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Abstract: This article presents an exhaustive classification of metric-affine theories according to their
scale symmetries. First it is clarified that there are three relevant definitions of a scale transformation.
These correspond to a projective transformation of the connection, a rescaling of the orthonormal
frame, and a combination of the two. The most general second order quadratic metric-affine action,
including the parity-violating terms, is constructed in each of the three cases. The results can be
straightforwardly generalised by including higher derivatives, and implemented in the general
metric-affine, teleparallel, and symmetric teleparallel geometries.
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1. Introduction

The concept of gauge transformation was introduced into physics a century ago in the work of
Hermann Weyl [1], who generalised the spacetime geometry in Einstein’s recent General Theory of
Relativity (GR) by incorporating the relativity of magnitudes. The (pseudo-)Riemannian geometry
of GR describes a curved spacetime, wherein the direction of a vector parallel transported around a
closed loop can rotate. In Weyl geometry, the magnitude of the vector can also change. The theory
was made to be invariant under the simultaneous transformation of the gravitational metric and
the electromagnetic field, which was the basis for a geometrical unification of the two fundamental
interactions known at the time.

About a decade later it was clarified that the electromagnetic interaction requires rather the
compact gauge group U(1) [2], and the extension of the gauge principle to non-Abelian groups has
eventually lead to the great successes of the modern standard model of particle physics that begun
some fifty years ago [3]. Thus, the very foundation of current theoretical physics can be traced back
to the geometrical analysis of GR, and at its the core lie the issues of scales and integrability [4].
As expressed in Reference [5]: “It was Weyl’s desire to remove all elements of an action at a distance
theory from geometry. The direction of a vector in Riemannian geometry became nonintegrable,
but its length remains integrable. This situation Weyl wanted to change. Weyl’s interpretation of the
Weyl covector Q as electromagnetic potential turned out not to be viable—basically because the electric
charge has no intrinsic relation to the geometry of spacetime—but the geometry Weyl created will
reappear as linked to the gauge theory of scale transformations”. Currently, there is still no consensus
on the status of scale invariance in physics, but a natural viewpoint is to regard it as a fundamental,
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exact symmetry which is broken in a spontaneous fashion [6]. For reviews on various aspects of scale
invariance, see [7–11].

The aim of this paper is to study scale invariance and closely related symmetries in the general
geometrical framework of metric-affine gravity [7]. We work mostly in the so called Palatini formalism,
where the independent gravitational variables are the metric and the affine connection [12,13].
As well-known, this formalism extends the (pseudo-)Riemannian framework by taking into account
two fundamental properties of spacetime geometry besides the (metric) curvature: torsion [14,15]
and non-metricity [4,16], the former dating back to the work Cartan, the prototype manifestation of
the latter being the Weyl covector Q. While in the first formulation of GR the metric was the only
variable and gravitation was attributed to its curvature, Einstein himself a few years later considered
an alternative formulation in terms of torsion, and in general became to uphold the view that the
spacetime connection, rather than the metric, should be regarded as the “directly relevant conceptual
element” [5]. In a spacetime equipped with an independent connection, new possibilities arise to
realise the transformation of physical scales. As Weyl had clarified, the connection may be retained
invariant while the metric is transformed [17]. On the other hand, the projective transformation
a.k.a. the λ-transformation, which is a change of the connection that leaves its autoparallels invariant,
was a recurrent theme in the early history of unified field theory [18], and it indeed at the same time it
is related to the gauge transformation of the electromagnetic field and the geometric construction of
the famous Ehlers-Pirani-Schild method, which is basically the separation of the conformal and the
projective structures on a manifold [19].

A specific task we are about to undertake is the systematic classification of quadratic metric-affine
theories according to their rescaling and projective symmetries. Currently, there is a resurgence of
activity in alternative formulations of gravity theory in the context generalised geometry, especially
motivated by the mysteries of modern cosmology [13]. The most extensively studied example is
the f (R) gravity, wherein the important role of the conformal relation has been eludicated in the
metric models [20,21], the Palatini models [22,23] and their unifications [24,25]. In a more generic
context, the interest of many investigators is captured by “the trinity of gravity” [13] i.e., the facts
that GR can be equivalently formulated in terms of either curvature, torsion or non-metricity, and that
furthermore, each of these three formulations may give rise to inequivalent generalisations, thus
opening new avenues to address the cosmological problems and the more long-standing foundational
issues in the theory of gravity. In this paper we also pave the way for explorations into the
general teleparallel geometry that is flat but exhibits both non-metricity and torsion. Recently,
interesting insights have been found into a possible duality between the latter two, mediated via
the projective transformation [23,26,27]. The many possible applications of scale-invariant theories
include unification [1,4], the hierarchy problem [28,29], the cosmological constant problem [30,31],
dark energy [32–34], dark matter [8,35], leptogenesis [36], wormholes [37,38], non-singular black
holes [39,40] and their evaporation [41,42], the origin of time [43], inflation [44,45] and its bouncing [46]
and other [47] alternatives. Previously various versions of scale invariance in metric-affine geometry
have been considered in e.g., References [7,48–56], and some recent discussions of projective invariance
in metric-affine geometry are found in References [23,26,27,57–59].

Weyl’s original theory [1] was written in terms of the unique scale-invariant quadratic Riemannian
curvature scalar constructed from the metric and the metrical connection. It is well-known that this
term, the “Weyl tensor squared”, is higher order in derivatives, and in fact accommodates a ghost.
Dirac had already discarded this particular formulation of the action principle on aesthetic grounds,
though he recognised Weyl’s geometric unification as “the outstanding one, unrivalled by its simplicity
and beauty” [60]. Dirac nevertheless continued to work within the framework of (extended) metrical
Riemannian geometry. His resolution was to introduce a compensating field, ψ, which has the
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transformation law ψ → e−φψ under the rescaling gµν → e2φgµν of the metric1 gµν, and couple this
field non-minimally to the Einstein-Hilbert term. With a particular coefficient of the kinetic term for the
field ψ, the non-minimally coupled scalar field action becomes locally scale-invariant. Presently, the ψ

is often known as the dilaton, and the action of the Weyl-Dirac theory (see [61] for an introduction)
is referred to as the conformally coupled Brans-Dicke scalar-tensor theory. Here we shall follow
the Dirac’s approach and generalise the theory into metric-affine geometry. The task is to deduce
the “co-covariant” terms that can be constructed from torsion and non-metricity. The first step is to
catalogue all the diffeomorphism-invariant terms and the step that will follow is the construction of
their scale-covariant combinations.

We have made an attempt at a systematic and pedagogic presentation of this paper. It is therefore
organised such that many detailed derivations are included in the three Appendices, which also
contain some simple illustrative examples. There is often some confusion about the definitions and
especially the physical interpretations of the scale transformations, an example being the errors that
regularly arise about the (non)equivalence of the Jordan and the Einstein frames in the f (R) and other
scalar-tensor theories [62], despite that the issue was explained in exemplary clarity already in the
seminal paper of Brans and Dicke [63]. For these reasons, we discuss the basics of a scale-invariant
theory at some length. First, in Section 2, we elaborate on the meaningful definitions of a scale
transformation, from both the perspectives of spacetime geometry (greek indices in our notation) and
tangent space geometry (latin indices), and then, in Section 3 we introduce a very simple example of
scale invariant theory, the “Einstein-Cartan-Weyl-Dirac” action, in order to illustrate the formulation
of such a theory and its physical interpretation. The main derivations and results of this paper are
given in Sections 4 and 5, wherein we deduce the generic quadratic scale-covariant theories in terms of
torsion and non-metricity in the parity-symmetric and -asymmetric cases, respectively. The results
will be summarised in Table 2. Finally, we conclude in Section 6 by gathering the bunches of scalars
in Table 3.

2. The Geometrical Framework

In this section, we will define the scale transformations to be considered in the following.
We consider two formulations, which are referred to as the Palatini formalism and the metric-affine
gauge formalism, for reasons explained in Reference [64].

2.1. Scale Transformations in the Palatini Formalism

In GR, the metric gµν is the only independent variable. The rescaling of the metric,
by a coordinate-dependent function φ(x), is defined simply as

gµν → e2φgµν . (1)

The metric connection is given by the Christoffel symbol, the unique symmetric
metric-compatible connection {

α
βγ

}
=

1
2

gαλ
(

gβλ,γ + gλγ,β − gβγ,λ
)

. (2)

Under the transformation Equation (1), this obviously transforms as{
α

βγ

}
→
{

α
βγ

}
+ φ,αgβλ − 2δα

(βφ,λ) . (3)

1 As is a usual practice, we refer to tensors by their components. Thus, e.g., the Weyl (co)vector Q = Qµdxµ will be referred to
as Qµ from now on.
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This was the original form of the scaling transformation in Weyl’s 1918 theory [1], where it was to
be performed in concert with the gauge transformation of the electromagnetic field. One may consider
the three new linear terms in the connection Equation (3) to appear with independent (constant)
coefficients w1, w2, w3, {

α
βγ

}
→
{

α
βγ

}
+ w1φ,αgβγ + w2δα

βφ,γ + w3δα
γφ,β . (4)

This generalisation of Weyl geometry can be called the linear vector distortion (where in the
above, the vector field is reduced to the gradient of the scalar φ), and it has been recently used to
parameterise deviations from Riemannian geometry [26,65,66], see also [51,67–69].

In the paper at hand however, rather than employing a phenomenological parameterisation
of the connection, we work in the Palatini formalism, wherein in addition to the metric, the affine
connection Γα

µν is an independent dynamical variable [12]. The action for the gravitational theory
is written in terms of both gµν and Γα

µν, and varied with respect to both of them independently.
In this sense, the connection is not fixed a priori, but assumes its form dynamically, as a solution
to its equation of motion. In such a theory, one reasonable realisation of the rescaling is simply
w1 = w2 = w3 = w4 = 0 [17], wherein

Γα
βλ → Γα

βλ + w1φ,αgβγ + w2δα
βφ,γ + w3δα

γφ,β + w4εαδ
βγφ,δ (5)

would be the most general linear additive transformation. The different cases considered in this paper
are summarised in Table 1.

Table 1. The projections of the affine connection Equation (4), or Equation (5), in terms of the vector
distortion parameters in generalised Weyl geometry [26,66].

Transformation w1 w2 w3 Geometry

conformal metric − 1
2

1
2

1
2 Riemannian

conformal MAG 0 0 0 orthonormal
projective 0 1 0 holonomic

projective// 0 1
2 − 1

2 teleparallel
projective‖ 0 1

2
1
2 symmetric telep.

