different types of fermions and

different lattice spacings taken for lattice simulations, the pseudo critical temperature Tpc

values for the chiral cross over transition are estimated to fall in the range of 150 − 200

MeV [137, 138]. It has been recently clarified that improvement of the staggered action
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with less taste-symmetry breaking favors smaller value of Tpc ≤ 170 MeV [139,140].

2.5.2 Effective model inputs

If the nuclear matter is compressed to high densities such that hadrons overlap with each

other and start to percolate, deconfinement should set in at large chemical potentials.

The MIT bag model predicts this to happen at about 0.4 GeV in the quark chemical

potential. We know from the existence of nuclear matter with baryons that at zero

temperature, deconfinement would start when chemical potential becomes larger than one

third of the nucleon mass. First principle lattice QCD calculations, fail at finite chemical

potentials because of the fermion sign problem. Investigations using effective models

become the pragmatic alternative for studying the phase structure at low temperature

and high chemical potentials. Most of the chiral models suggest that there is a QCD

critical end point located at µ = µE , T = TE and the chiral transition becomes first order

(crossover) for µ > µE (µ < µE) for realistic u, d and s quark masses [131,141–143]. The

criticality at CEP leads to enhanced fluctuations so the search of QCD critical point has

emerged as an experimental issue of great importance [144, 145].

2.5.3 Schematic phase diagram

The schematic QCD phase diagram has been shown in figure 2.1. The QCD phase transi-

tion is of strong first order on the µ axis at T = 0, its strength decreases with decreasing

µ and one approaches the critical end point (solid dot) at smaller chemical potential and

higher temperature where the transition turns second order and then the transition gets

converted to a crossover at lower µ values. Two phases exist across the phase bound-

ary. At low temperatures and chemical potentials, the matter is in hadronic phase where

the quarks remain confined inside the hadrons and at higher temperatures and chemical

potentials, we have the quark gluon plasma phase. At µ = 0 on the temperature axis,
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Figure 2.1: Schematic QCD phase diagram in the chemical potential and temperature

plane.

we have a crossover as confirmed from the lattice QCD results. The quark hadron phase

transition on the temperature axis, is similar to the transition that might have happened

in the early universe. The physical situation for the quark hadron transition occurring on

the chemical potential axis at T = 0, is found in the core of neutron stars. At very high

chemical potentials, one observes the interesting phenomenon of colour superconductivity

giving rise to 2SC and colour flavour locked (CFL) phases. Still at lower chemical poten-

tial µ ∼ 308 MeV, one observes the first order nuclear matter liquid gas phase transition

where the gaseous nuclear matter makes transition to the hadronic fluid. The solid dot in

the lower part of the diagram extending from µ = 308 MeV represents the critical point

for this liquid gas phase transition.
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Figure 2.2: Columbia plot: phase diagram in the plane of quark masses at µ = 0 and

finite T, ref. [39].

2.5.4 Columbia plot and the CEP

Drawing a phase diagram by treating quark masses as external parameters at µ = 0, one

gets further insight on the phase structure. Fig.2.2 shows such a plot known as columbia

plot where isospin degeneracy has been assumed (mu = md = mud). The left bottom

region and the right top region at finite T, represent the first order chiral transition and

the first order deconfinement transition respectively. The first order and crossover regions

are separated by the chiral and deconfinement critical lines. These lines belong to a

universality class of the 3D, Z(2) Ising model except for special points at mud = 0 or

ms = 0 [146].

Since the chiral transition is of second order for the massless two flavour case, the

Z(2) chiral critical line meets the mud = 0 axis at ms = mtri
s (tricritical point) and changes

its universality to O(4) for ms > mtri
s [148]. Note that the considerations of the limits

(m → 0,∞) depend on the presence of UA(1) anomaly. If we introduce an extra axis
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Figure 2.3: The plot of chiral critical surface in the three dimensions of light quark mass

(mu, md), strange quark mass (ms) and chemical potential. Figure taken from ref. [147].

of quark chemical potential µ, to the columbia plot, the critical line extends to form a

surface as shown in Fig.2.3(a) and the first order region in the lower left corner of the

columbia plot, gets elongated with increasing µ. This is the so called standard scenario

where the surface bends towards the physical points. If the physical point at µ = 0 is in

the crossover region, the bent surface is crossed at the critical chemical potential µE and

there transition changes to first order from a crossover. Thus we find a critical end point

(µE, TE) on the QCD phase diagram in the (µ, T) plane. Fig.2.3(b) depicts the so called

exotic scenario in which the first order region shrinks with increasing µ and the surface

bends towards the lower masses and no critical chemical potential is found at the physical

point. The transition always remains a crossover and no critical end point is found in the

QCD phase diagram in this scenario. Hints for this scenario can be found in the lattice

simulations [149, 150] and model studies [90].

The exact location of CEP, where the first order line ends and the transition becomes

second order phase transition, is not clear [27]. The different approaches of studying the

phase diagram, predict different locations of CEP. It is also found that the location of

CEP predicted in different models, strongly depends upon the parameters used in the
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Figure 2.4: Comparison of two chemical freeze out conditions: net baryon density nB =

0.12fm3 (dashed) and constant energy per particle equivalent to 1 GeV (solid). This

figure is reproduction of Fig.(27) in ref. [151].

calculations. The possible signatures of CEP has been suggested by Stephanov et al. in

the refs. [144, 145].

2.6 Experimental indications for QCD transition

The experiments looking for the signatures of the quark hadron phase transition have

been performed at Alternating Gradient Synchrotron (AGS at BNL), Super Proton Syn-

chrotron (SPS at CERN), Relativistic Heavy Ion Collider (RHIC at BNL). In the future

plan, RHIC is going to perform experiments at lower energies, in order to locate the

CEP [152]. Very high energetic heavy ion collisions are planned at Large Hadron Col-

lider (LHC at CERN). Dedicated to the exploration of regions of high baryonic densities

(chemical potentials) in the phase diagram, new experimental programs have been pro-
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posed for the compressed baryonic matter (CBM) experiments at the FAIR facility next

to GSI in Darmstadt. However, it is very difficult to construct observables which signal

the occurrence of critical behaviour uniquely and unambiguously. So far statistical mod-

els have been used to obtain a lower bound for the chiral and deconfinement transition

lines [151]. A graph taken from ref. [151] in Fig.2.4. is being shown here for orientation

to indicate the lower bound of the actual phase transition. The distance of the transition

from these freeze out curves is a debatable issue. More information on this issue can be

gathered from detailed model studies.

The angular distribution of low energy particles observed in the heavy ion collision

experiments, indicates hydrodynamic flow and hence the phenomenon of thermalization

which happens at much lower energies than the initial center of mass energy in the fire-

ball. The good agreement of the measured particle ratios in the final state with thermal

equilibrium statistics, also makes thermalization an accepted assumption. The so called

freeze out temperature at which the particles do no longer interact, can be estimated from

the particle ratios as shown in Fig.2.4. Further, abundances of particles depend, only on

the number of valence quarks irrespective of mass and other quantities, hence they are

showing quark number scaling [153, 154]. This means that the generation and thermal-

ization of quarks must have happened under conditions where light and strange quarks

can be treated approximately equal. This indicates that shortly after thermalization, the

fireball was in a high temperature partonic phase which is a so called quark gluon plasma.

The observed high energy particles which do not equilibrate, are interpreted as

remnants of partonic collisions happening at very early times. Carrying momenta in

opposite directions, these so called particle jets are observed in spatially anti-correlated

pairs. When the jets in heavy-ion collisions are compared with the jets in proton collisions,

one concludes that one of these paired jets is attenuated in the heavy-ion case. This

phenomenon is called jet suppression. The asymmetry of primary partonic collision,

explains the difference in the jet energies of a pair of jets in a heavy-ion collision. In
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general each jet of the same pair, travels path of different lengths. The two jets suffer

different attenuation depending on the differences in their way through the background

of thermalizing low energy particles. Involved simulations of the fireball and its evolution

are needed in order to understand the in-medium effects which lead to jet separation.

The observables whose understanding do not require detailed modeling of the fire-

ball, are rare. In order to refine models and to benchmark lattice QCD calculations,

experimental corner stones are urgently needed on the one hand while on the other hand

without having sophisticated models for the fireball expansion, it becomes quite difficult

to extract information from experimental data. Both ideal and viscous hydrodynam-

ics have been used to describe the early stages of the fireball evolution [155, 156]. The

assumptions needed for hydrodynamics become questionable for later stages of fireball

evolution which can be studied by the application of ultrarelativistic quantum molecular

dynamics (UrQMD) codes [157,158]. Present research in this area is focused on reducing

the diversity of models and identifying the most promising approaches.

High energy probes like jets or dileptons originating from a highly energetic photon

and their spatial correlations are supposed to carry information about very early stages

of collision. De-convoluting the process which generates these particles from the different

interactions of these particles with the medium at different times, is quite difficult in the

interpretation of data.

The measurements of fluctuations, are also supposed to give further information

regarding heavy-ion collision. High degree of the thermalization of the fireball has been

revealed by the particle abundances and ratios [159]. However, we get only a snap-shot of

the sphere of last interaction which may show a dependence on the interactions involved.

Since different mesons dissolve in the thermal medium at different conditions depending

on the binding of the quark-antiquark pair, the concept of a sphere of last scattering is a

difficult concept to begin with. In contrast, fluctuations can give some insight regarding

the evolution of the final state which is observed in the detector. Fluctuations generated in
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the early stages may survive the interactions that they face in the medium, due to the fast

evolution of the fireball. One can study fluctuations on an event-by-event basis. One can

not expect fluctuations on an event-by-event basis of conserved charges, if used detectors

cover the total solid angle. Since the collision products are highly relativistic, a large

fraction of particles leaves the detector in forward direction without getting measured. The

acceptance of detector, cuts out a window in the phase space. In principle, it is possible

to extract the correlation length (the fluctuation size) from the ensemble of individual

events, if the fluctuations are smaller than the acceptance window. Since the fluctuations

are expected to be large near the critical point (second order phase transitions), these are

of major interest in the investigation of quark-hadron phase transition. The first order

phase transitions can also be detected, in principle, using event-by-event fluctuations

because the fast expansion of the medium across the first order phase transition will lead

to spinodial instabilities. Lots of information regarding interactions in the fluid, can be

extracted from the typical size of these instabilities.



Chapter 3

PQM Model Phase Structure

revisited in the presence of Vacuum

Fermion Fluctuations.

In most of the QM/PQM model calculations, the fermion vacuum contributions to the

free energy is frequently neglected [63,64,69,70,75–77,160] because here, the spontaneous

breaking of chiral symmetry is generated by the mesonic potential itself. While in the

NJL/PNJL model investigations, fermion vacuum term leads to the dynamical breaking

of the chiral symmetry, hence it gets explicitly included up to a momentum cutoff Λ.

Very recently, it has been shown by Skokov et al. in ref. [103] that in a mean field

approximation, where the fermion vacuum contribution to the free energy is neglected,

the order of the phase transition for two flavour QM model in the massless chiral limit

becomes first order at zero baryon chemical potential. They have further shown that

the quark-meson model, with appropriately renormalized fermionic vacuum fluctuations

in the thermodynamic potential, becomes an effective QCD-like model because now it

can reproduce the second order chiral phase transition at µ = 0 as expected from the

universality arguments [26] for the two massless flavours of QCD. It has also been shown
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that in the presence of an external magnetic field, the structure of the phase diagram

in the PQM model is considerably affected by the fermionic vacuum contribution [161].

The fermionic vacuum corrections (full two loop results) and its influence, has also been

reported earlier in the context of finite temperature and density Yukawa theory [162–164].

In the present work, we will investigate the effect of fermionic vacuum fluctuations on the

phase structure and thermodynamics of PQM/QM models in detail at non zero as well as

zero chemical potential. In order to bring out the effect of fermionic vacuum term on the

physical observables, we will compare the results of our calculation with the corresponding

PQM model calculations without vacuum term.

The arrangement of this chapter is as follows. In Sec.3.1, we have given the for-

mulation of PQM model for the two quark flavour. The Polyakov loop potential and the

thermodynamic grand potential has been given in subsection 3.1.1. After giving a brief

description of the appropriate renormalization of fermionic vacuum loop contribution, the

subsection 3.1.2 describes how the new model parameters are obtained in vacuum when

renormalized vacuum term is added to the effective potential. The section 3.2 investi-

gates the effect of fermionic vacuum term on the phase structure and thermodynamics.

The subsection 3.2.1 explores how, the temperature variation of order parameters and

their derivatives at different chemical potentials, the structure of the phase diagram in

the µ and T plane and the location of critical end point, gets affected in the presence

of vacuum term. The effect on the temperature variation of thermodynamic observables

namely pressure, entropy, energy density and interaction measure has been discussed in

the subsection 3.2.2 while the discussion of specific heat, speed of sound and p(T )
ǫ(T )

has

been presented in subsection 3.2.3 and finally the subsection 3.2.4 describes the results

for quark number density and quark number susceptibility. Summary has been presented

in Sec. 3.3. The first and second partial derivatives of Ulog and ΩT
qq̄ with respect to tem-

perature and chemical potential has been evaluated in the appendix written in chapter

7.
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3.1 Model Formulation

We will be working in the two flavor quark meson linear sigma model which has been

combined with the Polyakov loop potential [96]. In this model, quarks coming in two flavor

are coupled to the SUL(2)×SUR(2) symmetric four mesonic fields σ and ~π together with

spatially constant temporal gauge field represented by Polyakov loop potential. Polyakov

loop field Φ(~x) is defined as the thermal expectation value of color trace of Wilson loop

in temporal direction

Φ =
1

Nc
〈TrcL〉β, Φ∗ =

1

Nc
〈TrcL

†〉β (3.1)

where L(x) is a matrix in the fundamental representation of the SUc(3) color gauge

group.

L(~x) = Pexp

[

i

∫ β

0

dτA0(~x, τ)

]

(3.2)

Here P is path ordering, A0 is the temporal component of Euclidean vector field

and β = T−1 [29].

The model Lagrangian is written in terms of quarks, mesons, couplings and Polyakov

loop potential U (Φ, Φ∗, T )

LPQM = LQM − U(Φ, Φ∗, T ) (3.3)

where the Lagrangian in quark meson linear sigma model

LQM = q̄f [iγµDµ − g(σ + iγ5~τ · ~π)] qf + Lm (3.4)

The coupling of quarks with the uniform temporal background gauge field is effected

by the following replacement Dµ = ∂µ − iAµ and Aµ = δµ0A0 (Polyakov gauge), where

Aµ = gsA
a
µλ

a/2. gs is the SUc(3) gauge coupling. λa are Gell-Mann matrices in the color

space, a runs from 1 · · ·8. qf = (u, d)T denotes the quarks coming in two flavors and three

colors. g is the flavor blind Yukawa coupling that couples the two flavor of quarks with

four mesons; one scalar (σ, JP = 0+) and three pseudoscalars (~π, JP = 0−).
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The quarks have no intrinsic mass but become massive after spontaneous chiral

symmetry breaking because of nonvanishing vacuum expectation value of the chiral con-

densate. The mesonic part of the Lagrangian has the following form

Lm =
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − U(σ, ~π) (3.5)

The pure mesonic potential is given by the expression

U(σ, ~π) =
λ

4

(

σ2 + ~π2 − v2
)2 − hσ, (3.6)

Here λ is quartic coupling of the mesonic fields, v is the vacuum expectation value

of scalar field when chiral symmetry is explicitly broken and h =fπm
2
π .

3.1.1 Polyakov loop potential and thermodynamic grand poten-

tial

The effective potential U (Φ, Φ∗, T ) is constructed such that it reproduces thermodynamics

of pure glue theory on the lattice for temperatures upto about twice the deconfinement

phase transition temperature. In this work, we are using two different parametrization

for Polyakov loop effective potential namely the logarithmic and polynomial form [80,81].

The results produced by these potentials are known to be fitted well to the lattice results.

The logarithmic Polyakov loop potential [81] is given by the following expression

Ulog(Φ, Φ∗, T )

T 4
= −a (T )

2
Φ∗Φ + b(T ) ln[1 − 6Φ∗Φ

+4(Φ∗3 + Φ3) − 3(Φ∗Φ)2] (3.7)

where the temperature dependent coefficients are as follow

a(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

; b(T ) = b3

(

T0

T

)3

(3.8)

The parameters of Eq.(3.7) are

a0 = 3.51 , a1 = −2.47 ,

a2 = 15.2 , b3 = −1.75
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The polynomial form of Polyakov loop potential [80] is written as

Upol(Φ, Φ∗, T )

T 4
= −b2

4

(

|Φ|2 + |Φ∗|2
)

− b3

6
(Φ3 + Φ∗3)

+
b4

16

(

|Φ|2 + |Φ∗|2
)2

(3.9)

The second term that is the sum of Φ3 and Φ∗3 terms, causes the three degenerate

vacua above the deconfinement phase transition. The potential parameters are adjusted

according to the pure gauge lattice data such that the equation of state and Polyakov loop

expectation values are reproduced. The temperature dependent coefficient b2(T ) governs

the confinement-deconfinement phase transition and is given by

b2(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

+ a3

(

T0

T

)3

(3.10)

The other parameters have the following value

a0 = 6.75 a1 = −1.95 a2 = 2.625

a3 = −7.44, b3 = 0.75 b4 = 7.5 (3.11)

The critical temperature for deconfinement phase transition T0 = 270 MeV is fixed

for pure gauge Yang Mills theory. In the presence of dynamical quarks T0 is directly

linked to the mass-scale ΛQCD, the parameter which has a flavor and chemical potential

dependence in full dynamical QCD and T0 → T0(Nf , µ) [96, 104]. For our numerical

calculations in this work, we have taken a fixed T0 = 208 MeV for two flavours of quarks.

In the mean-field approximation, the thermodynamic grand potential for the PQM

model is given as [96]

ΩMF(T, µ; σ, Φ, Φ∗) = U(T ; Φ, Φ∗) + U(σ) + Ωqq̄(T, µ; σ, Φ, Φ∗). (3.12)

Here, we have written the vacuum expectation values 〈σ〉 = σ and 〈~π〉 = 0

The quark/antiquark contribution in the presence of Polyakov loop reads

Ωqq̄(T, µ; σ, Φ, Φ∗) = Ωvac
qq̄ + ΩT

qq̄

= −2Nf

∫

d3p

(2π)3

{

NcEqθ(Λ
2 − ~p 2) + T

[

ln g+
q + ln g−

q

]}

(3.13)
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The first term of the Eq. (3.13) denotes the fermion vacuum contribution, regularized

by the ultraviolet cutoff Λ. In the second term g+
q and g−

q have been defined after taking

trace over color space.

g+
q =

[

1 + 3Φe−E+
q /T + 3Φ∗e−2E+

q /T + e−3E+
q /T
]

(3.14)

g−
q =

[

1 + 3Φ∗e−E−
q /T + 3Φe−2E−

q /T + e−3E−
q /T
]

(3.15)

Here we use the notation E±
q = Eq ∓ µ and Eq is the single particle energy of

quark/antiquark.

Eq =
√

p2 + mq
2 (3.16)

where the constituent quark mass mq = gσ is a function of chiral condensate. In

vacuum σ(0, 0) = σ0 = fπ = 93.0 MeV.

3.1.2 The renormalized vacuum term and model parameters

The fermion vacuum loop contribution can be obtained by appropriately renormalizing the

first term of Eq. (3.13) using the dimensional regularization scheme, as done in ref. [103].

A brief description of essential steps is given below.

Fermion vacuum term is just the one-loop zero temperature effective potential at

lowest order [165]

Ωvac
qq̄ = −2NfNc

∫

d3p

(2π)3
Eq

= −2NfNc

∫

d4p

(2π)4
ln(p2

0 + E2
q ) + K, (3.17)

the infinite constant K is independent of the fermion mass, hence it is dropped.

The dimensional regularization of Eq. (3.17) near three dimensions, d = 3−2ǫ leads

to the potential up to zeroth order in ǫ as given by

Ωvac
qq̄ =

NcNf

16π2
m4

q

{

1

ǫ
− 1

2

[

−3 + 2γE + 4 ln

(

mq

2
√

πM

)]}

, (3.18)
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here M denotes the arbitrary renormalization scale.

The addition of a counter term δL in the Lagrangian of the QM or PQM model

δL =
NcNf

16π2
g4σ4

{

1

ǫ
− 1

2

[

− 3 + 2γE − 4 ln
(

2
√

π
)

]

}

, (3.19)

gives the renormalized fermion vacuum loop contribution as

Ωreg
qq̄ = −NcNf

8π2
m4

q ln
(mq

M

)

. (3.20)

Now the first term of Eq. (3.13) which is vacuum contribution will be replaced by

the appropriately renormalized fermion vacuum loop contribution as given in Eq. (3.20).

The relevant part of the effective potential in Eq. (3.12) which will fix the value of

the parameters λ and v in the vacuum at T = 0 and µ = 0 is the purely σ dependent

mesonic potential U(σ) plus the renormalized vacuum term given by Eq. (3.20).

Ω(σ) = Ωreg
qq̄ + U(σ) = −NcNf

8π2
g4σ4 ln

(gσ

M

)

− λv2

2
σ2 +

λ

4
σ4 − hσ, (3.21)

The first derivative of Ω(σ) with respect to σ at σ = fπ in the vacuum is put to zero

∂ΩMF(0, 0; σ, Φ, Φ∗)

∂σ
=

∂Ω(σ)

∂σ
= 0 (3.22)

The second derivative of Ω(σ) with respect to σ at σ = fπ in the vacuum gives the

mass of σ

m2
σ =

∂2ΩMF(0, 0; fπ, Φ, Φ∗)

∂σ2
=

∂2Ω(σ)

∂σ2
(3.23)

Solving the equations (3.22) and (3.23), we obtain

λ = λs +
NcNf

8π2
g4

[

3 + 4 ln

(

gfπ

M

)]

(3.24)

and

λv2 = (λv2)s +
NcNf

4π2
g4 f 2

π (3.25)
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where λs and (λv2)s are the values of the parameters in the pure sigma model

λs =
m2

σ − m2
π

2f 2
π

(3.26)

(λv2)s =
m2

σ − 3m2
π

2
(3.27)

It is evident from the equations (3.24) and (3.25) that the value of the parameters λ

and v2 have a logarithmic dependence on the arbitrary renormalization scale M. However,

when we put the value of λ and λv2 in Eq.(3.21), the M dependence cancels out neatly

after the rearrangement of terms. Finally we obtain

Ω(σ) = −NcNf

8π2
g4σ4 ln

(

σ

fπ

)

− λrv
2
r

2
σ2 +

λr

4
σ4 − hσ, (3.28)

Here, we define λr and λrv
2
r as the values of the parameters after proper accounting

of the renormalized fermion vacuum contribution.

λr = λs +
3NcNf

8π2
g4 (3.29)

and

λrv
2
r = (λv2)s +

NcNf

4π2
g4 f 2

π (3.30)

Now the thermodynamic grand potential for the PQM model in the presence of ap-

propriately renormalized fermionic vacuum contribution (PQMVT model) will be written

as

ΩMF(T, µ; σ, Φ, Φ∗) = U(T ; Φ, Φ∗) + Ω(σ) + ΩT
qq̄(T, µ; σ, Φ, Φ∗). (3.31)

Thus in the PQMVT model, One can get the chiral condensate σ, and the Polyakov

loop expectation values Φ, Φ∗ by searching the global minima of the grand potential in

Eq.(3.31) for a given value of temperature T and chemical potential µ

∂ΩMF

∂σ
=

∂ΩMF

∂Φ
=

∂ΩMF

∂Φ∗ = 0 , (3.32)



3.2 Effect of The Vacuum Term on The Phase Structure and
Thermodynamics 57

We will take the values mπ = 138 MeV, mσ = 500 MeV, and fπ = 93 MeV in our

numerical computation. The constituent quark mass in vacuum m0
q = 335 MeV fixes the

value of Yukawa coupling g = 3.3.

3.2 Effect of The Vacuum Term on The Phase Struc-

ture and Thermodynamics

We are presenting the results of our calculation for studying the temperature variation of

the order parameters σ, Φ, Φ∗, their temperature derivatives and various thermodynamic

observables at zero and non zero quark chemical potentials in the presence of the renor-

malized fermionic vacuum term in the effective potential of the PQM model. These results

have been termed as PQMVT model calculations and we have investigated the interplay

of chiral symmetry restoration and confinement-deconfinement transition in the influence

of fermionic vacuum term. The phase diagram together with the location of critical end

point (CEP) has been obtained in µ, and T plane for both the cases with and without

fermionic vacuum contribution in the effective potential. In order to have a comparison,

we have also shown the temperature variations of order parameters and their derivatives

in the PQM model calculation with the same parameter set. The impact of the sigma

meson mass (mσ) and the choice taken for the parametrization of Polyakov loop potential

(polynomial versus logarithmic), on the phase structure and location of the critical end

point (CEP), has also been explored. The temperature variations of thermodynamic ob-

servables namely pressure, energy density and entropy density at three different chemical

potentials (zero, µCEP and µ > µCEP ) have been shown in PQMVT model calculations.

