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1. Introduction

Black holes in asymptotically AdS spaces provide an interesting frame to study the rela-

tion between thermal field theories and classical gravity through the AdS/CFT correspon-

dence [1 – 3]. The analytic extension of the AdS black hole, the ‘eternal black hole’, has

two disconnected boundaries. This has been interpreted as having two independent copies

of the field theory each one living in one of the two boundaries [4 – 7], based on the original

ideas of Israel [8]. In Schwarzschild time, that is identified with the time in the dual field

theory, the second boundary corresponds to the extension to complex values t → t− iβ/2,

where β is the inverse of the temperature. This suggests a natural identification in the field

theory with the Schwinger-Keldysh formalism1 [10], where the description of the thermal

field theory in Lorentzian signature needs to double the degrees of freedom and extend

time to complex values. The corresponding Schwinger-Keldysh path starts at some time

ti, extends along the real axis to a time tf and then moves in the imaginary direction to

tf − iβ/2. Then it comes back in the real direction to ti− iβ/2 and finally it goes to ti− iβ.

The second set of field operators live on the t − iβ/2 piece.

One of the most interesting results of the correspondence is the relation between the

quasinormal mode spectrum that describes the decay of perturbations in black holes and

the singularities in the complex frequency plane of two-point correlation functions in the

holographic dual [11, 12]. Semiclassical computations suggest that both could be simply re-

lated to geometric properties of the bulk, in particular to its causal structure [13 – 18]. Very

massive fields, corresponding to operators of large conformal dimension, can be studied us-

ing a WKB approximation where the field propagates along geodesics. In the black hole

background, the space has an analytic extension through the horizon to another asymptot-

ically AdS region. Spacelike geodesics can explore both regions and give information about

1A description of the Schwinger-Keldysh formalism can be found in Thermal Field Theory books, like [9].
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the thermal state where the field theory is defined. It is also possible to relate different

geodesics with the frequency in the field theory, in such a way that in the large frequency

limit the geodesic approaches a null ray. The geodesic approximation has been used to

compute the asymptotic position of quasinormal modes in the large mass limit, although

it has been argued that the results should be generalizable to the case of fields with small

mass [16].

In this paper we argue that null geodesics in the bulk give useful information about the

singularities of the dual correlators even for fields with small mass. In the large frequency

limit, that we can associate to the ultraviolet behaviour of the field theory, the classical

solutions to the equations of motion can be described in terms of the eikonal approximation.

Therefore, the propagation of fields in the bulk is well approximated by null rays and it

reduces to a problem of geometric optics in the curved spacetime. In section 2 we illustrate

this by introducing a mirror in AdS and studying the spectrum of the dual theory. We then

proceed in section 3 to find the eikonal approximation for a scalar field in AdSd+1 black hole

backgrounds and show how the solution bouncing on the singularity can be extended to

the asymptotic region behind the horizon. In section 4 we explain the asymptotic location

of the singularities of field theory correlators and hence the quasinormal mode spectrum of

the black hole in simple terms of the geometric shape of the black hole, seen as a reflecting

cavity with the asymptotically AdS boundaries and the future and past singularities as

walls. Finally, we discuss possible applications of the high frequency-null ray identification

and the interpretation in thermal field theories.

2. AdS with a mirror

To illustrate that null geodesics in AdS contain the relevant information about the singu-

larities of the dual two-point correlators let us pick up a very simple example, a scalar field

in AdSd+1 spacetime. We work with the metric

ds2 =
1

z2

(

−dt2 + dz2 + dx2
)

, (2.1)

where z = 0 is the boundary of AdS and we introduce a mirror at a finite value of the

radial coordinate z = z0. This translates into Dirichlet boundary conditions for the fields

at this surface.