Generically, the independent connection may have the metric-compatible piece Equation (2),
but also non-metricity and torsion which do not necessarily reduce to pure vector or scalar components.
The conventions we shall use are such that for the covariant derivative ∇µ of a vector uµ with respect
to the independent connection Γα

µν, we have

∇µuλ = ∂µuλ + Γλ
νµuν . (6)

The curvature of the connection is defined as

Rα
βµν = 2∂[µΓα

|β|ν] + 2Γα
λ[µΓλ

|β|ν] (7)

the torsion Sµν
λ of the connection is given as its antisymmetric part,

Sµν
λ = 2Γλ

[µν] (8)

and the non-metricity Qαµν as the covariant derivative of the metric,

Qαµν = −∇αgµν . (9)
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One should be aware that various other conventions are used in the literature2. Clearly, in
n dimensions the torsion tensor can have n2(n − 1)/2 and the non-metricity tensor n(n + 1)/2
independent components, which together comprise the n3 independent components of a fully generic
affine connection.

The geometric concepts such of angles, distances, areas and volumes are given by the metric.
The special property of the Weyl rescaling Equation (5) is that it leaves angles invariant, whereas it
changes the quantities involving magnitudes, i.e., lengths and its higher-dimensional generalisations.
A priori, the geometric concept of parallel transport, of moving from one spacetime point to another,
is completely independent of the metric. This is the compelling reason to adopt Palatini formalism,
wherein the parallel transport is determined by the independent field Γα

µν. In particular, the geodesic
equation that defines the parallel transport of a vector uµ is uµ∇µuα = 0. There is an equivalence class
of connections which describe the same geodesic paths. Any connection in this class is obtained from
another by the projective transformation, which can be given by the one-form ξµ as

Γλ
µν → Γλ

µν + δλ
µ ξν . (10)

In analogy with the fact that rescaling of magnitudes has a priori nothing to do with the connection,
the projective transformation has a priori nothing to do with the metric. It depends completely on the
geometric prescription of the physical theory, whether they are related and what the relation would
be. When the one-form above is a gradient, ξµ = φ,µ, we obtain the special case of the linear vector
distortion transformation Equation (4) with w2 = 1, w1 = w3 = 0. This has precisely the form of the
electromagnetic gauge transformation [18,59] (up to the imaginary factor [4]). This suggests a special
geometric relevance for this behaviour of the connection under rescalings, and indeed such will be
clarified below in Section 2.2.

To summarise, we have arrived at a possible relation between the transformation Equation (10)
for the connection and the rescaling Equation (1) for the metric, the two independent geometric objects
of metric-affine geometry (or, Palatini formalism). We shall discard the relation Equation (3) from
further consideration, since this relation was justified by the restriction to Riemannian geometry, which
is ad hoc from our perspective, and besides has been already extensively studied in the past hundred
years. Instead, we shall explore the transformations of metric-affine geometry, taking into account
systematically all the three logical possibilities, as follows.

• Only the connection is transformed. This is called the projective transformation:

Γ̂λ
µν = Γλ

µν + δλ
µ ξν , ĝµν = gµν . (11)

• Only the metric is transformed. This is called the conformal transformation:

Γ̄λ
µν = Γλ

µν , ḡµν = e2φgµν . (12)

• Both the metric and the connection are transformed. This is called the frame rescaling:

Γ̃λ
µν = Γλ

µν + δλ
µ ∂νφ , g̃µν = e2φgµν . (13)

All of them can be interpreted as scale transformations, or, “calibrations”. As above, we shall
denote the transformed quantities in the three cases with a hat (proper calibration), with a bar
(orthonormal calibration) and with a tilde (holonomic calibration), respectively. The nomenclature can
be explained better, and the physical interpretation of the transformations can be further elaborated,

2 For example, in the conventions of [64,70], the four previous equations would read ∇µuλ = ∂µuλ + Γλ
µνuν,

Rα
βµν = 2∂[µΓα

ν]β + 2Γα
[µ|λ|Γ

λ
ν]β

, Tλ
µν = 2Γλ

[µν] and Qαµν = ∇αgµν, respectively.
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with the help of a further set of indices. For this purpose only we’ll make a very brief excursion into
the tangent space in the following subsection, which the reader may choose to skip.

2.2. Scale Transformation in Metric-Affine Gauge Geometry

To consider the underlying symmetry transformations in gravity theory it is useful to introduce
a local basis @a

µ, called the frame field, or the vielbein, which is a set of n vector fields. The coframe
field ea

µ is the dual set of covectors which satisfy ea
ν@a

µ = δ
µ
ν , and ea

µ@b
µ = δa

b . We have the metric
ηab which is convenient to consider in the Minkowski form. In terms of the frame field, the spacetime
metric is given as

gµν = ηabea
µeb

ν . (14)

A fundamental field is then the connection one-form αa
bµ, and we denote covariant derivative the

associated with this connection by Dµ. The spacetime affine connection coefficients are given as

Γα
µν = @a

αDµea
ν = −ea

νDµ@a
α . (15)

This definition is often called “the tetrad postulate”. Explicitly, the covariant derivative involves
the connection αa

bµ as,

Dµea
ν = ea

ν,µ + αa
bµeb

ν (16)

Dµ@a
ν = @a

ν
,µ + αa

b
µ@b

ν (17)

and therefore the interpretation of the “tetrad postulate” is that the vielbein constant in the sense that
it is preserved by the differentiation with respect to the sum of the two connections.

A general linear transformation is parameterised by Λa
b, which has an inverse

Λa
c(Λ−1)c

b = (Λ−1)a
cΛc

b = δa
b , and its action in the orthonormal geometry is

ea
µ → Λa

beb
µ (18a)

@a
µ → (Λ−1)b

a@b
µ (18b)

αa
bµ → Λa

c

(
αc

dµ − δc
d∂µ

)
(Λ−1)d

b (18c)

ηab → ηab . (18d)

The trace of the general linear transformation3 can parameterised by one parameter φ as
Λ̄a

b = eφδa
b . Explicitly, we have then

ēa
µ = eφea

µ (19a)

@̄a
µ = e−φ@a

µ (19b)

ᾱa
bµ = αa

bµ + φ,µδa
b (19c)

η̄ab = ηab (19d)

which gives a gauge transformation of the spin connection. From Equations (14) and (15), we have then

ḡµν = e2φgµν (20)

Γ̄α
µβ = Γα

µβ . (21)

3 In this paper we focus on scale invariance, but one could generalise these considerations to more general transformations.
However, a theory that would be postulated to be invariant under a completely general transformation such as Equation (18),
with no restrictions on Λa

b, would have to be topological in the sense of being invariant under arbitrary transformations of
the metric.
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Therefore, the trace of the general linear transformation in orthonormal geometry is manifested
in spacetime geometry as what we call the conformal transformation Equation (12) in this paper.

We can also consider a mere rescaling of the frame field, such that êa
µ = eφea

µ, α̂a
bµ = αa

bµ,
which in view of Equations (14) and (15) implies that

g̃µν = e2φgµν (22)

Γ̃α
µβ = Γα

µβ + φ,µδα
β . (23)

The latter transformation is a special case λµ = φ,µ of what Einstein and others called the
“λ-transformation” [18]

Γ̂α
µβ → Γα

µβ + λµδα
β . (24)

This transformation amounts to a reparameterisation of the geodesic parameters, and thus
leaves the autoparallels of the connection invariant. The case is of course the opposite to the frame
rescaling in the sense that we obtain it by considering that the tangent space connection transforms
as αa

bµ → Λa
c

(
αc

dµ − δc
d∂µ

)
(Λ−1)d

b, but that the frame does not transform, ea
µ → ea

µ. Clearly,
for these reasons we can regard the combined effect Equations (22) and (23) in spacetime as a rescaling
of the frame and the shift Equation (24) of the spacetime affinity as the projection of the connection in
the tangent space.

In the orthonormal geometry we have considered up to this point, the tangent space can be seen
to be defined by the constancy of the algebraic object ηab. There is however another possible viewpoint.
In a holonomic prescription, we rather regard the frame field as an absolute invariant. Then, it is not
changed by any transformation, but rather transformations are understood to occur with respect to the
frame field. The price to pay is then, obviously, that ηab has to be allowed to become “relative”. In this
prescription, a general linear transformation is

ea
µ → eb

µ (25a)

@a
µ → @b

µ (25b)

αa
bµ → Λa

c

(
αc

dµ − δc
d∂µ

)
(Λ−1)d

b (25c)

ηab → ηcd(Λ
−1)c

a(Λ−1)d
b . (25d)

Now the trace of the general transformation, if parameterised as Λ̃a
b = e−φδa

b , results in
η̃ab = e2φηab and thus, from Equation (14) in that g̃µν = e2φgµν, and from Equation (15) we readily
obtain the same result as in Equation (23). Thus, the trace of the linear transformation in holonomic
geometry can be interpreted as a frame rescaling in orthogonal geometry. Alternatively we could refer
to Equation (12) as the “orthogonal calibration” and to Equation (13) as the “holonomic calibration”.

Finally, the projective transformation Equation (11) could be called the “proper calibration”.
The spacetime metric Equation (14) is obviously left invariant if we transform both the frame and the
metric of the tangent space, i.e., consider the general linear transformation of the tangent space variables

ea
µ → Λa

beb
µ (26a)

@a
µ → (Λ−1)b

a@b
µ (26b)

αa
bµ → Λa

c

(
αc

dµ − δc
d∂µ

)
(Λ−1)d

b (26c)

ηab → ηcd(Λ
−1)c

a(Λ−1)d
b . (26d)
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The trace transformation should be now parameterised as Λ̃a
b = e

1
2 φδa

b to result exactly in
Equation (11). Thus, we can conclude that all the three cases can be interpreted as rescalings.
The nomenclature we have adopted is justified from the orthonormal perspective4.

3. A Simple Scale-Invariant Theory

As a warm-up, let us study now a conformally invariant theory by coupling the Ricci scalar
R to a scalar field ψ, in the metric-affine framework. The nice thing now is that one does not need
the existence of an additional gauge field Aµ in order to define the gauge covariant derivative on ψ

since torsion and non-metricity offer enough room to accommodate it into them. To be more specific,
consider the action

S =
1

2κ

∫
dnx

[√
−gψ2R + λ

√
−ggµνDµψDνψ

]
(27)

where λ is a parameter and Dµψ the gauge covariant derivative on the field, to be defined in a moment.
Please note that the Dirac-Weyl theory [60,61] corresponds to the above action where the metric-affine
R is replaced by the Einstein-Hilbert scalar, the λ is fixed to the special value of the conformal coupling,
and an additional gauge field Aµ is introduced to define the covariant derivative Dµ.

