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MYSTERY OF THE NEGATIVE BINOMIAL DISTRIBUTION*
By R. Szwep, G. WROCHNA aND A. K. WROBLEWSKI
Institute of Experimental Physics, University of Warsaw**
( Received January 7, 1988)

Negative binomial distribution has been used to describe data on multiplicities of particles
in inelastic and non-diffractive pp collisions and also pp interactions as measured by the
UAS Collaboration at the CERN SPS Collider. Various incorrect procedures and mis-
interpretations encountered in the literature on the subject are pointed out. The negative
binomial distribution is found to have serious shortcomings which cast doubts on its useful-
ness in describing and interpreting experimental data.

PACS numbers: 13.85.Hd

1. Introduction

The Negative Binomial Distribution (NBD) has been recently promoted [1] to the
status of a new empirical law describing multiplicity distributions of particles in high energy
collisions. In the present paper we critically examine experimental evidence for this claim.

The NBD belongs to the family of the Poisson transforms of some important proba-
bility density functions frequently used in statistical physics [2).

In Table I we remind the most popular of them [2]. The simplest distribution function
with two free parameters is the NBD. Because of its flexibility it is well suited to describe
various pieces of data on particle multiplicities in high energy collisions [1, 3-5]. However
it must be stressed that in many cases we observe misunderstandings both in the way of
applying the NBD to describe multiplicity distributions and in the interpretation of
results [6].

The aim of the present paper is threefold. First, to set in order the ways of applying
the NBD for multiplicity distributions. Secondly, to clarify a few common misunderstand-
ings about interpretation of NBD-fits to the data. Thirdly, to answer the question whether
the NBD can really be treated as a new empirical law for high energy collisions. The discus-
sion is based on the pp multiplicity data and SPS Collider pp data.

* This work is supported in part by the CPBP 01.06.
** Address: Instytut Fizyki Dos$wiadczalnej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.
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Experimentally, multiplicity distribution in full phase-space is measured for fully
inclusive sample corresponding to the total inelastic cross-section called hereafter “inelastic
sample” [7, 8] and for “non-diffractive sample” corresponding to the full inclusive sample
with single diffractive events excluded [9-11].

It should be stressed that the non-diffractive data samples usually have large uncertain-
ties. Strictly speaking, it is impossible to subtract experimentally single diffractive events
from the inelastic sample in an unbiased way. Hence the non-diffractive samples are rather
scarce and moreover have considerable systematic errors, especially for the lowest multiplic-
ities. Thus, any tests based on the non-diffractive data are of poorer quality than those
based on data from the inelastic sample. In some cases, discussed in this paper, the tests of
theoretical hypotheses are positively passed by the non-diffractive data, contrary to the
inelastic sample, only because the former are much less accurate and therefore do not
impose severe enough constraints. Unfortunately, this fact is often ignored.

2. Genuine multiplicity measure

Customarily, the number of charged particles n., is used as a multiplicity measure,
since it can be easily determined in track detectors.
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However, it is well known that the number of prongs is not a good multiplicity measure
since it includes initial charges of colliding particles and moreover, due to charge conserva-
tion in each interaction, positive and negative partners are totally correlated. Depending
on the initial charges the number of charged particles is always even (n,, = 0,2,4,6 ...)
or always odd (n., = 1, 3, 5,7 ...) and therefore does not meet the requirement of proba-
bility distribution functions which are defined for all non-negative integers (n = 0, 1,2,3 ...},

Instead. the genuine multiplicity measure should be used, denoted hereafter
byn{n = 0.1,2,3..). It can be defined as the number of acts of pair creation in the event,
where by 4 pair we denote a positive and a negative particle correlated by charge conserva-
tion.

The genuine multiplicity measure can be always converted into the s, for a given
type of colliston. For the pp collisions it is easy to see that the number of negative particles
n_ in the final state coincides with genuine multiplicity »:

n_=mn and . = 2n+2.
Hence
{ngyy = 2{ny+2.

