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It is well known that the presence of a spacetime boundary requires the conventional Einstein-Hilbert
action to be supplemented by the Gibbons-Hawking boundary term in order to retain the standard
variational procedure. When the Einstein-Hilbert action is amended by the diffeomorphism-invariant
graviton mass and potential terms, it naively appears that no further boundary terms are needed since all the
new fields of massive gravity enter the action with the first derivative. However, we show that such a
formulation would be inconsistent, even when the bulk action is ghost free. The theory is well defined only
after introducing novel boundary counterterms, which dominate over the Gibbons-Hawking term in the
massless limit and cancel the problematic boundary terms induced by the bulk action. The number of
boundary counterterms equals the number of total derivatives one could construct in the bulk using positive
powers of two derivatives of the longitudinal mode of the massive graviton.
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I. INTRODUCTION AND SUMMARY

The conventional action,1 − R
Mð∂ϕÞ2, for a scalar field ϕ

on a D-dimensional flat spacetime M endowed with a
boundary ∂M does not require a boundary term for the
standard variational principle to be well defined. If, on the
other hand, a “less-conventional” form of the action were
used,

R
M ϕ□ϕ, one would need to introduce a boundary

term,
R
∂M ϕðn · ∂Þϕ, where n denotes the outward normal

to the boundary. The latter term is required to avoid
specifying the boundary value of the first derivative of
the field’s variation, induced by the bulk action containing
second derivatives of ϕ.
In the conventional covariant formulation of Maxwell’s

theory, no boundary terms are needed as the vector field
appears in the action with first derivatives only. However,
the Einstein-Hilbert (EH) action, written in its standard
form

R
dDx

ffiffiffiffiffiffi−gp
R, contains terms with second derivatives

acting on the metric and requires the Gibbons-Hawking
term to be added on the spacetime boundary [1].
The diffeomorphism-invariant theory of massive gravity

[2,3] amends the EH action by the mass and nonlinear
potential terms of the form [3]

S ∝
Z
M
dDx

ffiffiffiffiffiffi
−g

p
U
� ffiffiffiffiffiffiffiffiffi

g−1f
q �

; ð1:1Þ

where U is a special polynomial of the square root of a
matrix that is the product of the inverse of the metric
gABðA; B ¼ 0;…; 3; 5;…; D) and the“fiducial” metric
fAB¼∂AΦI∂BΦJηIJ (I;J¼0;…;3;5;…;D are the internal-
space indices labeling the spacetime scalars ΦI). The
action for these scalars is a special sigma model with
ISOð1; D − 1Þ internal global symmetry, which does not
lead to the loss of unitarity and contains the scalar fields
only through first derivatives ∂Φ. Moreover, there are no
derivatives acting on the metric tensor in (1.1); hence, one
would naively expect that no further boundary terms are
needed when the EH action is amended by (1.1).
Nevertheless, we will show that in a general

diffeomorphism-invariant formulation of massive gravity
on a manifold with a boundary certain additional boundary
terms are required. This claim seems counterintuitive due to
the fact that the new fields enter only through first
derivatives; however, there is a more detailed consideration
that makes things clear. The scalar fields ΦI encode the
D − 1 physical degrees of freedom (d.o.f.) of a massive
graviton in a gauge in which gAB encodes the remaining
DðD − 3Þ=2 dynamical modes (as in massless gravity).
One of them, the longitudinal mode, enters ΦI with a
derivative, ΦI ⊃ δIA∂AΠ ; while in the full theory Π is
a gauge mode and carries no independent meaning, in a
special high-energy limit of the theory (which we will refer
to as the decoupling limit), it becomes a gauge-invariant
d.o.f. and becomes physical. Then, its action should be well
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defined. To see whether this is indeed the case, consider the
Minkowski background of the theory, hgABi ¼ ηAB and
h∂AΦIi ¼ δIA, which is a solution to the equations of
motion of massive gravity. In the linearized approximation,
the nonlinear potential (1.1) reduces to the Fierz-Pauli (FP)
term [4]

ðhAB − ∂AVB − ∂BVAÞ2 − ðhAA − 2∂AVAÞ2; ð1:2Þ

where hAB ≡ gAB − ηAB and VB ≡ δIBηIJðΦJ − XAδJAÞ are
the fluctuations of the fields involved. The FP term is
known to be the only quadratic term free of ghosts,
tachyons, and other instabilities [5]. The necessary con-
dition for the absence of ghosts is that the equations of
motion for the longitudinal mode, VB ¼ ∂BΠ, contain no
more than two time derivatives. This is certainly the case if
one ignores the total derivative that emerges from (1.2)

ð∂A∂BΠÞ2 − ð∂A∂AΠÞ2: ð1:3Þ

This term dominates over the others in the massless limit
(due to the coefficient that is not shown here, but see
discussions in Ref. [2] and in Sec. IV). While harmless in
an unbounded spacetime and for the fields that decay fast
enough at infinity, this term would give rise to more than
two time derivatives in the effective action for boundary
d.o.f., if a background manifold with a boundary were
considered. Hence, for consistency, a boundary can only be
introduced with a counterterm localized on it, to cancel the
otherwise problematic pullback of (1.3).
Similar considerations apply to nonlinear terms in (1.1):

these terms were built by requiring that the action for
the longitudinal mode, with all other fields set to zero, is
just a total derivative up to order D in nonlinearities and is
zero at higher orders [2]. For each of these total derivative
terms, one needs to introduce a boundary counterterm.
Therefore, in general, the number of boundary counter-
terms coincides with the number of total derivatives one can
construct using second derivatives of the longitudinal mode
of the massive graviton.
A theory of five-dimensional (5D) massive gravity in

5-dimensional anti–de Sitter with a four-dimensional (4D)
flat boundary has been proposed in Ref. [6] as a mechanism
for raising the strong coupling scale of massive gravity to a
significantly higher value. To avoid boundary ghosts,
boundary counterterms were introduced in that framework
in the decoupling limit, in which the calculations of the
strong scale were performed. Our goal here is to present a
fully diffeomorphism-invariant form of the boundary coun-
terterms and study their consequences in Minkowski space
(in the present work) as well as inAdS space (in the sequel to
this manuscript [7]).
The paper is organized as follows. In the next section, we

briefly review the dynamics of 5D general relativity in the
presence of a spacetime boundary. We present the fully

diffeomorphism-invariant formulation of the theory and
underline the role, played by the boundary bending mode in
this formulation. We then proceed, in Sec. III, to the case of
the Fierz-Pauli theory of a free massive graviton and show
that this theory requires a novel boundary term [in addition
to the Gibbons-Hawking term of general relativity (GR)]
for consistency, once the background spacetime is endowed
with a boundary. We derive this term in two different ways:
first by studying consistency of the boundary effective
action in the 5D theory and then by considering the Kaluza-
Klein modes of a six-dimensional (6D) massless graviton in
the presence of a boundary, with one spatial dimension
along the boundary compactified on a circle. Section IV is
mostly devoted to setting up notation and reviewing some
standard results concerning 5D ghost-free massive gravity,
which we find useful in the further parts of the paper. In
Sec. V, based on consistency of the decoupling limit,
we generalize the boundary term of the linear FP theory
to the full set of nonlinear and diffeomorphism-invariant
boundary terms for ghost-free massive gravity. Finally, in
Sec. VI, we conclude.

