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Abstract

In this thesis we compute certain supersymmetric subsectors of the algebra of observ-
ables in some Quantum Field Theories (QFTs) and demonstrate an application of such
computation in checking an instance of Holographic duality. Computing the algebra of ob-
servables beyond perturbative approximation in weakly coupled field theories is far from a
tractable problem. In some special, yet interesting large classes of supersymmetric theories,
supersymmetry can be used to extract exact nonperturbative information about certain
subsets of observables. This is an old idea which we advance in this thesis by introducing
new techniques of computations, computing certain observalbes for the first time, and re-
producing earlier results about some other observables. We also propose a new toy model of
holographic duality involving topological/holomorphic theories, demonstrating the power
of exact computations in supersymmetric subsectors. To be more specific, the subject of
this thesis includes the following:

1. Computing the algebra of chiral and twisted chiral operators in 2dN = (2, 2) theories
– while these algebras were previously known, we demonstrate how they can be
computed using relatively modern techniques of supersymmetric localization.

2. Computing the chiral rings of 4dN = 2 Superconformal Field Theories (SCFTs) – we
compute this algebra for the first time. We use the same method of supersymmetric
localization that we use in the 2d case.1

3. Computing the algebra of operators on a defect in the topological 2d BF theory,
along with its holographic dual. This is a new toy model of holographic duality set
in the world of 6d topological string theory. We also argue that this setup is in fact
a certain supersymmetric subsector of the holographic duality involving 4d N = 4
Super Yang-Mills (SYM) theory and its 10d supergravity dual – both involving some
defects.

In order to be able to discuss these different theories in different dimensions with different
symmetries without sounding disparate and ad hoc, we employ the language of cohomo-
logical algebra. Since this is perhaps not a language most commonly used in the standard
physics literature, we would like to emphasize that this is not a novel idea, it is merely
a convenient thematic and linguistic umbrella that covers all the topics of this thesis. In

1Chronologically this is the first work demonstrating the use of localization in computing supersymmetry
invariant operator algebra. Application of this method to the 2d case came later. However, pedagogically
it seems more relevant to present the 2d case first and then the 4d case.
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the Batalin-Vilkovisky (BV) formulation of a Quantum Field Theory (QFT), the algebra
of observables is presented as the cohomology algebra of a certain complex consisting of
fields and anti-fields. In this language restriction to supersymmetric subsectors correspond
to modifying the BV differential by the addition of the relevant supersymmetry generator.
We simply refer to this modification as reduction to cohomology (with respect to the choice
of supersymmetry).
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Chapter 1

Introduction

We begin with an elementary discussion about operator algebras in quantum field theories
and their restriction to supersymmetric subsectors. This discussion will be broadly general
and perhaps lacking in rigor – the aim being simply to serve as a motivation and a common
theme behind the concrete and specific investigations into different theories that we lay
out in the latter chapters. Anyone already interested in the particular theories considered
in the latter portions of the thesis can safely ignore the introduction without any loss of
essential technical background.

1.1 Operator Algebra

Among the primary objects of interest in a quantum field theory are observables. For any
QFT defined on a space-time1 manifold M , observables are probes assigned to submanifolds
of M . In a field theoretic model of some physical dynamics, the observables represent
measurements made in some spatial location at some time. Observables are also referred
to as operators2 and we shall use these two terms interchangeably. Observables assigned
to points are called local, those assigned to 1-dimensional submanifolds are called line
operators, the ones assigned to 2 dimensinoal submanifolds are surface operators, and so
on. We will mostly be concerned with local operators in this thesis.

1In this thesis we are only concerned with Riemannian space-time manifolds, i.e., there will be no
distinguished temporal direction.

2There is a canonical way of assigning vector spaces to codimension 1 submanifolds of M and observables
defined on submanifolds of codimension at least 1 can act on these vector spaces as operators [149].
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The collection of observables in a QFT has a certain algebraic structure encoding the
bulk of the dynamical information. This algebra is known as a factorization algebra. We will
not delve into the exact definition of such an algebra – this is part of the standard literature
on mathematical physics and we refer to [40] for the technical details. In this introduction
we only sketch an intuitive picture of this algebra and in the latter chapters when we focus
on specific theories we will concretely define the algebras that we will compute. In fact,
the main theme of this thesis is that in favorable conditions, supersymmetry can be used
to define certain reductions of these very general factorization algebras to more familiar
and much simpler algebras such as associative algebras (in Quantum Mechanics (QM)) or
vertex operator algebras [135] – these simpler, often computable,3 algebras can still contain
highly nontrivial dynamical information.

Following [40], let us quickly motivate the basic structures behind operator algebras. If
we imagine observables as measuring devices for some kind of experiment in our dynamical
system, then it makes sense to position these devices at arbitrary locations in space-time
so longs as we don’t put multiple devices at the same place at the same time. For any open
subset U ⊆ M of our space-time let us denote by Obs(U) the set of observables that can
be inserted in the region U . Now, if U ⊆ M and U ′ ⊆ M are two disjoint open subsets of
M , then combining any two observables located in U and U ′ we should get an observable
located in U ∪ U ′ – i.e., we should have a map:

Obs(U)×Obs(U ′)→ Obs(U ∪ U ′) . (1.1)

If U and V are open subsets of M such that U is contained in V , i.e. U ⊆ V ⊆ M , then
there should be a way to think of the measurements done in the region U as measurements
done in the region V as well, thus we expect a map:

Obs(U)→ Obs(V ) . (1.2)

The above map should satisfy a compatibility condition. If we have a chain of inclusions of
open subsets of the space-time U ⊆ V ⊆ W ⊆ M then we can view a measurement done
in the region U as a measurement done in the region W in two ways:

1. Using the inclusion U ⊆ W ,

2. By first thinking of it as a measurement done in the region V and then using the
inclusion V ⊆ W .

3As opposed to the full factorization algebras themselves.
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These two ways of thinking should be the same for physical consistency and thus we expect
the following diagram to commutes:

Obs(U) Obs(W )

Obs(V )

(1.3)

The conditions (1.1), (1.2), and (1.3) together define the structure of a prefactorization
algebra, which is a short step away from a factorization algebra. Intuitively, a factorization
algebra is a prefactorization algebra where the observables associated to an open set U ⊆M
can be constructed using information about the observables associated to all the open
subsets of U . This intuition can be made precise though we do not attempt to do so
here as this is mostly a technicality that will play no role in this thesis – the precise
characterization of a factorization algebra can be found in Definition 1.3.1 of [40].

Remark 1.1.1 (Where are correlation functions?). In the standard textbook treatment of
QFTs the emphasis is often on computing correlation functions or expectation values4 of
observables, rather than the algebra of observables.5 Formally, the ability to compute
expectation values of observables require a small piece of information in addition to the
factorization algebra – this extra information is a choice of a vacuum, which is a map:6

〈−〉 : Obs(M)→ CJ~K . (1.4)

Note that for any two disjoint open subsets U and V of M the map 〈−〉 extends to the
product Obs(U)⊗Obs(V ) by composing with (1.1) and (1.2):

Obs(U)×Obs(V )→ Obs(U ∪ V )→ Obs(M)
〈−〉−−→ CJ~K . (1.5)

We require this extension to be linear on both factors. In this fashion we can extend 〈−〉 to
act multilinearly on arbitrary products

∏n
i=1 Obs(Ui) for a set {Ui}ni=1 of mutually disjoint

open subsets of M and given an operator Oi ∈ Obs(Ui) from each open set we can compute
the correlation function:

〈O1 · · ·On〉 ∈ CJ~K . (1.6)

4
4We use these two terms interchangeably.
5A potential exception is a discussion on Conformal Field Theories (CFTs) where computing the Oper-

ator Product Expansion (OPE) – a name for the product (1.1) – takes up a significant amount of attention.
6We use the Planck’s constant here for the first time. In this thesis the primary role of this parameter

will be to keep track of the loop order in perturbation theory. When this is not needed we will often set ~
to 1 and not worry about it.
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1.2 Scalar Field Theory

Let us consider an example of a real scalar field theory on a d-dimensional space-time M
with a Riemannian metric g and apply some of the general terminology we have been using
to the practical case. The dynamical variables, the fields, of this theory are real valued
smooth functions on M :

Space of fields, E := C∞(M) . (1.7)

The action is a real valued function on the space of fields which is bounded from bellow:

S(φ) =
1

2

∫
M

ddx
√
g φ(∆ +m2)φ+ I(φ) . (1.8)

Here ∆ is the Laplacian on M defined with respect to the metric g, m is a mass parameter
of the theory, and I(φ) is a polynomial function on the space of fields. Observables or
operators of any theory are generally functions on the space of fields of the theory.7 Given
any open subset U ⊆ M of M , fields with support on U belong to C∞(U) and a first
approximation to the space of observables with support in U is given by a space of functions
on C∞(U):8

Obs(U) := O(C∞(U)) . (1.9)

A linear operator with support in U can be defined given a distribution γ with support in
U as:

O(γ) : φ 7→
∫
M

ddx
√
g γφ . (1.10)

Since a distribution with support in U can be trivially extended to be considered as a
distribution with support in V for any open set V ⊇ U containing U , we have a natural
map Obs(U) ↪→ Obs(V ) given simply by inclusion.9 If γ is a Dirac delta function with
support at some point p then we write:

O(p) : φ 7→
∫
M

ddx
√
g δ(d)(x− p)φ = φ(p) . (1.11)

Operators with delta function support are local. It is also common practice to write φ(p)
to refer to the operator O(p).

7Functions on the space of fields are sometimes referred to as functionals.
8We are not being specific here about what type of functions we want. In specific situations we will

choose some appropriate type of functions so that we can integrate them with respect the measure on the
field space defined by the action.

9The diagram (1.3) is automatically commutative if the arrows are inclusions.

4



Remark 1.2.1 (Equations of motion). Saying that (1.9) is the space of observables is not
strictly correct. Because, the functions on the field space – the operators – must satisfy
the equations of motion and therefore, the true space of obsevables should be the quotient
of O(C∞(U)) by the equations of motion. A formal (homological) way of doing that is to
replace O(C∞) by a cochain complex which is a resolution of the desired quotient. This is
the core of the BV formalism, which assigns to each open set U a cochain complex. This
assignment is also a factorization algebra, and it is this factorization algebra that gives us
the physical operator product. 4

Given an operator O, its expectation value is simply its average over the field space E
with respect to a measure Dφ e− 1

~S(φ):10

〈O〉 =

∫
E
Dφ e−

1
~S(φ)O . (1.12)

The measure Dφ on the field space is an infinite dimensional generalization of the Euclidean
measure on Rn.

Product of operators must be compatible with computing correlation functions, i.e., if
the product of two operators O1 and O2 is O3, then we must have:

〈O1O2O〉 = 〈O3O〉 , (1.13)

for any arbitrary operator O. In particular, if there is an operator O0 such that any
correlation function containing it vanishes:

〈O0O〉 = 0 , (1.14)

for any operator O, then we should identify O0 with 0 in the operator algebra. Finding
operators that look nontrivial when written in terms of fields but have vanishing correla-
tors with all other operators mean imposing relations among the operators in (1.9). For
example, there will be relations among the observables defined in (1.9) coming from the
equations of motion. The description of the operator algebra that we have given so far
often suffices, in fact, this is how we shall identify certain operator algebras in chapters 2
and 3 – we shall first characterize the operators of interest in terms of the fields (as in (1.9)
and (1.11)) and we shall find out the relations that always holds among these operators
inside correlation functions.

10These are the unnormalized expectation values. Conventionally one normalizes the path integral so
that the expectation value of the identity operator is 1. This is not important for our current general
discussion.
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Remark 1.2.2 (An analogy with finite dimensional integrations). There is some resemblance
between a QFT and a theory of integration. Computing correlation functions such as
(1.12) is essentially about defining a measure of integration on the space of fields, which is
generally a daunting task. On a finite dimensional manifold with a metric one can define
various measures of integration which can be used to integrate functions on said manifold.
Instead of worrying about all the functions one can focus attention only to those that are
closed with respect to the de Rham differential and this reduces the problem of integration
to the “simpler” theory of de Rham cohomology. It is simpler in the sense that integration
of cohomology classes only requires topological information about the manifold and all
finer structures (such as differential geometry) can be safely ignored. Supersymmetry can
be used to serve a similar purpose in a QFT. This is the key motivation behind the works
of this thesis. 4

1.3 Supersymmetry and Cohomology

A (Lie) symmetry algebra of a QFT is an algebra g that acts on the field space11 E (or rather
on the functions on the field space, the observables) and leaves invariant the integration
measure on E defined by the action. A supersymmetry algebra is a Z2 graded symmetry
algebra g = g0 ⊕ g1 of a QFT with a graded bracket:

[−,−] : g0 × g0 → g0 , [−,−] : g0 × g1 → g1 , {−,−} : g1 × g1 → g0 . (1.15)

The subalgebra g0 ⊆ g is called bosonic and its representation g1 is called fermionic.
Suppose we have a fermionic generator, also called a supercharge, Q ∈ g1 which squares to
0:

{Q,Q} = 0 . (1.16)

Then Q is a nilpotent operator that acts on the functions on our field space (the operators)
and leaves our integration measure on the field space invariant:12

Q : Obs(M)→ Obs(M) , Q
(
DΦ e−S(Φ)/~) = 0 . (1.17)

It is then natural to consider the cohomology of Q:13

H•Q(Obs(M)) , (1.18)

11For the special case of a scalar field theory this was defined in (1.7)
12We assume that the QFT is defined on a space-time manifold M with an action S and we use Φ to

schematically represent all the fields of the theory.
13Note that only the stabilizer of Q in g has a sensible action on the cohomology. Symmetry of the

cohomological theory will therefore generally be a subgroup of the symmetry of the original theory. And
the action of the ideal of g generated by Q on the observables of the theory becomes trivial.
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and wonder whether:

1. integrating these cohomology classes is simpler than integrating arbitrary functions,

2. the algebra of the cohomology classes is simpler to find than the factorization algebra
of all operators and if there is any interesting information left in the simpler algebra.

The answer to these questions will vary from case to case. Note that just as de Rham
cohomology is invariant under smooth deformations of the underlaying manifold, the alge-
braic structure that survives in H•Q(Obs(M)) is also invariant under any deformation of the
QFT that is Q-exact. In particular, any deformation of the QFT that leads to a Q-exact
deformation of the integraiton measure on field space leaves the Q-cohomology invariant.
One such deformation is given by a Q-exact deformation of the action:

S → S + {Q, V } , (1.19)

where V is some fermionic functional. Invariance under such deformations has been used
to great effect in explicitly showing that integrating Q-cohomology classes can indeed be a
much simpler problem than integrating arbitrary operators. These results go by the name
of supersymmetric localization [140] and we shall use some of these results in the latter
chapters.

Let us take a somewhat detailed look at the simplest possible example of supersym-
metry where taking cohomology leads to considerable simplification while preserving some
nontrivial structure.

1.3.1 A Toy Model: 0 Dimensional QFT

A 0-dimensional QFT is simply a theory of maps from a point to a target space with an
action functional. Since maps from a point are completely parametrized by the the image
of the point, the space of fields in this theory can be identified with the target space itself.
The action functional is then an ordinary function on the target space with a lower bound
and the path integral measure is easily constructed from the integration measure on the
target space. In this section we set ~ = 1, it does not influence the claims of this section.

Suppose X is a smooth compact connected oriented Riemannian manifold of dimension
n. TX is the tangent bundle of X and let ΠTX denote the shifted tangent bundle of X, by
which we mean the tangent bundle with the tangential directions being parametrized by
grassmann variables. We will see that a generic 0-dimensional QFT with the target space
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being ΠTX captures the smooth geometry of differential forms on X and their integration.
A 0-dimensional QFT with the additional structure of supersymmetry allows us to take
cohomology, which in this case corresponds precisely to reduction to de Rham cohomology
of X.

Let us choose local coordinates xi on X and coordinates θi for the grassmannian/odd
tangential directions.14 The even coordinates xi are commutative and the odd coordinates
θi are anti-commutative:

xixj = xjxi , θiθj = −θjθi , xiθj = θjxi . (1.20)

We now consider a 0-dimensional QFT of maps from a point to ΠTX. The fields of this
theory consist of the bosonic fields xi and the fermionic fields θi. The space of fields is the
target space ΠTX itself:

Spae of fields, E = ΠTX . (1.21)

The action of the theory is a function of the fields:

S ∈ C∞(ΠTX) , (1.22)

which defines a measure of integration on the field space:15

dnxdnθ e−S(x,θ) . (1.23)

Observables of the theory are smooth functions on the field space:

Obs = C∞(ΠTX) . (1.24)

For any operator O ∈ Obs, its expectation value is its integral over the field space with
the measure defined by the action:

〈O〉 =

∫
ΠTX

dnxdnθ e−S(x,θ)O(x, θ) . (1.25)

14Coordinates on a vector space are valued in the dual of the vector space. Which means, in particular,
that under diffeomorphism of X, θi transforms as dxi.

15Note that the measure dnxdnθe−S(x,θ) is diffeomorphism invariant. Under a coordinate transformation

xi 7→ φi(x) the measure dnx transforms as dnx 7→ det
(
∂φi

∂xj

)
dnx. Under the same transformation θi

transforms as θi 7→ ∂φi

∂xj θ
j (since θi transforms as dxi). Therefore the product θ1 · · · θn transforms as

θ1 · · · θn 7→ det
(
∂φi

∂xj

)
θ1 · · · θn and the invariance of the grassmann integration

∫
dθ1 · · · dθn θ1 · · · θn =

(−1)n−1 then implies that the measure dnθ transforms as dnθ 7→ det
(
∂φi

∂xj

)−1

dnθ. The measure dnxdnθ

and in turn dnxdnθe−S(x,θ) (since S is a scalar) is therefore invariant.
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Trivial Action: Differential Forms

If we take the action to be trivial S = 0, then this theory just captures the smooth structure
of X, i.e., the theory of differential forms Ω•(X) and their integration on X.

Note that, when S = 0, the measure on ΠTX is simply dnxdnθ. The integration over
the odd variables in computing 〈O〉 will then pick out the coefficient of θ1 · · · θn in the
expansion of O, i.e., if we consider the expansion of O in the odd variables:

O(x, θ) = O1···n(x)θ1 · · · θn + (terms with fewer odd variables) (1.26)

then after performing the grassmann integration we get an integration over just X:

〈O〉 =

∫
X

dnxO1···n(x) . (1.27)

This is an integration of a top form O1···n(x)dx1 ∧ · · · ∧ dxn ∈ Ωn(X) on X. We can go
ahead and define an isomorphism

Obs = C∞(ΠTX)
∼−→ Ω•(X) , (1.28)

between operators in our theory and differential forms on X which acts as:

O(x, θ) =
n∑
k=0

Oi1···ik(x)θi1 · · · θik ∼7−→
∑
k

Oi1···ik(x)dxi1 ∧ · · · ∧ dxik =: Õ . (1.29)

Then OPE in this theory is equivalent to wedge product of forms on X:16

C∞(ΠTX)× C∞(ΠTX) Ω•(X)× Ω•(X)

C∞(ΠTX) Ω•(X)

∼

OPE ∧

∼

(1.30)

And as discussed earlier, expectation value of an operator is given by integration of forms:17

〈O〉 =

∫
X

Õ . (1.31)

16Note that this theory is too special in the sense that the space-time is just a point and there is only
one open set – meaning that there is no way to see the structure of a factorization algebra. However, due
to the simple nature of the theory we can still define operator product at the coincident point.

17Note that for some operator O ∈ C∞(ΠTX) we refer to its image in Ω•(X) under the isomorphism

(1.28) as Õ.
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Generic Action: More Differential Forms

For an arbitrary action S(x, θ) we can expand the exponential weight e−S in the grassmann
variables as:

e−S(x,θ) = W (0)(x) +W
(1)
i (x)θi +W

(2)
ij (x)θiθj + · · · . (1.32)

The coefficients W
(k)
i1···ik can be identified as coefficients of a k-form on X, which we denote

as W̃ (k):
W̃ (k) := W

(k)
i1···ikdx

i1 ∧ · · · ∧ dxik . (1.33)

An arbitrary operator O ∈ Obs can similarly be expanded:

O(x, θ) = O(0)(x) +O
(1)
i (x)θi +O

(2)
ij θ

iθj + · · · , (1.34)

and as in (1.33) we define the forms corresponding to the coefficients:

Õ(k) := O
(k)
i1···ikdx

i1 ∧ · · · ∧ dxik . (1.35)

The product e−SO has a similar expansion, for the purpose of integrating over the grass-
mann variables however, we only care about the terms with the maximal number of grass-
mann variables:

e−S(x,θ)O(x, θ) =
n∑

m=0

W
(m)
i1···imO

(n−m)
j1···jn−mθ

i1 · · · θimθj1 · · · θjn−m + · · · . (1.36)

The path integral evaluating the expectation value of O now becomes:

〈O〉 =

∫
X

dnx

∫
dθ1 · · · dθn e−S(x,θ)O(x, θ) =

n∑
m=0

∫
X

W̃ (m) ∧ Õ(n−m) . (1.37)

This is a slight generalization of (1.31), qualitatively not much different, we are still dealing
with integration of arbitrary forms on X utilizing the smooth geometry.

Supersymmetry and Reduction to Cohomology

We can define a fermion number operator on our space of operators, which literally just
counts the number of θ fields in an operator:18

[F, xi] = 0 , [F, θi] = θi . (1.38)

18Note that xi and θi are coordinates of our field space ΠTX and therefore they are also operators in
the sense of being functions on the space of fields. These are referred to as coordinate functions, which
takes as input a point of ΠTX and outputs the value of the respective coordinates at that point.
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Supersymmetry is a transformation of the operator space:

Q : C∞(ΠTX)→ C∞(ΠTX) , (1.39)

which is odd, i.e., has fermion number 1:

[F,Q] = Q . (1.40)

This leads to a grading on our space of operators:

C∞(ΠTX) =
n⊕
k=0

Obsk , (1.41)

where Obsk is defined by the property that F restricted to Obsk acts as k:

[F,−]Obsk = k idObsk . (1.42)

A theory is supersymmetric if the action and the field space measure it defines are invariant
under this transformation:

[Q,S] = 0 , [Q, dnxdnθ e−S] = 0 . (1.43)

Let us now specialize to a theory with the following supersymmetry transformations of
operators:

[Q, xi] = θi , [Q, θi] = 0 . (1.44)

The action of Q extends to arbitrary elements of C∞(ΠTX) via Leibniz’s rule. Note that
this operator is nilpotent:

Q2 = 0 , (1.45)

and via the isomorphism (1.28) between operators of our theory and differential forms on
X, corresponds precisely with the action of the de Rham differential on X:

C∞(ΠTX) Ω•(X)

C∞(ΠTX) Ω•(X)

∼

Q ddR

∼

(1.46)
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Let us summarize the identifications between field theoretic quantities and geometric ob-
jects on X:

0-dimensional QFT Geometry of X
Bosonic operator xi xi Coordinate

Fermionic operator θi dxi Basis for cotangent space
Space of all operators C∞(ΠTX) Ω•(X) Differential forms

Fermion number Form degree

Space of operators with fermion no. k Obsk Ωk(X) Differential k-forms
Operator product Wedge product

Supercharge Q ddR de Rham differential
(1.47)

We can now define a cohomology of operators with respect to the supercharge Q:

H•Q(C∞(ΠTX)) := kerQ/imQ . (1.48)

The grading is given by fermion number. From the above identifications (1.47) it is clear
that we have isomorphism between this operator cohomology and de Rham cohomology of
X:

H•Q(C∞(ΠTX)) ∼= H•dR(Ω•(X)) . (1.49)

The reason why this isomorphism is more than just about tabulating supersymmetric
operators is that if we restrict our attention only to operators in this cohomology, then
their expectation values correspond to integrating cohomology classes of X on homology
cycles in X. To see this, note that we can expand the weight e−S in the fermionic variables
and use the isomorphism (1.28) to identify the weight with a generic element of Ω•(X):

e−S
∼7−→ e−S̃ =

n∑
i=0

W (i)(x) , W (i) ∈ Ωi(X) . (1.50)

In the equality above, the exponential of the differential form S̃ is expanded with wedge
product. The condition for supersymmetry then translates to the statement that each
homogeneous piece W (i) is a representative of a cohomology class:

[Q,S] = 0 ⇒ ddRS̃ = 0 ⇒ ddRe
−S̃ = 0 ⇒ ddRW

(i) = 0 . (1.51)

Using Poincaré duality we can relate e−S̃ with a linear combination of homology cycles of
X:

e−S̃
Poincaré dual−−−−−−−→

n∑
i=0

X(n−i) , (1.52)
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where [X(n−i)] ∈ Hn−i(X) is the Poincaré dual to W (i). Similarly, any operator O ∈
C∞(ΠTX) which is supersymmetric [Q, f ] = 0, can be indeintified with a representative
of a cohomology class:

f
∼−→ Õ =

n∑
i=0

O(i) , [O(i)] ∈ H i(X) . (1.53)

Given that the action S and the operator O are supersymmetric the product e−SO is
supersymmetric: [

Q, e−SO
]

= 0 , (1.54)

and this product can now be identified with the wedge product:

e−SO
∼7−→ e−S̃ ∧ Õ . (1.55)

Furthermore, the expectation value of O with respect to the measure defined by the su-
persymmetric action now reduces to a pairing between homology cycles and cohomology
of X:

〈O〉 =

∫
X

e−S̃ ∧ Õ =
n∑

i,j=0

∫
X

W̃ (i) ∧ Õ(j) =
n∑
i=0

∫
X(i)

Õ(i) , (1.56)

where the last equality follows from Poincaré duality. Thus in this theory the action makes
a choice of cycles X(i), operators are cocycles, OPE is the wedge product, and taking
expectation values means pairing the cycles X(i) with the respective cocycles. This is
clearly a topological skeleton of the expectation value (1.37), and this cohomological 0-
dimensional QFT is therefore invariant under continuous deformations of the target space.

The point here is that the reduction from the full 0-dimensional QFT to itsQ-cohomology
parallels closely the reduction from the smooth structure of the target space X to its the-
ory of de Rham cohomology, including Poincaré duality and integration. This is one of
the simplest examples where the expectations expressed at the end of §1.3 of achieving
simplification and robustness by considering supersymmetric cohomologies is fulfilled.

1.4 Lessons from BV

Describing observables of a QFT as a cohomology of an infinite dimensional manifold
(the field space) is actually quite ubiquitous – observables of all QFTs with a Lagrangian
description can be written as a cohomology with respect to a certain differential operator
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on an extended field space. This is the outcome of the Batalin-Vilkovisky (BV) formalism
of quantization [11,12,40]. The BV formalism is a a formal way of implementing equations
of motion on the space of operators. In the computations of this thesis we will not use
the BV formalism and so we will not go into much details of its technicalities. However,
it provides a nice unified language to talk about operator algebras in QFTs and for this
reason we gather some key statements of the formalism and state our point of view on
cohomological operator algebras in QFTs using this language. There is no computation in
this section, only definitions and notations. We discuss BV formalism for a 0d QFT in a
bit more detail in Appendix A with an aim to making the definitions in this section seem
at least somewhat reasonable by analogy. For a thorough treatment of the BV formalism
we refer to [39,40].

BV Data of A QFT

Consider an effective QFT on a space-time M at a scale L.19 Associated to each open set
U ⊆M there is a space of fields E(U) (contains both fields and anti-fields) which is a graded
vector space.20 An effective action functional SL : O(E(M))→ RJ~K defines the dynamics
of the theory. The action functional can be separated into two parts, SL = S0 + IL, where
S0 is a local quadratic functional defining a free theory and is scale independentand IL is
an effective interaction.21 The quadratic free action S0 and the scale L defines a nilpotent
(cohomological) degree 1 differential operator on O(E(M)) called the BV Laplacian:22

∆BV
L : O(E(M))→ O(E(M)) , ∆BV

L ◦∆BV
L = 0 . (1.57)

In turn, this operator defines a degree 1 Poisson bracket:

{−,−}L : O(E(U))× O(E(U))→ O(E(U)) ,

{A,B}L = ∆BV
L (AB)−∆BV

L (A)B − (−1)|A|A∆BV
L (B) .

(1.58)

Renormalization Group (RG) flow relates effective actions at different scales. By RG
we mean Wilsonian RG. Let us refer to the action of RG flow from a scale ` < L to L as

19We take L to be a length scale. L→ 0 is the UV limit of the theory, which may or may not exist.
20Generalizing the finite dimensional field space (A.14).
21For L > 0 the interactions are generally non-local, roughly speaking the interactions are spread out

over a space-time region of length scale L. Which goes back to the claim that the limit L→ 0 is the UV
limit, as interaction becomes point-like.

22This is an infinite dimensional generalization of the finite dimensional BV Laplacian (A.17), further
deformed by the scale in such a way that limL→0 ∆BV

L is the straightforward generalization of the finite
dimensional operator to infinite dimension.
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WL
` , we write:

WL
` (I`) = IL . (1.59)

Given the interactions at scale ` one finds the interactions at scale L by integrating out
modes of the fields that fall between the two energy scales defined by ` and L. Schemati-
cally,

(S0 + IL)(Φ<L−1) = −~ log

∫
DΦL−1<−<`−1e−

1
~ (S0+I`)(Φtot) , (1.60)

where Φtot = ΦL−1<−<`−1 +Φ<L−1 includes both high energy and low energy fields. The free
theory S0 is a reference theory for the family of effective theories parametrized by scale.

Observables

At any scale L, there is the following degree 1 derivation (c.f. (A.16))

dL := ∆BV
L −

1

~
{SL,−}L : O(E(U))J~K→ O(E(U))J~K (1.61)

which is nilpotent:
d2
L = 0 . (1.62)

This equation is also referred to as the Quantum Master Equation.23

The observables of the theory are given by a cosheaf of cochain complexes, for any open
set U ⊆M the cosheaf is given by (c.f. (A.18) – observables in a 0d QFT):

U 7→ ObsL(U) := (O(E(U))J~K, dL) . (1.63)

Note that the underlying graded vector space of ObsL and Obs` are the same for any L
and `, it is the differential that varies with the scale. There is an isomorphism24 between
the cochain complexes ObsL and Obs` for two different scales ` and L > ` given by RG:

WL
` : Obs`

∼−→ ObsL ,

WL
` : O 7→ d

dε
WL
` (I` + εO)

∣∣∣∣
ε=0

.
(1.64)

23This is a highly non-trivial equation. It constraints effective interactions at any scale L, and since the
equation must hold at any scale, it is also a consistency condition for transformation of effective interactions
under RG flow.

24A homotopy, as some might say.

15



Remark 1.4.1 (Operators as deformations). Note that ε is essentially being treatd as an
infinitesimal variable and εO is being treated as an infinitesimal deformation of the effective
theory defined by the effective interaction I`. Observables in this sense span the tangent
space of an infinite dimensional space of effective QFTs on which RG acts. The above
isomorphism identifies tangent vectors at different points of this space related by the RG
action. 4

Because of the isomorphism defined above we can write just Obs(U) without refering
to any particular scale, as long as we keep in mind that an operator is really an orbit – for
the RG flow – of operators in the vector space underlying Obs(U) (namely, O(E(U))J~K).
Thus, when we say O ∈ Obs(U) is an operator, we are referring not to any single element
of O(E(U))J~K, but to an entire orbit {O[L]} related by the RG flow:

O[L] =WL
` (O[`]) . (1.65)

Factorization Product of Observables

We can define a product structure on the cosheaf U 7→ Obs(U) as follows. For any two
operators O1 ∈ Obs(U) and O2 ∈ Obs(V ) in two disjoint open sets U and V , and a scale
L, define:

− ∗ − : Obs(U)×Obs(V )→ Obs(U t V ) ,

(O1 ∗O2)[L] = lim
`→0
WL

` (O1[`]O2[`]) ,
(1.66)

where the product inside the bracket on the right hand side is the ordinary product of
functions. A key result of the BV formulation is the following theorem by Costello and
Gwilliam [39]:

Theorem 1.4.2 (Costello, Gwilliam). The product ∗ makes the cosheaf U 7→ Obs(U) a
factorization algebra.

OPE of Local Observables and Singularities

Local operators located at a point p ∈M are the operators that belong to the intersection
of Obs(U) for all open sets U containing p. Product of local operators is an important struc-
ture to study, especially in this thesis. In generic cases, such products have singularities
when the two local operators approach each other.

In the language of factorization algebra, singularities in the operator product appears
as follows. For a point p ∈ M of space-time and a positive number r, Let us denote by
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Dp,r an open disc of radius r in a neighbourhood of p. Consider two discs of small radius
ε centered at 0 and x inside a larger disc of radius r centered at zero:

D0,ε tDx,ε ⊆ D0,r . (1.67)

The above inclusion gives a product (the same product as in (1.66)):

Obs(D0,ε)×Obs(Dx,ε)→ Obs(D0,r) . (1.68)

By considering ε to be arbitrarily small we can restrict ourselves to local operators located
at 0 and x. Then the product above is only well defined for x 6= 0. Put differently, for any
two operators O1(0) ∈ Obs(D0,ε), O2(x) ∈ Obs(Dx,ε), by taking their product and allowing
x to vary over D0,r\{0} we get a smooth operator valued map:

O1(0) ∗O2(−) : D0,r\{0} → Obs(D0,r) ,

O1(0) ∗O2(−) : x 7→ O1(0) ∗O2(x) .
(1.69)

We call an operator valued map O : D0,r\{0} → Obs(D0,r) regular at 0 if there is another
operator valued map O : D0,r → Obs(D0,r) whose restriction to D0,r\{0} gives O:

∃O : D0,r → Obs(D0,r) such that O
∣∣
D0,r\{0}

= O ⇔ O is regular at 0 . (1.70)

An operator valued map is singular at 0 simply if it is not regular at 0 .

1.4.1 Supersymmetry and Cohomological Algebra

With all these formalities introduced it is easy to define the structure we are interested in.

Given a supersymmetric field theory on M with a sheaf of fields E , and a nilpotent
supercharge Q (as described in §1.3), which anticommutes with the BV differential:

dLQ+QdL = 0 (1.71)

at any scale, the corresponding cohomological field theory at scale L is the cosheaf of
cochain complexes:

U 7→ ObsQL (U) := (O(E(U)), dL +Q) , (1.72)

which is a factorization algebra with a product which is the descent of the BV factorization
product (1.66). More spcecifically, the algebra of observalbes that we are interested in is
the factorization algebra of the 0-th cohomology:

H0(ObsQL (U))×H0(ObsQL (V ))→ H0(ObsQL (U t V )) . (1.73)
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In certain specific cases (such as the theories we consider in chapter 2 and 3) this
product on the cohomology gives a non-singular product for local operators and depending
on the choice of Q the non-singular algebra is traditionally referred to as the chiral ring,
twisted-chiral ring, BPS ring etc.

Remark 1.4.3 (Aside on terminology: “Cohomological” vs. “Twisted”). What we are
referring to as a “cohomological” algebra would perhaps more commonly be referred to as
a “twisted” algebra. We chose not to use the term “twisted” as, in our experience, this
term is too widely and broadly used, and not always in contexts that are qualitatively
similar enough. On the other hand “cohomological” always refers to essentially the same
concept of “closed modulo exact” – seeming less ambiguous and more expressive. 4
Remark 1.4.4 (Ω-deformation). A physically important deformation in some supersym-
metric QFTs is the so called Ω-deformation [134]. This is the situation where we have a
supercharge Q which is not nilpotent, instead, it squares to a U(1) symmetry including
space-time rotation:

Q2 = LJ , (1.74)

where LJ refers to the action of the generator J of some U(1) symmetry of the theory
including rotation in some particular R2 plane25 in the space-time M . Physically, we
want to consider operators that are located in the space-time region fixed by the U(1)
action and we want to perform path integral over field configurations that are invariant
under the U(1) action as well. Adding such a Q to the BV operator dL does not lead to a
cochain complex immediately, however by restricting to the invariant subspace O(E(U))U(1)

we get a good cochain complex. Since the U(1) acts on space-time, open sets U ⊆ M
are not invariant under this action and we can not get a factorization algebra on M
this way. However, we should get a factorization algebra restricted to the fixed points
of the U(1). Physically, this shall mean that we essentially have a field theory in two
dimensions less than the dimension of the original space-time M . This construction is
certainly physically motivated26 and the cohomology seems similar to the mathematical
construction of equivariant cohomology, however, we were unable to find a description
of the BV formalism incorporating equivariant cohomology in the literature. We expect
that there is indeed an equivariant version of the BV formulation which generalizes the
cohomological description of QFTs to incorporate Ω-deformation, but we leave this for
future investigations. 4

25Or more generally, leaves of a foliation of M with U(1) symmetry.
26In fact we shall use omega deformation in addition to topological twists to relate a model of topological

holography with the holography of N = 4 SYM in chapter 4.
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1.5 Cohomological Algebras and Dualities

Cohomological algebras can be useful tools in checking dualities between different QFTs.
In principal, duality should imply an isomorphism between the full factorization algebras
associated to the dual QFTs. However, establishing such isomorphism is exceedingly hard
in general. Computations of suitably chosen cohomological algebras can be significantly
simpler. A cartoon analogy that inspires us is that of the cohomology of finite dimen-
sional manifolds. While it may be hard to establish diffeomorphism between the smooth
structures of two manifolds,27 it is often much simpler to establish homeomorphism, or at
least an isomorphism of cohomology. In this vain, in chapter 4 we establish a holographic
duality between two topological/holomorphic theories and we conjecture that this is in fact
an isomorphism at the level of cohomology between the standard N = 4 super Yang-Mills
with defect and its cojectured supergravity dual.

1.6 Organization of The Thesis

This thesis is dedicated to explicit computations of operator algebras/correlation functions
in specific theories. Computationally, we employ two different approaches to this end: 1)
Supersymmetric localization and 2) Direct computation of Feynman and Witten diagrams.

Chapter 2 and 3 are closely related – in these chapters we use the technique of super-
symmetric localization to compute correlation functions of operators belonging to certain
cohomological algebras. Chapter 2 is based on the paper [104], in this chapter we study 2d
theories with (2, 2) supersymmetry. There are two much studied cohomological algebras
in these theories, called the chiral ringa and the twisted-chiral ring. These operators are
observables in two different topological twists called the B-model and the A-model. These
theories are of significant interest in the context of mirror symmetry. We demonstrate
that these operator algebras can be computed using localization. Some background re-
garding relevant supersymmetry in 2d, curved space supersymmetry, and some technical
details of computations are presented in Appendix B. Chapter 3 is based on [75] where we
study a similar algebra, namely the chiral ring, in 4d N = 2 superconformal theories using
localization. In Appendix D we gather some background regarding integrability and super-
symmetry relevant for this chapter. The algebras we study in 2d and 4d have some curious
connection with the integrable Toda equations. In appendix C we clarify some subtlety

27Think of the problem of classifying exocit structures on topological S4, which remains an open problem
to this day – it is not even known whether there are more than one smooth structures or not [150].
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regarding defining the sphere partition function and certain supersymmetric correlation
functions in the 4d supersymmetric theories – this is based on the paper [81].

In chapter 4 we present a holographic duality between two topological/holomorphic
theories. We demonstrate this duality by computing operator algebras in the boundary
theory and scattering algebras in the bulk theory and showing that they are isomorphic.
We use the standard approach of computing Feynman diagrams and Witten diagrams to
compute these algebras. Most of this chapter is based on the paper [105]. However, §4.6
contains results from ongoing projects that have not yet been published otherwise. In this
section we show that the model of topological holography that we have constructed in this
chapter is in fact a supersymmetric subsector of the more familiar model of holographic
duality involving N = 4 super Yang-Mills theory with defects. We identify the supersym-
metric twists and Ω-deformation that reduce the N = 4 duality setup to the topological
setup presented in the earlier sections.

A few general remarks about the theme of the thesis as a whole and its future are
mentioned in chapter 5.

The chapters of this thesis can be read independently of each other. Chapters 2 and 3
are applications of the same computational strategy in different dimensions. There is no
technical link between these two chapters and chapter 4.
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Chapter 2

Chiral Rings in 2 Dimensions

2.1 Prologue

The cohomological algebras we are focusing on in this chapter are the chiral rings and the
twisted chiral rings of 2d N = (2, 2) supersymmetric quantum field theories (QFTs). We
refer to them as 2d BPS rings throughout this chapter. On a general ground, assignment
of such algebras to the respective QFTs lets us distinguish between different theories and
identify various types of equivalence classes of QFTs and dualities. More specifically,
the BPS rings are renormalization group (RG) invariants that can be used to distinguish
between different universality classes of 2d N = (2, 2) theories.1 These rings are interesting
objects from a mathematical point of view as well, as chiral and the twisted chiral rings of
a given theory belong to two different topological sectors of the theory and their structures
encode complex structure invariants and Kähler structure invariants of some geometric
spaces associated to the theory [151,153,154].