Notice now that the first term in the above action is invariant under conformal transformations
of the metric

gµν → ḡµν = e2φgµν (28)

provided that we simultaneously transform the scalar field as

ψ→ ψ̄ = e
(2−n)

2 φψ . (29)

To keep this invariance on the kinetic term too, one needs to replace the partial derivative ∂µ with a
covariant one Dµ = ∂µ + Aµ and also impose a gauge transformation on the field Aµ (Aµ → Aµ + ∂µφ)
so as to have the transformation

D̄µψ̄ = e
(2−n)

2 φDµψ (30)

and subsequently √
−ḡḡµνD̄µψ̄D̄νψ̄ = gµνDµψDνψ (31)

which will ensure the conformal invariance of the total action. Now, what is interesting is that we do
not have to add this gauge field Aµ by hand, we have a generalized geometry offering torsion and
non-metricity vectors that can do the job. Notice now that since the torsion vector Sµ does not change
under conformal transformations, it cannot be regarded as our desired gauge field. The non-metricity
(Weyl) vector however, transforms as

Q̄µ = Qµ − 2n∂µφ (32)

under a conformal transformation. Therefore, defining the covariant derivative on the scalar field as

Dµ ≡ ∂µ +
2− n

4n
Qµ (33)

4 Needless to say, this terminology is not systematically used in the literature, but typically any version that is adopted is
referred to as “the conformal transformation”. However, our definition of the conformal transformation Equation (12)
agrees with the review [7], since the transformation Equation (19) can be seen as the volume changing part of the proper
linear transformation Equation (26) (which is appropriately called “the local scale transformation” in [7]) that is generalised
“by admitting arbitrary exponents” of the rescaling factor eφ, in the case of Equation (19) in particular giving the metric
ηab the rescaling weight 2. In the same way, the frame rescaling Equation (13) is simply the local scale transformation,
i.e., the trace part of Equation (26), accompanied with the non-trivial rescaling weight 1 for the frame field and −1 for
the coframe field. In the context of torsion transformations, the δ̃-transformation Equation (13) and the δ̄-transformation
Equation (12) correspond to the “strong conformal symmetry” and the “weak conformal symmetry” [14], respectively.
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ensures that Equation (31) is satisfied. So, building the action this way, let us derive the field equations
of Equation (27). Variation with respect to the metric tensor yields

−1
2

gµν

(
ψ2R + λ(Dψ)2

)
+ ψ2R(µν) + λDµψDνψ + λ

(n− 2)
2n

gµν
∂α(
√−gψDαψ)√−g

= 0 (34)

where we have abbreviated (Dψ)2 = gµνDµψDνψ. Now, since our initial action is conformally
invariant one would expect that the trace of the above equation identically vanishes. In fact, the trace
of the above equation gives the same equation that one gets when varying with respect to the scalar
field ψ. Therefore, when the equation of motion for ψ is on shell, the above trace vanishes identically.
To see this first note that the trace of the above field equations is

ψ2R + λ(Dψ)2 − λ
∂α(
√−gψDαψ)√−g

= 0 . (35)

On the other hand, varying the action with respect to ψ, we obtain

Rψ− λ
∂α(
√−gDαψ)√−g

− λ
(n− 2)

4n
Qµ(Dµψ) = 0 . (36)

Multiplying this by ψ (given that ψ 6= 0) and doing a partial integration it follows that

Rψ2 − λ
∂α(
√−gψDαψ)√−g

+ λ
(

∂µ +
2− n

4n
Qµ

)
Dµψ = 0 (37)

or equivalently

ψ2R + λ(Dψ)2 − λ
∂α(
√−gψDαψ)√−g

= 0 (38)

which is indeed the same equation with Equation (35). Lastly, variation of the action with respect to
the connection yields

Pλ
µν(h) + λ

(2− n)
n

δ
µ
λ(Dνψ) = 0 (39)

where

Pλ
µν(h) ≡ −∇λ(

√−gψ2gµν)√−g
+
∇α(
√−gψ2gµαδν

λ)√−g
+ 2ψ2(Sλgµν − Sµδν

λ − Sλ
µν) (40)

is the Palatini tensor computed with respect to the metric hµν = ψ2gµν. This tensor can also be written as

Pλ
µν(h) = ψ2Pλ

µν(g) + δν
λgµα∂αψ2 − gµν∂λψ2 (41)

where Pλ
µν(g) is the usual Palatini tensor computed with respect to the metric tensor gµν. Looking

back at Equation (39), contracting in µ = λ and using the fact that the Palatini tensor is traceless in its
first two indices5, it follows that

Dνψ = 0 (42)

which when substituted back at Equation (39) gives

Pλ
µν(h) = 0 ⇒ ψ2Pλ

µν(g) = −δν
λgµα∂αψ2 + gµν∂λψ2 . (43)

5 Please note that both Pµ
µν(g) = 0 and Pµ

µν(h) = 0, that is any Palatini tensor that is built from a metric conformally related
to gµν is also traceless in its first two indices. We shortly return to study this systematically in Appendix B.
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With this at hand we can use the connection decomposition and easily find the affine connection

Γλ
µν = Γ̃µν +

2
n− 2

gµν
∂λψ

ψ
− 2

n− 2
δλ

ν

∂µψ

ψ
+

1
2

δλ
µ Q̃ν . (44)

Before finding the expressions for torsion and non-metricity that follow from the above,
let us expand Equation (42) to get

∂µψ− (n− 2)
4n

Qµψ = 0 ⇒ Qµ =
4n

n− 2
∂µψ

ψ
(45)

that is, the Weyl vector is exact and powered by the scalar field ψ. Now, using the above connection
decomposition and the fact that

Sµν
λ = Nλ

[µν] and Qαµν = 2N(αµ)ν , where Nλ
µν ≡ Γλ

µν −
{

λ
µν

}
(46)

it follows that

Sµν
λ = −2

∂[µψδλ
ν]

ψ
+

1
2

δλ
µ Q̃ν] and Qαµν = Q̃αgµν =

1
n

Qαgµν (47)

where the last equality is deduced by the contraction of the previous one. Also recalling that
Qµ = 4n

n−2
∂µψ

ψ we have

Qαµν =
4

n− 2
gµν

∂µψ

ψ
(48)

which is the case of a Weyl integrable non-metricity. Also, using the above, the torsion tensor may
be expressed as

Sµν
λ =

4
n− 2

δλ
[µ

∂ν]ψ

ψ
(49)

with the torsion vector

Sµ = −2(n− 1)
(n− 2)

∂µψ

ψ
(50)

and the above is a case of vectorial torsion with an exact torsion vector. We note at this point that
the torsion and the non-metricity are dual to each. This is because they only appear in their vectorial
forms in the theory under consideration (and further, pure gauge vectors), which the projective
transformations change into each other, and the curvature is projectively invariant. Therefore, from
the above construction of the conformally invariant theory, we get the corresponding frame rescaling
invariant theory by prescribing the gauge field Aµ defining the covariant derivative of the scalar to be
given by torsion instead of non-metricity. To summarise, the three cases of symmetry correspond to the
following three prescriptions for the covariant derivative of the scalar field in the action Equation (27).

• projective invariance:
Dµ ≡ ∇µ ⇒ Dµψ = ∂µψ . (51a)

• conformal invariance:

Dµ ≡ ∇µ − w̄
(

n− 2
4n

)
Qµ ⇒ Dµψ =

[
∂µ −

(
n− 2

4n

)
Qµ

]
ψ (51b)

• frame rescaling invariance:

Dµ ≡ ∇µ − w̃
(

n− 2
n− 1

)
Sµ ⇒ Dµψ ≡

[
∂µ −

(
n− 2
n− 1

)
Sµ

]
ψ (51c)
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In each case, we have written the definition that applies for an arbitrary tensor with the
corresponding weight given by the w-symbol, and then specified the action on the rank-0 tensor
ψ. For the corresponding projectively invariant theory, the compensating scalar field is not needed at
all (if it is included, its transformation should be considered trivial to retain the projective invariance).
The duality of torsion and non-metricity vectors in a projectively invariant theory was elaborated in
great detail in the recent Reference [23].

Finally, using the above results, the field equations for the scalar field and the metric imply the
field equations

R = 0 and Rµν = 0 . (52)

We can now clarify the physical interpretation of the theory Equation (27). It is equivalent to
Einstein’s Gravity in vacuum, even though the curvature has more degrees of freedom coming from
torsion and non-metricity. In this simple conformally invariant model we have a Weyl non-metricity
and vectorial torsion both sourced by the scalar field ψ, but their role is that of a pure-gauge field.
A natural gauge fixing is to choose the transformation parameter φ such that ψ = 1 is a constant.
This could be seen as the unitary gauge, where both torsion and non-metricity then vanish, and
we recover GR with the correct normalisation of the gravitational constant κ. In any other gauge
the gravitational coupling would appear to be a function of time and space, effectively κ → κ/ψ,
but the physics of the theory would be rendered equivalent by the dynamics of the gauge fields Sµ and
Qµ. The equivalence would be broken by adding kinetic terms for these fields, corresponding to the
scalars we have listed in the Appendix A. Let us now proceed to the study of those scalars.

4. The Parity-Even Quadratic Action

We are interested in quadratic, second order metric-affine theories which are covariant under
the three scaling transformations. Let us first note the fact that any curvature scalar6 that may be
constructed in the Palatini formalism is covariant under conformal transformation and invariant under
the pure-gauge projective transformation. Trivially, these curvature scalars are then covariant under
the frame transformation as well. Therefore, after the simple example with curvature in Section 3,
we shall mostly focus on actions that are quadratic in torsion and non-metricity. Another rationale
for our choice of action is that it is the most general quadratic theory involves no derivatives of the
connection but is up to second order in derivatives of the metric [71].

4.1. The Scale-Covariant Scalars

In this Section we consider the parity-symmetric action in arbitrary spacetime dimension n.
It is given as

S =
1

2κ

∫
dnx

√
−g
[
L+Q + L+T + L+QT

]
+ SMatter (53)

which is parameterised by the 5 + 3 + 3 = 11 parameters ai, bi and ci as follows:

L+Q = a1QαµνQαµν + a2QαµνQµνα + a3QµQµ + a4qµqµ + a5Qµqµ (54a)

L+T = b1SαµνSαµν + b2SαµνSµνα + b3SµSµ (54b)

L+QT = c1QαµνSαµν + c2QµSµ + c3qµSµ . (54c)

For the systematical deduction of this action, we refer the reader to the Appendix A.
To begin with, let us consider how this action can be considered as a limit to GR. We could of

course add the Einstein-Hilbert Lagrangian LEH = R− 2Λ to the above and consider the quadratic

6 There is 1 linear and 10 scalars in the quadratic and parity-even case [65], and in the general case there is an infinite number
of such scalars.
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terms as post-Riemannian corrections. Notice now however that for the parameter choice b1 = 1,
b2 = −2, b3 = −4, ai = 0 = ci one recovers the teleparallel equivalent of GR by imposing a vanishing
curvature and non-metricity, as it was shown recently in References [64,72]. It was further shown there
that by demanding vanishing curvature and torsion and taking a1 = −a3 = 1/4, a2 = −a5 = −1/2,
a4 = 0, bi = 0 = ci one obtains the symmetric teleparallel equivalent of GR [73,74] from the above
action. Furthermore if we pick b1 = 1, b2 = −1, b3 = −4, a1 = −a3 = 1/4, a2 = −a5 = −1/2,
a4 = 0, c1 = −c2 = c3 = 2 and impose only the vanishing of curvature, we may expect to reproduce a
generalized equivalent to GR that admits both torsion and non-metricity. The latter possibility has not,
however, been considered in detail previously.