A scalar field φ with mass m2 = ∆(∆− d) is dual to a scalar operator O of conformal

dimension ∆. The source j(t) of the operator in the field theory corresponds to a boundary

condition for the dual field in the bulk. Consider a spatially homogeneous source localized

in time j(t) = δ(t). Then, the expectation value (vev) of the operator will be given by the

two-point correlator G(t, x) as

〈O(t)〉 ∼
∫

dt′
∫

dx

∫

dx′G(x − x′, t − t′)δ(t′) = V G(t,q = 0) , (2.2)

where V is the volume of the space and q is the spatial momentum. The singularities of the

vev are thus related to singularities of the correlator. In the holographic description, the

expectation value is implicit in the asymptotic behaviour of the field, that we can compute

– 2 –
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using Witten diagrams [3]. We are interested in the propagation from points (z = 0, t0,x0)

at the boundary, to the bulk at (z, t′,x′) and back to the boundary at (z = 0, t,x). The

value of the field at the boundary can be computed using the convolution of two bulk-to-

boundary propagators

φ0(t) ∼
∫

dxdx0dx
′dt0dt′

∫ z0

0

dz

zd+1

z2∆ δ(t0)

|z2+(x−x′)2−(t−t′)2|∆ |z2+(x′−x0)2−(t′−t0)2|∆
(2.3)

After integrating over the spatial directions and t0 and introducing Schwinger parameters

w1 and w2, we find

φ0(t) ∼ V

∫

dt′
∫ z0

0
dzz2∆−d−1

∫ ∞

0
dw1

∫ ∞

0
dw2 (w1w2)

∆−(d+1)/2e−w1|z2−(t−t′)2|e−w2|z2−t′2| .
(2.4)

The ultraviolet limit corresponds to w1 → ∞, w2 → ∞. The integral is dominated in

this case by null trajectories z = ±t′ and z = ±(t − t′). If t = 0, the two classes of null

trajectories become degenerate and there is a singularity. In the presence of a mirror, we

can consider a null ray going from the boundary to the mirror and back as part of a single

trajectory, so in some heuristic sense the two null trajectories also become degenerate when

t = 2z0. In the following we will show that this intuitive picture gives the correct answer

by computing explicitly two-point Green functions in the field theory.

The field theory correlator G(k) as a function of the four-momentum k can be computed

from the on-shell action for classical solutions of the bulk field φk(z). The result is a

boundary term

G(k) ∼ lim
z→0

√−ggzzφk(z)φ′
k(z) . (2.5)

For simplicity, we will consider zero spatial momentum and modes with fixed frequency

φ(t, z) = e−iωtϕ(z). The equations of motion for the field are

(� − m2)φ = 0 ⇒ zd+1∂z

(

z1−dϕ′(z)
)

+ (z2ω2 − ∆(∆ − d))ϕ(z) = 0 . (2.6)

In order to regularize, we introduce a cutoff at z = ǫ, ǫ → 0, such that ϕ(ǫ) = 1. The

solution is given in terms of Bessel functions. Imposing Dirichlet boundary conditions on

the field at z = z0 and using ν2 = m2 + d2

4 =
(

∆ − d
2

)2
,

ϕ(z) =
zd/2 (Yν(ωz0)Jν(ωz) − Jν(ωz0)Yν(ωz))

ǫd/2 (Yν(ωz0)Jν(ωǫ) − Jν(ωz0)Yν(ωǫ))
. (2.7)

We then introduce this expression in (2.5) and take the limit ǫ → 0. Up to contact terms,

the Green function is given by

G∆(ω) = c∆ω2ν Yν(ωz0)

Jν(ωz0)
. (2.8)

If ν is an integer, there are extra logarithmic terms that cancel the branch cut in Yν(ωz0)

when ω → 0. As an example, in AdS5 a massless scalar field gives

G4(ω) = c4ω
4

(

πY2(ωz0)

J2(ωz0)
− log

[

(ωz0)
2
]

)

. (2.9)
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Apart from a possible branch cut coming from the ω2ν factor, the only singularities of

the Green function are poles ωn on the real frequency axis, associated to the zeroes of the

Bessel function

Jν(ωnz0) = 0, n = 1, 2, 3 . . . (2.10)

Since Jν(−x) = (−1)νJν(x), the poles are paired ωn and −ωn.