In this chapter we compute the BPS ring structure of 2d N = (2, 2) theories using the
exactly known results regarding the 2d sphere partition functions [15, 60, 61, 83]. In order
for us to use the sphere partition function and still be able to infer results for the theory
on flat space, we require that we must be able to canonically place the flat space theory on
a sphere. This forces us to restrict to 2d N = (2, 2) theories that flow to some conformal
theories. One interesting feature of these rings in 2d is that they are not freely generated,

1These invariants consist of only local operators and they can not distinguish between theories with
different non-local defects for example.
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and our procedure will generate the ring relations.2 This process does not rely on Mirror
symmetry and therefore results obtained in this way can be used for independent checks
of such symmetry.

The plan for the rest of the chapter is as follows. In §2.2 we establish the notations and
conventions we use to characterize the BPS ring structures. In §2.3 we review, tailoring
to the 2d case, the procedure put forward in [75] for computing chiral rings and finally
in §2.4 we apply this general procedure to compute the twisted chiral ring (consisting
of the Coulomb branch operators) of the Quintic Calabi-Yau (CY) Gauged Linear Signa
Model (GLSM) and the chiral ring of the Landau-Ginzburg (LG) minimal models. In the
appendices we present details about the superconformal algebra (§B.1), supersymmetric
backgrounds on the sphere (§B.2), proof of a supersymmetric Ward identity we use (§B.3),
and some explicit computations (§B.4).

2.2 The BPS Rings

We first give the definition of the BPS ring in a superconformal theory, and then explain its
definition for an ultraviolet (UV) theory with a conformal fixed point. We have included
some details about the relevant (2, 2) superconformal algebra su(2|2) in appendix B.1.

In a superconformal theory

A superconformal primary operator is one that is annihilated by all the S-supersymmetries:

O is a primary ⇔ [S±,O] = [S±,O] = 0 . (2.1)

The anti-commutation relations of the (2, 2) superconformal algebra (B.5) allow to con-
sistently define the following types of primary operators with additional supersymmetry:

2Very analogously, chiral rings can be defined in 4d N = 2 SCFTs as well. In fact, the method of
computing the structure constants of these rings using the sphere partition function was initially developed
for the the 4d case in [75] (the topic of chapter 3 of this thesis). One important novelty in the 2d case
compared to its 4d analogue is that the 2d chiral/anti-chiral rings are not freely generated, unlike their 4d
analogues.
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Chiral: [Q±,O] = 0 , (2.2a)

Anti-chiral: [Q±,O] = 0 , (2.2b)

Twisted chiral: [Q+,O] = [Q−,O] = 0 , (2.2c)

Twisted anti-chiral: [Q+,O] = [Q−,O] = 0 . (2.2d)

Note that we use the name BPS (anti-BPS ) to refer to both chiral and twisted chiral (anti-
chiral and twisted anti-chiral). The above definitions apply to local and nonlocal operators
alike but for this chapter we are only concerned with local operators. Charges of chiral
primaries under some of the generators of su(2|2) are constrained: for example, using the
Q-S anti-commutators from (B.5) it follows that the dimension and vector R-charge of a
chiral primary O are related, so are the dimension and the vector R-charge of an anti-chiral
primary O:

2∆(O) = JV (O) , 2∆(O) = −JV (O) . (2.3)

Such constraints lead to non-singular operator product expansion (OPE) between chiral
primaries [123]:

(O1O2)(x) := lim
y→x
O1(x)O2(y) =: O3(x) , (2.4)

where O3 is either zero or a chiral primary with dimension:

∆(O3) = ∆(O1) + ∆(O2) . (2.5)

With this product the set of all chiral primaries becomes a ring called the chiral ring, which
we will denote as Rc. The twisted chiral ring, denoted Rtc, is analogously defined as the
ring of twisted chiral primaries.

Theories with conformal fixed points

The definition of primary opearators (2.1) does not apply in a non-conformal theory since
the S-supersymmetries are not part of the symmetry in such case, so the BPS rings can
not be defined in such a theory as the ring generated by the primaries. There is however
an alternative definition of these rings which applies in this case. For that definition we
need the following two nilpotent supercharges:

QA := Q+ +Q− , QB := Q+ +Q− ,

Q2
A = 0 , Q2

B = 0 .
(2.6)
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Now the chiral (twisted chiral) ring can be defined as the QB-cohomology (QA-cohomology)
of operators:

Rc := H•QB , Rtc := H•QA , (2.7)

where the grading refers to the U(1)V R-charge for the chiral ring and the U(1)A R-charge
for the twisted chiral ring.3

To see that these cohomologies define the same ring as the ring of chiral/twisted chiral
primaries in a superconformal theory we need the following two observations:

1. Suppose O is a QB-closed operator:[
Q+ +Q−,O

]
= 0 . (2.8)

If O has spin4 α then rotating the above equation by an angle π/2 we get:[
−iQ+ + iQ−, e

iπα/2O
]

= 0 (2.9)

Together, (2.8) and (2.9) imply:[
Q+,O

]
=
[
Q−,O

]
= 0 . (2.10)

Thus we recover the chirality condition (2.2a). Similarly it can be shown that being
QA-closed is equivalent to being twisted chiral (2.2c).

2. Any chiral (twisted chiral) operator is QB-cohomologous (QA-cohomologous) to a
chiral (twisted chiral) primary [123]. Furthermore, a QA/B-exact operator is not a
primary, since a primary is defined as the operator in a superconformal multiplet
with the lowest Weyl weight, whereas an operator [QA/B,O] is in the same multiplet
as O while having a higher Weyl weight than O.

The cohomological definition of the BPS rings (2.7) is perfectly sensible in the absence of
conformal symmetry and coincides with the definition in terms of superconformal primaries
at a conformal fixed point.

3QA and QB have charge 1 under U(1)A and U(1)V respectively.
4By spin we are referring to the charge for the generator 2JL (where JL is the generator of rotation on

R2), note that Q± has charge ∓1 for this generator. (Details about the symmetry algebra are provided in
§B.1.)
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Extremal correlators

Let us first define extremal correlators in a Superconformal Field Theory (SCFT), and then
explain why we can compute them in a UV theory with Conformal Field Theory (CFT)
fixed point.

Given two BPS operators, O1 and O2 of conformal dimensions ∆1 and ∆2 respectively,
the field theory defines a Hermitian inner product:

〈O1,O2〉 := lim
x→∞
|x|∆1+∆2

〈
O1(0)O2(x)

〉
R2 = δ∆1,∆2 lim

x→∞
|x|2∆2

〈
O1(0)O2(x)

〉
R2 , (2.11)

where O2 is the anti-BPS primary operator conjugate to O2. The second equality follows
from U(1)R selection rule5 and the constraint (2.3) (and its analogue for the twisted case).
In order to shorten the notation of (2.11) we define:

O(∞) := lim
x→∞
|x|2∆(O)O(x) . (2.12)

The inner product (2.11) now becomes:

〈O1,O2〉 =
〈
O1(0)O2(∞)

〉
R2 . (2.13)

The correlation functions of this form, i.e., with a BPS operator at 0 and an anti-BPS
operator at ∞, are called extremal correlators on R2.

There’s a little more to the extremal correlators. Generally they are defined with an
arbitrary number of BPS primaries O1, · · · ,Om located at x1, · · · , xm respectively and one
anti-BPS primary at infinity: 〈

O1(x1) · · · Om(xm)O(∞)
〉
R2 , (2.14)

and this correlator is independent of the positions x1, · · · , xm. We can see this by translat-
ing any of the BPS operators and using (B.5a), for example, the infinitesimally translated
correlator

〈
[L−1,O1](x1) · · · Om(xm)O(∞)

〉
R2 is proportional to:

lim
y→∞
|y|2∆(O)

〈
[{Q+, Q+},O1](x1) · · · Om(xm)O(y)

〉
R2 . (2.15)

Supersymmetric Ward identity allows us to pull Q+ out of O1 and distribute it over the
rest of the operators, all the BPS operators are annihilated by Q+ and when it acts on

5U(1)R = U(1)V if the operators are chiral and U(1)R = U(1)A if the operators are twisted chiral.
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O, the correlator behaves as |y|−2∆(O)−1 and the limit makes the contribution zero. This
position independence of the extremal correlators allows us to bring all the chiral operators
to one point (say at the origin).

A similar argument shows that exact operators are zero inside extremal correlators
and therefore the extremal correlators really define an inner product in the cohomology.
Furthermore, the energy-momentum tensor couples to the linearized space-time metric via
a D-term action [31]. Variation of a correlation function with respect to the metric then
inserts an operator inside the correlator which is an integral over the entire superspace:

δgµν 〈· · ·〉R2 ∼
〈∫

d2θd2θ(· · · ) · · ·
〉

R2

(2.16)

Such an integrated operator can be written as an exact operator [100] which implies that as
long as 〈· · ·〉R2 is an extremal correlator such variations vanish. This in particular implies
that the extremal correlators are scale invariant, in other words, they are RG invariant
and can be computed in a UV theory even when we are interested in an infrared (IR) CFT
fixed point.

Basis, structure constants, norms and relations

In a finitely and freely generated ring6 R with a non-degenerate Hermitian inner product
〈−,−〉, we can choose a minimal set of generators {O1,O2, · · · ,ON} and define a metric
in their basis:

gij := 〈Oi,Oj〉 . (2.17)

The inverse metric gij is defined by imposing:

gijgjk = δi
k
, gijg

jk = δki . (2.18)

We define the ring structure by the structure constants in such a basis:

OiOj = C k
ij Ok ⇔ C k

ij = Cijlg
lk where, Cijl := 〈OiOj,Ol〉 (2.19)

Furthermore, we can choose the basis in such way that the structure constants become
trivial/diagonal in the following sense:7

C k
ij = δki+j . (2.20)

6The 2d BPS rings are finitely but not freely generated, we will discuss truncation by relations momen-
tarily.

7For two indices i and j referring to two operators Oi and Oj , we use the index i + j to refer to the
operator with dimension equal to the sum of the dimensions of Oi and Oj . For simplicity we are assuming
that there is only one such operator, having more does not make any qualitative difference.

26



Now all the nontrivial information about the ring structure is encoded in the norms of the
basis vectors:

‖Oi‖ :=
√
〈Oi,Oi〉 . (2.21)

The constraint (2.20) fixes the norms of all the basis vectors relative to each other. To fix
this arbitrariness in case of the BPS rings, we will fix the norm of the identity operator 1
to be 1:8

〈1,1〉 := 1 . (2.22)

Given a complete set of generators {O1, · · · ,ON}, a freely generated ring is simply the
polynomial ring:

R = C[O1, · · · ,ON ] . (2.23)

The only new addition to this discussion in the case of a ring with relations, is that there
will be some polynomials pa ∈ C[O1, · · · ,ON ] for a ∈ {1, · · · ,M} which will be identified
with zero, i.e., we must impose the relations pa = 0 for all a ∈ {1, · · · ,M} and the ring
will be given by:

R = C[O1, · · · ,ON ]/〈p1, · · · , pM〉 . (2.24)

where 〈p1, · · · , pM〉 is the ideal generated by the polynomials {p1, · · · , pM}.

In the context of the 2d N = (2, 2) BPS rings, the zero polynomials will appear as
BPS operators with zero norm.9 We will always choose a basis of the BPS operators with
trivialized (as in (2.20)) structure constants and the identity operator will be defined to
have unit norm, therefore, according to the above discussion all the information of the BPS
rings will be encoded in the extremal correlators

〈
Oi(0)Oi(∞)

〉
R2 , in particular, finding

the relations will amount to finding BPS operators O such that
〈
O(0)O(∞)

〉
R2 = 0.

2.3 Computing the Ring Structures

As explained in §2.2, a BPS ring structure is essentially defined by flat space extremal
correlators 〈O1(0)O2(∞)〉R2 of BPS primaries once a suitable basis has been chosen. A
straightforward application of Weyl Ward identity tells us that if we put our theory on a

8Note that ‖1‖2 =
〈
1(x)1(∞)

〉
R2 = Z where Z is the partition function, therefore, in terms of Feynman

diagrams, defining this norm to be one is equivalent to subtracting bubble diagrams from all our correlation
functions.

9The identification of zero normed operators with identically zero operators is provided by the Reeh-
Schlieder theorem [147].
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sphere of radius r, then the extremal correlators on the sphere are related to the flat space
correlators in the following way:〈

O1(0)O2(∞)
〉
R2 = (2r)2∆(O2)

〈
O1(N)O2(S)

〉
S2 , (2.25)

where N and S on the sphere are images of 0 and ∞ on R2 respectively, under an inverse
stereographic projection. The S2 correlators that appear in the above formula can be
readily computed using localization. The main complication then, in using the above
formula to compute the BPS ring structure constants, is that the identification between
the flat space operators and the operators on the sphere is nontrivial due to operator
mixing on the sphere. Mixing among operators of different dimensions can take place on
the sphere because the sphere does not preserve scaling symmetry. Our task is therefore
to “unmix” the operators on the sphere and then use the Weyl Ward identity (2.25) to
compute the BPS ring structures. In this section we elaborate on this general procedure.
We note that this process is essentially identical to the process of computing chiral rings
in 4d N = 2 SCFTs [75].

2.3.1 Extremal Correlators on S2

Choice of a localizing supercharge

The first step in extracting the flat space extremal correlators from the sphere partition
function is to compute their analogue on the sphere, such as 〈Oi(N)Oj(S)〉S2 ,10 using
supersymmetric localization. We begin in this section by defining our choice of localizing
supercharges for the two-sphere backgrounds described in §B.2 and some of their important
properties:

• Background-A: In accordance with the notation of §B.2, we define our choice of
localizing supercharge by imposing the following chirality constraints on the constant
Dirac spinors that parametrize the solutions of the Killing spinor equations (see
(B.11)):

χ0− = 0 , χ̃0+ = 0 . (2.26)

With these constraints the Killing spinors become chiral at the poles:

P−ε
A
χ0,χ̃0

(N) = P+ε̃
A
χ0,χ̃0

(N) = 0 , P+ε
A
χ0,χ̃0

(S) = P−ε̃
A
χ0,χ̃0

(S) = 0 , (2.27)

10North (N) and South (S) poles refer to two antipodal points on the sphere. We will take them to be
x = 0 and x =∞ (in stereographic coordinate) for convenience.
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where P± := 1
2
(1 + γ3) are the chiral projectors. We will refer to this choice of

supercharge as QA.

We recall that under a generic supercharge corresponding to a generic solution ε and
ε̃ of the Killing spinor equations, a twisted chiral primary Y and a twisted anti-chiral
primary Y , which are the bottom components of a twisted chiral mulitplet (Y, ζ,G)
and a twisted anti-chiral multiplet (Y , ζ,G) respectively, transform as (B.17):

δε,ε̃Y (x) = ε̃+(x)ζ−(x)− ε−(x)ζ+(x) , δε,ε̃Y (x) = ε̃−(x)ζ+(x)− ε+(x)ζ−(x) .
(2.28)

Therefore, for the supercharge QA corresponding to (2.27) we get:

δQAY (N) = δQAY (S) = 0 . (2.29)

This implies that insertions of twisted chiral and twisted anti-chiral primaries at the
North and the South pole respectively are invariant under QA and the corresponding
correlators can be computed by supersymmetric localization using QA.11

• Background-B: We impose the same chirality constraints (2.26) on the constant
spinors but this leads to different constraints for the Killing spinors of this background
(B.16):

ε̃Bχ0,χ̃0
(N) = 0 , εBχ0,χ̃0

(S) = 0 . (2.30)

We will refer to this choice of supercharge by QB.

We recall the transformations of a chiral primary φ and an anti-chiral primary φ,
which are the bottom components of a chiral multiplet (φ, ψ, F ) and an anti-chiral
multiplet (φ, ψ, F ) respectively, under a generic supercharge [61]:

δε,ε̃φ(x) = ε̃(x)ψ(x) , δε,ε̃φ(x) = ε(x)ψ(x) . (2.31)

Therefore, according to (2.30) we have:

δQBφ(N) = δQBφ(S) = 0 , (2.32)

implying that we can compute correlators with insertions of chiral and anti-chiral
primaries at the North and South pole respectively by supersymmetric localization
using the supercharge QB.12

11Such a supercharge was used in [61] to compute the su(2|1)A-invariant partition function using local-
ization.

12Such a supercharge was used in [60] to compute su(2|1)B-invariant partition function and correlation
functions of 2d gauge theories.

29



A Ward identity and extremal correlators

A particularly convenient way to insert BPS (anti-BPS) primary operators at the North
(South) pole of the sphere is to use a supersymmetric Ward identity. Before stating the
identity, let us define for an arbitrary twisted chiral multiplet Ψ = (Y, ζ,G) with a scalar
bottom component:

G(Ψ) := G+
∆(Y )− 1

r
Y , (2.33)

where ∆(Y ) denotes the Weyl weight (equal to the dimension for a scalar operator) of Y .
Now we state the Ward identity:

Suppose we are given the following data in backgrounad-A: A supercharge
QA ∈ su(2|1)A, a QA-invariant operator13 O and a twisted chiral multiplet
Ψ = (Y, ζ,G) of arbitrary Weyl weight. Then, inside a correlator with O, the
su(2|1)A-invariant twisted F-term action for Ψ localizes to the insertion of the
bottom component Y at the fixed point of QA on the sphere (which we call the
North pole N), in other words:〈(∫

S2

d2x
√
g(x)G(Ψ)

)
O
〉
S2

= −4πr 〈Y (N)O〉 , (2.34)

where g is the determinant of the covariant metric on the sphere. Similarly,
the conjugate twisted F-term action of the twisted anti-chiral multiplet Ψ =
(Y , ζ,G) localizes to the insertion of the bottom component at the South pole
(fixed point of QA):〈(∫

S2

d2x
√
g(x)G(Ψ)

)
O
〉
S2

= 4πr
〈
Y (S)O

〉
. (2.35)

There is a parallel Ward identity for background-B the statement of which simply replaces
QA with QB and “twisted chiral” with “chiral”. In [76] this was proven for twisted chiral
multiplets in background-A and chiral multiplets in background-B of Weyl weight 1.14

The proof for arbitrary Weyl weight requires only a trivial modification, we reproduce the
modified proof in §B.3 for reference.

13The operator O does not have to be twisted chiral, it suffices that 〈O〉S2 be an extremal correlator.
14Which results in the twisted F-term or the F-term action being a marginal deformation.
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The twisted F-terms or the F-terms can be used to deform the theory15 in background-
A or B respectively by introducing coupling constants of appropriate Weyl weights. For
example, in background-A we can have the following deformation:16

SA[X]→ S ′A[X; τ, τ ] := SA[X] +

[
− iτ

4π

∫
S2

d2x
√
g(x)G(Ψ) + c.c.

]
, (2.36)

where the bottom component Y of the twisted chiral multiplet Ψ = (Y, ζ,G) and the
coupling constant τ have Weyl weights that satisfy:

∆(Y ) +∆(τ) = 1 , (2.37)

and X is merely a place-holder for all the dynamical fields. Using the Ward identities
(2.34) and (2.35) we can now relate τ -derivatives of the partition function to extremal
correlators:

1

ZA
S2

1

rm+n
∂mτ ∂

n
τ Z

A
S2(τ, τ)

∣∣
τ,τ=0

=
〈
(iY )m(N)(iY )n(S)

〉
S2 , (2.38)

where ZA
S2(τ, τ) is the deformed partition function:17

ZA
S2(τ, τ) =

∫
DX e−S

′
A[X;τ,τ ] . (2.39)

We encode the equation (2.38) in the following correspondence between derivative with
respect to a coupling, and the operator it inserts at a pole after localization:

1

r
∂τ ←→ iY (N) ,

1

r
∂τ ←→ iY (S) . (2.40)

We can compute extremal correlators of chiral operators on the sphere similarly in
background-B.

Remark: If the undeformed action already contains a superpotential or twisted super-
potential coupling then we can compute extremal correlators of the corresponding chiral

15We are assuming these deformation terms to be scalar so as not to break (Euclidean) Lorentz invariance.
From now on we assume that all the non-trivial operators in the BPS rings are scalars, this will be true in
the examples that we will consider.

16The normalization of the deformation term was chosen simply to cancel some numerical factors in
(2.34) and (2.35).

17This deformed partition function does not need to be convergent, it is just a generating function
with indeterminate variables τ and τ for correlators with integrated operators, which, due to the Ward
identities, become correlators with unintegrated twisted chiral and twisted anti-chiral primaries. We need
only to be able to compute these correlation functions using localization.
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or twisted chiral fields without any further deformation, just by taking derivatives with
respect to the corresponding coupling constant. An example of this, which will be studied
in detail later, is an abelian gauge theory in background-A where the action contains a
complexified Fayet-Iliopoulos (FI) coupling t

∫
S2 d2x

√
g(x)GΣ where GΣ is the top com-

ponent of a twisted chiral multiplet Σ of Weyl weight18 1 known as the field strength
multiplet. The bottom component of this multiplet is a complex scalar σ and we can
therefore compute such extremal correlators as 〈σm(N)σn(S)〉S2 by evaluating derivatives
of the partition function with respect to the FI parameters t and t at arbitrary values of t
and t. We will do this in §2.4.1.

2.3.2 Chiral Ring Coefficients from Extremal Correlators on S2

Knowing the extremal correlators on S2, the next step is to extract from them the flat
space extremal correlators.

Operator mixing

As was pointed out in [75] for the case of 4d N = 2 SCFTs, when put on a sphere,
operators of different Weyl weights can mix due to the presence of scheme dependent Weyl
symmetry breaking counterterms. This is true in two dimensions as well. The important
difference between the two and four dimensional story is that, in four dimensions theN = 2
supergravity background multiplet that goes into the counterterms causing the operator
mixing had Weyl weight 2, whereas the N = (2, 2) supergravity background multiplet in
two dimensions responsible for operator mixing has Weyl weight 1. This leads to the fact
that in four dimensions two operators can mix on the sphere only if their Weyl weights
differ by an even integer, on the other hand in two dimensions two operators with Weyl
weights differing by any integer amount can mix. More specifically, on S2, a chiral (twisted
chiral) operator Ow of Weyl weight w can mix with all chiral (twisted chiral) operators of

18By the Weyl weight of a BPS multiplet we refer to the Weyl weight of its bottom component. In
particular, by a twisted chiral multiplet Ψ = (Y, ζ,G) of Weyl weight w we mean that Y has Weyl weight
w. The Weyl weights of ζ and G are

(
w + 1

2

)
and (w + 1) respectively.
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lower weights:19

Ow → Ow +
∑
n∈N

0<n≤w

αn(τmar)r
−nOw−n , (2.41)

where the mixing coefficients αn are arbitrary holomorphic functions of all the exactly
marginal couplings, schematically written as τmar. We now construct the N = (2, 2)
supergravity counterterms giving rise to such mixings.

There are two minimal versions of N = (2, 2) supergravity that differ in the choice of
U(1) R-symmetry that is gauged [5, 31, 74, 93, 94, 102]. After choosing appropriate back-
ground values for the fields, these two versions reduce to background-A and background-B
on S2 preserving the vector and the axial R-symmetry respectively. Let us focus on the
supergravity leading to background-A.

We discuss the mixing of the bottom component of a twisted chiral multiplet Ôw =
(Ow, ζOw , GOw) of Weyl weight w. In order to compute correlation functions of the operator
Ow using the Ward identity (2.34) we need to deform the action, as in (2.36), by intro-
ducing a coupling. The manifestly supersymmetric way of doing this is to use superspace
integrals to write the deformation terms. To that end we need to promote the coupling,
which we denote as τ1−w (making the Weyl weight explicit), to the bottom component of a
background twisted chiral multiplet τ̂1−w = (τ1−w, ζτ1−w , Gτ1−w). For this background mul-
tiplet to be supersymmetric, the su(2|1)A variations of the component fields must vanish.
Consulting (B.17) we find the following background values for the fermion and the top
component (given the constant value of the bottom component):

ζτ1−w = 0 , Gτ1−w =
w − 1

r
τ1−w . (2.42)

19In the sum we are restricting to lower weights to avoid repeated counting, since mixing with an operator
of higher weight is already considered as a mixing of the higher weighted operator with the lower weighted
operator. Also, we are assuming that there is at most one operator with a given Weyl weight for simplicity.
If there are more than one operators of a given Weyl weight then we only need to choose an ordering of
these operators and all the computations follow without any qualitative modification.
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Now the superspace integral representation of the deformation (2.36) becomes:20

− iτ1−w

4π
Iw,0 := − i

4π

∫
S2

d2x

∫
d2θ̃ Etc τ̂1−wÔw = −iτ1−w

4π

∫
S2

d2x
√
g(x)G(Ôw) . (2.43)

where, as in the definition (2.33), G(Ψ) = G + w−1
r
Y . The supergravity counterterm that

leads to the mixing of the operator Ow with another twisted chiral operator Ow−n of lower
weight (n ∈ N>0) necessarily involves the background coupling multiplet τ̂1−w, the twisted

chiral multiplet Ôw−n := (Ow−n, ζOw−n , GOw−n) of weight (w−n) and a background twisted

chiral multiplet M̂ = (M, ζR,−R/2) whose bottom component is a complex scalar of Weyl
weight 1 coming from the supergravity multiplet and whose top component is proportional
to the scalar curvature of the space-time (this multiplet appeared in [112] in the context
of 2d supergravity and in [76] in constructing supergravity counterterms responsible for
Kähler ambiguity in two-sphere partition function). On the sphere background, the scalar
curvature is R = 2/r2. As we did for the background coupling multiplet τ̂1−w, we now find

the supersymmetric background values for the component fields of M̂ (this time given the
constant value of the top component):

M =
1

r
, ζR = 0 , −R

2
= − 1

r2
. (2.44)

Apart from the multiplets just mentioned, we have the freedom to include an arbitrary
holomorphic function α of the exactly marginal couplings τmar, including this we can now
write down the mixing counterterm:

− iτ1−w

4π
Iw,n := − i

4π

∫
S2

d2x

∫
d2θ̃ Etc τ̂1−wα(τ̂mar)M̂

nÔw−n , (2.45)

where we have promoted the exactly marginal couplings to background twisted chiral
multiplets of Weyl weight 0. Just to avoid cluttering the notation too much, let us introduce
a symbol for the product multiplet:

Ôαw,n := α(τ̂mar)M̂
nÔw−n . (2.46)

20The equality in (2.43) can be proven as follows. For a twisted chiral multiplet Ψ1 = (Y, ζ,G)
of Weyl weight w = 1, the relevant superspace integral just picks up the top component, i.e.,∫
S2 d2x

∫
d2θ̃ Etc Ψ1 =

∫
S2 d2x

√
g(x)G. That this is supersymmetric can also be checked by noting that

the su(2|1)A variation of G, namely δG = ∇m(−iε̃−γmζ− + iε+γ
mζ+) (see (B.17)), is a total deriva-

tive. Now assume Ψw = (Y, ζ,G) is a twisted chiral multiplet of some arbitrary Weyl weight w and
τ̂1−w =

(
τ, 0, w−1

r τ
)

is a supersymmetric background twisted chiral multiplet of Weyl weight (1 − w).

Then τ̂1−wΨw =
(
τY, τζ, τ

(
G+ w−1

r Y
))

[31] is a twisted chiral multiplet of Weyl weight 1 and therefore∫
S2 d2x

∫
d2θ̃ Etc τ̂1−wΨw =

∫
S2 d2x

√
g(x)

(
τ
(
G+ w−1

r Y
))

, and it is supersymmetric.
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Since this is a multiplet of Weyl weight w, we can use (2.43) to evaluate the superspace
integral in (2.45) which leads to:

Iw,n =

∫
S2

d2x
√
g(x)G(Ôαw,n) . (2.47)

The Ward identity (2.34) tells us that, inside an extremal correlator, the integrated operator

Iw,n will localize to the insertion of the bottom component of Ôαw,n at the North pole. The
bottom component of a product multiplet is simply the product of the bottom components
of the individual multiplets in the product [31]. Therefore, in presence of the counterterm
(2.47), the correspondence between coupling derivatives and operators (2.40) is modified:

1

r
∂τ1−w ←→ iOw(N) + iα(τmar)r

−nOw−n(N) . (2.48)

In general, we must consider all possible counterterms, τ1−wIw,n for all n ∈ N with 0 <
n ≤ w and this leads to the general form of the mixing (2.41).

“Un-mixing” the operators

Let us define Ow to be the mixed operator in (2.41):

Ow := Ow +
∑
n∈N

0<n≤w

αn(τmar)r
−nOw−n ⇒ 1

r
∂τ1−w ←→ iOw . (2.49)

Note that the mixing coefficients are scheme dependent,21 so these operators are not physi-
cal. But due to the mixing counterterms, such as (2.47), taking derivatives of the deformed
sphere partition function with respect to the coupling constants computes extremal corre-
lation functions of these operators:

1

ZA
S2

1

r2
∂τ1−w∂τ1−w′

ZA
S2

∣∣
τ1−w=τ1−w′=0

=
〈
iOw(N)iOw′(S)

〉
S2 . (2.50)

We are of course interested in the flat space correlation functions of the physical operators,
such as

〈
Ow(0)Ow′(∞)

〉
R2 . Once we properly identify the flat space operators with their

counterparts on the sphere, we can relate the correlators on R2 with the correlatros on S2

by the Weyl Ward identity (2.25).

21A choice of scheme is a choice of the holomorphic functions αn of the the exactly marginal couplings.
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On flat space, operators of different Weyl weights are orthogonal, this changes on the
sphere.22 It is a standard procedure to compute the inner products in an orthogonal basis
(the Ow’s) given the inner products in the mixed basis (the Ow’s), called the Gram-Schmidt
procedure. In order to state the result, it is convenient to define some matrices. Given
a complete set of operators {Ow} indexed by their Weyl weights, define the following
matrices:

M(w) :=

 M0,0 · · · M0,w
...

. . .
...

Mw,0 · · · Mw,w

 , Mi,j :=
〈
iOi(N)iOj(S)

〉
S2 . (2.51)

Now, we can express the flat space correlators of interest as follows (for w ≥ w′):〈
iOw(0)iOw′(∞)

〉
R2 = δw,w′(2r)

2w′ detM(w)

detM(w−1)

. (2.52)

We will use this formula in examples to compute chiral and twisted chiral ring relations in
the following section.

2.4 Some Examples

In this section we illustrate the general points made so far by applying them to a couple of
well known N = (2, 2) theories, namely the Quintic GLSM and Landau-Ginzburg minimal
models.

2.4.1 Twisted Chiral Ring of the Quintic GLSM

This is a U(1) gauge theory with N = (2, 2) supersymmetry and the bosonic global sym-
metry is U(1)L ×U(1)V ×U(1)A, where U(1)L is the spacetime rotation and U(1)V ,U(1)A
are the vector and axial R-symmetries respectively. It is a theory of six chiral multiplets
Φi with i ∈ {1, · · · , 6} interacting via a superpotential:

W (Φ1, · · · ,Φ6) = Φ6P (Φ1, · · · ,Φ5) , (2.53)

22For example, if τ is an exactly marginal coupling then the partition function ZS2(τ, τ) depends on it
and has a nonzero derivative: 1

ZS2 (τ,τ)∂τZS2(τ, τ) = 〈Oτ 〉S2 . Here Oτ is the bottom component of a BPS

multiplet whose top component is an exactly marginal operator of Weyl weight 2. The bottom component
Oτ has Weyl weight 1 and the fact that it has a nonzero one-point function indicates that it has mixed
with the identity operator (of Weyl weight 0).
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where P is a homogeneous polynomial of degree five. We will denote the vector multiplet
by V and the associated twisted chiral “field strength” multiplet is defined as (in superfield
notation):

Σ := D+D−V , (2.54)

where D+ and D− are two of the four superspace derivatives that commute with the
supercharges. Σ has Weyl weight23 1 and its top component is D − iF12, where D is the
real scalar in V and F12 is the field strength of the gauge field in V . This field strength
multiplet defines the twisted superpotential action:24

− t

4π

∫
R2

d2x

∫
dθ+dθ

−
Σ− c.c. = − i

2π

∫
S2

d2x

(
ξD− θ

2π
F12

)
, (2.55)

where ξ and θ are the real FI parameter and the topological theta angle respectively:

t = iξ +
θ

2π
. (2.56)

Charges of the fields of this theory under the gauge and the global symmetries are as
follows (we have also included the charges of the superspace coordinates for quick refer-
ence):25

Φ1, · · · ,Φ5 Φ6 Σ θ± θ
±

U(1)L 0 0 0 ± ±
U(1)gauge 1 −5 0 0 0

U(1)V 2qV 2− 10qV 0 + −
U(1)A qA −5qA 2 ± ∓

(2.57)

This model gets its name from the fact that for the value of the real FI parameter in a
certain range (namely ξ � 0), the IR CFT fixed point of this theory is described by a
non-linear sigma model with target [154]:

Σ = Φ6 = 0 ,

{(
5∑
i=1

|Φi|2 = =t

)}/
U(1)gague ∩ {P (Φ1, · · · ,Φ5) = 0} , (2.58)

23The kinetic term for the vector multiplet is normalized as 1
e2

∫
d2xd2θd2θΣΣ where e is the gauge

coupling of dimension 1.
24Our normalization of this term has an extra factor of 1

2π compared to that of [15,61].
25The charges of the fields follow from the following arguments. The chiral fields appear in the action

in the term
∫

d2x
∫

dθ+dθ−Φ6P (Φ1, · · · ,Φ5) and the twisted chiral field appears in
∫

d2x
∫

dθ+θ
−

Σ and
these terms have to be neutral. The bosonic measure is neutral under all the symmetry groups. Noting
that θ and dθ have opposite charges we see that the fermionic measure dθ+dθ− has charge (0, 0,−2, 0)

under U(1)L ×U(1)gauge ×U(1)V ×U(1)A, and dθ+dθ
−

has charge (0, 0, 0,−2) under the same group.

37



which is known as the Quintic Calabi-Yau (CY) threefold.26

Twisted chiral ring

The twisted chiral ring Rtc of this theory is generated by the complex scalar operator
σ, which is the bottom compotent of the field strength multiplet Σ.27 An orthogonal
spanning set for Rtc is given by {σm}∞m=0. This set also satisfies the triviality constraint
for the structure constants (2.20) since we have:

σmσn = σm+n . (2.59)

Therefore, after fixing the norm of σ0 = 1 to be 1, all we have left to compute to determine
Rtc are the following extremal correlators:

‖σm‖2 = 〈σm(0)σm(∞)〉R2 ∀m ≥ 0 . (2.60)

In the following we will compute these correlation functions and we will find that Rtc is
not freely generated, we will find the null operators as well.

From sphere to flat space

Extremal correlators of twisted chiral operators on the sphere can be computed by putting
the theory in background-A (see §2.3.1). The partition function of a generic N = (2, 2)
gauge theory in background-A has been computed explicitly in [15,61] and this result has
been applied to the specific case of the Quintic GLSM (among several others) in [107].28

In the computation of the partition function in background-A, we can ignore the su-
perpotential and only the twisted superpotential is important. The twisted superpotential
action (2.55) of the theory gets modified in the sphere background by the appearance of
nontrivial integration measures:

− 1

4π

∫
S2

d2x

∫
d2θ̃ Etc t̂Σ− c.c. = − t

4π

∫
S2

d2x
√
g(x)G(Σ)− c.c. , (2.61)

26At the conformal fixed point the target space metric (i.e., the metric that appears in the kinetic term
of the non-linear sigma model) is necessarily the Ricci flat metric.

27It should be noted that the non linear sigma model description in the IR Calabi-Yau phase of this
GLSM contains more twisted chiral operators which are fermionic. These are the operators that survive
the A-twist [153]. However, the description of these operators in the GLSM is unclear. We thank Cyril
Closset for pointing out this subtlety.

28These localization results were further extended to extremal correlators on S2 and used to find evidence
for Seiberg-like dualities for (2, 2) gauge theories [15,16,61].
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This being the only twisted superpotential of the theory, the su(2|1)A preserving partition
function ZA

S2(t, t) for the Quintic is a function only of the complexified FI parameter. Due
to the presence of mixing counterterms (see (2.47)), derivatives of the partition function
ZA
S2(t, t) compute correlation functions of mixed operators. We denote these mixed opera-

tors as sm := σm + O(r−1) (c.f. (2.49)) so that t and t-derivatives of ZA
S2 can be equated

readily with correlation functions of sm and sn (c.f. (2.50)):

1

rm+nZA
S2

∂mt ∂
n
t Z

A
S2(t, t) = 〈sm(N)sn(S)〉S2 . (2.62)

According to (2.52), in terms of these correlators, the extremal correlators on the flat space
are given by:

〈σm(0)σn(∞)〉R2 = δm,n
(2r)2n

ZA
S2

deti,j∈{0,··· ,m} ∂
i
t∂
j

t
ZA
S2

deti,j∈{0,··· ,m−1} ∂it∂
j

t
ZA
S2

. (2.63)

From now on we will set the radius of the sphere to 1 for simplicity.

The partition function ZA
S2(t, t) does not depend on the axial R-charges, so instead of

writing qV all the time we will simply write q. For ξ � 0, the partition function can be
written as [107]:

ZA
S2(t, t) = (ww)q

∮
dε

2πi
(ww)−ε

π4 sin(5πε)

sin5(πε)

∣∣∣∣∣
∞∑
k=0

(−w)k
Γ(1 + 5k − 5ε)

Γ(1 + k − ε)5

∣∣∣∣∣
2

, (2.64)

where we have defined:29

w := eit . (2.65)

In (2.64), the contour surrounds only the pole at ε = 0 and in computing the absolute value
of the infinite sum complex conjugation does not act on ε. The infinite sum appearing in
(2.64) converges at ε = 0 for large enough ξ, as can be seen from ratio test:

λk := (−w)k
Γ(1 + 5k)

Γ(1 + k)5
,

λk+1

λk

k→∞−−−→ −e
iθ
2π
−ξ55 ξ→∞−−−→ 0 . (2.66)

Let us denote the series at ε = 0 as:

X(t) :=
∞∑
k=0

(−eit)kΓ(1 + 5k)

Γ(1 + k)5
. (2.67)

29There is again a factor of 2π offset with respect to the convention of [107], where they use e2πit. This
offset compensates for our choice of normalization in (2.55).
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The residue of the integrand at the pole is:

Res
ε=0

(ww)−ε

2πi

π4 sin(5πε)

sin5(πε)

∣∣∣∣∣
∞∑
k=0

(−w)k
Γ(1 + 5k − 5ε)

Γ(1 + k − ε)5

∣∣∣∣∣
2

= − 10

3π
iξ(−5π2+ξ2)X(t)X(t) . (2.68)

Therefore the partition function as a function of the FI parameter looks like:

ZA
S2(t, t) =

20

3
e−2qξξ(−5π2 + ξ2)X(t)X(t) . (2.69)

One interpretation of this partition function is that it computes the Kähler potential of
the moduli space of CFTs that can be reached from the GLSM under RG flow by varying
the FI parameter [76]:

ZA
S2(t, t) = e−K(t,t) . (2.70)

From this perspective, the partition function is defined only upto a Kähler transformation
of the Kähler potential:

K(t, t)→ K(t, t) + F (t) + F (t) , (2.71)

where F and F are arbitrary holomorphic and anti-holomorphic functions (in particular,
they can be taken as F = logX, F = logX), and a Kähler transformation can be inter-
preted as a change of the UV regularization scheme [76], which does not affect any physical
observables.30 We now go to a simpler scheme by doing a Kähler transformation:

ZA
S2(t, t)→ Z̃A

S2(t, t) :=
ZA
S2(t, t)

X(t)X(t)
=

20

3
e−2qξξ(−5π2 + ξ2) . (2.72)

Using ∂t = − i
2
∂ξ + π∂θ and ∂t = i

2
∂ξ + π∂θ we can now compute flat space correlation

functions using Z̃A
S2 in (2.63). Next we find the ring relations.