We should remember that at the highest energies (SPS Collider) the pp data are used
instead of the pp. This is allowed because the pp multiplicity daia are similar to the pp ones
providing the anmhilation 1s subtracted [12]. At high ecnough energies annihilation contribu-
tion can be neglected. Therefore multiplicities for pp collisions can be counted in the same
way as for the pp data {(n,, = 2,4,6 ...).

Evidently, one can use probability distributions of charged particles p(n,,) or P(n)
to describe multiplicity distributions. There is exactly the same information content in
both of them. However, when formulas such as the Poissonian or the NBD are used to
describe multiplicity distributions only the genuine multiplicity can be used since these
formulas give probabilitics for all non-negative integers ». Unfortunately, very often
P(n.,) is used which leads to much confusion when results of such an incorrect procedure
are furthermore interpreted. (See Section 4 and 6).

3. Parameters of the NBD and full phase-space multiplicity data

Let us suppose that a given multiplicity distribution is characterized by genuine
multiplicity #n (n = 0, 1, 2, 3 ...) and we attempt to describe this distribution by the NBD.
The NBD:

‘H+k—i (n/ky"
P(n) = RS A 1
) ( n ) (L+idk)* M

has two free parameters # and k varying with energy. Parameter # has an interpretation
of the average multiplicity. The dispersion Dygp = (12— 7%)'? obeys the following
relation:

Digp = i+ k. )
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To distinguish between the theoretical values of average multiplicity 7 and dispersion
Dusp and the experimental ones, we denote the latter by (n> and D.

We can think of at least four methods of choosing the best set of parameters i1 and k to
describe a given multiplicity distribution.

Method 1. Assuming that A and Dy, for the NBD are equal to the experimentally
measured {#n> and D. we get:
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Fig. 1 a, b. The k parameter of the NBD fits obtained by Method 1 (open circles), Method 2 (solid
curve) and Method 3 (full circles) for inelastic (a) and non-diffractive (b) event samples. ¢ — The ratio of
knpo/kFNBD

Method 2. We can use the well-known empirical formula connecting D and {(») {13]:
D = A({n>+B). 4

If by n we denote the number of negative particles then for pp data B~ 1/2. If the NBD
holds (i = {(n)) this leads to the analytical relation between & and (n):

k= A+ "+ 5)

Method 3. We can directly fit the NBD to the data and obtain i and k (in this case
the fitted value of i1 does not necessarily equal (n)).

Method 4. We can assume that the parameter i is cqual to the experimental average
multiplicity (ii = (n)), and fit the NBD to the data with only one free parameter k.

Under the assumption that the NBD describes well multiplicity distributions, the
four methods should give similar results.

Figure la illustrates the results of the Methods I, 2 and 3 applied to the inelastic
multiplicity data [7, 8], and Fig. 1b the corresponding results for the non-diffractive sample
(including recent UAS data) [9-11].

The three methods give indeed consistent results. For both the inelastic and the non-
-diffractive sample there is a certain encrgy at which k grows to infinity (this corresponds
to the Poisson distribution (1/k = 0). Below this energy 1/k < 0 and the distributions
are narrower than Poissonian.

The numerical results obtained with the Method 1 and 3 are given in Tables Il and
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NBD and inelastic sample

TABLE 11

12.0
4.9

19.0
6.1

24.0
6.8

35.7
8.3

50.0
9.8

60.0
10.7

69.0
11.5

100.0
13.8

100.0
13.8

102.0
13.9

205.0
19.7

250.0
21.7

303.0
23.9

303.0
23.9

360.0
26.0

Exp

eriment (Method 1)

70
10

15
10

24
13

44
14

35
14

19
13

32
13

14

0.271
0.000

0.349
0.000

0.404
0.038

0.706
0.033

0.991
0.038

1.114
0.018

1.387
0.026

1.696
0.057

1.791
0.021

1.949
0.038

2.278
0.057

2.185
0.079

2.170
0.048
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0.057
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0.088
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-0.079
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TABLE II (continued})

Py

Vs

Experiment (Method 1)

NBD fit (Method 3)