II. GENERAL RELATIVITY WITH A BOUNDARY

Before we get to massive gravity, it will prove useful to
briefly review the case of general relativity on a flat spacetime
M with a timelike codimension-1 boundary. We will be
particularly interested in the situation in which M is a five-
dimensional manifold, parametrized by coordinates XM

(M ¼ 0;…; 3; 5) and endowed with a metric gMN , while
its boundary ∂M is given, at least in some coordinates (to be
specified below), by the X5 ≡ z ¼ 0 hypersurface. We will
further assume that the bulk metric is a small perturbation of
Minkowski space: gMN ¼ ηMN þ hMN .
It is well known that in order for the variational principle

to be well defined in GR the Einstein-Hilbert action ought
to be amended by the Gibbons-Hawking boundary term

SGR ¼ M3
5

2

Z
M
d5X

ffiffiffiffiffiffi
−g

p ð5ÞR5 −M3
5

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
K; ð2:1Þ

where ð5ÞR is the 5Dscalar curvature,xμ (μ ¼ 0;…; 3) are the
coordinates parametrizing the boundary manifold ∂M, K
denotes the (trace of the) extrinsic curvature associated with
the embedding of ∂M in ambient spacetime, and γμν is the
induced metric on the boundary. The 5D Planck mass is
denoted byM5. The position of the boundary is described by
five embedding functions XMðxÞ, in terms of which the
induced metric is given by the standard formula γμνðxÞ ¼
∂μXM∂νXNgMN . Figure 1 provides a diagram of this setup.
There are two sets of gauge redundancies, associated

with the action (2.1): reparametrizations of the boundary
(i.e., 4D diffeomorphisms acting on the boundary coor-
dinates xμ) and reparametrizations of the bulk (that is, 5D
diffeomorphisms acting on the bulk coordinates XM). Bulk
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diffeomorphisms, δXM ¼ ξMðXÞ,2 act on the bulk metric
gMN in the usual way,

δgMNðXÞ¼−ξK∂KgMNðXÞ−∂Mξ
KgKNðXÞ−∂Nξ

KgKMðXÞ;
ð2:2Þ

while the induced metric on the boundary is invariant.
Under a change of the boundary coordinates, on the other
hand, the bulk metric and coordinates transform as scalars,

δxμ ¼ ζμðxÞ; δXM ¼−ζμ∂μXM;

δgMN ¼−ζμ∂μXK∂KgMN; ð2:3Þ

and the induced metric transforms as a rank-2 tensor,

δγμν ¼ −ζλ∂λγμν − ∂μζ
λγλν − ∂νζ

λγλμ: ð2:4Þ

In practice, we will always use freedom to parametrize
the boundary so that its coordinates are aligned with the
first four of the bulk ones,

XμðxÞ ¼ xμ; X5ðxÞ ¼ χðxÞ: ð2:5Þ

This is obviously not a complete gauge fixing yet. Bulk
diffeomorphisms change the boundary embedding func-
tions, δXμ ¼ ξμðx; χÞ, δX5 ¼ ξzðx; χÞ, taking us away from
the gauge (2.5); however, one can return to this gauge by
performing a boundary diffeomorphism of the form
δxμ ¼ ξμðx; χðxÞÞ. This combined set of diffeomorphisms
makes up the residual gauge freedom within (2.5), under
which the “boundary bending mode” χ transforms as

δχ ¼ −ξμðx; χÞ∂μχ þ ξzðx; χÞ; ð2:6Þ

while the transformation of the bulk metric is that given in
Eq. (2.2). Furthermore, in the gauge at hand, the induced
metric γμν becomes

γμνðxÞ ¼ ∂μXM∂νXNgMN

¼ gμν þ ∂μχgzν þ ∂νχgzμ þ ∂μχ∂νχgzz ð2:7Þ

and obeys the standard transformation law (2.4) of a
rank-2 tensor [with ζμðxÞ ¼ ξμðx; χÞ] under the residual
diffeomorphisms.
In the rest of this section, we will be interested in

exploring the spectrum of small fluctuations about the bulk
Minkowski vacuum. To this end, we will need to perturb
the action (2.1) to quadratic order in field fluctuations. In
the gauge (2.5), the relevant d.o.f. are the bulk metric hMN
and the bending mode χ, which lives on the boundary.
Furthermore, for the time being, we will find it convenient
to use the residual gauge freedom (2.6) to fix

χðxÞ ¼ 0: ð2:8Þ

In this gauge, the boundary sits at z ¼ 0, which will
significantly simplify the calculations. We will later use
the transformation properties of various fields under
residual diffeomorphisms to go back to a more general
gauge, in which the boundary is bent.
It is a long, but straightforward, exercise to expand the

full action (2.1) to quadratic order in field fluctuations.3 The
result is

2

M3
5

Sχ¼0 ¼
Z

d5x
1

8
hABϵAMKϵBNL∂M∂NhKL

þ
Z
z¼0

d4x

�
1

4
hμν∂zhμν −

1

4
h4∂zh4

þ 1

2
h4∂μhzμ −

1

2
hμν∂μhzν

�
; ð2:9Þ

where we have defined h4 ≡ ημνhμν and the undisplayed
indices on the two 5D fully antisymmetric epsilon symbols
(our convention is ϵ01235 ¼ 1) are understood as contracted
among each other.4 All indices are contracted with the flat
Minkowski metric, and, for the sake of notational simplic-
ity, we have not raised/lowered them. For a quick con-
sistency check, we note that this action is invariant under
the residual gauge transformations of the gauge (2.5) that
leave the boundary at z ¼ 0 (i.e., those compatible with the
additional gauge fixing χ ¼ 0). In other words, gauge
transformations of the form (2.2) with the parameters

FIG. 1. Embedding of the boundary in general coordinates.

2In a little more expanded form, what we mean by this notation
is XM ¼ X0M − ξMðX0Þ or, to the leading order in the small
diffeomorphism parameter, X0M ¼ XM þ ξMðXÞ. Therefore, if
the boundary sits at z ¼ 0 in the “unprimed” coordinates, it will
sit at z0 ¼ ξzðXμ; 0Þ in the “primed” coordinates.

3As a technical remark, we note that the presence of the
boundary requires keeping careful track of all total z derivatives
that emerge from the bulk action.