Relations and the ring

The correlation functions (2.62) are the matrix components from (2.51):

Mm,n = 〈sm(N)sn(S)〉S2 =
∂mt ∂

n
t
Z̃A
S2

Z̃A
S2

= (−1)m(i/2)m+n
∂m+n
ξ Z̃A

S2

Z̃A
S2

, (2.73)

30A careful proof of the fact that a Kähler transformation does not affect the extremal correlators on
flat space, in the analogous situation of 4d N = 2 SCFTs, can be found in the appendix of [75], the proof
applies without any significant change to the 2d case as well.
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where we could replace all the t and t-derivatives with ξ-derivatives because the partition
function does not depend on the theta angle. Now the flat space correlators are given by:

〈σm(0)σn(∞)〉R2 = δm,n22n detM(m)

detM(m−1)

. (2.74)

We can get a recursion relation for m > 3 and n ≥ 0:

Mm,n =
20

3Z̃A
S2

(−1)m(i/2)m+n

3∑
k=0

(−2q)m+n−ke−2qξ∂kξ (−5π2ξ + ξ3) = iqMm−1,n . (2.75)

This shows that for m > 3 the last (m− 2) rows of the matrix M(m) are multiples of each
other and therefore M(m) has (m − 3) zero eigenvalues, i.e., detM(m) ∼ 0m−3. For the
correlation functions the implication is:

0m−3

0m−4
∼ 〈σm(0)σm(∞)〉R2 = 0 , ∀m > 3 . (2.76)

Since the above correlation function is equivalent to an operator norm in a unitary theory,
the operators σm for m > 3 themselves are identically zero. Thus we have fully determined
the ring:

Twisted chiral ring for the Quintic, Rtc = C[σ]/〈σ4〉 . (2.77)

This result was previously obtained in [32, 130] using the topologically A-twisted version
of the GLSM which doesn’t require the supersymmetric localization and the counterterm
analysis that we did. The upshot of going through the more elaborate method that we
have presented is that this allows us to see the change in the ring structure as we move
along the CFT moduli space; which we now discuss.

Toda and tt∗-geometry of the bundle of BPS primaries

The nontrivial coupling dependence of the extremal correlators31 can be given a geometric
interpretation [46], where we view the twisted chiral primaries as forming a holomorphic
bundle with nontrivial connection over the conformal manifold parametrized by the exactly
marginal coupling constants, the FI parameter in the present case. More generally, this
picture applies to both chiral and twisted chiral rings in CFTs with arbitrary dimensional

31the coupling dependence of the correlators (2.74) derives from the coupling dependence of the partition
function (2.72) via (2.73).
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conformal manifolds. The CFT dynamics imposes the following curvature constraints
(a.k.a. the tt∗ equations) on the geometry of these bundles:32

[∇µ,∇ν ]
j
i = [∇µ,∇ν ]

j
i = 0 , (2.78a)

[∇µ,∇ν ]
j
i = −[Cµ, Cν ]

j
i + gµνδ

j
i

(
1 +

R

4c

)
. (2.78b)

Let us explain the notations: µ, ν refer to tangential directions on the conformal manifold33

and i, j refer to all BPS primaries. A bar over an index corresponds to an anti-BPS primary.
In the second line, R is the U(1)R charge of the bundle and c is the central charge of
the CFT. The matrices Cµ, or more generally Ci, with indices expressed as C k

ij are the
structure constants of our ring as defined in (2.19), and finally, the metric gµν , or more
generally gij, is defined in terms of extremal correlators as in (2.17).

With a suitable choice for the basis of the BPS primaries over the conformal manifold,
the tt∗ equation (2.78b) can be put into a more explicit form:34

∂

∂τ ν

(
gkj

∂

∂τµ
gik

)
= [Cµ, Cν ]

j
i − gµνδ

j
i . (2.79)

Specializing to the case of a one dimensional conformal manifold, such as the Quintic
(where the coordinate parametrizing the conformal manifold is t), and choosing basis of
operators with diagonal structure constants and orthgonal metric gij = giδij,

35 the above
equation further simplifies to:

∂t∂t log gk =
gk+1

gk
− gk
gk−1

− g1 , k ∈ {1, · · · , dimR− 1}, gdimR = 0 , (2.80)

where R is the BPS ring of interest, for example, dimRtc = 4 for the twisted chiral ring
of the Quintic. The above equation is known as the Toda equation in the literature, which
is usually written (after defining qk := log gk + ZS2) in the more familiar form:

∂t∂tqk = eqk+1−qk − eqk−qk−1 , k ∈ {1, · · · , dimR− 1}, qdimR = −∞ , (2.81)

32The commutator of structure constants in (2.78b) looks like: [Cµ, Cν ]ji = C k
µi gklC

l

νm gmj −

gikC
k

νl g
lmC j

µm .
33i.e., they are indices for the exactly marginal couplings.
34For details see [9] where the underlying theory was four dimensional but this portion of the computation

applies to 2d as well.
35Such as the basis {σi}3i=0 for the twisted chiral ring of the Quintic.
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The condition qdimR = −∞ signifies that the above equations are the equations of motion
of a finite non-periodic Toda chain consisting of dimR sites located at q0, · · · , qdimR−1

where qk and is bound to qk+1 by the potential eqk+1−qk .

The tt∗ equations (2.78) are known to be integrable. In particular, the Toda equation
(2.81) can be solved explicitly given g1 which we can compute using localization. Note
that the Toda equation for the norms of the operators in an orthogonal basis with diagonal
structure constant, in a one parameter theory, can be derived simply from the expression
of these norms as a ratio of determinants (such as (2.74)). An explicit derivation was
presented in [75] in the context of 4d N = 2 SCFT with SU(2) gauge group, the proof
remains unchanged for one parameter 2d BPS rings.

2.4.2 Chiral Rings of the LG Minimal Models

These are theories of chiral multiplets Xi, and the theories are characterized by a super-
potential W (Xi) and a Kähler potential K(Xi, X i). If the superpotential has a quasi-
homogenous singularity

W (λmiXi) = λ2W (Xi) (2.82)

the Landau-Ginzburg model flows in the IR to a (2, 2) SCFT. The universality class of
the SCFT is insensitive to the choice of Kähler potential, which henceforth we take to be
canonical: K(X,X) = 1

2
δijXiXj.

The equations of motion of the Landau-Ginzburg model gives:

∂iW ∝ D
2
X i . (2.83)

Thus the bottom component of ∂iW is not only QB-closed, but also QB-exact. Therefore
the chiral operator (the bottom component of) ∂iW is represented by 0 in correlation func-
tions with other chiral operators (∂iW is not represented by 0 in an arbitrary correlator).
Therefore the chiral ring of the SCFT is the quotient

Rc = C[X1, . . . , Xn]/〈dW 〉 . (2.84)

The chiral ring is spanned by polynomials in the fields subject to the relations dW = 0.
Unorbifolded Landau-Ginzburg models have a trivial twisted chiral ring. We will recover
the result (2.84) from the sphere partition function in what follows.

The (2, 2) unitary minimal models admit a Landau-Ginzburg description. The mini-
mal model modular invariants pertain to an ADE classification. This is mirrored by the
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following ADE family of Landau-Ginzburg models:

Ak : W = Xk+1

Dk : W = Xk−1 +XY 2

E6 : W = X3 + Y 4

E7 : W = X3 +XY 3

E8 : W = X3 + Y 5

(2.85)

The associated minimal models have the following properties:

• Central charge c = 3 − 6
h
, where h is the Coxeter number of the corresponding Lie

group G.

• Dimension of the chiral ring, dim(Rc
G) = rank(G).

• The chiral operators Oi ∈ Rc
G have dimension ∆i = di−2

h
, where di is the order of the

i-th Casimir of G.

Since di ≤ h, all operators in the minimal models are relevant.

Extremal correlators of chiral and anti-chiral operators in a Landau-Ginzburg model
on S2 with a superpotential W (Xi) are given by [83] (we set the radius of the sphere to 1)

〈
Oi(N)Oj(S)

〉
S2 =

∫ ∏
i

dXkdXkOi(X)Oj(X)e−4πi(W (X)+W (X)) . (2.86)

Recall from the general discussion of §2.3.1 that these are precisely the correlators that
can be computed in background-B by localizing the path integral with respect to the
supercharge QB.

Ak+1 minimal model

We start first by analyzing the Landau-Ginzburg representation of the Ak+1 minimal model.
The su(2|1)B-invariant S2 partition function for this Landau-Ginzburg minimal model is
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given by

Z
Ak+1

S2 =

∫
C

dXdX e−4πiW (X)−4πiW (X)

=

∫
R2

dx dy e−4πi(x+iy)k+2−4πi(x−iy)k+2

=

∫ ∞
0

dr

∫ 2π

0

dθ re−8πirk+2 cos((k+2)θ) =
π

k + 2
(4π)−

2
k+2

Γ
(

1
k+2

)
Γ
(
k+1
k+2

) . (2.87)

We would like to observe that this matches exactly with the su(2|1)A-invariant S2 partition
function of the same Landau-Ginzburg model. In this theory, the U(1)V -charge of X is
fixed by the superpotential to be 2

k+2
, and it follows from the formulae in [15,61] that the

su(2|1)A-invariant partition function is indeed (2.87). The physical interpretation of this
equality of partition functions is mirror symmetry for the k-th minimal model MMk, which
exchanges

MMk ⇐⇒
MMk

Zk
. (2.88)

The ring relation Xk+1 = 0 can be derived from the S2 partition function. Indeed,
using the identity ∫

dXdX
d

dX
e−4πi(Xk+2+X

k+2
+t̄ X) = 0 , (2.89)

from which it follows that 〈
Xk+1(N)X

`
(S)
〉

= 0 ∀` , (2.90)

implying that
Xk+1 = 0 . (2.91)

This can be obtained from a differential equation. First we deform the supertotential by
adding a source for the generator of the ring W = Xk+2 + tX. The two-sphere partition
function then obeys

∂k+1
t Z

Ak+1

S2 |t=0 = 0 ∂k+1
t̄ Z

Ak+1

S2 |t̄=0 = 0 . (2.92)
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The two-point functions of chiral operators are given by (we do the computation in
§B.4 using Riemann bilinear identity):

MAk+1
m,n :=

〈
Xm(N)X

n
(S)
〉
S2

=
1

ZS2

∫
C

dXdX XmX
n
e−4πiW (X)−4πiW (X) (2.93a)

=

{
π(−i)q

(k+2)ZS2
(4π)−

2(1+m)
k+2

−q Γ(m+1
k+2

+q)
Γ( k−m+1

k+2 )
if q := n−m

k+2
∈ Z

0 otherwise
(2.93b)

We see that any two operators with integer dimensions can mix.

Recall that, Γ(−s) has poles at s ∈ N≥0. Therefore (2.93b) implies:

MAk+1
m,n = 0 for

k −m+ 1

k + 2
= −s ⇒ m = k + 1 + s(k + 2) where s ∈ N≥0 . (2.94)

This in particular shows that, for q = s = 0, M
Ak+1

k+1,k+1 = 0. Now, let us denote by M
Ak+1

(n)

the matrix M
Ak+1

i,j with i, j = 0, · · · , n. Then M
Ak+1

(k+1) is a diagonal matrix with exactly

one zero row (the (k + 2)’th row). This implies, using the Gram-Schmidt procedure (c.f.
(2.52)),36 〈

Xk+1(0)X
k+1

(∞)
〉
R2

= 4
k+1
k+2

detM
Ak+1

(k+1)

detM
Ak+1

(k)

= 0 (2.95)

By the Reeh-Schlieder theorem, we arrive at the ring relation

Xk+1 = 0 (2.96)

This implies that the chiral ring is given by:

Rc
Ak+1

= C[X]/〈Xk+1〉 . (2.97)

It can also be explicitly checked that
〈
Xm(0)X

m
(∞)

〉
R2 = 0 for all m > k implying

that
Xm = 0 m > k . (2.98)

36In this particular case it is actually unnecessary to use the Gram-Schmidt procedure, because the
operator Xk+1 has dimension k+1

k+2 < 1 and the operators 1, X, · · · , Xk+1 do not mix with each other
(mixing can occur only at integer gaps in dimensions).
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This can be shown as follows. (2.93b) allows to write a recursion relation between M
Ak+1
m,n

and M
Ak+1

m+k+2,n. Note that if we shift m → m + k + 2 then m − n + q(k + 2) = 0 can be
maintained by simultaneously shifting q → q − 1. Therefore,

M
Ak+1

m+k+2,n =
π(−i)q−1

(k + 2)ZS2

(4π)−
2(1+m)
k+2

−q+1
Γ
(
m+1
k+2

+ q
)

Γ
(
k−m+1
k+2

− 1
)

⇒
M

Ak+1

m+k+2,n

M
Ak+1
m,n

= − 4πi

(
m+ 1

k + 2

)
(2.99)

This implies that for any m > k + 1 the (m + 1)’th row of M
Ak+1

(m) is a multiple of the

(m− k− 1)’th row of M
Ak+1

(m) . Therefore, for m > k, the number of 0 eigenvalues of M
Ak+1

(m)

is m− k (note that M
Ak+1

(k+1) already has one zero eigenvalue). Hence:

〈
Xm(0)X

m
(∞)

〉
R2 = 2

2m
k+2

detM
Ak+1

(m)

detM
Ak+1

(m−1)

∼ 0m−k

0m−k−1
= 0 , for m > k . (2.100)

Finally, we can make contact with previously known results about the OPE structure
of these chiral primaries obtained from CFT methods [27, 131]. First, let us normalize

the chiral ring operators by defining X̂n := Xn/‖Xn‖ where ‖Xn‖2 =
〈
Xm(0)X

m
(∞)

〉
R2 .

Then using the relation XmXn = Xm+n we can compute the OPE coefficients for the
normalized operators:

X̂mX̂n = FAk+1
m,n X̂m+n , FAk+1

m,n =
‖Xm+n‖
‖Xm‖‖Xn‖

. (2.101)

These OPE coefficients depend only on the dimensions of the operators and the central
charge c [27, 131]. For the ADE models, the central charge c = 3 − 6

h
where h is the

Coxeter number of the corresponding Lie group. For example, the Coxeter number of Ak+1

is (k + 2), so the central charge of the Ak+1 model is:

cAk+1
=

3k

k + 2
. (2.102)

The central charge dependence of the OPE coefficients is implicit in (2.101) and can be
seen through the dependence of the correlation functions on k (see (2.93b)). These OPE
coefficients can be computed using (2.101), (2.93b), and (2.52), the result is:

FAk+1
m,n =

√√√√Γ
(

1
k+2

)
Γ
(
k−m+1
k+2

)
Γ
(
k−n+1
k+2

)
Γ
(
m+n+1
k+2

)
Γ
(
k+1
k+2

)
Γ
(
m+1
k+2

)
Γ
(
n+1
k+2

)
Γ
(
k−m−n+1

k+2

) . (2.103)
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These coefficients can also be read off from the results of [27,131] and they match with our
expression.

Dk+1 minimal model

The same analysis can be carried out for the Dk+1 minimal model in a completely analogous
way. The superpotential for the LG theory describing this minimal model is:

W (X, Y ) = Xk +XY 2 , (2.104)

with two generators X and Y corresponding to conformal primaries of dimensions 1
k

and
k−1
2k

respectively. With the canonical kinetic Lagrangian
∫

d4θ(XX + Y Y ) the equations
of motion tells us:

D
2
X ∝ kXk−1 + Y 2 , D

2
Y ∝ XY . (2.105)

Therefore, the chiral ring can be described as:

Rc
Dk+1

= C[X, Y ]/〈kXk−1 + Y 2, XY 〉 . (2.106)

We will derive these ring relations by computing correlation functions of the generators
and showing that the operators kXk−1 +Y 2 and XY are zero in the chiral ring. Note that
according to the relations, a minimal (dimension-wise) basis for the ring is given by:

1, X, · · · , Xk−1, and Y . (2.107)

Here Xk−1 has the highest dimension, k−1
k
< 1. Based on our supergravity analysis we can

expect that operators can only mix at integer gaps in dimensions,37 in fact we will establish
this by explicit computation. This implies that there is no mixing among the operators in
the minimal basis, simplifying our computations.

When put on a two-sphere, a general extremal correlation function in this LG model is
given by:

MDk+1
m,n,p,q :=

〈
Xm(N)Y n(N)X

p
(S)Y

q
(S)
〉
S2

=
1

Z
Dk+1

S2

∫
C2

dXdXdY dY XmY nX
p
Y
q
e
−4πi

(
Xk+XY 2+X

k
+XY

2
)

(2.108)

37As we found explicitly for the Ak+1 model following (2.93b).
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We can carry out the Y, Y integrals first:∫
C

dY dY Y nY
q
e−4πi(XY 2+XY

2
) = X−

n+1
2 X

− q+1
2

∫
C

dY dY Y nY
q
e−4πi(Y 2+Y

2
) ,

= X−
n+1

2 X
− q+1

2 ZA1

S2 M
A1
n,q . [c.f. (2.93a)] (2.109)

Then we can perform the integrals over X,X, which leads to an expression for the D-type
extremal correlators in terms of the A-type extremal correlators:

MDk+1
m,n,p,q =

ZA1

S2 Z
Ak−1

S2

Z
Dk+1

S2

MA1
n,qM

Ak−1

m−n+1
2
,p− q+1

2

. (2.110)

Let us define some symbols:

m̃ := m− n+ 1

2
, p̃ := p− q + 1

2
, υ :=

q − n
2

, χ :=
p̃− m̃
k

, (2.111)

then we can write (2.110) more explicitly as (c.f. (2.93b)):

MDk+1
m,n,p,q =

 1

Z
Dk+1

S2

(−i)υ+χ

32k
(4π)1−n−υ−χ− 2

k
(m̃+1) Γ( 1+n

2
+υ)Γ( 1+m̃

k
+χ)

Γ( 1−n
2 )Γ( k−m̃−1

k )
υ, χ ∈ Z

0 otherwise
(2.112)

Noting the difference in dimension:

∆(XmY n)−∆(XpY q) = υ + χ , (2.113)

we observe that mixing between different operators can occur on the sphere only if their
dimensions differ by an integer amount. Since all the operators in the minimal basis
(2.107) have dimensions less than 1, there is no mixing among them. Therefore, their
correlation functions on the sphere of unit radius, namely the ones given by (2.112), are
simply proportional to the corresponding flat space correlators.

In order to check the ring relations, we define the following two operators:

O1 := kXk−1 + Y 2, and O2 := XY . (2.114)

Using the explicit form of the correlation functions (2.112) we can easily check that
these two operators have zero norms:

‖O1‖2 =
〈
O1(0)O1(∞)

〉
R2 = 4

k−1
k

〈
O1(N)O1(S)

〉
S2

= 4
k−1
k

(
k2M

Dk+1

k−1,0,k−1,0 + kM
Dk+1

k−1,0,0,2 + kM
Dk+1

0,2,k−1,0 +M
Dk+1

0,2,0,2

)
= 0 ,

(2.115)
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and similarly,

‖O2‖2 =
〈
O2(0)O2(∞)

〉
R2 = 2

k+1
k

〈
O2(N)O2(S)

〉
S2 = 2

k+1
k M

Dk+1

1,1,1,1 = 0 . (2.116)

By the Reeh-Schlieder theorem, we arrive at the ring relations:

kXk−1 + Y 2 = XY = 0 , (2.117)

giving us the chiral ring (2.106).

Once we normalize the chiral primaries, X̂mY n := XmY n

‖XmY n‖ , we can compute the OPE
coefficients for the product of two arbitrary chiral primaries in terms of the extremal
correlators (as we did for the A series in (2.101) and (2.103)).

Let us make a few remarks about the computation. We define the OPE coefficients of
the normalized operators by the following equation:

X̂mY nX̂pY q = FDk2

(m,n),(p,q)
̂Xm+nY p+q , FDk2

(m,n),(p,q) =
‖Xm+nY p+q‖
‖XmY n‖ ‖XpY q‖

. (2.118)

As we mentioned after (2.101), these coefficients depend only the dimensions of the oper-
ators and the central charge, in particular, they should be computable without making a
choice a modular invariant. Therefore we should expect the OPE coefficients defined in
(2.101) and the ones in (2.118) to be the same:

FAk+1
m,n = FDk′+1

(p,q),(r,s) , (2.119)

whenever the central charges of the two theories and the dimensions of the involved oper-
ators coincide, i.e.:38

cAk+1
= cDk′+1

⇒ k′ =
k + 2

2
, (2.120a)

∆Ak+1
(Xm) = ∆Dk′+1

(XpY q) ⇒ m =
1

2
(4p+ kq) , (2.120b)

∆Ak+1
(Xn) = ∆Dk′+1

(XrY s) , ⇒ n =
1

2
(4r + ks) . (2.120c)

Explicit computation shows that the equality (2.119) indeed holds given that the above
conditions are satisfied.

38The Coxeter numbers of Ak+1 and Dk+1 are (k + 2) and 2k respectively. Two ADE models have the
same central charge as long as the corresponding Lie groups have the same Coxeter number.
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Exceptional minimal models

Our discussion so far for the A and the D-series of minimal models readily extends to
the E6, E7 and E8 models. Like the D-series, the chiral rings of these models have two
generators. The E6 and the E8 minimal model superpotentials, namelyX3+Y 4 andX3+Y 5

(2.85), are decoupled sums of two polynomials in these two generators and therefore the
chiral rings of these two models are simply Cartesian products of two A-type chiral rings:

Rc
E6

= Rc
A2
×Rc

A3
, Rc

E8
= Rc

A2
×Rc

A4
. (2.121)

The E7 model involves nontrivial coupling between the two generators analogous to the
D-series. Recall that the E7 superpotential is X3 +XY 3 and therefore the chiral ring is:

Rc
E7

= C[X, Y ]/〈3X2 + Y 3, XY 2〉 . (2.122)

There are two chiral primaries X and Y of dimensions 1
3

and 2
9

respectively. A basis for the
chiral ring is given by {1, Y,X, Y 2, XY, Y 3, X2Y } in increasing order of dimension. The
highest dimensional chiral primary X2Y has dimension 8

9
< 1 and therefore there is no

mixing among these basis operators when we put the corresponding LG theory on a sphere.
Thus once again we have proportionality between extremal correlators on a sphere of unit
radius and extremal correlators on R2. Just as we did in (2.110), we can write down the
extremal correlators in this model in terms of A-series extremal correlators:

ME7
m,n,p,q :=

〈
Xm(N)Y n(N)X

p
(S)Y

q
(S)
〉
S2 =

ZA2

S2 Z
A2

S2

ZE7

S2

MA2
n,qM

A2

m−n+1
3
,p− q+1

3

. (2.123)

Using the explicit form of the A-type extremal correlators (2.93b), we can verify that in
the E7 model the operators O1 := 3X2 + Y 3, O2 := XY 2 have zero norms:

‖O1‖2 = 2
4
3

(
9ME7

2,0,2,0 + 3ME7
2,0,0,3 + 3ME7

0,3,2,0 +ME7
0,3,0,3

)
= 0 ,

‖O2‖2 = 2
14
9 ME7

1,2,1,2 = 0 .
(2.124)

This establishes the ring relations in (2.122) by identifying O1 and O2 with the null oper-
ator.

2.5 Epilogue

In this chapter we have approached the computation of 2d BPS ring structure constants
from the conceptually straightforward way of computing the relevant correlation functions.
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The main tool at our disposal was supersymmetric localization allowing exact computation
of these correlation functions on the sphere. The main obstacle in using these results to
compute the ring structure is the presence of conformal anomalies on the sphere leading to
operator mixing. We have explored the roots of this mixing in the supergravitational de-
scriptions of the sphere, and we have outlined a way of computing the flat space correlators
from the sphere partition function in the presence of such mixing. We have demonstrated
our method in some familiar theories of interest and reproduced known results about the
structure constants that were previously obtained via CFT methods and we have also
verified all the ring relations. This provides a simple elementary perspective on the coho-
mological algebras of 2d N = (2, 2) theories.
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Chapter 3

Chiral Rings in 4 Dimensions

3.1 Introduction and Conclusions

The correlation functions of local operators are amongst the most well-studied observables
in Quantum Field Theory (QFT). In Conformal Field Theories (CFTs), the two- and
three-point functions of the local operators in the theory completely determine all the
n-point functions.

In this chapter we find a formula that computes exactly the correlation functions1〈
OI1(x1)OI2(x2)...OIn(xn)OJ̄(y)

〉
R4 (3.1)

of any number of chiral primary operators OIi and one anti-chiral primary operator OJ̄ in
four-dimensional N = 2 superconformal field theories (SCFTs). Such correlation functions
are henceforth referred to as extremal correlators. We determine these correlators as func-
tions of the exactly marginal couplings of the SCFT, which span the so-called conformal
manifold of the SCFT.2 Our results apply to any SCFT with exactly marginal couplings
that admit a Lagrangian description somewhere on the conformal manifold.3 Near a weakly
coupled point on the conformal manifold we find that the correlators (3.1) are given by an
infinite series of perturbative corrections dressed by an infinite sequence of nonperturbative
instanton corrections. Special cases of (3.1) are the two- and three-point functions, which

1Chiral primary operators sit in short representations of the four dimensional N = 2 superconformal
algebra. See section 3.1.2.

2See section 3.1.1 for more details.
3The structure we find also applies to SCFTs that are inherently non-Lagrangian.
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we refer to as the “chiral ring data” of the SCFT. As we will review below, once the chiral
ring data is known, all the extremal correlators can be reconstructed.

Roughly speaking, our strategy is to express the flat space (R4) correlators given in
(3.1) in terms of the four-sphere (S4) partition function of a suitable deformation of the
SCFT4

Zdeformed[S4] =⇒
〈
OI1(x1)OI2(x2) . . .OIn(xn)OJ̄(y)

〉
R4 . (3.2)

This partition function can be in turn evaluated exactly by supersymmetric localization, ex-
panding upon Pestun’s computation of the undeformed N = 2 partition function [140]. As
was the case with the undeformed sphere partition function studied by Pestun, Zdeformed[S4]
is also expressed as integral over the norm of the deformed partition function in the Ω-
background [134] (see section 3.2.3).

An important subtlety in the relation (3.2) between Zdeformed[S4] and the extremal
correlators on R4 is due to conformal anomalies, which cause operator mixing on S4. Di-
agonalizing the operator mixing matrix on S4 à la Gram-Schmidt leads to a representation
of the extremal correlators on R4 in terms of determinants of derivatives of the deformed
sphere partition function Zdeformed[S4]. This induces the action of a system of integrable
differential equations on the extremal correlators of N = 2 SCFTs.

As an illustrative example, we can consider SU(2) SQCD with 4 fundamental hyper-
multiplets, which contains precisely one chiral primary operator of dimension 2n for every
integer n ≥ 1. This case is special in that one does not have to consider any deformations
of the S4 partition function in order to calculate extremal correlators. The two-point func-
tions of the dimension 2n chiral primary operators On can be expressed succinctly as the
ratio of determinants〈

On(0)Om(∞)
〉
R4 =

16nδnm
Z[S4]

det(k,l)=0,...,n

(
∂kτ ∂

l
τZ[S4]

)
det(k,l)=0,...,n−1

(
∂kτ ∂

l
τZ[S4]

) , (3.3)

where τ is the complexified coupling constant of the theory. This formula neatly encodes
all the two-point functions of chiral primary operators in terms of the sphere partition
function, which can be computed exactly by supersymmetric localization.

The partition function Zdeformed[S4], and therefore the extremal correlators, can be
explicitly calculated to all orders in perturbation theory. The instanton corrections to

4Our essential ideas and techniques can be also applied to (2, 2) theories in d = 2. However, we do
not pursue this direction here and concentrate on N = 2 theories in d = 4. In fact, technically the case
of d = 2 is simpler since no new instanton contributions need to be computed in the Coulomb branch
representation [15,61].
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Zdeformed[S4] can be computed in some theories using results already available in the litera-
ture, while for other theories it requires first writing down the instanton partition function
of the deformed SCFT in the Ω-background, which is an interesting open problem (see
section 3.2.3).

Our identification, summarized by the schematic equation (3.2), provides a broad ex-
tension of the formula derived in [76,81,82] relating the undeformed S4 partition function
of the SCFT to the Kähler potential K on the conformal manifold5

Z[S4] = r−4ae
1
12
K(τ i,τ̄ ī) , (3.4)

where τ i, τ̄ ī are the exactly marginal couplings of the SCFT, a is the Euler conformal
anomaly and r the radius of S4. The two-point functions of the dimension-two chiral
primary operators, denoted by Oi, are determined in terms of the S4 partition function of
the SCFT through 〈

Oi(0)Oī(∞)
〉
R4 = 16

∂

∂τ i
∂

∂τ̄ ī
lnZ[S4] . (3.5)

Our results extend this formula to arbitrary chiral primary operators OI . See, for example,
equation (3.3).

As mentioned above, the chiral ring data obtained from the deformed partition function
Zdeformed[S4] obeys a system of differential equations with respect to the exactly marginal
couplings τ i, τ̄ ī. For SCFTs with one exactly marginal coupling and a one-dimensional
Coulomb branch, namely for N = 2 SU(2) SQCD with four fundamental hypermultiplets
and N = 4 SU(2) super-Yang-Mills, we show that the equations obeyed by the chiral
ring data obtained from Zdeformed[S4] are those of a semi-infinite Toda chain, which are
integrable.

The fact that the chiral ring data of these theories obeys the semi-infinite Toda chain
system was exhibited in [7–9] starting from the the tt∗ equations of the four-dimensional
SCFT [139]. In Appendix D.1 we show that the tt∗ equations of any four-dimensional
N = 2 SCFT are integrable and governed by a Hitchin system, in parallel with the tt∗

equations of two-dimensional (2, 2) QFTs [28]. In Appendix D.4 we show that the chiral
ring data of SU(N) SQCD with 2N fundamental hypermultiplets computed through our
correspondence (3.2) indeed obeys the corresponding tt∗ equations. For the special case of
N = 4 super-Yang-Mills with an arbitrary gauge group G 6= SU(2), the chiral ring can be
organized in terms of decoupled semi-infinite Toda chains. However, this is not the case in
SU(N) SQCD with 2N fundamental hypermultiplets.

5Extending the earlier result in two-dimensional N = (2, 2) SCFTs [76,82,83,107].
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The tt∗ equations themselves are not sufficient to determine the chiral ring data of the
SCFT since these equations have several solutions. Rather, the chiral ring data is found
through the partition function of the deformed SCFT on S4 via (3.2). One can view (3.2)
as a particular solution to the tt∗ equations. This allows us to obtain new results in
four-dimensional N = 2 SCFTs.

The computation of the correlation function of local operators (3.1) in a four-dimensional
QFT contributes to the recent progress in the exact determination of certain observables
in supersymmetric QFTs. Particularly striking are those observables that depend non-
holomorphically on the coupling constants of the theory. These include the computation
of Wilson loops [140], ’t Hooft loops [88], domain walls [62, 101] and cusp anomalous di-
mensions at small angles [66] in four dimensional N = 2 QFTs. For some previous work
on the partition function of SCFTs on spheres consult [15,60,61,98,106,109,140].

The extremal correlators (3.1) should transform under the action of dualities. Indeed,
a chiral ring operator is expected to transform as a modular form under S-duality, with
the modular weight determined by the dimension of the operator (c.f. [87, 96]). It would
be interesting to study in detail the action of duality on these correlation functions. The
exact computation of the extremal correlators in this chapter can be generalized by adding
supersymmetric circular Wilson loops, ’t Hooft loops and/or domain walls supported on
S3 in R4, to yield, for example, the correlators6〈

OI(0)DOJ̄(∞)
〉
R4 , (3.6)

where D denotes a judiciously chosen supersymmetric spherical defect operator in the
SCFT.

The results of our work are complementary to those coming from the superconformal
bootstrap of 4d N = 2 theories [14, 121, 122, 124]. In particular, [14, 122] considered
four-point correlation functions of two chiral and two anti-chiral operators and obtained
bounds on various OPE coefficients including some that can be computed from extremal
correlators. Their results pertaining to dimension-2 chiral primaries can be interpreted
as bounds on the curvature of the conformal manifold. It would be interesting to extract
bounds on the curvature of the bundles of higher-dimension conformal operators in a similar
way.

The plan of the rest of the chapter is as follows. In the remaining of the present section
we provide some relevant preparatory material: a brief discussion of conformal manifolds

6One could also compute correlators in the presence of a surface operator by figuring out the interplay
between vortices and instantons with the higher dimensional chiral primary operators.
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in CFTs, a review of the chiral ring of four-dimensional N = 2 SCFTs, and a discussion
of some subtleties that arise in defining CFTs on S4. In section 3.2 we show that the
chiral ring data of a SCFT can be extracted from the partition function of a deformation
of the SCFT on S4, and we provide an algorithm to determine the Hermitian metric on
the chiral ring. In section 3 we study in detail SU(N) SQCD and N = 4 super-Yang-Mills
and discuss the relation with the four-dimensional tt∗ equations. We also consider some of
the asymptotic properties of the perturbative expansion in SU(N) SQCD. Many technical
results are collected in five appendices.

3.1.1 Conformal Manifolds

Let us review very briefly the notion of a conformal manifold. Given a CFT in d dimensions,
we suppose that there exists a (Hermitian) scalar marginal operator, O. If we deform
the theory by δS = λ

∫
ddxO with some coefficient λ, then in general there would be a

nontrivial beta function for λ computable in conformal perturbation theory

dλ

d lnµ
= β1λ

2 + β2λ
3 + · · · . (3.7)

However, under some circumstances, all the coefficients vanish βa = 0. We then say that
O is an exactly marginal operator; adding it to the action does not break the conformal
symmetry. The coupling λ in this case defines a line of CFTs along which the critical
exponents can vary continuously. More generally, imagine that there is a set of such
exactly marginal operators Oi. We can define the Zamolodchikov metric [159] in the space
of theories, that is, in the conformal manifold, via

〈Oi(x)Oj(0)〉{λi} =
gij(λ

i)

x2d
, (3.8)

where we evaluate the two-point function in the CFT with couplings λi. While the metric
itself is as usual ambiguous (by choosing appropriate contact terms for our operators, we
can choose the metric and the Christoffel symbols to be trivial at any given point [116]),
there are various invariants such as the Ricci scalar that can be constructed out of it, and
which are interesting observables of the CFT.

The vanishing of all the coefficients βa = 0 in (3.7) is common in c = 1 models in
d = 2 but otherwise requires new symmetries in addition to the conformal symmetry [26].
One such extra symmetry is current algebra symmetry, in which case the spectrum of
exactly marginal operators can be determined [67]. Another additional symmetry is su-
persymmetry. Indeed, exactly marginal operators are common in supersymmetric theories
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in 2 ≤ d ≤ 4. Let us consider first N = 1 theories in d = 4. In these theories the con-
formal manifold is a Kähler manifold with local complex coordinates τ i, τ̄ ī associated to
the descendants of N = 1 chiral primaries and anti-chiral primaries of dimension 3. Not
every marginal operator is necessarily exactly marginal, but there are nevertheless many
examples with exactly marginal operators [92, 120]. N = 2 theories, being a special case
of N = 1 theories, also admit a Kähler conformal manifold and the complex coordinates
τ i,τ̄ ī correspond to descendants of N = 2 chiral primaries of dimension 2 (see section
3.1.2).7 In an N = 2 theory every marginal operator is necessarily exactly marginal.8 One
can further argue that in N = 2 theories the Kähler class is trivial, in other words, there
are no two-cycles in the conformal manifold through which the Kähler two-form has flux.
This global restriction implies, for example, that the N = 2 conformal manifold cannot be
compact [82].

In four-dimensional N = 2 SCFTs the Kähler potential (and hence the Zamolodchikov
metric) on the conformal manifold can be determined exactly from the partition function
of the SCFT on S4 via (3.4).

In some theories, different points in the conformal manifold may be mapped into each
other by a duality transformation, possibly relating the theory in a regime where perturba-
tion theory is valid to a strongly coupled regime. This picture can give rise to an intricate
pattern of dualities, where the conformal manifold can acquire an elegant geometrical and
mathematical interpretation, as in [72].

The extremal correlators (3.1) provide novel QFT data that transforms naturally under
dualities. It would be interesting to study in detail the action of strong-weak coupling
dualities on these extremal correlation functions.

3.1.2 The Chiral Ring of N = 2 SCFTs

Local operators in R4 or equivalently states on the cylinder in an N = 2 SCFT fit into uni-
tary highest weight representations of the superconformal algebra su(2, 2|2). The algebra
su(2, 2|2) contains the following generators (in Euclidean signature):

• The conformal algebra so(5, 1)

7This is for exactly marginal operators that preserve N = 2 supersymmetry.
8Here is an argument along the lines of [92]. There is a scheme in which the superpotential is not

renormalized. Then if the beta function is nonzero it has to be reflected by a D-term in the action∫
d4xd8θ U with U some real primary operator. But since the τ i are classically dimensionless, ∆(U) = 0

in the original fixed point. Therefore, U has to be the unit operator and the deformation
∫
d4xd8θ U is

therefore trivial. This proves that βa = 0.
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• The Poincaré supercharges Qa
α, Q

a

α̇ and the conformal supercharges Saα, S
a

α̇ (a = 1, 2)

• The su(2)R × u(1)R R-symmetry

The (anti)-commutation relations can be found, for example, in [69].

A highest weight representation is labeled by the quantum numbers (∆; jl, jr; s;R) of its
highest weight state under dilatations, Lorentz, and su(2)R × u(1)R. This state is created
by a superconformal primary operator O, defined by [Saα,O(0)] = [S

a

α̇,O(0)] = 0.

An interesting class of superconformal primaries are the so-called chiral primary oper-
ators OI , annihilated by

[Q
a

α̇,OI ] = 0 , (3.9)

together with the conjugate anti-chiral primaries OĪ

[Qa
α,OĪ ] = 0 . (3.10)

Unitarity of the SCFT and the anticommutators of the N = 2 superconformal algebra

{Qa
α, S

b
β} = εαβε

ab

(
∆ +

R

2

)
+ εabMαβ + εαβJ

ab (3.11)

{Qa

α̇, S
b

β̇} = εα̇β̇ε
ab

(
∆− R

2

)
+ εabMα̇β̇ + εα̇β̇J

ab (3.12)

imply that9

OI : ∆ =
R

2
, jr = s = 0 , (3.13)

OĪ : ∆ = −R
2
, jl = s = 0 . (3.14)

Therefore, a chiral primary must transform as a scalar under su(2)R and its dimension is
completely determined by its u(1)R charge R. A priori, a chiral primary can carry Lorentz
spin (jl, 0). However, for SCFTs that admit a Lagrangian description somewhere in their
conformal manifold, one can easily show that all chiral primaries must be Lorentz scalars,
so that jr = jl = 0. Furthermore, no example of a chiral primary with spin has been found
to date in non-Lagrangian theories.10 See [20] for a further discussion about spinning chiral

9In our conventions [R,Qaα] = −Qaα .
10If spinning chiral primaries existed, they would be visible in the superconformal index [113]. We are

grateful to Leonardo Rastelli for a discussion.
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primaries. Henceforth, we only discuss chiral primary operators that are Lorentz scalars.
These chiral primary operators parametrize the Coulomb branch of vacua of the SCFT,
where su(2)R is preserved and u(1)R is spontaneously broken.

A chiral primary operator of dimension ∆ can be realized as the bottom component
of an N = 2 chiral superfield O of Weyl weight ∆ (we denote the superfield by the same
symbol as the bottom component). This superfield is annihilated by the four-dimensional
N = 2 right-handed superspace derivatives

D
a

α̇O = 0 . (3.15)

The spacetime integral of the top component of a chiral superfield with ∆ = 2, denoted
by C, defines an N = 2 superconformal invariant, constructed by integrating the chiral
superfield over the chiral half of the N = 2 superspace11∫

d4x d4θO =

∫
d4xC . (3.16)

Therefore, chiral primary operators with ∆ = 2, which we denote by Oi, give rise to
exactly marginal operators, Ci. Geometrically, the Ci can be viewed as tangent vectors to
the conformal manifold.

An important property of chiral primary operators in N = 2 SCFTs is that they cannot
disappear from the spectrum as we explore the conformal manifold. This is because the
short representation of the N = 2 superconformal algebra built out of a chiral primary
highest weight cannot combine (at a generic point) with any other multiplet of the N = 2
superconformal algebra to become a long multiplet (see [59] for the list of possible multiplet
recombinations).

While chiral primary operators cannot disappear, they can mix when transported
around the conformal manifold. Thus, chiral primary operators can be described as sec-
tions of a holomorphic vector bundle over the conformal manifold [139]. The connection
captures the operator mixing [116,145].12

The operator product expansion (OPE) of chiral primary operators is non-singular
since singular terms in the OPE would necessarily violate the unitarity bound ∆ ≥ R/2.