In order to study the effect of fermionic vacuum term at zero chemical potential, the

temperature variation of the interaction measure, speed of sound, p/ǫ ratio and specific

heat, has been calculated in PQMVT model and QMVT model (Quark Meson model

with vacuum term) and these results have been compared with the corresponding results
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in the PQM and QM model calculations. Logarithmic form of Polyakov loop potential

has been used in these computations. Interaction measure at µ = 0 and phase diagram

for mσ = 500 MeV, has also been computed with the polynomial choice of Polyakov loop

potential in PQMVT model. Finally we will be presenting the results of the temperature

variation of baryon number density and quark number susceptibility at different chemical

potentials in PQMVT model calculation.

We point out that in an earlier work, Skokov et al. [103] investigated, the influence of

fermionic vacuum fluctuations on the thermodynamic observables near the chiral crossover

transition at µ = 0 by computing the second (c2: quark number susceptibility) and the

fourth (c4) cumulants of the net quark number fluctuations for several values of pion mass

and mσ = 700 MeV. In the present work, we compute the quark number susceptibility with

mσ = 500 MeV and the physical pion mass at nonzero chemical potentials for identifying

the emerging pattern of divergence in its behaviour near the CEP where the transition

turns second order. Further all the quantities that we have chosen to calculate at zero

chemical potential, are different from those of their calculation and even the temperature

variation of order parameters at µ = 0 MeV in our calculation, has been computed for

different values of mσ i.e. mσ = 500 MeV and 600 MeV.

3.2.1 Phase structure

The solutions of the coupled gap equations, Eq.(3.32) determine the nature of chiral and

deconfinement phase transition through the temperature and chemical potential depen-

dence of chiral condensate σ, the expectation value of the Polyakov loop Φ and Φ∗. Fig.3.1

shows the temperature variation of the chiral condensate σ normalized with the vacuum

value on the left while the right end of the plot shows the Polyakov loop Φ and Φ∗ tem-

perature variation for the PQMVT model calculations, the corresponding temperature

variation of the chiral and Polyakov loop order parameters in PQM model calculations,

has been shown in Fig.3.3(a). In Fig.3.1, the continuous dots, thin dash and thin solid
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Figure 3.1: The σ, Φ, Φ∗ variation with respect to temperature in PQMVT model are

shown. The continuous dots, dash and solid lines represent the variation of σ
σ0

on the left

end and Φ on the right end of the plot at µ = 0, 294.73 (CEP) and 300 MeV respectively.

Thick dash and thick solid lines in the right end of the plot represent the Φ∗ variations

at µ = 294.7 and 300 MeV respectively.

lines represent the variation of σ
σ0

on the left and Φ on the right at µ = 0, 294.7 (CEP)

and 300 MeV respectively. Thick dash and thick solid lines in the right end of the plot

represent the Φ∗ variations at µ = 294.7 and 300 MeV respectively. Fig.3.2(a), 3.2(b) and

3.2(c), show the temperature derivatives of σ, Φ and Φ∗ fields as a function of temperature

respectively at three different chemical potentials µ = 0 ,100 and 200 MeV in PQMVT

model calculations while the temperature variations of the same derivatives in the PQM

model at µ = 0 MeV has been shown in Fig.3.3(b). The characteristic temperatures (pseu-

docritical temperatures) for the chiral transition T χ
c and the confinement-deconfinement
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Figure 3.2: Temperature variations in the PMQVT model. (a), (b) and (c), show the

temperature derivatives of σ, Φ and Φ∗ fields as a function of temperature respectively at

three different chemical potentials µ= 0, 100 and 200 MeV.
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transition for the Φ field TΦ
c and for the Φ∗ field TΦ∗

c , are defined by the peak positions

(inflection point) in the temperature derivatives of σ, Φ and Φ∗ fields respectively.

The chiral crossover transition for the realistic case of explicitly broken chiral sym-

metry, becomes quite soft and smooth at µ = 0 because the corresponding chiral phase

transition for massless quarks turns second order in the chiral limit after having a proper

accounting of the fermionic vacuum contribution in the PQMVT model. The smoothness

of crossover at µ = 0 is evident from the temperature variation of the chiral order param-

eter in Fig.3.1, while the Polyakov loop order parameter variation at the same chemical

potential, is sharp in comparison. The chiral crossover at µ = 0 becomes less smooth as

we increase the chemical potential. We find quite a large range (µ = 0 at T χ
c = 186.5

MeV to µCEP = 294.7 MeV at T χ
c = 84.0 MeV) in the values of chemical potential that

makes the temperature variation of chiral order parameter, sharp and sharper such that

eventually the crossover turns into a second order transition at CEP. The narrow width

of the coincident variation of Φ and Φ∗ temperature derivative at zero chemical potential

in Fig.3.2(a), signifies a sharp crossover for the confinement-deconfinement transition at

TΦ
c = 169.0 MeV. Similar to the findings of NJL model calculation in ref. [88] at µ = 0,

the σ field temperature derivative shows a broad double peak structure. The second peak

position at higher temperature T χ
c = 186.5 MeV, has been identified as the pseudocritical

temperature for chiral crossover transition in Fig.3.2(a). The first peak in the σ derivative

is driven by the sharp peak of the Polyakov loop variation. As the chemical potential is

increased, the variation of Polyakov loop Φ derivative becomes smoother and broader with

increasing width, while the σ derivative variation shows a decreasing width and double

peak structure starts getting smeared after µ = 100 MeV as shown in Fig.3.2(b). For

the chiral crossover transition in the chemical potential range µ = 100 to 160 MeV, the

identification of pseudocritical temperature T χ
c becomes ambiguous (with an ambiguity

of about ±5 MeV) due to the smearing of double peak structure. For µ > 160 MeV in

the PQMVT model, double peak structure disappears from the temperature variation of
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Figure 3.3: (a) The continuous dots, dash and solid lines in the left half of the figure

represent the variation of σ
σ0

in the PQM model at µ = 0, µ = 81 and µ = 130 MeV

respectively. In the right end of the plot, continuous dots represent coincident variation

of Φ and Φ∗ at µ = 0 while thick and thin dash lines represent the Φ∗ and Φ variations

at µ = 81 MeV respectively. (b) shows the temperature derivatives of σ, Φ and Φ∗ fields

as a function of temperature at µ = 0 in the PQM model.

the chiral order parameter temperature derivative as shown in Fig.3.2(c) and its width

decreases becoming narrow, narrower and narrowmost till the CEP at µ = 294.7 MeV

and T = 84.0 MeV is reached where the chiral transition turns second order.

For the realistic case of explicitly broken symmetry, the temperature variation of

chiral order parameter at µ = 0, turns out to be quite sharp and rapid in Fig.3.3(a) in

comparison to the corresponding PQMVT model variation in Fig.3.1 because the chiral

transition in the massless quark limit, is first order in the PQM model where vacuum term

is absent. Further the chiral transition remains a crossover in quite a small range from

µ = 0 at T χ
c = 171.5 MeV to µ = 81 MeV at T χ

c = 167 MeV in the PQM model results

of Fig.3.3(a). Since the chiral crossover is sharper than the confinement-deconfinement

crossover in the PQM model calculations, the single peak of the σ field temperature

derivative in Fig.3.3(b)) at µ = 0 is narrower and a lot higher than the peak in the
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variation of temperature derivatives of Φ and Φ∗. We have scaled the variation of Φ and

Φ∗ temperature derivatives in Fig.3.3(b) by a multiple of 5 which shows a very small

double peak kind of structure. We consider the chiral and confinement-deconfinement

crossovers nearly coincident at µ = 0, T χ
c = 171.5 and we get exact coincidence as we

move towards the CEP (T = 167.0 MeV and µ = 81.0 MeV) of the model where on

account of the transition turning second order, we get highest and narrowmost peak in

dσ
dT

temperature variation.
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Figure 3.4: Temperature variation of order parameter derivatives with polynomial

Polyakov loop potential in PQMVT model calculation.

In order to probe the issue of double peak structures emerging in Fig.3.2(a), 3.2(b),

the temperature derivatives of σ, Φ and Φ∗ fields, have been evaluated as function of
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temperature by taking the Polynomial form [80] for Polyakov loop potential instead of

the logarithmic form in PQMVT model. In the resulting calculation of Fig.3.4(a), none of

the field derivatives shows a double peak structure at µ = 0 and the temperature variations

for Φ and Φ∗ temperature derivatives, show a coincident peak at crossover temperature

TΦ
c = TΦ∗

c = 180 MeV which is lower than T χ
c = 189 MeV, the chiral crossover transition

temperature identified from the location of peak in the σ field temperature derivative.

As we increase the chemical potential beyond a small value, the peaks in Φ and Φ∗

temperature derivatives, fail to coincide and are noticed to occur at a value lower than

the T χ
c (peak position in the dσ

dT
temperature variation). Thus we get TΦ∗

c < TΦ
c < T χ

c

for µ < 200 MeV. For this calculation when µ > 200 MeV, the double peak structure

starts appearing separately in Φ and Φ∗ derivatives as shown in Fig.3.2(b) and we find

robust noncoincident second peaks respectively at TΦ
c = 176 MeV, TΦ∗

c = 156 MeV for

µ = 280 MeV as shown in Fig.3.2(c). The highest peak noticed in the temperature

variation of dσ
dT

, drives the formation of first peak in dΦ
dT

and dΦ∗

dT
temperature variations

at the same location of temperature (T χ
c ). The second peak in dΦ

dT
and dΦ∗

dT
temperature

variations occurs at a higher value of temperature than the chiral crossover transition

temperature (T χ
c ), i.e. TΦ

c > TΦ∗

c > T χ
c . Thus the chiral symmetry restoration occurs

earlier than the deconfinement transition for the range of chemical potential values µ >

210 MeV to µ = µCEP in our PQMVT model calculation with polynomial Polyakov loop

potential. Divergence of quark number susceptibility at the first and highest peak in σ field

temperature derivative, gives the location of CEP at TCEP = 77.0 MeV and µCEP = 293.6

MeV. We again point out that logarithmic choice for Polyakov loop potential in PQMVT

model instead of polynomial choice, leads to the formation of double peak structure

in dσ
dT

temperature variations rather than in dΦ
dT

, dΦ∗

dT
temperature variations. We get

T χ
c > TΦ

c = TΦ∗

c for logarithmic Polyakov loop PQMVT model calculations, hence chiral

symmetry restoration takes place always after the deconfinement transition.

In Fig.3.5, we have obtained the phase diagram in our calculation with logarithmic
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Figure 3.5: Phase diagram for logarithmic potential in PQMVT model with mσ = 500

MeV and mσ = 600 MeV. Thick dash dot line signifies the chiral crossover transition while

thin continuous dot line denotes the deconfinement crossover transition for mσ = 600 MeV

in PQMVT model. For mσ = 500 case, the chiral crossover transition has been depicted

by the thin dash line which results due to the curve fitting of pseudocritical temperature

data points (denoted by symbol +) identified with an ambiguity of ±5 MeV (shown by

error bars with x at the center) in the chemical potential range µ = 100 MeV to µ = 160

MeV. The thin dash dot line denotes the deconfinement crossover transition. First order

transition has been shown by thick solid line which ends at CEP (filled circle) of the

PQMVT model. Line with thick dots denotes the coincident chiral and deconfinement

crossover transition at mσ = 500 MeV in PQM model, while thin solid line denotes the

first order transition which ends at the CEP (filled triangle) of the model.

Polyakov loop potential and located the critical end point (CEP) in the PQMVT as well

as PQM model calculations for mσ = 500 MeV. In order to obtain the phase diagram, we

calculated the temperature variation of order parameter fields Φ, Φ∗, σ and their deriva-
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tives dΦ
dT

, dΦ∗

dT
, dσ

dT
for fixed values of different chemical potentials taken at a small interval.

The pseudocritical temperatures TΦ
c , TΦ∗

c and T χ
c signifying crossover transitions for Φ,

Φ∗ and σ fields respectively, got identified by the location of the peaks in the temperature

variations of dΦ
dT

, dΦ∗

dT
, dσ

dT
. We identified the critical end point (CEP) by locating a point

in the chemical potential and temperature plane where the quark number susceptibility

diverges. The structure of the phase diagram is very sensitive to the chosen value of the

sigma meson mass. For the value mσ = 600 MeV in the PQMVT model calculation, the

transition becomes a crossover in the entire µ and T plane as shown by thick dash dot line

and thin continuous dot line for the chiral restoration and deconfinement transition re-

spectively. The coincident crossover transition for Φ and Φ∗ lie below the chiral crossover

transition line and later these two lines merge with each other. For mσ = 500 MeV, we

have shown the chiral crossover transition by a dash line (curve fitted) which starts from

T χ
c = 186.5 MeV at µ = 0 axis and ends at CEP; TCEP = 84 MeV and µCEP = 294.7

MeV in PQMVT model. Due to the smearing of double peak structure in the temperature

derivative of chiral order parameter in the range µ = 100 to 160 MeV, the chiral crossover

transition temperature T χ
c has been identified with an ambiguity of about ±5 MeV. The

pseudocritical temperature data points (shown by the symbol +) having this ambiguity

in the range µ = 100 to 160 MeV, have been curve fitted (dash line) by a polynomial of

order seven using gnuplot program and error bars of ±5 MeV have been shown in the

figure. We get a unique T χ
c for µ > 160 MeV in the phase diagram because of a sin-

gle peak structure which gets narrow and narrower for higher chemical potentials till we

reach the CEP. The thin dash dot line which starts at TΦ
c = 169 MeV and ends at CEP

of the PQMVT model, signifies the confinement-deconfinement crossover transition. The

chiral and confinement-deconfinement crossover transition lines merge at µ = 250 MeV

and T χ
c = TΦ

c = 132 MeV. The thick solid line for µ > µCEP represents the first order

phase transition corresponding to the jump in all the order parameters at the same criti-

cal temperature. The chiral crossover transition line lies above the crossover line for the
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confinement-deconfinement transition. Thus our results of the PQMVT model calculation

are in tune with the standard scenario [104] where chiral symmetry restoration occurs at a

higher critical temperature T χ
c = 186.5 MeV than the confinement-deconfinement transi-

tion temperature TΦ
c = 169 MeV at µ = 0 axis and we find T χ

c > TΦ
c = TΦ∗

c for the whole

crossover range of µ, T values. Further the crossover transition temperature at µ = 0

compare well with the lattice [45, 48] results and QCD based computations [104, 166]

in two flavour model. For the PQM model calculation without vacuum fermionic term

at mσ = 500 MeV, the chiral and confinement-deconfinement crossover transition lines

are coincident (as shown by the thick dots) and start from T χ
c = TΦ

c = 171.5 MeV at

µ = 0 MeV to end at the CEP (TCEP = 167.0 MeV and µCEP = 81.0 MeV) of the PQM

model. The first order transition for µ > µCEP in the PQM model, has been shown by

the thin solid line. The CEP of the PQM model gets located near the temperature axis

at µCEP = 81 MeV and TCEP = 167 MeV because the chiral crossover at µ = 0, having

the background of a first order phase transition in the chiral limit, is rapid and sharp

and soon it gets converted to a first order phase transition as we increase the chemical

potential. While the critical end point (CEP) gets shifted close to the chemical potential

axis at µCEP = 294.7 MeV and TCEP = 84 MeV in PQMVT model because the chiral

crossover transition at µ = 0 MeV is quite soft and smooth as it emerges from a phase

transition which turns second order in the chiral limit due to the effect of renormalized

fermionic vacuum contribution in the effective potential and further it remains a crossover

for large range of values in the chemical potential.

The location of the critical end point and the structure of the phase diagram is

also sensitive to the parametrization of the Polyakov loop potential. We explored this

sensitivity by calculating the phase diagram as shown in Fig.3.6 for mσ = 500 MeV tak-

ing polynomial ansatz for Polyakov loop potential in the PQMVT model. The dash line

showing the chiral crossover transition, starts at T χ
c = 189 MeV at µ = 0 MeV and ends

at the CEP (µCEP = 293.6 MeV and TCEP = 77 MeV) of PQMVT model with polynomial
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Figure 3.6: Phase diagram for polynomial potential in PQMVT model with mσ = 500

MeV. Dash line denotes the chiral crossover transition and it ends at the CEP (filled

circle), the solid line denotes the first order transition. Continuous dots denote the decon-

finement crossover transition for Φ field while the dash dot line denotes the deconfinement

crossover transition for Φ∗ field.

Polyakov loop potential. Line with continuous dots signify the deconfining crossover tran-

sition for the Φ field while the dash dotted line show the deconfining crossover transition

for the Φ∗ field. We notice that the deconfinement crossover lines for Φ and Φ∗ fields, lie

below the chiral crossover transition line i.e. TΦ∗

c < TΦ
c < T χ

c in the chemical potential

range µ = 0 to µ = 210 − 225 MeV. When µ > 210 MeV, confinement-deconfinement

crossover transition lines for Φ∗ and Φ fields get located above the chiral crossover phase

boundary from µ > 210 to µ = µCEP = 293.6 MeV and we get TΦ
c > TΦ∗

c > T χ
c . We

point out that in this region of phase diagram, the chiral symmetry restoring crossover

transition sets up earlier than the deconfining crossover transition. It has been speculated

that a region of confinement with restored chiral symmetry in phase diagram [134], signals
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the onset of quarkyoinc phase [135]. Thus, similar to the results of ref. [75–77, 104], we

are finding a quarkyonic phase like region of confinement with chiral symmetry in our

PQMVT model calculations when the Polyakov loop potential has a polynomial form.

3.2.2 Thermodynamic Observables: Pressure, Entropy and En-

ergy Density
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Figure 3.7: Pressure variation with respect to temperature.

The negative of grand potential gives the thermodynamic pressure

p(T, µ) = −ΩMF (T, µ) (3.33)

Thermodynamic pressure divided by the QCD Stefan-Boltzmann (SB) limit has

been shown for three chemical potentials µ = 0, 294.7 (CEP) and 300 MeV in Fig.3.7 for

PQMVT model. It has been normalized to vanish at T = µ = 0. We have shown the
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pressure calculated in PQM model also for comparison at µ = 0. For Nf massless quarks

and N2
c − 1 massless gluons in the deconfined phase, the QCD pressure in the SB limit is

given by

pSB

T 4
= (N2

c − 1)
π2

45
+ NcNf

[

7π2

180
+

1

6

(µ

T

)2

+
1

12π2

(µ

T

)4
]

. (3.34)

The fermionic vacuum contribution makes the pressure variation in PQMVT model

smooth at µ = 0 and this curve (thin solid line) lies slightly below the curve (line with

continuous dots) obtained in PQM model. The pressure variations at µCEP = 294.7

and µ = 300 MeV of PQMVT model are represented by the thick solid and dash line

respectively. The pressure increases near the chiral transition due to the melting of the

constituent quark masses and saturates at about eighty percent of the SB limit.

The entropy density is defined as negative of the temperature derivative of the grand

potential.

s = −∂ΩMF

∂T
(3.35)

The implicit variation of σ, Φ and Φ∗ fields with respect to temperature has been

accounted for, in the temperature derivative of Ω(σ), Ulog and ΩT
qq̄ as evaluated in the

appendix. The temperature variation of entropy density normalized by its QCD, SB

limit has been shown in Fig.3.8. It is continuous for crossover transition and attains

about 40-45 percent of its SB value at pseudocritical transition temperature. Again due

to the fermionic vacuum fluctuations, the entropy density variation (thin solid line) at

µ = 0 turns out to be a smoother function of temperature in PQMVT model when it is

compared with corresponding curve (line with continuous dots) of PQM model calculation.

At µCEP = 294.7 MeV, the entropy density curve (thick solid line) shows a steep rise at

TCEP = 84. MeV in PQMVT model, then it takes a bend to reach its saturation. The

PQM model entropy density curve (dash dotted line) at µ = 294.7 MeV shows a large
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Figure 3.8: Entropy density variation with respect to temperature.

jump because chiral transition is strong first order at this chemical potential. The first

order chiral transition of PQMVT model at µ = 300.0 MeV, generates another jump in

the entropy density curve (line with dash), though this jump is smaller than the first order

jump seen in PQM model entropy curve at a lower chemical potential µ = 294.7 MeV.

The energy density in the presence of chemical potential is given as

ǫ = −p + Ts + µn (3.36)

where n is the number density. The temperature variation of energy density normalized

by its QCD, SB limit value has been shown in Fig.3.9 for µ = 0, 280 , 294.7 (CEP) and

300 MeV in PQMVT model. The energy density variation (thin solid line) at µ = 0

similar to entropy density variation, is smoother in comparison to the corresponding
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Figure 3.9: Variation of energy density with respect to temperature.

variation in PQM model calculation (line with continuous dots), this again is due to the

influence of fermionic vacuum fluctuations. Similar to the entropy density variation at

µCEP = 294.7 MeV, the energy density (thick solid line) also shows a very steep and large

rise at TCEP = 84.0 MeV, then it curves to attain the saturation. At µ = 300.0 MeV,

we get a large jump in the energy density curve (dash-dotted line) which of course is a

signature of the first order chiral transition. Since quark degrees of freedom get liberated

and become light, the energy density registers a rapid increase near the crossover/phase

transition point and reaches almost to the value of SB limit.

The trace anomaly of energy momentum tensor is also known as interaction measure.

The temperature variation of the interaction measure △ = (E − 3p)/T 4 has been shown

in Fig.3.10 at µ = 0 MeV in QM, QMVT model calculations together with PQM and
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Figure 3.10: Change in interaction measure with respect to temperature.

PQMVT model calculations for logarithmic choice of Polyakov loop potential. In order

to see the impact of the parametrization of Polyakov loop potential on the temperature

variation of interaction measure, we have also shown the result for the polynomial choice

of Polyakov loop potential in PQMVT model. The QM model variation of the interaction

measure (line with continuous dots) shows a sharp and narrow peak near the pseudocrit-

ical transition temperature which becomes very broad and smooth in the corresponding

variation (thick dash line) of QMVT model calculation due to the effect of inclusion of

fermion vacuum term contribution in the effective potential of QM model. The peak of

interaction measure temperature variation (thin solid line) in PQMVT model shifts to a

slightly higher temperature value in comparison to the corresponding peak in the variation

(thick solid line) of PQM model calculations done with the logarithmic choice of Polyakov
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loop potential. The temperature variation of interaction measure shown by dash-dot line,

registers largest rightward shift if we take polynomial form of Polyakov loop potential in

PQMVT model calculation.

3.2.3 Specific heat CV and Speed of sound CS
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Figure 3.11: Specific heat variation with respect to temperature.

The expression of specific heat at constant volume is given by

CV =
∂ǫ

∂T

∣

∣

∣

∣

V

= −T
∂2ΩMF

∂T 2

∣

∣

∣

∣

V

(3.37)

The second partial temperature derivatives of σ, Φ and Φ∗ fields contribute in the

double derivatives of Ω(σ), Ulog and ΩT
qq̄ with respect to temperature as given in the ap-

pendix in chapter 7. Fig.3.11 shows the temperature variation of the specific heat CV

normalized by T 3 in QM, QMVT and in PQM, PQMVT model calculations at µ = 0.

The specific heat variation while growing with the temperature, peaks at the crossover
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transition temperature and then saturates at the corresponding SB limit at the higher

temperature. The QM model specific heat variation shows a large and sharp peak which

becomes quite smooth and broad in the corresponding variation of QMVT model calcula-

tion due to the presence of fermionic vacuum term, further the peak position gets shifted

to a higher transition temperature. The qualitative difference of structures in the curves

of QM and QMVT model gets reduced due to the influence of Polyakov loop potential and

we notice that the PQM model specific heat variation has quite a high and sharp peak

which becomes small and a little less sharp in the PQMVT model variation and the peaks

occur at the same transition temperature. Further, we remark that the peak positions

of the temperature variation of order parameter derivatives in Fig.3.2(a) and Fig.3.3(b)

give different transition temperatures for chiral crossover in PQMVT and PQM model

calculations while for confinement-deconfinement crossover, the transition temperature is

almost same in both the models.