4For example, ϵAMKϵBNL ≡ ϵAMKPQϵBNLPQ.
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ξMðx; zÞ satisfying ξμðx; 0Þ ≠ 0 and ξzðx; 0Þ ¼ 0 are an
exact symmetry of (2.9).
To arrive at a fully diffeomorphism-invariant description

of the theory, we will now explicitly restore the bending
mode χ in the action by performing a diffeomorphism of the
form (2.6). This amounts to redefining z ¼ z0 − ξzðx; z0Þ,
with ξzj ¼ χðxÞ (here and in what follows, a vertical
stroke without a subscript will denote evaluation on the
boundary), and substituting for the metric hMNðx; zÞ ¼
h0MNðx; z0Þ þ ∂MξNðx; z0Þ þ ∂NξMðx; z0Þ. The boundary is
located at z0 ¼ χðxÞ in the new coordinates. Performing the
above substitutions (and omitting primes on new fields and
coordinates for notational simplicity) turns (2.9) into

2

M3
5

SGR½hMN; χ� ¼
2

M3
5

Sχ¼0½hMN �

−
Z
z¼χ

d4xχð∂μ∂νhμν − ∂2h4Þ; ð2:10Þ

where Sχ¼0 is given in Eq. (2.9) and we have defined
∂2 ≡ ημν∂μ∂ν. Although the boundary is now not at z ¼ 0,
at the quadratic order in field fluctuations, we can still
integrate the second term in (2.10) over the z ¼ 0 hyper-
surface, since the difference between this and integrating
over z ¼ χðxÞ is at least cubic in the fields. One can check
explicitly that (2.10) is invariant under the full set of 5D
diffeomorphisms of the form

δhMN ¼ ∂MξN þ ∂NξM; δχ ¼ −ξz; ð2:11Þ

with arbitrary ξMðx; zÞ. Equations (2.9) and (2.10) provide
the starting point for the discussion of (Fierz-Pauli) massive
gravity in the presence of spacetime boundaries, to which
we will turn next.

III. BOUNDARY TERM FOR
THE FIERZ-PAULI THEORY

Having obtained the fully diffeomorphism-invariant
formulation of GR on a spacetime with a boundary, we
wish to explore possible ways of generalizing it to the case
of massive gravity.
As a matter of fact, it is instructive to first recall how

things work in the absence of boundaries. The unique
action for a free, massive spin-2 particle on 5D Minkowski
space is [4]

SFP ¼ SEH −
1

8
M3

5m
2

Z
d5xðhABhAB − h25Þ; ð3:1Þ

where SEH denotes (the quadratic piece) of the Einstein-
Hilbert Lagrangian and m2 is the particle’s squared mass.
The massive theory, in contrast to the massless one, has no
redundancy in terms of the field hAB alone.

We will follow the same logic in the presence of a
spacetime boundary at z ¼ 0 and define massive gravity as
a deformation of the massless theory, in which the full 5D
diffeomorphism invariance is recovered by formally setting
the mass parameter to zero. As we have seen in the previous
section, 5D diffeomorphism invariance necessarily implies
the presence of the bending mode χ, which lives on the
boundary and nonlinearly realizes local translations along
the z direction. We will therefore require the putative
massive gravity action to reduce to (2.10) for m2 ¼ 0.
Running a bit ahead of the discussion, we will state here

the expression for the correct action of a massive spin-2
particle in the presence of spacetime boundaries:

2

M3
5

S ¼
Z

d5x

�
1

8
hPQεPMKεQNL∂M∂NhKL

−
m2

4
ðhMNhMN − h25Þ

�

þ
Z
z¼0

d4x

�
1

4
hμν∂zhμν −

1

4
h4∂zh4

þ 1

2
h4∂μhzμ −

1

2
hμν∂μhzν

− χð∂μ∂νhμν − ∂2h4Þ −m2χh4

�
: ð3:2Þ

A few remarks are in order. First, this indeed reproduces the
fully diffeomorphism-invariant action (2.10) of general
relativity once the parameter m2 is set to zero. Second,
the first line in (3.2) is completely fixed by consistency of
the bulk dynamics to be that of Fierz and Pauli (locality
in the extra dimension implies that the presence of the
boundary cannot influence the bulk part of the action).
Furthermore, generically, one expects a modification of the
boundary action, proportional to the mass parameter m2 as
well. This is given by the extra term

2

M3
5

Lbdy
FP ¼ −m2χh4j ð3:3Þ

we have added on the last line. Deriving this boundary
operator and exploring its consequences will be the main
focus of the rest of this section.

A. Boundary effective action

To better understand the meaning of the boundary term
(3.3) for Fierz-Pauli massive gravity, one can compute the
boundary effective action that results from integrating out
the bulk d.o.f. (we will use the method of Ref. [8] that
constructed the boundary effective action in the Dvali-
Gabadadze-Porrati model [9]). The bulk equations of
motion that follow from varying the action (2.10) with
respect to hMN are the usual Fierz-Pauli equations, which in
the absence of bulk sources imply
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∂MhMN ¼ h5 ¼ 0; ð□ −m2ÞhMN ¼ 0; ð3:4Þ

where we have defined□≡ ηMN∂M∂N and h5 ¼ ηMNhMN .
The solution of the last of these equations that obeys
the physical, “outgoing wave” boundary conditions at
infinity is5

hMNðx; zÞ ¼ e−Δzh̃MNðxÞ; Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂2 þm2

p
; ð3:5Þ

where the boundary values of the bulk metric, h̃AB ¼ hABj,
are four-dimensional fields with respect to which the
boundary effective action will be later varied. The first
two of Eqs. (3.4), which in 4D notation give 4þ 1þ 1

conditions, allow us to express h̃μz and h̃zz in terms of h̃μν as
well as impose a further equation on h̃μν itself. On shell, this
amounts to the following relations:

h̃zz ¼ −h̃4; h̃μz ¼
1

Δ
∂νh̃νμ;

∂μ∂νh̃μν − ∂2h̃þm2h̃ ¼ 0: ð3:6Þ

The last equation here is of particular importance; it
exactly coincides with the equation one obtains upon
varying the boundary action in (3.2) with respect to the
bending mode χ. Notice that the boundary term (3.3) plays
a crucial role: had we added it with a different coefficient
—or, for that matter, omitted it altogether—the equation
of motion of χ would be inconsistent with the (on-shell)
constraints coming from the bulk physics. We stress once
again that the bulk equations of motion/constraints cannot
be modified—they are fixed to be those of Fierz and Pauli
by the absence of ghosts, and spacetime boundaries
cannot influence this fact due to locality in the extra
dimension.
Using Eqs. (3.6) in (3.2) yields the following effective

action for the boundary d.o.f.:

2

M3
5

Sbdy ¼
1

4

Z
d4x

�
h̃μν

1

Δ
εμαρενβσ∂α∂βh̃ρσ

−m2

�
h̃μν

1

Δ
h̃μν − h̃

1

Δ
h̃

��
: ð3:7Þ

(The boundary bending mode χ, being a Lagrange multi-
plier, falls out from the on-shell action.) Up to the
(operator) factors of Δ−1, this is just the standard EH
kinetic term plus the Fierz-Pauli mass. Nonlocality of
the 4D effective description implied by the form of the
two-point function, hhhi ∼ Δ=∂2, has a clear physical
interpretation: it corresponds to the continuum of massive

Kaluza-Klein modes, which make the theory truly five
dimensional.
In the next subsection, we will derive the boundary term

(3.3) from a different perspective.

