
 
 
 
 
 
 

A quantitative comparison between xen and kvm 

Andrea Chierici 

Riccardo Veraldi 

INFN-CNAF 

{chierici,veraldi}@cnaf.infn.it 

Abstract. Virtualization is a proven software technology that is rapidly transforming the IT 
landscape and fundamentally changing the way that people compute. Recently all major 
software producers (e.g. Microsoft and RedHat) developed or acquired virtualization 
technologies. Our institute is a Tier1 for LHC experiments and is experiencing lots of benefits 
from virtualization technologies, like improving fault tolerance, providing efficient hardware 
resource usage and increasing security. Currently the virtualization solution adopted is xen, 
which is well supported by the Scientific Linux distribution, widely adopted by the HEP 
community. Since the HEP linux distribution is based on RedHat ES, we feel the need to 
investigate performance and usability differences with the new kvm technology recently 
acquired by RedHat. The case study of this work will be the LHCb experiment Tier2 site 
hosted at our institute, where all major grid elements run on xen virtual machines smoothly. 
We will investigate the impact on performance and stability that a migration to kvm would 
entail on the Tier2 site, as well as the effort required by a system administrator to deploy the 
migration. Several quantitative test results will be shown and explained in detail. 

1.  Introduction 
Infrastructure virtualization, and in particular server virtualization has become very important 
nowadays because of the tremendous benefits achieved by using it. Virtualization is a technology that 
allows running a certain number of different and concurrent operating system instances inside a single 
physical machine. This physical server is divided into multiple isolated virtual environments called 
guests. 

2.  Virtualization approaches 
There are three popular approaches to server virtualization: full virtualization, para-virtualization and 
virtualization with hardware support (Hardware Virtual Machine, or HVM).  

2.1.  Full virtualization 
Virtual machines are based on the host/guest paradigm where each guest runs on a virtual imitation of 
the hardware layer. This approach allows the guest operating system to run without modifications. It 
also allows the administrator to create guests that use different operating systems. The guest has no 
knowledge about the host operating system because it is not aware that it's not running on real 
hardware. It does, however, require real computing resources from the host, so it uses a hypervisor to 
coordinate instructions to the CPU. The hypervisor is called a virtual machine monitor (VMM). It 
validates all the guest-issued CPU instructions and manages any executed code that requires additional 
privileges. VMware and Microsoft Virtual Server both use the full virtualization approach. 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

c© 2010 IOP Publishing Ltd 1



 
 
 
 
 
 

2.2.  Para-virtualization 
The para-virtualized machine approach (PVM) is based on the host/guest paradigm and uses a virtual 
machine monitor. In this model, however, The VMM actually modifies the guest operating system's 
code; this modification is called porting. Porting supports the VMM so it can access privileged 
systems calls sparingly. Like virtual machines, para-virtual machines are capable of running multiple 
operating systems. Xen and UML both use the para-virtual machine model. The main advantage of 
this approach is the speed that can be achieved, always faster than HVM approach. 

2.3.  Hardware virtual machine (HVM) 
Recent innovations in hardware, particularly in CPU, MMU and memory components (notably the 
Intel VT-x and AMD-V architectures), provide some direct platform-level architectural support for OS 
virtualization. 

HVM offers one key features: it avoids the need to trap and emulate privileged instructions by 
enabling guests to run at their native privilege levels. For some hypervisors (like xen and kvm) it is 
possible to recompile para-virtualized drivers inside the guest machine running in HVM environment 
and load those drivers into the running kernel to achieve para-virtualized I/O performance within an 
HVM guest.   
 

3.  Xen based virtualization 
Xen [1] is a virtual machine monitor that allows several guest operating systems to be executed on 

the same computer hardware concurrently. A Xen system is structured with the Xen hypervisor as the 
lowest and most privileged layer. Above this layer are located one or more guest operating systems, 
which the hypervisor schedules across the physical CPUs. Xen can work both in para-virtualized or 
HVM mode; in the first the guest operating system must be modified to be executed. Through para-
virtualization, Xen can achieve very high performance. The HVM mode offers new instructions to 
support direct calls by a para-virtualized guest/driver into the hypervisor, typically used for I/O or 
other so-called hypercalls.  

4.  KVM base virtualization 
KVM [3] is a full virtualization solution for Linux on x86 hardware containing virtualization 
extensions (Intel VT or AMD-V). It consists of a loadable kernel module, kvm.ko, which provides the 
core virtualization infrastructure, and a processor specific module, kvm-intel.ko or kvm-amd.ko. KVM 
requires a modified version of qemu, a well known virtualization software. The kernel component of 
KVM is included in mainline Linux, as of 2.6.20, while for xen only external support is available. 
KVM supports I/O para-virtualization using the so called VIRTIO subsystem consisting of 5 kernel 
modules. 