The speed of sound is an important quantity for hydrodynamical investigations of

relativistic heavy-ion collisions. It is given by

C2
s =

∂p

∂ǫ

∣

∣

∣

∣

S

=
∂p

∂T

∣

∣

∣

∣

V

/

∂ǫ

∂T

∣

∣

∣

∣

V

=
s

CV
, (3.38)

The equation of state parameter p(T )/ǫ(T ) also represents the information contained

in trace anomaly. The velocity of sound C2
s and the equation of state parameter p(T )/ǫ(T )

ratio has been shown as a function of temperature in QM, QMVT and PQM, PQMVT

model calculations at µ = 0 in Fig.3.12. Thick lines denote the result for the sound

velocity C2
s and thin lines show the variation of p(T )/ǫ(T ) ratio. The presence of fermion

vacuum term in QMVT model leads to a very smooth temperature variation for C2
s (line

with thick long dash) and p(T )/ǫ(T ) ratio (line with thin long dash). The C2
s temperature

variation (line with thick small dash) in the QM model calculation, shows a very sharp

drop followed by a rapid rise while the EOS parameter p(T )/ǫ(T ) ratio (line with thin

small dash) shows a cusp at crossover transition temperature. The temperature variation
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Figure 3.12: The variation of p(T )/ǫ(T ) has been shown by thin lines while thick lines

show the variation of C2
s . Upper curves show QM and QMVT model results while PQM

and PQMVT model results are shown in lower curves.

of C2
s (thick solid line) and p(T )/ǫ(T ) ratio (thin solid line) in the PQMVT model turns

out to be smoother than the corresponding variation of C2
s (line with thick, short and

dark dash) and p(T )/ǫ(T ) ratio (thin dash line) in the PQM model calculation. At higher

temperatures C2
s and p(T )/ǫ(T ) ratio approach the ideal gas value 1/3 in all the cases of

model calculation. In PQM and PQMVT models, the value of C2
s almost matches with the

p(T )/ǫ(T ) ratio for lower temperatures and C2
s value is always larger than the p(T )/ǫ(T )

ratio except near the transition temperature, similar as in ref. [83,99]. The minimum value

of p(T )/ǫ(T ) ratio is about .033 in PQMVT model which being slightly larger than the
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PQM model value .026, is less than the lattice result .075 [49,167]. Similar to the findings

of ref. [99], interestingly the C2
s value is found to be less than 0.1 around half the crossover

transition temperature in our PQM and PQMVT model results. In contrast,using a model

of confinement, the results of ref. [168] find values of about C2
s ∼ 0.2 around half the

transition temperature and C2
s = 0.15 around the transition temperature.

3.2.4 Quark number density and Susceptibility
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Figure 3.13: Temperature variation of quark number density divided by T 3.

The first derivative of grand potential with respect to chemical potential gives the

quark number density

n = −∂ΩMF

∂µ
(3.39)

The implicit variation of σ, Φ and Φ∗ fields with respect to chemical potential has
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been accounted for, in the evaluation of first derivative of Ω(σ), Ulog and ΩT
qq̄ with respect

to chemical potential as given in the appendix. The temperature variation of the quark

number density normalized by T 3 in the PQMVT model calculation has been shown in

Fig.3.13 for three quark chemical potentials µ = 280, 294.7 (CEP) and 300 MeV. The

dash dotted line shows the number density variation for a crossover transition at µ = 280

MeV, here we see a small peak structure. The dotted line number density variation shows

a sharper rise with a narrow peak at µCEP = 294.7 MeV and it approaches the SB value

of number density variation (shown by thick dots) for higher temperatures. At µ = 300

MeV, the Phase transition becomes first order, hence the quark number density being

a first derivative of the grand potential with respect to the chemical potential, shows a

jump in the solid line temperature variation.
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Figure 3.14: Susceptibility χq/T
2 variation with respect to temperature.

The expression of quark number susceptibility is obtained as
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χq = −∂2ΩMF

∂µ2
(3.40)

The second partial derivatives of σ, Φ and Φ∗ fields with respect to chemical poten-

tial contribute in the double derivatives of Ω(σ), Ulog and ΩT
qq̄ with respect to chemical

potential as given in the appendix. Fig.3.14 shows the variation of quark number suscep-

tibility normalized by T 2 as a function of temperature in the PQMVT model calculation

for chemical potentials µ = 280, 294.7 (CEP) and 300 MeV. The dash dotted line sus-

ceptibility variation at µ = 280 MeV shows a continuous peak structure at the crossover

transition temperature. Since at µCEP = 294.7 MeV, the phase transition turns second

order, the dotted line of quark number susceptibility variation shows a very large and

strongly divergent peak at TCEP. The solid line shows the quark number susceptibility at

µ = 300 MeV for the first order transition case, we get a discontinuous variation because

order parameter registers a jump in the first order transition.

3.3 Summary

We have investigated the temperature variation of the order parameters σ, Φ, Φ∗, their

temperature derivatives and various thermodynamic physical observables at non zero and

zero quark chemical potentials in the presence of renormalized fermionic vacuum term

in the effective potential of the PQM model. The results termed as the PQMVT model

calculations have been compared with the results of PQM model without vacuum term.

We have used logarithmic Polyakov loop potential for large part of our calculation. We

have used the polynomial form of Polyakov loop potential also in the PQMVT model

calculation in order to investigate the impact of the choice of Polyakov loop potential on

the phase structure and location of critical end point.

The chiral crossover transition for the realistic case of explicit chiral symmetry break-

ing, becomes quite soft and smooth at µ = 0 in PQMVT model due to the proper
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accounting of the fermionic vacuum term contribution in the PQM model because the

corresponding phase transition at µ = 0 turns second order in the chiral limit of massless

quarks. The σ derivative shows a broad double peak structure at µ = 0. The second peak

position at higher transition temperature T χ
c = 186.5 MeV identifies the chiral crossover

because the first peak results due to a sharp peak in the Polyakov loop temperature vari-

ation which signals a rapid confinement-deconfinement crossover transition at µ = 0. In

a large range of µ, T values (from µ = 0 and T = 186.5 MeV to µ = 294.7 MeV and

T = 84 MeV), the chiral transition remains a crossover and it keeps on becoming sharper

with the increase in chemical potential till the point of second order transition at µCEP is

reached in the PQMVT model. Instead of logarithmic form, if we take polynomial form

for Polyakov loop potential in our PQMVT model calculation, the temperature deriva-

tives of Polyakov loop field Φ and its conjugate Φ∗ show distinct non coincident double

peak structure in the chemical potential range µ > 200 MeV to µCEP = 293.6 MeV and

we do not find any double peak structure near µ = 0 in the temperature derivative of σ

field. Hence confinement-deconfinement crossover transition lines for Φ∗ and Φ fields get

located above the chiral crossover phase boundary from µ = 210 to µ = µCEP = 293.6

MeV. Since the chiral transition in the massless quark limit is first order at zero chemical

potential, the corresponding crossover transition for the realistic case has been found to

be quite sharp and rapid in the PQM model without any vacuum term. Further the chiral

transition remains a crossover in quite a small range only from µ = 0 and T χ
c = 171.5

MeV to µ = 81 MeV and T χ
c = 167 MeV in the PQM model calculations.

The phase diagram together with the location of critical end point (CEP) has been

obtained in µ, and T plane for mσ = 500 MeV in both the models PQMVT as well as

PQM with the logarithmic choive of Polyakov loop potential. The structure of the phase

diagram is very sensitive to the chosen value of sigma meson mass. For the value mσ = 600

MeV, the transition becomes a crossover in the entire µ and T plane for the PQMVT

model calculation. We do not have a coincident chiral and confinement-deconfinement
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crossover transitions in the PQMVT model as the chiral crossover transition line lies

above the crossover line for the confinement-deconfinement transition. Our results of

the PQMVT model calculation with logarithmic Polyakov loop potential, are in tune

with the standard scenario where chiral symmetry restoration occurs at a higher critical

temperature than the confinement-deconfinement transition temperature. The critical

end point (CEP) gets shifted close to the chemical potential axis (µCEP = 294.7 MeV,

TCEP = 84.0 MeV ) in PQMVT model because the chiral crossover transition at µ = 0

emerging from a second order phase transition in the chiral limit, becomes quite soft and

smooth due to the effect of fermionic vacuum contribution in the effective potential and

further it remains a crossover for large values of the chemical potential. The chiral and

confinement-deconfinement crossover transition lines are coincident in the PQM model

and its’ CEP gets located near the temperature axis at µCEP = 81 MeV and TCEP = 167

MeV because the chiral crossover at µ = 0, having the background of a first order phase

transition in the chiral limit, is quite rapid and sharp and soon it gets converted to a first

order phase transition as we increase the chemical potential. The sensitive dependence

of the phase structure and location of the critical end point, has also been explored

by calculating another phase diagram for mσ = 500 MeV taking polynomial choice of

Polyakov loop potential in the PQMVT model. It is noticed that the chiral crossover

transition line, lies above the deconfinement crossover lines for the Φ and Φ∗ fields in the

chemical potential range µ = 0 to µ = 210−225 MeV. Deconfinement crossover transition

lines for fields Φ and Φ∗, cross the chiral crossover phase boundary around µ ≈ 210 MeV

and get located above it from µ > 210 MeV to µ = µCEP = 293.6 MeV. Chiral symmetry

restoration occurs earlier than the deconfinement transition in this region of the phase

diagram. Thus we are finding a quarkyonic phase like region of confinement with chiral

symmetry in our PQMVT model calculations with polynomial choice for Polyakov loop

potential.

The temperature variation of thermodynamic observables namely pressure, energy
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density, entropy density at three different chemical potentials (zero, µCEP and µ > µCEP )

has been shown in PQMVT model. Due to the proper accounting of appropriately renor-

malized fermionic vacuum fluctuations, the pressure ,entropy density and energy density

variations at µ = 0 turn out to be a smoother function of temperature in PQMVT model

when it is compared with corresponding curves in PQM model calculation. The temper-

ature variations of the interaction measure, speed of sound, p(T )/ǫ(T ) and specific heat,

have been calculated in PQMVT model and QMVT (Quark Meson model with vacuum

term) model and these results have been compared with the corresponding results in

the PQM and QM model calculations. In PQMVT model, the calculated temperature

variation of interaction measure at µ = 0 for polynomial choice of Polyakov loop poten-

tial, shows a noticeable rightward shift. Again we find that the presence of fermionic

vacuum contribution in effective potential leads to the smoother variation of the thermo-

dynamic quantities. Finally we have shown the results of the temperature variations of

baryon number density and quark number susceptibility at different chemical potentials

in PQMVT model calculations.



Chapter 4

Meson Masses and Mixing Angles in

2+1 Flavor Polyakov Quark Meson

Sigma Model and Symmetry

Restoration Effects

In order to calculate the properties of mesons in hot and dense medium, several investiga-

tions have been done in the two and three flavor Nambu-Jona-Lasinio (NJL), Polyakov-

Nambu-Jona-Lasinio (PNJL) models (e.g. [92, 93, 169, 170]) and also in the SU(2) and

SU(3) versions of linear sigma model (e.g. [63,69,171]). Since chiral symmetry restoration

is signaled by parity doubling, these studies look for the patterns of emerging convergence

in the masses of the chiral partners in pseudoscalar (π, η, η′, K) and scalar mesons (σ,

a0, f0, κ). It is a common knowledge that the basic QCD Lagrangian has the global

SUR+L(3) × SUR−L(3) × UA(1) symmetry. Different patterns of spontaneous as well as

explicit breaking of SUV (3)× SUA(3), have been discussed by Lenaghan et al. [55] in the

ambit of SU(3) linear sigma model. Schaefer et al. enlarged the linear sigma model with

the inclusion of quarks [64] and then they studied in the 2+1 flavor breaking scenario,
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the consequences of SU(3) chiral symmetry restoration for scalar and pseudoscalar meson

masses and mixing angles, in the presence as well as the absence of UA(1) axial symmetry,

as the temperature is increased through the phase transition temperature. The UA(1)

axial symmetry does not exist at the quantum level and as shown by ’t Hooft [124, 125],

it gets explicitly broken to ZA(Nf) by the instanton effects. The UA(1) anomaly does

not let the η′ meson remain massless Goldstone boson in the chiral limit by giving it a

mass of about 1 GeV. This happens due to flavor mixing, a phenomenon that lifts the

degeneracy between the π and η′ which otherwise would have been degenerate with π in

U(3) even if the explicit chiral symmetry breaking is present. There is large violation in

the Okubo-Zweig-Iizuka rule for both pseudoscalar and scalar mesons and ideal mixing

is not achieved because of strong flavor mixing between nonstrange and strange flavor

components of the mesons [93]. Hence UA(1) restoration will have important observable

effects on scalar and pseudoscalar meson masses as well as the mixing angles.

In a three flavor PNJL model calculation, Costa and collaborators [93] have discussed

in detail how the inclusion of Polyakov loop in the NJL model, affects the results of meson

mass and mixing angle calculations. However in an earlier paper, they have pointed out

that the description of the η′ in the NJL model has some problem [169]. The NJL

model does not confine and the meson degrees of freedom are generated in the model

by some prescription. The polarization function for the meson gets an imaginary part

above the q̄q threshold, hence η′ becomes unbound completely in the model soon after

the temperature is raised from zero. Thus η′ in the NJL model is not a well defined

quantity [172]. Schaefer et al. [64, 97, 98] have also made an elaborate study of meson

masses and mixing angles with and without UA(1) axial anomaly in the 2+1 flavor quark

meson linear sigma model where the mesons are included in the Lagrangian from the

very outset and the UA(1) breaking ’t Hooft coupling term is constant. The behavior

of the scalar and pseudoscalar mixing angles in their calculation is opposite to what has

been reported in the calculation by Costa et al. [93]. It is worthwhile and important to
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investigate the influence of Polyakov loop on meson mass and mixing angle calculations

in scalar and pseudoscalar sector, in the framework of generalized 2+1 flavor quark meson

linear sigma model enlarged with the inclusion of the Polyakov loop [98–100]. Since we

are lacking in the experimental information on the behavior of mass and mixing angle

observables in the medium, a comparative study of these quantities in different models

and circumstances becomes all the more desirable. We will be investigating how the

inclusion of Polyakov loop, qualitatively and quantitatively affects the convergence of the

masses of chiral partners, when the parity doubling takes place as the temperature is

increased through Tc and the partial restoration of chiral symmetry is achieved. We will

also be studying the effect of Polyakov loop on the interplay of SUA(3) chiral symmetry

and UA(1) symmetry restoration.

The arrangement of this chapter is as follows. In Sec.4.1 we have given the formu-

lation of the model. The description of grand potential in the mean field approach has

been presented in Sec. 4.2. We have derived the modification of meson masses due to

the q̄q contribution in the presence of Polyakov loop in Sec.4.3 where the formulae for

meson masses and mixing angles have been discussed. In Sec.4.4, we will be discussing

the numerical results and plots for understanding and analyzing the effect of Polyakov

loop on chiral symmetry restoration. Summary is presented in the last Sec.4.5.

4.1 Model Formulation

We will be working in the generalized three flavor quark meson linear sigma model which

has been combined with the Polyakov loop potential [98–100]. In this model, quarks

coming in three flavor are coupled to the SUV (3) × SUA(3) symmetric mesonic fields

together with spatially constant temporal gauge field represented by Polyakov loop po-

tential. Polyakov loop field Φ(~x) is defined as the thermal expectation value of color trace
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of Wilson loop in temporal direction

Φ =
1

Nc

〈TrcL〉β, Φ∗ =
1

Nc

〈TrcL
†〉β (4.1)

where L(x) is a matrix in the fundamental representation of the SUc(3) color gauge

group.

L(~x) = Pexp

[

i

∫ β

0

dτA0(~x, τ)

]

(4.2)

Here P is path ordering, A0 is the temporal component of Euclidean vector field and

β = T−1 [29].

The model Lagrangian is written in terms of quarks, mesons, couplings and Polyakov

loop potential U (Φ, Φ∗, T ).

LPQMS = LQMS − U(Φ, Φ∗, T ) (4.3)

where the Lagrangian in quark meson linear sigma model

LQMS = q̄f (iγ
µDµ − g Ta(σa + iγ5πa))qf + Lm (4.4)

The coupling of quarks with the uniform temporal background gauge field is effected

by the following replacement Dµ = ∂µ − iAµ and Aµ = δµ0A0 (Polyakov gauge), where

Aµ = gsA
a
µλ

a/2. gs is the SUc(3) gauge coupling. λa are Gell-Mann matrices in the color

space, a runs from 1 · · ·8. qf = (u, d, s)T denotes the quarks coming in three flavors and

three colors. g is the flavor blind Yukawa coupling that couples the three flavor of quarks

with nine mesons in the scalar (σa, J
P = 0+) and pseudoscalar (πa, J

P = 0−) sectors.

The quarks have no intrinsic mass but become massive after spontaneous chiral

symmetry breaking because of nonvanishing vacuum expectation value of the chiral con-

densate. The mesonic part of the Lagrangian has the following form

Lm = Tr
(

∂µM
†∂µM

)

− m2Tr(M †M) − λ1

[

Tr(M †M)
]2

−λ2Tr
(

M †M
)2

+ c[det(M) + det(M †)]

+Tr
[

H(M + M †)
]

. (4.5)
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The chiral field M is a 3 × 3 complex matrix comprising of the nine scalars σa and the

nine pseudoscalar πa mesons.

M = Taξa = Ta(σa + iπa) (4.6)

Here Ta represent 9 generators of U(3) with Ta = λa

2
. a = 0, 1 . . . 8. λa are standard Gell-

Mann matrices with λ0 =
√

2
3
1. The generators follow U(3) algebra [Ta, Tb] = ifabcTc and

{Ta, Tb} = dabcTc where fabc and dabc are standard antisymmetric and symmetric structure

constants respectively with fab0 = 0 and dab0 =
√

2
3

1 δab and matrices are normalized as

Tr(TaTb) = δab

2
.

The SUL(3)×SUR(3) chiral symmetry is explicitly broken by the explicit symmetry

breaking term

H = Taha (4.7)

Here H is a 3× 3 matrix with nine external parameters. The ξ field picks up the nonzero

vacuum expectation value, ξ̄ due to the spontaneous breakdown of the chiral symmetry.

Since ξ̄ must have the quantum numbers of the vacuum, explicit breakdown of the chiral

symmetry is only possible with three nonzero parameters h0, h3 and h8. We are neglecting

isospin symmetry breaking hence we choose h0, h8 6= 0. This leads to the 2 + 1 flavor

symmetry breaking scenario with nonzero condensates σ̄0 and σ̄8.

Apart from h0 and h8, the other parameters in the model are five in number. These

are the squared tree-level mass of the meson fields m2, quartic coupling constants λ1 and

λ2, a Yukawa coupling g and a cubic coupling constant c which models the UA(1) axial

anomaly of the QCD vacuum.

Since it is broken by the quantum effects, the UA(1) axial which otherwise is a

symmetry of the classical Lagrangian, becomes anomalous [173] and gives large mass to η′

meson (mη′ = 940 MeV). In the absence of UA(1) anomaly, η′ meson would have been the

ninth pseudoscalar Goldstone boson, resulting due to the spontaneous break down of the

chiral UA(3) symmetry. The entire pseudoscalar nonet corresponding to spontaneously
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broken UA(3), would consist of the three π, four K, η and η′ mesons, which are the

massless pure Goldstone modes when H = 0 and they become pseudo Goldstone modes

after acquiring finite mass due to nonzero H in different symmetry breaking scenarios.

The particles coming from octet (a0, f0, κ) and singlet (σ) representations of SUV (3)

group, constitute scalar nonet (σ, a0, f0, κ). In order to study the chiral symmetry

restoration at high temperatures, we will be investigating the trend of convergence in the

masses of chiral partners occurring in pseudoscalar (π, η, η′, K) and scalar (σ, a0, f0, κ)

nonets, in the 2 + 1 flavor symmetry breaking scenario.

4.1.1 Choice of Potentials for the Polyakov Loop

The effective potential U (Φ, Φ∗, T ) is constructed such that it reproduces thermodynam-

ics of pure glue theory on the lattice for temperatures upto about twice the deconfinement

phase transition temperature. At much higher temperatures, the transverse gluons be-

come effective degrees of freedom, hence the construction of effective potential in terms

of the Polyakov loop potential is not reliable [80, 92].

At low temperatures, the effective potential U (Φ, Φ∗, T ) has only one minimum at

Φ = 0 in the confined phase. Above the critical temperature for deconfinement transition,

Φ = 0 becomes metastable local minimum and now, the effective potential has three

degenerate global minima at Φ 6= 0 due to the spontaneous breakdown of the Z(3) center

symmetry.

In this work, we use the following two choices of the effective potential. The first

choice is based on the polynomial expansion in terms of Polyakov loop order parameter

Φ and is given [80] as

Upol (Φ, Φ∗, T )

T 4
= −b2

4

(

|Φ|2 + |Φ∗|2
)

− b3

6
(Φ3 + Φ∗3)

+
b4

16

(

|Φ|2 + |Φ∗|2
)2

(4.8)

The second term that is the sum of Φ3 and Φ∗3 terms, causes the three degenerate vacua
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above the deconfinement phase transition. The potential parameters are adjusted ac-

cording to the pure gauge lattice data such that the equation of state and Polyakov loop

expectation values are reproduced. The temperature dependent coefficient b2(T ) governs

the confinement-deconfinement phase transition and is given by

b2(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

+ a3

(

T0

T

)3

. (4.9)

The other parameters have the following value

a0 = 6.75 , a1 = −1.95 , a2 = 2.625 ,

a3 = −7.44, b3 = 0.75 , b4 = 7.5 .

The other choice of effective potential as given in ref. [81], has the logarithmic form.

The results produced by this potential are known to be fitted well to lattice results.

Ulog (Φ, Φ∗, T )

T 4
= −a (T )

2
Φ∗Φ + b(T ) ln[1 − 6Φ∗Φ

+4(Φ∗3 + Φ3) − 3(Φ∗Φ)2] (4.10)

where the temperature dependent coefficients are as follow

a(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

b(T ) = b3

(

T0

T

)3

. (4.11)

The critical temperature for deconfinement phase transition T0 = 270 MeV is fixed

for pure gauge sector. The parameters of Eq.(4.10) are

a0 = 3.51 , a1 = −2.47 ,

a2 = 15.2 , b3 = −1.75

Both effective potential fits reproduce equally well the equation of state and the

Polyakov loop expectation value.
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4.2 Grand Potential in the Mean-Field Approach

The thermodynamics of changing numbers of particles and antiparticles is governed by

grand canonical partition function. We are considering a spatially uniform system in

thermal equilibrium at finite temperature T and quark chemical potential µf(f = u, d, s).

The partition function is written as the path integral over quark/antiquark and meson

fields [64]

Z = Tr exp[−β(Ĥ −
∑

f=u,d,s

µfN̂f)]

=

∫

∏

a

DσaDπa

∫

DqDq̄ exp
[

−
∫ β

0

dτ

∫

V

d3x

(

LE
QMS +

∑

f=u,d,s

µf q̄fγ
0qf

)]

. (4.12)

where V is the three dimensional volume of the system, and β = 1
T
. For three

quark flavors, in general, the three quark chemical potential are different. In this work,

we assume that SUV (2) symmetry is preserved and neglect the small difference in masses

of u and d quarks. Thus the quark chemical potential for u and d quarks become equal

µx = µu = µd. The strange quark chemical potential is µy = µs. Further we consider

symmetric quark matter and net baryon number to be zero.

The partition function for the SU(3) version of the linear sigma model with or

without quarks can be evaluated by the more advanced many-body resummation tech-

niques such as the self consistent Hartree approximation in the Cornwall, Jackiw and

Tomboulis [55, 174] formalism or the so called optimized perturbation theory [57] in its

improved version [59–61]. However the predictive power of these methods depends on

how they are implemented in different approximation schemes.

In the simple mean field approximation, one does not encounter various problems

of the more advanced many-body resummation techniques. In our work, the partition

function has been evaluated in the mean-field approximation [63,64,97]. We replace meson
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field by their expectation values 〈Φ〉 = T0σ̄0 + T8σ̄8 and neglect both thermal as well as

quantum fluctuations of meson fields while quarks and antiquarks are retained as quantum

field. Now following the standard procedure as given in Refs. [79,80,96,115] one can obtain

the expression of grand potential as sum of pure gauge field contribution U (Φ, Φ∗, T ),

meson contribution and quark/antiquark contribution evaluated in the presence of the

Polyakov loop,

Ω(T, µ) = −T ln Z

V
= U(σ0, σ8) + U (Φ, Φ∗, T )

+Ωq̄q(T, µ) (4.13)

In order to study 2 + 1 flavor case, one performs following basis transformation

of condensates and external fields from original singlet octet (0, 8) basis to nonstrange

strange basis (x, y).