B. Boundary term for the FP theory
from 6D general relativity

Consider general relativity in six spacetime dimensions,
with the extra two (spatial) dimensions denoted by X5 ≡ z
and X6 ≡ y. In this subsection (and only in this sub-
section), capital latin indices will run over M;N ¼ 0, 1, 2,
3, 5, 6; lowercase latin indices will run over m, n ¼ 0, 1,
2, 3, 6; and greek indices will correspond to the standard
4D coordinates, μ, ν ¼ 0, 1, 2, 3. Like before, we will
assume that the background manifold is endowed with a
boundary at z ¼ 0. Moreover, the sixth dimension will be
assumed to be compactified on a circle, y ∼ yþ 2πL .
From the 5D point of view, the spectrum thus contains the
usual 5D graviton, vector, and scalar zero modes, as well
as the massive Kaluza-Klein (KK) modes of the 6D
graviton, that have definite momenta in the y direction.
Furthermore, due to the boundary at z ¼ 0, in a generic
gauge, there will also be the 5D bending (zero-)mode
χð0ÞðxμÞ, along with its KK modes χðnÞðxμÞ, localized on
the boundary.
The graviton’s KK modes are massive 5D spin-2

particles in a flat spacetime with a boundary, described
by the Fierz-Pauli action in the bulk. The full theory, being
just 6D general relativity (with a boundary and one
compactified direction), is obviously consistent, and thus
the theory of the graviton’s KK modes that results from
compactification should be consistent, too. According to
our discussion above, any consistent theory of a massive
spin-2 particle should include the boundary term (3.3) in
the action. We will now show how this term arises in the 6D
setup at hand.
The 6D version of the quadratic action (3.2) for general

relativity with a spacetime boundary at z ¼ 0 reads

2

M4
6

S6D ¼
Z

d6x
1

24
hABϵAMKϵBNL∂M∂NhKL

þ
Z
z¼0

d5x

�
1

4
hmn∂zhmn−

1

4
ðh4þh66Þ∂zðh4þh66Þ

þ1

2
ðh4þh66Þ∂mhzm−

1

2
hmn∂mhzn

−χ½∂m∂nhmn−ηmn∂m∂nðh4þh66Þ�
�
; ð3:8Þ

where h4 ¼ ημνhμν as before and we have denoted the
6D Planck mass by M6. Upon compactifying the y
direction, the fields are decomposed into their respective
KK modes as

5In Euclidean space, this solution corresponds to the fields
decaying at infinity.
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hMN ¼ 1ffiffiffiffi
L

p
Xþ∞

n¼−∞
hðnÞMNðxμ; zÞeiny=L;

χ ¼ 1ffiffiffiffi
L

p
Xþ∞

n¼−∞
χðnÞðxμÞeiny=L; ð3:9Þ

where hð−nÞMN ¼ hðnÞ�MN and analogously for χ, due to reality of
the position-space fields. In what follows, it will be
convenient to work in the gauge

hðnÞ66 ¼ hðnÞ6z ¼ hðnÞ6μ ¼ 0; ð3:10Þ

which is always possible to fix for the graviton’s KK modes
(i.e., for modes with n different from zero). The bulk action
for these modes, obtained by substituting the decomposi-
tion (3.9) into the bulk part of (3.8), is then the Fierz-Pauli
action in the first line of Eq. (3.2), with the KK masses
given by

mn ¼
n
L
: ð3:11Þ

Let us now focus on the boundary part of the action. Again,
by inserting the KK decomposition (3.9) into the second
and the third lines of the 6D action (3.8) fixed to the gauge
(3.10), we find that the resulting theory at z ¼ 0 precisely
reproduces the boundary action of Fierz-Pauli massive
gravity, Eq. (3.2), at each KK level n ≠ 0 (we identify
M3

5 ¼ M4
6L). Crucially, this boundary action includes the

terms of the form (3.3) for every KK mode,

2

M3
5

LðnÞ
bdy ¼ −m2

nðχðnÞ�hðnÞ4 þ H:c:Þj; ð3:12Þ

which come from the last term in (3.8):

2LðnÞ
bdy ¼ M4

6

Z
∂M

d4xdyχηmn∂m∂nh4

⊃ M3
5

X
n

Z
∂M

d4xχðnÞ�∂2
6h

ðnÞ
4 þ H:c:

¼ −M3
5

X
n

Z
∂M

d4xm2
nχ

ðnÞhðnÞ4 þ H:c: ð3:13Þ

These boundary terms have exactly the right coefficients
to make the equations of motion for (KK modes of) the
boundary bending mode consistent with the on-shell
Fierz-Pauli equations/constraints in the bulk—something
we discussed at length in the previous subsection.
Let us reiterate the results so far. We have shown that

the boundary term (3.3) is required by consistency of
Fierz-Pauli massive gravity on background manifolds with
a boundary. Without this term, the (on-shell) bulk con-
straints that the graviton field hAB satisfies would be
inconsistent with the equation of motion for the boundary

bending mode χ. We have also shown that (3.3) arises in 6D
general relativity with a spacetime boundary, upon com-
pactifying one of the directions along the boundary on a
circle. In this setup, the 5D effective action contains
boundary terms of precisely the form (3.3) for every
massive 5D KK mode of the 6D graviton. In Sec. V, we
will unveil another face of the boundary term (3.3) that
becomes visible in a certain short-distance/high-energy
limit of the theory, reviewed in the next section.

IV. NONLINEAR MASSIVE GRAVITY
AND THE DECOUPLING LIMIT

Mostly for the purposes of setting up notation and
presenting results that we will find useful in later sections,
we will summarize here the dynamics of massive spin-2
fields on five-dimensional (infinite) Minkowski spacetime.
The discussion in this section is standard.
The unique ghost-free nonlinear extension of Fierz-Pauli

theory of a free massive graviton in four dimensions
has been found in Refs. [2,3]. Its counterparts for an
arbitrary dimension D ≥ 3 are straightforward to write.
In a diffeomorphism-invariant formulation, 5D massive
general relativity features five auxiliary scalar fields, ΦI

ðI ¼ 0;…; 3; 5Þ, in addition to the 5D metric. Explicitly,
the action reads

S ¼ M3
5

2

Z
d5X

ffiffiffiffiffiffi
−g

p �
ð5ÞR −

m2

4

X5
n¼2

αnUnðKÞ
�
; ð4:1Þ

where αn are constant parameters and m is the graviton’s
mass (which fixes α2 ¼ 2=3 in five dimensions).
Furthermore, the “potential” terms Un can be written with
the help of the 5D totally antisymmetric symbol ϵ as6