Now, in order to obtain a conformally invariant theory we should first restrict the above
parameters and find a specific combination for which the total Lagrangian density transforms
covariantly under the conformal transformation Equation (12), namely it only picks up a factor
e−2φ. To do so, we use the transformation laws for the quadratic scalars that are derived in detail in
the Appendix C.2. Then under a conformal transformation, we have

L̄+T = e−2φL+T (55a)

L̄+Q = e−2φL+Q − e−2φQµ∂µφ(4a1 + 4na3 + 2a5)− e−2φqµ∂µφ(4a2 + 4a4 + 2na5)

+ e−2φ(∂φ)24(na1 + a2 + n2a3 + a4 + na5) (55b)

L̄+QT = e−2φL+QT − e−2φ2Sµ∂µφ(c1 + nc2 + c3) . (55c)

From these we conclude that the parameter choices fo ai and ci for which

0 = 4a1 + 4na3 + 2a5 (56a)

0 = 4a2 + 4a4 + 2na5 (56b)

0 = na1 + a2 + n2a3 + a4 + na5 (56c)

0 = c1 + nc2 + c3 (56d)

and whatever b′is guarantee that

L̄+Q + L̄+T + L̄+QT = e−2φ
(
L+Q + L+T + L+QT

)
(57)

as we desired. Only 3 of the above 4 constraints are independent7, since n(56a) + (56b) = 4 (56c).
Thus the most general conformally covariant quadratic action is given by 11− 3 = 8 free parameters.

Now, let us consider frame rescalings Equation (13). Some details of the derivation are found in
the Appendix C.3, the result being

L̃+Q = e−2φL+Q (58a)

L̃+T = e−2φL+T − e−2φSµ∂µφ
(

2b1 − b2 + (n− 1)b3

)
+

(n− 1)
4

e−2φ(∂φ)2
(

2b1 − b2 + (n− 1)b3

)
(58b)

L̃+QT = e−2φL+QT −
1
2

e−2φQµ∂µφ
(

c1 + (n− 1)c2

)
+

1
2

e−2φqµ∂µφ
(

c1 + (1− n)c3

)
. (58c)

Then, frame rescaling invariance

L̃+Q + L̃+T + L̃+QT = e−2φ
(
L+Q + L+T + L+QT

)
(59)

7 This is consistent with Equation (A7) in Reference [75]. From their Equation (B4) one sees that the constitutive relation
becomes non-invertible in the case of additional conformal symmetry.
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is ensured so long we have bi’s and ci’s that satisfy

0 = 2b1 − b2 + (n− 1)b3 (60a)

0 = c1 + (n− 1)c2 = 0 (60b)

0 = c1 − (n− 1)c3 = 0 (60c)

and whatever a′is. There are thus 8 independent δ̃-covariant combinations of scalars.
Now, let us see how our action changes under projective transformations of the connection

Equation (11), Γλ
µν −→ Γ̂λ

µν = Γλ
µν + δλ

µ ξν which do not affect the spacetime metric
gµν −→ ĝµν = gµν. Please note that we do not require the vector ξµ to be a gradient. We compute

L̂+Q = L+Q + (4a1 + 4na3 + 2a5)Qµξµ + (4a2 + 4a4 + 2na5)qµξµ

+ (4na1 + 4a2 + 4n2a3 + 4a4 + 4na5)ξµξµ (61a)

L̂+T = L+T − [2b1 − b2 + (n− 1)b3] Sµξµ +
(n− 1)

4
[2b1 − b2 + (n− 1)b3] ξµξµ (61b)

L̂+QT = L+QT −
1
2
[c1 + (n− 1)c2] Qµξµ +

1
2
[c1 − (n− 1)c3] qµξµ

+ (c1 + nc2 + c3)
[
2Sµξµ − (n− 1)ξµξµ

]
. (61c)

Therefore, the total action changes according to

L̂+Q + L̂+T + L̂+QT = L+Q +L+T +L+QT

+

[
2(2a1 +2na3 + a5)−

1
2

(
c1 +(n−1)c2

)]
Qµξµ

+

[
2(2a2 +2a4 +na5)+

1
2

(
c1− (n−1)c3

)]
qµξµ

+
[
−2b1 + b2− (n−1)b3 +2(c1 +nc2 + c3)

]
Sµξµ

+

[
4
(

na1 + a2 +n2a3 + a4 +na5

)
+

(n−1)
4

(
2b1− b2 +(n−1)b3−4(c1 +nc2 + c3)

)]
ξµξµ . (62)

Then, projective invariance is ensured if the parameters satisfy

0 = 4(2a1 + 2na3 + a5)− c1 − (n− 1)c2 (63a)

0 = 4(2a2 + 2a4 + na5) + c1 − (n− 1)c3 (63b)

0 = 2b1 − b2 + (n− 1)b3 − 2(c1 + nc2 + c3) (63c)

0 = 16(na1 + a2 + n2a3 + a4 + na5) + (n− 1)
(

2b1 − b2 + (n− 1)b3 − 4(c1 + nc2 + c3)
)

.(63d)

Only 3 out of the first 4 constraints are independent. The important thing to note here is that
the parameters ai, bi, ci mix when one demands projective invariance. This means that L+Q, L+T and
L+QT may not independently projective invariant though their sum is. This was not the case when
we considered conformal and frame rescaling transformations where the parameters did not mix
and L+Q, L+T and L+QT were all independently invariant under the associated transformations iff
their sum was.
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4.2. The Field Equations

Having restricted the parameter space in the each of the three cases we can now obtain an
invariant theory by coupling the above to ψ2. We first combine the case of conformal and frame
rescaling transformations in a single action given by

S =
1

2κ

∫
dnx

√
−g
[
ψ2
(
L+Q + L+QT + L+T

)
+ λgµνDµψDνψ

]
(64)

where again λ is a parameter, Dµ is the gauge covariant derivative to be defined later,
and L+Q + L+T + L+QT was specified in Equation (54). Now, it will be convenient for the calculations
to define the “superpotentials”

Ωαµν ≡ a1Qαµν + a2Qµνα + a3gµνQα + a4gαµqν + a5gαµQν (65a)

Σαµν ≡ b1Sαµν + b2Sµνα + b3gµνSα (65b)

Παµν ≡ c1Sαµν + c2gµνSα + c3gαµSν (65c)

for non-metricity, torsion and their mixing, respectively. With these, the above are written as

L+Q = QαµνΩαµν (66a)

L+T = SαµνΣαµν (66b)

L+QT = QαµνΠαµν . (66c)

We are now in a position to derive the variations of the above. Some intermediate steps in the
derivations are confined to the Appendix B. Let us first compute variations with respect to the metric.
We have√
−gψ2δgL+Q = (δgµν)

[√
−gψ2L(µν) + (2Sλ −∇λ)Jλ

(µν) + gµν(2Sλ −∇λ)ζ
λ + α4(2S(µ −∇(µ)(

√
−gψ2qν))

]
(67)

where

Lµν ≡ (a1Qµαβ + a2Qαβµ)Qν
αβ + (a3Qµ + a5qµ)Qν + a3QαµνQα

+ Qµνα(a4qα + a5Qα)−Ωαβ
νQαβµ −ΩαµβQαβ

ν (68)

and we have also defined the tensor densities

Jλ
(µν) ≡

√
−gψ2(α1Qλ

µν + a2Qµν
λ + Ωλ

µν) (69)

ζλ ≡
√
−gψ2(a3Qλ + a5qλ) . (70)

Continuing with the pure torsion and mixed part, we obtain

√
−gψ2δgL+T = (δgµν)

√
−gψ2

[
b1(2SναβSµ

αβ − SαβµSαβ
ν)− b2SναβSµ

αβ + b3SµSν

]
(71)

and √
−gψ2δgL+QT = (δgµν)

√
−gψ2

[
ΠµαβQν

αβ

− (c1SαβνQαβ
µ + c2SαQαµν + c3SαQµνα) +

1√−gψ2 (2Sλ −∇λ)(
√
−gψ2Πλ

µν)
]

. (72)

Using all the above we can now derive the field equations for the conformally and frame
rescaling invariant theories. To obtain a conformally invariant theory, the parameters must satisfy
Equation (56) and the gauge covariant derivative on the scalar field has to be defined a in Equation (51b).
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On the other hand, in order to obtain a frame rescaling invariant theory, the parameter space is
restricted by the constraints Equation (60) and the gauge covariant derivative should be defined as in
Equation (51c).

Having clarified this, the field equations after varying with respect to the metric tensor are

ψ2
(

Z(µν) −
1
2

gµνL
)
− 1

2
gµνλ(Dψ)2 + λ

(
DµψDνψ + Kµν

)
= 0 (73)

where

Zµν ≡ Lµν + ξµν + b1(2SναβSµ
αβ − SαβµSαβ

ν)− b2SναβSµ
αβ + b3SµSν + ΠµαβQν

αβ

− (c1SαβνQαβ
µ + c2SαQαµν + c3SαQµνα) +

1√−gψ2 (2Sλ −∇λ)(
√
−gψ2Πλ

µν) (74)

and

ξµν ≡
1√−gψ2

[
(2Sλ −∇λ)Jλ

(µν) + gµν(2Sλ −∇λ)ζ
λ + α4(2S(µ −∇(µ)(

√
−gψ2qν))

]
. (75)

Since ∫
dnx

√
−gKµν ≡

∫
dnx

√
−g(Dαψ)

δ(Dαψ)

δgµν (76)

we have therefore

Kµν =
(n− 2)

2n
gµν

∂α(
√−gψDαψ)√−g

(77a)

for the conformally invariant theory and
Kµν = 0 (77b)

for the frame rescaling invariant theory8.
Let us continue with the rest of the field equations. Variation with respect to the connection gives

ψ2
(

Hµν
λ + δ

µ
λkν + δν

λhµ + gµνhλ + f [µδ
ν]
λ

)
+ Θµν

λ = 0 (78)

where

Hµν
λ ≡ a1Qνµ

λ + 2a2(Qµν
λ + Qλ

µν) + 2b1Sµν
λ + 2b2Sλ

[µν] + c1(Sνµ
λ − Sλ

νµ + Q[µν]
λ (79a)

kµ ≡ 4a3Qµ + 2a5qµ + 2c2Sµ (79b)

hµ ≡ a5Qµ + 2a4qµ + c3Sµ (79c)

fµ ≡ c2Qµ + c3qµ + 2b3Sµ (79d)

and
Θµν

λ ≡
∂

∂Γλ
µν

(
λgαβDαψDβψ

)
(80)

which for the conformally invariant case takes the form

Θµν
λ = −λ

(
n− 2

n

)
ψ(Dνψ)δ

µ
λ (81a)

and for the frame rescaling invariant theory

8 This is so because in this case the gauge covariant derivative is constructed in terms of Sµ and the latter is independent of
the metric tensor.
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Θµν
λ = −2λ

(
n− 2
n− 1

)
ψ(D[µψ)δ

ν]
λ (81b)

since the gauge covariant derivative given by Equation (51b) for the former and Equation (51c) for the
latter respectively. To conclude, if we neglect the coupling via the covariant derivative, we obtain

ψ2
(

Hµν
λ + δ

µ
λkν + δν

λhµ + gµνhλ + f [µδ
ν]
λ

)
= 0 (82a)

however, for the conformally invariant case the Γ-field equations read

ψ2
(

Hµν
λ + δ

µ
λkν + δν

λhµ + gµνhλ + f [µδ
ν]
λ

)
= λ

(
n− 2

n

)
ψ(Dνψ)δ

µ
λ (82b)

and for the frame rescaling invariant case

ψ2
(

Hµν
λ + δ

µ
λkν + δν

λhµ + gµνhλ + f [µδ
ν]
λ

)
= 2λ

(
n− 2
n− 1

)
ψ(D[µψ)δ

ν]
λ . (82c)

Now, to close the system of the field equations it remains to vary with respect to the scalar ψ.
Neglecting the coupling via the covariant derivative, we would obtain simply

ψL = λ2φ (83a)

but in the conformally invariant case we find

ψL = λ

(
n− 2

4n
QµDµψ +

∂µ(
√−gDµψ)
√−g

)
(83b)

while for the frame rescaling invariant theory, one obtains

ψL = λ

(
n− 2
n− 1

SµDµψ +
∂µ(
√−gDµψ)
√−g

)
. (83c)

We have summarised the results in Table 2 below.