σx =

√

2

3
σ̄0 +

1√
3
σ̄8, (4.14)

σy =
1√
3
σ̄0 −

√

2

3
σ̄8. (4.15)

Similar expressions exist for writing the external fields (hx, hy) in terms of (h0, h8).

Thus the nonstrange and strange quark/antiquark decouple and the quark masses become

mx = g
σx

2
, my = g

σy√
2

(4.16)

Quarks become massive in symmetry broken phase because of non zero vacuum expecta-

tion values of the condensates.

The mesonic potential in the nonstrange-strange basis reads,

U(σx, σy) =
m2

2

(

σ2
x + σ2

y

)

− hxσx − hyσy −
c

2
√

2
σ2

xσy

+
λ1

2
σ2

xσ
2
y +

1

8
(2λ1 + λ2)σ4

x

+
1

8
(2λ1 + 2λ2) σ4

y , (4.17)
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C[MeV] m2 [MeV 2] λ1 λ2 hx [MeV 3] hy [MeV 3]

W/UA(1) 4807.84 (342.52)2 1.40 46.48 (120.73)3 (336.41)3

W/oUA(1) 0 −(189.85)2 -17.01 82.47 (120.73)3 (336.41)3

Table 4.1: parameters for mσ = 600 MeV with and without UA(1) axial anomaly term.

The chiral part of the Polyakov loop augmented quark meson linear sigma (PQMS)

model has the six input parameters and therefore require six known quantities as input.

In general mπ, mK , the pion and kaon decay constant fπ, fK , mass square of η, η′ and

mσ are used to fix these parameters. The parameters are fitted such that in vacuum the

model produces observed pion mass 138 MeV. In the present work we are using the set

of parameters for sigma mass mσ = 600 MeV. The parameters used in this work, taken

from [64], are shown in Table 4.1.

Finally the quark/antiquark Polyakov loop contribution reads,

Ωq̄q(T, µ) = −2T
∑

f=u,d,s

∫

d3p

(2π)3

[

ln g+
f + ln g−

f

]

(4.18)

We define g+
f and g−

f after taking trace over color space

g+
f =

[

1 + 3Φe−E+
f

/T + 3Φ∗e−2E+
f

/T + e−3E+
f

/T
]

(4.19)

g−
f =

[

1 + 3Φ∗e−E−

f
/T + 3Φe−2E−

f
/T + e−3E−

f
/T
]

(4.20)

Here we use the notation E±
f = Ef ∓µ and Ef is the flavor dependent single particle

energy of quark/antiquark.

Ef =
√

p2 + mf
2 (4.21)

mf is flavor dependent quark mass and is function of condensates σ0 and σ8.

One can very easily notice from equations (4.19) and (4.20) that the role of quarks

and antiquarks as well as that of the Polyakov loop and its conjugate can be interchanged
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by the transformation µ → −µ. Confinement is the very interesting feature of the QCD

and the PQMS model describes this behavior qualitatively. The Polyakov loop is or-

der parameter for confinement-deconfinement phase transition. In the confined phase

Φ = 0. It can also be noticed from the grand potential that one and two quark state

contributions are vanishing. Only the three quark states contribute. In this way the

PQMS model qualitatively mimics confinement of quark/antiquark within three quark

color singlet states [84].

One can get the quark condensates σx, σy and the Polyakov loop expectation val-

ues Φ, Φ∗ by searching the global minima of the grand potential for a given value of

temperature T and chemical potential µ.

∂Ω

∂σx

=
∂Ω

∂σy

=
∂Ω

∂Φ
=

∂Ω

∂Φ∗

∣

∣

∣

∣

σx=σ̄x,σy=σ̄y ,Φ=Φ̄,Φ∗=Φ̄∗

= 0 . (4.22)

In this work we are always considering the µ = 0 case.

4.3 Meson masses and Mixing angles

The curvature of grand potential Eq.(4.13) at the global minimum determines scalar and

pseudoscalar meson masses.

m2
α,ab =

∂2Ω(T, µ)

∂ξα,a∂ξα,b

∣

∣

∣

min
(4.23)

where subscript α = s, p; s stands for scalar and p stands for pseudoscalar meson and a,

b = 0 · · ·8. We note that the Polyakov loop decouples from the mesonic sector at T=0

and the meson masses do not receive contribution from quark/antiquark in vacuum and

hence meson masses are governed by mesonic potential only. The mesonic contribution to

the meson masses is summarized in Table 4.2. The diagonalization of (0 - 8) component

of mass matrix gives masses of σ and f0 mesons in scalar sector and masses of η′ and η

in pseudoscalar sector. The scalar mixing angle θs and pseudoscalar mixing angle θp are
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Scalar Meson Sector

m2
a0

m2 + λ1(x
2 + y2) + 3λ2

2
x2 +

√
2c
2

y

m2
κ m2 + λ1(x

2 + y2) + λ2

2
(x2 +

√
2xy + 2y2) + c

2
x

m2
s,00 m2 + λ1

3
(7x2 + 4

√
2xy + 5y2) + λ2(x

2 + y2) −
√

2c
3

(
√

2x + y)

m2
s,88 m2 + λ1

3
(5x2 − 4

√
2xy + 7y2) + λ2(

x2

2
+ 2y2) +

√
2c
3

(
√

2x − y
2
)

m2
s,08

2λ1

3
(
√

2x2 − xy −
√

2y2) +
√

2λ2(
x2

2
− y2) + c

3
√

2
(x −

√
2y)

m2
σ m2

s,00 cos2 θs + m2
s,88 sin2 θs + 2m2

s,08 sin θs cos θs

m2
f0

m2
s,00 sin2 θs + m2

s,88 cos2 θs − 2m2
s,08 sin θs cos θs

m2
σNS

1
3
(2m2

s,00 + m2
s,88 + 2

√
2m2

s,08)

m2
σS

1
3
(m2

s,00 + 2m2
s,88 − 2

√
2m2

s,08)

Pseudoscalar Meson Sector

m2
π m2 + λ1(x

2 + y2) + λ2

2
x2 −

√
2c
2

y

m2
K m2 + λ1(x

2 + y2) + λ2

2
(x2 −

√
2xy + 2y2) − c

2
x

m2
p,00 m2 + λ1(x

2 + y2) + λ2

3
(x2 + y2) + c

3
(2x +

√
2y)

m2
p,88 m2 + λ1(x

2 + y2) + λ2

6
(x2 + 4y2) − c

6
(4x −

√
2y)

m2
p,08

√
2λ2

6
(x2 − 2y2) − c

6
(
√

2x − 2y)

m2
η′ m2

p,00 cos2 θp + m2
p,88 sin2 θp + 2m2

p,08 sin θp cos θp

m2
η m2

p,00 sin2 θp + m2
p,88 cos2 θp − 2m2

p,08 sin θp cos θp

m2
ηNS

1
3
(2m2

p,00 + m2
p,88 + 2

√
2m2

p,08)

m2
ηS

1
3
(m2

p,00 + 2m2
p,88 − 2

√
2m2

p,08)

Table 4.2: The mesonic contribution of squared masses of scalar and pseudoscalar mesons

appear in nonstrange-strange basis. In this table x denotes σx and y denotes σy. The

masses of nonstrange σNS, strange σS, nonstrange ηNS and strange ηS mesons are given

in the last two rows of the respective cases.
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given by,

tan 2θα =
( 2m2

α,08

m2
α,00 − m2

α,88

)

(4.24)

Here α stands for scalar and pseudoscalar field. The detail expressions for masses and

mixing angles are given in ref. [55,64]. The meson masses are further modified in medium

at finite temperature by the quark contributions in the grand potential. In order to calcu-

late the second derivative Eq.(4.23) for evaluating the quark contribution in the presence

of the Polyakov loop potential, the complete dependence of all scalar and pseudoscalar

meson fields Eq.(4.6) has to be taken into account. We have to diagonalize the resulting

quark mass matrix. The expression for the meson mass modification due to quark con-

tribution at finite temperature in QMS model, has been evaluated by Schaefer et al. [64]

and is given as

δm2
α,ab =

∂2Ωq̄q(T, µ)

∂ξα,a∂ξα,b

∣

∣

∣

min
= νc

∑

f=x,y

∫

d3p

(2π)3

1

2Ef

[

(a+
f + a−

f )
(

m2
f,ab −

m2
f,am

2
f,b

2E2
f

)

−(b+
f + b−f )

(m2
f,am

2
f,b

2EfT

)]

(4.25)

m2
f,a ≡ ∂m2

f/∂ξα,a is the first derivative and m2
f,ab ≡ ∂m2

f,a/∂ξα,b is the second

derivative of squared quark mass with respect to meson fields ξα,b. The number of internal

quark degrees of freedom, νc = 2Nc = 6. Here a±
f are quark/antiquark occupation

numbers; given as

a±
f =

1

1 + eE±/T
(4.26)

and the notations b±f = a±
f − (a±

f )2 stand for particle (+) and antiparticle (−) in quark

meson linear sigma model without inclusion of the Polyakov loop.

The expression of mass modification due to quark contribution at finite temperature,

will change in the presence of the Polyakov loop. We are obtaining the following formula

for the mass modification that results on account of quark contribution in the PQMS
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model

δm2
α,ab =

∂2Ωq̄q(T, µ)

∂ξα,a∂ξα,b

∣

∣

∣

min
= 3

∑

f=x,y

∫

d3p

(2π)3

1

Ef

[

(A+
f + A−

f )
(

m2
f,ab −

m2
f,am

2
f,b

2E2
f

)

+(B+
f + B−

f )
(m2

f,am
2
f,b

2EfT

)]

(4.27)

The notations A±
f and B±

f have the following definitions

A+
f =

Φe−E+
f

/T + 2Φ∗e−2E+
f

/T + e−3E+
f

/T

g+
f

(4.28)

A−
f =

Φ∗e−E−

f
/T + 2Φe−2E−

f
/T + e−3E−

f
/T

g−
f

(4.29)

and B±
f = 3(A±

f )2 − C±
f , where we again define

C+
f =

Φe−E+
f

/T + 4Φ∗e−2E+
f

/T + 3e−3E+
f

/T

g+
f

(4.30)

C−
f =

Φ∗e−E−

f
/T + 4Φe−2E−

f
/T + 3e−3E−

f
/T

g−
f

(4.31)

The squared quark mass derivatives evaluated at minimum which were originally

derived in ref. [64], are collected in Table 4.3. The inclusion of Polyakov loop in QMS

model does not make any change in these equations.

4.4 Effect of The Polyakov Loop on The Restoration

of Chiral Symmetry

We are presenting the result of our calculation for estimating the effect of the Polyakov

loop potential on the restoration of chiral symmetry when it is included in the 2+1 flavor
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quark meson linear sigma model at finite temperature and zero chemical potential with

and without axial UA(1) breaking. We have considered the two different ansatzs for the

Polyakov loop potential namely the polynomial potential and logarithmic potential and

compared the results with the existing calculations in the quark meson linear sigma model

[64]. The interplay of the effect of UA(1) axial restoration and chiral symmetry restoration

in the presence of the Polyakov loop potential has been shown through the temperature

variation of strange, nonstrange chiral condensates, meson masses and mixing angles.

The UA(1) axial breaking term has been kept constant throughout the investigation. The

value of Yukawa coupling g has been fixed from the nonstrange constituent quark mass

mq = 300 MeV and is equal to 6.5. This predicts the strange quark mass ms ⋍ 433 MeV.

m2
x,am

2
x,b/g

4 m2
x,ab/g

2 m2
y,am

2
y,b/g

4 m2
y,ab/g

2

σ0 σ0
1
3
σ2

x
2
3

1
3
σ2

y
1
3

σ1 σ1
1
2
σ2

x 1 0 0

σ4 σ4 0 σx
σx+

√
2σy

σ2
x−2σ2

y
0 σy

√
2σx+2σy

2σ2
y−σ2

x

σ8 σ8
1
6
σ2

x
1
3

2
3
σ2

y
2
3

σ0 σ8

√
2

6
σ2

x

√
2

3
−

√
2

3
σ2

y −
√

2
3

π0 π0 0 2
3

0 1
3

π1 π1 0 1 0 0

π4 π4 0 σx
σx−

√
2σy

σ2
x−2σ2

y
0 σy

√
2σx−2σy

σ2
x−2σ2

y

π8 π8 0 1
3

0 2
3

π0 π8 0
√

2
3

0 −
√

2
3

Table 4.3: First and second derivative of squared quark mass in nonstrange-strange basis

with respect to meson fields are evaluated at minimum. Sum over two light flavors,

denoted by symbol x, are in third and fourth columns. The last two columns have only

strange quark mass flavor denoted by the symbol y.
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Figure 4.1: The variation of nonstrange σx, strange σy condensates with respect to the

relative temperature scale (T/T χ
c ) at zero chemical potential (µ = 0) in the QMS model

and PQMS models with polynomial and logarithmic potentials for the Polyakov loop is

shown. The lines with continuous dots represent the variation in the QMS model, while

the dashed-dotted lines show the variation in PQMS:pol model and the solid lines are the

variations in the PQMS:log model. The line with the big solid dots shows the σy variation

in the PQMS:log model, while the dark dashed line shows the pure QMS model results

when anomaly is absent, i.e. c = 0. The expectation value of the Polyakov loop 〈Φ〉, in

PQMS:pol and PQMS:log model is shown in the right plots.

4.4.1 Condensates and the Polyakov Loop

The solutions of the coupled gap equations, Eq.(4.22) determine the nature of chiral and

deconfinement phase transition through the temperature and chemical potential depen-

dence of nonstrange and strange condensates (σx and σy) and the expectation value of

the Polyakov loop (〈Φ〉 and 〈Φ∗〉). The temperature variation of σx, σy and 〈Φ〉 in mean-

field approximation, at zero chemical potential in the PQMS models with the polynomial
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QMS PQMS:pol PQMS:log

T χ
c (MeV) 146 204 206

T χ
s (MeV) 248 262 274

TΦ
c (MeV) − 204 206

Table 4.4: The characteristic temperature (pseudocritical temperature) for the chiral

transition in the nonstrange sector T χ
c , strange sector T χ

s and confinement-deconfinement

transition TΦ
c , in the QMS, PQMS:log and PQMS:pol models.

Polyakov loop potential Eq.(4.8) (PQMS:pol) and the logarithmic Polyakov loop poten-

tial Eq.(4.10) (PQMS:log) is shown in Fig4.1. We have also plotted the strange and non-

strange condensate in QMS model to compare and investigate the effect of the Polyakov

loop potential inclusion on chiral symmetry restoration trend reflected through masses

and mixing angles of mesonic excitations. The characteristic temperatures (pseudocriti-

cal temperature) for the confinement - deconfinement transition TΦ
c , the chiral transition

in the nonstrange sector T χ
c and strange sector T χ

s are defined through the inflection point

of 〈Φ〉, σx, and σy. We note that the 〈Φ〉 = 〈Φ∗〉 at zero chemical potential. The numeri-

cal value of the pseudocritical temperature for various transitions in the QMS model and

the PQMS model with the polynomial and the logarithmic potentials for the Polyakov

loop has been given in Table 4.4. It is evident from the table that the chiral transition

gets shifted to the higher temperatures as a result of the inclusion of the Polyakov loop

potential in the QMS model.

We have chosen to compare the results of our calculation in the PQMS model with

the corresponding results in the QMS model on a relative temperature scale T/T χ
c . Such

a choice is justified on account of the Ginzburg-Landau effective theory, where absolute

comparison of the characteristic temperatures between two models of the same universality

class can not be made [93]. The condensates start with fixed values σx = 92.4 MeV and

σy = 94.5 MeV at T = 0 as shown in Fig4.1. It is known from the lattice simulations that
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transition from hadronic matter to quark gluon plasma is a analytic and rapid crossover

( [39,45]). The Polyakov loop potential inclusion in the QMS models makes the crossover

in SUL(2)×SUR(2) sector quite sharp as the nonstrange condensate σx changes rapidly in

the transition region. The UA(1) anomaly does not cause any difference in the behavior

of nonstrange condensate and σx remain unchanged in the presence as well as in the

absence of UA(1) anomaly term. The variation of the strange condensate is lot more

smooth on account of the large constituent mass of the strange quark ms = 433 MeV. The

Polyakov loop potential inclusion has a strong effect on the strange condensate variation

also and generates a significant melting of σy in our calculation. The interesting physical

consequences of the earlier and significant melting of the strange condensate will be an

early emergence of mass degeneration trend in the masses of the chiral partners (K, κ)

and (η, f0) and an early setting up of a UA(1) restoration trend on reduced temperature

scale. In the presence of the UA(1) anomaly, σy temperature variation shows a little more

decrease in the respective cases.

Curves starting from the right end of the plot represent the variation of the Polyakov

loop expectation value 〈Φ〉 on the relative temperature scale at zero chemical potential.

Though the thermodynamics of quark gluon plasma reproduced with the Polyakov loop

polynomial potential is found to be in agreement with that of lattice simulations, upto

twice of the critical temperature ( [80,96,99]) at higher temperatures 〈Φ〉 increases above

unity and this is unphysical. In the improved ansatz, logarithmic potential replaces the

higher order terms of Φ and Φ∗ in the polynomial potential by the logarithm of Jacobi

determinant which results from integrating out six nondiagonal Lie algebra directions

while keeping the two diagonal ones [79,81] and thus the logarithmic divergence avoids an

expectation value higher than one. This means that the logarithmic potential describes

the dynamics of gluons more correctly and effectively. Keeping this in mind, we will be

mainly focusing on the discussion of the results in our calculation with the inclusion of

the logarithmic Polyakov loop potential, though the curves of the calculation with the
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Figure 4.2: The mass variations of the chiral partners as functions of reduced temperature

(T/T χ
c ) at zero chemical potential (µ = 0), in the presence of axial UA(1) breaking term,

are plotted for (σ, π) and (a0, η′) in Fig.4.2(a) and the corresponding mass variations,

in the absence of the UA(1) axial breaking term, are plotted in Fig.4.2(b). The dotted

line plots are the mass variations in the pure QMS model, dashed- dotted line plots

represent the PQMS:pol model results, and the solid line plots are the mass variations in

the PQMS:log model.

polynomial Polyakov loop potential will also be shown. The real physical effect of the

Polyakov loop potential inclusion in the QMS model on mesonic excitations, will become

apparent when the results of our calculation in the PQMS models are compared with the

corresponding results in the QMS model.

4.4.2 Meson Mass Variations

We are calculating the masses of the scalar and pseudoscalar mesons at finite temperature

in the presence of the Polyakov loop potential in the QMS model. We have collected the

vacuum value of all the scalar and pseudoscalar meson masses in Table 4.2. The mass

modifications calculated at finite temperature (Eq.4.27) will be added to the vacuum
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masses of Table 4.2. The mass variations of the chiral partners as functions of reduced

temperature, in the presence of axial UA(1) breaking term, are plotted for (σ, π) and (a0,

η′) in Fig.4.2(a) and for (η, f0) and (K, κ) in Fig.4.3(a), while the corresponding mass

variations, in the absence of the UA(1) axial breaking term, are plotted in Fig.4.2(b) and

Fig.4.3(b). Further, since the focus of our investigation is the influence of the Polyakov

loop on the effective restoration of symmetries, we will be comparing the mesonic observ-

ables below and above T χ
c .

In Fig.4.2(a), the chiral partners (σ, π) and (a0, η′) become mass degenerate in

the close vicinity of reduced temperature T/T χ
c = 1. The masses of these particles are

dominated by the contribution from the nonstrange quarks and a rapid crossover in the

nonstrange sector (Fig.4.1) appears as sharper and faster mass degeneration in our cal-

culation in the PQMS model. Thus, the Polyakov loop inclusion in the QMS model

makes a sharper mass degeneration as well as faster occurrence of chiral SUL(2)×SUR(2)

symmetry restoration transition in the nonstrange sector.

In Fig.4.3(a), the presence of the Polyakov loop potential in the QMS model gener-

ates, the similar trend of sharper and faster mass degeneration in the masses of the chiral

partners (η,f0) and (K, κ). Though the mass degeneration of chiral partners (K, κ) with

η does not occur at T/T χ
c = 1, it sets up early in the PQMS models at T/T χ

c = 1.3, while

it occurs at T/T χ
c = 1.5 in the QMS model. In the PQMS models, the intersection point

of the f0 and η masses, occurs early when T/T χ
c = 1.4, while in the QMS model it is

found at T/T χ
c = 1.7. This trend of mass degeneration reflects the effect of the Polyakov

loop potential on chiral symmetry restoration in the strange sector and it results due to

sharper and stronger melting of the strange condensate (Fig.4.1) in the influence of the

Polyakov loop potential in the PQMS models.

The UA(1) breaking generates the mass gap between the two sets of the chiral

partners, (σ, π) and (a0, η′), i.e. mπ = mσ < ma0
= mη′ for T/T χ

C > 1. This mass

gap results due to the opposite sign of the anomaly term (
√

2cσy) in the scalar and
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Figure 4.3: The mass variations of the chiral partners as functions of reduced temperature

(T/T χ
c ) at zero chemical potential (µ = 0), in the presence of axial UA(1) breaking term,

are shown for (η, f0) and (K, κ) in Fig.4.3(a), and the corresponding mass variations, in

the absence of the UA(1) axial breaking term, are shown in Fig.4.3(b). The dotted line

plots are the mass variations in the pure QMS model, dashed-dotted line plots represent

the PQMS:pol model results, and the solid line plots are the mass variations in the

PQMS:log model.
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pseudoscalar meson masses. Hence, it will be reduced due to the melting of the strange

order parameter σy for the higher values of the reduced temperature T/T χ
c > 1. Since the

melting of the strange condensate is stronger and sharper (Fig.4.1) in the PQMS model,

the convergence in the masses of the two sets of chiral partners gets enhanced in these

calculations. Thus the inclusion of the Polyakov loop potential in the QMS model also

effects an early set up of UA(1) restoration trend on the reduced temperature scale.

Now we discuss the variations in the masses of chiral partners when the explicit

UA(1) symmetry breaking term has been taken as zero (c=0). We notice in Fig.4.2(b)

and Fig.4.3(b), again, the same sharper and faster trend of mass degeneration that we

identify as the effect generated by the inclusion of the Polyakov loop potential. The

η′ meson degenerates with the pion in vacuum and stays the same for all temperatures

in Fig.4.2(b) due to the absence of the anomaly term. Further the mass gap between

the chiral partners (σ, π) and (a0, η′) becomes zero and all four of the mesons become

degenerate at T/T χ
c = 1.0. The T/T χ

c numerical value, where the K, κ, and η masses

degenerate in different models, is not influenced by the UA(1) anomaly as expected since

the nonstrange condensate does not have any anomaly dependence. Further, in Fig.4.3(b),

the intersection point of the f0 and η masses in the PQMS models, is obtained when T/T χ
c

is around 1.6 while in the QMS model, this intersection point is found around T/T χ
c = 2.0.

We are also obtaining the mild anomaly dependence of the intersection point of the f0

and η in all the models. Here, we note that the mass of f0 in vacuum increases by about

60 MeV in the absence of anomaly.

The temperature variations of meson masses, in general, result due to the interplay

of the bosonic thermal contributions (decreasing the meson masses) and fermionic quark

contributions (increasing the meson masses). Quark contributions which are negligible at

small temperatures, dominate the mesonic contributions for high temperatures, and this

generates a rising trend in meson masses, which ultimately leads to the mass degeneration

of the chiral partners [64]. In the PQMS models, the one quark and two quark fermionic
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contributions are suppressed due to the presence of the Polyakov loop potential. Since

the chiral phase transition is driven by the fermionic contributions, chiral restoration gets

delayed due to the delay in the deconfinement transition and because of this we get higher

value of the pseudocritical temperature T χ
c in the Polyakov loop augmented quark meson

linear sigma model. The higher value of the T χ
c makes the ratio T/T χ

c small. Hence, in

comparison to the QMS model, the mass degeneration trend among the chiral partners,

in general, sets up early in the PQMS models on the reduced temperature scale.

The variation of meson masses with the polynomial Polyakov loop potential are

similar though a little less sharp than the mass calculations with the logarithmic potential.

The difference appears mainly because of difference in the Polyakov loop expectation

value 〈Φ〉 with these two potentials. The calculations with the polynomial Polyakov loop

potential make sense only for T < 2T χ
c .