Un ¼ ϵM1…MnMnþ1…M5
ϵN1…NnNnþ1…N5KM1

N1
…KMn

Nn
δMnþ1

Nnþ1
…δM5

N5

≡ϵ5ϵ5×Kn×15−n; ð4:2Þ

where the matrix K is defined in terms of the auxiliary
scalars and the metric in the following way:

KM
N ¼ δMN − ðgMKfKNÞ1=2;

fMN ¼ ∂MΦI∂NΦJηIJ: ð4:3Þ
Here, fIJ is a flat auxiliary metric, related to the Minkowski
one by a coordinate transformation. One can further
generalize the theory by defining it with a curved fIJ
[10], or even by promoting fIJ to a full-fledged dynamical
tensor field, which would define a bigravity theory [11].
The second equality in (4.2) defines notational shortcut,

6The usual cosmological constant corresponds to n ¼ 0, while
the term linear in KM

N (corresponding to n ¼ 1) leads to a tadpole
on the Minkowski background and thus obstructs having a
Poincaré-invariant vacuum. We will discard these terms in the
rest of this paper.
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which we will often use in the rest of this paper. We will
assume that the metric is coupled minimally to matter, as it
is in general relativity. Finally, we note that the action (4.1)
is invariant under the internal SOð4; 1Þ rotations, acting on
the auxiliary scalars’ flavor index

ΦI → ΛI
JΦJ; ð4:4Þ

whereΛ denotes a general 5DLorentz transformationmatrix.
The equations of motion that follow from varying the

action (4.1) admit a flat-space solution with the following
expectation values:

hgMNi ¼ ηMN; hΦIi ¼ δIMX
M: ð4:5Þ

On this background, the scalars’ internal indices mix with
the spacetime ones, so from now on, we will often not make
the distinction between these. One can use diffeomorphism
invariance of the full action (4.1) to fix unitary gauge, in
which the five scalars are frozen to their background values,
ΦM ¼ XM. In this gauge, Eq. (4.1) describes a Lorentz-
invariant theory of the spin-2 field hMN alone. Generic mass
and potential terms for the graviton lead to a loss of all
(Hamiltonian and momentum) constraints of general rela-
tivity. As a result, a generic theory of massive gravity
propagates one extra d.o.f. in addition to the nine, required
by the representation theory of the 5D Poincaré group. This
extra d.o.f. is necessarily a (Boulware-Deser) ghost [12]. In
contrast, the special structure of the action (4.1)–(4.3)
guarantees that one combination of the Hamiltonian and
momentum constraints persists even for m2 ≠ 0, projecting
out the unwelcome sixth d.o.f. and rendering the theory
ghost free [2,3].
Inmore physical terms, the potential issues associatedwith

the Boulware-Deser ghost, and cure thereof, can be grasped
by considering the spin-2 analog [13] of the Goldstone
equivalence limit in massive vector theories [14]. It is
customary to refer to this as the decoupling limit. The virtue
of this limit is that it distills the high-energy dynamics
of the various physical polarizations of the spin-2 multiplet.7

In particular, away from unitary gauge and at high
energies, the helicity-0 mode Π and helicity-1 mode AM of
the massive graviton are embedded in the metric and the
auxiliary scalars as

hMN ¼ 1

M3=2
5

�
ĥMN þ 2

3
ΠηMN

�
;

ΦM ¼ XM þ VM

M3=2
5 m

; ð4:6Þ

where VM is further decomposed as

VM ¼ AM −
∂MΠ
m

: ð4:7Þ

Here, ĥMN describes the graviton’s helicity-2 polarization at
short distances/high energies. For further reference, we also
note an important property of the tensorKM

N , whereby it takes
on a simple form upon substituting hMN ¼ AM ¼ 0:

KM
N jhMN¼AM¼0 ¼

∂M∂NΠ
Λ7=2
7=2

: ð4:8Þ

In writing this formula, we have definedΛ7=2 ≡ ðM3=2
5 m2Þ2=7

and used the vertical stroke with a subscript to denote
conditional evaluation (not to be confused with a stroke
without a subscript, which denotes evaluation on the boun-
dary). Importantly, Eq. (4.8) holds at the full nonlinear level.
The decoupling limit (DL) is defined as a double scaling

limit, in which

M5 → ∞; m → 0; Λ7=2 ¼ finite: ð4:9Þ

Making use of Eqs. (4.3), (4.6), and (4.8) and expanding
the action of massive GR (4.1) in powers of the various
fields over the Minkowski vacuum, one finds that the only
singular terms in the limit (4.9) are [13]

Ssing ¼ −
1

8

Z
d5x

Λ7
7=2

m2

X5
n¼2

αn

Λ7n=2
7=2

ϵ5ϵ5 × ð∂2ΠÞn × 15−n:

ð4:10Þ

In writing this expression, we have used the matrix no-
tation defined in Eq. (4.2) and schematically denoted a
D-dimensional partial derivative by ∂D so that ∂2Π is short
for the matrix ∂M∂NΠ.
The specific structure of the terms in (4.10) directly

follows from the form of the potential (4.1) and Eq. (4.8).
All terms in (4.10) apart from these are regular in the
decoupling limit. What allows for this limit to be well
defined is then the fact that the ð∂2ΠÞn terms, while
formally divergent, combine into total derivatives and
are thus immaterial as long as the background spacetime
has no boundaries and the fields decay at infinity fast
enough. This in a sense is the defining feature of the
particular structure of mass and potential terms given by
Eqs. (4.2), (4.3), and (4.8): this structure renders the
classical theory ghost free, while the quantum theory
becomes endowed with a relatively high cutoff Λ7=2. In
a generic theory with massive spin-2 fields, on the other
hand, the operators of the form ð∂2ΠÞn do not gather into
total derivatives and do genuinely affect the dynamics. This
leads to a ghost instability in the classical theory and to a
low cutoff Λ11=2 ¼ ðM3=2

5 m4Þ2=11 once the theory is viewed
as a low-energy quantum effective field theory.

7Corresponding to an ultraviolet instability, the Boulware-
Deser ghost is clearly visible in this limit.
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The above discussion immediately suggests that things
should change in the presence of spacetime boundaries. In
that case, the higher-derivative self-interactions of the
helicity-0 field Π are not entirely eliminated from the
dynamics but do affect physics at the boundary, leading
to a higher-derivative boundary action and the associated
ghost instabilities. We will thus find that consistency of the
decoupling limit (4.9), and for that matter of the full theory,
will require defining the boundary action of massive GR
such that the effects of the bulk operators of the form ð∂2ΠÞn
are cancelled.Understanding how thisworks in detail will be
our main task in the rest of this paper.