Table 2. The invariant actions (given by Equation (53) by taking into account the constraints and the
prescription for the derivative) and the equations of motion. The final column refers to the parameter
constraints on the total action Equation (87) to be derived in Section 5.

Invariance Constraints Dµ = ∂µ − Aµ g-EoM Γ-EoM ψ-EoM Total

projective Equation (63) Aµ = 0 Equation (73) where Kµν = 0 Equation (82a) Equation (83a) Equation (96)
conformal Equation (56) Aµ =

(
n−2
4n

)
Qµ Equation (73) with Equation (77a) Equation (82b) Equation (83b) Equation (92)

frame rescaling Equation (60) Aµ =
(

n−2
n−1

)
Sµ Equation (73) where Kµν = 0 Equation (82c) Equation (83c) Equation (94)

Let us examine Equations (82b) and (82c) a little further. To do so, notice that we can consider
three operations on Equations (82b) and (82c). We can contract in µ = λ, contact in ν = λ and multiply
(and contact) by gµν. Then we get three vector equations that we may formally write as

α1Qµ + α2qµ + α3Sµ =
∂µψ

ψ
(84a)

β1Qµ + β2qµ + β3Sµ =
∂µψ

ψ
(84b)

γ1Qµ + γ2qµ + γ3Sµ =
∂µψ

ψ
(84c)
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where the αi, βi, γi are all combinations of ai, bi, ci and λ. Then the above system of equations can be
formally solved9 to give

Qµ = λ1
∂µψ

ψ
qµ = λ2

∂µψ

ψ
Sµ = λ3

∂µψ

ψ
(85)

where the λ′is depend on αi, βi, γi. This result, when substituted back at Equations (82b) and (82c), yields

Hµν
λ = σ1δ

µ
λ

∂νψ

ψ
+ σ2δν

λ

∂µψ

ψ
+ σ3gµν ∂λψ

ψ
(86)

where again the σ′i s depend on ai, bi, ci and λ. These manipulations make it clear that just as in the
simple case studied in Section 3, the non-metricity and torsion remain pure gauge in the case of the
generic quadratic action which does not include the derivatives of the connection.

5. The General Quadratic Theory

In this Section we shall first complete the analysis of the previous Section by incorporating
the parity-odd invariants. Then, in Section 5.2, we comment on possible applications of our new
results, in particular we point out the various different frameworks wherein it could be interesting
to build scale-invariant theories: considering post-Riemannian corrections to (a scale-free version of)
the Einstein-Hilbert action, giving kinetic terms to the connection, or constructing scale-invariant
teleparallel theories.

5.1. The Parity-Odd Scalars

We now specialise to n = 4 and take into account also the possible CP-violating terms, which were
derived in the Appendix A. We may thus write the action as

S =
1

2κ

∫
d4x

√
−g
[
ψ2 (LQ + LQT + LT

)
+ λgµνDµψDνψ + ψ4Λ

]
, (87)

where, for generality one could consider the quartic self-interaction (that in the ψ = 1 gauge is seen
just as the cosmological constant, and can be neglected in the following as irrelevant to our discussion),
and the three pieces of Lagrangians are now understood as LQ = L+Q + L−Q, LT = L+T + L−T ,
and LQT = L+QT + L−QT , where the parity-even contributions had been specified in Equation (54),
and the parity-odd contributions are given as follows:

L−Q ≡ a6εαβγδQαβµQγδ
µ = a6 A6 (88a)

L−T ≡ b5Sµtµ + b6εαβγδSαβµSγδ
µ = b5B5 + b6B6 (88b)

L−QT ≡ c4Qµtµ + c5qµtµ + c6εαβγδQαβµSγδ
mu = c4C4 + c5C5 + c6C6 (88c)

Let us now find the parameter space for the above action to be invariant under each of the
three transformations, starting with the conformal transformation Equation (12). The newly added
parity-odd terms transform as

Ā6 = e−2φ A6 , B̄5 = e−2φB5 , B̄6 = e−2φB6 (89)

and
C̄4 = e−2φ(C4 − 8tµ∂µφ) , C̄5 = e−2φ(C5 − 2tµ∂µφ) , C̄6 = e−2φ(C6 − 2tµ∂µφ) (90)

9 Assuming that the determinant of the matrix corresponding to the system does not vanish.
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under a conformal metric transformation. Thus, the only mixed parity-odd terms transform
non-covariantly. We may write simply that

L̄−Q = e−2φL−Q (91a)

L̄−T = e−2φL−T (91b)

L̄−QT = e−2φL−Q − 2e−2φtµ(∂µφ)(4c4 + c5 + c6) . (91c)

The transformation for the parity-even part of the Lagrangian we have already computed in the
previous section. So, for the total action to be invariant under conformal transformations in n = 4
we must have

0 = 2a1 + 8a3 + a5 (92a)

0 = a2 + a4 + 2a5 (92b)

0 = 4a1 + a2 + 16a3 + a4 + 4a5 (92c)

0 = c1 + 4c2 + c3 (92d)

0 = 4c4 + c5 + c6 . (92e)

Please note that the first four constraints (of which only three are independent) in the above are
the ones we had derived previously for the pure parity-even Lagrangian and the last constraint is
imposed on the parity-odd part. We should mention that the additional constraint establishes a relation
only between the coefficients of the parity-odd terms and does not mix them with the parameters of
the parity-even scalars.

Now, under a frame rescaling Equation (13) the parity-odd parts transform as

L̃−Q = e−2φL−Q (93a)

L̃−T = e−2φL−T −
1
2

e−2φtµ∂µφ
(

3b5 + 4b6

)
(93b)

L̃−QT = e−2φL−Q . (93c)

And for the total action to be invariant under the frame rescalings, the parameters must satisfy

0 = 2b1 − b2 + 3b3 = 0 (94a)

0 = c1 + 3c2 (94b)

0 = c1 − 3c3 (94c)

0 = 3b5 + 4b6 . (94d)

Again, the first three constraints above are the same with the pure parity-even theory and the last
one is imposed among the parameters of the parity-odd terms.

Now, in order to study the parameter space for the projective invariant case, again there is no need
for a scalar field ψ to compensate for the invariance (and if it is included, it should not be considered
charged under the transformation). By Equation (11), the parity-odd parts transform according to

L̂−Q = L−Q (95a)

L̂−T = L−T −
3
2

b5tµξµ − 2b6tµξµ (95b)

L̂−QT = L−QT + 2tµξµ(4c4 + c5 + c6) (95c)

as can be easily checked. So, projective invariance of the total action is ensured if the parameters satisfy
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0 = 4(2a1 + 8a3 + a5)− c1 − 3c2 (96a)

0 = 4(2a2 + 2a4 + 4a5) + c1 − 3c3 (96b)

0 = −2b1 + b2 − 3b3 + 2(c1 + 4c2 + c3) (96c)

0 = 16(4a1 + a2 + 16a3 + a4 + 4a5)− 3
(

2b1 − b2 + 3b3 − 4(c1 + 4c2 + c3)
)

(96d)

0 = −3b5 − 4b6 + 16c4 + 4c5 + 4c6 . (96e)

Please note that in comparison with the pure parity-even case, the first four constraints remain
the same (and they are not linearly independent), and a fifth additional constraint is imposed only
among the parameters of the parity-odd scalars. The important thing is that the constraints again do
not mix the parameters of the parity-even with the parameters of the parity-odd scalars.

Having completed the derivation of the scale-invariant theories, let us have a brief look at their
generic properties. Let Tµν be the stress-energy tensor and Hα

µν the hypermomentum tensor for the
matter fields. The two sets of field equations in any Palatini theory can then be written as

Mµν = Tµν (97)

and
Ξα

µν = Hα
µν . (98)

As it is shown in detail in the Appendix B, the three versions of scale symmetry imply certain
properties for these tensors. The conformal symmetry is associated with tracelessness. That is,
for the theory to be conformally invariant, a necessary requirement is that M ≡ Mα

α = Tα
α ≡ T = 0.

A basic property of the Maxwell field and the massless fermion is that their energy-momentum tensors
are traceless. Of course, the Proca field and the massive fermion break scale invariance by introducing
the mass scale. Now, it is interesting to note that the projective symmetry on the other hand implies the
tracelessness of the hypermomentum, in particular that Ξµ ≡ Ξα

αµ = Hα
αµ ≡ Hµ = 0. The fermion

is projectively invariant, but the Maxwell (or Proca) field is invariant only under the symmetric
teleparallel projection (when we assume the minimal coupling principle ∂µ → ∇µ of the Palatini
formalism). Finally, the invariance of the theory under the frame rescalings implies the identities

M = −
∂µ(
√−gΞµ)

2
√−g

⇒ T = −
∂µ(
√−gHµ)

2
√−g

. (99)

Interestingly, this version of scale symmetry can be compatible with a matter source that has a
trace, given that the matter source also possesses hypermomentum.

5.2. On Applications to Theory

As discussed in the introduction Section 1, there is a vast amount of possible applications for
scale-invariant theories. In fact, some may contemplate whether this symmetry should be finally
promoted to the same foundational status as the Lorentz symmetry, or perhaps even more properly
the general coordinate invariance, to which it is in some sense related as the multiplication to the
addition. In any case, in this paper, we have focused on formal developments, and will return to
specific applications elsewhere.