The mass variation of scalar σ and f0 show kink around T/T χ
c = 1.8 in the QMS

model while it is seen around T/T χ
c = 1.4 in the PQMS models. The kink generation

results because the meson masses seem to interchange their identities for higher values of

the reduced temperature [64]. In order to have a proper perspective of the kink behavior

in the curves, one has to study and analyze the scalar and pseudoscalar meson mixing

angles.

4.4.3 Meson Mixing Angle Variations

The analysis of axial UA(1) restoration pattern identification will become complete, only

after studying the variation of scalar θS and pseudoscalar θP mixing angles on the relative

temperature scale in Fig.4.4 considering the cases in the presence as well as the absence of

the axial UA(1) explicit symmetry breaking term. The anomaly term has a strong effect

in the pseudoscalar sector in the broken phase for T/T χ
c < 1 while no effect of anomaly

is found in the scalar sector. The nonstrange and strange quark mixing is strong, at

T=0 one gets θP = −5◦, which remains almost constant in the chiral broken phase.
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Figure 4.4: The scalar θS and pseudoscalar θP mixing angle variations with respect to

the reduced temperature (T/T χ
c ) at zero chemical potential (µ = 0) are plotted. We have

given the plots for the QMS, PQMS:log, and PQMS:pol models considering the cases in

the presence as well as absence of the axial UA(1) explicit symmetry breaking term. The

dotted lines show the result with anomaly in the QMS model while the solid big dot lines

show the result without anomaly. In the PQMS:log model, the thick solid lines represent

the variations without anomaly while thin solid lines show the result with anomaly. The

dashed-dotted lines are the variations with anomaly in the PQMS:pol model, while the

dashed lines are the corresponding results in the absence of anomaly.

In the vicinity of T/T χ
c = 1, the θP variations start approaching the ideal mixing angle

θP → arctan 1√
2
∼ 35◦ , the corresponding ΦP = 90◦. Here, ΦP is the pseudoscalar mixing

angle in the strange nonstrange basis (see ref. [64] for details). The smooth approach

towards the ideal mixing in the QMS model, becomes sharper and faster in the PQMS

model calculations due to the influence of the Polyakov loop potential. Further, the ideal

mixing is achieved earlier on the reduced temperature scale in the PQMS models. In the

absence of axial UA(1) anomaly, the pseudoscalar mixing angle remains ideal θP = 35◦



4.4 Effect of The Polyakov Loop on The Restoration of Chiral Symmetry 107

500

700

900

1100

M
as

s
(M

eV
)

M
as

s
(M

eV
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

T/Tχ
cT/Tχ
c

QMS PQMS:pol PQMS:log

ή
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Figure 4.5: Figure4.5(a) shows the mass variations for the physical η, η′ and the

nonstrange-strange ηNS, ηS complex, on the reduced temperature scale (T/T χ
c ) at zero

chemical potential (µ = 0). The masses of the physical σ and f0 anticross and the

nonstrange-strange σNS − σS system masses cross in Figure4.5(b).

everywhere on the reduced temperature scale.

The η and η′ mesons become a purely strange ηS and nonstrange ηNS quark system

as a consequence of the ideal pseudoscalar mixing, which gets fully achieved at higher

values of the reduced temperature. In order to show this, we have plotted in Fig.4.5(a)

the mass variations for the physical η, η′ and the nonstrange-strange ηNS, ηS complex.

Mass formulae mηNS
and mηS

are given in Table 4.2. Again, the smooth mass convergence

trend, of the pure QMS model in mη′ → mηNS
and mη → mηS

approach, becomes sharper

and faster around T/T χ
c = 1 in the influence of the Polyakov loop potential in the QMS

model. The exact mη′ → mηNS
and mη → mηS

mass convergence in the PQMS models,

occurs closer to the value T/T χ
c = 1.

In Fig.4.4 for mσ = 600 MeV at T = 0 scalar mixing angle θS ∼ 19.9◦ in the presence

of anomaly, while θS ∼ 21.5◦ in the absence of anomaly. The θS around T/T χ
c = 1 grows

to its ideal value but for higher temperatures on the reduced temperature scale, in the

chiral symmetric phase, the scalar mixing angle drops down to θS ∼ −51◦ and θS ∼ −54◦

in the respective cases considered with and without anomaly. In the presence of the
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UA(1) symmetry breaking term, this drop happens in the QMS model around T/T χ
c ∼ 1.9

and due to the effect of the Polyakov loop potential the similar drop occurs earlier for

T/T χ
c ∼ 1.5 in the PQMS model. In the close vicinity of these reduced temperatures,

the masses of the physical σ and f0 anticross and the nonstrange - strange (σNS − σS)

system masses cross as shown in Fig4.5(b). It means that after anticrossing the physical σ

becomes identical with the pure strange quark system σS, while the physical f0 becomes

degenerate with the pure nonstrange quark system σNS. A similar drop for the calculations

without anomaly happens at a little higher value on the reduced temperature scale in

respective models.

4.5 Summary

We have calculated the meson masses and mixing angles for the scalar and pseudoscalar

sector in the framework of the generalized 2+1 flavor PQMS model. We have used two

different forms of the effective Polyakov loop potential for the calculation, namely, the

polynomial potential and logarithmic potential. In order to investigate the influence of

Polyakov loop potential on chiral symmetry restoration, these calculations have been

compared with the corresponding results in the QMS model.

The temperature dependence of nonstrange, strange condensates and the Polyakov

loop field Φ at zero chemical potential has been calculated from the gap equation in the

QMS and PQMS models. Comparison of pseudocritical temperatures calculated from the

inflection points of these order parameters indicates, that the chiral transition gets shifted

to the higher temperatures as a result of the inclusion of the Polyakov loop in the QMS

model. We further observe that the variation of the nonstrange condensate in the T/T χ
c

= 0.8 to 1.2 range becomes quite sharp due to the effect of the Polyakov loop potential in

our calculation in PQMS models. We infer from the curves in the PQMS models that the

inclusion of the Polyakov loop potential in the QMS model together with the presence of
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axial anomaly, triggers an early and significant melting of the strange condensate. The

interesting physical consequences of the earlier melting of the strange condensate are an

early emergence of mass degeneration trend in the masses of the chiral partners (K, κ)

and (η, f0) and an early setting up of a UA(1) restoration trend.

The mass degeneration of chiral partners (σ, π) and (a0, η′) in the close vicinity of

T/T χ
c = 1.0 becomes sharper and faster in our calculations in the PQMS model. This

sharpening of the mass variations in the small neighborhood of T/T χ
c = 1 results due to

the stronger and sharper melting of the nonstrange condensate triggered by the presence

of the Polyakov loop potential in the QMS model. Thus, we can corroborate also from

the behavior of the chiral partners that the net effect of the Polyakov loop inclusion in the

QMS model, is to make a sharper occurrence of the chiral SU(2)L × SU(2)R symmetry

restoration transition in the nonstrange sector. Further, the mass degeneration of chiral

partners (K, κ) with η does not occur when the value of the reduced temperature is equal

to one, it sets up early in the PQMS models at T/T χ
c = 1.3, while it occurs at T/T χ

c = 1.5

in the QMS model. In the PQMS models, the intersection point of the f0 and η masses,

occurs early when the reduced temperature T/T χ
c = 1.3, while in the pure QMS model

this intersection point is found at T/T χ
c = 1.7. This trend of mass degeneration emerges,

again as a result of the sharper and stronger melting of the strange condensate in the

influence of the Polyakov loop potential in the PQMS models.

The UA(1) breaking anomaly effect that leads to the mass gap between the two sets

of the chiral partners,(σ, π) and (a0, η′) i.e. mπ = mσ < ma0
= mη′ for T/T χ

C > 1, is

proportional to the strange condensate σy. Since the melting of the strange condensate

is stronger and sharper in the PQMS models, the convergence in the masses of the two

sets of chiral partners will be enhanced in these calculations. Thus, the inclusion of the

Polyakov loop potential in the PQMS models also effects an early set up of the UA(1)

restoration trend on the reduced temperature scale.

The smooth approach of the pseudoscalar mixing angle θP towards the ideal mixing
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in the QMS model, becomes sharper and faster in the PQMS models due to the influence

of the Polyakov loop potential. Further, in comparison to QMS model results, the ideal

mixing on the reduced temperature scale is achieved earlier in the PQMS models. The

θS around T/T χ
c = 1 grows to its ideal value but for higher temperatures on the reduced

temperature scale, in the chirally symmetric phase, the scalar mixing angle drops down

to θS ∼ −51◦. In the presence of UA(1) symmetry breaking term, this drop happens in

the QMS model for T/T χ
c ∼ 1.85 and in the PQMS:log model, the similar drop occurs

for T/T χ
c ∼ 1.5. In the close vicinity of these reduced temperatures, the masses of the

physical σ and f0 anticross and the nonstrange-strange σNS − σS system masses cross.



Chapter 5

Effects of quarks on the dynamics of

Z(3) domain walls and strings in an

effective model near the QCD

deconfining transition

The possibility of existence of topologically non-trivial structures such as Z(3) interfaces

and associated QGP strings in the quark-gluon plasma phase [107] is very exciting. In

the context of relativistic heavy-ion collision experiments (RHICE), it provides the only

system where domain walls and strings arise in a relativistic quantum field theory which

can be investigated under laboratory control. In earlier works [38,106,107], various aspects

of existence of these objects in cosmology as well as in RHICE, have been discussed.

These topological objects arise in the high temperature deconfined phase of QCD due

to spontaneous breaking of the Z(3) global symmetry of finite temperature QCD, where

Z(3) is the center of the SU(3) color gauge group of QCD. Spontaneous breaking of Z(3)

symmetry arises from the non-zero expectation value of the Polyakov loop, l(x), which

is an order parameter for the confinement-deconfinement phase transition for pure gauge
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theory [12, 32]. The interpolation of l(x) between three different degenerate Z(3) vacua

leads to the existence of domain walls (interfaces) together with topological strings when

the three interfaces make a junction. We call these strings as QGP strings [107].

The properties and physical consequences of these Z(3) interfaces have been dis-

cussed in the literature [175,176]. It has also been suggested that these interfaces should

not be taken as physical objects in the Minkowski space [177]. Existence of these Z(3)

vacua becomes especially a non-trivial issue when considering the presence of dynami-

cal quarks. The effect of quarks on Z(3) symmetry and Z(3) interfaces etc. has been

discussed in detail in the literature [178, 179]. It has been argued that the Z(3) symme-

try becomes meaningless in the presence of quarks [178]. Other view-point as advocated

in many research papers, asserts that one can take the effect of quarks in terms of ex-

plicit breaking of Z(3) symmetry [37,110–112,179,180], and we will follow this approach.

In this context we mention the recent work of Deka et al. [181] which has provided a

support for the existence of these metastable vacua from Lattice. Although the tem-

peratures are high (close to 1 GeV) at which the indications of metastable vacuum are

seen in ref. [181], the important point is that these metastable Z(3) vacua seem to exist

at some temperature. Since the presence of quarks lifts the degeneracy of different Z(3)

vacua [37,110–112,179,180], the Z(3) interfaces become unstable and move away from the

region with the unique true vacuum. Thus, with quark effects taken in terms of explicit

symmetry breaking, the interfaces survive as non-trivial topological structures, though

they do not remain solutions of time independent equations of motion. In the context of

early universe as well as in RHICE, the earlier investigations of the dynamics of these Z(3)

walls and QGP strings, have neglected the effects of such an explicit symmetry breaking

due to the presence of quarks [38,106,107]. In the present work, we will incorporate effects

of explicit symmetry breaking from quarks in the study of these objects.

Our numerical simulations in this work aim to investigate how the formation of Z(3)

walls and string network during the initial confinement-deconfinement (C-D) transition
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in RHICE, and their subsequent evolution, gets affected by such explicit breaking of Z(3)

symmetry. As in our earlier work [107], we model the pre-equilibrium stage of phase tran-

sition in our simulation as a quasi-equilibrium stage with an effective temperature which

first rises (with rapid particle production) to a maximum temperature T0 > Tc, where Tc

is the critical transition temperature, and then decreases due to continued expansion of

plasma.

In order to study the confinement-deconfinement (C-D) phase transition in earlier

works for the pure gauge case, we have been using the mean field effective potential of a

polynomial form written in terms of the Polyakov loop expectation value l(x) as proposed

by Pisarski [37,110–112,180]. A linear term in l(x) added to this effective potential in the

mean field framework [182–185] accounts for the explicit breaking of Z(3) symmetry by

the dynamical quarks whose presence act like a background magnetic field [186, 187]. In

our analysis in ref. [107] we had discussed the effects of the explicit symmetry breaking

term in view of the estimates of such a term from ref. [188, 189]. We had found that

the two degenerate vacua (l = ei2π/3, and l = ei4π/3), which get lifted with respect to

the true vacuum ( with l = 1) on account of explicit breaking of Z(3) symmetry in

the QGP phase, have higher free energy than even the hadronic phase (with l = 0) at

temperatures of order 200 MeV. This does not seem reasonable because one would expect

that any of the Z(3) vacua which become meta-stable due to explicit symmetry breaking

should still have lower free energy than the hadronic phase for values of temperature

T > Tc enforcing that the system lies in the deconfining regime for such temperatures.

In any case, the estimates of [188, 189] refer to high temperature regime and may not be

applicable to temperatures near Tc. We thus use following considerations to constrain the

magnitude of the strength of the explicit symmetry breaking term. One approach can be

to limit it such that the metastable vacuum remains lower than the confining vacuum for

temperatures above Tc. We, however, limit explicit symmetry breaking to further lower

values by requiring that the first order nature of the transition remains the same at least
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in some range of temperatures above Tc.

We are using this first order transition model in the present work to discuss the

dynamical details of quark-hadron transition, even though the lattice results show that

quark-hadron transition is most likely a cross-over at zero chemical potential. The quark-

hadron phase transition in the context of relativistic heavy-ion collision experiments is

expected to be of first order for not too small values of the chemical potential which

may be relevant for our study. Further, we are primarily interested in determining the

time dependence of Z(3) interfaces and string network structures, which result due to

explicit breaking of Z(3) symmetry during the phase transition. The formation of these

objects is independent of the nature of phase transition as it results entirely due to finite

correlation length in a fast evolving system, as shown by Kibble [109, 190]. The Kibble

mechanism was first proposed for the formation of topological defects in the context of the

early universe [109,190], but is now utilized extensively for discussing topological defects

production in a wide variety of systems from condensed matter physics to cosmology [191].

Essential ingredient of the Kibble mechanism is the existence of uncorrelated domains of

the order parameter which result after every phase transition occurring in finite time due

to finite correlation length. A first order transition allows easy implementation of the

resulting domain structure especially when the transition proceeds via bubble nucleation.

Keeping this view in mind, we use the potential for Polyakov loop augmented with the

addition of a linear term as in [110–112, 180, 182–184] to model the phase transition.

Further we will be confining ourselves to the temperature/time ranges and such values of

the coefficient of linear term in the effective potential that the first order quark-hadron

transition proceeds via bubble nucleation.

The Z(3) interfaces and strings will develop dynamics in the presence of explicit

symmetry breaking and the interfaces will start moving away from the direction where

true vacuum exists. The strings will also not have three interfaces forming symmetrically

around it, and hence will start moving in some direction. Such motions may cause impor-
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tant differences on the long time behavior. Due to the quark effects, we will get different

nucleation probabilities/rates for the bubbles of meta-stable Z(3) vacua and the true vac-

uum bubbles of the QGP phase. Meta-stable bubbles, being larger in size, may cover a

larger fraction of the physical space and hence may lead to non-trivial consequences. The

effects of quarks will be significant if a closed spherical wall (with true vacuum inside)

starts expanding instead of collapsing. This effect may play an important role in the early

universe case because an expanding closed domain wall has to be large enough such that

the surface energy contribution does not dominate over the volume energy. In the case

of RHICE, the asymmetrical Z(3) walls and associated strings will eventually melt away

when the temperature drops below the deconfinement-confinement phase transition tem-

perature Tc. However they will be leaving their signatures in the form of extended regions

of energy density fluctuations (as well as PT enhancement of heavy-flavor hadrons [192]

We will be estimating these energy density fluctuations which will lead to multiplicity

fluctuations. Our main focus will be in looking for the signals of extended regions of large

energy densities in space-time reconstruction of hadron density. We mention here that

a simulation of spinodal decomposition in Polyakov loop model has been carried out in

ref. [193], where fluctuations in the Polyakov loop are investigated in detail. Our work,

here and in ref. [107] is focused on the formation of extended structures like Z(3) walls,

strings, and extended regions of energy density etc. The present work estimates the effects

of quarks on these structures.

This chapter is organized in the following manner. In section 5.1, we briefly recall

the Polyakov loop model of confinement-deconfinement phase transition and describe the

effective potential proposed by Pisarski [37, 180]. Here we discuss the effects of quarks

in terms of a linear term in the Polyakov loop in the effective potential, which leads to

explicit breaking of the Z(3) symmetry. We discuss different estimates for the strength of

this linear term in the context of situations such that the transition is of first order. In

section 5.2, we discuss the effect of this term on the structure of Z(3) walls and strings,
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and on the structure of bubbles through which the phase transition is completed. Here we

describe our approach to extend the conventional technique of false vacuum decay to this

case where different Z(3) bubbles have different profiles. What is of crucial importance

to our discussion of the formation of these objects is the nucleation rates of the bubbles

of different Z(3) vacua. Since these vacua are no more degenerate, the corresponding

bubbles will in general have different nucleation rates. Section 5.3 discusses nucleation

rates for these different bubbles. One may expect that the metastable Z(3) vacua should

be suppressed as the corresponding bubbles have larger actions. We discuss the very

interesting possibility that despite having larger action the metastable vacua may have

similar (or even larger) nucleation rates as compared to the true vacuum. This can happen

when the pre-exponential factor dominates over the exponential suppression term in the

nucleation rate. This possibility is intriguing as the metastable vacua, being larger in size,

may cover a larger fraction of the physical space and hence may dominate the dynamics

of phase transition.

Section 5.4 presents the numerical technique of simulating the phase transition via

random nucleation of bubbles, which now have different sizes depending on the corre-

sponding Z(3) vacuum inside the bubble. Resulting domain walls may show non-trivial

behavior compared to the case without the quark effects as a closed domain wall, en-

closing the true vacuum, may expand instead of contracting. Rough estimates, with our

parameter choices, show that this is expected when domain wall size exceeds about 50 fm.

The discussion of such a large physical region is more relevant in the context of the early

universe and we plan to study this in a future work. Here we will consider the case relevant

to RHICE with lattice sizes of about (15 fm)2 and study the effects of domain wall and

string formation with temperature evolution as expected in a longitudinally expanding

plasma. These results are presented in section 5.5. We also calculate the energy density

fluctuations associated with Z(3) wall network and strings, as in our earlier work [107],

and discuss important differences for the present case with quark effects. In section 5.6
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we discuss possible experimental signatures resulting from the presence of Z(3) wall net-

work and associated strings especially including the effects of explicit symmetry breaking.

Summary is presented in section 5.7.

5.1 The Polyakov loop model with quark effects

We first briefly recall the Polyakov loop model for the confinement - deconfinement phase

transition. For the case of pure SU(N) gauge theory, the expectation value of Polyakov

loop l(x) is the order parameter for confinement - deconfinement phase transition.

l(~x) =
1

N
Tr(Pexp(ig

∫ β

0

A0(~x, τ)dτ)) (5.1)

Where A0(~x, τ) is the time component of the vector potential Aµ(~x, τ) = Aa
µ(~x, τ)T a,

T a are the generators of SU(N) in the fundamental representation, P denotes path or-

dering in the Euclidean time τ , g is the gauge coupling, and β = 1/T with T being the

temperature. N (= 3 for QCD) is the number of colors. The complex scalar field l(~x)

transform under the global Z(N) (center) symmetry transformation as

l(~x) → exp(2πin/N)l(~x), n = 0, 1, ...(N − 1) (5.2)

The expectation value of l(x) is related to e−βF where F is the free energy of an

infinitely heavy test quark. For temperatures below Tc, in the confined phase, the ex-

pectation value of Polyakov loop is zero corresponding to the infinite free energy of an

isolated test quark. (Hereafter, we will use the same notation l(x) to denote the ex-

pectation value of the Polyakov loop.) Hence the Z(N) symmetry is restored below Tc.

Z(N) symmetry is broken spontaneously above Tc where l(x) is non-zero corresponding

to the finite free energy of the test quark. Effective theory of the Polyakov loop has been

proposed by several authors with various parameters fitted to reproduce lattice results

for pure QCD [37, 79, 81, 110–112, 180, 194]. We use the Polyakov loop effective theory
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proposed by Pisarski [37, 110–112, 180]. The effective Lagrangian density can be written

as

L =
N

g2
|∂µl|2T 2 − V (l) (5.3)

Where the effective potential V (l) for the Polyakov loop, in case of pure gauge theory

is given as

V (l) = (
−b2

2
|l|2 − b3

6
(l3 + (l∗)3) +

1

4
(|l|2)2)b4T

4 (5.4)

At low temperature where l = 0 , the potential has only one minimum. As tem-

perature becomes higher than Tc the Polyakov loop develops a non vanishing vacuum

expectation value l0, and the cos3θ term, coming from the l3 + l∗3 term above leads to

Z(3) generate vacua. Now in the deconfined phase, for a small range of temperature

above Tc, the l = 0 extremum becomes the local minimum (false vacuum) and a poten-

tial barrier exist between the local minimum and global minimum (true vacuum) of the

potential.

To include the effects of dynamical quarks, we will follow the approach where the

explicit breaking of the Z(3) symmetry is represented in the effective potential by inclusion

of a linear term in l [37, 110–112,179,180,182]. The potential of Eq.(5.4) with the linear

term becomes,

V (l) =
(

−b1

2
(l + l∗) − b2

2
|l|2 − b3

6
(l3 + l∗3) +

1

4
(|l|2)2

)

b4T
4 (5.5)

Here coefficient b1 measures the strength of explicit symmetry breaking. The co-

efficients b1, b2, b3 and b4 are dimensionless quantities. With b1 = 0, other parameters

b2, b3 and b4 are fitted in ref. [37, 110–112,180,195] such that that the effective potential

reproduces the thermodynamics of pure SU(3) gauge theory on lattice [182,195–197]. The

coefficient b2 is temperature dependent and given by

b2(r) = (1 − 1.11

r
)(1 +

0.265

r
)
2

(1 +
0.3

r
)
3

− 0.487; r =
T

Tc

; Tc = 182MeV (5.6)
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We use the value of temperature independent coefficients b3 = 2.0 and b4 = 0.6061×
47.5
16

. We choose the same value of b2 for real QCD (with three massless quarks flavors).

b4 is rescaled by factor 47.5
16

to incorporate extra degrees of freedom of QCD relative to

pure SU(3) gauge theory [195]. As temperature T → ∞ the Polyakov loop expectation

value approaches the value x ∼ b3/2 + 1
2

√

b2
3 + 4b2(T = ∞) . To have the normalization

〈l(x)〉 → 1 at T → ∞, the coefficients and field in the effective potential V (l) in Eq.(5.5)

are rescaled as b1(T ) → b1(T )/x3, b2(T ) → b2(T )/x2, b3 → b3/x and b4 → b4x
4, l → l/x.

At temperatures above the critical temperature Tc the potential V (l) has three

degenerate vacua in pure gauge theory (with b1 = 0). The barrier heights between the

local minimum (l(x) = 0) and the three global minima (l = 1, z, z2, corresponding to

θ = 0, 2π/3, 4π/3) are all same. As the value of b1 becomes non zero, the degeneracy of

Z(3) vacua gets lifted. Vacua corresponding to θ = 2π/3 ( l = z) and θ = 4π/3 ( l = z2)

remain degenerate, with energy which is higher than the l = 1 (θ = 0) vacuum. Thus,

l = z and l = z2 vacua become metastable and the l = 1 remains the only true vacuum

(global minimum). Note that l = z and l = z2 are the two metastable vacua in the QGP

phase. Along with these, there is a metastable vacuum at l = 0 (for a small range of

temperature above Tc) which corresponds to the confining phase.

Estimates of explicit Z(3) symmetry breaking arising from quark effects have been

discussed in the literature. In the high temperature limit, the estimate of the difference

in the potential energies of the l = z vacuum, and the l = 1 vacuum, ∆V , is given in

ref. [188, 189] as,

∆V ∼ 2

3
π2T 4 Nl

N3
(N2 − 2) (5.7)

where Nl is the number of massless quarks. If we take Nl = 2 then ∆V ≃ 3T 4.