400.0
274

400.0
274

405.0
27.6

405.0
27.6

493.0
30.4

800.0
38.8

1032.0
44.0

1471.1
52.6

2062.0
62.2

155400.0
540.0

n

3.570
0.034

3.383
0.061

3.485
0.047

3.480
0.055

3.715
0.089

4.124
0.077

4.429
0.080

4.775
0.085

5.13
0.11

12.73
0.1

k X2 n k i
+ NDF + + NDF
|
594 | 115 3.49 5.16 103
0.47 | 15 0.13 0.94 13
i
66 | 66 3.42 8.3 56
s 14 0.10 L9 12
568 57 3.39 5.02 46
0.64 16 0.10 0.75 14
6.1 44 3.52 6.9 41
1.1 16 0.09 1.3 14
52 57 3.74 7.5 27
1.1 17 0.12 , 1.2 15
6.6 | 68 4.161 : 6.68 66
1.6 16 0088 | 0.67 14
5.07 17 4486 5.48 16
0.76 19 0.057 0.55 17
4.63 43 489 | 5.61 35
0.62 21 0.10 | 0.67 19
4.51 117 5.25 § 6.58 67
0.65 20 0.15 j 0.92 18
3.03 64 12.91 z 3.19 57
0.13 60 012 | 0.10 58

III. Available multiplicity data from the UAS5 experiment are also included [8, 10, 11].
As seen, the NBD can be fitted with reasonable y? to the inelastic sample for /s > 7 GeV.
This is not the case for the data at lower energy. It is impossible to check if the
non-diffractive data at low energy could be well fitted with the NBD, since as seen in Table
III, only three experimental sets of data are available for /s < 7 GeV and those have
probably the largest experimental biases caused by difficulties in subtracting of the diffrac-
tive component from the data. In the last column of Table III, the k-values quoted in the
UAS Collaboration papers [10, 11] are presented. For the enmergy /s < 7 GeV and
/s = 13.9 GeV the fits have not been done in the original publication [10], therefore the
presented values are obtained in this paper using the same method as the UAS Collabora-
tion. As secn, the k-values from the last column differ from values evaluated in this paper
(middle column), especially for low energies. The reason for these differences is explained

in the following Section.
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TABLE I1I
NBD and non-diffractive sample
Experiment (Method 1) NBD fit (Method 3) FNBD fit

Py — — - »

\/s n %2 n 72 n k ¥
* + NDF + + NDF + bl NDF

12.0 0.789 -2.67 37 0.784 —2.78 27 3.435 - 14,70 3
4.9 0.014 0.39 5 0.026 0.14 3 0.021 0.61 3
19.0 1.103 —4.08 129 1.073 -3.7 123 4.07 -27.0 104
6.1 0.018 0.61 7 0.094 1.71 5 0.20 26.0 5
24.0 1.255 —5.38 19 1.240 —5.89 13 4.416 —80.0 8
6.8 0.019 1.05 8 0.018 0.39 6 0.026 23.0 6
69.0 2.181 | —16.0 17 2.149 —25.5 10 6.23 19.0 10
11.5 0.050 11.0 10 0.038 74 8 0.04 2.0 6
100.0 2606 | —20.3 28 2.560 —320 21 7.11 21.0 16
13.8 0.031 13 10 £.052 14.0 8 0.06 2.0 7
102.0 2440 | —45.0 2 2.438 —44.0 1 6.848 18.3 2
139 0.047 66.0 10 0.021 14.0 8 0.057 1.4 8
205.0 3.281 |—112.0 32 3282 1-195.0 32 8.48 15.0 9
19.7 0.033 151.0 13 0.075 642.0 11 0.09 1.0 9
303.0 3.625 33.0 11 3.604 33.0 10 9.2 12.0 7
239 0.037 15.0 14 0.021 11.0 12 0.1 1.0 10
405.0 3.920 12.8 25 3.855 15.0 22 9.6 8.5 14
27.6 0.053 29 16 0.090 4.0 14 0.1 0.8 10
493.0 4.267 133 45 4.36 21.5 29 10.7 11.0 24
304 0.070 3.2 17 0.11 7.2 15 0.1 0.7 13
1032.0 5.039 114 20 5.085 13.5 16 12.2 9.4 13
44.0 0.065 2.0 19 0.065 2.1 17 0.1 0.5 17
1471.0 5.383 9.4 6 5.388 9.89 5 12.8 79 5
52.6 0.069 1.3 21 0.018 0.55 19 0.1 0.3 17
2062.0 5.817 9.2 29 5.818 10.6 24 13.6 8.2 24
62.2 0.082 1.2 20 0.094 1.2 18 0.1 0.4 17
21314.0 9.7 4.7 21.6 4.6 22
200.0 0.4 0.7 0.5 0.4 33
155400.0 13.18 3.63 49 13.21 3.48 45 28.3 3.69 68
540.0 0.13 0.11 49 0.12 0.10 47 0.2 0.09 66
431630.0 16.3 3.10 35.1 3.2 52
900.0 0.6 0.11 0.6 0.2 58
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4. Fake Negative Binomial Distribution