11See Appendix D.2 for some details about the component structure of a chiral multiplet.
12Operator mixing is nontrivial when the curvature of the connection is non-vanishing. In N = 4 super-

Yang-Mills and for the Higgs branch operators in N = 2 SCFTs the situation is rather simple due to the
fact that the corresponding curvatures vanish. This is however not the case for chiral primaries (which we
study in this chapter) in N = 2 SCFTs.
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Therefore, chiral primary operators furnish a ring, the chiral ring

OI(x)OJ(0) =
∑
K

CK
IJOK(0) + . . . , (3.17)

where . . . denote Q-exact terms. The multiplicative operation in this commutative ring
is the CFT OPE. It is believed that for N = 2 SCFTs the chiral ring is freely generated,
that is, there exists a finite-dimensional basis of chiral operators such that any element
of the chiral ring has a unique representation as a polynomial in the basis elements. For
Lagrangian N = 2 theories, it is easy to show that indeed the chiral ring is freely generated.
The number of generators of the chiral ring is the dimension of the Coulomb branch of the
SCFT.

For a freely generated ring, we can always “diagonalize” the product structure in the
ring such that

OI(x)OJ(0) = OIOJ(0) + ... , (3.18)

so that the matrix (CI)
K
J in (3.17) has a single nonzero entry for each row. While in this

basis the ring structure constants are trivialized, the two-point functions of chiral primaries
with anti-chiral primaries are nontrivial functions of the coupling constants

〈
OI(x)OJ̄(0)

〉
{τ i,τ̄ ī} =

GIJ̄(τ i, τ̄ ī)

|x|2∆I
δ∆I∆J̄

. (3.19)

The metric GIJ̄ defined by the two-point functions (3.19) is a Hermitian metric on the
vector bundle. In this basis, the chiral ring data is captured by the Hermitian metric GIJ̄ .

For completeness we would like to remind that N = 2 SCFTs contain another class
of half-supersymmetric superconformal primary operators, HI . These are annihilated by
supercharges of both chiralities13

[Q 1
α,HI ] = [Q

1

α̇,HI ] = 0 . (3.20)

Unitarity and the anticommutation relations (3.11)(3.12) imply that HI obey

∆ = 2s , jl = jr = R = 0 . (3.21)

Thus, these operators are Lorentz scalars, have vanishing u(1)R charge and the conformal
dimension is completely determined in terms of the su(2)R isospin s. Furthermore, they
are highest weight of su(2)R. The operators HI form a ring under the OPE, but unlike

13The two conditions are compatible since {Q 1
α, Q

1

α̇} = 0.
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the chiral ring, this one is not freely generated. The operators in this ring parametrize the
Higgs branch of vacua of the SCFT, where u(1)R is unbroken and su(2)R is spontaneously
broken.

The representations of the N = 2 superconformal algebra with highest weight HI

with s > 3/2 can recombine with other short multiplets of the N = 2 superconformal
algebra to become a long representation.14 The operators which do not recombine can be
described as sections of a vector bundle over the conformal manifold. The curvature of
this connection is vanishing. The ring data associated to these operators is independent of
the exactly marginal couplings [6, 13]. This is unlike the chiral ring data which we study
in this chapter, where there is a nontrivial dependence on the exactly marginal couplings.

In this chapter we relate the chiral ring data, GIJ̄ , of arbitrary N = 2 SCFTs admit-
ting a Lagrangian description somewhere in the conformal manifold to a certain partition
function of the SCFT on S4. This partition function, in turn, can be computed exactly by
supersymmetric localization. More precisely, one can determine the S4 partition function
to all orders in perturbation theory and in some, but not all, cases also the instanton
corrections. We discuss this in detail in chapter 3.

From the chiral ring of N = 2 SCFTs we can obtain all of the so-called extremal
correlators 〈

OI1(x1)OI2(x2)...OIn(xn)OJ̄(y)
〉

(3.22)

everywhere on the conformal manifold, where by the u(1)R selection rule

∆I1 + ∆I2 + ...+ ∆In = ∆J̄ . (3.23)

These correlators are, in general, non-holomorphic functions of τ i, τ̄ ī. Since there is only
one anti-chiral operator in (3.22), these correlators are, in some sense, the simplest non-
holomorphic local observables in the theory.

Let us now demonstrate that the extremal correlators (3.22) can be obtained from
the chiral ring data. Without loss of generality we can put the operator OJ̄ at infin-
ity by writing as usual OJ̄(∞) ≡ limy→∞ y

2∆JOJ̄(y). The next step is to observe that〈
OI1(x1)OI2(x2)...OIn(xn)OJ̄(∞)

〉
is independent of the coordinates xi. One proves this

by differentiating the correlator with respect to the position of the k-th chiral primary and
noting that

∂

∂xαα̇k
OIk(xk) ∝ εab{Q

a

α̇, [Q
b
α,OIk ]} . (3.24)

14We would like to thank Leonardo Rastelli for discussions about multiplet recombination.
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By the supersymmetry Ward identity, we can let Q
a

α̇ act on the rest of the operators. Using
that [Q

a

α̇,OI ] = 0 and that Q
a

α̇ acting on OJ̄(y) yields a correlator that decays as y−2∆J−1

completes the proof. Therefore, since
〈
OI1(x1)OI2(x2)...OIn(xn)OJ̄(∞)

〉
is independent of

the coordinates xi we can bring all the chiral primaries on top of each other and repeatedly
use the OPE (3.18) to reduce any extremal correlation function to a two-point function in
the chiral ring. Then, if we know GIJ̄(τ i, τ̄ ī) for all the I, J̄ , we are done.

In the special case of maximally supersymmetric Yang-Mills theory (N = 4), extremal
correlators have played an important role in the context of the AdS/CFT correspondence.
Indeed, it was conjectured in [56, 103, 119] that extremal correlators can be computed
exactly just from their tree-level diagrams, which allowed a comparison with supergravity.
See [6] for a field theory proof of these nonrenormalization theorems in N = 4 using Ward
identities.

We will see that in general N = 2 theories there are both perturbative and non-
perturbative corrections to extremal correlators.

3.1.3 Subtle Aspects of Conformal Field Theories on S4

In this subsection our discussion pertains to general CFTs (i.e. not necessarily supersym-
metric ones) in four dimensions. We can start from the CFT in flat space deformed by
sources λI(x) that couple to all the scalar primary operators OI(x)∫

d4x
∑
I

λI(x)OI(x) .

From the partition function
Z[R4](λI(x))

one can compute all the n-point functions of the scalar primary operators. For example,
it follows trivially that the one-point functions of all the operators other than the unit
operator vanish.

In order to define the theory on S4, one needs to specify various additional contact
terms. This is in spite of the fact that S4 is conformally flat. The simplest example of the
sort of subtleties that arise is the following: if there is an operator O0 with ∆0 ∈ 2N, then
we can add to the action the local counterterm15

α

∫
d4x
√
g λ0R

∆0/2 1 , (3.25)

15From now on R will denote the Ricci scalar of the background metric and should not be confused with
the u(1)R charge.
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with R being the Ricci scalar (more generally, it could be a combination of Riemann
tensors). Unlike separated-points correlation functions in flat space, this term depends
on the scheme. As a result, the one-point function of O0 on S4 is scheme dependent
〈O0〉 ∼ αr−∆0 , with r being the radius of the sphere. α = 0 is obviously a preferred
scheme, but it is not guaranteed that a given definition of the theory (say, by some RG
flow) corresponds to this scheme.

Importantly for our analysis later, we can interpret α
∫
d4x
√
g λ0R

∆0/2 1 as a scheme-
dependent operator mixing between O0 and the unit operator 1. This mixing can arise only
in curved space, such as S4. More generally, in curved space, the source for an operator
O∆0 can have scheme-dependent non-minimal couplings to lower-dimensional operators
due to nontrivial background fields, such as the curvature of space. This is only possible if
the operators’ dimensions differ by an even integer. These give rise to scheme-dependent
operator mixing with all the operators of lower dimension in jumps by two units

O∆0 → O∆0 + α1RO∆0−2 + α2R
2O∆0−4 + · · ·+ α∆0/2R

∆0/2 1 . (3.26)

If the CFT has exactly marginal couplings λi, then the coefficients αk can depend on
them. From the point of view of the CFT in R4, the terms in (3.26) induce contact terms
between O∆0 and the energy-momentum tensor. These contact terms can be chosen at will
according to the renormalization scheme. But once the theory is put on S4, these contact
terms translate to operator mixing.

The conclusion from this discussion is that even for primary operators in a CFT, the
transition from R4 to S4 is nontrivial. One has to handle the possible operator mixing that
is induced by various contact terms.

3.2 The Chiral Ring in 4d N = 2 SCFTs and S4

In this section we explain how the chiral ring and the extremal correlators (3.1) of an
N = 2 SCFT can be computed everywhere on the conformal manifold. Near a weakly
coupled point on the conformal manifold, the answer can be in principle expanded into a
perturbative series in the exactly marginal couplings τ i, τ̄ ī dressed by an infinite sequence
of instanton corrections. The key ingredient in obtaining the exact chiral ring data is the
relation we establish below with a partition function on S4. The S4 partition function is of
a suitable deformation of the N = 2 SCFT. For some theories, the partition function can
be explicitly evaluated by supersymmetric localization using formulae already available in
the literature.
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3.2.1 Placing the Deformed Theory on S4

We are interested in studying the Lagrangian of an N = 2 SCFT deformed by the top
component of a chiral multiplet corresponding to an arbitrary chiral primary operator O,
which we denote by C. This is done by adding to the Lagrangian in R4 the following term16

− 1

32π2
τO

∫
d4θ O + c.c. = − 1

32π2
τO C + c.c. (3.27)

If ∆(O) 6= 2, this deformation breaks the conformal symmetry as well as the u(1)R sym-
metry, while it preserves su(2)R and the N = 2 super-Poincaré symmetry. If ∆(O) = 2
then the full su(2, 2|2) superconformal symmetry is preserved.

We will show that the deformed SCFT can be placed on S4 while preserving osp(2|4),
the supersymmetry algebra of the most general massive N = 2 theory on S4. The so(2)R ⊂
osp(2|4) is the Cartan generator of su(2)R, and sp(4) is the isometry of S4.

We now explicitly construct the deformed SCFT on S4. Placing the theory on S4

requires deforming the flat space expression (3.27) by specific 1/r and 1/r2 terms, where r
is the radius of S4, as in [65]. The deformed Lagrangian on S4 can be derived by promoting
the coupling τO in (3.27) to a supersymmetric background chiral multiplet of Weyl weight
2−∆(O). The osp(2|4) invariant Lagrangian on S4 is constructed by deforming the SCFT
with the modified top component17 (see Appendix D.2)

C(x) ≡ C(x) + 2
(∆(O)− 2)(∆(O)− 3)

r2
O(x)− i(∆(O)− 2)

r
τ ij1 Bij(x) , (3.28)

where Bij is a middle component of the chiral multiplet O (see Appendix D.2 for details
of chiral multiplet components). Indeed, if we add to the action of the SCFT on S4 the
deformation − τO

32π2

∫
d4x
√
g C(x) + c.c., the osp(2|4) supersymmetry on S4 is preserved. In

superspace formalism, the sphere deformation (3.28) is given by the following F-term

− 1

32π2

∫
d4x

∫
d4θ E τOO , (3.29)

where E is the N = 2 chiral density.

Note that for an exactly marginal deformation, which descends from a chiral primary
with ∆(O) = 2, there are no 1/r and 1/r2 corrections in (3.28).

16We change the normalization of the deformation by a factor of 1/32 with respect to [76,81] in order to
make formulae below simpler. In this normalization, the coefficient multiplying K in equation (3.4) should
be 1/(212 × 3).

17Here τ ij1,2,3 are the charge conjugated Pauli matrices defined as τ ijp ≡ {iσ3,−12×2,−iσ1} =: τ∗pij .
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3.2.2 Chiral Primary Correlators from the Deformed Partition
Function

We denote the partition function on S4 of the deformed N = 2 SCFT by

Z[S4](τ i, τ̄ ī ; τA, τ̄ Ā) . (3.30)

τA are the couplings associated to chiral ring generators OA with ∆ 6= 2. We recall that
τ i are the couplings associated to the chiral primary operators with ∆ = 2, which are also
chiral ring generators, from which the exactly marginal operators are constructed.

We can now study derivatives of the S4 partition function with respect to the sources
τ I and τ̄ J̄ where {τ I} = {τ i} ∪ {τA}. We consider first the normalized second derivative

1

Z[S4](τ i, τ̄ ī)
∂τI∂τ̄ ĪZ[S4](τ i, τ̄ ī ; τA, τ̄ Ā)

∣∣∣∣
τA=τ̄ Ā=0

=

(
1

32π2

)2 ∫
d4x
√
g(x)

∫
d4y
√
g(y) 〈CI(x)C Ī(y)〉S4 .

(3.31)

This yields the integrated two-point function of the operator CI and C Ī in (3.28) on S4.
The integrated correlator is ultraviolet divergent, for example, due to the appearance of
the unit operator in the OPE of CI and C Ī , and must be regularized and renormalized.

If we were to ignore supersymmetry for a moment, and if the sum of the dimensions
of CI and C Ī were an even integer, the integrated correlation function (3.31) would be
ambiguous due to the local counterterm∫

d4x
√
g τ I τ̄ Ī F(τ i, τ̄ ī)R(∆(OI)+∆(OĪ))/2 , (3.32)

which shifts the result (3.31) by an arbitrary function F(τ i, τ̄ ī).

Interestingly, in N = 2 supersymmetric theories there is a unique way to regularize
the divergences as x → y in (3.31). In other words, there is a unique way to regularize
the singularity x → y in a way consistent with N = 2 supersymmetry. There are two
equivalent ways to understand this fact:

1. Using a supersymmetry Ward identity on S4 one can prove, extending the analysis
in §C, that (see Appendix D.3 for the extended proof):∫

d4x
√
g(x)

∫
d4y
√
g(y) 〈CI(x)C Ī(y)〉S4 = (32π2r2)2〈OI(N)OĪ(S)〉S4 . (3.33)
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Therefore, a supersymmetric Ward identity shows that the supersymmetrically renor-
malized integrated correlation function of CI and C Ī in (3.28) equals the two-point
function of the associated chiral primary OI at the North Pole of S4 and of the
anti-chiral primary OĪ at the South Pole.

2. In a supersymmetric regularization, the counterterms (3.32) should be N = 2 su-
pergravity invariants. This restricts the allowed counterterms. Since τ I and τ̄ Ī

are embedded in a background N = 2 chiral and anti-chiral multiplet respectively,
the counterterms that can lead to ambiguities in (3.31) must be D-term countert-
erms. Therefore, potential ambiguities can at best arise from superspace integrals
over all superspace (

∫
d4θ d4θ̄ ·). But all the D-terms vanish on supersymmetric back-

grounds [22].18 Therefore, the singularity x→ y in (3.31) is regularized in a universal
fashion.

In summary, the two-point function of two arbitrary operators in the chiral ring on S4

can be obtained from the partition function of the deformed SCFT on S4. The relation
between S4 and R4 correlation functions is not entirely straightforward, though. We will
discuss this soon, after we review some properties of these four-sphere partition functions.

3.2.3 The Deformed Partition Function on S4

In the previous section we showed that an N = 2 SCFT on S4 can be deformed with
operators that are descendants of operators in the chiral ring while preserving the osp(2|4)
symmetry of S4. By adapting Pestun’s localization computation of the partition function

18This result can be derived by expressing the D-term invariants as F-term invariants, constructed from
a chiral integral over half of the superspace (

∫
d4θ ·) using the chiral projector operator ∆̄ (see [118] for

details) ∫
d4x

∫
d4θ d4θ̄ E · =

∫
d4x

∫
d4θ E ∆̄ · , (3.34)

where E is the Berezinian and E the chiral density of N = 2 supergravity. Since all terms in ∆̄ for N = 2
supergravity are built out of the superspace derivatives D

a

α̇ and D a
α and supersymmetric configurations

are annihilated by D
a

α̇ and D a
α , it follows that all D-terms vanish on supersymmetric backgrounds. Since

S4 is a supersymmetric background of a certain off-shell N = 2 Poincaré supergravity theory [81] and the
coupling constants, (τ I , τ̄ Ī), are supersymmetric backgrounds of a chiral multiplet with the appropriate
Weyl weight, all D-term counterterms automatically vanish. This is to be contrasted with the chiral
projector in e.g. 4d N = 1 old minimal supergravity, where ∆̄ = D̄2 − 8R, and R is a chiral superfield
whose bottom component is the auxiliary field of old minimal supergravity. However, the situation in new
minimal N = 1 supergravity is rather similar to our present case [4]. We would like to thank Daniel Butter
for helpful discussions.
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of undeformed N = 2 theories [140], we can find the exact matrix integral representation
for the partition function of the deformed SCFT on S4.

We can localize the deformed partition function using the same supercharge Q in
osp(2|4) and Q-exact deformation term used in [140]. This supercharge obeys

Q2 = JL3 +R , (3.35)

where JL3 is the Cartan generator of the su(2)L ⊂ sp(4) selfdual rotations on S4 and R is
the Cartan generator of the su(2)R R-symmetry. This implies that the partition function
localizes to the two fixed points of JL3 on S4, that define the North and South Poles of S4.
Near the poles, the action of the deformed N = 2 SCFT on S4 approaches the action of
the deformed N = 2 SCFT in the Ω-background [134].

The deformed partition function on S4 therefore localizes to the following matrix inte-
gral19

Z[S4](τ i, τ̄ ī, τA, τ̄ Ā) =

∫
t

da∆(a)
∣∣ZΩ(a, τ i, τA)

∣∣2 . (3.36)

As above, τA refers to the couplings associated to the chiral ring generators with ∆ 6= 2.
In Lagrangian theories, the τA correspond to the higher Casimirs of the gauge group while
τ i to the quadratic Casimirs. The matrix integral is over the Cartan subalgebra t of
the gauge group G of the SCFT and ∆(a) is the associated Vandermonde determinant.
ZΩ(a, τ i, τA) is the partition function of the deformed SCFT in the Ω-background evaluated
with equivariant rotation parameters ε1 = ε2 = 1/r and real equivariant parameters a for
the action of G. From now on we set r = 1. ZΩ(a, τ i, τA) can, in turn, be computed by
supersymmetric localization, and takes the following form

ZΩ(a, τ i, τA) = ZΩ,cl(a, τ
i, τA) · ZΩ,loop(a) · ZΩ,inst(a, τ

i, τA) . (3.37)

The classical contribution for gauge group20 G = SU(N) is

ZΩ,cl(a, τ, τ
A) = exp

[
iπτ Tra2 + i

N∑
A=3

πA/2τATraA

]
. (3.38)

19Z[S4](τ i, τ̄ ī, τA, τ̄ Ā) should be thought of as a generating functional of correlators of chiral primary
operators. We do not need to worry about its convergence properties at finite τA.

20It is trivial to extend this to any simple Lie group G. Then A takes values in the set of orders of the
higher Casimirs of G. The formula easily extends when G is product of simple gauge group factors, each
giving rise to an exactly marginal deformation and a set of higher Casimir couplings.
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The one-loop determinant contribution is the same as in [140], as it arises from the Q-exact
deformation term

|ZΩ,loop(a)|2 =

∏
α>0H

2(iα · a)∏
w∈rH(iw · a)

, (3.39)

where H(x) = G(1 + x)G(1 − x) and G(x) is the Barnes double-gamma-function, which
obeys G(1 + x) = Γ(x)G(x), with Γ(z) being Euler’s gamma-function. The numerator is
the contribution of the vectormultiplet, governed by a product over the positive roots of
the Lie algebra of G.21 The denominator is the hypermultiplet contribution. The product
is over the weights of the representation r of G × GF , where GF is the flavor symmetry
acting on the hypermultiplet.22

ZΩ,inst(a, τ
i, τA) captures the contribution of point-like instantons to the path inte-

gral [134]. The fact that it depends on τA means that one cannot just evaluate the opera-
tor insertions on the saddle points of the undeformed SCFT. This is because the operators
are inserted precisely where point-like instantons and anti-instantons are localized, thus
changing the saddle points themselves. The instanton partition function is generally given
by a series expansion over the instanton charge. Roughly speaking, the contribution at a
given instanton charge is obtained by integrating a certain equivariant characteristic class
of a vector bundle over the corresponding moduli space of instantons. Important subtleties
arise because the moduli space of instantons has singularities, and the integrals must be
properly defined. There is a canonical way of defining the integrals over instanton moduli
space when the gauge group is U(N). In this case, singularities in the moduli space are
resolved by turning on noncommutativity (see e.g. [134]). In general, it is an open prob-
lem to compute ZΩ,inst(a, τ

i, τA) for SU(N) with N > 2. Solving this problem will have
some applications for our study of extremal correlators, but one can make some signifi-
cant mileage even before this problem is solved. In section 3 we study examples in which
ZΩ,inst(a, τ

i, τA) is known as well as some examples where it is not known, but one can still
study the perturbative series.

3.2.4 The Relation Between Correlators in R4 and S4

As we have explained above, using the deformed partition function on S4 (3.36) and the
Ward identity (3.33), we can calculate, in particular, the two-point functions of arbitrary
chiral primary operators on S4

〈OI(N)OJ̄(S)〉S4 . (3.40)

21The Vandermonde determinant in terms of the roots is ∆(a) =
∏
α>0(α · a)2.

22We set the equivariant parameters for GF , i.e. the mass parameters, to zero.
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In this section we explain how to obtain the two-point functions of chiral primary operators
in flat space (3.19) from the explicit results of the correlation functions on S4 .

As explained in subsection 1.3, in the dictionary between CFT sphere correlation func-
tions and flat space correlation functions one expects operator mixing (3.26), induced by
the background fields. In fact, in N = 2 SCFTs we already know that such mixing
must take place from the formula (3.4). This formula shows that the one-point function
〈Oi(N)〉S4 = 1

Z[S4]
∂
∂τ i
Z[S4], is non-vanishing. This is a special case of (3.26) since it can

be interpreted as mixing of Oi with the identity operator 1. This mixing with the identity
operator can be interpreted, in turn, as a conformal anomaly according to [82].

In complete generality, we should allow a chiral primary operator O∆ of dimension ∆
to mix with lower dimensional chiral operators

O∆ −→ O∆ + α1(τ i, τ̄ ī)RO∆−2 + α2(τ i, τ̄ ī)R2O∆−4 + · · · , (3.41)

and similarly for the anti-chiral operators. In (3.41) Rk stands schematically for some
contraction of k Riemann tensors evaluated on the sphere. Note that the chiral operator
O∆ can only mix with other chiral operators, and not anti-chiral or the Higgs branch
operators HI discussed in section 3.1.2. Indeed, while chiral operators are supersymmetric
at the North pole of S4, neither anti-chiral operators nor HI are supersymmetric there.
Anti-chiral operators are supersymmetric, instead, at the South pole of S4, while the Higgs
branch operators cannot be inserted anywhere on S4 while preserving supersymmetry (just
as operators in a long representation of the superconformal algebra). Since operator mixing
is compatible with supersymmetry on S4, chiral primary operators can only mix among
themselves, and analogously for anti-chiral operators.

It is natural to conjecture that the mixing coefficient functions αk(τ
i, τ̄ ī) are captured

by some anomalies, in parallel with the origin of the mixing ofOi with the identity operator.
Operator mixing of the type in (3.41) can only occur when the theory has operators with
integer-spaced dimensions. We can then expect that the there would be various type-
B “resonance” anomalies. See for example [10, 24, 55]. These anomalies generalize the
Zamolodchikov anomaly studied in [82], which is responsible for the mixing of Oi with the
identity operator. It would be very nice to understand this structure better.

Since the mixing functions αk(τ
i, τ̄ ī) are expected to arise due to anomalies, they are

expected to be universal. There is, however, a holomorphic ambiguity, which acts by

αk(τ
i, τ̄ ī)→ αk(τ

i, τ̄ ī) + Fk(τ i) + Fk(τ̄ ī) . (3.42)

Of course, the holomorphic ambiguity is fixed when the renormalization scheme is fixed.
These holomorphic ambiguities in operator mixing are due to N = 2 supersymmetric coun-
terterms. A special case of this holomorphic counterterm is responsible for the ambiguous
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mixing of Oi with the unit operator, which was already constructed in [81,82]. This coun-
terterm is responsible for the Kähler ambiguity of the partition function of the SCFT on
S4 (3.4).

When mapping the S4 correlation functions to the correlation functions on R4 we must
deal with the operator mixing in (3.41). Let us first review how this is accomplished for
the special case of chiral primaries of dimension 2, Oi. We recall that their descendants
are the exactly marginal deformations that generate the conformal manifold of the SCFT.
On S4, there is mixing of Oi with the unit operator, as follows from (3.4). In this special
case, it is easy to disentangle the operator mixing: we simply subtract disconnected pieces
in 〈Oi(N)Oj̄(S)〉S4 from the right hand side of (3.33). It is well known that this can be
achieved by taking the logarithm of the sphere partition function (which indeed removes
all the disconnected diagrams). After we have removed this mixing, we can straightfor-
wardly relate the 〈Oi(N)Oj̄(S)〉S4 two-point functions with their flat space counterparts
〈Oi(0)Oj̄(∞)〉R4 , from which the metric is extracted. Therefore, the mixed second deriva-

tives of the lnZ[S4] with respect to the moduli τ i, τ̄ ī compute the Zamolodchikov metric
on the conformal manifold. This is precisely the statement captured by (3.4).

In more generality, for higher-dimensional chiral primaries, there can be nontrivial
mixing with all the chiral primary operators of lower dimension, and taking the logarithm
of the sphere partition would not suffice to remove operator mixing. In this case, di-
agonalization of 〈OI(N)OJ̄(S)〉S4 must be carried out, which can be implemented by a
Gram-Schmidt procedure. This prescription is the appropriate generalization of the ideas
leading to (3.4). As we will see, this approach to computing flat space correlation function
successfully reproduces many perturbative results while providing many new results, and it
satisfies nontrivial all-orders consistency checks. We now summarize the explicit algorithm
to determine the chiral ring data of an N = 2 SCFT.

3.2.5 Summary of the Algorithm

We consider an N = 2 SCFT with exactly marginal couplings τ i, τ̄ ī. The chiral ring is
finitely generated and we take the generators to be φα, α = 1, ...,N, with N the number of
generators. N is also the dimension of the Coulomb branch of the SCFT. We denote their
dimensions by ∆(φα) = ∆α. Every element in the chiral ring can be uniquely represented
as a linear combination of

On1,...,nN
= φn1

1 φ
n2
2 ...φ

nN
N . (3.43)

The Lagrangian of the SCFT is constructed from the ring generators with ∆ = 2. We
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now deform the SCFT using the chiral ring generators of ∆ > 2, which we denote by φA

SSCFT → SSCFT −
1

32π2

∫
d4x d4θ E

∑
A

τAφA + c.c. (3.44)

This is appropriately supersymmetrized on S4, as explained in subsection 2.1. The associ-
ated partition function (3.36) is denoted by

Z[S4](τ i, τ̄ ī; τA, τ̄ Ā) . (3.45)

Our goal is to compute the two-point functions in flat space

〈On1,...,nN
(0)On′1,...,n′N(∞)〉R4 .

These are possibly nonzero only if ∆ ≡
∑N

α=1 nα∆α =
∑N

α=1 n
′
α∆α. Given Z[S4](τ i, τ̄ ī; τA, τ̄ Ā),

we must first disentangle the operator mixing ofOn1,...,nN
andOn′1,...,n′N on S4 with the lower-

dimensional chiral operators, as described in (3.41). In order to do this, we implement the
following procedure:

1. List all chiral operators Om1,...,mN
of dimension

∑N
α=1 nα∆α− 2,

∑N
α=1 nα∆α− 4 etc.

We denote the number of operators up to dimension ∆− 2 by N∆−2.

2. Compute the N∆−2 + 1 dimensional matrix of two-point functions on the sphere

〈Om1,...,mN
(N)Om′1,...,m′N(S)〉S4 ≡Mm1,...,mN|m′1,...,m′N

for all the operators listed in the previous step and for the operator On1,...,nN
in

question. This Hermitian matrix is generally nonzero in all its entries. Do the same
for the operator On′1,...,n′N .

3. From (3.45) we can extract the matrix Mm1,...,mN|m′1,...,m′N by

Mm1,...,mN|m′1,...,m′N =
1

Z[S4](τ i, τ̄ ī)

∂m1

(∂τ 1)m1
· · · ∂mN

(∂τN)mN

∂m
′
1

(∂τ̄ 1)m
′
1
· · · ∂m

′
N

(∂τ̄N)m
′
N

Z[S4]

∣∣∣∣
τA=τ̄ Ā=0

(3.46)

4. The mixing of the operator On1,...,nN
on S4 with lower-dimensional operators (3.41)

is encoded in N∆−2 coefficients αk(τ
i, τ̄ ī). These can be determined uniquely by

demanding that the two-point function of On1,...,nN
with each one of the N∆−2 lower

dimension operators vanishes. Do likewise for the operator On′1,...,n′N .
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5. This algorithm is equivalent to performing a Gram-Schmidt diagonalization proce-
dure of the matrix Mm1,...,mN|m′1,...,m′N . After completing this procedure for On1,...,nN

and On′1,...,n′N , the two-point function of orthogonalized operators on S4 are directly

related to 〈On1,...,nN
(0)On′1,...,n′N(∞)〉R4 .

Let us show that the formula (3.5) is a special case of the procedure outlined above. We
are interested in the two-point functions of ∆ = 2 chiral operators in R4. Let us assume for
notational simplicity that there is only one such ∆ = 2 operator. The matrix of two-point
functions on the sphere is therefore a 2× 2 matrix:

1

Z[S4]

(
Z[S4] ∂τZ[S4]
∂τ̄Z[S4] ∂τ∂τ̄Z[S4]

)
. (3.47)

We perform the Gram-Schmidt procedure and find the norm of the corresponding non-
trivial orthogonal vector. This is given by the determinant of (3.47), namely,

〈O(0)O(∞)〉R4 ∼ 1

(Z[S4])2

(
Z[S4]∂τ∂τ̄Z[S4]− ∂τZ[S4]∂τ̄Z[S4]

)
. (3.48)

This combination coincides with ∂τ∂τ̄ lnZ[S4].

We now discuss several examples to further demonstrate the procedure and its various
applications and consequences.

3.3 Examples

3.3.1 SU(2) Gauge Group

The first example we consider is N = 2 SCFTs with gauge group SU(2). The discussion
in this subsection applies both to superconformal SU(2) SQCD with four fundamental
hypermultiplets and to N = 4 SU(2) super-Yang-Mills.

The chiral ring in this case has one generator, φ2 = −4πiTrϕ2, where ϕ is the complex
scalar in the vectormultiplet. Thus, the chiral ring operators are given by

On = (φ2)n , n ∈ N , (3.49)

with O0 ≡ 1. The chiral ring OPE is

On(x)Om(0) = On+m(0) + ... . (3.50)
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Since in this case there is a single chiral primary with ∆ = 2, the conformal manifold is
one-complex-dimensional. In gauge theory terms, the complex coordinate in the conformal
manifold is given by the complexified gauge coupling τ = θ

2π
+i4π

g2 , where g is the Yang-Mills
coupling and θ is the theta angle.

We now study the problem of computing all the flat space two-point functions (3.19)

G2n(τ, τ̄) =
〈
On(0)On(∞)

〉
R4 . (3.51)

This determines the chiral ring data and the extremal correlators (3.1). Obviously G0 = 1,
and it follows from (3.5) that

G2 = 16 ∂τ∂τ̄ lnZ[S4] . (3.52)

Alternatively, this formula can be derived from our Gram-Schmidt procedure as in (3.48).

We now follow the algorithm described in the previous section, and begin by studying
the two-point functions of the operators (3.49) on S4,

〈
On(N)Om(S)

〉
S4 . These two-point

functions define an inner product on the chiral ring. As in (3.46), we express these two-
point functions as derivatives of the sphere partition function23

〈On(N)Om(S)〉S4 =
1

Z[S4]
∂nτ ∂

m
τ̄ Z[S4] . (3.55)

The basis of operators {On} is not orthogonal with respect to this inner product. We
diagonalize the mixing by carrying out the Gram-Schmidt construction in order to find a
basis {On} → {O′n}, such that the new operators, given by

O′n = On −
n−1∑
m=0

〈On(N)O′m(S)〉
〈O′m(N)O′m(S)〉

O′m (3.56)

23For SU(2) SQCD with 4 hypermultiplets in the fundamental representation one finds (see subsection
3.2.3)

Z[S4](τ, τ̄) =

∫ ∞
−∞

da e−4π Imτ a2(2a)2H(2ia)H(−2ia)

[H(ia)H(−ia)]4
|ZΩ,inst(ia, τ)|2 , (3.53)

and ZΩ,inst is Nekrasov’s instanton partition function on the Ω-background [134]. By expanding the
integrand in powers of g2 we can compute Z[S4] to any order in perturbation theory, and we can also
include instantons. In SU(2) gauge theory with an adjoint hypermultiplet, i.e. N = 4 SU(2) super-Yang-
Mills, the result is much simpler

Z[S4](τ, τ̄) =

∫ ∞
−∞

da e−4π Imτ a2(2a)2 . (3.54)
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are mutually orthogonal. The two-point functions on S4 in this new basis can now be
identified with the two-point functions in flat space

〈
On(0)On(∞)

〉
R4 . Therefore,

〈O′n(N)O′m(S)〉S4 ≡ 1

16n
G2n(τ, τ̄)δnm . (3.57)

The Gram-Schmidt diagonalization procedure (3.56) is recursive, and can be solved
explicitly for arbitrary n. By virtue of (3.55), the orthogonal vectors can be expressed in
terms of derivatives of Z[S4]. Therefore, we can express the chiral ring data G2n(τ, τ̄) in
terms of various derivatives of the S4 partition function Z[S4]. This suggests, in turn, that
the various metrics G2n(τ, τ̄) can be related by differential equations. We will now prove
this.

For the purpose of exhibiting the system of differential equations acting on the chiral
ring data it is useful to organize the two-point functions on S4 in (3.55) in an infinite
dimensional matrix

Mm,n = 〈Om(N)On(S)〉S4 , m, n = 0, 1, · · · . (3.58)

Let us denote by M(n) the upper-left (n+ 1)× (n+ 1) submatrix of M , and

Dn ≡ detM(n) . (3.59)

This submatrix captures the mixing of the operator On with all operators of smaller di-
mension, i.e. ∆ < 2n. Because the matrices that appear in the Gram-Schmidt procedure
are triangular (operators can only mix with lower-dimensional operators), one can obtain
G2n(τ, τ̄) in (3.57) as a ratio of determinants

G2n(τ, τ̄) = 16n
Dn

Dn−1

. (3.60)

In addition, we can prove that the determinant Dn satisfies the differential equation24

∂τ∂τ̄ lnDn =
Dn+1Dn−1

D2
n

− (n+ 1)D1 . (3.65)

24To prove this, we first write the derivative of lnDn in terms of derivatives of M(n) as follows:

∂τ∂τ̄ lnDn = Tr
(
M−1

(n)∂τ∂τ̄M(n) −M−1
(n)∂τM(n)M

−1
(n)∂τ̄M(n)

)
. (3.61)

Using (3.58) and (3.55), the derivatives of the components of M can be written as:

∂τMi,j = Mi+1,j −M1,0Mi,j , (3.62a)

∂τ̄Mi,j = Mi,j+1 −M0,1Mi,j , (3.62b)

∂τ∂τ̄Mi,j = Mi+1,j+1 −M1,0Mi,j+1 −M0,1Mi+1,j + (2M1,0M0,1 −M1,1)Mi,j . (3.62c)

75



Combining (3.60) and (3.65) we find an equation directly for the two-point functions
G2n(τ, τ̄)

16 ∂τ∂τ̄ lnG2n =
G2n+2

G2n

− G2n

G2n−2

−G2 , n = 1, 2... . (3.66)

Recall that {G2n(τ, τ̄)} obey the following boundary conditions: G0 = 1 and G2 =
16 ∂τ∂τ̄ lnZ[S4]. By defining G2n ≡ 16n eqn−lnZ[S4], the differential equation (3.66) can
be cast into the form of the semi-infinite Toda chain equation

∂τ∂τ̄qn = eqn+1−qn − eqn−qn−1 , n = 1, 2, · · ·
∂τ∂τ̄q0 = eq1−q0 .

(3.67)

Therefore, the chiral ring data is governed by a system of coupled oscillators with a pre-
scribed dependence on τ, τ̄ for the leftmost oscillator, that is q0 = lnZ[S4]. In this particle
picture, we can think of Im τ as physical time. Since Re τ is compact, we can Fourier
decompose in it and imagine that the lattice has two spatial dimensions.

We see that the Toda chain (3.67) arises essentially from the Gram-Schmidt procedure
on S4, with the ratio of some determinants (3.58)–(3.60) playing a central role. This
is in fact reminiscent of the way solutions to the semi-infinite Toda system are actually
constructed in the integrability literature [99].

In [7], the tt∗ equations of four-dimensional N = 2 SCFTs in the holomorphic gauge
were exploited to arrive at the same equations (3.66) (the tt∗ equations do not provide the
boundary condition (3.52)). This agreement with the tt∗ equations is therefore a nontrivial
consistency check of our procedure.

In Appendix D.1 we show that the tt∗ equations of an arbitrary four-dimensional N = 2
SCFT are integrable. They can be written as the flatness condition of a one-parameter
family of connections like the tt∗ equations of a two-dimensional (2, 2) QFTs [28]. The tt∗

equations are governed by a Hitchin integrable system.

Using these relations and noting that D1 = M1,1 −M1,0M0,1, we arrive at

∂τ∂τ̄ lnDn =
(
M(n)

)−1

n,n

Mn+1,n+1 −
n∑

i,j=0

Mn+1,i

(
M(n)

)−1

i,j
Mj,n+1

− (n+ 1)D1. (3.63)

Using Schur’s complement lemma

Mn+1,n+1 −
n∑

i,j=0

Mn+1,i

(
M(n)

)−1

i,j
Mj,n+1 =

Dn+1

Dn
, and

(
M(n)

)−1

n,n
=
Dn−1

Dn
, (3.64)

we obtain (3.65).

76



SU(2) with an Adjoint Hypermultiplet

It is important to note that due to the simple form of the S4 partition function given
in (3.54) for N = 2 SU(2) with an adjoint hypermultiplet, that is N = 4 SU(2) super-
Yang-Mills, the partition function evaluates to

ZS4 [τ, τ̄ ] =
1

4π(Imτ)3/2
. (3.68)

All the G2n(τ, τ̄) coincide with their tree-level expressions

G2n(τ, τ̄) = Gtree
2n (τ, τ̄) =

(2n+ 1)!

(Imτ)2n
= (2n+ 1)!

(
g2

4π

)2n

. (3.69)

One can easily verify that indeed these expressions obey the Toda equations (3.66).

SU(2) SQCD with Four Fundamental Hypermultiplets

In the case of SU(2) SQCD with four fundamental hypermultiplets, the S4 partition func-
tion given in (3.53) has quite a non-trivial dependence on Imτ = 4π/g2, and the G2n(τ, τ̄)
receive both perturbative and non-perturbative corrections. To reproduce this expansion,
one can start with (3.53) and expand the instanton partition function

ZΩ,inst(ia, τ) = 1 +
1

2
e2πiτ (a2 − 3) + · · · , (3.70)

where the first term corresponds to the zero-instanton sector, the second term to the 1-
instanton sector, etc., as well as expand the functions H in (3.53) at small a. Order by
order in these expansions, the integrals in a are elementary. The first few terms are

ZS4 [τ, τ̄ ] =
1

4π(Imτ)3/2

[
1− 45ζ(3)

16π2(Imτ)2
+

525ζ(5)

64π3(Imτ)3
+ · · ·

]

+
e2πiτ + e−2πiτ̄

8π(Imτ)3/2

[
−3 +

3

8πImτ
+

135ζ(3)

16π2(Imτ)2
+ · · ·

]
+ · · · ,

(3.71)

where the first line contains the perturbative contributions and the second line contains
the non-perturbative ones starting with the 1-instanton result. As we have explained, this
expression can be used to compute all the G2n in SU(2) SQCD.
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Figure 3.1: The ratio of consecutive coefficients appearing in the perturbative expansion
(3.73) of G2 in SU(2) SQCD plotted in terms of the loop order n.