V. NONLINEAR MASSIVE GRAVITY
WITH A BOUNDARY

In this section, we will address the question of how to
define the decoupling limit of massive gravity in the
presence of spacetime boundaries. As discussed above,
the decoupling limit is convenient in that it makes the
dynamics of various helicity modes of the massive spin-2
particle transparent at energies, higher than the particle’s
mass. Strictly speaking, spacetime boundaries break trans-
lation invariance in one or more directions, and it may seem
that working in terms of the representations of the Poincaré
group—the helicity modes—puts one on shaky grounds.
This logic is misleading, however. First of all, we have seen
that there is no obstruction whatsoever to restoring the local
translation invariance of the theory by means of introducing
new fields (in our case, the boundary bending mode χ).
And, second, as already emphasized above, it is physically
clear that the presence of boundaries cannot influence
the bulk physics simply by locality. The (high-energy) bulk
dynamics should thus admit a perfectly adequate descrip-
tion in terms of the modes of definite helicity.

A. Boundary term for the FP theory:
A third derivation

With the above considerations in mind, we proceed by
first defining the decoupling limit for our quadratic
massive gravity action (3.2) that includes the novel boun-
dary term (3.3). To this end, we restore the diffeomorphism
invariance, “broken” by the presence of the bulk and
boundary terms, proportional to the mass parameter m2.
This is achieved by introducing the Stückelberg field VM

the lines of Eq. (4.6) of the previous section:

hMN →
1

M3=2
5

�
hMN −

1

m
ð∂MVN þ ∂NVMÞ

�
;

χ →
1

M3=2
5

�
χ þ 1

m
Vzj

�
: ð5:1Þ

Notice that we have also canonically normalized the
various fields along the way but have kept the old notation

for the new fields; we will be careful to comment whenever
this may lead to confusion. Equation (5.1) resembles a
broken linearized diffeomorphism of the form (2.11). As
remarked in Sec. IV, at high energies, the vector VM further
decomposes into the helicity-1 (AM) and helicity-0 (Π)
polarizations of the massive graviton as in Eq. (4.7). The
theory of massive gravity (3.2), defined in terms of the new
fields, is thus invariant under the full set of linearized 5D
diffeomorphisms,

δhMN ¼ ∂MξN þ ∂NξM; δχ ¼ −ξzj;
δAM ¼ mξM; δΠ ¼ 0; ð5:2Þ

as well as an additional local Uð1Þ group

δhMN ¼ 0; δχ ¼ 0; δAM ¼ ∂Mα; δΠ ¼ mα:

ð5:3Þ

Notice that the scaling of hMN , AM, and Π with m is fully
fixed by the well-known dynamics of Fierz-Pauli massive
gravity in the bulk; in order to continuously reproduce the
correct number of the high-energy d.o.f., these (canonically
normalized) fields ought to scale asm0. The presence of the
spacetime boundary cannot change this fact.
We would now like to zoom onto distance scales, much

shorter than the graviton’s Compton wavelength, which
operationally amounts to sending the paramter m2 to zero,
while the rest of the parameters scale as in Eq. (4.9).
Substituting the field decomposition (5.1) and (4.7) into the
massive gravity action (3.2) and focusing for the time being
on the part that features VM alone, we have

2SV ¼
Z

d5x

�
−
1

4
FMNFMN − ∂MðVN∂NVM − VM∂NVNÞ

�

þ
Z
z¼0

d4x2Vz∂μVμ; ð5:4Þ

where F≡ dV ¼ dA is the usual field strength for the
vector V. The first integral in this expression comes from
the bulk mass in (3.2), while the second, boundary integral
comes from our new boundary term (3.3). Now, the vector
VM is further decomposed into the helicity-1 (vector) and
helicity-0 (scalar) modes as in (4.7). The scalar mode
obviously falls out from the first, Maxwell term in the bulk
integral. It is, however, present in the second, total
derivative contribution to this integral as well as in the
last, boundary term in (5.4). Given that the canonically
normalizedΠ does not scale with the graviton mass in (4.7),
these terms separately diverge asm−2 [see the discussion of
the bulk terms around Eq. (4.10) of Sec. IV]. This
divergence potentially obstructs the validity of the Λ7=2

decoupling limit. However, one can check that, while
divergent separately, the unwelcome bulk and boundary
terms “magically” cancel against each other, once the bulk
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total derivative is rewritten as a boundary integral. Again,
the presence of the boundary term (3.3) has played a crucial
role in this discussion. Without this term, one would not be
able to define the standard Λ7=2-decoupling limit of
massive gravity on spacetimes with boundaries; the unique
prescription that continuously reproduces the high-energy
d.o.f. of the spin-2 particle in the bulk would be ill defined
on the boundary.
Having taken care of the terms that diverge like m−2 in

the DL, we now turn to exploring those that scale like m0.
Apart from the Maxwell term for AM that we have already
discussed above, these terms feature the tensor and scalar
modes hMN andΠ as well as the boundary bending mode χ.
Moreover, it is a well-known fact that in the given basis of
fields Π has no kinetic term and its bulk dynamics comes
entirely from the kinetic mixing with the tensor mode,
Smix ∼

R
d5xhMNð∂M∂NΠ − ηMN□ΠÞ. To diagonalize the

bulk kinetic Lagrangian, one then performs a conformal
transformation on hMN [13]:

hMN ¼ ĥMN þ 2

3
ΠηMN: ð5:5Þ

In the new (and final) field basis, the bulk action becomes

2

M3
5

Sbulk ¼
Z

d5x

�
1

8
ĥPQεPMKεQNL∂M∂NĥKL

þ 1

2
∂MðΠ∂NĥMN − ∂NΠĥMN þ ∂MΠĥ

− Π∂MĥÞ þ
4

3
Π□Π

�
: ð5:6Þ

Again, there is a total derivative involved, which originates
from manipulating terms that come from the graviton mass
terms in the bulk. An important point is that in our case of a
background spacetime with a boundary the conformal
transformation (5.5) affects not only the bulk part of the
action in (3.2) but the boundary one as well. The transition
to the new field basis generates a whole host of new terms
on the boundary that, as one can check by a direct
calculation, nontrivially cancel against the preexisting
boundary terms as well as the bulk total derivative in
(5.6) (once it is written as a boundary term). Again, the
contribution of the massive gravity boundary operator (3.3)
that survives in the decoupling limit,

lim
m→0

2

M3
5

LFP
bdy ¼ ð−2χ∂2Πþ h∂zΠÞj

¼
�
−2χ∂2Πþ ĥ∂zΠþ 8

3
Π∂zΠ

�				; ð5:7Þ

is absolutely crucial for these cancellations to occur. Once
the dust settles, we find that the single conformal trans-
formation (5.5) that diagonalizes the bulk action also

magically diagonalizes the boundary one,8 so the complete
quadratic decoupling limit action becomes

SDLFP ¼ SGR½ĥMN; χ� þ
Z

d5x

�
−
1

4
FMNFMN þ 4

3
Π□Π

�

þ
Z
z¼0

d4x
4

3
Π∂zΠ; ð5:8Þ

where SGR is the action (2.10) of general relativity with the
bending mode in place. Apart from the standard boundary
term in SGR, the only remnant of the above-mentioned
cancellations is the last term in (5.8), which only involves
the helicity-0 mode of the graviton. Upon rewriting this
term as a bulk total derivative and combining it with the
existing bulk kinetic term of Π, we get for the helicity-0
action

SDLΠ ¼
Z

d5x −
4

3
∂MΠ∂MΠ; ð5:9Þ

so the graviton’s scalar mode enters the decoupling limit
action with at most a single derivative per field. Thus, the
boundary term (3.3) has made it possible to define the
decoupling limit in terms of the fully diagonalized, physical
helicity modes and has also guaranteed that these modes
obey a well-defined variational problem. This latter prop-
erty is analogous to what the Gibbons-Hawking term does
in general relativity.