In the recent papers [10, 11] which revived interest in the NBD the authors have
tried to fit the NBD to the charged multiplicity P(n.,). Since the NBD gives probabilities
to produce n = 0, 1, 2, ... particles, whereas n,, = 2, 4, 6, ..., the authors took only even
integers from the NBD (P™®(n), n > 2) and then renormalized the whole distribution.

non diffractive sample

4 - - - .
31 o — NBD fit (method 3)
I » — FNBD fit
2 L line — UAS Coll. fit
A
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= .Oi v o8
L . !
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—1.04 10 160 1000
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Fig. 2. a — The 1/k parameter of the NBD (open circles) and FNBD (full circles) fits for the non-diffractive

sample. The straight line illustrates fit to the data with \/5 < 10 GeV, done by the UAS Collaboration [11].

b — The 1/k parameter of the NBD f{it for the inelastic sample. The curve corresponds to the relation (5) in
the text
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This procedure, strictly speaking, leads to the fitting of the different theoretical distribution,
which we call hereafter Fake Negative Binomial Distribution (FNBD).

Experimentally the probability to produce n,, = 2 in pp collisions is equal to the
probability to produce n. = 0 particles in the final state and should correspond to the
theoretical probability for n = 0:

P*(n, = 2) = PP*(n_ = 0) = P™Mn = 0).

This is the case when the NBD is fitted. If instead the FNBD is fitted, the P™(n = 0)
and all probabilities for odd values of n are removed from the theoretical distribution.
The PE*P(n,,, = 2) is fitted to the P™(n = 2) (instead of P™(n = 0)). Hence the FNBD
is shifted with respect to the NBD. Since in Ref. [10] the FNBD and not the NBD was
fitted to the data, the obtained parameters kyngp are different from kypp Obtained in this
paper, which is shown in Table III.

Let us stress that for the FNBD formula (2) is no longer valid, that is

Dixgp # Mensp + Menen/Kensp- (6)

Figure lc illustrates the difference between the values of k fitted with the NBD (kygp)
and FNBD (kgngp). The multiplicity tables for the UAS data at /s = 200 and 900 GeV
have not been published, so it was impossible to fit the NBD to the data, therefore instead
of the kygp the k-value obtained by Method 1 (first column in Table III) has been used.
The dramatic difference between kygp and kpngp at small energies is becoming negligible
at the SPS Collider energy.

Note, that for /s & 20 GeV the value of kygp rises to infinity and at still lower energies
becomes negative, whereas the value of kpygp for some of those data has still positive
values (see Fig. 2a and Table IIL). This is because the FNBD is shifted with respect to the
NBD. The authors of Ref. [10] fitted the FNBD instead of NBD and did not encounter
problems connected with kK — oo only because data for /s < 10 GeV were discarded. Due
to the shift the FNBD gives k — o0 and k < 0 at slightly lower energies. At very high
energies the difference between NBD and FNBD decreases, since for broad enough multiplic-
ity distributions both the shift and omission of every second bin in FNBD fits make
relatively little change in the parameters A and k.

5. k-parameter dependence on energy

Parameter k is regarded to be essential for interpretation of the NBD fits within
various models [1].