We are interested in the ultraviolet behaviour of the correlator and how it is related

to light-like propagation in the bulk, so we take the ω → ∞ limit. Then, (2.8) can be

approximated by

G∆(ω) ≃ c∆ω2ν tan

[

ωz0 −
(

ν − 1

2

)

π

2

]

. (2.11)

The asymptotic position of the poles is therefore

ωnz0 = (2n + 1)
π

2
+

(

ν − 1

2

)

π

2
≡ nπ + ω0z0, n ∈ Z . (2.12)

To show explicitly the relation with null trajectories is more convenient to look at the

time-dependent propagator.

G∆(t) =

∫

C
dωe−iωtG∆(ω) . (2.13)

For the Feynman propagator, the contour C in the complex frequency plane is defined

in such a way that it picks up all the positive frequencies for t ≥ 0 and the negative

frequencies for t < 0, so it passes slightly above the real axis for ω > 0 and slightly below

for ω < 0. Above some frequency ωk, the position of the poles will be well approximated

by the asymptotic expression (2.12), so the propagator would have a piece coming form

the lowest modes plus the contribution from the infinite high-frequency modes. For t ≥ 0,

we find

G+
∆,F (t) ≃ G+

F,IR(t) + 2πic∆(i∂t)
2νe−iω0t

∞
∑

n=k

e−iπnt/z0

= G+
F,IR(t) + 2πic∆(i∂t)

2νe−iω0t e
−i(k−1)πt/z0

eiπt/z0 − 1
. (2.14)

We can understand this expression as being defined using the usual prescription for

spacetime-dependent correlators t → t − i0+. Strictly speaking, the expression above

is well defined only when 2ν is an integer (ν ≥ 0 by unitarity). When this is not the case,

there will be a branch cut that must be taken properly into account. This will introduce

power-like corrections, but the location of the singularities of the propagator in time is

determined by the sum over high-frequency poles. For t < 0

G−
∆,F (t) ≃ G−

F,IR(t) − 2πic∆(−i∂t)
2νeiω0t e

−i(k−1)πt/z0

eiπt/z0 − 1
. (2.15)

We can see now that the singularities associated to the ultraviolet behaviour of the

Feynman propagator appear at regular intervals of time

t = 2nz0, n ∈ Z . (2.16)

– 4 –
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Figure 1: Null geodesic bouncing on and off from the boundary at z = 0 and the mirror surface

at z = z0.

The identification of these singularities with the singularities on the null trajectories of

the bulk propagator leads to the geometric interpretation of a light ray bouncing on and

off from the boundary at z = 0 and the mirror at z = z0, if we take t = 0 as the ‘initial

point’. The points where the ray reaches the boundary coincide with the singularities in

the time-dependent Green function, see figure 1.

3. The eikonal approximation in AdS black holes

In black hole backgrounds, the absorption of classical fluctuations of the fields is described

by an infinite set of modes with complex frequencies, known as the quasinormal modes. In

the holographic dual the frequencies of these modes correspond to singularities of the two-

point correlators, that are in last instance responsible for the dissipative behaviour of the

thermal theory. The relation between null trajectories ending on the boundary and the high

frequency behaviour of the correlators strongly suggests that the analytic continuation of

the space behind the horizon can explain the asymptotic location of quasinormal frequencies

or equivalently, the singularities of the dual correlators in complex frequency and time.