For example, in a perturbative expansion around weak coupling, G2 is

G2(τ, τ̄)pert =
6

(Imτ)2
− 135ζ(3)

2π2

1

(Imτ)4
+

1575ζ(5)

4π3

1

(Imτ)5
+O

(
1

(Imτ)6

)
. (3.72)

The first two terms in this result were checked against an explicit, two-loop computation
in [9]. If we denote

G2(τ, τ̄)pert =
6

(Imτ)2

∞∑
n=0

an
(Imτ)n

, (3.73)

it is possible to calculate the coefficients an up to fairly high order—see Figure 3.1. From
this figure it is clear that the ratio an+1/an asymptotically grows linearly with n with a
negative coefficient. In [2,144] such behavior was established for the expansion coefficients
of the S4 partition function ZS4 [τ, τ̄ ]. Moreover, it was shown that the perturbative contri-
bution to ZS4 [τ, τ̄ ] is Borel summable. Since G2 can be obtained by taking two derivatives
of lnZS4 [τ, τ̄ ], it follows that G2,pert is also Borel summable. The one-instanton correction
to the perturbative result is non-trivial; it is given by

G2(τ, τ̄)1-inst = cos θ e
− 8π2

g2

(
6

(Imτ)2
+

3

π

1

(Imτ)3
− 135ζ(3)

2π2

1

(Imτ)4
+O

(
1

(Imτ)5

))
.

(3.74)

The perturbative expression (3.73) can be used to check the conjecture of [111], orig-
inally formulated for the case of QCD. The conjecture is that a Padé approximation of
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Figure 3.2: The relative difference between the Padé estimate of the coefficient an+1 and
its actual value in the case of G2 in SU(2) SQCD. The black line is a linear fit for n ≥ 40.

order (n/2, n/2) obtained from the n-loop result (with n even) can be used to estimate the
value of an+1 with exponentially small error. If we denote the estimate of an+1 using the
symmetric Padé by an+1,estimated, the conjecture is that∣∣∣∣an+1,estimated

an+1

− 1

∣∣∣∣ < Ce−σn (3.75)

for some σ > 0 and C > 0. As we show in Figure 3.2, the relation (3.75) is indeed true,
with an exponent σ ≈ 0.7 that can be determined from the slope of the logarithmic plot.25

3.3.2 SU(N) Gauge Group

SCFTs based on a single SU(N) gauge group have one exactly marginal coupling con-
stant, τ , as in the SU(2) case. The chiral ring is generated by the N − 1 operators
φk = ik+1(4π)k/2Tr (ϕk), k = 2, . . . , N . The dimension-two operator φ2, as usual, corre-
sponds to the exactly marginal deformation. We can use the following basis in the space
of chiral operators

O{ni} =
N∏
k=2

(φk)
nk . (3.76)

25If the perturbative series was simply an = (−1)nn!, then (3.75) would have been satisfied with σ =
ln(2). Even though the situation here is more complicated and there are in fact infinitely many poles on
the negative axis of the Borel plane [2, 144], we still seem to find σ ∼ ln(2). It would be interesting to
understand this better.
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In order to implement the algorithm of subsection 2.4. in these theories, we first deform
the SCFT action on S4 by

SSCFT → SSCFT −
1

32π2

∫
d4x d4θ E

N∑
a=3

τAφA ,

and compute the S4 partition function Z[S4](τ, τ̄ ; τA, τ̄A) of the deformed SCFT.

We are interested in the two-point functions in flat space 〈O{ni}(0)O{n′i}(∞)〉R4 . These

are potentially non-vanishing if
∑N

k=2 knk =
∑N

k=2 kn
′
k. Note that unlike in the case of

SU(2), for higher rank gauge group, there can be more than one operator of a given
dimension and hence mixing already on R4, for example between (Tr (ϕ3))2 and (Tr (ϕ2))3.

As before, we begin by studying the matrix of two-point functions on S4 M{ni},{n′i} =

〈O{ni}(N)O{n′i}(S)〉S4 . On S4, this matrix is in general nonzero for all {ni}, {n′i}. We
could compute the correlators from the S4 partition function Z[S4](τ, τ̄ ; τA, τ̄A) by taking
derivatives

M{ni},{n′i} =
1

Z[S4]

∂n2

(∂τ)n2

∂n3

(∂τ 3)n3
· · · ∂nN

(∂τN)nN
∂n
′
2

(∂τ̄)n
′
2

∂n
′
3

(∂τ̄ 3)n
′
3
· · · ∂n

′
N

(∂τ̄N)n
′
N

Z[S4](τ, τ̄ ; τA, τ̄A)

∣∣∣∣
τA=τ̄A=0

.

(3.77)
Then, we perform the Gram-Schmidt procedure to extract the two-point functions in flat
space 〈O{ni}(0)O{n′i}(∞)〉R4 .

We can explicitly determine the chiral ring data to all orders in perturbation theory.
Unfortunately, the expression for ZΩ,inst(a, τ

i, τA) that appears in (3.36) and (3.37) in
the localization computation of Z[S4](τ, τ̄ ; τA, τ̄A) in SU(N) SQCD with 2N fundamental
hypermultiplets is not yet available in the literature. The dependence of the instanton
partition function on the higher Casimir couplings, τA (A = 3, .., N) is unknown. (While it
is available for U(N) theories [70,126,132,133] it is an open problem to compute them for
SU(N).) Ignoring the instantons, one can nevertheless use (3.77) to derive many interesting
results independent of the specific expression for Z[S4](τ, τ̄ ; τA, τ̄A). One application is the
derivation of the coupled tt∗ equations which are obtained from (3.77) in Appendix D.4.
The general tt∗ equations were first derived in [139]. In addition, we can say quite a bit
about the structure of the solution to the tt∗ equations in the case of SQCD.

SU(N) with an Adjoint Hypermultiplet

This corresponds to the maximally supersymmetric N = 4 super-Yang-Mills theory. In
this theory, the four-sphere partition receives no instanton corrections [136]. The deformed
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partition function is given by a quadratic matrix model deformed by the higher Casimirs
evaluated on the localization locus (our discussion here can be generalized to any gauge
group):

Z[S4](τ, τ̄ ; τA, τ̄A) =

∫
dN−1a∆(a)|eiπτ Tr (a2)+i

∑N
A=3 π

A/2τATr (aA)|2 . (3.78)

We show that the relatively simple form (3.78) leads to two main consequences which
we now derive

• The flat-space two-point functions 〈O{ni}(0)O{n′i}(∞)〉R4 are saturated by tree dia-
grams. This is a trivial consequence of the form of (3.78). This property of N = 4
is further discussed in [6, 56, 119].

• The chiral ring data can be organized in terms of infinitely many decoupled Toda
chains.

Both of these conclusions are special to N = 4 super-Yang-Mills. As we will see below,
the second conclusion is actually also valid in other theories up to two loops but not to
higher orders.

In order to establish the second point we need to make some simple observations. The
first observation is that multiplying two orthogonal operators that do not explicitly depend
on τ by powers of φ2 does not change the fact that they are orthogonal:〈

OI(N)OJ(S)
〉
S4 = 0 ⇒

〈
φn2OI(N)φm2 OJ(S)

〉
S4 = 0 . (3.79)

This follows from (3.78). Indeed, if two operators are orthogonal and if they are indepen-
dent of τ , then by taking derivatives with respect to τ, τ̄ one finds (3.79).

Thus, if we choose a basis of the form

O(m)
n = φn2O

(m)
0 , (3.80)

with the operators O(m)
0 constructed such that they are orthogonal to each other〈
O(m)

0 (N)O(m′)
0 (S)

〉
S4

= 0 , for m 6= m′ , (3.81)

and such that O(m)
0 do not explicitly depend on τ , then in the basis (3.80) our system splits

into orthogonal sectors:〈
O(m)
n (N)O(m′)

k (S)
〉
S4

= 0 , for m 6= m′ . (3.82)
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In [8], the operators O(m)
0 are called C2 primaries because they have, in a sense, the minimal

possible number of φ2 factors.

It is easy to construct the basis (3.80) explicitly and verify that the operators in it are
independent of τ . This is done as follows. We consider the set of operators of the form∏N

k=3 (φk)
nk (i.e. operators from the basis (3.80) with n2 = 0), and choose an ordering

on this set such that the operators are labeled as Bm, with ∆m ≤ ∆m+1 (thus, B0 = 1,

B1 = φ3,...). We can now define O(m)
0 by an inductive process. For m = 0, we choose

O(0)
0 = B0 = 1. Assuming that we have definedO(m′)

0 withm′ ranging from 0 up tom−1, we

define O(m)
0 to be a linear combination of Bm and operators of the form O(m′)

nm′ = φ
nm′
2 O

(m′)
0 ,

where m′ < m and nm′ = ∆m−∆′m
2

is an integer. Note that Bm and O(m′)
nm′ have the

same dimension ∆m. This fact will be important to us soon. The coefficients in this linear

combination are chosen such that
〈
O(m)

0 (N)O(m′)
0 (S)

〉
S4

= 0 will be obeyed for all m′ < m,

that is,

O(m)
0 = Bm −

∑
m′

〈
Bm(N)O(m′)

0 (S)
〉
S4〈

O(m′)
nm′ (N)O(m′)

0 (S)
〉
S4

O(m′)
nm′

, (3.83)

where the sum above is only on m′ such that nm′ = ∆m−∆′m
2

∈ N. This construction makes it

obvious that theO(m)
0 are τ -independent, as required. Indeed, since the coefficients in (3.83)

have the same dimension in the numerator and the denominator, and since these correlators
inN = 4 super-Yang-Mills are tree-level exact, the factors of τ cancel. In summary, we have
constructed a basis of operators in the chiral ring that decouple into mutually orthogonal
semi-infinite towers whose bottom operators are explicitly τ -independent.

For example, the first towers in SU(N) for N ≥ 4 are

O(0)
n = φn2 , O(1)

n = φn2φ3 , O(2)
n = φn2

(
φ4 −

〈φ4(N)〉S4

〈φ2
2(N)〉S4

φ2
2

)
. . . . (3.84)

By construction, this new basis satisfies (3.82) and as a result one can perform the
Gram-Schmidt procedure of subsection 3.2.5 in each tower separately. This leads to a
tremendous simplification. If we denote the matrix elements in this basis by M

(m)
i,j =〈

O
(m)
i (N)O

(m)
j (S)

〉
S4

, exactly the same derivation as the one presented in the case of

SCFTs based on SU(2) proves that the chiral data, encoded inG
(m)
2n ≡

〈
O

(m)
n (0)O

(m)
n (∞)

〉
R4

,
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satisfies

16 ∂τ∂τ̄ lnG
(m)
2n =

G
(m)
2n+2

G
(m)
2n

− G
(m)
2n

G
(m)
2n−2

−G2 ,

16 ∂τ∂τ̄ lnG
(m)
0 =

G
(m)
2

G
(m)
0

−G2 ,

(3.85)

and G2 = 16 ∂τ∂τ̄ lnZ[S4](τ, τ̄ ; 0, 0).

Equation (3.85) describes decoupled semi-infinite Toda chains, in agreement with [8].

One can explicitly solve for the G
(m)
2n using the fact that

G2 =
2(N2 − 1)

(Imτ)2
. (3.86)

One finds

G
(m)
2n (τ, τ̄) = 4n

n! G̃
(m)
0

(Imτ)∆m+2n

(
N2 − 1

2
+ ∆m

)
n

, (3.87)

where (x)n is the Pochhammer symbol

(x)n = x(x+ 1)...(x+ n− 1) (3.88)

and G̃
(m)
0 encodes the normalization of the operator at the bottom of the m-th tower.

As we have already emphasized, this structure of decoupled Toda chains obviously
exists at tree-level in N = 2 SU(N) SQCD as well (actually, in any SCFT at tree level).
As we will show in the next subsection, it persists up to two-loops in SU(N) SQCD.

Decoupled Toda Chains at Two-Loops in SQCD

We now show that the decoupled Toda chain structure (3.85) remains in SU(N) SQCD
up to two-loops. That is, the chiral ring data can be organized in terms of decoupled
semi-infinite Toda chains up to that order in perturbation theory.

The operators O(m)
0 constructed in (3.83) are orthogonal at tree-level, but they are not

guaranteed to stay orthogonal when higher-order corrections are included. If the operators
were to stay orthogonal for all values of the coupling constant, then equation (3.85) would
hold to all orders. Let us explain why the first non-trivial two-loop correction actually
does not ruin the orthogonality that was achieved at tree-level.
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The first non-trivial perturbative correction can be obtained by expanding the matrix
integral representation (see section (3.2.3))26 of the deformed SCFT partition function on
S4

1

Z[S4]

∫
dN−1a∆(a)F (a)e−2π Imτ Tr a2 (

1− 3ζ(3)(Tr a2)2
)

=

1

Z[S4]

(
1− 3ζ(3)

∂2

∂(2π Imτ)2

)∫
dN−1a∆(a)F (a)e−2π Imτ Tr a2

,

(3.90)

where F (a) denotes some insertion in the localization formula.

The fact that the first non-trivial correction is obtained from the tree-level result by
differentiating with respect to the coupling constant of the theory implies that the towers
constructed to be orthogonal at tree-level (3.82) will remain orthogonal also up to two-loops
in perturbation theory.

There is no reason to expect that this property will be true also for the next orders,
and indeed the results that we present next contradict the decoupling conjecture already
at the next order in perturbation theory.

3.3.3 SU(3) and SU(4) SQCD

SU(3) SQCD

We consider SU(3) SQCD with 6 fundamental hypermultiplets to three-loops. We show
that at this order in perturbation theory the bottom operators of the towers we constructed
before become explicitly τ -dependent. This indicates that there is no reason to expect
decoupled Toda chains as in (3.85) anymore.

Let us consider the first few low-lying chiral operators in SU(3) SQCD: {φ2}, {φ3},
{φ2

2}, {φ3φ2}, {φ2
3, φ3

2}, {φ3φ2
2} and {φ2

4, φ3
2φ2}. We are interested in their two-point

functions in flat space (G∆)IJ =
〈
O∆I(0)O∆J(∞)

〉
R4 . G6 and G8 are therefore 2 × 2

matrices while the rest are just functions of the gauge coupling g in perturbation theory.

26The perturbative matrix integral of SU(N) SQCD is

Z[S4](τ, τ̄ , ...) =

∫
dN−1a e−2π Imτ Tr a2+...

∏
i 6=j

(wij · a)
∏
i 6=j

H(iwij · a)
∏
i

H(iwi · a)−2N , (3.89)

where wi, i = 1, .., N , are the weights in the fundamental representation, and wij = wi − wj .
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Following our Gram-Schmidt procedure we can compute these up to three-loops

G2 =

(
g2

4π

)2(
16− 45 ζ(3)

2π4
g4 +

425 ζ(5)

8π6
g6 +O(g8)

)
, (3.91)

G3 =

(
g2

4π

)3(
40− 135 ζ(3)

2π4
g4 +

6275 ζ(5)

48π6
g6 +O(g8)

)
, (3.92)

G4 =

(
g2

4π

)4(
640− 2160 ζ(3)

π4
g4 +

6375 ζ(5)

π6
g6 +O(g8)

)
, (3.93)

G5 =

(
g2

4π

)5(
1120− 4410 ζ(3)

π4
g4 +

144725 ζ(5)

12π6
g6 +O(g8)

)
, (3.94)

G6 =

(
g2

4π

)6
 46080− 272160 ζ(3)

π4 g4 + 969000 ζ(5)
π6 g6 i

(
1920− 11340 ζ(3)

π4 g4 + 29875 ζ(5)
π6 g6

)
−i
(

1920− 11340 ζ(3)
π4 g4 + 29875 ζ(5)

π6 g6
)

6800− 57645 ζ(3)
2π4 g4 + 1688875 ζ(5)

24π6 g6


+O(g20) , (3.95)

G7 =

(
g2

4π

)7(
71680− 483840 ζ(3)

π4
g4 +

4936400 ζ(5)

3π6
g6 +O(g8)

)
, (3.96)

G8 =

(
g2

4π

)8
 5160960− 46448640 ζ(3)

π4 g4 + 194208000 ζ(5)
π6 g6 i

(
215040− 1935360 ζ(3)

π4 g4 + 6412000 ζ(5)
π6 g6

)
−i
(

215040− 1935360 ζ(3)
π4 g4 + 6412000 ζ(5)

π6 g6
)

277760− 2046240 ζ(3)
π4 g4 + 20027000 ζ(5)

3π6 g6


+O(g24) . (3.97)

This is in agreement with [8], where the same correlators were computed up to two-loops
using standard perturbation theory. It would be interesting to verify our three-loop results
by direct perturbative computations.

We now note that in performing the Gram-Schmidt procedure on the dimension 6 and
8 operators, we encounter the following ratios

G6(2, 1)

G6(1, 1)
= −i

(
1

24
− 175 ζ(5)

768π6
g6 +O(g8)

)
, (3.98)

G8(2, 1)

G8(1, 1)
= −i

(
1

24
− 125 ζ(5)

384π6
g6 +O(g8)

)
. (3.99)
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Figure 3.3: Ratios of consecutive coefficients in the series expansions (3.100) in the case of
SU(3) SQCD.

The presence of the g6 term means that one cannot diagonalize G4 and G6 with a τ, τ̄
independent basis. This contradicts the conjecture of [8]. Note that the absence of a
term g4 in (3.98),(3.99) is precisely as anticipated in 3.2.2. The decoupling of Toda chains
therefore starts to fail at three-loop order in perturbation theory.

If we define

Gm,pert(g
2) = Gm,tree

∞∑
n=0

am,n

(
g2

4π

)n
(3.100)

where Gm,tree is the tree-level contribution and so a0 = 1, one can check that the ratio
am,n+1/am,n grows linearly at large n with a negative coefficient, just as was the case for
SU(2) SQCD. See Figure 3.3 for plots of these ratios in the cases m = 2, 3. We expect
that Gm,pert is also Borel summable in this case, but we have not shown this conclusively.

As in the case of SU(2) SQCD, one can use the series expansions above to estimate
whether the (n/2, n/2) Padé, computed only from the first n terms, can be used to estimate
the (n + 1)th series coefficient with an exponentially small error. This is indeed the case,
as can be seen from Figure 3.4 for m = 2, 3. Defining the exponents σm through∣∣∣∣am,n+1,estimated

am,n+1

− 1

∣∣∣∣ < Cme
−σmn (3.101)

linear fits of the log plots in Figure 3.4 give σ2 ≈ 0.75 and σ3 ≈ 0.73. These values are
rather close to the corresponding values for SU(2) SQCD.
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Figure 3.4: The relative difference between the Padé estimate of the coefficient am,n+1 and
its actual value in the case of G2 and G3 in SU(3) SQCD. The black lines are linear fits
for n ≥ 40.

SU(4) SQCD

The conclusion from our study of SU(4) SQCD is the same as the conclusion from the study
of SU(3) SQCD above. We present it just in order to demonstrate again the cancelation of
the g4 term and to provide additional data that can be compared with direct perturbative
computations. We consider the operators {φ2}, {φ3}, {φ2

2, φ4} and {φ2φ3} and denote
the corresponding two-point functions by G2, G3, G4 and G5, respectively. Using our
Gram-Schmidt procedure we find
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G2 =

(
g2

4π

)2(
30− 2295 ζ(3)

32π4
g4 +

118575 ζ(5)

512π6
g6 +O(g8)

)
, (3.102)

G3 =

(
g2

4π

)3(
135− 23085 ζ(3)

64π4
g4 +

4100625 ζ(5)

4096π6
g6 +O(g8)

)
, (3.103)

G4 =

(
g2

4π

)4
 2040− 43605 ζ(3)

4π4 g4 + 1304325 ζ(5)
32π6 g6 i

(
870− 74385 ζ(3)

16π4 g4 + 2351025 ζ(5)
128π6 g6

)
−i
(

870− 74385 ζ(3)
16π4 g4 + 2351025 ζ(5)

128π6 g6
)

1335
2
− 198045 ζ(3)

64π4 g4 + 5681925 ζ(5)
512π6 g6


+O(g16) (3.104)

G5 =

(
g2

4π

)5(
5670− 535815 ζ(3)

16π4
g4 +

248558625 ζ(5)

2048π6
g6 +O(g8)

)
. (3.105)

Again, the two-loop results agree with those that were found by a direct Feynman dia-
grams computation in [8]. In performing the Gram-Schmidt procedure on the dimension
4 operators, we encounter the following ratios

G4(2, 1)

G4(1, 1)
= −i

(
29

68
+

525 ζ(5)

1088π6
g6 +O(g8)

)
. (3.106)

As before, the g4 piece cancels as anticipated but the g6 piece contradicts the conjecture
of [8]. Therefore, we do not expect decoupled semi-infinite Toda chains.
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Chapter 4

An Application to Duality:
Topological Holography

4.1 Introduction and Summary

Holography is a duality between two theories, referred to as a bulk theory and a boundary
theory, in two different space-time dimensions that differ by one [95, 128, 155]. A familiar
manifestation of the duality is an equality of the partition function of the two theories -
the boundary partition function as a function of sources, and the bulk partition function
as a function of boundary values of fields. This in turns implies that correlation functions
of operators in the boundary theory can also be computed in the bulk theory by varying
boundary values of its fields [95,155]. This dictionary has been extended to include expec-
tations values of non-local operators as well [84,127,142,158]. This is a strong-weak duality,
relating a strongly coupled boundary theory to a weakly coupled bulk theory. As is usual
in strong-weak dualities, exact computations on both sides of the duality are hard. Topo-
logical theories have provided interesting examples of holographic dualities where exact
computations are possible [34,85,86,91,137,138].

Recently, Costello has shown that some instances of holography can be described as an
algebraic relation, known as Koszul duality, between the operator algebras of the two dual
theories [35]. It was previously known that the algebra of operators restricted to a line in
the holomorphic twist of 4d N = 1 gauge theory with the gauge group GLK is the Koszul
dual of the Yangian of glK [33]. In light of the connection between Koszul duality and
holography, this result suggests that if there is a theory whose local operator algebra is
the Yangian of glK then that theory could be a holographic dual to the twisted 4d theory.
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Since the inception of holography, brane constructions played a crucial role in finding dual
theories. It turns out that the particular twisted 4d theory is the world-volume theory
of K D4-branes1 embedded in a particular 6d topological string theory [36]. Since the
operators whose algebra is the Koszul dual of the Yangian lives on a line, it is a reasonable
guess that we need to include some other branes that intersect this stack of D4-branes
along a line. Beginning from such motivations we eventually find (and demonstrate in this
chapter) that the correct choice is to embed a stack of N D2-branes in the 6d topological
string theory so that they intersect the D4-branes along a line. The world-volume theory
of the D2-branes is 2d BF theory with GLN gauge group coupled to a fermionic quantum
mechanics along the D2-D4 intersection. The algebra of gauge invariant local operators
along this D2-D4 intersection is precisely the Yangian of glK .

This connected the D2 world-volume theory and the D4 world-volume theory via holog-
raphy in the sense of Koszul duality. The connection between these two theories via holog-
raphy in the sense of [95, 155] was still unclear. In this chapter we begin to establish this
connection. We take the D2-brane world-volume theory to be our boundary theory. This
implies that the closed string theory in some background, including the D4-brane theory
should give us the dual bulk theory. In the boundary theory, we consider the OPE (op-
erator product expansion) algebra of gauge invariant local operators, we argue that this
algebra can be computed in the bulk theory by computing a certain algebra of scatterings
from the asymptotic boundary in the limit N → ∞. Our computation of the boundary
local operator algebra using the bulk theory follows closely the computation of boundary
correlation functions using Witten diagrams [155].

The Feynman diagrams and Witten diagrams we compute in this chapter have at most
two loops, however, we would like to emphasize that the identification we make between
the operator algebras and the Yangian is true at all loop orders. In the boundary theory
(D2-brane theory) this will follow from the simple fact that, for the operator product that
we shall compute, there will be no non-vanishing diagrams beyond two loops. In the bulk
theory this follows from a certain classification of anomalies in the D4-brane theory [43]
and independently from the very rigid nature of the deformation theory of the Yangian.
We explain some of these mathematical aspects underlying our results in appendix E.3.

A particular motivation for studying these topological/holomorphic theories and their
duality is that these theories can be constructed from certain brane setup in string theory.
We can identify these theories as certain supersymmetric subsectors of some theories on
D-branes in type IIB string theory by applying supersymmetric twists and Ω-deformation.

1We are following the convention of [3], according to which, by a topological Dp-brane we mean a brane
with a p-dimensional world-volume.
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The organization of the chapter is as follows. In §4.2 we describe, in general terms, how
holographic duality in the sense of [95, 155] leads to the construction of two isomorphic
algebras from the two dual theories. In §4.3 we start from a brane setup involving N D2-
branes and K D4-branes in a 6d topological string theory and describe the two theories
that we claim to be holographic dual to each other. In §4.4 we compute the local operator
algebra in the D2-brane theory, this algebra will be the Yangian Y (glK) in the limit N →
∞. In §4.5 we show that the same algebra can be computed using Witten diagrams in the
D4-brane theory. In the last section, §4.6, we propose a string theory realization of the
duality.

4.2 Isomorphic algebras from holography

In [95, 155], two theories, Tbd and Tbk were considered on two manifolds M1 and M2 re-
spectively, with the property that M1 was conformally equivalent to the boundary of M2.
The theory Tbd was considered with background sources, schematically represented by φ.
The theory Tbk was such that the values of its fields at the boundary ∂M2 can be coupled
to the fields of Tbd, then Tbk was quantized with the fields φ as the fixed profile of its fields
at the boundary ∂M2. These two theories were considered to be holographic dual when
their partition functions were equal:

Zbd(φ) = Zbk(φ) . (4.1)

This equality leads to an isomorphism of two algebras constructed from the two theories,
as follows. Consider local operators Oi in Tbd with corresponding sources φi. The partition
function Zbd(φ) with these sources has the form:

Zbd(φ) =

∫
DX exp

(
−1

~
Sbd +

∑
i

Oiφ
i

)
, (4.2)

where X schematically represents all the dynamical fields in Tbd. Correlation functions of
the operators Oi can be computed from the partition function by taking derivatives with
respect to the sources:

〈O1(p1) · · ·On(pn)〉 =
1

Zbd(φ)

δ

δφ1(p1)
· · · δ

δφn(pn)
Zbd(φ)

∣∣∣∣
φ=φ0

. (4.3)

We can consider the algebra generated by the operators Oi using operator product expan-
sion (OPE). However, this algebra is generally of singular nature, due to its dependence
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on the location of the operators and the possibility of bringing two operators too close to
each other. In specific cases, often involving supersymmetry, we can consider sub-sectors
of the operator spectrum that can generate algebras free from such contact singularity, so
that a position independent algebra can be defined.2 Suppose the set {Oi} represents such
a restricted set with an algebra:

OiOj = Ck
ijOk . (4.4)

Let us call this algebra AOp(Tbd). In terms of the partition function and the sources the
relation (4.4) becomes:

δ

δφi
δ

δφj
Zbd(φ)

∣∣∣∣
φ=0

= Ck
ij

δ

δφk
Zbd(φ)

∣∣∣∣
φ=φ0

. (4.5)

The statement of duality (4.1) then tells us that the above equation must hold if we replace
Zbd by Zbk:

δ

δφi
δ

δφj
Zbk(φ)

∣∣∣∣
φ=0

= Ck
ij

δ

δφk
Zbk(φ)

∣∣∣∣
φ=φ0

. (4.6)

This gives us a realization of the operator algebra AOp(Tbd) in the dual theory Tbk.

This suggests a check for holographic duality. The input must be two theories, say Tbd

and Tbk, with some compatibility:

• Tbd can be put on a manifold M1 and Tbk can be put on a manifold M2 such that
∂M2

∼= M1, where equivalence between ∂M2 and M1 must be equivalence of whatever
geometric/topological structure is required to define Tbd.3

• Quantum numbers of fields of the two theories are such that the boundary values of
the fields in Tbk can be coupled to the fields in Tbd.4

Suppose Tbd has a sub-sector of its operator spectrum that generates a suitable algebra5

AOp(Tbd). We denote the operators in this algebra by {Oi} with corresponding sources
φi. According to the first compatibility condition these sources can be thought of as

2Various chiral rings, for example.
3In case of AdS/CFT, it is conformal equivalence, perfect for defining the CFT. In this chapter we shall

only be concerned with topology.
4To clarify, this is merely a compatibility condition for the duality, the two dual theories are not

supposed to be coupled, they are supposed to be alternative descriptions of the same dynamics.
5Ideally we should consider the OPE algebra of all the operators, but if that is too hard, we can restrict

to smaller sub-sectors which may still provide a non-trivial check.

92



boundary values for the fields in Tbk, so that we can quantize Tbk by fixing the values
of the fields at the boundary to be φ. Then, we can define another algebra by taking
functional derivatives of the partition function of Tbk with respect to φ, as in (4.6). Let’s
call this algebra the scattering algebra, ASc(Tbk). Now a check of holographic duality is the
following isomorphism:

AOp(Tbd) ∼= ASc(Tbk) . (4.7)

This is the general idea that we employ in this chapter to check holographic duality.
The operator algebra AOp(Tbd) can be computed in perturbation theory using Feynman
diagrams and we can use Witten diagrams, introduced in [155], to compute the scattering
algebra ASc(Tbk). We will do this concretely in the rest of this chapter.

4.3 The dual theories

4.3.1 Brane construction

The quickest way to introduce the theories we claim to be holographic dual to each other
is to use branes to construct them. Our starting point is a 6d topological string theory,
in particular, the product of the A-twisted string theory on R4 and the B-twisted string
theory on C [36]. The brane setup is the following:

Rv Rw Rx Ry Cz No. of branes
D2 0 × × 0 0 N
D4 0 0 × × × K

(4.8)

The subscripts denote the coordinates we use to parametrize the corresponding directions,
and it is implied that the complex direction is parametrized by the complex variable z,
along with its conjugate variable z.

Our first theory, denoted by Tbd, is the theory of open strings on the stack of D2-branes.
This is a 2d topological gauge theory with the complexified gauge group GLN [36]. The
intersection of the D2-branes with the D4-branes introduces a line operator in this theory.
We describe this theory in §4.3.3.

Next, we consider the product of two theories, open string theory on the stack of D4-
branes, and closed string theory on the 6d background sourced by the stack of D2-branes.
The theory on the stack of D4-branes is a 4d analogue of Chern-Simons (CS) gauge theory
with the complexified gauge group GLK [36]. As it does in the theory on the D2-branes, the
intersection between the D2 and the D4-branes introduces a line operator in this theory as
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well. This line sources a flux supported on the 3-sphere linking the line. Our bulk theory
is the Kaluza-Klein compactification of the total 6d theory6 on the 3-sphere. We describe
the 4d CS theory in §4.3.4. Let us describe the closed sting theory in the next section.

4.3.2 The closed string theory

The closed string theory, denoted by Tcl, is a product of Kodira-Spencer (also known as
BCOV) theory [17,41] on C and Kähler gravity [18] on R4, along with a 3-form flux sourced
by the stack of D2-branes.7 Fields8 in this theory are given by:

Set of fields, F := Ω•(R4)⊗ Ω•,•(C) , (4.9)

i.e., the fields are differential forms on R4 and (p, q)-forms on C.9 The linearized BRST
differential acting on these fields is a sum of the de Rham differential on R4 and the
Dolbeault differential on C, leading to the following equation of motion:(

dR4 + ∂C
)
α = 0 , α ∈ F . (4.10)

The background field sourced by the D2-branes, let it be denoted by F3 ∈ F , measures
the flux through a topological S3 surrounding the D2-branes, it can be normalized as:∫

S3

F3 = N . (4.11)

Note that the S3 is only topological, i.e., continuous deformation of the S3 should not
affect the above equation. This is equivalent to saying that, the 3-form must be closed on
the complement of the support of the D2-branes:

dR4×CF3(p) = 0 , p 6∈ D2 . (4.12)

Here the differential is the de Rham differential for the entire space, i.e., dR4×C = dR4 +
∂C + ∂C. Moreover, as a dynamically determined background it is also constrained by
the equation of motion (4.10). In addition to satisfying these equations, F3 must also

66d closed string theory coupled to 4d CS theory.
7This flux is analogous to the 5-form flux sourced by the stack of D4-branes in Maldacena’s setup of

AdS/CFT duality between N = 4 super Yang-Mills and supergravity on AdS5 × S5 [128].
8In the BV formalism, including ghosts and anti-fields.
9We are not being careful about the degree (ghost number) of the fields since this will not be used in

this chapter.
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be translation invariant corresponding to the directions parallel to the D2-branes. The
solution is:

F3 =
iN

2π(v2 + y2 + zz)2
(v dy ∧ dz ∧ dz − y dv ∧ dz ∧ dz − 2z dv ∧ dy ∧ dz) . (4.13)

In general, a closed string background like this might deform the theory on a brane, how-
ever, the pullback of the form (4.13) to the D4-branes vanishes:

ι∗F3 = 0 , (4.14)

where ι : R2
x,y×Cz ↪→ R4

v,w,x,y×Cz is the embedding of the D4-branes into the entire space.
So the closed string background leaves the D4-brane world-volume theory unaffected.10

The flux (4.13) signals a change in the topology of the closed string background:

R4
v,w,x,y × Cz → R2

w,x × R+ × S3 , (4.15)

where the R+ is parametrized by r :=
√
v2 + y2 + zz. This change follows from requiring

translation symmetry in the directions parallel to the D2-branes and the existence of an
S3 supporting the flux F3. This S3 is analogous to the S5 in the D4-brane geometry
supporting the 5-form flux sourced by the said D4-branes in Maldacena’s AdS/CFT [128].
The coordinate r measures distance11 from the location of the D2-branes. The r → 0 region
would be analogous to Maldacena’s near horizon geometry. In our topological setting there
is no distinction between near and distant, and we treat the entire R2

w,x × R+ × S3 as
analogous to Maldacena’s near horizon geometry. This makes R2

w,x ×R+ analogous to the
AdS geometry. We recall that, in the AdS/CFT correspondence the location of the black
branes and the boundary of AdS correspond to two opposite limits of the non-compact
coordinate transverse to the branes. In our case r = 0 corresponds to the location of the
D2-branes, and we treat the plane at r =∞, namely:

R2
w,x × {∞} , (4.16)

as analogous to the asymptotic boundary of AdS.

10The flux (4.13) is the only background turned on in the closed string theory. This can be argued as
follows: The D2-branes introduce a 4-form source (the Poincaré dual to the support of the branes) in the
closed string theory. This form can appear on the right hand side of the equation of motion (4.10) only for
a 3-form field α, which can then have a non-trivial solution, as in (4.13). Furthermore, since the equation
of motion (4.10) is free, the non-trivial solution for the 3-form field does not affect any other field.

11In the absence of a metric “distance” should be taken lightly. We really only distinguish between the
two extreme cases, r = 0 and r =∞.
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The D4-branes in (4.8) appear as a defect in the closed string theory, they are analogous
to the D5-branes that were considered in [89] or the D3-branes considered in [89, 90],
in Maldacena’s setup of AdS/CFT, where they were presented as holographic duals of
Wilson loops in 4d N = 4 super Yang-Mills. For the world-volume of these branes, the
transformation (4.15) corresponds to:

R2
x,y × Cz → Rx × R+ × S2 , (4.17)

where the R+ direction is parametrized by r′ :=
√
y2 + zz. The intersection of the bound-

ary plane (4.16) and this world-volume is then the line:

Rx × {∞}, (4.18)

at infinity of r′. We draw a cartoon representing some aspects of the brane setup in figure
4.1.

We can now talk about two theories:

1. The 2d world-volume theory of the D2-branes. This is our analogue of the CFT (with
a line operator) in AdS/CFT.

2. The effective12 3D theory on world-volume R2
w,x × R+ with a defect supported on

Rx × R+. This is our analogue of the gravitational theory in AdS background (with
defect) in AdS/CFT.

To draw parallels once more with the traditional dictionary of AdS/CFT [95,128,155],
we should establish a duality between the operators in the D2-brane world-volume theory
and variations of boundary values of fields in the “gravitational” theory on R2

w,x×R+ (the
boundary is Rw,x×{∞}). Both of these surfaces have a line operator/defect and this leads
to two types of operators, ones that are restricted to the line, and others that can be placed
anywhere. Local operators in a 2d surface are commuting, unless they are restricted to
a line. Therefore, in both of our theories, we have non-commutative associative algebras
whose centers consist of operators that can be placed anywhere in the 2d surface. For this
chapter we are mostly concerned with the non-commuting operators:

1. Operators in the world-volume theory of the D2-branes that are restricted to the
D2-D4 intersection.

12Effective, in the sense that this is the Kaluza-Klein reduction of a 6d theory with three compact
directions, though we don’t want to loose any dynamics, i.e., we don’t throw away massive modes.
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2. Variations of boundary values of fields in the effective theory along the intersection
(4.18) of the boundary R2

w,x × {∞} and the defect on Rx × R+.

In physical string theory, the analogue of the D4-branes would be coupled to the closed
string modes. In an appropriate low energy limit such gravitational couplings can be
ignored, leading to the notion of rigid holography [1]. Since we are working with topological
theory, we are assuming such a decoupling.

The computations in the “gravitational” side will be governed by the effective dynamics
on the defect on Rx × R+. This is the Kaluza-Klein compactification of the world-volume
theory of the D4-branes (with a line operator due to D2-D4 intersection). This 4d theory
(which we describe in §4.3.4) is familiar from previous works such as [43]. Therefore we use
the 4d dynamics, instead of the effective 2d one for our computations. In terms of Witten
diagrams (which we compute in §4.5) this means that while we have a 1D boundary, the
propagators are from the 4d theory and the bulk points are integrated over the 4d world-
volume R2 × C. We take the boundary line to be at y =∞ with some fixed coordinate z
in the complex direction. In future we shall refer to this line as `∞(z):

`∞(z) := Rx × {y =∞}× {z} . (4.19)

A cartoon of our setup

Let us make a diagrammatic summary of our brane setup in Fig 4.1. In the figure we draw

2d black brane

R2
w,x × {∞}

D2-brane

D4-brane

`∞(z)

Belongs to
the center.

Duality map

w

x
r

•

•

Figure 4.1: D2-brane, and the non-compact part of the backreacted bulk.

the non-compact part, namely R2
w,x ×R+, of the closed string background (the right hand
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side of (4.15)). We identify the location of the 2d black brane and the defect D4-branes,
the asymptotic boundary R2

w,x×{∞}, and the intersection between the boundary and the
defect. At the top of the picture, parallel to the asymptotic boundary, we also draw the
D2-branes. We draw the D2-branes independently of the rest of the diagram because the
D2-branes do not exist in the backreacted bulk, they become the black brane. However,
traditionally, parallels are drawn between the asymptotic boundary and the brane sourcing
the bulk (the D2-brane in this case). The dots on the asymptotic boundary represent local
variations of boundary values of fields in the bulk theory Tbk. The corresponding dots on
the D2-brane represent the local operators in the boundary theory Tbd that are dual to the
aforementioned variations. By the duality map in the figure we schematically represent
boundary excitations in the bulk theory corresponding to some local operators in the dual
description of the same dynamics in terms of the boundary theory.

4.3.3 BF: The theory on D2-branes

This is a 2d topological gauge theory on the stack of N D2-branes (see (4.8)), supported
on R2

w,x, with complexified gauge group GLN . The field content of this theory is:

Field Valued in
B Ω0(R2)× glN
A Ω1(R2)× glN

. (4.20)

A is a Lie algebra valued connection and B is a Lie algebra valued scalar, both complex.
The curvature of the connection is denoted as F = dA + A ∧ A. The action is given by:

SBF :=

∫
R2
w,x

tr N(BF) , (4.21)

where the trace is taken in the fundamental representation of glN .

We consider this theory in the presence of a line operator supported on Rx×{0}, caused
by the intersection of the D2 and D4-branes. The line operator is defined by a fermionic
quantum mechanical system living on it.13 The fields in the quantum mechanics (QM) are

13This closely resembles the D3-D5 system in type IIB string theory considered in [89], there too a
fermionic quantum mechanics lived on the intersection, giving rise to Wilson lines upon integrating out the
fermions. Note that we could have considered bosons, instead of fermions, living on the line, without any
significant change to our following computations. This would be similar to the D3-D3 system considered
in [89,90].
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K fundamental (of glN) fermions and their complex conjugates:

Field Valued in
ψi Ω0(Rx)×N

ψi Ω0(Rx)×N
, i ∈ {1, · · · , K} , (4.22)

where N refers to the fundamental representation of glN and N to the anti-fundamental.
The fermionic system has a global symmetry GLN×GLK . These fermions couple naturally
to the glN connection A of the BF theory. The action for the QM is given by:

SQM :=

∫
Rx

(
ψidψ

i + ψiAψ
i + ψjA

j
iψ

i
)
, (4.23)

where we have introduced a background glK-valued gauge field A ∈ Ω1(Rx) × glK . Note
that the terms in the above action are made glN invariant by pairing up elements of N
with elements of the dual space N.