The kgpp is plotted in Fig. 2a as a function of /s for the non-diffractive sample.
The open points correspond to the fitted vaiues of kygp (NBD fitted). The kpypp Obtained
in {10] are also presented (black points). The straight line corresponds to the relation
k' = —0.104+0.058 Ins proposed in Ref. [11]. The line indeed represents a good fit
to data for 10 < /s < 70 GeV. However, the three points for /s < 10 GeV (omitted
in [11]) deviate from the line towards smaller values of 1/k, and the three points from the
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UAS experiment (4/s > 200 GeV) are above the line. The open points representing fits
to the true NBD show even less convincing linear dependence of k- with In s. Therefore
we claim that the so often mentioned linear dependence of &' on In s is not well proven.
The check would be convincing with more accurate and numerous data, which are lacking.
It seems to be worth trying to use the inelastic data to resolve the problem, having neverthe-
less in mind the difference between both samples of experimental data.

Figure 2b shows kygp 2s a function of /s for the inclastic data. Solid line corresponds
to the relation (5) which is derived under the assumption that the NBD describes well
multiplicity distributions and the data obey empirical linear dependence of the D vs (n)
(Method 2). Rather than being linear in In s, the &~ rises rapidly at small energies, passing
k' = 0 at /s~ 10 GeV, and then increases more slowly to the asymptotic value of 42,
where 4 is a constant in the relation (4). Note that taking into account the energy range
covered by non-diffractive data used in [10, 11], that is for /s > 10 GeV, one could easily
claim linear dependence of k! on Ins for the inelastic data.

In conclusion one can say that careful inspection of Figs. 2a and 2b does not support
observation made by the authors of [10, 11] that k=* is a linear function of Ins. It was
possible to obtain this type of relation because a few of the data points at the lowest energy
were omitted and, generally speaking, because the non-diffractive data were too poor
to provide hard enough constraints.

6. Accidental KNO scaling

In the UAS Collaboration paper [0}, the authors claim that the KNO scaling
is accidentally valid in a certain energy range. The argument goes as follows. For the NBD
the following relation holds:

Cpo—1 =0""4+k"", (7N

where C,, = (n?)[{nd? and n =10,1,2 ...

The sum A~'+k ! has a flat minimum in the energy range between 10 and 60 GeV
(see Fig. 3a). Hence the C, , moment is approximately constant in this energy range and
the KNO scaling, which requires C,., , = constant, is accidentally valid.

The fallacy of the argument is obvious. First, formula (7) is valid for the NBD, whereas
the authors of [10] have fitted the FNBD and plotted iiqygp+Kkrnep (Fig. 3a). But clearly

firnep + kengp # fingp+knap = C,n—1 (®)
and, moreover
Cn,Z # Cnch,Z'
One can see that the energy dependence of C,_ , shown in Fig. 3b is different from

that in Fig. 3a.
In addition simple arithmetic shows that

_ <n§h> 1= Dczh

1 = = .
<”cb>2 <nch>2

C

®

nen,2
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Fig. 3. a — The values of 1+ 1/n+ 1/k from the FNBD fits to non-diffractive sample. The curve shows the
UAS Collaboration interpolation [11]. b — The values of C,_, . moment for the same sample
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At the threshold <{n,>* = 4 and D, = 0, hence C,, , = 1 which means that the
solid curve in Fig. 3a has to end up at the left bottom corner of the plot in complete disagree-
ment with the dependence proposed in Ref. [10]. Thus the minimum seen in Fig. 3a has
little to do with the KNO scaling.

Secondly, the constancy of the C,_, , oment is not equivalent to the validity of KNO
scaling [14]. The KNO scaling function % is continuous, whereas at non-asymptotic energies
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Fig. 4. a — The values of C,_, .. moment for the inelastic sample. The curve is obtained using relation (4)
for total charged multiplicities. b — The values of 1+ 1/n+1/k (= C,,2) from the NBD fits to the same
sample

JE D O S i B

we measure the discrete probability distribudon P, which has its moments different from
those of p [15]. Thus, properly formulated KNO scaling, called KNO-G [14, 16], correctly
describes the rise of C, , , moments with energy.