The eikonal approximation is a high frequency limit where ω ≫ R and R is the typical

curvature of the spacetime. This approximation leads to the classical limit of geometric

optics in the curved spacetime, similar to ray optics in ordinary electromagnetism. The

null trajectories we want to describe start at the AdS boundary and propagate into the

interior until they hit the singularity. Presumably it should be possible to extend the

geodesic to the asymptotically AdS region behind the horizon by joining it to a null ray

that starts at the singularity and continues towards the second boundary. However, the

eikonal approximation is expected to fail at the singularity, so it is a matter of concern

what is the fate of solutions there. In the following, we construct the classical solutions in

the eikonal approximation in the two asymptotically AdS regions and find the matching

conditions at the future and past singularities.

In the eikonal approximation, an ansatz for the field is

φ(x) = A(x)eiθ(x) , (3.1)

where the eikonal phase θ(x) is O(ω) and the amplitude A(x) is O(1). We consider a scalar

field with the Klein-Gordon equation of motion

(� − m2)φ = 0 ⇒ 1√−g
∂µ

(√−ggµν∂νφ
)

− m2φ = 0 . (3.2)

– 5 –
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Expanding this equation in ω, we find that the leading order gives the eikonal equation

gµν∂µθ∂νθ = 0 , (3.3)

so kµ = ∂µθ is a null vector field. It defines a family of null geodesics tangent to the field

and in electromagnetism it can also be identified with the four-momentum of the photons.

Notice that the mass is neglected in this approximation, it will appear as a lower energy

effect, while the leading behaviour is universal. The next orders give the equations

kµ∂µA = −1

2
∂µkµA ,

(� − m2)A = 0 . (3.4)

The first equation describes the evolution of the amplitude along the geodesic, while the

last start to take into account subleading effects like the mass.

To work out the eikonal approximation we will use the Rosen coordinate system, that

is better adapted to null geodesics. A nice explanation of coordinate systems adapted to

the Penrose limit can be found in [19] and an example of its application to the eikonal

expansion in [20]. The AdSd+1 black hole metric is (d ≥ 2)2

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dx2, f(r) = r2 − 1

rd−2
. (3.5)

We will consider only geodesics at a fixed point in the spatial directions x, so in terms of

the affine parameter u they are determined by two functions (t(u), r(u)). These functions

can be found by solving the variational problem with Lagrangian

L =
1

2

(

−f(r) ṫ2 +
ṙ2

f(r)

)

(3.6)

where ṫ, ṙ are the first derivatives with respect to u. The variation with respect to t

introduces a conserved quantity E, so that

ṫ =
E

f(r)
. (3.7)

For null geodesics we can further impose the condition L = 0, so we find

ṙ2 = f(r)2ṫ2 = E2 . (3.8)

This also implies that r̈ = 0. In the Rosen coordinate system we take the affine parameter

of the null geodesics u to be one of the coordinates, while we introduce another coordinate

v satisfying the null condition gµν∂µv∂νv = 0 and that corresponds to the Hamilton-Jacobi

function of the variational problem. We have several possibilities

1) E > 0, ṙ = −E u = −r v = −t −
∫

dr
f(r)

2) E > 0, ṙ = E u = r v = −t +
∫

dr
f(r)

3) E < 0, ṙ = −E u = r v = t +
∫

dr
f(r)

4) E < 0, ṙ = E u = −r v = t −
∫

dr
f(r)

(3.9)

2We have taken the AdS radius R = 1, and the coordinates are rescaled as (t, r,x)→ (t/rH, rHr,x/rH).

Restoring the units, the Hawking temperature of the black hole is T = drH/4πR2.

– 6 –
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The choices of coordinates 1) and 4) correspond to geodesics starting at the boundary

u = −∞ and reaching the singularity at u = 0. On the other hand, 2) and 3) correspond

to geodesics that go from the singularity at u = 0 to the boundary at u = ∞. Geodesics

described by 1) and 2) go forwards in time while the ones described by 3) and 4) go

backwards. The metric in Rosen coordinates is

ds2 = 2dudv − f±(u)dv2 + u2dx2 , f±(u) = u2 − (±1)d−2

ud−2
, (3.10)

where f+(u) = f(u) is valid for 2) and 4), while for 1) and 3) we have f−(u), instead. This

distinction is important only when d is odd, since when d is even f−(u) = f+(u) = f(u).