4.1.  KVM in our centre 
KVM can easily be installed using a yum repository [4]; once installed the first thing to do is to set up 
networking. For our virtual machines we currently use public IP addressing configured via a bridged 
network, so we modified the default kvm start-up script to create a virtual bridge for each network 
interface; in this way we can choose at boot time which virtual machine can be hooked to which 
network interface. After this, we need to add a “tap” interface and assign it to the proper bridge: even 
in this case we created a special script “/etc/qemu-ifup” that is executed automatically upon guest 
creation and destruction so that tap interfaces are managed transparently. Creating a virtual bridge is 
the standard method to allow different virtual interfaces belonging to different virtual machines to be 
able to access the physical network interface managed by the hypervisor. Sometimes this solution is 
also called “virtual switch”. 

5.  KVM: Qualitative test 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

2



 
 
 
 
 
 

We introduced kvm into our environment seamlessly. We are using Quattor [5] as the main installation 
tool, which is based on machine profiles that describe the configuration expected for every machine by 
system administrators. Introducing kvm didn’t require any additional effort or modification to this 
infrastructure, getting every VM to be installed via network boot exactly like xen VMs. We stepped 
into one little problem involving the “-boot” option, which requires only one parameter, being it 
network, hard disk or cdrom. After the machine has installed via network boot, we have to stop and 
restart it with the option to boot from hard disk, while with xen this is not needed, being hard disk the 
second default boot device. 

The qualitative test consisted in installing on a kvm VM an “EGEE Computing Element” used in 
production in the LHCb tier2 we are hosting at CNAF. Before the test, the lhcb tier2 site was running 
totally on xen VMs: it consisted of 2 Computing Elements installed on 2 different hosts (to balance 
performance and assure site reliability), a Storage Element and a Monitoring Box; by reinstalling one 
CE on a kvm VM we had the opportunity to make a direct comparison between the two virtualization 
technologies. The VM worked flawlessly for more than 3 weeks not giving users and system 
administrators any idea of the change that was made: we considered the test fully passed.  

While we were doing these tests we decided to install also a CMS secondary squid server and we 
had the same feedback from the users: no differences in performance were noticed. As a reference, we 
used this hardware to host the two kvm VMs: 1 dual Intel E5420, 16GB ram, sata disks on Areca 
controller. 

6.  Quantitative test 
Even if kvm passed brilliantly the qualitative test, we need some quantitative measures to confirm the 
positive impression obtained. For this reason we performed a set of tests targeted to measure the 
classic parameters of a machine (CPU, network and disk access), with tools well known to the HEP 
community. Here is a list of the tools used: 

• CPU: hep-spec06 (v1.1) 
• Network: iperf (v2.0.4) 
• Disk access: bonnie++(v1.94) 

To better understand the performance of a kvm virtual machine, we tested the same parameters also 
for a xen machine, both with para and hvm virtualization method and compared them with a non 
virtualized machine (the baseline). 

6.1.  Test specifications.  
The hardware used for the quantitative test is composed of 1 blade server with a dual intel E5420, 
16GB ram and two 10k sas disks connected to a LSI Logic raid controlled (disks configured with raid0 
option). 

The VMs specs were: 
• Xen-para VM: 1 vcpu, 2 GB ram, disk on a file 
• Xen-hvm VM: 1 vcpu, 2GB ram, disk on a file, “netfront” network driver 
• KVM VM: 1 vcpu, 2GB ram, disk on a file, e1000 network driver emulation 

As for the OS installed: 
• Host OS: SL 5.2 x86_64, kernel 2.6.18-92.1.22.el5 
• VM OS: SLC 4.5 i386, kernel 2.6.9-67.0.15.EL.cern 

Version of the hypervisors used: 
• KVM: 83 
• Xen: 3.2.1 

6.2.  Benchmarks: HEP-Spec06 
HEP-Spec06 [6] is the new standard in HEP community for CPU performance benchmarking and it is 
based on a subset of the Spec benchmark. We performed a wide number of tests in order to quantify 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

3



 
 
 
 
 
 

the differences in performance for the various virtualization solutions, compared to a non virtualized 
CPU. 

 

 
 

Figure 1: XEN vs. KVM on dual Intel E5420, single performance measure  
 
In figure 1 we show the performance comparison of the various hypervisors while an increasing 

number of virtual machine runs concurrently on the host. We tested the performance with 7 and 8 
concurrent runs in order to understand if the hypervisor requires a dedicated CPU (1 hypervisor + 7 
VMs is the exact number of cores on our box).  

The results of the test shown in figure 2 confirm that we can “overload” the cores of our machine 
and run 8 VMs concurrently, without any significant performance loss. 

Figure 3 shows a comparison between the HEP-Spec06 benchmark on 8VMs and the same 
benchmark run on physical CPUs, as calculated by the HEPiX community [7]. Again, as we can see, 
the performance loss is so little that we can consider it almost zero. The benefits obtained by 
virtualization, overcome the minimal performance loss. Table 1 shows the exact percentage loss 
compared to physical CPUs. With virtualization technologies, either xen or kvm, the loss is 
comparable to a CPU downgrade (to the preceding model). 