At T = 200 MeV, the difference between the confining vacuum and the true vacuum

from the effective potential in Eq.(5.5) is about 150 MeV/fm3 while ∆V from Eq.(5.7)

at T = 200 MeV is about four times larger, equal to 600 MeV/fm3. As T approaches

Tc, this difference will become larger as the metastable vacuum and the stable vacuum
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become degenerate at Tc, while ∆V remains non-zero. It does not seem reasonable that

at temperatures of order 200 MeV (with Tc = 182 MeV for Eq.(5.5)) a QGP phase (with

quarks) has higher free energy than the hadronic phase. In any case, the estimates of

Eq.(5.7) were made in high temperature limit and the extrapolation of these to T near Tc

may be invalid. We, thus, use different physical considerations to estimate the strength

of the explicit symmetry breaking term, i.e. the value of parameter b1 in Eq.(5.5), as

follows.

Note that as b1 is increased from zero, the potential tilts such that the barrier

between the metastable confining phase and the true vacuum in the θ = 0 direction

decreases, resulting in the weakening of the first order phase transition. Finally, this

barrier disappears for b1 ≥ 0.11 (at T = Tc = 182 MeV). For b1 ≥ 0.11 there is no range

of temperature where the phase transition is first order. As we mentioned, our approach

is to study the phase transition dynamics via bubble nucleation. We thus choose a small

value of b1 = 0.005 such that the confinement - deconfinement phase transition is (weakly)

first order phase transition for a reasonable range of temperature. The plot of the potential

in θ = 0 direction for b1 = 0.005 is shown in Fig.5.1 for T = 200 MeV. Note that with

b1 > 0 the confining vacuum at l = 0 shifts towards positive real value of l. With this

value of b1, the barrier between the confining metastable vacuum and the true vacuum

exists upto temperature ≃ 225 MeV which allows for a reasonable range of temperatures

to discuss the bubble profiles and their nucleation probabilities. If we choose larger values

of b1, the range of temperature allowing first order transition becomes very narrow and

formation and nucleation of bubbles require fine tuning of time scale.

This, apparently ad hoc, procedure of fixing value of b1 can be given a physical basis

in the following way. Changing the value of coefficient b1 changes the nature of phase

transition from strong first order to a very weak one. One can attempt to interpret it

in the context of QCD phase diagram, drawn in the plane of chemical potential (µ) and

temperature (T ). The QCD phase transition is of strong first order for large µ, it becomes
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Figure 5.1: (a) Plot of V (l) (in MeV/fm3) in θ = 0 direction for T = 200 MeV with

b1 = 0.005. (b) shows the plot near the origin, showing that the confining vacuum has

shifted slightly from l = 0 towards θ = 0 direction.

a weak first order transition with decreasing µ, reaches to critical end point where the

transition is of second order and then becomes crossover at lower µ values. If we assume

that the effective potential in Eq.(5.5) (at least in form) can describe these situations of

varying chemical potential, then it looks natural to assume that changing the value of µ

is interpreted in terms of changing the value of b1 parameter in Eq.(5.5). Thus increasing

µ corresponds to lowering the value of b1 making the phase transition of stronger first

order.

Note that the potential barrier between the confining vacuum and the true vacuum

is maximum when b1 is zero and the first order phase transition is strongest. This should

correspond to the situation of largest µ according to the above argument, presumably

corresponding to the transition at very low temperatures in the QCD phase diagram.

However, with b1 = 0 there is no explicit symmetry breaking. This will not be consistent

with the expectation of explicit symmetry breaking arising from quark effects. Though

one cannot exclude the possibility that the effects of dynamical quarks and that of net

baryon number density may have opposite effects on the value of b1, so that a strong first

order transition at large µ can be consistently interpreted in terms of b1 = 0. However,
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it is simpler to assume that even for the largest value of µ (where the first order curve

intersects the µ axis in the QCD phase diagram), b1 never becomes zero so that explicit

symmetry breaking remains present as expected.

Of course, it is clear that the parameter values used in Eq.(5.5), which were fitted

using lattice results for µ = 0 case, are no longer applicable, if non-zero values of b1

are interpreted in terms of non-zero µ. We will then need to assume that the required

changes in the parameters of Eq.(5.5) for non-zero µ are not large. At the very least

we can say that, even if b1 values we use here cannot be justified, they help us capture

some qualitative aspects of changes in the formation and evolution of Z(3) walls and QGP

strings when quark effects are incorporated.

5.2 Domain walls, strings and bubbles with explicit

symmetry breaking

The explicit symmetry breaking arising from quark effects will have important effects on

the structure of topological objects; Z(3) walls and the QGP strings. It will obviously also

affect the nucleation of bubbles of different Z(3) phases. First we qualitatively discuss

its effects on Z(3) walls and the QGP strings. For non-degenerate vacua, even planar

Z(3) interfaces do not remain static, and move away from the region with the unique true

vacuum. Thus, while for the degenerate vacua case every closed domain wall collapses,

for the non-degenerate case this is not true any more. A closed wall enclosing the true

vacuum may expand if it is large enough so that the surface energy contribution does not

dominate. Similarly it is no more possible to have time independent solution for the QGP

string. Without explicit symmetry breaking a QGP string forming at the intersection

of three symmetrically placed Z(3) walls will be stationary. However, with b1 6= 0 this

is not possible for any configuration of domain walls. In fact this type of situation has

been discussed in the context of early universe for certain types of axionic string models
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[198, 199].

Apart from the structure of these objects, one also expects important changes in the

basic mechanism of formation of these objects during phase transition. Without explicit

symmetry breaking, these objects will form via the Kibble mechanism, as discussed in

detail in [107]. In the presence of explicit symmetry breaking new effects may arise as

discussed in [200, 201] where many string-antistring pairs with small separations (which

means small loops of strings or small closed domain walls in the present context) can

form at the coalescence region of two bubbles. This mode of production of topological

objects arises from the fluctuations of the order parameter and is entirely different from

the basic physics of the Kibble mechanism. As we are using very small value of explicit

symmetry breaking, we do not expect this new mechanism to play an important role here.

However, for larger values of b1, this production mechanism may play an important role

in determining the Z(3) wall and string network resulting from a first order QCD phase

transition.

General picture of the formation of these objects during first order QCD transition

via bubble nucleation was described in detail in ref. [107] for the case without explicit

symmetry breaking and we briefly summarize it below. Subsequently we will discuss the

effects of explicit symmetry breaking on the bubble profiles, their nucleation rates, and

on general dynamics of the phase transition.

We calculate the bubble profile of QGP phase using Coleman’s technique of bounce

solution [113,202] for true vacuum (l = 1) and for metastable vacua (l = z, z2). We seed

these bubbles in the false (hadronic) background randomly with their nucleation rates

calculated at an appropriate value of temperature T > Tc (such that the nucleation rate

is appreciable). The value of the phase of the complex order parameter l is constant inside

a given bubble (to minimize the free energy), while it changes from one bubble to another

randomly (corresponding to the choices of three vacua). The variation of the orientation

of the order parameter from one bubble to another provides the essential ingredient of the
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Kibble mechanism leading to a domain structure and formation of topological objects at

the intersection of domains. We evolve this initial field configuration with the equations

of motion using leap frog algorithm. Bubbles grow with time and coalesce with each

other. The bubbles with same vacuum merge together to form a bigger region of same

vacuum while the bubbles with different vacua remain separated by a wall/interface of high

energy density after coalescence. These are the Z(3) domain walls. These domain walls

are solutions of field equations of motion, interpolating between different Z(3) vacua, and

survive till very long time as QGP evolves. Eventually, either walls collapse/merge away,

or they melt as the temperature of expanding QGP falls below Tc and Z(3) symmetry is

restored.

Spontaneous breaking of Z(3) symmetry in the QGP phase leads to three different

topological domain walls separating the three different Z(3) vacua. The intersection

point of the three domains walls leads to a topological string (the QGP string) which

was discussed in detail in ref. [106]. This string arises as the order parameter l completes

a closed loop around l = 0 in the complex l space when one encircles the intersection

point of the three domain walls in the physical space [106]. Thus, these are topological

strings which exist in the QGP phase and have confining core (with l = 0). As bubbles

of different Z(3) vacua coalesce with each other, a network of Z(3) walls forms and at

the intersection of Z(3) walls, QGP strings form. A detailed investigation of this for the

case without explicit symmetry breaking (i.e. b1 = 0), using 2+1 dimensional simulation

representing the central rapidity region, was carried out in ref. [107].

The above picture of the dynamics of bubble nucleation, coalescence, and formation

and evolution of Z(3) walls and QGP strings will be affected by the presence of explicit

symmetry breaking in important ways. With b1 6= 0, the three Z(3) vacua are no longer

degenerate. The two vacua (l = z, z2) corresponding to θ = 2π/3, 4π/3 get lifted and

become metastable. Only the third one with real expectation value of l remains stable.

The energy difference between the confining vacuum (near l = 0, note that due to b1 6= 0,
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the confining vacuum shifts slightly) and the two metastable Z(3) vacua (with l = z, z2)

is smaller than the energy difference between the confining vacuum and the true vacuum.

This leads to larger bubble size for metastable vacuum than the bubble of true vacuum,

with larger value of associated action (free energy). The energy difference between the

confining vacuum and true or metastable vacuum increases with increase in temperature

so the bubble sizes decreases with increase in temperature.

In the non-degenerate case with non vanishing explicit symmetry breaking the false

vacuum of potential gets shifted towards real axis by an small amount ǫ. This shift

is minimum for temperature closer to Tc and increases as we increase the temperature.

Further, the local maximum of the potential barrier and the metastable vacua are not

in same direction but there is a small angular shift between them. These aspects make

it difficult to apply the Coleman’s technique of bounce solution of a scalar field for the

present case as we will discuss below. First we review the basic features of the first order

transition via bubble nucleation.

A first order phase transition proceeds by the nucleation of a true vacuum bubble in

the background of false vacuum. A true vacuum bubble produced, will grow or collapse

depending on the free energy change of the system. The change in the free energy of the

system because of the creation of a true vacuum bubble of radius R is

F (R) = Fs + Fv = 4πR2σ − 4π

3
R3η (5.8)

Here Fv is the volume energy and Fs is the surface energy of the bubble. For a strong

first order phase transition, one can analytically determine the potential energy difference

η between the confining vacuum and relevant Z(3) vacuum and the surface tension σ from

bounce solution (at least for a scalar field). Minimization of this free energy determines

the critical radius Rc = 2σ
η

. The volume energy of the bubbles with radius R > Rc

dominates over its surface energy and the bubbles expand to transform the false vacuum

to true vacuum. The smaller bubbles (R < Rc) for which surface energy dominates over

the volume energy, shrink and disappear. For strong first order transition, calculation of
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η and σ separately can be done as one is dealing with the thin wall bubbles where the

bubble size is much larger than the thickness of the bubble wall, so that there is clear

separation between the bubble core and the bubble wall. For the parameter values, and

the temperature range of our interest, we will be dealing with thick wall bubbles where

bubble size if of the same order as the bubble wall. For this purpose, the expression

in Eq.(5.8) is not of use, and one has to calculate the bubble profile numerically using

Coleman’s technique of bounce solution and determine its action to calculate nucleation

probabilities.

The theory of semiclassical decay of false vacuum at zero temperature is given in

ref. [113,202] and its extension to finite temperature was given in ref. [203]. The Coleman’s

technique is applicable for real scalar field. To calculate bubble profile for complex scalar

field l (with b1 = 0), in ref. [107], the phase angle θ was taken to be constant by fixing

it in the direction of the relevant Z(3) vacuum, i.e. θ = 0, 2π/3, or,4π/3. This reduced

the problem again to a real scalar field calculation and Coleman’s technique could be

directly applied. (However, there are important issues for the case of complex scalar field

regarding the calculation of nucleation rates which require calculation of determinant of

fluctuations around the bounce solution. A brief discussion of these issues is provided in

ref. [107].

We calculate the bubble profile in 3+1 dimension. However, we evolve it only by the

2 + 1 dimensional field equations. This is because of rapid longitudinal expression which

simply stretches the bubbles in the longitudinal direction, while its transverse evolution

proceeds according to field equations. We neglect the transverse expansion of system

which is certainly a good approximation during early stages of bubble nucleation (during

initial transition from confining phase to the QGP phase with time scales of order 1

fm). At finite temperature, the 3+1 - dimensional theory will reduce to an effectively 3

Euclidean dimensional theory if the temperature is sufficiently high, which we will take

to be the case [107]. For this 3 dimensional Euclidean theory, the bubble profile is the
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solution of the following equation

d2l

dr2
+

2

r

dl

dr
=

g2

2NT 2

∂V

∂l
(5.9)

where r = rE =
√

~x2 + tE
2, subscript E denotes coordinates in the 3 dimensional

Euclidean space. We use fourth order Runge-Kutta method to solve Eq.(5.9). For b1 = 0

, the relevant boundary conditions on l to calculate the bubble profile are l = 0 as r → ∞
and dl

dr
= 0 at r = 0. However, with b1 > 0 this is no longer applicable. This is because

with b1 6= 0 the confining vacuum is shifted from l = 0 along θ = 0 direction by an

amount ǫ. We calculate the bubble profile at T = 200 MeV and at this temperature

ǫ = 0.0045 (see, Fig.5.1(b)). We thus re-write the effective potential in Eq.(5.5) in terms

of a shifted field l′ = l − ǫ. In terms of l′ the confining vacuum again occurs at l′ = 0 and

the standard boundary conditions as discussed above can be applied for solving Eq.(5.9)

for the bounce solution. Hereafter all discussion will be in terms of this shifted field l′

which, for simplicity we will denote as l only.

Another complication occurs in calculating the bubble profile for the metastable Z(3)

vacua. The earlier technique for b1 = 0 case of simply fixing θ = 2π/3 or θ = 4π/3 for

the two respective vacua, thereby reducing the problem to a real scalar field case, cannot

be applied here directly. This is because with b1 6= 0, the maximum of the respective

potential barrier and direction of the corresponding metastable vacuum are not in the

same direction (due to the tilt of the potential resulting from b1 6= 0). However, the

difference between the two directions, i.e. between the l = z vacuum and the direction

of the top of the corresponding barrier, is very small, of order θ = 0.9◦. Same is true

for l = z2 vacuum. We then fix θ along l = z and l = z2 vacua respectively to get the

approximately valid bubble profile using Eq.(5.9). (Both these directions differ slightly

from θ = 2π/3 and θ = 4π/3 now. Note again all this is using the shifted field which we

are again denoting as l.) Recall, that we are calculating 3+1 dimensional critical bubble

and evolving it by 2+1 dimensional equations with the bubble becoming supercritical for

2+1 dim. equations [107]. Further we are studying the situation of rapidly changing
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temperature. Thus exact profile of the critical bubble at the nucleation time is not of

much relevance.

As we had mentioned above, we choose the value of b1 such that the barrier between

the confining vacuum and various Z(3) vacua remains non-zero up to some range of

temperature so that bubble formation can be carried out. We choose b1 = 0.005 with

which the barrier between the confining vacuum and true vacuum exist upto temperature

≃ 225 MeV. The first order phase transition via bubble nucleation is possible only upto

this temperature.

5.3 Nucleation rates for different bubbles

For the finite temperature case, the tunneling probability per unit volume per unit time

in the high temperature approximation is given by [203] (in natural units)

Γ = A e−S3(l)/T (5.10)

where S3(l) is the 3-dimensional Euclidean action for the Polyakov loop field con-

figuration that satisfies the classical Euclidean equations of motion. The dominant con-

tribution to the exponential term in Γ comes from the bounce solution which is the least

action O(3) symmetric solution of Eq.(5.9). For a theory with one real scalar field in three

Euclidean dimensions the pre-exponential factor arising in the nucleation rate of critical

bubbles has been estimated, see ref. [203]. The pre-exponential factor obtained from [203]

for our case becomes

A = T 4

(

S3(l)

2πT

)3/2

(5.11)

As emphasized in [107], the results of [203] were for a single real scalar field and one

of the crucial ingredients used in [203] for calculating the pre-exponential factor was the

fact that for a bounce solution the only light modes contributing to the determinant of

fluctuations were the deformations of the bubble perimeter. Even though we are discussing



5.3 Nucleation rates for different bubbles 129

the case of a complex scalar field l(x), this assumption may still hold as we are calculating

the tunneling from the false vacuum to one of the Z(3) vacua. This assumption may need

to be revised when light modes e.g. Goldstone bosons are present which then also have

to be accounted for in the calculation of the determinant.

A somewhat different approach for the pre-exponential factor in Eq.(5.10) is obtained

from the nucleation rate of bubbles per unit volume for a liquid-gas phase transition as

given in ref. [204–208]. In ref. [107] we had considered these estimates for the nucleation

rate as well as those obtained from Eq.(5.11). It was found that for the parameter values

in Eq.(5.5) and for the temperature/time scales relevant for RHICE, the nucleation rates

obtained using the liquid-gas transition approach of ref. [204–208] were completely neg-

ligible such that even nucleation of one bubble of QGP phase was not likely at RHICE.

As one needs several bubbles to discuss the formation of Z(3) walls and strings, these

estimates clearly cannot be used here. As in ref. [107] we will follow the approach based

on Eq.(5.11) for our case which gave reasonable nucleation rates leading to the possibility

of formation of several bubbles for the case of RHICE. We may mention here that for

nucleation of bubbles of the Polyakov loop l it may anyway be better to use a field theory

approach as in ref. [203] rather than the approach of ref. [204–208] which is more suitable

for the description of phase transition in terms of plasma degrees of freedom. Though, the

parameters of Eq.(5.5) have been fitted with lattice QCD, it is still not very clear whether

the bubbles should be viewed in terms of an order parameter field representing some

background condensate (as the Polyakov loop l), or just different phases of an interacting

plasma.

We thus proceed with the calculation of nucleation rates of the bubbles using

Eqs.(5.10),(5.11). Fig.5.2 shows the profiles of the bubbles for l = 1 and l = z vacua

at T = 200 MeV (l = z2 bubbles has the same profile as the l = z bubble). We note

that l = z bubble is somewhat larger as expected. Using such bubble profiles we calculate

the respective values of the action S3 and estimate the nucleation rates for metastable
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Figure 5.2: Critical bubble profiles for the different Z(3) vacua for b1 = 0.005.

and true vacuum at different temperatures. To calculate number of bubbles for a typical

nucleus nucleus collision, we consider a circle of 8 fm radius in transverse plane with 1

fm thickness in the longitudinal direction. The bubble nucleation for 1 fm time obtained

from the nucleation rate given in Eqs.(5.10), (5.11) leads to about 3 - 5 bubbles in this

region. (The approach followed in ref. [207, 208] gives the nucleation rate of about 10−4

fm−4 in the relevant temperature range, leading to negligible nucleation of bubbles).

One may expect that nucleation rate of the two metastable Z(3) vacua will be smaller

than that of the true Z(3) vacuum due to larger action S3 of the metastable vacuum leading

to exponential suppression. However, here we see an interesting interplay between the

exponential factor e−S3(T )/T (Eq.(5.10)) and the prefactor A as given in Eq.(5.11). If

S3(T ) is much larger than T then the nucleation rate is dominated by the exponential
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factor confirming the above expectation. Thus, the nucleation rate of metastable vacuum

bubble is much smaller than the true vacuum bubble when temperature is closer to Tc.

The nucleation rate of true vacuum bubble and metastable vacuum bubble at temperature

near Tc (at T = 185 MeV) is of the order of ∼ 1.3 × 10−5 fm−4 and ∼ 3.4 × 10−7 fm−4

respectively. As we increase the temperature from Tc = 182 MeV, the nucleation rate of

metastable vacuum bubble increases and becomes almost equal to that of true vacuum

bubble at T ≃ 200 MeV (both rates being about ∼ 2.4 × 10−2 fm−4). This happens

because at these temperatures S3 ≃ T so that the decrease of the exponential term for a

larger S3 (corresponding to the metastable vacuum) is not very significant. However, the

pre-exponential factor A in Eq.(5.11) increases with S3 and this increase of the prefactor

term starts dominating the exponential factor in the nucleation rate equation for T ≥ 200

MeV. For larger temperatures, the nucleation rate for metastable vacuum bubbles become

larger than the true vacuum bubbles. The nucleation rates of metastable and true vacuum

bubble at temperature 215 MeV are of the order of ∼ 1.5 × 10−2 fm−4 and 7.7 × 10−3

fm−4 respectively. At higher temperatures, though the nucleation rate for both bubbles

decrease but the metastable bubble nucleation rate remains larger. This result is very

interesting as it shows that at suitable temperatures the metastable Z(3) vacua will have

larger nucleation rate than the true Z(3) vacuum. Further, these metastable vacuum

bubbles are also of larger size than the bubble of true vacuum. Thus one may expect a

larger fraction of the QGP region to end up in the metastable Z(3) vacuum regions after

the phase transition which may have interesting implications. For example, we will see

below that the metastable vacuum bubble walls have much higher concentration of energy

density than the true vacuum bubble walls. We will use T = 200 MeV for the bubble

nucleation as the nucleation rate are same for both the true vacuum and metastable

vacuum bubbles.
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5.4 Numerical techniques

In this work, we carry out a 2 + 1 dimensional field theoretic simulation of the formation

and evolution of QGP phase bubbles representing the central rapidity region of QGP in

RHICE. Bubbles are nucleated randomly in the confining background. We calculate the

bubble profiles in 3 + 1 dimension and use these profiles for the evolution in 2+1 dimen-

sions. As explained above, this represents transverse evolution of these bubbles by field

equations and their longitudinal evolution is simply given by the Bjorken longitudinal ex-

pansion [209]. We nucleate bubbles at the temperature 200 MeV at which the metastable

and true vacuum bubbles have the nucleation rates of the same order ≃ 0.024 fm−4 so

that the number of metastable and true vacuum bubbles seeded remains almost equal.

Initially the the field l(~x) is zero every where and bubbles of QGP phase are nucleated

over the whole lattice with random choice of their location. (Again, recall that we are

using the shifted field here with b1 6= 0). Bubbles are nucleated with the condition that

one bubble should not overlap with the other. We implement this condition by checking

that whether the region where bubble is going to be nucleated, lies in the false vacuum

or not. If in the region a bubble has seeded already, the next bubbles will be seeded at

some other random position with same conditions. (These techniques for the formation

and evolution of bubbles in a first order transition are the same as used in ref. [210–212].)

We take the initial temperature of the system to be zero (representing initial con-

fining system) and it is taken to increases linearly with time up to T =400 MeV, at

(proper) time τ = τ0 = 1 fm. The bubble nucleation is possible only in the range of

temperature where the transition is of first order. The barrier in between false vacuum

and true vacuum as well as false vacuum and metastable vacua of Eq.(5.5) exist only for

the temperature T = 182 MeV to T ≃ 225 MeV for our chosen value of b1 = 0.005. The

nucleation of bubbles is possible only during the time when temperature linearly increases

from T = Tc = 182 MeV to T ≃ 225 MeV. In order to have a reasonable range of tempera-

tures for bubble nucleation and evolution we nucleate bubbles at T = 200 MeV. Note that
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bubbles should also be nucleated at higher temperatures, say near T = 225 MeV. These

will be smaller in size. Along with such bubbles there will also be subcritical bubble which

shrink fast and disappear due to the surface energy domination. Such bubbles should be

incorporated to account for fluctuations [210–212], but we will ignore these here.

In Relativistic Heavy Ion Collision Experiments the QGP bubbles are nucleated in

the hadronic phase during the time span when temperature changes from the transition

temperature to the maximum temperature T0 = 400 MeV in the pre-equilibrium stage,

hence this should lead to the presence of metastable and true vacuum bubbles of different

sizes at a given time. These bubbles expand in hadronic background with time and

ultimately the whole system gets converted to the QGP phase. We choose to seed the

bubbles at a fix nucleation temperature because the QGP bubbles being nucleated in

hadronic background have zero velocity initially and remain almost static during the

remaining pre-equilibrium time ≃ 0.5 fm when temperature increases from T = Tc = 182

MeV to T = T0 = 400 MeV. The growth of bubbles nucleated at different time and the

increase in their velocity until the temperature reaches to 400 MeV from the nucleation

temperature, are negligible in this short time span. Therefore our choice, for simplicity to

seed bubbles at fixed temperature is a reasonable approximation. We choose T = 200 MeV

as at this temperature the true vacuum and the metastable vacuum bubbles have almost

equal nucleation rate and both kind of bubbles are possible with equal probability. This

provides us a better opportunity to study the dynamics of metastable vacuum bubbles

together with that of true vacuum bubbles and its effect on true vacuum bubbles evolution.