We can now write the eikonal ansatz (3.1) as φ(u, v) = A(u)eiωv and expand in inverse

powers of the frequency

φ(u, v) = A0(u)eiωv

(

1 +
A1(u)

iω
+

A2(u)

(iω)2
+ . . .

)

. (3.11)

Plugging back in the equation of motion (3.2), we see that the eikonal equation (3.3) is

automatically satisfied by our choice of v. The next orders in the expansion (3.4) have the

following solution to O(1/ω)

A0(u) = (−g)−1/4 = u(1−d)/2 ,

A1(u) =
1

8
(d2 − 1 + 4m2)u − (±1)d−2 d − 1

8
u1−d , (3.12)

where the + solution applies for geodesics 2) and 4), while the − is valid for 1) and 3).

Then, choosing the correct definition of v and the correct sign in A1(u), the solution (3.11)

describes the four possible geodesics given by (3.9).

This solution is valid as long as ud−1ω ≫ 1 and u/ω ≪ 1, so it will stop to be trustable

when we get close to the singularity u = 0 or the boundary u → ∞. There is an extra

issue concerning the definition of v in (3.9). The function f(r) has a pole at r = 1, so

in general v will be shifted by a complex value for r < 1. This could be compensated by

defining v differently for r > 1 and r < 1 with a compensating constant in this region. The

right treatment pass by using Kruskal coordinates, we will analyze this more thoroughly

in section 4.

3.1 Matching of eikonal solutions and bouncing rays

There are two possible descriptions of a ray bouncing on the boundary, one joining the

geodesics associated to 2) with 1) in (3.9) or the time reversed process joining 3) with 4).

In terms of the eikonal approximation we should find a matching when we continue the

solutions close to the boundary.

At large values of the radial coordinate r the black hole factor can be neglected f(r) ≃ 1

and it is better to switch to the coordinate system focused on the boundary (2.1). In this

case, the right identification of eikonal phases will be

1) eiωv ∼ e−iω(t+r) ∼ e−iω(t−z)

2) eiωv ∼ e−iω(t−r) ∼ e−iω(t+z)

3) eiωv ∼ eiω(t+r) ∼ eiω(t−z)

4) eiωv ∼ eiω(t−r) ∼ eiω(t+z)

– 7 –
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From section 2 we know that the solutions close to the boundary are Bessel functions. To

match with the plane wave behaviour of 2), we take the combination that gives the second

Hankel function

φ(2) ≃ e−iωtH(2)
ν (ωz) ∼ e−iω(t+z), ωz ≫ 1 . (3.13)

We can treat the bouncing on the boundary as the continuation of this solution to negative

values of z, z → −z, that we should interpret as a parity transformation of the solutions

in the z direction. Under this transformation, the solution changes to the first Hankel

function, that shows the right asymptotic behaviour to match with the eikonal solution of

1)

φ(1) ≃ e−iωtH(1)
ν (ωz) ∼ e−iω(t−z). (3.14)

The time reversed process can be found using the transformation t → −t, so it works in

the same way, the initial solution is

φ(3) ≃ eiωtH(2)
ν (ωz) ∼ eiω(t−z), (3.15)

while the reflected one is found again by analytic continuation z → −z

φ(4) ≃ eiωtH(1)
ν (ωz) ∼ eiω(t+z). (3.16)

We are interested now in rays coming from the boundary that bounce on the future

singularity and rays coming from the region behind the horizon that bounce on the past

singularity. The expansion of the amplitude (3.11) fails close to the singularity ud−1ω <