Our first theory is this BF theory with the line operator, schematically:

Tbd := BFN ⊗N QMN×K , (4.24)

where the subscripts on BF and QM refer to the symmetries (GLN and GLN × GLK
respectively) of the respective theories and the subscript on ⊗ implies that the GLN is
gauged. There are two types of gauge (glN) invariant operators in the theory:14

for n ∈ N≥0 ,
operators restricted to Rx: Oi

j[n] := 1
~ψjB

nψi ,
operators not restricted to Rx: O[n] := 1

~tr NB
n .

(4.25)

Unrestricted local operators in two topological dimensions can be moved around freely,
implying that for any n ≥ 0, the operator O[n] commutes with all of the operators defined
above.15 The operator algebra of the 2d BF theory consists of all theses operators but for
this chapter we focus on the non-commuting ones, in other words we, focus on the quotient
of the full operator algebra of the boundary theory by its center.16 We shall compute
their Lie bracket in §4.4, which will establish an isomorphism with the Yangian. Had we
included the commuting operators as well we would have found a central extension of the
Yangian. In sum, the operator algebra we construct from the theory Tbd is:

AOp(Tbd) :=
(
Oi
j[n], O[n]

)
/(O[n]) . (4.26)

14The ~−1 appears in these definitions because the action (4.23) will appear in path integrals as
exp

(
−~−1SQM

)
, which means functional derivatives with respect to Aij inserts operators that carry ~−1.

15These operators are represented by the red dot on the D2-brane in figure 4.1.
16We shall similarly quotient out the center in the bulk theory as well.
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By the notation (x, y, · · · ) we mean the algebra generated by the set of operators {x, y, · · · }
over C.

Remark 4.3.1 (A speculative link). Note that it is possible to lift our D2 and D4 branes to
type IIB string theory while maintaining a one dimensional intersection. This results in a
D3-D5 setup (studied in particular in [89]) where on the D3 brane we find the N = 4 Yang-
Mills theory with a Wilson line.17 In [63,77,79], the authors considered local operators in
the N = 4 Yang-Mills that are restricted to certain Wilson lines. With the proper choice
of Wilson lines, Localization reduces this setup to 2d Yang-Mills theory with Wilson lines
– local operator insertions along the Wilson lines in 4d reduce to local operator insertions
along the Wilson lines in 2d [78]. 2d BF theory is the zero coupling limit of 2d Yang-Mills
theory. We therefore expect the algebra constructed in this section to be related to the
algebra constructed in the aforementioned references, at least in some limit.18 The algebra
in [77] would correspond to the K = 1 instance of our algebra, it may be an interesting
check to compute the analogue of the algebra in [77] for higher K. 4

4.3.4 4d Chern-Simons: The theory on D4-branes

This is a 4d gauge theory on the stack of K D4-branes, supported on R2
x,y×Cz with the line

L := Rx × (0, 0, 0) removed and with the (complexified) gauge group GLK . The notation
of distinguishing directions by R and C is meant to highlight the fact that observables in
this theory depend only on the topology of the real directions and depend holomorphically
on the complex directions.19 Due to the removed line, we can represent the topology of
the support of this theory as (c.f. (4.17)):

M := R× R+ × S2 . (4.27)

The field of this theory is just a connection:

Field Valued in

A Ω1(R2×C\L)
(dz)

⊗ glK
. (4.28)

The above notation simply means that A is a glK-valued 1-form without a dz component.
The theory is defined by the action:

SCS :=
i

2π

∫
M

dz ∧ CS(A) , (4.29)

17It is also interesting to note that the D5 brane in an Omega background reproduces the 4d CS
theory [44].

18We thank Shota Komatsu for pointing out this interesting possibility.
19In particular, they are independent of the coordinates x and y that parametrize the R2, and depend

holomorphically on z which parametrizes the C.
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where CS(A) refers to the standard Chern-Simons Lagrangian:

CS(A) = tr K

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (4.30)

where the trace is taken over the fundamental representation of glK . This theory is a 4d
analogue of the, perhaps more familiar, 3D Chern-Simons theory. We shall therefore refer
to it as the 4d Chern-Simons theory and sometimes denote it by CS4

K or just CS.

The removal of the line L from R2×C is caused by the D2-D4 brane intersection. Note
that from the perspective of the CS theory, the D2-D4 intersection looks like a Wilson
line. This means that we should be quantizing the CS theory on M with a background
electric flux supported on the S2 inside M . Alternatively, we can quantize the CS theory on
R4 ×C with a Wilson line inserted along L.20 The choice of representation for the Wilson
line is determined by the number, N , of D2-branes, let us denote this representation as
% : glK → V . With this choice, the Wilson line is defined as the following operator:

W%(L) := P exp

(∫
L

%(A)

)
, (4.31)

where P exp implies path ordered exponentiation, made necessary by the fact that the
exponent is matrix valued. The above operator is valued in End(V ). This in general
means that the following expectation value:

〈W%(L)〉 =

∫
DAW%(L) exp

(
−1

~SCS

)∫
DA exp

(
−1

~SCS

) , (4.32)

is valued in Hom(H−∞⊗V,H+∞⊗V ), whereH±∞ are the Hilbert spaces of the CS4
K theory

on the Cauchy surfaces perpendicular to L at x = ±∞, in the absence of the Wilson line.
However, for the particular CS theory, these Hilbert spaces are trivial and we end up with
a map that transports vectors in V from x = −∞ to x = +∞:

〈W%(L)〉 : V−∞ → V+∞ . (4.33)

20Recall that in case of the BF theory the line operator at the D2-D4 intersection was described by a
fermionic QM. We could do the same in this case. However, in this case it proves more convenient to
integrate out the fermion, leaving a Wilson line in its place. The mechanism is the same that appeared
for intersection of D3 and D5-branes in physical string theory [89].
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In picture this operator may be represented as:

〈W%(L)〉 :

W%(L)
V V

x = −∞ x = +∞

. (4.34)

The CS theory is quantized with some fixed boundary profile of the connection along the
boundary Rx × {∞} × S2.21 To express the dependence of expectations values on this
boundary value we put a subscript, such as 〈W%(L)〉A. Since we are essentially interested
in the Kaluza-Klein reduced theory on Rx × R+ we mostly care about the value of the
connection along the boundary line (defined in (4.19)) `∞(z) ⊂ Rx × {∞} × S2.

To define our second theory, we start with the product of the closed string theory and
the CS theory, Tcl⊗CS4

K , supported on R2
w,x×R+×S3 and compactify on S3, our notation

for this theory is the following:

Tbk := πS
3

∗
(
Tcl ⊗ CS4

K

)
. (4.35)

We can put the theory Tbd (4.24) on the plane Rw,x “at infinity” of R2
w,x×R+. This plane

has a distinguished line Rx × {∞} (4.18) where the D4-brane world volume intersects.22

Along this line we have the glK gauge field which couples to the fermions of the QM in Tbd

(this coupling corresponds to the last term in (4.23)). Boundary excitations from arbitrary
points on Rw,x × {∞} will correspond to operators in the BF theory that are commuting,
since these local excitations on a plane are not ordered. The non-commutative algebra we
are interested in in the BF theory is the algebra of operators restricted to a particular line.
Similarly, in the “gravitational” side of the setup, we are interested in boundary excitations
restricted to the line `∞(z). Let us look a bit more closely at the coupling between the
connection A and the fermions:

Iz :=
1

~

∫
`∞(z)

ψ
i
Ajiψj , `∞(z) = Rx × {y =∞}× {z} . (4.36)

A small variation of z leads to coupling between the fermions and z-derivatives of the
connection:

Iz+δz =
∞∑
n=0

1

~

∫
`∞(z)

(δz)n

n!
ψ
i
∂nzA

j
iψj . (4.37)

21The boundary was chosen to respect the symmetry of the Wilson line along L.
22After aligning the v-coordinates of the plane and the D4-branes.
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In the BF theory, the field B corresponds to the fluctuation of the D2-branes in the trans-
verse C direction [36]. Therefore, we can interpret the above varied coupling term as saying
that the operator in the boundary theory Tbd that couples to the derivative ∂nzA

j
i is pre-

cisely the operator Oi
j[n] = ~−1ψ

i
Bnψj (c.f. (4.25), (4.26)). This motivates us to look at

functional derivatives of 〈W%(L)〉A with respect to ∂nzA
j
i at fixed points along `∞(z), such

as:
δ

δ∂n1
z A

j1
i1

(p1)
· · · δ

δ∂nmz Ajmim (pm)
〈W%(L)〉A , p1, · · · , pm ∈ `∞(z) . (4.38)

Just as the expectation value 〈W%(L)〉A is End(V )-valued, these functional derivatives are
End(V )-valued as well.23 The action is given by applying the functional derivative on
〈W%(L)〉A (ψ) for any ψ ∈ V . Let us denote this operator as

T ij [n] : `∞(z)× V → V ,

p ∈ `∞(z) , T ij [n](p) : ψ 7→ δ

δ∂nzA
j
i (p)
〈W%(L)〉A (ψ) .

(4.39)

which can be pictorially represented by slight modifications of (4.34):

W%(L)

δ

δ∂nz A
j
i

x = p

y = 0, ψ T ij [n](p)(ψ)

x = −∞ x = +∞
y =∞

(4.40)

Composition of these operators, such as T i1j1 (p1) · · ·T imjm (pm), is defined by the expression
(4.38). A more precise and computable characterization of these operators and their com-
position in terms of Witten diagrams [155] will be given in §4.5 (see (4.126)). Due to
topological invariance along the x-direction, the operator T ij [n](p) must be independent of
the position p. However, since these operators are positioned along a line, their product
should be expected to depend on the ordering, leading to a non-commutative associative
algebra. We can now define the second algebra to appear in our example of holography:

ASc(Tbk) :=
(
T ij [n]

)
, (4.41)

i.e., the complex algebra generated by the set {T ij [n]}.
23After choosing a point along `∞(z).
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Remark 4.3.2 (Center of the algebra). In the BF theory we mentioned gauge invariant
operators that belong to the center of the algebra. Clearly, the holographic dual of those
operators do not come from the CS theory, rather they come from the closed string theory.
A 2-form field φ = φwxdw ∧ dx+ · · · from the closed string theory deforms the BF theory
as:

SBF → SBF +

∫
R2
w,x

dw ∧ dx (∂nz φwx) tr N (Bn) . (4.42)

Functional derivatives with respect to the fields ∂nz φw,x placed at arbitrary locations on
the asymptotic boundary R2

w,x × {∞} correspond to inserting the operators tr NB
n in the

BF theory.24 As we did in the BF theory, we are going to ignore these operators now as
well. 4

After all this setup, we can present the main result of this chapter:

Theorem 4.3.3. In the limit N →∞, both the algebra of local operators (4.26) along the
line operator in the theory Tbd = BFN ⊗N QMN×K, and the algebra of scatterings from

a line in the boundary (4.41) of the theory Tbk = πS
3

∗
(
Tcl ⊗ CS4

K

)
are isomorphic to the

Yangian of glK, i.e.:

AOp(Tbd)
N→∞∼= Y~(glK)

N→∞∼= ASc(Tbk) . (4.43)

The rest of the chapter is devoted to the explicit computations of these algebras.

4.4 AOp (Tbd) from BF⊗ QM theory

In this section we prove the first half of our main result (Theorem 4.3.3):

Proposition 4.4.1. The algebra AOp(Tbd), defined in the context of 2d BF theory with
the gauge group GLN coupled to a 1D fermionic quantum mechanics with global symmetry
GLN ×GLK, is isomorphic to the Yangian of glK in the limit N →∞:

AOp(Tbd)
N→∞∼= Y~(glK) . (4.44)

The BF theory coupled to a fermionic quantum mechanics was defined in §4.3.3, let us
repeat the actions here:

STbd
= SBF + SQM , (4.45)

24These functional derivatives are represented by the red dot on the asymptotic boundary in figure 4.1.
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where:

SBF =

∫
R2
w,x

tr N(BdA + B[A,A]) (4.46)

and SQM =

∫
Rx

(
ψidψ

i + ψiAψ
i
)
. (4.47)

We no longer need the source term, i.e., the coupling to the background glK connection
(c.f. (4.23)). Let us determine the propagators now.

The BF propagator is defined as the 2-point correlation function:

Pαβ(p, q) :=
〈
Bα(p)Aβ(q)

〉
. (4.48)

We choose a basis {τα} of glN which is orthonormal with respect to the trace tr N:

tr N(τατβ) = δαβ . (4.49)

Then the two point correlation function becomes diagonal in the color indices:

Pαβ(p, q) ≡ δαβP(p, q) . (4.50)

We shall often refer to just P as the propagator, it is determined by the following equation:25

1

~
dP(0, p) = δ2(p)dw ∧ dx . (4.51)

Once we impose the following gauge fixing condition:26

d ? P(0, p) = 0 , (4.52)

the solution is (using translation invariance to replace the 0 with an arbitrary point):

P(p, q) =
~
2π

dφ(p, q) , (4.53)

where φ(p, q) is the angle (measured counter-clockwise) between the line joining p-q and
any other reference line passing through p. In Feynman diagrams we shall represent this
propagator as:

P(p, q) = p q . (4.54)

25A minor technicality: P(p, q) is a 1-form on R2
p × R2

q and in (4.51), by P(0, p) we mean the pull-back
of P ∈ Ω2(R4) by the diagonal embedding R2 ↪→ R2 × R2.

26This is the analogue of the Lorentz gauge.
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Similarly, the propagator in the QM is defined by:

1

~
∂x2

〈
ψ
a

i (x1)ψjb(x2)
〉

= δab δ
j
i δ

1(x1 − x2) , (4.55)

with the solution: 〈
ψ
a

i (x1)ψjb(x2)
〉

= δab δ
j
i ~ϑ(x2 − x1) , (4.56)

where ϑ(x2 − x1) is a unit step function. Anti-symmetry of the fermion fields dictates:〈
ψjb(x1)ψ

a

i (x2)
〉

= −
〈
ψ
a

i (x2)ψjb(x1)
〉

= −δab δ
j
i ~ϑ(x1 − x2) . (4.57)

We take the step function to be:

ϑ(x) =
1

2
sgn(x) =


1/2 for x > 0
0 for x = 0
−1/2 for x < 0

. (4.58)

Then we can write:〈
ψ
a

i (x1)ψjb(x2)
〉

=
〈
ψjb(x1)ψ

a

i (x2)
〉

= δab δ
j
i

~
2

sgn(x2 − x1) . (4.59)

This propagator does not distinguish between ψ and ψ and it depends only on the order
of the fields, not their specific positions. In Feynman diagrams we shall represent this
propagator as:

~
2

sgn(x2 − x1) = x1 x2
, (4.60)

where the curved line refers to the propagator itself and the horizontal line refers to the
support of the QM, i.e., the line w = 0. We now move on to computing operator products
that will give us the algebra AOp(Tbd).

Remark 4.4.1 (Fermion vs. Boson - Propagator). We might as well have considered a
bosonic QM instead of a fermionic QM. At present, this is an arbitrary choice, however, if
one starts from some brane setup in physical string theory and reduce it to the topological
setup we are considering by twists and Ω-deformations,27 then depending on the starting
setup one might end up with either statistics. Let us make a few comments about the
bosonic case. In the first order formulation of bosonic QM the action looks exactly as in
the fermionic action 4.47 except the fields would be commuting – let us denote the bosonic

27We describe one such specific procedure in §4.6.
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counterpart of ψ and ψ by φ and φ respectively. Then, instead of the propagator (4.59),
we would have the following propagator:28

−
〈
φ
a

i (x1)φjb(x2)
〉

=
〈
φjb(x1)φ

a

i (x2)
〉

= δab δ
j
i

~
2

sgn(x2 − x1) . (4.61)

Note that the extra sign in the first term (compared to (4.59)) is consistent with the
commutativity of the bosonic fields:〈

φ
a

i (x1)φjb(x2)
〉

=
〈
φjb(x2)φ

a

i (x1)
〉
. (4.62)

The bosonic propagator (4.61) distinguishes between φ and φ, in that, the propagator is
positive if φ(x1) is placed before φ(x2), i.e., x1 < x2, and negative otherwise. 4

4.4.1 Free theory limit, O(~0)

Interaction in the quantum mechanics is generated via coupling to the glN gague field (see
(4.47)). Without this coupling, the quantum mechanics is free. In this section we compute
the operator product between Oi

j[m] and Ok
l [n] in this free theory, which will give us the

classical algebra.

Let us denote the operator product by ?, as in:

Oi
j[m] ? Ok

l [n] . (4.63)

The classical limit of this product has an expansion in Feynman diagrams where we ignore
all diagrams with BF propagators. Before evaluating this product let us illustrate the
computations of the relevant diagrams by computing one exemplary diagram in detail.

Consider the following diagram:29

Gik
jl [M ·N](x1, x2) :=

x1

Oij [m]
x2

Okl [n]

(4.64)

28We have chosen the overall sign of the propagator to make comparision between Feynman diagrams
involving bosonic operators and fermionic operators as simple as possible. However, the overall sign is not
important for the determination of the algebra. The parameter ~ enters the algebra as the formal variable
deforming the universal enveloping algebra U(glK [z]) to its Yangian, and the sign of ~ is irrelevant for this
purpose.

29The reader can ignore the elaborate symbols (triangles and as such) that we use to refer to a diagram.
They are meant to systematically identify a diagram, but for practical purposes the entire expression can
be thought of as an unfortunately long unique symbol assigned to a diagram, just to refer to it later on.
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We are representing the operator Oi
j[m] = 1

~ψ
a

j (B
m)baψ

i
b by the symbol where the three

dots represent the three fields ψ
a

j , (Bm)ba, and ψib respectively. The coordinate below an
operator in (4.64) represents the position of that operator and the lines connecting different
dots are propagators. Depending on which dots are being connected a propagator is either
the BF propagator (4.53) or the QM propagator (4.59). The value of the diagram is then
given by:

Gik
jl [M ·N](x1, x2) =

1

~
ψ
a

j (x1)(B(x1)m)ba
1

2
~δcbδil

1

~
(B(x2)n)dcψ

k
d(x2) ,

=
1

2~
δilψj(x1)B(x1)mB(x2)nψk(x2) . (4.65)

In the second line we have hidden away the contracted glN indices. In computing the
operator product (4.63) only the following limit of the diagram is relevant:

lim
x2→x1

Gik
jl [M ·N](x1, x2) =

1

2~
δilψjB

m+nψk =
1

2
δilO

k
j [m+ n] . (4.66)

We have ignored the positions of the operators, because the algebra we are computing
must be translation invariant. Reference to position only matters when we have different
operators located at different positions.

We can now give a diagramatic expansion of the operator product (4.63) in the free
theory:

Oi
j[m] ? Ok

l [n]
x2→x1

=
x1 x2

+
x1 x2

+
x1 x2

+
x1 x2

.

(4.67)

We have omitted the labels for the operators in the diagrams. It is understood that the
first operator is Oi

j[m] and the second one is Ok
l [n]. Summing these four diagrams we find:

Oi
j[m] ? Ok

l [n] = Oi
j[m]Ok

l [n] +
1

2
δilO

k
j [m+ n]− 1

2
δkjO

i
l [m+ n] +

1

4
δilδ

k
j tr NB

m+n . (4.68)

The product in the first term on the right hand side of the above equation is a c-number
product, hence commuting. The sign of the third term comes from the first diagram in the
second line in (4.67). In short, this comes about by commuting two fermions, as follows:

lim
x2→x1

Gik
jl [N ·M](x1, x2) =

1

2~
δkjψ

iBm+nψl = − 1

2~
δkjψlB

m+nψi = −1

2
δkjO

i
l [m+ n] . (4.69)
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Using (4.68) we can compute the Lie bracket of the algebra AOp(Tbd) in the classical
limit: [

Oi
j[m], Ok

l [n]
]
?

= δilO
k
j [m+ n]− δkjOi

l [m+ n] . (4.70)

This is the Lie bracket in the loop algebra glK [z].30

Remark 4.4.2 (Fermion vs. Boson - Classical Algebra). How would the bracket (4.70) be
affected if we had a bosonic QM? It would not. The first and the fourth diagrams from
(4.67) would still cancel with their counterparts when we take the commutator. The value
of the second diagram, (4.66), remains unchanged. In computing the value of the third
diagram (see (4.69)) we get an extra sign compared to the fermionic case because we don’t
pick up any sign by commuting bosonos, however, we pick up yet another sign from the
propagator relative to the fermionic propagator (see Remark 4.4.1 – compare the bosonic
(4.61) and fermionic (4.59) propagators).

4.4.2 Loop corrections from BF theory

Interaction in the BF theory comes from the following term in the BF action (4.46):

fαβγ

∫
R2

BαAβ ∧ Aγ , (4.72)

where the structure constant fαβγ comes from the trace in our orthonormal basis (4.49):

fαβγ = tr N(τα[τβ, τγ]) . (4.73)

In Feynman diagrams this interaction will be represented by a trivalent vertex with exactly
1 outgoing and 2 incoming edges. Including the propagators for the edges, such a vertex
will look like:

q2, β

q3, γ q1, α

p =
~2

(2π)3
fαβγ

∫
p∈R2

dq1φ(p, q1) ∧ dq2φ(p, q2) ∧ dq3φ(p, q3) ,

=: V αβγ(q1, q2, q3) .

(4.74)

30The isomorphism is given by: Oij [m] 7→ zmeji , where eji are the elementary matrices of dimension
K ×K satisfying the relation:

[eji , e
l
k] = δlie

j
k − δ

j
keli . (4.71)
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We have given the name V αβγ to this vertex function.

Possibilities of Feynman diagrams are rather limited in the BF theory. In particular,
there are no cycles.31 This means that there is only one possible BF diagram that will
appear in our computations, which is the following:

. (4.75)

The middle operator looks slightly different because this operator involves the connection
A and an integration, as opposed to just the B field, to be specific,

=
1

~

∫
R
ψiAψ

i . (4.76)

This term is the result of the insertion of the term coupling the fermions to the glN
connection in the QM action (4.47). In doing the above integrationover R we shall take
ψ and ψ to be constant. In other words, we are taking derivatives of the fermions to be
zero. The reason is that, the equations of motion for the fermions (derived from the action
(4.47)), namely dψi = −Aψi and dψi = Aψi, tell us that derivatives of the fermions are
not gauge-invariant quantities – and we want to expand the operator product of gauge
invariant operators in terms of other gauge invariant operators only.32

In the following we shall consider the diagram (4.75) with all possible fermionic prop-
agators added to it.

0 fermionic propagators

We are mostly going to compute products of level 1 operators, i.e., Oi
j[1], this is because

together with the level 0 operators, they generate the entire algebra. Without any fermionic

31By cycle we mean loop in the sense of graph theory. In this chapter when we write loop without any
explanation, we mean the exponent of ~, as is customary in physics. This exponent is related but not
always equal to the number of loops (graph theory). Therefore, we reserve the word loop for the exponent
of ~, and the word cycle for what would be loop in graph theory.

Let us illustrate why there are no cycles in BF Feynman diagrams. Consider the cycle . The three

propagators in the cycle contribute the 3-form dφ1 ∧ dφ2 ∧ dφ3 to a diagram containing the cycle, where
the φ’s are the angles between two successive vertices. However, due to the constraint φ1 + φ2 + φ3 = 2π,
only two out of the three propagators are linearly independent. Therefore, their product vanishes.

32An alternative, and perhaps more streamlined, way to say this would be to formulate all the theories
in the BV/BRST formalism, where operators are defined, a priori, to be in the cohomology of the BRST
operator, which would exclude derivatives of the fermions to begin with.
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propagators, we just have the diagram (4.75):

Gik
jl [··](x1, x2) :=

x1

Oij [1]
x

1
~
∫
ψAψ

x2

Okl [1]

. (4.77)

In future, we shall omit the labels below the operators to reduce clutter. In terms of the
BF vertex function (4.74), the above diagram can be expressed as:

Gik
jl [··](x1, x2) =

1

~3
ψjταψ

iψτβψψlτγψ
k

∫
Rx
V αβγ(x1, x, x2) . (4.78)

We have used the expansions of B = Bατα and A = Aβτβ in the orthonormal glN basis
{τα}. As defined in (4.74), the vertex function V αβγ is a 2d integral of a 3-form, therefore,
the integration of the vertex function on a line gives us a number. It will be convenient to
divide up the integral of the vertex function into three integrals depending on the location
of the point x relative to x1 and x2:∫

Rx
V αβγ(x1, x, x2) = Vαβγ·|| (x1, x2) + Vαβγ|·| (x1, x2) + Vαβγ||· (x1, x2) , (4.79)

where,

Vαβγ·|| (x1, x2) :=

∫
x<x1

V αβγ(x1, x, x2) =
~2

24
fαβγ , (4.80a)

Vαβγ|·| (x1, x2) :=

∫
x1<x<x2

V αβγ(x1, x, x2) =
~2

24
fαβγ , (4.80b)

Vαβγ||· (x1, x2) :=

∫
x2<x

V αβγ(x1, x, x2) =
~2

24
fαβγ . (4.80c)

We evaluate these integrals in Appendix §E.1. Adding them up and substituting in (4.78)
we get from the diagram (4.77):

Gik
jl [··](x1, x2)

x1→x2=
1

8~
ψjταψ

iψτβψψlτγψ
kfαβγ . (4.81)

Since the glN indices are all contracted, we can choose a particular basis to get an expression
independent of any reference to glN . Choosing the elementary matrices as the basis we get
the following expression:

Gik
jl [··] =

π2

2~
ψje

a
bψ

iψecdψψle
e
fψ

kf bdface . (4.82)
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Using the definition of the elementary matrices (eab )
c
d = δadδ

c
b we get ψje

a
bψ

i = ψ
d

j (eab )
c
d ψ

i
c =

ψ
a

jψ
i
b and in this basis the structure constant is:

f bdface = δdaδ
f
c δ

b
e − δbcδdeδfa . (4.83)

Using these expressions in (4.82) we get:

Gik
jl [··] =

1

8~
(
ψjψ

m ψmψ
k ψlψ

i − ψlψm ψmψi ψjψk
)
,

=
1

8
~2
(
Om
j [0]Ok

m[0]Oi
l [0]−Om

l [0]Oi
m[0]Ok

j [0]
)
. (4.84)

The above expression is anti-symmetric under the exchange (i, j) ↔ (k, l), therefore, the
contribution of this diagram to the Lie bracket (4.70) is twice the value of the diagram.

1 fermionic propagator

We have the following six diagrams:

Gik
jl [·M ·N] = , Gik

jl [·N ·M] = ,

Gik
jl [M ·N ·] = , Gik

jl [N ·M ·] = ,

Gik
jl [M · · N] = , Gik

jl [N · · M] = .

(4.85)

In all the above diagrams, the left and the right most operators are Oi
j[1] and Ok

l [1] re-
spectively, and all the graphs are functions of x1 and x2, where these two operators are
located. Let us explain the evaluation of the top left diagram in detail. Written explicitly,
this diagram is:

Gik
jl [·M ·N](x1, x2) =

1

~3

∫
Rx
ψj(x1)ταψ

i(x1)ψ
a

m(x) (τβ)ba

〈
ψmb (x)ψ

c

l (x2)
〉

× (τγ)
d
c ψ

k
d(x2)V αβγ(x1, x, x2) , (4.86)
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where the two point correlation function is the QM propagator (4.59). The integrand
above depends on the position only to the extend that they depend on the ordering of
the positions, since we are only quantizing the constant modes of the fermions.33 The
propagator between the two fermions gives a propagator which depends on the sign of
x2−x (see (4.59), (4.60)), since we are integrating over x, this propagator will change sign
depending on whether x is to the left or to the right of x2.34 Therefore, we can write this
graph as:

Gik
jl [·M ·N] =

1

~2
ψjταψ

iψlτβτγψ
k
(
Vαβγ·|| + Vαβγ|·| − V

αβγ
||·

)
,

=
1

24
ψjταψ

iψlτβτγψ
k fαβγ =

1

24
ψjταψ

iψlτδψ
k f δ

βγ f
αβγ . (4.87)

Due to the symmetry f δ
βγ f

αβγ = f α
βγ f δβγ, the above expression is symmetric under the

exchange (i, j) ↔ (k, l), therefore this diagram does not contribute to the Lie bracket
(4.70). The diagrams Gik

jl [·N ·M], Gik
jl [M ·N ·], and Gik

jl [N ·M ·] do not contribute to the Lie
bracket for exactly the same reason. The remaining two diagrams evaluate to the following
expressions:

Gik
jl [M · · N] =

1

8~
fαβγδilψjτατγψ

kψτβψ , (4.88a)

Gik
jl [N · · M] = − 1

8~
fαβγδkjψlτγταψ

iψτβψ . (4.88b)

Their sum is symmetric under the exchange (i, j)↔ (k, l),35 and therefore these diagrams
do not contribute to the Lie bracket either.

None of the diagrams with one fermionic propagator contributes to the Lie bracket.

33Derivatives of the fermions are not gauge invariant.
34This is the reason why we computed the integrals (4.80) separately depending on the position of x.
35The opposite ordering of τα and τγ cancels the sign, using the anti-symmetry of the indices on the

structure constant.
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2 fermionic propagators

There are nine ways to join two pairs of fermions with propagators:

Gikjl [M·NO·H] Gikjl [HM·N·O] Gikjl [N·O·HM]

Gikjl [N·HM·O] Gikjl [NO·M·H] Gikjl [M·H·NO]

(4.89)

Gikjl [HM·NO·]
Gikjl [HM··NO]

Gikjl [·HM·NO]

The left and the right most operators in all of the above diagrams are Oi
j[1] and Ok

l [1]
respectively.

All three of the diagrams in the bottom line vanish. This is because joining all the
fermions in two operators with propagators introduces a trace tr N(τατβ) of glN generators
when the same color indices, α and β in this case, are contracted with the structure constant
coming form the BF interaction vertex, as in tr N(τατβ)fαβγ. Since the trace is symmetric
and the structure constant is anti-symmetric, these three diagrams vanish.

Computation also reveals the following relations:36

Gik
jl [H M ·NO] = Gik

jl [N · O · H M] , Gik
jl [NO · M ·H] = Gik

jl [M ·H · NO] , (4.90)

together with the fact that Gik
jl [H M ·N·O]+Gik

jl [NO ·M ·H] is symmetric under the exchange
(i, j)↔ (k, l). The above relations and symmetry implies that when anti-symmetrized with
respect to (i, j) ↔ (k, l), the sum of the four diagrams appearing in the above relations

36Among the four diagrams at the top right 2× 2 corner of (4.89).
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vanish. In a similar vein, the sum Gik
jl [M ·NO · H] + Gik

jl [N · H M ·O] also turns out to be
symmetric under (i, j)↔ (k, l) and therefore these two diagrams do not contribute to the
Lie bracket either.

None of the diagrams with two fermionic propagators contributes to the Lie bracket.

3 fermionic propagators

There are two ways to join all the fermions with propagators:

, (4.91)

As before, the left and the right most operators are Oi
j[1] and Ok

l [1] respectively. Both
of these diagrams are proportional to δilδ

k
j , in particular, they are symmetric under the

exchange (i, j)↔ (k, l), and therefore do not contribute to the Lie bracket.

Lie bracket

Since only the diagram with zero fermionic propagator (4.84) survives the anti-symmetrization,
the Lie bracket (4.70) up to O(~2) corrections becomes:[

Oi
j[1], Ok

l [1]
]
?

= δilO
k
j [2]− δkjOi

l [2] +Gik
jl [··]−Gki

lj [··] ,

= δilO
k
j [2]− δkjOi

l [2] +
~2

4

(
Om
j [0]Ok

m[0]Oi
l [0]−Om

l [0]Oi
m[0]Ok

j [0]
)
. (4.92)

Though we have only computed up to 2-loops diagrams, this result is exact, because there
are no more non-vanishing Feynman diagrams that can be drawn.

Since (4.92) is not among the standard relations of the Yangian that are readily available
in the literature, we shall now make a change of basis to get to a standard relation. First
note that, the product of operators in the right hand side of the above equation is not
the operator product, this product is commutative (anti-commutative for fermions) and
therefore we can write it in an explicitly symmetric form, such as:

Om
j [0]Ok

m[0]Oi
l [0] =

{
Om
j [0], Ok

m[0], Oi
l [0]
}
, (4.93)
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where the bracket means complete symmetriazation, i.e., for any three symbols O1, O2 and
O3 with a product we have:

{O1, O2, O3} =
1

3!

∑
s∈S3

Os(1)Os(2)Os(3) , (4.94)

where S3 is the symmetric group of order 3!. With this symmetric bracket, let us now
define:

Qik
jl := f iunjvmf

vpq
uorf

rtk
qsl

{
Om
n [0], Oo

p[0], Os
t [0]
}
, (4.95)

where f ijklmn are the glK structure constants in the basis of elementary matrices. Using the
form of the gl structure constant in the basis of elementary matrices (c.f. (4.83)) we can
write:

Qik
jl = 3

{
Oi
l , O

m
j , O

k
m

}
− 3

{
Ok
j , O

m
l , O

i
m

}
+ δkj

{
Om
l , O

n
m, O

i
n

}
− δil

{
Om
j , O

n
m, O

k
n

}
. (4.96)

We have ignored to write the [0] for each of the operators. Using the above expression we
can re-write (4.92) as:

[
Oi
j[1], Ok

l [1]
]
?

= δilÕ
k
j [2]− δkj Õi

l [2] +
~2

12
Qik
jl , (4.97)

with the redefinition:

Õk
j [2] := Ok

j [2]− ~2

12

{
Om
j , O

n
m, O

k
n

}
. (4.98)

Note that,
{
Om
j , O

n
m, O

k
n

}
does indeed transform as an element of glK , since it only has

a pair of fundamental-anti-fundamental glK indices free. This makes the redefinition of
Ok
j [2] possible. The Lie bracket (4.97) is how the Yangian was presented in [43].

Remark 4.4.3 (Fermion vs. Boson - Quantum Algebra). In Remark 4.4.2 we pointed out
that the classical part of the algebra (4.97) remains unchanged if we replace the fermionic
QM on the defect with a bosonic QM. This remains true at the quantum level – though a bit
tedious, it can be readily verified by using the bosonic propagator (4.61) and keeping track
of signs through the computations of this section without any other modifications. 4

4.4.3 Large N limit: The Yangian

For finite N , there are some extra relations among the operators Oi
j[n] that are not part

of the Yangian algebra. These relations are simply a result of having finite dimensional
matrices. We start by noting that the operators Oi

j[m] act on the Hilbert space Hfer
QM of
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the quantum mechanics. This is a finite dimensional Hilbert space constructed by acting
with the fermionic zero modes on the vacuum of the theory:

Hfer
QM = C|Ω〉 ⊕

⊕
i,a

Cψia|Ω〉 ⊕
⊕
i,j,a,b

Cψiaψ
j
b |Ω〉+ · · · . (4.99)

Considering the GLN and GLK indices on the fermions this Hilbert space can be decom-
posed into tensor products of representations of GLK and GLN as follows (see (E.9)):

Hfer
QM =

⊕
Y

HN
Y T ⊗HK

Y , (4.100)

where Y is a Young tableaux, Y T is the transpose of Y , HN
Y T (resp. HK

Y ) is the GLN
(resp. GLK) representation associated to the tableaux Y T (resp. Y ), and a bar over
a representation denotes its dual. Any d × d matrix X satisfies a degree d polynomial
equation:37

Xd =
d−1∑
i=0

ciX
i . (4.101)

Therefore, all the operators Oi
j[m] satisfy some polynomial equation of degree dimHfer

QM.
Since the matrix B is an N × N matrix there are relations among its different powers,
which can lead to relations among operators of the QM as well. In the limit N → ∞ we
do not need to worry about such truncations of the Yangian and we have the full Yangian.
This positively concludes the first half of our main result (Theorem 4.3.3).

Remark 4.4.4 (Fermion vs. Boson – Hilbert Space). The Hilbert space as a representation
of GLN ×GLK differs between the fermionic description of the defect QM and the bosonic
description. The fermionic Hilbert space (4.100) is finite dimensional because of the anti-
symmetry of the fermionic generators. There is no such exclusion principle for the bosons
and the bosonic Hilbert space is infinite dimensional. The bosonic Hilbert space is (see
(E.13)):

Hbos
QM =

⊕
Y

HN
Y ⊗HK

Y , (4.102)

where HN
Y and HK

Y are representations of GLN and GLK denoted by the same tableaux
Y . 4

37The relation between the coefficients appearing in (4.101) and X is the following [148]: if X has the

characteristic polynomial
∑d
i=0 aix

d−i with a0 = 1 and ui satisfy the recurrence relation
∑d
i=0 aiud−i = 0,

then ci =
∑d−1
j=i aj−iud−j .
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4.5 ASc(Tbk) from 4d Chern-Simons Theory

In this section we prove the second half of our main result (Theorem 4.3.3):

Proposition 4.5.1. The algebra ASc(Tbk), defined in (4.41) in the context of 4d Chern-
Simons theory, is isomorphic to the Yangian Y~(glK):

ASc(Tbk)
N→∞∼= Y~(glK) . (4.103)

The 4d Chern-Simons theory with gauge group GLK , also denoted by CS4
K , is defined

by the action (4.29), which we repeat here for convenience:

SCS :=
i

2π

∫
R2
x,y×Cz

dz ∧ tr K

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (4.104)

The trace in the fundamental representation defines a positive-definite metric on glK ,
moreover, we choose a basis of glK , denoted by {tµ}, in which the metric becomes diagonal:

tr K(tµtν) ∝ δµν . (4.105)

We consider this theory in the presence of a Wilson line in some representation % : glK →
End(V ), supported along the line L defined by y = z = 0:

W%(L) = P exp

(∫
L

%(A)

)
. (4.106)

Consideration of fusion of Wilson lines to give rise to Wilson lines in tensor product rep-
resentation shows that it is not only the connection A that couples to a Wilson line but
also its derivatives ∂nzA [43]. Furthermore, gauge invariance at the classical level requires
that ∂nzA couples to the Wilson line via a representation of the loop algebra glK [z]. So the
line operator that we consider is the following:

P exp

(∑
n≥0

%µ,n

∫
L

∂nzA
µ

)
, (4.107)

where the matrices %µ,n ∈ End(V ) satisfy:

[%µ,m, %ν,n] = f ξ
µν %ξ,m+n . (4.108)

118



The structure constant f ξ
µν is that of glK . In particular, we have %µ,0 = %(tµ).

In (4.28), A was defined to not have a dz component. The reason is that, due to the
appearance of dz in the above action (4.104), the dz component of the connection A never
appears in the action anyway.38

Though the theory is topological, in order to do concrete computations, such as impos-
ing gauge fixing conditions, computing propagator, and evaluating Witten diagrams etc.
we need to make a choice of metric on R2

x,y × Cz, we choose:39

ds2 = dx2 + dy2 + dzdz . (4.111)

For the GLK gauge symmetry we use the following gauge fixing condition:

∂xAx + ∂yAy + 4∂zAz = 0 . (4.112)

The propagator is defined as the two-point correlation function:

P µν(v1, v2) := 〈Aµ(v1)Aν(v2)〉 . (4.113)

Since in the basis of our choice the Lie algebra metric is diagonal (4.105), this propagator
is proportional to a Kronecker delta in the Lie algebra indices:

P µν(v1, v2) = δµνP (v1, v2) , (4.114)

where P is a 2-form on R4
v1
×R4

v2
. We can fix one of the coordinates to be the origin, this

amounts to taking the projection:

$ : R4
v1
× R4

v1
→ R4

v , $ : (v1, v2) 7→ v1 − v2 =: v . (4.115)

Due to translation invariance, P can be written as a pullback of some 2-form on R4 by
$, i.e., P = $∗P for some P ∈ Ω2(R4). The propagator P can be characterized as the

38Had we defined the space of connections to be Ω1(R2
x,y × Cz) ⊗ glK , then, in addition to the usual

GLK gauge symmetry, we would have to consider the following additional gauge transformation:

A→ A+ fdz , (4.109)

for arbitrary function f ∈ Ω0(R2 × C). We could fix this gauge by imposing:

Az = 0 . (4.110)

This would get us back to the space
(
Ω1(R2

x,y × Cz)/(dz)
)
⊗ glK .