However, it is pertinent to clarify in some detail how our results might be useful in various contexts
of gravitational theory model building. At face value, our quadratic actions have trivial predictions.
Since we have not added kinetic terms to the connections, the quadratic action LQ + LT + LQT for
any choice of parameters is but a generalised mass term, something like ∼ Γ2. This does not give the
connection any dynamics, but the solutions for the Γ are pure-gauge, as was the case for the distortion
in the explicitly solved simple example of Section 3. Indeed we had sketched how one arrives at the
same conclusion in the end of Section 4. Now, one can of course add the linear curvature action of
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Section 3 to the quadratic action, and then the connection does get dynamics, those of GR10. The reason
is that though the curvature includes derivatives of the connection, they become mere boundary
terms in the case of the action that is linear in the curvature. However, non-trivial dynamics could be
achieved by taking into account quadratic invariants of curvature (which, we recall, are all invariant in
n = 4 under the three types of scale gauge transformations). In the context of considering corrections
to the scale-invariant version of the Einstein-Cartan theory, the “Einstein-Cartan-Weyl-Dirac” action
Equation (27), it seems to be a perfectly natural to include quadratic curvature terms besides the
quadratic contribution ψ2 (LQ + LT + LQT

)
.

On the other hand, we are now fully armed with the scale-invariant arsenal to set the torsion and
the non-metricity propagating directly by including their derivatives into the action. In the previous
subsection we had completed the derivation of the covariant scalars, and the scale-covariant derivatives
acting on scalars we had already deduced in Section 3. From these ingredients, we can straighforwardly
construct non-integrable scale-invariant geometries. In such a case, we would incorporate kinetic
terms for the gauge field Aµ (which, recall, is the non-metricity trace a.k.a. Weyl vector in the case of
conformal and the torsion trace in the case of frame rescaling invariance).

However, it can be even more interesting to constrain the dynamics of the connection, instead
of (or perhaps, in addition to) adding kinetic terms via curvature terms or covariant derivatives.
In teleparallism, we supplement the action using the Lagrange multiplier λα

βµν that transforms
covariantly under both the general coordinate and the scale transformation. The term λα

βµνRα
βµν then

does not break the invariance, but appropriately restricts the rotational part of connection to be pure
gauge, i.e., forces the Γ to be flat. In the metric-compatible case, we should add a further Lagrange
multiplier that sets the non-metricity tensor to vanish, and it turns out that, quite interestingly, even
without adding the explicit derivatives, the torsion obtains its dynamics via such a mechanism11 [64,72].
It was known that there is a unique parameter combination that yields the teleparallel equivalent
of GR, and from the results of this paper we see that there is a 3-parameter class of models that is
invariant under frame rescalings, and a full 5-parameter class of models that is conformally invariant
(in both cases, we are not counting the overall normalisation of the action but are taking into account
the parameter λ). Please note that the frame rescaling has to be understood now in its teleparallel
version reported in Table 1 i.e., only the antisymmetric part of the connection enjoys the projection, if
one wants to confine to the strictly metric-compatible context.

On the other hand, one may augment the flatness constraint with the constraint of vanishing
torsion, leading then to symmetric teleparallelism, see [75,77–82] for current studies into such geometry.
This is a totally different perspective to the theory of gravity, wherein the spacetime affine connection
can be actually fully eliminated, as was only recently clarified in [64,72]. We may thus in principle
“purify” gravitation from (non-integrable) spacetime geometry, and the possibly profound implications
of this insight certainly call for further investigation. It was known that the parameter combination
of the non-metricity scalars that leads to the equivalent of GR in such a geometry is unique, and
that it is exclusively for this combination that the affine connection, to the linear order, in addition
to being pure gauge, decouples from the action [72]. From the results of this paper we may add that
this combination, as in fact any other, is also covariant under the frame rescaling wherein only the
symmetric part of the connection undergoes a projection (this was referred to as projection‖ in Table 1).
However, under the conformal transformation Equation (12) there exists only a four-parameter class of
covariant scalars which is second order in the derivatives of the metric. Promoting the covariant scalars

10 If there is hypermomentum, the situation changes, though the connection remains undynamical, as indeed is known from
the seminal example of the Einstein-Cartan-Sciama-Kibble theory. Adding non-minimal derivative interactions of the
connection to the matter sector could of course make the connection dynamical.

11 An alternative method is the Golovnev’s “inertial variation” [76] wherein instead of the connection one varies a gauge
transformation parameter. However, it is against the spirit of the Palatini formalism to set the connection a priori into the
purely inertial form.
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into invariant ones with the aid of the dilaton and including the associated parameter λ, one can easily
verify that the symmetric teleparallel equivalent of GR is included among the conformally invariant
quadratic theories.

6. Conclusions

After a century since its introduction, we considered it timely to revisit the formulation of a
scale-invariant theory of gravity, in particular in view of the consistent and viable theories that may be
constructed from invariants of non-metricity, torsion, and both.

Scale transformations in metric-affine geometry have been considered previously. For example,
in Section 6.1 of the review [7], in addition to the curvature sector which is more trivial, the basic
properties of the quadratic non-metric scalars and torsion scalars are clarified, i.e., that the torsion
trace squared has a different scale-covariance property than the tensorial and the axial invariant,
and the volume-changing non-metricity invariant has a different scale-covariance property than the
volume-preserving invariants. The points of departure in this paper were that (0) we presented the
analysis in the Palatini formalism. Though the exterior calculus is elegant and makes some aspects of
the analysis more transparent, probably more workers in the field are fluent in the tensor formalism,
which on the other hand is indeed more straightforward for some of the practical applications. We have
also (1) further clarified the geometric interpretations of the relevant versions of scale transformations
and presented the systematical analysis of all of them in a unified framework. Concrete generalisations
of the results in the previous literature are that we have (2) taken into account the possible couplings
between torsion and non-metricity and (3) included the CP-violating terms. The map to the main
results was given in Table 2, and furthermore, in Table 3, we present a summary of the invariants we
have derived in Sections 4 and 5.

Table 3. The scalars and co-covariants in the three versions of rescalings, separated according to parity.
(The linearly independent combinations are not unique of course.) In the odd-parity cases, n = 4.

Covariance Q2 T2 QT ∑

coordinate + A1, A2, A3, A4, A5 B1, B2, B3 C1, C2, C3 11
coordinate − A6 B5, B6 C4, C5, C6 6
projective + (A1− 1

n A3), (A2−A4), (A1+
1
n A2−2A5), (B1+2B2), (B1− 2

n−1 B3), (C1− 1
2 C2), ( 1

8n A1− 1
8 A2+C1− 1

n C2), ( n−1
8 A2−B1−C3) 8

projective − A6 (B6 + 4C4), (B6 + C5), (B6 + C6), (4B5 + 3C6) 5
conformal + (nA1−A3), (A2−A4), (A1+

1
n A2−2A5) B1, B2, B3 (C1 − C3), (nC1 − C2) 8

conformal − A6 B5, B6 (C4 − 4C5), (C4 − 4C6) 5
rescaling + A1, A2, A3, A4, A5 (B1 + 2B2), (B2 +

1
n−1 B3) (n− 1)C1 − C2 + C3 8

rescaling − A6 (4B5 − 3B6) C4, C5, C6 5
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Appendix A. The Quadratic Non-Metricity and Torsion Scalars

In this Appendix we derive the quadratic invariants of torsion and non-metricity. First we write
systematically down all the possible contraction of the tensors Equations (8) and (9), and then sort out
the independent ones. We end up with the same set of scalars as in e.g., Reference [71].

Let us thus first list the relevant scalars. The pure non-metricity scalars are

A1 = QαµνQαµν (A1a)

A2 = QαµνQµνα (A1b)

A3 = QµQµ (A1c)

A4 = qµqµ (A1d)

A5 = Qµqµ (A1e)

A6 = εαβγδQαβµQγδ
µ (A1f)

where the two independent traces are defined12 as Qα ≡ Qαµνgµν and qµ = Qλνµgλν. Please note
that there appear to be five independent quadratic even invariants, though only four irreducible
components of the the non-metricity tensor (the binom, conom, vecnom and conom, see the
Appendix B.1 of Reference [7]).

The pure torsion scalars one may write down are

B1 = SαµνSαµν (A2a)

B2 = SαµνSµνα (A2b)

B3 = SµSµ (A2c)

B4 = tµtµ (A2d)

B5 = Sµtµ (A2e)

B6 = εαβγδSαβµSγδ
µ (A2f)

B7 = εαβγδSλαβSλ
γδ (A2g)

B8 = εαβγδSµαβSγδ
µ (A2h)

where Sµ ≡ Sµλ
λ and tα ≡ εαβγδSβγδ. It should be noted that B4 is not independent of the B1, B2 and

B3, and only two of the four pseudoscalars B5, B6, B7 and B8 is independent. Let first us show the
redundancy of B4 = tµtµ. By a direct calculation, this is found to be

B4 = tµtµ = εµαβγεµκλρSαβγSκλρ = −3!δ[κα δλ
β δ

ρ]
γ SαβγSκλρ = −3!SαβγS[αβγ]

= −2Sαβγ
(
Sαβγ + Sγβα + Sβγα

)
= −2(B1 + 2B2) . (A3)

Thus we may discard B4 in the following without loss of generality. Let us then consider the
parity-odd torsion scalars in n = 4. We start from the definition of tρ, which when contracted by εραβµ

and using ερκλσεραβµ = −3!δ[κα δλ
β δ

σ]
µ gives

εραβµtρ = −3!S[αβµ] . (A4)

Exploiting the antisymmetry of the torsion tensor in its first two indices the above
may be expressed as

12 We are using qµ = Qαµνgαν for the second non-metricity vector, instead of Q̃µ [64,78] to avoid confusion that may appear
from the various symbols.
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εραβµtρ = −2(Sαβµ + Sµαβ + Sβµα) . (A5)

Furthermore, contracting the above with εαβγδ and using εραβµεαβγδ = −4δ
[γ
ρ δ

δ]
µ

we finally arrive at
2t[γδ

δ]
µ = εαβγδSαβµ + 2εαβγδSµαβ . (A6)

The latter is the key equation that gives the relations among the parity-odd terms. To obtain these,
we first contract Equation (A6) by Sγδ

µ and use the definitions of B′is to obtain

2B5 = B6 + 2B8 (A7)

In addition, contracting with Sµ
γδ this time, gives

− B5 = B8 + 2B7 (A8)

Therefore, we have two equations relating the B5, ..., B8 and so only two of the four are
independent. We may choose the B5 and B6.