1. However, the ansatz (3.1) in the form φ = A(u)eiωv gives still valid solutions to the

equations of motion. We can solve the Klein-Gordon equation as a Frobenius expansion,

being the general solution of the form

A(u) = C1y1(u) + C2 [y2(u) + log u y1(u)] , (3.17)

where y1(u) and y2(u) are series expansions in the u coordinate. For d ≥ 2 we find

y1(u) = 1 +
iω

d − 1
ud−1 − m2

d2
ud − 3ω2

4(d − 1)2
u2(d−1) + . . .

y2(u) = 1 +
iω

d − 1
ud−1 +

d2 − (d − 2)m2

d3
ud +

(4 − 3d)ω2

4(d − 1)3
u2(d−1) + . . . (3.18)

To describe the bouncing on the singularity we need to extend the geodesic associated to 1)

and defined for u < 0 to positive values of the affine parameter. In the original coordinates,

r is extended to negative values. The eikonal phase does not change, but the branch cut

appearing in (3.17) implies that the amplitude will in general pick up a non-trivial phase

factor. In order to understand the extended solution from the point of view of an observer

in the second boundary, we must change r → −r keeping u > 0. The time runs forwards

for an observer in the second boundary, so there is no time reversal. The solution is then

of the type 2), so we come to a situation analogous to the starting one and we can use the

results we have already obtained to describe the bouncing on the second boundary and on

the past singularity, that from this perspective looks like a future singularity.

– 8 –
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4. Black holes as reflecting cavities

We have shown that in the high frequency limit, the eikonal approximation provides a

good description of classical solutions in the bulk, and that the matching conditions at the

boundary and singularities are consistent with a limit where a geometric description can

be given in terms of null rays bouncing on the boundaries and singularities, so the black

hole looks effectively as a box. We have also related null geodesics reaching the boundary

with ultraviolet singularities in the time-dependent correlators of the dual field theory and

hence with the asymptotic location of singularities in the high frequency limit.

A similar light-cone singularity in real time was found in [16] from the limit of space-like

geodesics. It was shown that in the WKB computation there are three possible geodesics in

the Euclidean geometry, associated to different branches of the correlator. The singularity

belongs to an unphysical branch, while the physical result is given by a combination of

two complex branches with no singularities. Therefore, the singularities associated to

null geodesics should appear at complex values of time. Indeed, it was shown that for

complex values with Im t ∼ β/2, the two extra branches disappear. In terms of the eikonal

approximation, the extension to complex values of time will follow from the extension of

the solution beyond the horizon. We will now proceed to study null geodesics in the black

hole in order to extract information about the singularity structure of the correlators in

the thermal field theory.

Consider a geodesic starting at the AdS boundary, bouncing on the singularity and

reaching the AdS boundary behind the horizon. This corresponds to the analytic extension

to positive values of u for the case 1) in (3.9). Notice that v will be shifted in general due

to the contribution from
∫

dr/f(r). In order to keep a constant eikonal phase, the value of

t has to be shifted as well as part of the analytic continuation. We find then

∆t =

∫ ∞

−∞

du

f(u)
. (4.1)

The function f(u) has two poles at the horizon u = ±1, since for d odd we must switch

between f−(u) and f+(u). The contour we pick pass above the first pole at u = −1 and

below the second pole at u = 1. Then, using the expression

1

x ∓ iǫ
= P 1

x
± iπδ(x) , (4.2)

the shift in time on the AdS boundary behind the horizon is

∆t =
2π

d

(

cot
π

d
− i
)

. (4.3)

We have seen that the geodesic coming from the region behind the horizon after bouncing

on the past singularity is equivalent to the one we have just described. We can also consider

geodesics going backwards in time using the analytic extension of 3), as well as a contour

that surrounds the poles at the horizon in the opposite way. We can then identify the

complex values of time where the geodesics hit one of the AdS boundaries with the location

of singularities of field theory correlators in the complex time plane. The time coordinate is

– 9 –
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given in dimensionless units, in order to restore the temperature dependence β = 1/T , we

must divide by the radius of the horizon rH = 4π/dβ. For the lowest dimensional AdSd+1

spaces, the singularities tn, n ∈ Z are at

AdS2+1 tn = i
nβ

2
(4.4)