In our opinion the situation is clarified again by the inelastic data which are presented
in Figs. 4a, b which show energy dependence of C,_ , and 1+ figgp+Kkypp, Tespectively.
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Solid line in Fig. 4a corresponds to the relation (4). It is seen that the C,_, , moments
obtained directly from experimental data differ from iiggp+Anep+1. We remind
that this is because C,_, ; # C,2 = fingp+knpp+ 1. Note, that in the two plots there
is no minimum in the encrgy dependence of plotted quantities contrary to the claim in
Ref. [10].

The agreement of the data with the solid line is well understood in terms of the KNO-G
scaling since relation (4) was derived just from the KNO-G scaling. Figure 4a illustrates the
fact that the KNO-G scaling describes the data with great precision up to the top ISR
energy [16]. However, the UAS point at /s = 540 GeV deviates from the curve indicating
violation of the KNO-G scaling at this energy.

7. Is really Negative Binomial Distribution a new law in high energy collisions?

In the previous Section we have shown some typical misunderstandings and omissions
in applying the NBD to the experimental data. In this Section we present further arguments
in order to prove that the NBD can be treated only as a useful (but by no means the best)
method of parametrizing the data on multiplicities.

Any formula pretending to the status of a law of physics has to (i) describe the experi-
mental data very well, (if) have a clear interpretation providing an insight into the physics
mechanism of phenomena under study, and (iif) have a predictive power over hitherto
unexplored regions of energy (and other relevant parameters). In what follows we attempt
to show that the NBD does not meet the case.

Let us look again at the data collected in Table III. It can be seen that in most cases
the y? values for the NBD fits to the non-diffractive data are indeed reasonably small.
However, the y* value cannot serve as the only measure of the goodness of a fit. Equally
important is the requirement that the data are scattered randomly around the fitted values.
Fig. 5 shows clearly that it is not the case for the NBD fits. The values of the
ratio P***(n,)/P"*P(n.,) (Fig. 5a) and P¥F(n.,)/PF"®°(n,,) (Fig. 5b) are not scattered
randomly around unity but systematic deviations can be seen. In other words, the NBD
with its two parameters for each energy does not have enough flexibility to reproduce
correctly the shape of multiplicity distributions.

At this point it is worth stressing an important difference between the NBD and KNO
parametrizations of the data. In the KNO parametrization one arbitrary function is fixed
for all energies, and there can be only one free parameter for all energies (see the method
in Ref. [16]). In the NBD approach there arzs two free parameters for each energy. Assuming
that {n> = # this can be reduced to one free parameter, k, for each energy. It results in
a considerable flexibility of the NBD which nevertheless, as shown above, is not large
enough. In the KNO language this would mean a *‘scaling”(?!) function which may change
with energy [17].

There have been attempts to fit multiplicity distributions with other formulas listed
in Table I [4, 5, 18]. The fits were as good as those with the NBD which shows that the NBD
is not unique as a way to parametrize multiplicity distributions.

There is another necessary condition for a distribution pretending to be “a law of
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physics”, namely the stability of its parameters. We have checked the stability of parameters
A and k by fitting the NBD to multiplicity distributions in which some data points
have been omitted.

An example of the omission of some data points is shown in Fig. 6. The non-diffractive
pp multiplicity distribution at 62 GeV contains 20 data points for 2 < n,, < 40. If five
points at the low n, end are not used in the fit (Fig. 6b) one obtains considerably different
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values of 7i and k than for the full distribution (Fig. 6a). Let us add here that the low n , end
of multiplicity distribution is often omitted from the fit if inelastic data are used [19]
because the FNBD is supposed to fit the non-diffractive sample and the diffractive compo-
nent is known to be concentrated at n., < 10. If this supposition was true then one could
estimate the diffractive component at each n, by subtracting the fitted cross sections from
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inelastic topologic cross sections [19, 21]. Since we have started from non-diffractive
distribution, the omission of a few lowest multiplicities should result in no change at all
in the fitted parameters, assuming that indeed the described procedure of obtaining the
non-diffractive data was justified. The difference of 309 in the fitted kpypp as seen in Fig. 6
makes the procedure questionable.
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Moreover, as seen in Fig. 6b, the values of i and k are strongly correlated. This means
that one gets approximately the same distribution by decreasing or increasing both 7 and .
This explains the sensitivity of the FNBD fits to the fluctuations in data and stresses again
that the parameter k should not be considered as having any deep physical meaning.