After nucleation, bubbles are evolved by time dependent equation of motion in the

Minkowski space [213]

∂2lj
∂τ 2

+
1

τ

∂lj
∂τ

− ∂2lj
∂x2

− ∂2lj
∂y2

= − g2

2NT 2

∂V (l)

∂lj
; j = 1, 2 (5.12)

with
∂lj
∂τ

= 0 at τ = 0 and l = l1 + il2.

We take a 2000× 2000 lattice with physical size 16 fm x 16 fm. (as appropriate for,
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say Au-Au collision at RHICE). We take this lattice as the transverse plane of the QGP

formed in a central collision and consider the longitudinal extension of 1 fm in the mid

rapidity region. The evolution of metastable and true vacuum bubbles with different Z(3)

vacuum inside gives rise to the domain wall and string networks. The domain walls form

when the two bubbles of different Z(3) vacua coalesce with each other. The intersection

of three domain walls forms a string. In our simulation these objects are formed in the

transverse plane. Hence, the domain walls appear as curves while the cross section of

three dimensional strings appear as vortices.

In the relativistic heavy ion collision, the thermalization time for a Au - Au collision

at 200 MeV is expected to be τ ≤ 1 fm time. As mentioned above, we model the system

in our simulation such that there is a linear increase in temperature in the pre-equilibrium

stage. It starts from T = 0 and reaches to a maximum value of T = 400 within time

τ = 0 to τ = τ0 = 1 fm. After that it decreases according to Bjorken’s scaling due to the

continued expansion in longitudinal direction [209]

T (τ) = T (τ0)
(τ0

τ

)1/3

(5.13)

In our numerical simulation, we evolve the field using the periodic, fixed, and free

boundary conditions for the square lattice. We present our results for the free boundary

condition case where the field (waves) crossing the boundary during evolution go out

permanently. This condition minimizes effects due to boundary points in the evolution

of field (field reflection from boundary points in fixed boundary condition and mirror

reflection as in periodic boundary condition). We use additional dissipation in a thin

strip of ten points near the boundary to reduce the (minor) boundary effects in the use of

free boundary conditions. For representing the situation of heavy ion collision experiments

we nucleate bubbles within a circular region of 8 fm radius on the lattice of physical size

16 fm x 16 fm. With ∆x = 0.008 fm, we use ∆t = ∆x/
√

2 and ∆t = 0.9∆x/
√

2 to

satisfy the Courant stability criteria. The stability and accuracy of the simulation is

checked using the conservation of energy during simulation. The total energy fluctuations
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remains few percent without any net increase or decrease of total energy in the absence

of dissipative l̇ term in Eq.(5.12) as well as any other dissipation for periodic and fixed

boundary condition.

5.5 Results of the simulation

(a) (b) (c)

(d) (e) (f)

Figure 5.3: (a) and (b) show plots of profiles of l at τ = 0.5 fm and 1.5 fm respectively

showing expansion of bubbles. (c),(d) show the plots of the phase of l at τ = 0.5 and 3.2

fm. (e) and (f) show the surface plots of energy density (in GeV/fm3) at τ = 0.75 and

2.6 fm showing very different energetics of the walls of the true vacuum bubbles and the

metastable vacuum bubbles.

General picture of the phase transition remains similar to the case of b1 = 0 discussed

in [107], but there are important differences. We show in Fig.5.3 the various stages of the

formation and evolution of different Z(3) bubbles and subsequent formation and evolution
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of Z(3) walls and strings. In order that one can compare with the case discussed in

ref. [107] for b1 = 0 case, we present in Fig.5.3 the case of 5 bubbles in a 16 fm × 16

fm region, similar to the case discussed in ref. [107]. Fig.5.3(a) shows the initial plot of

l(x) showing nucleation of 5 bubbles at τ = 0.5 fm. Fig.5.3(b) shows the plot of l(x)

at τ = 1.5 fm showing the expansion of bubbles. Fig.5.3(c) shows the plot of the phase

of l(x) at the initial stage and Fig.5.3(d) shows the phase plot at τ = 3.2 fm showing

clearly the formation of domain walls and a QGP string near (x=8 fm,y=9 fm). The

important difference in the dynamics of true vacuum bubbles and the metastable vacuum

bubbles can be seen in the surface plots of energy density (in GeV/fm3) at τ = 0.75 fm

(Fig.5.3(e)) and at τ = 2.6 fm (Fig.5.3(f)). Note that in all the figures we plot energy

density in GeV/fm3 as we are considering the central rapidity region with thickness of

about 1 fm. With similar energy densities to begin with, by the time τ = 2.6 fm, the

energy density at the walls of bubbles of true vacuum is much smaller than the energy

density of walls for the false vacuum bubbles.

5.5.1 Variance of energy density

General evolution of bubble coalescence and formation of walls and strings are similar to

those shown in ref. [107] for the b1 = 0 case and we do not show those here. As we are

discussing the case of relatively small value of b1 here we do not expect dramatic effects

arising from explicit symmetry breaking (e.g. from the different mechanism of production

of topological objects as demonstrated in ref. [200, 201]). However, it is still important

to see if there are any qualitative differences between the b1 = 0 case and b1 6= 0 case.

We find an interesting difference in the plot of the variance of energy density between

the two cases. We calculated the variance of energy density ∆ε at each time stage to

study how energy fluctuations change during the evolution. In Fig.5.4 we show the plot

of ∆ε/ε as a function of proper time. Here ε is the average value of energy density at

that time stage. The energy density ε decreases due to longitudinal expansion, hence we
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Figure 5.4: (a) and (b) show plots of the ratio of variance of energy density ∆ε and the

average energy density ε as a function of proper time for b1 = 0.005 case and b1 = 0 case

respectively.

plot this ratio to get an idea of relative importance of energy density fluctuations. For

comparison we reproduce such a plot from ref. [107] for b1 = 0 case in Fig.5.4(b). We note

that fluctuations have an overall tendency to decrease in Fig.5.4(b) while there seems no

such decrease in Fig.5.4(a) for the case with quark effects. Note also the presence of a

peak for small times near τ ≃ 3 fm in b1 > 0 case. There is no such sharp peak for b1 = 0

case. Remaining features of the plot can be interpreted as follows. The initial rapid drop

in ∆ε/ε is due to large increase in ε during the heating stage upto τ = 1 fm, followed by a

rise due to increased energy density fluctuations during the stage when bubbles coalesce

and bubble walls decay, as expected. The peak in the plot near τ = 10 fm when T drops

below Tc should correspond to the decay of domain walls and may provide a signal for

the formation and subsequent decay of such objects in RHICE.

The small peak at short times for b1 > 0 case seems to arise from the difference

between the collisions of metastable vacuum bubbles and true vacuum bubbles and hence

seems of qualitative importance. We have checked for various situations, different number

of bubbles etc. and this peak is always present. Fig.5.5 shows different cases, for number

of bubbles ranging from 4 to 10 and we see the presence of this peak in all these cases.
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Figure 5.5: Plots of the ratio ∆ε/ε as a function of proper time for b1 = 0.005 case for

different number of bubbles. (a) - (f) show curves for number of bubbles = 4,5,5(different

realization),7,8, and 10, respectively. Note the presence of small peak for short times in

all these cases. Also note that there is no overall decrease for large times as was seen in

Fig.5.4(b) for b1 = 0 case.
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5.5.2 Wall velocity

(a)

(c) (d)

(b)

Figure 5.6: Contour plot of energy density at (a) τ = 7.2 fm and (b) at τ = 7.8 fm.

Wall portion near x=14 fm, y=12 fm in (a) is seen to move towards left in (b) with large

velocity. (c) and (d) show the profile plots of l0 − l at these stages confirming the motion

of the domain wall.

An important difference we note is in the wall velocity. We have estimated wall

velocities for the domain walls separating the two degenerate metastable Z(3) vacua, and

the metastable and the true vacuum. We find that the typical velocity of the domain walls
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(a)

(c) (d)

(b)

Figure 5.7: A different realization of 5 bubble nucleation. Contour plot of energy density

at (a) τ = 9.6 fm and (b) at τ = 10.9 fm. Wall portion near x=9 fm, y=8 fm in (a) is

seen to move towards lower right in (b) with large velocity. (c) and (d) show the profile

plots of l0 − l at these stages confirming the motion of the domain wall.

separating the two (degenerate) metastable vacua is 0.7 - 0.8, similar to that obtained in

ref. [107] for b1 = 0 case. This is certainly expected. However, the velocity of domain

wall separating the true vacuum and the metastable vacuum is found to be much larger

in many cases, close to 1. Very accurate wall velocity estimates are not possible due to

uncertainties in identifying wall location (with dynamically evolving wall profile). We
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show in Fig.5.6 and Fig.5.7 two different cases of 5 bubble nucleations (with different

locations and phases inside the bubbles). Contour plots of energy density are shown in

Fig.5.6(a) and Fig.5.6(b) at τ = 7.2 and 7.8 fm (temperature at these stages is 208 and

201 MeV respectively). The portion of the domain wall near x = 14 fm, y = 12 fm in

Fig.5.6(a) is seen to move towards left in Fig.5.6(b) with v ≃ 1. This is confirmed by

the profile plot of l0 − l in Figs.5.6(c) and 5.6(d) at same stages, τ = 7.2 and 7.8 fm

respectively.

Fig.5.7 shows a different case of 5 bubble nucleation. (a) and (b) show the contour

plots of energy density at τ = 9.6 and 10.9 fm. Temperature at these stages is T =

188 and 180 MeV (note, this is slightly below Tc). The location of wall in (a) is near

x=9 fm,y=8 fm and this is seen to move towards lower right corner. This wall motion is

confirmed by the profile plots of l0 − l in Figs.5.7(c), 5.7(d).

5.5.3 Rapid Collapse and Re-expansion

Perhaps the most dramatic difference between the present case with b1 6= 0 and the

previous case [107] of b1 = 0 is seen in Fig.5.8 and Fig.5.9. This shows the case of

nucleation of 10 bubbles in a region of 22 fm × 22 fm. Though both of these numbers are

somewhat large for RHICE, at least the size may not be too unrealistic for later stages

of plasma evolution. Fig.5.8 shows a time sequence of the contour plot of energy density

at τ = 6.44, 8.20, 9.94, 11.34, 12.74, and 14.5 fm. The temperature at these stage is T =

215.0, 198.4, 186.0, 178.0, 171.2, and 164.1 MeV respectively. Note that T is below Tc

in (d) and after that. A closed domain wall is seen in the lower left region in (a) with

x = 1-6 fm and y = 5-11 fm. This wall collapses rapidly by τ = 9.94 fm. The collapse

velocity again is seen to be close to v ≃ 1. Interesting dynamics is seen for later plots

when an expanding front is seen from the point of collapse. It rapidly expands, again

with v ≃ 1 all the way until last stages in (f). Presence of such an energetic expanding

front is confirmed by the surface plots of energy density at the same stages as shown in
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(a) (c)

(d) (e)

(b)

(f)

Figure 5.8: A case of 10 bubbles in 22 fm × 22 fm region. This figure shows a time sequence

of contour plot of energy density showing rapid collapse of a domain wall (towards lower

left) and subsequent rapid expansion of a circular front.

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Surface plots of energy density for various stages shown in Fig.5.8
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Fig.5.9. Due to very large velocity and sharp profile of the expanding front it may well

represent a shock front in the plasma.

5.6 Possible experimental signatures of Z(3) walls

and strings with explicit symmetry breaking

The Z(3) wall network and associated strings exist only during the QGP phase, melting

away when the temperature drops below Tc. However, they may leave their signatures in

the distribution of final particles due to large concentration of energy density in extended

regions as well as due to non-trivial scatterings of quarks and antiquarks with these

objects. The extended regions of high energy density resulting from the domain walls and

strings are clearly seen in our simulations and some extended structures/hot spots also

survive after the temperature drops below the transition temperature Tc. This is just as

was seen in the case of b1 = 0 case in ref. [107]. We again mention that even the hot spot

resulting from the collapse of closed domain walls in our simulations will be stretched in

the longitudinal direction into an extended linear structure (resulting from the collapse

of a cylindrical wall). These may be observable in the analysis of particle multiplicities.

This is important especially in respect to the ridge phenomenon seen at RHIC [214–216].

In view of lasting extended energy density fluctuations from Z(3) walls, it is of interest to

check if these structures can account for the ridge phenomenon.

Our results show interesting pattern of the evolution of the fluctuations in the energy

density which show that these fluctuations do not decrease with time which was the case

for b1 = 0 case studied in ref. [107]. Especially important may be the presence of small

additional peak of short times for b1 > 0 case. Fluctuations near the transition stage

may leave direct imprints on particle distributions. However, dileptons or direct photons

should be sensitive to these fluctuations, and these may give a time history of evolution

of such energy density fluctuations during the early stages. In such a case the existence
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of small peak for b1 > 0 case may be observable.

A dramatic difference between the case of b1 = 0 and b1 6= 0 is seen in Figs.5.8, 5.9.

Collapse of a closed wall is expected and was seen for b1 = 0 case also, though the wall

speed here is much higher, close to 1. In general we have seen here that walls separating

true vacuum from metastable vacuum have speeds much higher than seen for the case

of b1 = 0. What is qualitatively new in the present case is rapidly expanding circular

front after the collapse of the wall. This front continues its speed and shape even when

temperature drops below Tc. Possibility of such expanding circular (cylindrical, with

longitudinal expansion) energetic fronts should have important implications on particle

momenta, especially on various flow coefficients.

Another important difference due to b1 > 0 is expected in investigating the inter-

actions of quarks and antiquarks with domain walls. Earlier we had argued [107] that

collapsing Z(3) walls will lead to concentration of quarks (due to small non-zero chemical

potential in RHICE) in small regions [38]. This will lead to enhancement of baryons,

especially at high PT [192] due to PT enhancement of quarks/antiquarks as they undergo

repeated reflections from a collapsing wall. (There is also a possibility of spontaneous

CP violation in the scattering of quarks and antiquarks from Z(3) walls, see ref. [217].)

However, with b1 > 0, there may also be a possibility that some Z(3) wall may actually

expand (the one enclosing the true vacuum and with sufficiently large size). In that case it

will have opposite effect and baryon number will be more diffused. Even the enhancement

of PT may happen for some domain walls (those which enclose metastable vacuum) while

the expanding closed walls (enclosing the true vacuum) should lead to the redshift of the

momenta for the enclosed quarks. All these issue need to be explored with more elaborate

simulations. In this context the difference in the wall velocity between different types of

Z(3) walls is of importance. While studying the effects of quark reflections from these

walls and associated modification of PT spectrum, wall velocity is of crucial importance

and the presence of different types of collapsing Z(3) walls may lead to bunches of hadrons
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with different patterns of modified PT spectra.

5.7 Summary

We have studied the effects of explicit symmetry breaking arising from quark effects on

the formation and evolution of Z(3) interfaces and associated strings. Explicit symmetry

breaking makes Z(3) vacua non-degenerate with two vacua l = z, z2 remaining degenerate

with each other but having higher energy than the true l = 1 vacuum. Thus l = z, z2 vacua

become metastable. We have used an effective potential for the Polyakov loop expectation

value l(x) from ref. [37,110–112,180,182] with incorporation of explicit symmetry breaking

in terms of a linear term in l and have studied the dynamics of the (C-D) phase transition

in the temperature/time range when the first order transition of this model proceeds

via bubble nucleation. This allows for only relatively small explicit symmetry breaking

(characterized by the strength b1 of the linear term in l). We again emphasize that,

though our study is in the context of a first order transition, its results are expected to

be valid even when the transition is a cross-over. This is because our focus is only on the

formation of topological objects whose formation (via Kibble mechanism) only depends

on the formation of a domain structure and not crucially on the dynamics of the phase

transition. Though, our statements about the energetics of bubble walls etc. clearly apply

only for a first order transition.

An important result we have discussed in this work relates to expected relative

importance of the metastable Z(3) vacua. Due to higher energy of these vacua one would

expect that bubbles with these vacua should form with relatively lower probability (even

with small values of b1 we have used). However, we find interesting results due to nontrivial

interplay of the pre-exponential factor and the exponential term in the nucleation rate for

the bubbles. While the exponential term leads to a decrease in the rate for metastable

vacua due to larger action, the pre-exponential factor leads to an increase in the rate for
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larger action. For a suitable range of temperatures, which for our choice of parameter

values lies between T = 200 MeV to T = 225 MeV, the metastable vacuum bubbles

have the same or larger nucleation rate compared to the true vacuum bubbles. As the

metastable vacuum bubbles also have larger sizes it means that a larger fraction of QGP

phase may get converted to the metastable Z(3) vacua than to the true Z(3) vacuum. The

dynamics of these domains being so different its effects on the evolution of plasma and

various signals may be important.



Chapter 6

Conclusions

The presentation of this thesis started with the introduction of the quarks, hadrons and

the quark-hadron transition in chapter one. The strong interaction properties were briefly

outlined and a brief description of the strong interaction theory called Quantum Chro-

modynamics (QCD), has been given. The chiral symmetry and center Z(3) symmetry

of strong interaction were briefly introduced. Situations of phase transitions and con-

structions of phase boundaries were briefly explained. The concept of order parameter

was introduced. Current experimental and theoretical initiatives for the investigation of

quark hadron transition, were briefly outlined.

In the next chapter, we presented the mathematical description of the QCD La-

grangian, its symmetries and the finite temperature formulation of statistical QCD in a

medium. Mathematical structures of chiral symmetry and centre Z(3) symmetry were

discussed. Explicit as well as spontaneous breakdown of these symmetries were also dis-

cussed. Chiral condensate as an order parameter for the chiral transition and Polyakov

loop as an order parameter for confinement-deconfinement transition, were discussed. We

briefly described the Landau-Ginzburg analysis of the chiral transition in the framework

of linear sigma model. We gave a discussion of the phase structure of QCD. We discussed

the inputs from lattice QCD simulations and effective model studies. The experimental
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signatures for QCD phase transition also got discussed.

The presentation of about two third of the total volume of research work in this

thesis, is centered around effective model building where the features of spontaneous

breakdown of both the chiral symmetry as well as the center Z(3) symmetry of QCD has

been incorporated in one single model. We have combined, the chiral condensate and the

Polyakov loop simultaneously to the quark degrees of freedom in the SUL(2) × SUR(2)

and SUL(3) × SUR(3) linear sigma models. We thus constructed Polyakov quark meson

models for two flavours and three flavours of quark. These models have incorporated the

symmetries and symmetry breaking scenarios of QCD in a realistic way. These are QCD

like theories which can give a realistic description of quark hadron phase transition. We

have investigated in detail the phase structure, phase diagram and the interplay of chiral

symmetry restoration and confinement - deconfinement phase transition.

We improved the effective potential of Polyakov loop extended Quark Meson Model

(PQM) for the two quark flavour by considering the contribution of fermionic vacuum loop

and explored the phase structure and thermodynamics of the resulting PQMVT model

(Polyakov Quark Meson Model with Vacuum Term) in detail at nonzero as well as zero

chemical potentials. We investigated the interplay of chiral symmetry restoration and

connement-deconnement transition with the proper accounting of renormalized fermionic

vacuum term in chapter three. We obtained, the QCD phase diagram together with the

location of critical end point (CEP) in µ, and T plane in both the models PQMVT and

PQM. The PQMVT model analysis was compared with the calculations in PQM model

in order to bring out the effect of fermionic vacuum term on the thermodynamics of

the physical observables [105]. We explored the sensitivity of the phase structure/phase

diagram on the choice of Polyakov loop potential parameterization also. This sensitivity

has also been explored for the different chosen values of the sigma meson mass. We used

logarithmic Polyakov loop potential as well as polynomial Polyakov loop potential in our

calculations.
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We conclude, in our PQMVT model calculation with logarithmic Polyakov loop po-

tential, that the chiral crossover transition for the realistic case of explicit chiral symmetry

breaking, becomes quite soft and smooth at µ = 0 in PQMVT model due to the proper

accounting of the fermionic vacuum term contribution in the PQM model because the

corresponding phase transition at µ = 0 turns second order in the chiral limit of massless

quarks. The chiral order parameter σ derivative has a broad double peak structure in its

temperature variation at µ = 0, and this structure is absent in the temperature variation

of Polyakov loop derivative. Thus we conclude that the Polyakov loop (C-D) crossover

transition at µ = 0 is quite rapid and sharp than the chiral crossover transition which

is very smooth. In a large range of µ, T values (from µ = 0 and T = 186.5 MeV to

µ = 294.7 MeV and T = 84 MeV), the chiral transition remains a crossover and it keeps

on becoming sharper with the increase in chemical potential till the point of second order

transition at µCEP is reached in the PQMVT model. Since the chiral transition in the

massless quark limit is first order at zero chemical potential, the corresponding crossover

transition for the realistic case has been found to be quite sharp and rapid in the PQM

model without any vacuum term. Further the chiral transition remains a crossover in

quite a small range only from µ = 0 and T χ
c = 171.5 MeV to µ = 81 MeV and T χ

c = 167

MeV in the PQM model calculations. Here T χ
c is pseudocritical temperature for chiral

transition.

Instead of logarithmic form, if we take polynomial form for Polyakov loop potential

in our PQMVT model calculation, the temperature derivatives of Polyakov loop field Φ

and its conjugate Φ∗ has distinct non coincident double peak structure in the chemical

potential range µ > 200 MeV to µCEP = 293.6 MeV and we do not find any double peak

structure near µ = 0 in the temperature derivative of σ field.

The phase diagram together with the location of critical end point (CEP) has been

obtained in µ, and T plane for mσ = 500 MeV in both the models PQMVT and PQM

with logarithmic Polyakov loop potential. The structure of the phase diagram is found
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to be very sensitive to the chosen value of sigma meson mass. For the value mσ = 600

MeV, the transition becomes a crossover in the entire µ and T plane for the PQMVT

model calculation. We do not find a coincident chiral and confinement-deconfinement

crossover transitions in the PQMVT model as the chiral crossover transition line lies

above the crossover line for the confinement-deconfinement transition. Our results of the

PQMVT model calculation with logarithmic Polyakov loop potential, are in tune with

the standard scenario where chiral symmetry restoration occurs at a higher pseudocritical

temperature than the confinement-deconfinement transition temperature. The critical

end point (CEP) gets shifted close to the chemical potential axis (µCEP = 294.7 MeV,

TCEP = 84.0 MeV ) in PQMVT model because the chiral crossover transition at µ = 0

emerging from a second order phase transition in the chiral limit, becomes quite soft and

smooth due to the effect of fermionic vacuum contribution in the effective potential and

further it remains a crossover for large values of the chemical potential. The chiral and

confinement-deconfinement crossover transition lines are coincident in the PQM model

and its’ CEP gets located near the temperature axis at µCEP = 81 MeV and TCEP = 167

MeV because the chiral crossover at µ = 0, having the background of a first order phase

transition in the chiral limit, is quite rapid and sharp and soon it gets converted to a first

order phase transition as we increase the chemical potential.

The sensitive dependence of the phase structure and location of the critical end point,

has also been explored by calculating another phase diagram for mσ = 500 MeV taking

polynomial choice of Polyakov loop potential in the PQMVT model. We conclude that

the chiral crossover transition line, lies above the deconfinement crossover lines for the Φ

and Φ∗ fields in the chemical potential range µ = 0 to µ = 210−225 MeV. Deconfinement

crossover transition lines for fields Φ and Φ∗, cross the chiral crossover phase boundary

around µ ≈ 210 MeV and get located above it from µ > 210 MeV to µ = µCEP = 293.6

MeV. Chiral symmetry restoration occurs earlier than the deconfinement transition in

this region of the phase diagram. Thus we are finding a quarkyonic phase like region of
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confinement with chiral symmetry in our PQMVT model calculations with polynomial

choice for Polyakov loop potential.

In the next work presented in chapter four, we investigated the influence of Polyakov

loop on meson mass and mixing angle calculations in scalar and pseudoscalar sector of

mesons, in the framework of generalized 2 + 1 flavour quark meson linear sigma model

enlarged with the inclusion of the Polyakov loop [101]. We derived the modification of me-

son masses due to the q̄q contribution in the presence of Polyakov loop. We studied how

the inclusion of Polyakov loop, qualitatively and quantitatively affects the convergence of

the masses of chiral partners, when the parity doubling takes place as the temperature is

increased through Tc and the partial restoration of chiral symmetry is achieved. Further,

we investigated the effect of Polyakov loop on the interplay of SUA(3) chiral symmetry

and UA(1) symmetry restoration. We used two different forms of the effective Polyakov

loop potential for the calculation, namely, the polynomial potential and logarithmic po-

tential. In order to investigate the influence of Polyakov loop potential on chiral symmetry

restoration, these calculations were compared with the corresponding results in the quark

meson sigma (QMS) model.