B. Boundary terms for the full theory

Fierz-Pauli theory of a free spin-2 particle has a unique
consistent extension to nonlinear ghost-free massive grav-
ity, discussed in Sec. IV. Furthermore, we have found in the
previous sections that consistency of FP theory on a
manifold with a boundary itself requires a novel boundary
term. One can then plausibly assume that also this free field
theory boundary term has generalization to the case of
nonlinear massive gravity. In this subsection, we will
present such a generalization.
First, we note that our dynamical bulk spacetime (para-

metrized by the coordinates XM) can be usefully thought of
as a spacetime-filling “brane,” floating in a flat target space
parametrized by the coordinates ΦI . The tensor fMN that
enters into the definition (4.3) of the building block KM

N of
the graviton’s mass/potential terms is then nothing other
than the induced metric on that brane. (From this perspec-
tive, it is intuitively clear that any metric gMN , related to
ηMN by a diffeomorphism, is generically a solution to the
equations of motion of the theory.) The flat background is
characterized by the expectation values (4.5) for the metric

8Again, without adding the boundary term (3.3), this would
not be true.
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and the auxiliary scalars in Cartesian coordinates XM

(obviously, this should also be supplemented by χ ¼ 0).
Suppose now that the physical boundary is described

by an embedding equation, written in Cartesian coordi-
nates as

X5 − ΘðX0;…; X3Þ ¼ 0; ð5:10Þ

with Θ some function of the first four of the XM. In our
particular case of interest in which the boundary sits at
z ¼ 0, we have ΘðX0;…; X3Þ ¼ 0. Furthermore, the pres-
ence of the boundary gives rise to a preferred foliation of
the physical vacuum manifold, and we will find it con-
venient to introduce an analogous foliation in the auxiliary
Φ space. To this end, we introduce the scalar of XM

diffeomorphisms,

ΣðΦÞ≡Φ5 − ΘðΦ0;…;Φ3Þ; ð5:11Þ

which, according to (4.5), has the vacuum expectation
value hΣi equal to zero. Generically, there is no gauge in
which the fluctuations of Σ vanish as well, however. In the
case with vanishing Θ in which we are primarily interested,
Eq. (5.11) reduces to

Σ ¼ Φ5 ¼ zþ 1

M3=2
5 m

Vz; ð5:12Þ

and the perturbed boundary value of Σ reads (in terms of the
canonically normalized fields)

Σ
				 ¼ 1

M3=2
5

χ þ 1

M3=2
5 m

Vz

				: ð5:13Þ

Again, Σ being a spacetime scalar, this is clearly (linearly)
gauge invariant—see the discussion in the previous section.
For further convenience, we will also define the projection
ϕI of the auxiliary scalar multiplet on the Φ5 ¼ 0 “boun-
dary” of the internal space:

ϕI ¼ ðδIJ − nInJÞΦJ: ð5:14Þ

The vector n here denotes the unit normal to the Φ-space
boundary, with its only nonzero entry being n5 ¼ 1. This
means that the projected multiplet has the following form:
ϕa ¼ δaIΦIða ¼ 0;…; 3Þ and ϕ5 ¼ 0. Being spacetime
scalars, Σ and ϕI can be used as building blocks of a
boundary action.
One can construct other such building blocks by

means of projecting various bulk tensors onto the physical
spacetime boundary. One object we will find particularly
useful in the following discussion is

ϕμν ¼ ∂μXM∂νXN∂Mϕ
I∂Nϕ

JηIJ; ð5:15Þ

which is a rank-2 tensor under boundary diffeomorphisms
and a scalar under bulk diffeomorphisms. Notice that it is
the projected multiplet ϕI , not ΦI , that enters into this
definition. The tensor ϕμν can be used to construct the four-
dimensional boundary analog of the building block KM

N of
the 5D graviton’s mass/potential terms,

kμν ¼ δμν − ðγμσϕσνÞ1=2; ð5:16Þ

where γμν is the induced metric on the physical boundary,
defined in Eq. (2.7). Let us note two defining properties
of kμν :

(i) First, in the gauge (2.5) in which we are working
and upon decomposing the auxiliary scalars as in
Eqs. (4.6) and (4.7), kμν has the following expansion
to the linear order in the fields:

kμν jlin ¼
1

2M3=2
5

�
hμν −

1

m
ð∂μVν þ ∂νVμÞ

�
: ð5:17Þ

All indices here have been raised/lowered with the
help of the Minkowski metric, and we have written
this formula in terms of the canonically normalized
fields.

(ii) Second, kμν obeys a fully nonlinear relation, analo-
gous to Eq. (4.8) satisfied by its 5D counterpart KM

N ,

kμν jhMN¼AM¼χ¼0 ¼
∂μ∂νΠ
Λ7=2
7=2

: ð5:18Þ

Perhaps we should note here that had we used the
full scalar multiplet ΦI instead of the projected one
ϕI in the definition of ϕμν [Eq. (5.15)] this relation
would not hold.

With these properties of kμν in mind, we would like to
consider the following term in the boundary action,
invariant under both the bulk and the boundary (fully
nonlinear) diffeomorphisms9:

Z
∂M

d4xL2¼
M3

5m
2

6

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
ΣðΦÞϵμαρσϵναρσkμν

¼M3
5m

2

6

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Φ5ϵ4ϵ4×k×13: ð5:19Þ

In the second equality, we have used Eq. (5.12) and (the
four-dimensional analog of) the notation defined in (4.2).
At the lowest order in field fluctuations, the action in (5.19)
reduces to 2L2¼−m2ðχþVzm−1Þðh4−2∂μVμm−1Þ, which

9Notice that this term breaks the internal Lorentz group (4.4) of
the bulk theory. One could in principle restore this symmetry by
promoting the normal nI to a dynamical vector of the internal
group nI → ΛI

JnJ . This obviously leads to a different theory with
extra d.o.f., and we will not pursue this possibility in the present
work.
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is precisely our boundary term (3.3) for Fierz-Pauli theory,
covariantized à la Stückelberg and written in terms of the
canonically normalized fields (see also the discussion in the
previous section). That the quadratic piece of L2 coincides
with Lbdy