Finally, it is possible to form scalars by mixing non-metricity and torsion. Such invariants are

C1 = QαµνSαµν (A9a)

C2 = QµSµ (A9b)

C3 = qµSµ (A9c)

C4 = Qµtµ (A9d)

C5 = qµtµ (A9e)

C6 = εαβγδQαβµSγδ
µ (A9f)

C7 = εαβγδQαβµSµ
γδ (A9g)

Again, there is redundancy in parity-odd terms. Out of the four combinations C4, C5, C6, C7 only
the three are independent. This is easily seen by contracting Equation (A6) with Qγδ

µ to arrive at

C4 − C5 = C6 + 2C7 . (A10)

Therefore one scalar is redundant and we choose to disregard C7.
This exhausts the list of the quadratic second order scalars in metric-affine geometry. Further

reason, besides that their transformation properties are trivial, that we need not consider the curvature
invariants beyond the R = gµνRα

µαν and the εαβγδRαβγδ, is that by by decomposing the connection
into the metric Equation (2), the non-metric part (known often as disformation) and the torsion part
(known often as contortion) we can always rewrite all the curvature terms of the metric invariants
and the above scalars (and their higher derivatives, which we leave out of from the present analysis).
Note also that the linear scalars ∇µTµ, ∇µQµ and ∇µqµ are redundant, up to boundary terms.

A remark about the parity-odd terms is in order. While our construction is the most general for
any dimensions for the parity-even terms, it is stricly speaking restricted to n = 4 when considering
the parity-odd terms. The reason is that in n dimensions one would have at hand the n-dimensional
totally antisymmetric Levi-Civita symbol, which is a technical complication. Here we restrict to using
the symbol only with four indices.

Appendix A.1. On Quartic Invariants

Having established the transformation laws for the quadratic torsion and non-metricity scalars
in Section 4, we may us now find some (of the many!) quartic combinations that remain invariant,
for example, under conformal metric transformations. To start with, let us first note that
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(nĀ1 − Ā3) = e−2φ(nA1 − A3)

(Ā2 − Ā4) = e−2φ(A2 − A4)(
Ā5 −

n
2

Ā4 −
1

2n
Ā3

)
= e−2φ

(
A5 −

n
2

A4 −
1

2n
A3

)
B̄i = e−2φBi ∀ i

(C̄1 − C̄3) = e−2φ(C1 − C3)

(nC̄1 − C̄2) = e−2φ(nC1 − C2)

(nC̄3 − C̄2) = e−2φ(nC3 − C2)

(2C̄2 − nC̄1 − nC̄3) = e−2φ(2C2 − nC1 − nC3)

under ḡµν = e2φgµν. This in turn means that any of the above combinations when squared or multiplied
by another combination of the list, yields a conformally invariant scalar. For instance, in n = 4,√

−g(4A1 − A3)
2 (A11)√

−g(A2 − A4)B2 (A12)

are both conformally invariant. In total we can form 72 = 49 conformal invariants from the squares of
the even-parity quadratic covariant combinations. However, the total number of conformal invariants
is probably larger, since there are more scalars one can form by contracting the indices 4 tensors than
the square of the number of scalars formed by contracting the indices of two tensors.

Appendix B. Variational Identities

In this Section, we will derive some preliminary results which will be helpful in the rest of this
paper. First, we derive some necessary variational formulae. As our aim to to construct scale-invariant
theories, we will elucidate the generic relations between three versions of scale-invariance and the
tracelessness properties of the variational terms (without yet specifying the particular actions).

Appendix B.1. Variations

Let us gather here the various variations that we will use in what follows. We start with torsion
and compute variations with respect to the metric first. We have

Tµνλ(δgSµνλ) = δgµν
(

TµαβSν
αβ − TανβSµ

αβ
)
= δgµν(2T[να]βSµ

αβ) (A13)

and also
Tµνλ(δgSµνλ) = −δgµν

(
Tαβ

νSαβµ

)
(A14)

where Tµνλ is an arbitrary tensor field (or tensor density). Then setting Tµνλ = Sµνλ one has

Sµνλ(δgSµνλ) = δgµν(2SναβSµ
αβ) (A15)

as well as
Sµνλ(δgSµνλ) = −δgµν(SαβµSαβ

ν) (A16)

such that
δg(SµνλSµνλ) = δgµν

(
2SναβSµ

αβ − SαβµSαβ
ν

)
. (A17)

Therefore, setting Tµνλ = Sλµν we can conclude that

δg(SµνλSλµν) = −SναβSµ
αβ(δgµν) . (A18)
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Now, using

δgεαβγδ = δg(
√
−gηαβγδ) = −

1
2

εαβγδgµνδgµν (A19)

we compute

Aαδgtα = δgµν

[
−1

2
gµν Aαtα + 2AλελναβSµ

αβ

]
(A20)

where Aµ is an arbitrary vector. Then, also using that δgSµ = 0 we find

δg(tαSα) = δgµν

[
−1

2
gµνSαtα + 2SλελναβSµ

αβ + tµSν

]
(A21)

and also
δg(SαSα) = δgµν(SµSν) . (A22)

Following the same procedure for the rest of the quadratic torsion scalars, we finally derive the
metric variations

δgB1 = δgµν
(

2SναβSµ
αβ − SαβµSαβ

ν

)
δgB2 = δgµν(−SναβSµ

αβ)

δgB3 = δgµν(SµSν)

δgB5 = δgµν

[
−1

2
gµνSαtα + 2SλελναβSµ

αβ + tµSν

]
δgB6 = δgµν

(
1
2

gµνB6 − εαβγδSαβµSγδν

)
δgB7 = δgµν

(
1
2

gµνB7 + 2Sαβ
µSα

γδενβγδ + εαβγδSµαβSνγδ

)
δgB8 = δgµν

(
1
2

gµνB8 − εβ
νγδSγδαSµαβ

)
.

Finally, we shall also need the variations of with respect to the connection. For the Γ-variations of
non-metricity scalars we find

δΓ A1 = δΓ(QαµνQαµν) = (4Qνµ
λ)δΓλ

µν

δΓ A2 = δΓ(QαµνQµνα) = 2(Qµν
λ + Qλ

µν)δΓλ
µν

δΓ A3 = δΓ(QµQµ) = (4Qνδµ
λ)δΓλ

µν

δΓ A4 = δΓ(Q̃µQ̃µ) = 2(Q̃λgµν + Q̃µδν
λ)δΓλ

µν

δΓ A5 = δΓ(QµQ̃µ) = (2Q̃νδ
µ
λ + Qλgµν + Qµδν

λ)δΓλ
µν .

The Γ-variations of the torsion are straightforward. We are now armed with the formulas that
allow to readily obtain the field equations for an arbitrary metric-affine theory consisting of the scalars
in Appendix A.

Appendix B.2. Projective Invariance and Tracelessness

As we have already pointed out in the previous Section 3, the Palatini Tensor

Pλ
µν ≡ δR

δΓλ
µν

(A23)

has zero trace when contracted in its first two indices, that is

Pµ
µν = 0 . (A24)
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In fact as we have argued before, any tensor constructed out of a projective invariant quantity has
this property. Let us prove this here. Consider the scalar quantity Ψ that is invariant under projective
transformations. Then define

Ξλ
µν ≡ δΨ

δΓλ
µν

. (A25)

Now consider the projective transformation Γλ
µν −→ Γ̂λ

µν = Γλ
µν + δλ

µ ξν such that13

δ̂Γλ
µν = Γ̂λ

µν − Γλ
µν = δλ

µ ξν (A26)

Applying the latter transformation to ψ, we have

δ̂ψ =
δψ

δ̂Γλ
µν

δ̂Γλ
µν = Ξλ

µνδλ
µ ξν = Ξµ

µνξν (A27)

Now since ψ is invariant, we have that δ̂ψ = 0. Thus, using this, along with the fact that the vector
ξν is arbitrary, from the above we conclude that

Ξµ
µν = 0 (A28)

as we had stated.

Appendix B.3. Conformal Invariance and Tracelessness

As we have proven above, if a scalar quantity is invariant under projective transformations then
its variation with respect to the connection yields a tensor (or tensor density if we do not divide
the result by

√−g) that is traceless in its first two indices. Similarly, if a scalar density (which we
may integrate to construct an action of course) is invariant under conformal transformations then its
variation with respect to the metric tensor yields a tensor that is traceless. Let us prove this here.

Proof. Consider the scalar density
√−gΨ, where Ψ is again a scalar. Then define the variation

Mµν ≡
1√−g

δ(
√−gΨ)

δgµν (A29)

and denote its trace by M ≡ Mµνgµν. Consider now a conformal transformation of the metric
ḡµν = e2φgµν, or in its contravariant form ḡµν = e−2φgµν. Expanding the latter for infinitesimal
transformations, it follows that

ḡµν ≈ (1− 2φ)gµν ⇒ δ̄gµν = −2φgµν (A30)

where δ̄gµν ≡ ḡµν − gµν denotes the infinitesimal change the metric undergoes under the conformal
transformation. Given that

√−gΨ is invariant under conformal transformations we have

δ̄(
√
−gΨ) = 0⇒ Mµν δ̄gµν = 0⇒ −2φMµνgµν = 0

and since the last one must hold true for arbitrary φ we conclude that

M = Mµνgµν = 0 (A31)

as stated.

13 δ̂ denotes a projective variation of the connection, and in the following δ̄ will denote the variation under the conformal
transformation and δ̃ the variation under the frame rescaling.
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Example A1. Let us confirm the strength of the above statement with two examples. First consider the scalar
density in 4 dimensions14 √

−gR2 (A32)

which is conformally invariant as can be easily seen. Its metric variation is found to be

Mµν =
1√−g

δ(
√−gR2)

δgµν = 2R
(

Rµν −
1
4

gµνR
)

(A33)

and therefore
M = Mµνgµν = 2R (R− R) = 0 (A34)

as expected. As a second example consider √
−gRµνRµν (A35)

which is also a conformally invariant quantity in 4 dimensions (as we recall, is any possible curvature-squared
term). Variation with respect to the metric yields

Mµν =
1√−g

δ(
√−gRµνRµν)

δgµν = −1
2

RαβRαβgµν + Rµ
βRνβ + Rβ

νRβµ (A36)

which again gives a vanishing trace since

M = Mµνgµν = −2RµνRµν + RµνRµν + RµνRµν = 0 . (A37)

Please note that from these considerations apply also for any matter source. It is indeed very
well-known that the conformal symmetry is compatible only with traceless matter sources, the Maxwell
field being the seminal example.

Appendix B.4. The Case of Frame Rescalings

As we have seen a frame rescaling results in a conformal transformation + a special projective
transformation both powered by a single scalar field φ(x).15 We will now prove that if a scalar density
is invariant under frame rescalings then the trace of its metric conjugate and the divergence of the
trace of its connection conjugate are related to one another.

Proof. Consider the action
S =

∫
dnx

√
−gΨ (A38)

and recall the definitions of the metric and connection conjugates

Mµν ≡
1√−g

δ(
√−gΨ)

δgµν , Ξλ
µν ≡ 1√−g

δ(
√−gL)
δΓλ

µν
=

δL
δΓλ

µν
(A39)

and the definitions of the traces
M = gµν Mµν , Ξµ = Ξλ

λµ . (A40)

We now state that if Equation (A38) is invariant under frame rescalings then

14 This of course generalizes to any dimension and takes the form
√−gR

n
2 where n is the dimension of the space.