AdS3+1 tn =
nβ

2

(

1√
3
± i

)

(4.5)

AdS4+1 tn =
nβ

2
(1 ± i) (4.6)

The value of the imaginary part can be understood in terms of the Wick rotation of the

metric to Euclidean time (c.f. [4]), where it can be seen that the second boundary of AdS

corresponds to the antipodal point in the thermal circle, with β being the full period. The

value of the real part can also be understood in simple geometric terms. For this purpose,

the best suited coordinate system are Kruskal coordinates

U = e2(t+r∗), V = −e−2(t−r∗), r∗ =

∫

dr

f(r)
. (4.7)

with a metric

ds2 =
−dUdV

4UV f(UV )
+ r2(UV )dx2 (4.8)

In AdS3, the metric takes the particularly simple form

ds2 =
−dUdV

4(1 + UV )2
+

(

1 − UV

1 + UV

)2

dx2 . (4.9)

The black hole does not cover the entire (U, V ) plane, but it is limited by the asymptotic

AdS boundary and by the singularity. They can be deduced from the conditions r2(UV ) →
∞ and r2(UV ) → 0, using the relation

UV = −e4r∗(r) . (4.10)

For instance,
AdSd+1 singularity boundary

d = 2 UV = 1 UV = −1

d = 3 UV = e
2π

3
√

3 UV = −e
2π√

3

d = 4 UV = 1 UV = −eπ

(4.11)

The real value of the position of the singularities tn in the complex time plane can be

found following the path of null geodesics in the Kruskal diagram, and using that t =

log(−U/V )/4. The null geodesics bounce on the boundaries and the singularities, giving

the picture of a reflecting cavity. Following figure 2, the points where the singularities are

located are

AdSd+1 (U, V ) : t = 0 → singularity → boundary

d = 2 (1,−1) → (1, 1) → (−1, 1) ⇒ Re t = 0

d = 3 (e
π√
3 ,−e

π√
3 ) → (e

π√
3 , e

− π

3
√

3 ) → (−e
7π√

3 , e
− π

3
√

3 ) ⇒ Re t = 2π
3
√

3

d = 4 (e
π

2 ,−e
π

2 ) → (e
π

2 , e−
π

2 ) → (−e
3π

2 , e−
π

2 ) ⇒ Re t = π
2

(4.12)
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UV

t = 0

π  β

 
 βπ

t = (cot   /d−i)    /2

t = (cot   /d−i)

Figure 2: Kruskal diagram of a eternal black hole in AdS space. The light solid line represents a

null geodesic starting on the boundary at t = 0 bouncing on the future singularity, on the second

AdS boundary, on the past singularity and back to the boundary at t = (cot π

d
− i)β.

In agreement with eq. (4.3). From this formula we can also do a Fourier transformation to

deduce the asymptotic quasinormal frequencies, up to a shift that depends on the mass of

the field considered. The general formula is

ωn ≃ 4πT
(

cot
π

d
± i
)

sin2 π

d
n , (4.13)

that coincides with the results found in [21, 22] using a WKB approximation to the equa-

tions of motion in the AdS black hole backgrounds.

5. Discussion

Using the eikonal approximation, we have seen that the asymptotic formula for the quasi-

normal spectrum of fields with large mass in AdS black holes is also valid for fields with

small mass in the large frequency limit. The analytic formula derived for the the asymp-

totic value of quasinormal frequencies (4.13), agrees with the expressions found in [21, 22]

using a WKB analysis, and with expressions derived for fields with large mass [16 – 18] and

for fields with small mass in AdS2+1 ωn ≃ 4πiTn [12], the numerical results in AdS3+1

ωn ≃ (
√

3 ± 3i)πTn = 3
4(
√

3 ± 3i)n rH [23] and AdS4+1 ωn ≃ 2πiTn(1 ± i) [11].