Nevertheless, we have compared the diffractive cross sections obtained by other
methods (missing mass plots, rapidity gaps etc.) with the “diffractive component” obtained
by subtracting the NBD fitted cross sections from inelastic topologic cross sections. In
Fig. 7a we see that the total diffractive cross sections from the NBD fits in many cases
disagree with the experimental ones. There are clear systematic differences for separate
topologies (Fig. 7b).

It is perhaps worth adding that for certain data the parameter k obtained from the fit
has very large errors (see Table II and III) which again reminds that it has to be used with
great care in evaluating some relevant physics parameters.

There are quite a few simple models in which the NBD can be derived [1]. We do not
intend to characterize them (see Ref. [20] for a critical review) but we would like to point
out that the k parameter is defined to be positive in all of them. As we have seen in Section 5,
KFX? at small enough energy becomes negative both in the NBD and FNBD fits. It is diffi-
cult to understand in terms of models why at a certain energy the k& parameter should
change sign although other experimental observables do not show any such violent change
in the mechanism of particle production.

The other explanation is that the existing models have little connection with physics
of multiparticle production.

Thus far we have discussed the NBD approach to full phase space non-diffractive
and inelastic data. Much of what has been said above can also be repeated concerning
the NBD fits to data in rapidity intervals, azimuthal angle intervals etc. In this connection
we would like to point out that one should be careful in interpreting the difference in the
values of k obtained in fits to distributions of negative secondaries (k) and all charged
secondaries (k). In the recent experiment the ratio k_/k ., for the different rapidity intervals
was found to be two [21]. Fig. lc shows however that for full phase space data the ratio
k_[k., is energy dependent and the difference between k_ and k., results from fitting different
distributions: the NBD for negatives and the FNBD for all charged particles. It should be
stressed that even for restricted phase-space regions the number of charged secondaries
n_, is not a good multiplicity measure because some charge correlations are still present.
Again the number of negative secondaries serves as a genuine multiplicity measure for
this case and it seems that only fits to the multiplicity distributions of negatives are
meaningful.

Lastly, we would like to add that the NBD does not have any internal predictive
power since it involves two free parameters for each multiplicity distributions and has
no built-in scaling. There is no model to predict the dependence of 7 and k on the energy,
particle type or a phase-space region in agreement with experiment. Therefore, extrapola-
tion of parameters to higher energies is done by using the linear dependence of k on Ins
claimed in [10, 11]. In Section 5 we have shown that this dependence is not well proven by
the data. Also, there are no predictions for the variation of NBD parameters in different
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phase space regions. The usual conclusion, treated as a success of the NBD approach,
is that its parameters change smoothly with the change of phase-space regions, but it would
be rather difficult to imagine any other possibility. ‘

Summarizing this Section we may say that there are no obvious reasons why the NBD
should be particularly favoured as something more than a flexible mathematical parametri-
zation of the results on multiplicities.

8. Conclusions

We have critically examined the existing evidence for the recent claim that the NBD
is a new empirical law describing multiplicity of secondaries in high energy collisions.
We have pointed out misunderstandings and incorrect procedure encountered in the litera-
ture on the subject. The shortcomings of the NBD are its insufficient flexibility to properly
describe the shape of multiplicity distributions, lack of stability in the values of k, and the
difficulty in the interpretation of the negative values of k in terms of models. We conclude
that the NBD has not attained the status of a new physical law and should not be regarded
as something more than a usable but not necessarily the best parametrization of the data.
It is a mystery why it is so popular.

We are grateful to Dr. H. Bialkowska and Prof. J. A. Zakrzewski for discussion
on the text.
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