15 This is most important because one can also have projective and conformal transformations that are powered by different
fields. Then invariance means that both metric and connection conjugates have zero traces and they are not related.
As an example consider

√−gR2 which is independently invariant under Γλ
µν → Γλ

µν + δλ
µ ξν and gµν → e2φgµν (where ξν

and φ are not related to any way) and as a result M = 0 and Ξµ = 0.
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2M +
∂µ(
√−gΞµ)
√−g

= 0 . (A41)

To prove this let us compute the change in Equation (A38) under frame rescalings. Using
δ̃gµν = g̃µν − gµν = −2φgµν and δ̃Γλ

µν = Γ̃λ
µν − Γλ

µν = δλ
µ ∂νφ where δ̃ denotes the change under

frame rescalings, we compute

δ̃S =
∫

dnx
[√
−gMµνδ̃gµν +

√
−gΞλ

µνδ̃Γλ
µν

]
=
∫

dnx
[√
−g(−2φgµνMµν)+

√
−gΞλ

µνδλ
µ∂νφ

]
=

∫
dnx
[
−
√
−g2φM+

√
−gΞµ∂µφ

]
=−

∫
dnx
[√
−g2φM+φ(∂µ

√
−gΞµ)

]
+
∫

dnx∂µ(
√
−gΞµφ)

= −
∫

dnxφ
[√
−g2M+(∂µ

√
−gΞµ)

]
+a boundary term. (A42)

Then, ignoring surface terms, since S is invariant it follows that

δ̃S⇒ φ
[√
−g2M + (∂µ

√
−gΞµ)

]
= 0 (A43)

and since the last equality must be true for arbitrary φ we conclude that

2M +
∂µ(
√−gΞµ)
√−g

= 0 (A44)

as stated. Notice that if the above result is applied for the matter part of the action, for frame rescaling
invariant matter the traces of the energy momentum and hyper-momentum tensors are related through

2T +
∂µ(
√−g∆µ)
√−g

= 0 (A45)

where T = Tµνgµν and ∆ν = ∆µ
µν = 0.

Appendix C. Transformation Identities

In this Section we will investigate the transformation properties of the torsion tensor, nonmetricity
tensor and the related quantities under the three versions of rescalings.

Appendix C.1. Projective Transformations

Recall that the projective transformation is Γλ
µν → Γ̂λ

µν = Γλ
µν + δλ

µ ξν, gµν → ĝµν = gµν.
It is easy to see that under the above, the torsion and non-metricity tensors transform as

Ŝµν
λ = Sµν

λ + δλ
[µξν] or Ŝµνα = Sµνα + gα[µξν] (A46)

and
Q̂αµν = Qαµν + 2ξαgµν . (A47)

For their associate vectors we have

Ŝµ = Sµ +
(1− n)

2
ξµ , Q̂µ = Qµ + 2nξµ , and q̂µ = qµ + 2ξµ . (A48)

Please note that this implies
S[µνα] −→ S[µνα] (A49)

the projective invariance of the totally antisymmetric torsion. It is this part of torsion that couples to
fermions. Thus, the Dirac action is projectively invariant, in addition to being invariant under the
frame rescalings.
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Appendix C.2. Conformal Transformations

What we call the conformal transformation in this paper is defined by gµν → ḡµν = e2φgµν and
Γλ

µν → Γ̄λ
µν = Γλ

µν. That is, under a conformal transformation the metric tensor picks up a conformal
factor e2φ while the affine connection is left unchanged. Please note that the contravariant form of
the metric tensor transforms as ḡµν = e−2φgµν as can be easily seen from the relation gµνgνλ = δλ

µ .
In addition, the square root of the determinant of the metric obeys the transformation rule√

−ḡ = enφ
√
−g (A50)

and for n = 4 thus
√−ḡ = e4φ√−g, which is obtained directly by first taking the determinant of ḡµν

and then taking the square root of the result. From this last relation we infer the transformation rule
for the Levi-Civita tensor

ε̄µνρσ = e4φεµνρσ (A51)

ε̄µνρσ = e−4φεµνρσ (A52)

and recall that εµνρσ =
√−gηµνρσ where ηµνρσ is the Levi-Civita symbol. Using the above we see that

torsion and non-metricity transform as
S̄µν

λ = Sµν
λ (A53)

Q̄αµν = e2φ
(

Qαµν − 2(∂αφ)gµν

)
(A54)

and the related vectors as

Q̄µ = Qµ − 2n∂µφ , q̄µ = qµ − 2∂µφ (A55)

and

S̄µ = Sµ , t̄µ = tµ . (A56)

Then, it follows that all pure torsion scalars

B1 = SαµνSαµν , B2 = SαµνSµνα , B3 = SµSµ , B4 = tµtµ (A57)

and

B5 = Sµtµ , B6 = εαβγδSαβµSγδ
µ , B7 = εαβγδSλαβSλ

γδ , B8 = εαβγδSµαβSγδ
µ (A58)

are all conformally covariant, that is
B̄i = e−2φBi (A59)

for any i = 1, 2, ..., 8. This means that any combination
√−gBiBj is conformal invariant when n = 4.

Regarding the pure non-metricity scalars, one can verify the transformation laws

Ā1 = Q̄αµνQ̄αµν = e−2φ
[

A1 − 4Qµ∂µφ + 4n(∂φ)2
]

(A60a)

Ā2 = Q̄αµνQ̄µνα = e−2φ
[

A2 − 4qµ∂µφ + 4(∂φ)2
]

(A60b)

Ā3 = Q̄µQ̄µ = e−2φ
[

A3 − 4nQµ∂µφ + 4n2(∂φ)2
]

(A60c)

Ā4 = q̄µ q̄µ = e−2φ
[

A4 − 4qµ∂µφ + 4(∂φ)2
]

(A60d)

Ā5 = Q̄µ q̄µ = e−2φ
[

A5 − 2(Qµ + nqµ)∂µφ + 4n(∂φ)2
]

(A60e)

Ā6 = ε̄αβγδQ̄αβµQ̄γδ
µ = e−2φ A6 (A60f)
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and for the mixed terms

C̄1 = Q̄αµνS̄αµν = e−2φ
[
C1 − 2Sµ∂µφ

]
(A61a)

C̄2 = Q̄µS̄µ = e−2φ
[
C2 − 2nSµ∂µφ

]
(A61b)

C̄3 = q̄µS̄µ = e−2φ
[
C3 − 2Sµ∂µφ

]
(A61c)

C̄4 = Q̄µ t̄µ = e−2φ
[
C4 − 2ntµ∂µφ

]
(A61d)

C̄5 = q̄µ t̄µ = e−2φ
[
C5 − 2tµ∂µφ

]
(A61e)

C̃6 = ε̄αβγδQ̄αβµS̄γδ
µ = e−2φ

[
C6 − 2tµ∂µφ

]
(A61f)

C̄7 = ε̄αβγδQ̄αβµS̄µ
γδ = e−2φ

[
C7 − 2tµ∂µφ

]
. (A61g)

Appendix C.3. Frame Rescaling

A frame rescaling transformation results in a combination of a conformal metric transformation
+ a special projective transformation. More specifically, we have Γλ

µν → Γ̃λ
µν = Γλ

µν + δλ
µ ∂νφ and

gµν → g̃µν = e2φgµν, with the same scalar field φ(x) appearing in both above. Interestingly, under the
this transformation, the non-metricity tensor does not change and it just picks-up a conformal factor.
In words

Q̃αµν = e2φQαµν (A62)

as can be easily seen by applying both transformations on Equation (9). This makes the procedure of
computing quadratic non-metricity scalars, extremely simple. Indeed, let us recall the scalars

A1 = QαµνQαµν , A2 = QαµνQµνα , A3 = QµQµ , A4 = qµqµ , A5 = Qµqµ , A6 = εαβγδQαβµQγδ
µ . (A63)

It is an easy matter to show that under frame rescalings

Ãi = e−2φ Ai (A64)

for any i = 1, 2, ..., 6. Therefore any combination
√−gAi Aj is invariant under frame rescalings. As far

as torsion is concerned, we have the transformation law

S̃µν
λ = Sµν

λ + δλ
[µ∂ν]φ (A65)

and for the torsion vector

S̃µ = Sµ +
(1− n)

2
∂µφ . (A66)

Then, considering the even-parity torsion scalars Equation (A57) we see that under a frame
rescaling, they transform as

B̃1 = e−2φ
[

B1 − 2Sµ∂µφ +
(n− 1)

2
(∂φ)2

]
(A67a)

B̃2 = e−2φ
[

B2 + Sµ∂µφ +
(1− n)

4
(∂φ)2

]
(A67b)

B̃3 = e−2φ
[

B3 + (1− n)Sµ∂µφ +
(1− n)2

4
(∂φ)2

]
(A67c)

Notice that the combinations B1 + 2B2, (n− 1)B1− 2B3 and (n− 1)B2 + B3 transform covariantly.
For the odd-parity quadratic torsion scalars Equation (A58) one finds
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B̃4 = e−2φB4 (A68a)

B̃5 = e−2φ
[

B5 +
(1− n)

2
tµ∂µφ

]
(A68b)

B̃6 = e−2φ
[

B6 − 2tµ∂µφ
]

(A68c)

B̃7 = e−2φ
[

B7 + tµ∂µφ
]

(A68d)

B̃8 = e−2φ
[

B8 −
1
2

tµ∂µφ
]

(A68e)

For the mixed terms one finds

C̃1 = Q̃αµνS̃αµν = e−2φ
[
C1 +

1
2
(qµ −Qµ)∂µφ

]
(A69a)

C̃2 = Q̃µS̃µ = e−2φ
[
C2 +

1
2
(1− n)Qµ∂µφ

]
(A69b)

C̃3 = q̃µS̃µ = e−2φ
[
C3 +

1
2
(1− n)qµ∂µφ

]
(A69c)

C̃4 = Q̃µ t̃µ = e−2φC4 (A69d)

C̃5 = q̃µ t̃µ = e−2φC5 (A69e)

C̃6 = ε̃αβγδQ̃αβµS̃γδ
µ = e−2φC6 (A69f)

C̃7 = ε̃αβγδQ̃αβµS̃µ
γδ = e−2φC6 (A69g)

Example A2. As an example consider the scalar density√
−gA2 =

√
−g(QµQµ)2 (A70)

which is invariant under frame rescalings in n = 4 as can be easily seen. Its metric conjugate reads (where we
have dropped a total derivative that is assumed to vanish on the boundary)

Mµν = −1
2

gµν A2 + 2AQµQν − 4gµν
∂α(
√−gQα A)√−g

(A71)

with the trace

M = −16
∂α(
√−gQα A)√−g

(A72)

The associated connection conjugate is found to be

Ξλ
µν = 8AQνδ

µ
λ (A73)

with the trace (in the first two indices)
Ξν = 32AQν . (A74)

So we observe that

∂µ(
√−gΞµ)
√−g

= 32
∂α(
√−gQα A)√−g

= −2M ⇒ 2M +
∂µ(
√−gΞµ)
√−g

= 0 (A75)

as expected.
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