An interesting question is whether a geometric analysis of null geodesics in the analytic

extension of the black hole could be applied to more general cases, like charged or rotating

black holes or black holes with different asymptotics. A simple example is the topological

AdS4+1 black hole of [24],3 where the (t, r) part of the metric is the same as AdS2+1,

so the zero-momentum quasinormal spectrum will have the same asymptotic behaviour.

In the dual theory, the correlators are then similar to a free theory, in contrast with the

non-extremal black hole. This could be related to the fact that the topological black hole

corresponds to D3 branes in the Milne universe, so non-renormalization theorems could still

3We would like to thank P. Kumar for pointing out this example to us.

– 11 –



J
H
E
P
0
9
(
2
0
0
8
)
1
1
8

hold. The non-extremal black hole, on the other hand, corresponds to a high temperature

phase of the theory.

In this analysis the AdS boundary has played a crucial role since it is there where

the value of the quasinormal modes is determined. Other geometries, like asymptotically

flat spacetimes, do not have a similar boundary, making more difficult to find a similar

prescription. Although in principle there could be a description of extended null geodesics

bouncing on the singularities, it is not clear that they can return in the way they do in

AdS spacetimes. Nevertheless addressing this issues could give interesting results.

The relation between null geodesics and the high-frequency singularities of the dual

correlators also gives a good starting point to solve the inverse holographic problem: how

to construct a gravitational background from the field theory. The information contained

in the location of the singularities in time is quite topological, it only knows about the

causal structure of the space-time. Interesting ideas related to the emergence of the causal

structure of the bulk from the field theory can also be found in [25, 26]. For operators

with large conformal dimension, the geodesic approximation could be used to gather more

information, see [27] for instance.

Let us now discuss the holographic interpretation of the black hole computation for

Green functions in the thermal field theory. The relation between the Schwinger-Keldysh

path and the second boundary of the eternal black hole was pointed out in [10]. The

analysis shows that there is only one SK path consistent with the prescription of [28] to

compute the retarded Green function, corresponding to the symmetric choice

(0, t) → (t, t − iβ/2) → (t − iβ/2,−iβ/2) → (−iβ/2,−iβ) .

In the thermal field theory, the SK correlator is built introducing insertions of operators

at Im t = 0 or Im t = −iβ/2, so it is a matrix with components

GSK(t) =

(

GF (t) G<(t + iβ/2)

G>(t − iβ/2) GF (t)†

)

.

Where G>(t), G<(t) are the Wightman Green functions and GF (t) is the time-ordered

(Feynman) correlator. The short-time singularity of Green functions, together with the

KMS relation4

G>(t) = G<(t + iβ) ,

imply that the SK correlator should have singularities on the time imaginary axis. Since for

d > 2 we find no such singularities, this means that the singularities associated to null rays

should correspond to the commutator, that is the spectral function. This is consistent with

the identification of the singularities of frequency-dependent correlators with quasinormal

modes.

The singularities of frequency-dependent thermal correlators computed from hologra-

phy turn out to be poles, indicating that there is always an exponential decay with time.

For fields with larger conformal dimensions the location of the poles is modified due to the

4Which can be derived from the periodicity in imaginary time of Euclidean correlators.
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shift of the quasinormal spectrum. Also notice that all this analysis has been made at zero

momentum. At non-zero momentum the singularities of the spectral function move in the

complex frequency plane, but they remain as poles, in contrast with Green functions at

weak coupling where poles open up in branch singularities. Also in [29] it was argued that

higher curvature corrections in the bulk, that correspond to quantum corrections in the

field theory, do not change the nature of the singularities. On the other hand the analysis

of [30] shows that subleading corrections in the large-N expansion can introduce power-like

tails in time. These corrections correspond to quantum corrections in the bulk, so it would

be interesting to analyze Green functions in the black hole background beyond the classical

approximation.
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