 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

4



 
 
 
 
 
 

 

Figure 2: VMs vs. CPU 

 

 

Figure 3: 8VMs aggregate vs. CPUs  

 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

5



 
 
 
 
 
 

Virtualization  
Technology  

% loss from non 
Emulated CPU 
(E5420, 8vm) 

E5420kvm  3,42 

E5420xen-hvm  4,55 

E5420xen-para  2,02 

E5410 vs. E5420  4,07 

Table 1: HEP-Spec06 % loss 

 

6.3.  Benchmarks: Iperf 
Network performance is an essential parameter to measure: with iperf we tested the throughput 
performance both in inbound and outbound directions. The options we used to get the results are: “-
w256k –P 5 –t 900” that means a TCP window size of 256k, 5 parallel connections and the duration of 
900 seconds (15 minutes). 

 
 

 

Figure 4: KVM Network Performance  
 

 
As we can see from figure 4, the behavior of the network is asymmetric with inbound performing 

better than outbound connection. The situation improves with the increasing number of the nodes, 
giving us the idea of some sort of limitations hardcoded somehow inside the driver. We are going to 
better investigate this aspect in the near future. 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

6



 
 
 
 
 
 

In figure 5 we can see a global comparison of the network performance: xen is symmetric in every 
circumstance and so proves to be a better choice in situations where network outbound speed is 
critical. 

 
 

 

Figure 5: Network performance comparison 
 
 
 

6.4.  Benchmarks: bonnie++ 
Disk access speed is critical for every virtualization technology and our tests showed that a lot is still 
to be improved. In our centre we decided to adopt the disk-on-a-file approach instead of the disk-on-a-
partition. This solution, although may limit the I/O performance a little, is more convenient when 
having to deal with backup and migration of disk images to other hosts. In figure 6 indeed we can see 
the read/write speed performance for a real machine compared to a virtual one (either xen or kvm). 
Xen with para-virtualized access is by far the best solution, particularly reading from disk. What really 
disappointed us are the tests with concurrent access of VMs to the disk. In these circumstances (figure 
7 and 8) all the solutions perform very badly compared to the real machine, with a significant 
advantage to xen-para, even if only for reading performance. All the solutions perform very badly in 
disk writing, leaving a lot of room for improvement in future releases of the hypervisors.  

The next step in hardware virtualization is to implement special instruction in the hardware in a 
way similar to what has been done for the CPU, that as we have proved, are already performing 
brilliantly. 

 
 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

7



 
 
 
 
 
 

 

Figure 5: 2GB Ram, 4GB data set, 1vm comparison  

 

 

Figure 6: 2GB ram, 4GB data set, 8vm, single 
 
 
 
 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

8



 
 
 
 
 
 

 

Figure 7: 2GB ram, 4GB data set, 8vm, aggregate 
 
 
 

7.  Conclusions and future work 
During our tests kvm proved great stability and reliability: it never crashed and integrated seamlessly 
into our computing farm, without requiring any additional effort to the system administrators. 

Our benchmarks showed that the CPU performance provided by the virtualization layer is 
comparable to the one provided by xen and in some cases it’s even better. 

Network performance is fair, showing some strange asymmetric behavior, but anyway we consider 
them acceptable. 

Disk I/O seems to be the most problematic aspect, providing the VM poor performance, 
particularly when multiple machines concurrently access the disk. Anyway even xen based VM 
showed poor performance with this parameter, maybe caused by the solution adopted in our center, 
that is to provide virtual disks on a file. 

To summarize, we can say that even if looking very promising, right now, xen hypervisor seems to 
be the best solution, particularly when using the para-virtualized approach. 

These tests have been very useful for us and gave some input on future investigations and tests to 
perform: we particularly want to test kvm “virtio” drivers (only available in latest linux kernels, not 
suitable for EGEE middleware), and to test the qemu snapshot features for creating backups. I/O 
performance is another critical aspect that deserves more attention: we want to test performance using 
disk partitions instead of disk-on-a-file approach and to investigate the impact on performance by 
storing the virtual disks on different physical media. 

 
 

 
 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

9



 
 
 
 
 
 

 
 
 
 

References 
[1] Xen: http://www.xen.org/ 
[2] Xen unofficial repository: http://www.gitco.de/repo 
[3] Kvm: http://www.linux-kvm.org 
[4] Kvm unofficial repository: http://www.lfarkas.org/linux/packages/centos 
[5] Quattor: http://www.quattor.org 
[6] HEP-SPEC06: https://twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC 
[7] HEPiX: http://www.hepix.org 

  
 

 
 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042005 doi:10.1088/1742-6596/219/4/042005

10