FP is a direct consequence of the property (5.17) of
our construction. Furthermore, as we have seen in the
previous section, one virtue of adding the given boundary
term is that it eliminates the effects of the ð∂2ΠÞ2 (total bulk
derivative) self-interactions of the helicity-0 mode, which
become singular in the decoupling limit. If not eliminated,
these operators would obstruct the possibility of taking the
Λ7=2-decoupling limit as soon as boundaries are introduced
to the background spacetime. This discussion suggests an
obvious criterion for constructing the rest of the boundary
terms for the most general nonlinear theory of ghost-free
massive gravity. Namely, for each of the bulk mass/
potential terms Un in (4.2), one needs to find a boundary
counterpart Bn that would precisely cancel the helicity-0
self-interactions of the form (4.10), originating from Un.
Guided by the previous observations of this section, it is
straightforward to write down such a counterpart,

bulk∶ Un ¼ ϵ5ϵ5 × Kn × 15−n

↔ boundary∶ Bn ¼ −2Φ5ϵ4ϵ4 × kn−1 × 15−n; ð5:20Þ

where the bulk and boundary terms contribute to the fully
diffeomorphism-invariant action in the following way:

SðnÞbulk ¼
Z
M
d5X

ffiffiffiffiffiffi
−g

p
Un;

SðnÞbdy ¼
Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Bn: ð5:21Þ

In a slightly more expanded form, e.g., the cubic boundary

action Sð3Þbdy is

Sð3Þbdy ¼
Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
B3¼−2

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
Φ5ϵμαργϵ

νβργkμνkαβ:

ð5:22Þ

One can check, using Eqs. (4.7), (4.8), (5.12), and (5.18),
that the dangerous helicity-0 self-interactions discussed in
Secs. IV and V do indeed cancel once a given bulk term is
supplemented by the corresponding boundary contribution
given in Eqs. (5.20) and (5.21).10The theory so defined
admits a valid short-distance description in terms of the
relativistic 5D helicity modes, strongly coupled at the scale
Λ7=2. Without the boundary terms Bn in place, on the other
hand, the low-energy theory below the scale Λ7=2 would
suffer from a ghost.

Again, it is one of the special properties (5.18) of our
construction that guarantees that the boundary terms given
in (5.20) cancel the effects associated with the ð∂2ΠÞn
operators stemming from the graviton’s bulk mass/potential
terms Un. For example, had we used the full scalar
multiplet ΦI instead of the projected one ϕI in the
definition of ϕμν in (5.15), Eq. (5.18) would not be true,
and the cancellation would not occur.
We note, finally, that in the case in which the spacetime

boundary differs from the constant-z hypersurface the
correct massive gravity boundary terms can be obtained
from (5.20) and (5.21) by simply replacing Φ5 → ΣðΦÞ,
with everything else unchanged.
Let us summarize our findings of this section: to each of

the possible diffeomorphism-invariant mass/potential terms
(4.2) for the graviton in five dimensions, there corresponds
a counterpart on the spacetime boundary, which is invariant
under both bulk and boundary diffeomorphisms and
needs to be included for well-definiteness of the theory.
Equations (5.20) and (5.21) define this correspondence.

VI. CONCLUSIONS

A necessary [2] and sufficient [15] requirement for a
theory of massive gravity to be ghost free is that the
graviton’s helicity-0 polarization Π be governed by a
second-order (classical) equation of motion in a certain
short-distance limit, known as the decoupling limit. For
generic theories of massive gravity, this is not the case as
the decoupling-limit Lagrangian of such theories contains
higher-derivative operators of the schematic form ð∂2ΠÞn.
The Fierz-Pauli theory of a free spin-2 particle and its
interacting de Rham-Gabadadze-Tolley extension go
around the problem by arranging these unwelcome oper-
ators to collect into exact total derivatives so that they drop
out of the dynamics in infinite spacetime (given that the
fields behave well enough at infinity). In any spacetime
with a boundary, however, the issue comes back; even if
the bulk action is from the ghost-free FP/dRGT class, the
bulk total derivatives are not eliminated but integrate to
higher-derivative boundary operators. These boundary
terms reintroduce higher-derivative contributions to the
Π equation of motion. FP/dRGT theories therefore require
a proper extension to remain ghost free, once the back-
ground spacetime is endowed with boundaries. In this
paper, we have constructed such an extension.
We have found that in order to correctly define the Fierz-

Pauli theory of a free massive graviton in a spacetime with a
boundary one ought to include a novel boundary term (3.3)
in the action. We have derived this term in three different
ways: (i) by requiring that the equation of motion for the
boundary bending mode be consistent with the standard
bulk Fierz-Pauli equations (Sec. III); (ii) by considering
the Kaluza-Klein modes of a 6D massless graviton in the
presence of a boundary, with one spatial direction along the
boundary compactified on a circle (Sec. III); and (iii) by

10A relation that helps to establish this is
R
d5xε5ε5 ×

ð∂2ΠÞn × 15−n ¼ −2
R
z¼0 d

4x∂zΠε4ε4 × ð∂2ΠÞn−1 × 15−n:
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requiring that the higher-(total-)derivative operators of the
form ð∂2ΠÞn coming from the bulk cancel, once they are
written as boundary terms (Sec. V). The latter property of
the theory allows us to define the standard decoupling limit
in terms of the fully diagonalized, physical helicity modes.
Moreover, the new boundary operator (3.3) guarantees that
the helicity-0 graviton Π obeys a well-defined variational
problem, entering the Lagrangian with at most one deriva-
tive per field.
We have generalized the boundary term (3.3) for

Fierz-Pauli theory to the case of ghost-free nonlinear
theories of massive gravity [2,3]. Requiring that the
higher-(total-)derivative bulk operators for the helicity-0
graviton be eliminated from the dynamics led us to
conclude that for each of the possible mass/potential terms
(4.2) in the bulk one should include a novel operator in the
boundary action. These nonlinear boundary terms are given
in Eqs. (5.20) and (5.21); they are invariant under both the
bulk and boundary diffeomorphisms and need to be
included for well-definiteness of the theory. Basing our-
selves on physical arguments, we have not provided a
strict mathematical proof (e.g., a full-fledged Hamiltonian
analysis) that would establish our generalization of the
Fierz-Pauli boundary term (3.3) to the case of fully non-
linear and diffeomorphism-invariant massive gravity as the

unique one. However, the discussion of Sec. V B strongly
suggests that this generalization is indeed unique.
There are a number of directions in which we can extend

our work. First, in the upcoming work [7], we study the
consequences of the above-derived boundary terms for the
dynamics of massive gravity on 5-dimensional anti–de
Sitter with a flat boundary—a setup that leads to an
effective (boundary) theory of 4D massive gravity with
high cutoff [6]. Furthermore, using the machinery of
Refs. [16,17], it would be interesting to study the cosmol-
ogy of the resulting theories, in particular whether or not
the setup entails (self-accelerated) solutions with a de Sitter
boundary.
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