39For this theory we follow the choices of [43] whenever possible.
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Green’s function for the differential operator i
2π~dz ∧ d that appears in the kinetic term of

the action SCS. For P this results in the following equation:

i

2π~
dz ∧ dP (v) = δ4(v)dx ∧ dy ∧ dz ∧ dz , (4.116)

The propagator P , and in turns P , must also satisfy the gauge fixing condition (4.112):

∂xP x + ∂yP y + 4∂zP z = 0 . (4.117)

The solution to (4.116) and (4.117) is given by:

P (x, y, z, z) =
~
2π

x dy ∧ dz + y dz ∧ dx+ 2z dx ∧ dy

(x2 + y2 + zz)2
. (4.118)

The propagator P (v1, v2) will be referred to as the bulk-to-bulk propagator, since the
points v1 and v2 can be anywhere in the world-volume R2

x,y × Cz of CS theory. To com-
pute Witten diagrams we also need a boundary-to-bulk propagator. We will denote it as
Kµ(v, x) ≡ K(v, x)tµ, where v ∈ R2

x,y × Cz and x ∈ `∞(z) is restricted to the boundary
line. The boundary-to-bulk propagator is a 1-form defined as a solution to the classical
equation of motion:

dzv ∧ dvK(v, x) = 0 , (4.119)

and by the condition that when pulled back to the boundary, in this case `∞(z), it must
become a delta function supported at x:

ε∗K(x′, x) = δ1(x′ − x)dx′ , x′ ∈ `∞(z) (4.120)

where ε : `∞(z) ↪→ R2 × C is the embedding of the line in the larger 4d world-volume. As
our boundary-to-bulk propagator we choose the following:

K(v, x) = dvθ(xv − x) = δ1(xv − x)dxv , (4.121)

where xv refers to the x-coordinate of the bulk point v. The function θ is the following
step function:

θ(x) =


1 for x > 0
1/2 for x = 0
0 for x < 0

. (4.122)

Note that we have functional derivatives with respect to ∂nzA for n ∈ N≥0. The propagator
(4.121) corresponds to the functional derivative with n = 0. Let us denote the propagator
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corresponding to δ
δ∂nz A

, more generally, as Kn, and for n ≥ 0, we modify the condition

(4.120) by imposing:

lim
v→x′

ε∗∂nzK(v, x) = δ1(x′ − x)dx′ , x′ ∈ `∞(z) . (4.123)

This leads us to the following generalization of (4.121):

Kn(v, x) = znv δ
1(xv − x)dxv . (4.124)

Apart from the two propagators, we shall need the coupling constant of the theory to
compute Witten diagrams. The coupling constant of this theory can be read off from the
interaction term in the action SCS, it is:

i

2π~
f ξ
µν dz . (4.125)

Now we can give a diagrammatic definition of the operators in the algebra ASc(Tbk),
namely the ones defined in (4.39), and their products:

Tµ1 [n1](p1) · · ·Tµm [nm](pm) =
∞∑
l=1

∑
ji≥0 · · ·

· · ·

%ν1,j1
q1

%νl,jl
ql

j1 jl

p1
µ1, n1

pm
µm, nm· · ·

· · ·

. (4.126)

Let us clarify some points about the picture. We have replaced the pair of fundamental-
anti-fundamental indices on T with a single adjoint index. The bottom horizontal line
represents the boundary line `∞(z), and the top horizontal line represents the Wilson line in
representation % : glK → V at y = 0. The sum is over the number of propagators attached
to the Wilson line and all possible derivative couplings. The orders of the derivatives are
mentioned in the boxes. The points q1 ≤ · · · ≤ ql on the Wilson line are all integrated along
the line without changing their order. The gray blob represents a sum over all possible
graphs consistent with the external lines. We use different types of lines to represent
different entities:

Bulk-to-bulk propagator, P (v1, v2) = v1 v2 ,

Boundary-to-bulk propagator, K(v, x) = v x ,

The boundary line `∞(z) : ,

Wilson line : .

(4.127)
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The labels µi, ni below the points along the boundary line implies that the corresponding
boundary-to-bulk propagator is Kni = zniK and that it carries a glK-index µi. Finally, the
jth derivative of Aν couples to the Wilson line via the matrix %ν,j. Such a diagram with
m boundary-to-bulk propagators and l bulk-to-bulk propagators attached to the Wilson
lines will be evaluated to an element of End(V ) which will schematically look like:

(Γm→l)
µ1···µl
ν1···νm %µ1,j1 · · · %µl,jl , (4.128)

where (Γm→l)
µ1···µm
ν1···νl is a number that will be found by evaluating the Witten diagram. Since

the bulk-to-bulk propagator (4.118) is proportional to ~ and the interaction vertex (4.125)
is proportional to ~−1, each diagram will come with a factor of ~ that will be related to
the Euler character of the graph.40 In the following we start computing diagrams starting
from O(~0) and up to O(~2), by the end of which we shall have proven the main result
(Proposition 4.5.1) of this section.

Remark 4.5.1 (Diagrams as m→ l maps, and deformation). Each m→ l Witten diagram
that appears in sums such as (4.126) can be interpreted as a map whose image is the value
of the diagram:

Γm→l :
m⊗
i=1

zniglK →
l⊗

i=1

zjiglK → End(V ) ,

Γm→l :
m⊗
i=1

znitµi 7→ (Γm→l)
µ1···µl
ν1···νm %µ1,j1 · · · %µl,jl .

(4.129)

As we shall see explicitly in our computations, diagrams in (4.126) without loops (diagrams
of O(~0)) define an associative product that leads to classical algebras such as U(glK [z]).
However, there are generally more diagrams in (4.126) involving loops (diagrams of O(~)
and higher order) that change the classical product to something else. Since loops in
Witten or Feynman diagrams are the essence of the quantum interactions, classical algebras
deformed by such loop diagrams are aptly called quantum groups (of course, why they are
called groups is a different story entirely [30].) 4

40In a Feynman diagram all propagators are proportional to ~ and the power of ~ of a diagram relates
simply to the number of faces of the diagram, which is why ~ is called the loop counting parameter. In
a Witten diagram the boundary-to-bulk propagators do not carry any ~ and therefore the power of ~
depends also on the number of boundary-to-bulk propagators. However, we are going to ignore this point
and simply refer to the power of ~ in a diagram as the loop order of that diagram.
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4.5.1 Relation to anomaly of Wilson line

As we shall compute relevant Witten diagrams of the 4d Chern-Simons theory in detail
in later sections, we shall find that the computations are essentially similar to the com-
putations of gauge anomaly of the Wilson line [43] in this theory. This of course is not
a coincidence. To see this, let us consider the variation of the expectation value of the
Wilson line, 〈W%(L)〉A, as we vary the connection A along the boundary line `∞(z):

δ 〈W%(L)〉A =
∞∑
n=0

∫
p∈`∞(z)

δ

δ∂nzA
µ(p)
〈W%(L)〉A δ∂

n
zA

µ(p) . (4.130)

Let us make the following variation:

δ∂zA
µ(x) = δ1(x− p)ηµ = dxθ(x− p)ηµ , (4.131)

for some fixed Lie algebra element ηµtµ ∈ glK . Then we find:

δ 〈Wρ(L)〉A =
δ

δ∂zAµ(p)
〈W%(L)〉A η

µ . (4.132)

An exact variation of the boundary value of the connection is like a gauge transformation
that does not vanish at the boundary. In [43] it was proved that such a variation of the
connection leads to a variation of the Wilson line which is a local functional supported on
the line:

δ 〈W%(L)〉A = ([%µ,1, %ν,1] + Θµ,1,ν,1)

∫
L

∂zA
µ∂zc

ν , (4.133)

where c was the generator of the gauge transformation:

∂zdc
µ = δ∂zA

µ , (4.134)

ρµ,1 ∈ End(V ) is part of the representation of glK [z] that couples ∂zA
µ to the Wilson line

(see (4.107)), and Θµ,1,ν,1, which is anti-symmetric in µ and ν, is a matrix that acts on V .
Variations such as the above measure gauge anomaly associated to the line, though in our
case it is not an anomaly since we are varying the connection at the boundary, and such
“large gauge” transformations are not actually part of the gauge symmetry of the theory.
The matrix Θµ,1,ν,1 which signals the presence of anomaly is not an arbitrary matrix and
in [43], all constraints on this matrix were worked out, we shall not need them at the
moment. Comparing with (4.131) we see that for us ∂zc

µ(x) = θ(x− p)ηµ, which leads to:

δ 〈W%(L)〉A =
(
f ξ
µν %ξ,2 + Θµ,1,ν,1

) ∫
x>p

∂zA
µην , (4.135)
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where we have used the fact that the matrices %µ,1 satisfy the loop algebra (4.108). The
integral above is along L. The connection A above is a background connection satisfying
the equation of motion, i.e., it is flat. Since the D4 world-volume, even in the presence of
a Wilson line, has no non-contractible loop, all flat connections are exact. Symmetry of
world-volume dictates in particular that the connection must also be translation invariant
along the direction of the Wilson line L. By considering the integral of A along the following
rectangle:

dA = 0

y = 0

y =∞

x =∞x = p

`∞(z)

L

(4.136)

and using translation invariance in the x-direction along with Stoke’s theorem, we can
change the support of the integral in (4.135) from L to `∞(z), to get:

δ 〈W%(L)〉A =
(
f ξ
µν %ξ,2 + Θµ,1,ν,1

) ∫
`∞(z)3x>p

∂zA
µην . (4.137)

Comparing with (4.132) we find:

δ

δ∂zAν(p)
〈W%(L)〉A =

(
f ξ
µν %ξ,2 + Θµ,1,ν,1

) ∫
x>p

∂zA
µ , (4.138)

where the integral is now along the boundary line `∞(z). This leads to the following
relation between our algebra and anomaly:

[Tµ[1], Tν [1]]

= lim
ι→0

[
δ

δ∂zAµ(p+ ι)

δ

δ∂zAν(p)
− δ

δ∂zAν(p)

δ

δ∂zAµ(p+ ι)

]
〈W%(L)〉A

= f ξ
µν %ξ,2 + Θµ,1,ν,1 . (4.139)

The first term with the structure constant gives us the loop algebra glK [z], which is
the classical result. The anomaly term is the result of 2-loop dynamics [43], i.e., it is
proportional to ~2. This term gives the quantum deformation of the classical loop algebra.
This also explains why our two loop computation of the algebra is similar to the two loop
computation of anomaly from [43].

At this point, we note that we can actually just use the result of [43] to find out what
Θµ,1,ν,1 is and we would find that the deformed algebra of the operators T µ[n] is indeed
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the Yangian Y~(glK). However, we think it is illustrative to derive this result from a direct
computation of Witten diagrams.

4.5.2 Classical algebra, O(~0)

Lie bracket

We denote a diagram by Γdn→m when there are n boundary-to-bulk propagators, m propa-
gators attached to the Wilson line, and the diagram is of order ~d. If there are more than
one such diagrams we denote them as Γdn→m,i with i = 1, · · · .

Our aim in this section is to compute the product Tµ[m](p1)Tν [n](p2) and eventually
the commutator

[Tµ[m], Tν [n]] := lim
p2→p1

(Tµ[m](p1)Tν [n](p2)− Tν [n](p1)Tµ[m](p2)) , (4.140)

at 0-loop.41

We have the following two 2→ 2 diagrams:

Γ0
2→2,1 ( p1

µ,m ; p2
ν,n) =

p1
µ,m

p2
ν,n

q1 q2

m n

, Γ0
2→2,2 ( p1

µ,m ; p2
ν,n) =

p1
µ,m

p2
ν,n

q2 q1

n m

, (4.141)

where a label m in a box on the Wilson line refers to the coupling between the Wilson
line and the mth derivative of the connection. The first diagram evaluates to (note that
p1 < p2 and q1 < q2):

Γ0
2→2,1 ( p1

µ,m ; p2
ν,n) =

∫
q1<q2

dq1dq2 δ
1(q1 − p1)δ1(q2 − p2)%µm%

ν
n ,

= %µ,m%ν,n , (4.142)

and the second one (with p1 < p2 and q1 > q2):

Γ0
2→2,2 ( p1

µ,m ; p2
ν,n) =

∫
q1>q2

dq2dq1 δ
1(q1 − p1)δ1(q2 − p2)%ν,n%µ,m ,

= 0 . (4.143)

41[Tµ[m](p1), Tν [n](p1)] may be a more accurate notation but this algebra must be position invariant
and therefore we shall ignore the position. Reference to the position only matters when different operators
are positioned at different locations.
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Therefore their contribution to the commutator is:

[Tµ[m], Tν [n]] = lim
p2→p1

(
Γ0

2→2,1 ( p1
µ,m ; p2

ν,n)− Γ0
2→2,1 ( p1

ν,n ; p2
µ,m)

)
,

= [%µ,m, %ν,n] = f ξ
µν %ξ,m+n = f ξ

µν Tξ[m+ n] , (4.144)

where the last equality is established by evaluating the diagram:

m+ n

p
ξ,m+n

. (4.145)

The bracket (4.144) is precisely the Lie bracket in the loop algebra glK [z]. Note in
passing that had we considered the same diagrams as the ones in (4.141) except with
different derivative couplings at the Wilson line then the diagrams would have vanished,
either because there would be more z-derivatives than z, or there would be less, in which
case there would be z’s floating around which vanish along the Wilson line located at
y = z = 0.

There is one 2→ 1 diagram as well:

p1
µ,m

p2
ν,n

m+ n

, (4.146)

however, since the two boundary-to-bulk propagators are two parallel delta functions,42

they never meet in the bulk and therefore the diagram vanishes. There are no more
classical diagrams, so the Lie bracket in the classical algebra is just the bracket in (4.144).

Coproduct

Apart from the Lie algebra structure, the algebra ASc(Tbk) also has a coproduct structure.
This can be seen by considering the Wilson line in a tensor product representation, say U⊗
V . Such a Wilson line can be produced by considering two Wilson lines in representations
U and V respectively and bringing them together, and asking how Tµ[n] acts on U ⊗ V .

42i.e., their support are restricted to x = p1 and x = p2 respectively with p1 6= p2, so they never intersect.
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Since there are going to be multiple vector spaces in this section, let us distinguish the
actions of Tµ[n] on them by a superscript, such as, TUµ [n], T Vµ [n], etc. At the classical
level the answer to the question we are asking is simply given by computing the following
diagrams:

U
V

p
µ,m

m

+
U
V

p
µ,m

m

. (4.147)

Evaluation of these diagrams is very similar to that of the diagrams in (4.141) and the
result is:

TU⊗Vµ [m] = TUµ [m]⊗ idV + idU ⊗ T Vµ [m] . (4.148)

This is the same coproduct structure as that of the universal enveloping algebra U(glK [z]).

Combining the results of this section and the previous one we find that, at the classical
level we have an associative algebra with generators Tµ[n] with a Lie bracket and coproduct
given by the Lie bracket of the loop algebra glK [z] and the coproduct of its universla
enveloping algebra. This identifies ASc(Tbk), clasically, as the universal enveloping algebra
itself:

Lemma 4.5.2. The large N limit of the algebra ASc(Tbk) at the classical level is the
universal enveloping algebra U(glK [z]):

ASc(Tbk)/~
N→∞∼= U(glK [z]) ∼= Y~(glK)/~ . (4.149)

The reason why we need to take the large N limit is that, the operators Tµ[m] acts on
a vector space which is finite dimensional for finite N . This leads to some extra relations
in the algebra, which we can get rid of in the large N limit. A similar argument was
presented for the operator algebra coming from the BF theory in §4.4.3 and the argument
in the context of the CS theory will be explained in more detail in §4.5.4.

4.5.3 Loop corrections

1-loop, O(~)

Now we want to compute 1-loop deformation to both the Lie algebra structure and the
coproduct structure of ASc(Tbk).
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Lie bracket. The 2→ 1 diagrams at this loop order are:43

, , , . (4.150)

All of these vanish due to Lemma E.4.1 of §E.4.1.

The 2→ 2 diagrams at this loop order are:

+ . (4.151)

Note that, since the bulk points are being integrated over, crossing the boundary-to-bulk
propagators does not produce any new diagram, it just exchanges the two diagrams that
we have drawn:

crossing−−−−−→ = . (4.152)

For this reason, in future we shall only draw diagrams up to crossing of the boundary-to-
bulk propagators that are connected to bulk interaction vertices.

Now let us comment on the evaluation of the diagrams in (4.151). We start by do-
ing integration by parts with respect the differential corresponding to either one of the
two boundary-to-bulk propagators. As mentioned in §E.4.2, this gives two kinds of con-
tributions, one coming from collapsing a bulk-to-bulk propagator, the other coming from
boundary terms. Collapsing any of the bulk-to-bulk propagators leads to a configuration
which will vanish due to Lemma E.4.2 (§E.4.1). Therefore, doing integration by parts will
only result in a boundary term. Recall from the general discussion in §E.4.2 that only
the boundary component of the integrals along the Wilson line can possibly contribute.
Since there are two points on the Wilson line, let us call them p1 and p2, the domain of
integration is:

∆2 = {(p1, p2) ∈ R2 | p1 < p2} . (4.153)

43Sometimes we ignore to specify the derivative couplings at the Wilson line, when the diagrams we
draw are vanishing regardless.
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The boundary of this domain is:

∂∆2 = {(p1, p2) ∈ R2 | p1 = p2} . (4.154)

Once restricted to this boundary, both of the diagrams in (4.151) will involve a configuration
such as the following:

, (4.155)

which vanishes due to Lemma E.4.1.44 The diagrams (4.151) thus vanish.

There are four other 2→ 2 diagrams at 1-loop, they can be generated by starting with:

, (4.156)

and then

1. Permuting the two points on the Wilson line.

2. Permuting the two points on the boundary.

3. Simultaneously permuting the two points on the Wilson line and the two points on
the boundary.

All of these diagrams vanish due to Lemma E.4.1.

There are also six 2→ 3 diagrams. All of these can be generated from the following:

, (4.157)

by permuting the points along the Wilson line and the boundary. However, due to Lemma
E.4.2, all of these diagrams vanish.

44These diagrams actually require a UV regularization due to logarithmic divergence coming from the
two points on the Wilson line being coincident. To regularize, the domain of integration needs to be
restricted from ∆2 to ∆̃2 := {(p1, p2) ∈ R2 | p1 ≤ p2 − ε} for some small positive number ε, which leads
to the modified boundary equation p1 = p2 − ε, however, this does not affect the arguments presented in
the proof of Lemma E.4.1 (essentially because ε is a constant and dε = 0, resulting in no new forms other
than the ones considered in the proof), and therefore we are not going to describe the regularization of
these diagrams in detail.
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There are no more 2 → m diagrams at 1-loop. Thus, we conclude that there is no
1-loop contribution to the Lie bracket in ASc(Tbk).

Coproduct. We use the same superscript notation we used in §4.5.2 to distinguish between
the actions of Tµ[m] on different vector spaces. The 1-loop diagram that deforms the
classical coproduct is the following:

Γ1
1→2 ( p

µ,1) =

p
µ,1

U
V

(4.158)

Happily for us, precisely this diagram was computed in eq. 5.6 of [43] to answer the question
“how does a background connection couple to the product Wilson line?”. The result of that
paper involved an arbitrary background connection where we have our boundary-to-bulk
propagator, so we just need to replace that with K1(v, p) = zvδ

1(xv − p) and we find:

Γ1
1→2 ( p

µ,1) = −~
2
f νξ
µ TUν [0]⊗ T Vξ [0] . (4.159)

This deforms the classical coproduct (4.148) as follows:

TU⊗Vµ [1] = TUµ [1]⊗ idV + idU ⊗ T Vµ [1]− ~
2
f νξ
µ TUν [0]⊗ T Vξ [0] . (4.160)

The exact same computation with K0 instead of K1 shows that Γ1
1→2 ( p

µ,0) = 0, i.e., the
classical algebra of the 0th level operators remain entirely undeformed at this loop order.45

Thus we see that at 1-loop, the Lie algebra structure in ASc(Tbk) remains undeformed,
but there is a non-trivial deformation of the coalgebra structure. At this point, there is a
mathematical shortcut to proving that the algebra ASc(Tbk), including all loop corrections,
is the Yangian. The proof relies on a uniqueness theorem (Theorem 12.1.1 of [30]) concern-
ing the deformation of U(glK [z]). Being able to use the theorem requires satisfying some
technical conditions, we discuss this proof in Appendix E.3. This proof is independent of
the rest of the chapter, where we compute two loop corrections to the commutator (4.144)
which will directly show that the algebra is the Yangian.

45Note that the 0th level operators form a closed algebra which is nothing but the Lie algebra glK .
Reductive Lie algebras belong to discrete isomorphism classes and therefore they are robust against con-
tinuous deformations. So the algebra of Tµ[0] will in fact remain undeformed at all loop orders. We will
not make more than a few remarks about them in the future.
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2-loops, O(~2)

The number of 2-loop diagrams is too large to list them all, and most of them are zero.
Instead of drawing all these diagrams let us mention how we can quickly identify a large
portion of the diagrams that end up being zero.

Consider the following transformations that can be performed on a propagator or a
vertex in any diagram:

→ , → ,

→ , → , → .
(4.161)

All these transformations increase the order of ~ by one, however, all the diagrams con-
structed using these modifications are zero due to Lemma E.4.1. We will therefore ignore
such diagrams. Let us now identify potentially non-zero 2→ m diagrams at 2-loops.

All 2-loop 2 → 1 diagrams are created from lower order diagrams using modifications
such as (4.161). All of them vanish.

For 2 → 2 diagrams, ignoring those that are results of modifications such as (4.161)
or that are product of lower order vanishing diagrams, we are left with the sum of the
following diagrams:

Γ2
2→2,1 = , Γ2

2→2,2 = ,

Γ2
2→2,3 = , Γ2

2→2,4 = .

(4.162)

Let us first consider the first two diagrams Γ2
2→2,1 and Γ2

2→2,2. Collapsing any of the bulk-
to-bulk propagators will result in a configuration where either Lemma E.4.1 or E.4.2 is
applicable. Therefore, when we do integration by parts with respect to the differential in
one of the two boundary-to-bulk propagators we only get a boundary term. The boundary
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corresponds to the boundary of ∆2 (defined in (4.153)), and when restricted to this bound-
ary, the integrand vanishes due to Lemma E.4.2, in the same way as for the diagrams in
(4.151).46

The diagrams Γ2
2→2,3 and Γ2

2→2,4 are symmetric under the exchange of the color labels
associated to the boundary-to-bulk propagators, for a proof see the discussion following
(E.40). So these diagrams don’t contribute to the anti-symmetric commutator we are
computing.

Now we come to the most involved part of our computations, 2→ 3 diagrams at 2-loops.
We have the sum of the following diagrams:

Γ2
2→3,1 = , Γ2

2→3,2 = , Γ2
2→3,3 = ,

Γ2
2→3,4 = , Γ2

2→3,5 = , Γ2
2→3,6 = .

(4.163)

All of these diagrams are in fact non-zero. We proceed with the evaluation of the diagram
Γ2

2→3,1:

Γ2
2→3,1 ( p1

µ,1 ; p2
ν,1) =

p1
µ,m

p2
ν,n

v1 v2
v3

q1 q2 q3

(4.164)

The glK factor of the diagram is easily evaluated to be:

f ξo
µ f πρ

ξ f σ
νπ %(to)%(tρ)%(tσ) . (4.165)

The numerical factor takes a bit more care. Each of the bulk points vi = (xi, yi, zi, zi)
is integrated over M = R2 × C and the points qi on the Wilson line take value in the

46These diagrams are linearly divergent when the two points on the Wilson line are coincident and they
require similar UV regularization as their 1-loop counterparts.
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simplex ∆3 = {(q1, q2, q3) ∈ R3 | q1 < q2 < q3}. For the sake of integration we can partially
compactify the bulk to M = R× S3. So the domain of integration for this diagram is:

M3 ×∆3 . (4.166)

However, this domain needs regularization due to UV divergences coming from the points qi
all coming together. As in [43], we use a point splitting regulator, by restricting integration
to the domain:

∆̃3 := {(q1, q2, q3) ∈ ∆3 | q1 < p3 − ε} , (4.167)

for some small positive number ε. We are not going to discuss the regulator here, as it
would be identical to the discussion in [43]. We shall now do integration by parts with
respect to the differential in the propagator connecting p1 and v1. Note that collapsing any
of the bulk-to-bulk propagators leads to a configuration where the vanishing Lemma E.4.2
applies. Therefore, contribution to the integral only comes from the boundary M3 × ∂∆̃3.
The boundary of the simplex has three components, respectively defined by the constraints
q1 = q2, q2 = q3, and q1 = q3−ε. However, when q1 = q2 or q2 = q3, we can use the vanishing
Lemma E.4.1 and the integral vanishes. Therefore the contribution to the diagram comes
only from integration over:

M3 × {(q1, q2, q3) ∈ ∆̃3 | q1 = q3 − ε} . (4.168)

Further simplification can be made using the fact that the propagator connecting p2 and
v3 is zδ1(x3 − p2). This restricts the integration over v3 to {p2} × S3. However, using
translation symmetry in the x-direction we can fix the position of q1 at (0, 0, 0, 0) and
allow the integration of v3 over all of M . However, due to the presence of the delta
function δ1(x3 − p2) in the boundary-to-bulk propagator, x3 and p1 = p2 − δ are rigidly
tied to each other. This way, we end up with the following integration for the numerical
factor:47

1

2

(
i

2π~

)3 ∫
0<q2<ε
v1,v2,v3

dq2d4v1d4v2d4v3θ(x1 − x−3 )z1z3P (v2, v1)

× P (v3, v2)P (q1, v1)P (q2, v2)P (q3, v3) ,

(4.169)

where q1 = (0, 0, 0, 0), q2 = (p2, 0, 0, 0), q3 = (ε, 0, 0, 0), and x−3 := x3 − δ, and since all the
forms that appear are even we have ignored the wedge product symbols to be economic.

Before evaluating the above integral, we note that the diagram Γ2
2→3,4 evaluates to the

47The factor of 1/2 comes from diagram automorphisms.
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same color factor and almost same numerical factor, except for a different step function:

1

2

(
i

2π~

)3 ∫
0<q2<ε
v1,v2,v3

dq2d4v1d4v2d4v3θ(x3 − x−1 )z1z3P (v2, v1)

× P (v3, v2)P (q1, v1)P (q2, v2)P (q3, v3) ,

(4.170)

Since we have to sum over all the diagrams, we use the fact that:

lim
δ→0

(
θ(x1 − x−3 ) + θ(x3 − x−1 )

)
= 1 , (4.171)

to write:

lim
p2→p1

(
Γ2

2→3,1 ( p1
µ,1 ; p2

ν,1) + Γ2
2→3,4 ( p1

µ,1 ; p2
ν,1)
)

= f ξo
µ f πρ

ξ f σ
νπ %(to)%(tρ)%(tσ)

(
i

2π~

)3
1

2

∫
0<q2<ε
v1,v2,v3

dq2d4v1d4v2d4v3

× z1z3P (v2, v1)P (v3, v2)P (q1, v1)P (q2, v2)P (q3, v3) ,

(4.172)

Let us refer to the above integral by ~2I1, so that we can write the right hand side of the
above equation as:

~2f ξo
µ f πρ

ξ f σ
νπ %(to)%(tρ)%(tσ) I1 . (4.173)

Similar considerations for the rest of the diagrams in (4.163) lead to similar expressions:

lim
p2→p1

(
Γ2

2→3,2 ( p1
µ,1 ; p2

ν,1) + Γ2
2→3,5 ( p1

µ,1 ; p2
ν,1)
)

= ~2f ξo
µ f πρ

ξ f σ
νπ %(tρ)%(to)%(tσ) I2 , (4.174a)

lim
p2→p1

(
Γ2

2→3,2 ( p1
µ,1 ; p2

ν,1) + Γ2
2→3,5 ( p1

µ,1 ; p2
ν,1)
)

= ~2f ξo
µ f πρ

ξ f σ
νπ %(to)%(tσ)%(tρ) I3 , (4.174b)

for two integrals I2 and I3 that are only slightly different from I1.48 To get the 2-loop
contributions to the commutator [Tµ[1], Tν , [1]] we need only to anti-symmetrize the ex-
pressions (4.173), (4.174). Putting them together with the classical result (4.144) we get
the Lie bracket up to 2-loops:

[Tµ[1], Tν , [1]] = f ξ
µν Tξ[2] + 2~2f ξo

[µ f πρ
ξ f σ

ν]π

(
To[0]Tρ[0]Tσ[0] I1

+ Tρ[0]To[0]Tσ[0] I2 + To[0]Tσ[0]Tρ[0] I3

)
,

(4.175)

where we have replaced matrix products such as %(tρ)%(to)%(tσ) with Tρ[0]To[0]Tσ[0] which
is accurate up to the loop order shown. Thus we see that quantum corrections deform the
classical Lie algebra of glK [z].

48These integrals can be performed and their values are I2 = I3 = 1
72

(
2− 3

π2

)
, I1 = 1

36

(
1 + 3

π2

)
though

we postpone computing them until we no longer need to compute them.

134



4.5.4 Large N limit: The Yangian

The deformed Lie bracket (4.175) may not look quite like the standard relations of the
Yangian found in the literature, but we can choose a different basis to get to the standard
relations, which we shall do momentarily.49 However, for finite N , our algebra has more
relations. Recall that the generators Tµ[1] act on the space V where classically V is a
representation space, % : glK [z] → End(V ), of the loop algebra glK [z] and the representa-
tion ρ was determined by the number N . The representation % depends on N because ρ
is the representation that couples the glK connection A to the Wilson line generated by
integrating out N×K fermions. The representation is essentially the Hilbert space (4.100)
of the fermionic QM that lives on the line. The important point for us is that, for finite
N , % is finite dimensional. This implies that, as we discussed at the end of §(4.4.2), the
generators Tµ[1] satisfy degree d polynomial equations where d = dim(V ). In the limit
N →∞ these relations disappear and we have our isomorphism with the Yangian Y (glK).

The Yangian in a more standard basis

To get to a standard defining bracket for the Yangian, we change basis as follows. There
is an ambiguity in Tξ[2]. In (4.144) it was equal to %ξ,2 at the classical level, but it can be
shifted at 2-loops (i.e., by a term proportional to ~2) by the image ϑ(tξ) for an arbitrary
glK-equivariant map ϑ : glK → End(V ). This shift simply corresponds to a different
choice for the counterterm that couples ∂2

zA
ξ to the Wilson line. Using this freedom

we want to replace products such as %(to)%(tρ)%(tσ) with the totally symmetric product
{%(to), %(tρ), %(tσ)} (defined in (4.94)). To this end, Consider the difference:

∆µν := 2~2f ξo
[µ f πρ

ξ f σ
ν]π (%(to)%(tρ)%(tσ)− {%(to), %(tρ), %(tσ)}) . (4.176)

The square brackets around µ and ν in the above equation implies anti-symmetrization
with respect to µ and ν. The difference ∆µν can be viewed as the image of the following
glK-equivariant map:

∆ : ∧2glK → End(V ) , ∆ : tµ ∧ tν 7→ ∆µν . (4.177)

We now propose the following lemma:

Lemma 4.5.3. The map ∆ factors through glK, i.e., ∆ : ∧2glK → glK → End(V ).

49We can also appeal to the uniqueness theorem 12.1.1 of [30], in conjunction with the result of Appendix
E.3, to conclude that the deformed algebra must be the Yangian Y~(glK).
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The proof of this lemma involves some algebraic technicalities which we relegate to the
Appendix §E.5. The utility of this lemma is that, it establishes the difference (4.176) as the
image of an element of glK which, according to our previous argument, can be absorbed
into a redefinition of %ξ,2 (equivalently Tξ[2]). Therefore, with a new T new

ξ [2] we can rewrite
(4.175) as:

[Tµ[1], Tν , [1]] = f ξ
µν T

new
ξ [2] + ~2(I1 + I2 + I3)Qµν , (4.178)

where we have also defined:

Qµν := 2f ξo
[µ f πρ

ξ f σ
ν]π {To[0], Tρ[0], Tσ[0]} . (4.179)

The reason why we have postponed presenting the evaluations of the individual integrals
I1, I2, and I3 is that we don’t need their individual values, only the sum, and precisely this
sum was evaluated in eq. (E.23) of [43] with the result:

I1 + I2 + I3 =
1

12
. (4.180)

We can therefore write (ignoring the “new” label on Tξ[2]):

[Tµ[1], Tν [1]] = f ξ
µν Tξ[2] +

~2

12
Qµν . (4.181)

This is the relation for the Yangian that was presented in §8.6 of [43] and how to relate
this to other standard relations of the Yangian was also discussed there. This is also the
exact relation we found in the boundary theory (c.f. (4.97)). Note furthermore that, if
we had used the relation between our algebra and anomaly (4.139) to derive the algebra
Lie bracket, we would have arrived at precisely the same conclusion, as the second term in
(4.181) is indeed the anomaly of a Wilson line (c.f. eq. 8.35 of [41]).

Thus we see that the algebra ASc(Tbk), defined in (4.41), at 2-loops, is the Yangian
Y~(glK):

ASc(Tbk)/~3
N→∞∼= Y~(glK)/~3 . (4.182)

The two loop result in the BF theory was exact. The above two loop result is exact as
well. Though we do not prove this by computing Witten diagrams, we can argue using the
form of the algebra in terms of anomaly (4.139). In [43] it was shown that there are no
anomalies beyond two loops. This concludes our second proof of Proposition 4.5.1.50

50The first one, which is significantly more abstract, being in Appendix E.3.
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4.6 String Theory Construction of The Duality

The topological theories we have considered so far can be constructed from a certain brane
setup in type IIB string theory and then applying a twist and an omega deformation.
This brane construction will show that the algebras we have constructed are infact certain
supersymmetric subsectors of the well studied N = 4 SYM theory with defect and its
holographic dual. We dscribe this construction below.

4.6.1 Brane Configuration

Our starting brane configuration involves a stack of N D3 branes and K D5 branes in type
IIB string theory on a 10d target space of the form R8 × C where C is a complex curve
which we take to be just the complex plane C. The D5 branes wrap R4 × C and the D3
branes wrap an R4 which has a 3d intersection with the D5 branes. Let us express the
brane configuraiton by the following table:

0 1 2 3 4 5 6 7 8 9
R4 C R4

D5 × × × × × ×
D3 × × × ×

(4.183)

The world-volume theory on the D5 branes is the 6d N = (1, 1) SYM theory coupled
to a 3d defect preserving half of the supersymmetry. Similarly, the world-volume theory
on the D3 branes is the 4d SYM theory coupled to a 3d defect preserving half of the
supersymmetry. To this setup we apply a particular twist, i.e., we choose a nilpotent
supercharge and consider its cohomology.

4.6.2 Twisting Supercharge

From the 6d Perspective

We use Γi with i ∈ {0, · · · , 9} for 10d Euclidean gamma matrices. We also use the notation:

Γi1···in := Γi1 · · ·Γin . (4.184)

Type IIB has 32 supercharges, arranged into two Weyl spinors of the same 10 dimen-
sional chirality – let us denote them as Ql and Qr. A general linear combination of them is
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written as εLQl + εRQr where εL and εR are chiral spinors parametrizing the supercharge.
The chirality constraints on them are:

iΓ0···9εL = εL , iΓ0···9εR = εR . (4.185)

We shall discuss constraints on the supercharge by describing them as constraints on the
parametrizing spinors.

The supercharges preserved by the D5 branes are constrained by:

εR = iΓ012345εL . (4.186)

This reduces the number of supercharges to 16. The D3 branes imposes the further con-
straint:

εR = iΓ0237εL . (4.187)

This reduces the number of supercharges by half once more. Therefore the defect preserves
just 8 supercharges. Since εR is completely determined given εL, in what follows we refer
to our choice of supercharge simply by referring to εL.

We want to perform a twist that makes the D5 world-volume theory topological along
R4 and holomorphic along C. This twist was described in [45]. Let us give names to the
two factors of R4 in the 10d space-time:

M := R4
0123 , M ′ := R4

6789 . (4.188)

The spinors in the 6d theory transform as representations of Spin(6) under space-time
rotations. N = (1, 1) algebra has two left handed spinors and two right handed spinors
transforming as 4l and 4r respectively.51 The subgroup of Spin(6) preserving the prod-
uct structure R4 × C is Spin(4)M × U(1). Under this subgroup 4l and 4r transform as
(2,1)−1⊕(1,2)+1 and (2,1)+1⊕(1,2)−1 respectively, where the subscripts denote the U(1)
charges. Rotations along M ′ act as R-symmetry on the spinors – the spinors transform as
representations of Spin(4)M ′ such that 4+ transforms as (2,1) and 4− transforms as (1,2).
In total, under the symmetry group Spin(4)M ×U(1)× Spin(4)M ′) the 16 supercharges of
the 6d theory transform as:

((2,1)−1 ⊕ (1,2)+1)⊗ (2,1)⊕ ((2,1)+1 ⊕ (1,2)−1)⊗ (1,2) . (4.189)

51There are two of each chirality because the R-symmetry is Sp(1) × Sp(1) = Spin(4)M ′ such that the
two left handed spinors transform as a doublet of one Sp(1) and the two right handed spinors transform
as a doublet of the other Sp(1).
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The twist we seek is performed by redefining the the space-time isometry:

Spin(4)M  Spin(4)new
M ⊆ Spin(4)M × Spin(4)M ′ , (4.190)

where the subgroup Spin(4)new
M of Spin(4)M×Spin(4)M ′ consists of elements (x, θ(x)) which

is defined by the isomorphism θ : Spin(4)M
∼−→ Spin(4)M ′ . More, explicitly, the isomorphism

acts as:
θ(Γµν) = Γµ+6,ν+6 , µ, ν ∈ {0, 1, 2, 3} . (4.191)

The generators of the new Spin(4)new
M are then:

Γµν + Γµ+6,ν+6 . (4.192)

After this redefinition, the symmetry Spin(4)M×U(1)×Spin(4)M ′ of the 6d theory reduces
to Spin(4)new

M × U(1) and under this group the representation (4.189) of the supercharges
becomes:

2(1,1)−1 ⊕ (3,1)−1 ⊕ (1,3)−1 ⊕ 2(2,2)+1 . (4.193)

We thus have two supercharges that are scalars along M , both of them have charge −1
under the U(1) rotation along C. We take the generator of this rotation to be −iΓ45, then
if ε is one of the scalar (on M) supercharges that means:

iΓ45ε = ε . (4.194)

We identify the supercharge ε by imposing invariance under the new rotation generators
on M , namely (4.192):

(Γµν + Γµ+6,ν+6)ε = 0 . (4.195)

The constraints (4.186) and (4.187) put by the D-branes and the U(1)-charge on C (4.194)
together are equivalent to the following four independent constraints:

iΓµ,µ+6ε = ε , µ{0, 1, 2, 3} . (4.196)

Together with the chirality constraint (4.185) in 10d we therefore have 5 equations, each
reducing the number degrees of freedom by half. Since a Dirac spinor in 10d has 32
degrees of freedom, we are left with 32× 2−5 = 1 degree of freedom, i.e., we have a unique
supercharge,52 which we call Q. It was shown in [45] that the supercharge Q is nilpotent:

Q2 = 0 , (4.197)

52Note that without using the constraint put by the D3 branes we would get two supercharges that are
scalar on M , i.e., there are two superhcarges in the 6d theory (by itself) that are scalar on M .
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and the 6d theory twisted by this Q is topological along M – which is simply a consequence
of (4.195) – and it is holomorphic along C. The latter claim follows from the fact that there
is another supercharge in the 2d space of scalar (on M) supercharges in the 6d theory, let’s
call it Q′, which has the following commutator with Q:

{Q,Q′} = ∂z , (4.198)

where z = 1
2
(x4 − ix5) is the holomorphic coordinate on C. This shows that z-dependence

is trivial (Q-exact) in the Q-cohomology.

From the 4d Perspective

What is new in our setup compared to the setup considered in [45] is the stack of D3
branes. We can figure out what happens to the world-volume theory of the D3 branes –
we get the Kapustin-Witten (KW) twist [110], as we now show. The equations (4.196) can
be used to to get the following six (three of which are independent) equations:

(Γ02 + Γ68)ε = 0 , (Γ03 + Γ69)ε = 0 , (Γ23 + Γ89)ε = 0 ,

(Γ07 + Γ16)ε = 0 , (Γ27 + Γ18)ε = 0 , (Γ37 + Γ19)ε = 0 .
(4.199)

These are in fact the equations that defines a scalar supercharge in the KW twist of
N = 4 theory on R4

0237 for a particular homomorphism from space-time ismoetry to the
R-symmetry.53 Space-time isometry of the theory on R4

0237 acts on the spinors as Spin(4)iso,
generated by the six generators:

Γµν , µ, ν ∈ {0, 2, 3, 7} and µ 6= ν . (4.200)

Rotations along the transverse directions act as R-symmetry, which is Spin(6), though the
subgroup of the R-symmetry preserving the product structure C×R4

1689 is U(1)×Spin(4)R.
The KW twist is constructed by redefining space-time isometry to be a Spin(4) subgroup
of Spin(4)iso× Spin(4)R consisting of elements (x, ϑ(x)) where ϑ : Spin(4)iso

∼−→ Spin(4)R is
an isomorphism. The particular isomorphism that leads to the equations (4.199) is:

Γ02 7→ Γ68 , Γ03 7→ Γ69 , Γ23 7→ Γ89 ,

Γ07 7→ Γ16 , Γ27 7→ Γ18 , Γ37 7→ Γ19 .
(4.201)

53Note that we ar using subscripts simply to refer to particular directions.
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Remark 4.6.1 (A member of a CP1 family of twists). In [110] it was shown that there is a
family of KW twists parametrized by CP1. The unique twist (by the supercharge Q) we
have found is a specific member of this family. Let us identify which member that is.