Comparison of pseudocritical temperatures, calculated from the inflection points of

the temperature variation of order parameters σ, Φ and Φ∗ indicates, that the chiral tran-

sition got shifted to the higher temperatures as a result of the inclusion of the Polyakov

loop in the QMS model. We further observed that the variation of the nonstrange con-

densate in the T/T χ
c = 0.8 to 1.2 range becomes quite sharp due to the effect of the

Polyakov loop potential in our calculation in PQMS models. We infer from the curves in

the PQMS models that the inclusion of the Polyakov loop potential in the QMS model

together with the presence of axial anomaly, triggers an early and significant melting of

the strange condensate. The interesting physical consequences of the earlier melting of

the strange condensate are an early emergence of mass degeneration trend in the masses

of the chiral partners (K, κ) and (η, f0) and an early setting up of a UA(1) restoration
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trend.

The mass degeneration of chiral partners (σ, π) and (a0, η′) in the close vicinity

of T/T χ
c = 1.0 on the reduced temperature scale, becomes sharper and faster in our

calculations in the PQMS model. This sharpening of the mass variations in the small

neighborhood of T/T χ
c = 1 results due to the stronger and sharper melting of the non-

strange condensate triggered by the presence of the Polyakov loop potential in the QMS

model. Thus, we conclude also from the behavior of the chiral partners that the net effect

of the Polyakov loop inclusion in the QMS model, is to make a sharper occurrence of

the chiral SU(2)L × SU(2)R symmetry restoration transition in the nonstrange sector.

Further, the mass degeneration of chiral partners (K, κ) with η does not occur when the

value of the reduced temperature is equal to one, it sets up early in the PQMS models

at T/T χ
c = 1.3, while it occurs at T/T χ

c = 1.5 in the QMS model. In the PQMS models,

the intersection point of the f0 and η masses, occurs early when the reduced temperature

T/T χ
c = 1.3, while in the pure QMS model this intersection point is found at T/T χ

c = 1.7.

This trend of mass degeneration emerges, again as a result of the sharper and stronger

melting of the strange condensate in the influence of the Polyakov loop potential in the

PQMS models.

The inclusion of the Polyakov loop potential in the PQMS models also effects an

early set up of the UA(1) restoration trend on the reduced temperature scale.

The smooth approach of the pseudoscalar mixing angle θP towards the ideal mixing

in the QMS model, becomes sharper and faster in the PQMS models due to the influence

of the Polyakov loop potential. Further, in comparison to QMS model results, the ideal

mixing on the reduced temperature scale is achieved earlier in the PQMS models.

We have developed a new and different approach for investigating the dynamics of

quark hadron phase transition. This work completes the last chapter (chapter five) of the

thesis. In this approach, we exploited the non trivial topology of spontaneously broken,

center Z(3) symmetric vacuum of pure gauge QCD. This non trivial topology, leads to



153

the exciting possibility of topologically non-trivial structures such as Z(3) domain walls

and associated QGP strings in the quark-gluon plasma phase [107]. Relativistic heavy-ion

collision experiments (RHICE), give us an opportunity where domain walls and strings

arising in a relativistic quantum field theory, can be investigated under laboratory control.

In earlier works [38,106,107], various aspects of existence of these objects in cosmology as

well as in RHICE, have been discussed. These topological objects arise in the high temper-

ature deconfined phase of QCD due to spontaneous breaking of the Z(3) global symmetry

of finite temperature QCD, where Z(3) is the center of the SU(3) color gauge group of

QCD. Spontaneous breaking of Z(3) symmetry arises from the non-zero expectation value

of the Polyakov loop, l(x), which is an order parameter for the confinement-deconfinement

phase transition for pure gauge theory [12, 32]. The interpolation of l(x) between three

different degenerate Z(3) vacua leads to the existence of domain walls (interfaces) to-

gether with topological strings when the three interfaces make a junction. We call these

strings as QGP strings [107].

In the present work, we studied the effects of explicit symmetry breaking arising from

quark effects on the formation and evolution of Z(3) interfaces and associated strings.

Explicit symmetry breaking makes Z(3) vacua non-degenerate with two vacua l = z, z2

remaining degenerate with each other but having higher energy than the true l = 1

vacuum. Thus l = z, z2 vacua become metastable. We have used an effective potential for

the Polyakov loop expectation value l(x) from ref. [37,110–112,180,182] with incorporation

of explicit symmetry breaking in terms of a linear term in l and have studied the dynamics

of the (C-D) phase transition in the temperature/time range when the first order transition

of this model proceeds via bubble nucleation. This allows for only relatively small explicit

symmetry breaking (characterized by the strength b1 of the linear term in l).

The Z(3) wall network and associated strings exist only during the QGP phase,

melting away when the temperature drops below Tc. However, they may leave their

signatures in the distribution of final particles due to large concentration of energy density
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in extended regions as well as due to non-trivial scatterings of quarks and antiquarks with

these objects. The extended regions of high energy density resulting from the domain

walls and strings are clearly seen in our simulations and some extended structures/hot

spots also survive after the temperature drops below the transition temperature Tc. This

is just as was seen in the case of b1 = 0 case in ref. [107]. We again mention that even

the hot spot resulting from the collapse of closed domain walls in our simulations will be

stretched in the longitudinal direction into an extended linear structure (resulting from

the collapse of a cylindrical wall). These may be observable in the analysis of particle

multiplicities. This is important especially in respect to the ridge phenomenon seen at

RHIC [214–216]. In view of lasting extended energy density fluctuations from Z(3) walls,

it is of interest to check if these structures can account for the ridge phenomenon.

Our results show interesting pattern of the evolution of the fluctuations in the energy

density which show that these fluctuations do not decrease with time which was the case

for b1 = 0 case studied in ref. [107]. Especially important may be the presence of small

additional peak of short times for b1 > 0 case. Fluctuations near the transition stage

may leave direct imprints on particle distributions. However, dileptons or direct photons

should be sensitive to these fluctuations, and these may give a time history of evolution

of such energy density fluctuations during the early stages. In such a case the existence

of small peak for b1 > 0 case may be observable.

A dramatic difference between the case of b1 = 0 and b1 6= 0 is seen in Fig.5.8 and

Fig.5.9. Collapse of a closed wall is expected and was seen for b1 = 0 case also, though

the wall speed here is much higher, close to 1. In general we have seen here that walls

separating true vacuum from metastable vacuum have speeds much higher than seen for

the case of b1 = 0. What is qualitatively new in the present case is rapidly expanding

circular front after the collapse of the wall. This front continues its speed and shape even

when temperature drops below Tc. Possibility of such expanding circular (cylindrical, with

longitudinal expansion) energetic fronts should have important implications on particle
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momenta, especially on various flow coefficients.

Another important difference due to b1 > 0 is expected in investigating the interac-

tions of quarks and antiquarks with domain walls. Earlier it had been argued [107] that

collapsing Z(3) walls will lead to concentration of quarks (due to small non-zero chemical

potential in RHICE) in small regions [38]. This will lead to enhancement of baryons,

especially at high PT [192] due to PT enhancement of quarks/antiquarks as they undergo

repeated reflections from a collapsing wall. (There is also a possibility of spontaneous

CP violation in the scattering of quarks and antiquarks from Z(3) walls, see ref. [217].)

However, with b1 > 0, there may also be a possibility that some Z(3) wall may actually

expand (the one enclosing the true vacuum and with sufficiently large size). In that case it

will have opposite effect and baryon number will be more diffused. Even the enhancement

of PT may happen for some domain walls (those which enclose metastable vacuum) while

the expanding closed walls (enclosing the true vacuum) should lead to the redshift of the

momenta for the enclosed quarks. All these issue need to be explored with more elaborate

simulations. In this context the difference in the wall velocity between different types of

Z(3) walls is of importance. While studying the effects of quark reflections from these

walls and associated modification of PT spectrum, wall velocity is of crucial importance

and the presence of different types of collapsing Z(3) walls may lead to bunches of hadrons

with different patterns of modified PT spectra.
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appendix

7.1 First and second partial derivatives of grand po-

tential

First partial derivative of logarithmic Polyakov loop potential with respect to chemical

potential and temperature
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Second partial derivative of logarithmic Polyakov loop potential with respect to

chemical potential and temperatures
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First partial derivative of ΩT
qq̄ with respect to chemical potential and temperature
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Second partial derivative of ΩT
qq̄ with respect to chemical potential and temperature
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Thesis Summary
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The presentation of this thesis started with the introduction of the quarks, hadrons

and the quark-hadron transition in chapter one. The strong interaction properties were

briefly outlined and a brief description of the strong interaction theory called Quantum

Chromodynamics (QCD), has been given. The chiral symmetry and center Z(3) sym-

metry of strong interaction were briefly introduced. Situations of phase transitions and

constructions of phase boundaries were briefly explained. The concept of order parameter

was introduced. Current experimental and theoretical initiatives for the investigation of

quark hadron transition, were briefly outlined.

In the next chapter, we presented the mathematical description of the QCD La-

grangian, its symmetries and the finite temperature formulation of statistical QCD in a

medium. Mathematical structures of chiral symmetry and centre Z(3) symmetry were

discussed. Explicit as well as spontaneous breakdown of these symmetries were also dis-

cussed. Chiral condensate as an order parameter for the chiral transition and Polyakov

loop as an order parameter for confinement-deconfinement transition, were discussed. We

briefly described the Landau-Ginzburg analysis of the chiral transition in the framework

of linear sigma model. We gave a discussion of the phase structure of QCD. We discussed

the inputs from lattice QCD simulations and effective model studies. The experimental

signatures for QCD phase transition also got discussed.

The presentation of about two third of the total volume of research work in this

thesis, is centered around effective model building where the features of spontaneous

breakdown of both the chiral symmetry as well as the center Z(3) symmetry of QCD has

been incorporated in one single model. We have combined, the chiral condensate and the

Polyakov loop simultaneously to the quark degrees of freedom in the SUL(2) × SUR(2)

and SUL(3) × SUR(3) linear sigma models. We thus constructed Polyakov quark meson

models for two flavours and three flavours of quark. These models have incorporated the

symmetries and symmetry breaking scenarios of QCD in a realistic way. These are QCD

like theories which can give a realistic description of quark hadron phase transition. We
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have investigated in detail the phase structure, phase diagram and the interplay of chiral

symmetry restoration and confinement - deconfinement phase transition.

We improved the effective potential of Polyakov loop extended Quark Meson Model

(PQM) for the two quark flavour by considering the contribution of fermionic vacuum loop

and explored the phase structure and thermodynamics of the resulting PQMVT model

(Polyakov Quark Meson Model with Vacuum Term) in detail at nonzero as well as zero

chemical potentials. We investigated the interplay of chiral symmetry restoration and

connement-deconnement transition with the proper accounting of renormalized fermionic

vacuum term in chapter three. We obtained, the QCD phase diagram together with the

location of critical end point (CEP) in µ, and T plane in both the models PQMVT and

PQM. The PQMVT model analysis was compared with the calculations in PQM model

in order to bring out the effect of fermionic vacuum term on the thermodynamics of

the physical observables [1]. We explored the sensitivity of the phase structure/phase

diagram on the choice of Polyakov loop potential parameterization also. This sensitivity

has also been explored for the different chosen values of the sigma meson mass. We used

logarithmic Polyakov loop potential as well as polynomial Polyakov loop potential in our

calculations.

We conclude, in our PQMVT model calculation with logarithmic Polyakov loop po-

tential, that the chiral crossover transition for the realistic case of explicit chiral symmetry

breaking, becomes quite soft and smooth at µ = 0 in PQMVT model due to the proper

accounting of the fermionic vacuum term contribution in the PQM model because the

corresponding phase transition at µ = 0 turns second order in the chiral limit of massless

quarks. The chiral order parameter σ derivative has a broad double peak structure in its

temperature variation at µ = 0, and this structure is absent in the temperature variation

of Polyakov loop derivative. Thus we conclude that the Polyakov loop (C-D) crossover

transition at µ = 0 is quite rapid and sharp than the chiral crossover transition which

is very smooth. In a large range of µ, T values (from µ = 0 and T = 186.5 MeV to
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µ = 294.7 MeV and T = 84 MeV), the chiral transition remains a crossover and it keeps

on becoming sharper with the increase in chemical potential till the point of second order

transition at µCEP is reached in the PQMVT model. Since the chiral transition in the

massless quark limit is first order at zero chemical potential, the corresponding crossover

transition for the realistic case has been found to be quite sharp and rapid in the PQM

model without any vacuum term. Further the chiral transition remains a crossover in

quite a small range only from µ = 0 and T χ
c = 171.5 MeV to µ = 81 MeV and T χ

c = 167

MeV in the PQM model calculations. Here T χ
c is pseudocritical temperature for chiral

transition.

Instead of logarithmic form, if we take polynomial form for Polyakov loop potential

in our PQMVT model calculation, the temperature derivatives of Polyakov loop field Φ

and its conjugate Φ∗ has distinct non coincident double peak structure in the chemical

potential range µ > 200 MeV to µCEP = 293.6 MeV and we do not find any double peak

structure near µ = 0 in the temperature derivative of σ field.

The phase diagram together with the location of critical end point (CEP) has been

obtained in µ, and T plane for mσ = 500 MeV in both the models PQMVT and PQM

with logarithmic Polyakov loop potential. The structure of the phase diagram is found

to be very sensitive to the chosen value of sigma meson mass. For the value mσ = 600

MeV, the transition becomes a crossover in the entire µ and T plane for the PQMVT

model calculation. We do not find a coincident chiral and confinement-deconfinement

crossover transitions in the PQMVT model as the chiral crossover transition line lies

above the crossover line for the confinement-deconfinement transition. Our results of the

PQMVT model calculation with logarithmic Polyakov loop potential, are in tune with

the standard scenario where chiral symmetry restoration occurs at a higher pseudocritical

temperature than the confinement-deconfinement transition temperature. The critical

end point (CEP) gets shifted close to the chemical potential axis (µCEP = 294.7 MeV,

TCEP = 84.0 MeV ) in PQMVT model because the chiral crossover transition at µ = 0
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emerging from a second order phase transition in the chiral limit, becomes quite soft and

smooth due to the effect of fermionic vacuum contribution in the effective potential and

further it remains a crossover for large values of the chemical potential. The chiral and

confinement-deconfinement crossover transition lines are coincident in the PQM model

and its’ CEP gets located near the temperature axis at µCEP = 81 MeV and TCEP = 167

MeV because the chiral crossover at µ = 0, having the background of a first order phase

transition in the chiral limit, is quite rapid and sharp and soon it gets converted to a first

order phase transition as we increase the chemical potential.

The sensitive dependence of the phase structure and location of the critical end point,

has also been explored by calculating another phase diagram for mσ = 500 MeV taking

polynomial choice of Polyakov loop potential in the PQMVT model. We conclude that

the chiral crossover transition line, lies above the deconfinement crossover lines for the Φ

and Φ∗ fields in the chemical potential range µ = 0 to µ = 210−225 MeV. Deconfinement

crossover transition lines for fields Φ and Φ∗, cross the chiral crossover phase boundary

around µ ≈ 210 MeV and get located above it from µ > 210 MeV to µ = µCEP = 293.6

MeV. Chiral symmetry restoration occurs earlier than the deconfinement transition in

this region of the phase diagram. Thus we are finding a quarkyonic phase like region of

confinement with chiral symmetry in our PQMVT model calculations with polynomial

choice for Polyakov loop potential.

In the next work presented in chapter four, we investigated the influence of Polyakov

loop on meson mass and mixing angle calculations in scalar and pseudoscalar sector of

mesons, in the framework of generalized 2 + 1 flavour quark meson linear sigma model

enlarged with the inclusion of the Polyakov loop [2]. We derived the modification of me-

son masses due to the q̄q contribution in the presence of Polyakov loop. We studied how

the inclusion of Polyakov loop, qualitatively and quantitatively affects the convergence of

the masses of chiral partners, when the parity doubling takes place as the temperature is

increased through Tc and the partial restoration of chiral symmetry is achieved. Further,
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we investigated the effect of Polyakov loop on the interplay of SUA(3) chiral symmetry

and UA(1) symmetry restoration. We used two different forms of the effective Polyakov

loop potential for the calculation, namely, the polynomial potential and logarithmic po-

tential. In order to investigate the influence of Polyakov loop potential on chiral symmetry

restoration, these calculations were compared with the corresponding results in the quark

meson sigma (QMS) model.

Comparison of pseudocritical temperatures, calculated from the inflection points of

the temperature variation of order parameters σ, Φ and Φ∗ indicates, that the chiral tran-

sition got shifted to the higher temperatures as a result of the inclusion of the Polyakov

loop in the QMS model. We further observed that the variation of the nonstrange con-

densate in the T/T χ
c = 0.8 to 1.2 range becomes quite sharp due to the effect of the

Polyakov loop potential in our calculation in PQMS models. We infer from the curves in

the PQMS models that the inclusion of the Polyakov loop potential in the QMS model

together with the presence of axial anomaly, triggers an early and significant melting of

the strange condensate. The interesting physical consequences of the earlier melting of

the strange condensate are an early emergence of mass degeneration trend in the masses

of the chiral partners (K, κ) and (η, f0) and an early setting up of a UA(1) restoration

trend.

The mass degeneration of chiral partners (σ, π) and (a0, η′) in the close vicinity

of T/T χ
c = 1.0 on the reduced temperature scale, becomes sharper and faster in our

calculations in the PQMS model. This sharpening of the mass variations in the small

neighborhood of T/T χ
c = 1 results due to the stronger and sharper melting of the non-

strange condensate triggered by the presence of the Polyakov loop potential in the QMS

model. Thus, we conclude also from the behavior of the chiral partners that the net effect

of the Polyakov loop inclusion in the QMS model, is to make a sharper occurrence of

the chiral SU(2)L × SU(2)R symmetry restoration transition in the nonstrange sector.

Further, the mass degeneration of chiral partners (K, κ) with η does not occur when the
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value of the reduced temperature is equal to one, it sets up early in the PQMS models

at T/T χ
c = 1.3, while it occurs at T/T χ

c = 1.5 in the QMS model. In the PQMS models,

the intersection point of the f0 and η masses, occurs early when the reduced temperature

T/T χ
c = 1.3, while in the pure QMS model this intersection point is found at T/T χ

c = 1.7.

This trend of mass degeneration emerges, again as a result of the sharper and stronger

melting of the strange condensate in the influence of the Polyakov loop potential in the

PQMS models.

The inclusion of the Polyakov loop potential in the PQMS models also effects an

early set up of the UA(1) restoration trend on the reduced temperature scale.

The smooth approach of the pseudoscalar mixing angle θP towards the ideal mixing

in the QMS model, becomes sharper and faster in the PQMS models due to the influence

of the Polyakov loop potential. Further, in comparison to QMS model results, the ideal

mixing on the reduced temperature scale is achieved earlier in the PQMS models.

We have developed a new and different approach for investigating the dynamics of

quark hadron phase transition. This work completes the last chapter (chapter five) of the

thesis. In this approach, we exploited the non trivial topology of spontaneously broken,

center Z(3) symmetric vacuum of pure gauge QCD. This non trivial topology, leads to

the exciting possibility of topologically non-trivial structures such as Z(3) domain walls

and associated QGP strings in the quark-gluon plasma phase [3]. Relativistic heavy-ion

collision experiments (RHICE), give us an opportunity where domain walls and strings

arising in a relativistic quantum field theory, can be investigated under laboratory control.

In earlier works [3–5], various aspects of existence of these objects in cosmology as well as

in RHICE, have been discussed. These topological objects arise in the high temperature

deconfined phase of QCD due to spontaneous breaking of the Z(3) global symmetry of

finite temperature QCD, where Z(3) is the center of the SU(3) color gauge group of QCD.

Spontaneous breaking of Z(3) symmetry arises from the non-zero expectation value of the

Polyakov loop, l(x), which is an order parameter for the confinement-deconfinement phase



7

transition for pure gauge theory [6, 7]. The interpolation of l(x) between three different

degenerate Z(3) vacua leads to the existence of domain walls (interfaces) together with

topological strings when the three interfaces make a junction. We call these strings as

QGP strings [3].

In the present work, we studied the effects of explicit symmetry breaking arising from

quark effects on the formation and evolution of Z(3) interfaces and associated strings.

Explicit symmetry breaking makes Z(3) vacua non-degenerate with two vacua l = z, z2

remaining degenerate with each other but having higher energy than the true l = 1

vacuum. Thus l = z, z2 vacua become metastable. We have used an effective potential for

the Polyakov loop expectation value l(x) from ref. [8–13] with incorporation of explicit

symmetry breaking in terms of a linear term in l and have studied the dynamics of the

(C-D) phase transition in the temperature/time range when the first order transition of

this model proceeds via bubble nucleation. This allows for only relatively small explicit

symmetry breaking (characterized by the strength b1 of the linear term in l).

The Z(3) wall network and associated strings exist only during the QGP phase,

melting away when the temperature drops below Tc. However, they may leave their

signatures in the distribution of final particles due to large concentration of energy density

in extended regions as well as due to non-trivial scatterings of quarks and antiquarks with

these objects. The extended regions of high energy density resulting from the domain

walls and strings are clearly seen in our simulations and some extended structures/hot

spots also survive after the temperature drops below the transition temperature Tc. This

is just as was seen in the case of b1 = 0 case in ref. [3]. We again mention that even

the hot spot resulting from the collapse of closed domain walls in our simulations will be

stretched in the longitudinal direction into an extended linear structure (resulting from

the collapse of a cylindrical wall). These may be observable in the analysis of particle

multiplicities. This is important especially in respect to the ridge phenomenon seen at

RHIC [14–16]. In view of lasting extended energy density fluctuations from Z(3) walls, it
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is of interest to check if these structures can account for the ridge phenomenon.

Our results show interesting pattern of the evolution of the fluctuations in the energy

density which show that these fluctuations do not decrease with time which was the case

for b1 = 0 case studied in ref. [3]. Especially important may be the presence of small

additional peak of short times for b1 > 0 case. Fluctuations near the transition stage

may leave direct imprints on particle distributions. However, dileptons or direct photons

should be sensitive to these fluctuations, and these may give a time history of evolution

of such energy density fluctuations during the early stages. In such a case the existence

of small peak for b1 > 0 case may be observable.

A dramatic difference between the case of b1 = 0 and b1 6= 0 is seen in Fig.5.8 and

Fig.5.9 of chapter 5 of the thesis. Collapse of a closed wall is expected and was seen for

b1 = 0 case also, though the wall speed here is much higher, close to 1. In general we have

seen here that walls separating true vacuum from metastable vacuum have speeds much

higher than seen for the case of b1 = 0. What is qualitatively new in the present case

is rapidly expanding circular front after the collapse of the wall. This front continues its

speed and shape even when temperature drops below Tc. Possibility of such expanding

circular (cylindrical, with longitudinal expansion) energetic fronts should have important

implications on particle momenta, especially on various flow coefficients.

Another important difference due to b1 > 0 is expected in investigating the inter-

actions of quarks and antiquarks with domain walls. Earlier it had been argued [3] that

collapsing Z(3) walls will lead to concentration of quarks (due to small non-zero chemi-

cal potential in RHICE) in small regions [4]. This will lead to enhancement of baryons,

especially at high PT [17] due to PT enhancement of quarks/antiquarks as they undergo

repeated reflections from a collapsing wall. (There is also a possibility of spontaneous

CP violation in the scattering of quarks and antiquarks from Z(3) walls, see ref. [18].)

However, with b1 > 0, there may also be a possibility that some Z(3) wall may actually

expand (the one enclosing the true vacuum and with sufficiently large size). In that case it
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will have opposite effect and baryon number will be more diffused. Even the enhancement

of PT may happen for some domain walls (those which enclose metastable vacuum) while

the expanding closed walls (enclosing the true vacuum) should lead to the redshift of the

momenta for the enclosed quarks. All these issue need to be explored with more elaborate

simulations. In this context the difference in the wall velocity between different types of

Z(3) walls is of importance. While studying the effects of quark reflections from these

walls and associated modification of PT spectrum, wall velocity is of crucial importance

and the presence of different types of collapsing Z(3) walls may lead to bunches of hadrons

with different patterns of modified PT spectra.
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