The CP1 family comes from the fact that there is a 2d space of scalar (on M) super-
charges (in (4.193)) in the twisted theory.54 Also note from the original representation of
the spinors (4.189) that the two scalar supercharges come from spinors transforming as
(1, 2) and (2, 1) under the original isometry Spin(4)old.55 Let us choose two Spin(4)new

scalar spinors with opposite Spin(4)old chiralities and call them εl and εr. The Spin(4)old

chirality operator is Γold := Γ0237. Let us choose εl and εr in such a way that they are
related by the following equation:

εr = Nεl where N =
1

4
(Γ06 + Γ28 + Γ39 + Γ17) . (4.202)

This relation is consistent with the spinors being Spin(4)new invariant because N anti-
commutes with Spin(4)new (thus invariant spinors are still invariant after being operated
with N), as well as with Γold (chaning Spin(4)old chirality). An arbitrary scalar supercharge
in the twisted theory is a complex linear combination of εl and εr, such as αεl+βεr, however,
since the overall normalization of the spinor is irrelevant, the true parameter identifying a
spinor is the ratio t := β/α ∈ CP1. Furthermore, due to the equations (4.199), N2 acts as
−1 on any Spin(4)new scalar, leading to:

εl = −Nεr . (4.203)

To see the value of the twisting parameter t for the supercharge identified by the equa-
tions (4.196) (in addition to the 10d chirality (4.185)), we first pick a linear combination
ε := εl + tεr with t ∈ CP1. Then using (4.203) and (4.196) we get:

− iε = Nε = εr − tεl , (4.204)

where the first equality follows from (4.196) and the second from (4.203). Equating the
two sides we find the twisting parameter:

t = i . (4.205)

4
54Though we began the discussion with a view to identifying topological-holomorphic twist of 6d N =

(1, 1) theory, what we found in the process in particular are supercharges that are scalar on M . If we
forget that we had a 6d theory on M ×C and just consider a theory on M with rotations on C being part
of the R-symmetry then, first of all, we find a N = 4 SYM theory on M and the twist we described is
precisely the KW twist.

55We are writing Spin(4)old instead of Spin(4)M since the support of the 4d theory is not M ≡ R4
0123

but R4
0237.
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From the 3d Perspective

Finally, at the 3 dimensional D3-D5 intersection lives a 3d N = 4 theory consisting of
bifundamental hypermultiplets coupled to background gauge fields which are restrictions
of the gauge fields from the D3 and the D5 branes [80]. Considering Q-cohomology for
the 3d theory reduces it to a topological theory as well. To identify the topological 3d
theory we note that for the twisting parameter t = i, the 4d theory is an analogue of a 2d
B-model56 [110] and this can be coupled to a 3d analogue of the 2d B-model57 – a B-type
topological twist of 3d N = 4 is called a Rozansky-Witten (RW) twist [143]. The flavor
symmetry of the theory is U(N) × U(K) which acts on the hypers and is gauged by the
background connections.

We can reach the same conclusion by analyzing the constraints on the twisting super-
charge viewed from the 3d point of view. The bosonic symmetry of the 3d theory includes
SU(2)iso×SU(2)H ×SU(2)C where SU(2)iso is the isometry of the space-time R3

023, SU(2)C
are rotations in R3

689, and SU(2)H are rotations in R3
145. The hypers in the 3d theory come

from strings with one end attached to the D5 branes and another end attached to the D3
branes. Rotations in R3

145 – the R-symmetry SU(2)H – therefore act on the hypers. This
means that SU(2)H acts on the Higgs branch of the 3d theory. This leaves the other R-
symmetry group SU(2)C which would act on the coulomb branch of the theory if the theory
had some dynamical 3d vector multiplets. We now note that the topological twist, from
the 3d perspective, involves twisting the isometry SU(2)iso with the R-symmetry group
SU(2)C , as evidenced explicitly by the three equations in the first line of (4.199). This par-
ticular topological twist (as opposed to the topological twist using the other R-symmetry
SU(2)H) of 3d N = 4 is indeed the RW twist [38].

To summerize, taking cohomology with respect to the supercharge Q leaves us with the
KW twist (twisting parameter t = i) of N = 4 SYM theory on R4 with gauge group U(N)
and a topological-holomorphic twist of N = (1, 1) theory on R4 × C with gauge group
U(K), and these two theories are coupled via a 3d RW theory of bifundamental hypers
with flavor symmetry U(N)× U(K) gauged by background connections.58

56In particular, the 4d Theory on R2 × T 2 can be compactified on the two-torus T 2 to get a B-model
on R2.

57We want to be able to take the 3d theory on R2 × S1 and compactify it on S1 to get a B-model on
R2. If we have a 4d theory on R2 × T 2 coupled to a 3d theory on R2 × S1, compactifying on T 2 should
not make the two systems incompatible.

58Though it is customary to decouple the central U(1) subgroup from the gauge groups as it doesn’t
interact with the non-abelian part, our computations look somewhat simpler if we keep the U(1).

142



4.6.3 Omega Deformation

We start by noting that the dimensional reduction of the topological-holomorphic 6d theory
from R4×C to R4 reduces it to the KW twist of N = 4 SYM on the R4.59 This observation
allows us to readily tailor the results obtained in [45] about omega deformation of the 6d
theory to the case of omega deformation of 4d KW theory.

The fundamental bosonic field in the 10dN = 1 SYM theory is the connection AI where
I ∈ {0, · · · , 9}. When dimensionally reduced to 6d, this becomes a 6d connection AM with
M ∈ {0, · · · , 5} and four scalar fields φ0, φ1, φ2, and φ3 which are just the remaining four
components of the 10d connection. The Spin(4)M space-time isometry acts on the first four
components of the connection, namely A0, A1, A2, and A3 via the vector representation.
The four scalars – φ0, φ1, φ2, and φ3 – transform under the vector representation of the
R-symmetry Spin(4)M ′ . Once twisted according to (4.190), only the diagonal subgroup
Spin(4)new

M of Spin(4)M×Spin(4)M ′ acts on the fields, under which the first four components
of the connection and the four scalars transform in the same way60 and therefore we can
package them together into one complex valued gauge field:

Aµ := Aµ + iφµ , µ ∈ {0, 1, 2, 3} . (4.206)

We also write the remaining components of the connection in complex coordinates on C:

Az := A4 + iA5 and Az := A4 − iA5 . (4.207)

It was shown in [45] that this topological-holomorphic 6d theory can be viewed as a 2d
gauged B-model on R2

23 where the fields are valued in maps Map(R2
01 × C, glK). This is a

vector space which plays the role of the Lie algebra of the 2d gauge theory. From the 2d
point of view A2 and A3 are part of a connection on R2

23 and there are four chiral multiplets
with the bottom componentsA0,A1, Az, and Az. The 2d theory consists of a superpotential
which is a holomorphic function of these chiral multiplets – the superpotential can be
written conveniently in terms of a one form Ã := A0dx0 + A1dx1 + Azdz + Azdz on
R2

01 × C consisting of these chiral fields:61

W (A0,A1, Az, Az) =

∫
R2

01×C
dz ∧ tr

(
Ã ∧ dÃ+

2

3
Ã ∧ Ã ∧ Ã

)
. (4.208)

59Both the 6d N = (1, 1) SYM and the 4d N = 4 SYM are dimensional reductions of the 10d N = 1
SYM and dimensional reduction commutes with the twisting procedure.

60Apart from the inhomogeneous transformation of the connection.
61Up to some overall numerical factors.
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The superpotential is the action functional of a 4d CS theory on R2
01×C for the connection

Ã.

One of the results of [45] is the following: Ω-deformation applied to this topological-
holomorphic 6d theory with respect to rotation on R2

23 reduces the the theory to a 4d CS
theory on R2

01 × C with complexified gauge group GLK .

The twisted 4d theory (the D3 world-volume theory) wraps the plane R2
23 as well and

therefore is affected by the Ω-deformation. By noting that the 4d theory is a dimensional
redcution of the 6d theory from R4×C to R4 and assuming that Ω-deformation commutes
with dimensional reduction,62 we can deduce what the Ω-deformed version of the twisted
4d theory is. This will be a 2d gauge theory with complexified gauge group GLN and the
action will be the dimensional reduction of the 4d CS action (4.208) from R2 × C to R2 –
this is the 2d BF theory where Az plays the role of the B field:∫

R2×C
dz ∧ CS(AR2×C)

Reduce on C−−−−−−−→
∫
R2

trAz

(
dAR2 +

1

2
AR2 ∧ AR2

)
=

∫
R2

trAzF (AR2) ,

(4.209)

where, as before, z is the anti-holomorphic coordinate on C.

Finally, it was shown in [157] that the RW twist of a 3d N = 4 theory on R2
Ω×R with

only hypers reduces, upon Ω-deformation with respect to rotation in the plane R2
Ω, to a

free quantum mechanics on R. A slight modification of this result, involving background
connections gauging the flavor symmetry of the hypers leads to the result that the omega
deformed theory is a gauged quantum mechanics, the kind of theory we have considered
on the defect in the 2d BF theory.63

4.6.4 Takeaway from the Brane Construction

Via supersymmetric twists and Ω-deformation, we have made contact with precisely the
setup we have considered in this chapter. We have a 4d CS theory with gauge group GLK
and a 2d BF theory with gauge group GLN and they intersect along a topological line
supporting a gauged quantum mechanics with GLK ×GLN symmetry. We thus claim that

62Alternatively, one can redo the localization computations of [45] for the 4d case, confirming that
Ω-deformation does indeed commute with dimensional reduction.

63The bosonic version, which leads to the same Yangian with minor modifications to the computations
as remarked in 4.4.1, 4.4.2, and 4.4.3.
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the topological holographic duality that we have established in this chapter is indeed a
topological subsector of the standard holographic duality involving defect N = 4 SYM.
As mentioned in Remark 1.4.4, it would be nice to have an equivariant BV formulation
to formally describe this topological holography as a certain cohomology of the duality of
N = 4.
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Chapter 5

Conclusion

In the introduction (§1) we tried to motivate, in general terms, that cohomological algebras
can potentially be interesting objects to study in supersymmetric QFTs and that they can
play significant roles in establishing otherwise complicated dualities. Throughout this
thesis, working on exemplary theories, we have concretely demonstrated how such algebras
can be computed and how they can arise as supersymmetric subsectors of much more
complicated theories such as N = 4 SYM and its holgraphic dual. We think that this
shows evidence for two things:

1. Cohomological algebras are particularly amenable to concrete computations.

2. They can be used effectively to probe dualities that are hard to establish in full
generality, such as holography.

We would also like to emphasize the exact nature of our computations, in the sense that
our computations were not limited in loop order. Though we have focused our attention
to limited sets of observables compared to the full QFTs, we think the concrete results
that we have been able to find in these limited contexts is motivating. There are two broad
categories of investigations that we plan to pursue from here:

1. Identify various cohomological subsectors of other supersymmetric theories of inter-
est, possiblity in the context of dualities.

2. Study deformations of QFTs preserving some given cohomology, this will give us an
estimate of the extent to which a duality established at the level of cohomology can
be expected to hold when lifted to the full QFT.
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We note that the first line of investigation we mentioned above has been popular and
successful in the ethos of physics for decades – cohomological algebras (precisely the kind
we studied in chapter 2) in 2d N = (2, 2) theories were used to study mirror symmetry
[25, 115], and certain supersymmetric boundary conditions and line operators in N = 4
SYM theory played a significant role in studying the geometric Langlands correspondence
[110]. However, application of cohomological algebras to study holography is a relatively
new concept, suggested originally in [42] and later studied in [35, 37, 105]. We think that
this is a particularly interesting and potentially fruitful topic and we intend to pursue this
research further.
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Appendix A

BV in Finite Dimensions

The Batalin-Vilkovisky (BV) formalism imposes relations among the observables of a field
theory coming from equations of motion. In mathematical terms, it constructs the derived
critical locus of the action on the field space. It is significantly easier to describe the BV
formalism for functions on a finite dimensional manifold, which corresponds to operators
of a 0-dimensional QFT. For this reason, putting aside the issue that the structure of a
factorization algebra is lost on observables of a 0-dimensional field theory, we introduce
the BV method of constructing the critical locus of the action for such a theory.

Consider a 0-dimensional QFT of maps from a point to a finite dimensional target space
X, which we take to be Rn. The field space is the space of such maps, which is X itself:

Space of fields, E = X = Rn . (A.1)

The action of the theory is a polynomial functional S : X → R which is bounded from
bellow and grows at least quadratically at infinity. Space of observables is the space of
functions on the field space which does not grow too fast at infinity,1 for convenience we
consider polynomial functions:

Space of observables, Obs = R[x1, · · · , xn] =: Pol(X) . (A.2)

Expectation value of an observable O ∈ Obs is given by the integral:

〈O〉 =

∫
Rn

dnx e−S(x)/~O(x) . (A.3)

1We want functions f such that e−S/~f decays exponentially at infinity.
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For an integration of the form
∫

dnxO, Stokes’ theorem tells us that if O is the diver-
gence of a vector field then the integral vanishes. In a completely analogous way, for the
modified integration measure dnx e−S/~ one can define a modified divergence map whose
images vanish under integration. For any real function f , let us define the integration
measure:

ωf := dnx e−f . (A.4)

Then we can define a modified divergence map Divωf : Vec(X) → Pol(X) from polyno-
mial vector fields to polynomial functions whose image vanishes under integration. For a
polynomial vector field V = V i∂xi we define:

DivS/~(V ) = ∂xiV
i − 1

~
V i ∂S

∂xi
. (A.5)

The first term is the usual divergence of the measure dnx and the second term is the
modification due to the modified emasure dnx e−S/~. Stoke’s theorem for this modified
measure tells us that we have an exact sequence

0→ Vec(X)
DivS/~−−−−→ Pol(X)

∫
Rn dnx e−S/~

−−−−−−−−→ R→ 0 . (A.6)

This is a motivation to construct the cokernel of DivS/~:

coker DivS/~ =
Pol(X)

im DivS/~
. (A.7)

BV is a homological method of implementing this quotient.

Remark A.0.1 (A peculiarity in 0-dimension). Naively, we would have liked to define the
above quotient of Pol(X), instead of Pol(X), as the space of observables, since such ob-
servables are guaranteed to have zero expectation value. However, this does not make
sense in 0-dimension, because the quotient is not closed under multiplication, i.e., for
O1, O2 ∈ im DivS/~, their product O1O2 is not necessarily a divergence. This non-closure
disappears in higher dimension if we consider the factorization algebraic structure2 on the
space of observables [40] and we would indeed define the higher dimensional analogue of
the above quotient as the physical space of observables. 4

2Which we can not do in 0-dimension, indeed, all operators in a 0-dimensional QFT must be placed at
the same 0-dimensional point.

161



A.0.1 Divergence Complex

The divergence map Vec(Rn)
DivS/~−−−−→ Pol(X) can be thought of as the tail end of a cochain

complex.

Let us denote by Pol(X,∧kTX) the space of polyvector fields on X of degree k with
polynomial coefficients. In particular, Pol(X,∧1TX) is the space of polynomial vector
fields and Pol(X,∧0TX) is the space of polynomial functions. There is an isomorphism
between k-polyvector fields Pol(X,∧nTX) and (n− k)-forms Ωn−k(X):

Pol(X,∧kTX)
∼−→ Ωk ,

∂xi1 ∧ · · · ∧ ∂xik 7→ dx1 ∧ · · · ∧ d̂xi1 ∧ · · · ∧ d̂xik ∧ · · · ∧ dxn .
(A.8)

The hat over a form means that the form is absent. This isomorphism can be used to
identify the action of the divergence map on the vector fields with the action of a “twisted”
de Rham differential

dS/~ := d− 1

~
dS∧

on (n− 1)-forms, i.e., the following diagram commutes:

Pol(X,TX) Pol(X) 0

Ωn−1(X) Ωn(X) 0

DivS/~

∼

DivS/~

∼

dS/~ dS/~

(A.9)

In fact, the isomorphism (A.8) can be used to define the action of the divergence map on
polyvector fields of arbitrary degree by demanding commutativity of the following diagram:

· · · Pol(X,∧2TX) Pol(X,TX) Pol(X) 0

· · · Ωn−2(X) Ωn−1(X) Ωn(X) 0

DivS/~ DivS/~

∼

DivS/~

∼

DivS/~

∼

dS/~ dS/~ dS/~ dS/~

(A.10)

By construction, the divergence map is nilpotent:

DivS/~ ◦DivS/~ = 0 . (A.11)
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The top row of the above diagram is called the divergence complex. The cokernel from
(A.7) appears as its cohomology at degree zero:

Pol(X)

im Div1
S/~

= H0
DivS/~

(Pol(X,∧•TX)) , (A.12)

where the superscript on DivS/~ labels the degree of the polyvector fields on which the
divergence map acts. The above formula already gives a homological description of the
critical locus of the action. The only remaining question from the physical perspective
is how to interpret a general polyvector on X in the field theory language – the way we
say that functions on X are observables in the field theory. We can in fact interpret the
polyvectors as observalbes as well if we extend the space of fields from appropriately – by
introducing anti-fields.

A.0.2 Anti-field Formalism

We choose local coordinates xi on X, these xi will appear as fields of the theory. For each
field xi we introduce an anti-field θi which we take to be fermionic.3 These anti-fields are
simply a way of writing polyvector fields as ordinary fields as follows:

Polyvector Operator with fields and anti-fields

f i1···ik(x)∂xi1 ∧ · · · ∧ ∂xik f i1···ik(x)θxi1 · · · θxik
(A.13)

In order to be able to establish a cochain complex, we assign cohomological degree −1
to the anti-fields and 0 to the fields as usual. Now note that, just as operators involving
only xi are polynomial functions on X, we can interpret operators involving xi and θi as
polynomial functions on T ∗[−1]X. The notation means that we consider the cotangential
directions to have cohomological degree 1, coordinate functions along the cotangential
directions are dual to the cotangent vectors and therefore they have cohomological degree
−1, these are precisely the θi’s. The space of fields in the BV formulation is this extend
space including the anti-fields:

Space of fields, E := T ∗[−1]X , (A.14)

and, the observables are the polynomial functions on this space:

Space of observables, Obs = Pol•(T ∗[−1]X) . (A.15)

3This is assuming bosonic statistics for the fields xi. If xi has fermionic statistics then θi will be bosonic.
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Operators in Poli(T ∗[−1]X) contain i anti-fields. The divergence map from the divergence
complex in (A.10) acting on these observables looks like:

∆BV
S/~ = ∆BV − 1

~
∂S

∂xi
∂

∂θi
, (A.16)

where ∆BV is the following differential operator:

∆BV =
∑
i

∂

∂xi
∂

∂θi
. (A.17)

∆BV is called the BV Laplacian. The divergence complex, written in terms of the anti-fields
and the BV differential, is called the BV complex:

· · ·
∆BV
S/~−−−→ Pol1(T ∗[−1]X)

∆BV
S/~−−−→ Pol0(T ∗[−1]X)

∆BV
S/~−−−→ 0 . (A.18)

This is the desired homological model for the critical locus of the action:

Critical locus of the action: H0
∆BV
S/~

(Pol•(T ∗[−1]X)) . (A.19)

The final ingredient we are going to introduce from the BV formalism is the shifted
symplectic structure on the field space T ∗[−1]X, defined by a degree 1 Poisson bracket –
for two homogeneous functions F,G ∈ Pol•(T ∗[−1]X) their bracket is defined using the
BV Laplacian:4

{F,G} = ∆BV(FG)−∆BV(F )G− (−1)|F |F∆BV(G) . (A.20)

where |F | and |G| denote the degree (number of θ’s) of the respective functions. The
above bracket is graded anti-symmetric, satisfies a graded Jacobi identity, and imposes the
following commutation relation on the coordinate functions:

{xi, θj} = δij . (A.21)

In terms of this bracket the differential operator ∆BV
S/~ can be written as:

∆BV
S/~ = ∆BV − 1

~
{S,−} . (A.22)

4This is simply the Schouten-Nijenhuis (SN) bracket of polyvector fields. The relation between the SN
bracket and the divergence map (the BV Laplacian in terms of the anti-fields) follows form the isomorphism
between the divergence complex of polyvector fields and the de Rham complex using the fact that the de
Rham differential is a derivation for the wedge product.
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Finally, for us to be able to use the complex (A.18) as a homological model for the critical
locus of the action5 it must be a complex to begin with, i.e., the differential must be
nilpotent:

∆BV
S/~ ◦∆BV

S/~ = 0 . (A.23)

This is automatic, by construction, in this finite dimensional case.

The key points to remember from the finite dimensional case is the following: A field
space is a shifted symplectic manifold E with a degree 1 differential ∆BV, which defines
a degree one Poisson bracket {−,−}. The theory is defined by an action functional S.
The degree 1 differential ∆BV

S/~ := ∆BV − 1
~{S,−} which acts on a function space O(E) is

nilpotent. To this data we assign a cochain complex (O(E),∆BV
S/~) and the observables of

the theory are elements of its 0th cohomology, namely H0
∆BV
S/~

(O(E)).

Remark A.0.2 (Path integrals in the BV formulation). It may seem odd that we have
extended the field space by brute force and it is then a legitimate question as to how
path integrals in the BV formulation relates to path integrals in the original formulation.
The answer comes from the following observation6 – The original space of fields X is a
particular Lagrangian subspace – namely the zero section – of the symplectic manifold
T ∗[−1]X. One can extend the action functional S : X → R to this entire symplectic space
S  S ′ : T ∗[−1]X → R in such a way that the restriction of S ′ to the zero section X
is the original action S and furthermore, provided that the new action S ′ satisfies certain
consistency conditions, integrals of the form

∫
L e
−S′/~O over Lagrangian subspaces L ⊆

T ∗[−1]X are invariant under smooth deformations of the Lagrangian. Path integrals in the
BV formalism are therefore performed over suitably chosen Lagrangians which are smooth
deformations of the original field space and all correlation functions remain invariant. 4

If we consider a QFT on the space-time M of dimension d > 0, then the space of fields
is going to be some infinite dimensional space, such as the space of functions on M in
case of a scalar field theory (1.7). Divergences arise when we try to perform integrals on
the field space and we are forced to talk about effective field theories where interactions
are allowed only above some certain length scale. The structure we found in the previous
section picks up this scale dependence and because we are moving from a 0d space-time
to a higher dimensional space-time, the whole structure generalizes as a (co)sheaf over the
space-time.

5In other words, we want to be able to use the generalized Stoke’s theorem.
6Which we do not prove here but refer to [40].
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Appendix B

Backgraound Materials on 2d BPS
Rings

B.1 The N = (2, 2) superconformal Algebra

We use complex coordinates on R2:

z = x+ iy , z = x− iy . (B.1)

The N = (2, 2) superconformal algebra1 su(2|2) contains eight supercharges:

Q+ , Q− , Q+ , Q− , and, S+ , S− , S+ , S− , (B.2)

and the following bosonic generators:

Rotation in R2, u(1)L : 2(L0 − L0) =: 2JL

Dilatation : L0 + L0 =: ∆

Translations : L−1, L−1

Special conformal transformations : L1, L1

Vector R-symmetry, u(1)V : JV

Axial R-symmetry, u(1)A : JA

(B.3)

1We are only concerned with algebra that is globally defined on R2, i.e., the globally defined subalgebra
of the super Virasoro algebra.
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where Ls := −zs+1∂z and Ls := −zs+1∂z gnerate the conformal algebra conf(R2) = so(3, 1):

[Lr, Ls] = (r − s)Lr+s , [Lr, Ls] = (r − s)Lr+s , r, s ∈ {−1, 0, 1} (B.4)

The nonzero anti-commutation relations of the supercharges (B.2) are:

{Q+, Q+} = 2L−1 , {Q−, Q−} = 2L−1 , (B.5a)

{S+, S+} = 2L1 , {S−, S−} = 2L1 , (B.5b)

{Q+, S+} = 2L0 +
1

2
(JV + JA) , {Q−, S−} = 2L0 +

1

2
(JV − JA) , (B.5c)

{Q+, S+} = 2L0 −
1

2
(JV + JA) , {Q−, S−} = 2L0 −

1

2
(JV − JA) . (B.5d)

The commutators of the supercharges with the u(1)’s and the dilatation are conveniently
expressed by specifying the charges of the supercharges under the respective generators:

Q± Q± S± S±
2JL ∓ ∓ ± ±
JV − + − +
JA ∓ ± ∓ ±
2∆ + + − −

(B.6)

The rest of the nonzero commutators of su(2|2) are:

[L1, Q+] = S+ , [L1, Q+] = S+ , [L−1, S+] = −Q+ , [L−1, S+] = −Q+ ,
[L1, Q−] = S− , [L1, Q−] = S− , [L−1, S−] = −Q− , [L−1, S−] = −Q− .

(B.7)

B.2 Supersymmetry on the sphere

A theory with N = (2, 2) superconformal symmetry, namely the symmetry algebra su(2|2),
can be put on the two-sphere by a Weyl transformation, classically preserving the full
superconformal symmetry. Though UV regularization will break the su(2|2) symmetry to
an su(2|1) subalgebra. On the other hand, a nonconformal theory, such as a guage theory,
can preserve even classically only an su(2|1) subalgebra of the full su(2|2) superconformal
algebra.

su(2|1) subalgebras of su(2|2) consist of the isometries of the two-sphere, supercharges
that generate these isometries and a u(1) subalgebra of the u(1)V × u(1)A R-symmetry
algebra of su(2|2).2 There are two non-equivalent3 su(2|1) subalgebras of su(2|2), one

2If the theory is to flow to a nontrivial CFT in the IR the theory must preserve both of the U(1)
R-symmetries.

3Not related by any inner automorphism of su(2|2).
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of them contains the vector R-symmetry u(1)V and the other one contains the axial R-
symmetry u(1)A. They are referred to as su(2|1)A and su(2|1)B respectively.4

The two supersymmetric sphere backgrounds can be derived as two different supergrav-
ity backgrounds preserving four supercharges. We will refer to the su(2|1)A and su(2|1)B
preserving sphere backgrounds as “background-A” and “background-B” respectively. The
conformal Killing spinor equations are:

∇mε(x) = η(x) , ∇mε̃(x) = η̃(x) , (B.8)

where ε, ε̃, η and η̃, parametrize the Q, Q, S, and S transformations. The two sphere
backgrounds are defined by imposing constraints on the S-supersymmetris as we discuss
in the following.

Background-A

The Killing spinor equation of the supersymmetric S2 background preserving the vector
R-symmetry is found by imposing on η and η̃ the follwoing constraints [5, 15,31,76]:

η =
i

2r
ε , η̃ =

i

2r
ε̃ . (B.9)

So that the Killing spinor equations end up being:

∇mε(x) =
i

2r
γmε(x) ∇mε̃(x) =

i

2r
γmε̃(x) , (B.10)

where r is the radius of the sphere, and the covariant derivative ∇m does not contain any
background field other than the spin connection. The Killing spinor equations (B.10) have
a (complex) four dimensional space of solutions that can be written as:5

εAχ0,χ̃0
(x) =

1√
1 + x2

4r2

(
1+

i

2r
xmΓm

)
χ0 , (B.11a)

ε̃Aχ0,χ̃0
(x) =

1√
1 + x2

4r2

(
1+

i

2r
xmΓm

)
χ̃0 . (B.11b)

Here χ0 and χ̃0 are two constant Dirac spinors parametrizing the space of solutions.

4Note the slightly unfortunate notation that u(1)A is contained in su(2|1)B and not in su(2|1)A.
5We are using γ and Γ to refer to the curved space and flat space gamma matrices respectively. In

stereographic coordinate the metric on the sphere of radius r is
(

1 + x2

4r2

)−2

diag(1, 1).
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Background-B

Analogously, the axial R-symmetry preserving background is defined by imposing in the
conformal Killing spinor equation (B.8) [76]:

η =
i

2r
ε̃ , η̃ =

i

2r
ε , (B.12)

so that we have the following Killing spinor equations:

∇mε(x) =
i

2r
γmε̃(x) ∇mε̃(x) =

i

2r
γmε(x) . (B.13)

These can be solved by defining:

ε := ε+ + ε̃− , ε̃ := ε− + ε̃+ (B.14)

which satisfy the already solved equations (B.10):

∇mε =
i

2r
γmε ∇mε̃ =

i

2r
γmε̃ . (B.15)

Thus we find that the solutions to (B.13) are given by:

εBχ0,χ̃0
(x) =

1√
1 + x2

4r2

(
χ0+ + χ̃0− +

i

2r
xmΓm(χ0− + χ̃0+)

)
, (B.16a)

ε̃Bχ0,χ̃0
(x) =

1√
1 + x2

4r2

(
χ0− + χ̃0+ +

i

2r
xmΓm(χ0+ + χ̃0−)

)
, (B.16b)

parametrized by two constant Dirac spinors χ0 and χ̃0.

B.3 Ward identity

Let us present the proof of the Ward identity from §2.3.1 for twisted chiral multiplets in
background-A.
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Supersymmetric deformations of the action

For a twisted chiral primary Y of Weyl weight w, the su(2|1)A variations of the twisted
chiral multiplet Ψ = (Y, ζ,G), generated by the Killing spinors ε and ε̃, are [76]:

δY = ε̃+ζ− − ε−ζ+ , (B.17a)

δζ+ = − i/∂Y ε̃− +
(
G+

w

r
Y
)
ε̃+ , (B.17b)

δζ− = i/∂Y ε+ −
(
G+

w

r
Y
)
ε− , (B.17c)

δG = − iε̃− /∇ζ− + iε+ /∇ζ+ +
w

r
(ζ+ε− − ζ−ε̃+) . (B.17d)

The twisted F-term action for Ψ on the sphere invariant under these variations is given
by [31,83]:

Itc−F
w (Ψ) :=

∫
S2

d2x
√
g(x)G(Ψ) , G(Ψ) = G+

w − 1

r
Y. (B.18)

The subscript on I refers to the Weyl weight of Y , the Weyl weight of the integral Itc−F
w

is w− 1, therefore a deformation of an action S by this term can be introduced by simply
introducing a coupling τ of Weyl weight (1− w):

S → S − iτ

4π
Itc−F
w (Ψ) . (B.19)

We want to show that the integrated operator Itc−F
w (Ψ) localizes to a point inside an

extremal correlator. To proceed, let us pick a particular supercharge QA ∈ su(2|1)A by
restricting χ̃0 in (B.11) to be chiral:

χ̃0+ = 0 . (B.20)

Then the Killing spinor (B.11b), which we write simply as ε̃, becomes:

ε̃+ =
1√

1 + x2

4r2

i

2r
xmΓmχ̃0− , ε̃− =

1√
1 + x2

4r2

χ̃0− . (B.21)

Solving (B.17b) for G and substituting it in the expression for G in (B.18), we find:

G(Ψ) = δ

(
ε̃†+ζ+

‖ε̃+‖2

)
+

i

‖ε̃+‖2
ε̃†+ /∇(Y ε̃−) . (B.22)
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were ‖ε̃+‖2 := ε̃†+ε̃+. Using complex coordinates z = x1 + ix2 and z = x1 − ix2 (so that

ε̃+ satisfies the simple equations ∇z ε̃+ = 0 and ∇z
ε̃†+
‖ε̃+‖2 = 0) we can turn the second term

into a total derivative:

G(Ψ) = δ

(
ε̃†+ζ+

‖ε̃+‖2

)
+ 2i∇z

(
1 + zz

4r2

‖ε̃+‖2
ε̃†+Γ1ε̃−Y

)
. (B.23)

The key point here is that the norm of ε̃+ vanishes at z = z = 0 (see (B.21)) and therefore
the space-time integral of the derivative localizes at the origin, which we call the North pole
N . When inserted in a correlator with QA-closed operators, such as an extremal correlator,
the QA-exact term in (B.23) can be ignored. In [76] the integral of the derivative was
computed to be −4πrY (N). Therefore we reach the conclusion that inside an extremal
correlator: 〈∫

S2

d2x
√
g(x)G(Ψ) · · ·

〉
S2

= −4πr 〈Y (N) · · ·〉S2 . (B.24)

This is the equation (2.34). The equation (2.35) can be proven by starting from the
su(2|1)A-variation of a twisted anti-chiral multiplet. The analogous equations for the chiral
and the anti-chiral multiplets in background-B are proven similarly.

B.4 Contour integrals

On the two-sphere, the extremal correlation functions of chiral operators in a LG model of
type Ak+1 involve the following integrals (c.f. §2.4.2):∫

C
dXdX XmX

n
e−4πiXk+2−4πiX

k+2

= (4π)−
2(m+1)
k+2

−q(−i)q
∫
C

dXdX XmX
n
eX

k+2−Xk+2

,

(B.25)
where q = n−m

k+2
. After defining:

ωm := XmeX
k+2

dX , ω̃m := X
m
e−X

k+2

dX , (B.26)

we can write:6 ∫
C

dXdX XmX
n
eX

k+2−Xk+2

=
i

2

∫
C
ωm ∧ ω̃n . (B.27)

6The factor of i/2 is there because by dXdX we mean dxdy = dx∧dy where X = x+iy and X = x−iy,
whereas dX ∧ dX = (dx+ idy) ∧ (dx− idy) = −2idx ∧ dy.
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We will evaluate this integral by writing it as a sum of integrals of ωm and ω̃n over one-
cycles that we will define momentarily. This procedure will use a generalization of the
Riemann bilinear identity as explained in Appendix C of [73].7

We denote by θ↑ a ray originating from the origin of the complex plane and going off to
infinity at an angle θ with the x-axis. And by Cθ1,θ2 we will refer to a curve that originates
at infinity, comes near the origin and then goes off to infinity again in a way such that
it is wedged between the rays θ1↑ and θ2↑ and approaches these two rays asymptotically.
Such curves will be thought of as noncompact cycles in the complex plane. Our convention
is such that θ2↑ follows θ1↑ in the anticlockwise direction in Cθ1,θ2 . To denote the same
contour with opposite orientation we will use the superscript “− ”, e.g., C−θ1,θ2 .

Figure: Some exemplary contours.

We define the following angles and cycles:

ϑa :=
π(2a− 1)

k + 2
, ϕa :=

2πa

k + 2

Ca := Cϑa,ϑa+1 , C̃a := Cϕa,ϕa+1 , for a ∈ Z , (B.28)

In the figure bellow we draw a couple of these cycles and point out their intersection
numbers. If two cycles Ca and C̃b intersect at a point then we denote the intersection

7The general idea behind evaluating certain integrals by decomposing them over some cycles comes from
Picard–Lefschetz theory, which has been used in the past to compute integrals similar to ours [29,100,156].
Also note that the integration (B.25) seems to be computable using integral identity involving Bessel
function of the first kind, but we were unable to confirm that all convergence conditions relevant for the
integral identity are satisfied in the present case. Still, we note that a straightforward application of the
Bessel function identity produces exactly the same result as the one given by the Riemann bilinear identity.
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number of that point simply by C ◦ C̃ when the point being referred to is understood.

Figure: The cycles C and C̃.

Now we have:∮
Ca

ωm = e
2πia(m+1)

k+2

∮
C0

ωm ,

∮
C̃−−a−1

ω̃n = e−
2πia(n+1)

k+2

∮
C̃−−1

ω̃n , (B.29)

which follows after redefining integration variables as X → Xe
2πia
k+2 and X → Xe−

2πia
k+2

respectively. Note that if we set X = reiϑa and X = reiϕa with r > 0 then we get the
following asymptotic behaviours for the one forms:

r →∞ : ωm ∼ rmei(m+1)ϑae−r
k+2

dr , ω̃n ∼ rnei(n+1)ϕae−r
k+2

dr , (B.30)

making the integrals well defined. We now proceed to evaluate
∮
C0
ωm. We define a new

variable:
Y := Xk+2 (B.31)

in terms of which we can write:

X = Y
1
k+2 , dX =

1

k + 2
Y
−k−1
k+2 dY . (B.32)

and the angles defining the contour C0 change as:

ϑ0 = − π

k + 2
→ −π , ϑ1 =

π

k + 2
→ π . (B.33)
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Since they represent the same direction in the complex plane we will write π± := π± ε for
the angles, where ε > 0 is infinitesimal, to keep track of the orientation of the resulting
contour. Therefore,∮

C0

ωm =
1

k + 2

∮
Cπ+,π−

Y −
k−m+1
k+2 eY dY =

1

k + 2

2πi

Γ
(
k−m+1
k+2

) . (B.34)

To get the last equality we used the integral form of the reciprocal Gamma function:

1

Γ(z)
=

1

2πi

∮
Cπ+,π−

dt t−zet . (B.35)

Similarly by defining Y = −Xk+2
we find:∮

C̃−−1

ω̃n = −e
πi
k+2

(n+1)

k + 2

∮
Cπ+,π−

Y
− k−n+1

k+2 eY dY = −2i
e
πi
k+2

(n+1)

k + 2
sin

(
π(n+ 1)

k + 2

)
Γ

(
n+ 1

k + 2

)
.

(B.36)
The last equality is a combination of (B.35) and Euler’s reflection formula:

Γ(1− z)Γ(z) =
π

sin(πz)
. (B.37)

The cycles defined in (B.28) are distinct for a = 0, · · · , k + 1 and they satisfy:

k+1∑
a=0

Ca =
k+1∑
a=0

C̃a = 0 . (B.38)

The cycles C̃a are dual to the cycles Ca with the intersection form:

Iab := Ca ◦ Cb = δa,b − δa,b+1 , (B.39)

with inverse (restricting to a, b = 1, · · · , k + 1 for independence):

I−1
ab =

{
1 when a ≥ b
0 otherwise

. (B.40)

Complex conjugation acts on the contours as follows:

C̃∗a = C∗ϕa,ϕa+1
= C−−ϕa+1,−ϕa = C−ϕ−a−1,ϕ−a = C̃−−a−1 (B.41)
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Now, the generalization of Riemann bilinear identity [73] gives us:∫
C
ωm ∧ ω̃n = −

k+1∑
a,b=1

I−1
ab

∮
Ca

ωm

∮
C̃∗b

ω̃n = −
k+1∑
a=1

a∑
b=1

∮
Ca

ωm

∮
C̃−−b−1

ω̃n

= −
k+1∑
a=1

a∑
b=1

e
2πi
k+2

[a(m+1)−b(n+1)]

∮
C0

ωm

∮
C̃−−1

ω̃n , using (B.29) . (B.42)

The integrals are independent of a and b, so we can evaluate the sum separately:

k+1∑
a=1

a∑
b=1

e
2πi
k+2

[a(m+1)−b(n+1)] =
e−

2πi
k+2

(n+1)

1− e−
2πi
k+2

(n+1)

[
k+1∑
a=1

e
2πia
k+2

(m+1) −
k+1∑
a=1

e
2πia
k+2

(m−n)

]
(B.43)

Note that for m + 1 ≡ 0 (mod(k + 2)) (B.34) vanishes since the Gamma function in
the denominator acquires a pole, and therefore the expression (B.42) will vanish as well.
Assuming m+1 6≡ 0 (mod(k+2)) we see that the first sum inside the parentheses in (B.43)
is a sum over roots of unity excluding 1, therefore the first sum is −1. The second sum is
also a sum over roots of unity excluding 1 unless (m − n) ≡ 0 (mod(k + 2)). Therefore,
whenever (m− n) 6≡ 0 (mod(k + 2)) the second sum is −1 and the expression (B.43), and
consequently (B.42), vanish. From now on we assume that there exists a q ∈ Z such that
m− n+ q(k + 2) = 0. Then (B.43) reduces to:

k+1∑
a=1

a∑
b=1

e
2πi
k+2

[a(m+1)−b(n+1)] =
−e−

πi
k+2

(n+1)

2i sin
(
π(n+1)
k+2

)(k + 2) (B.44)

Substituting (B.44), (B.34) and (B.36) in (B.42) we find:

i

2

∫
C
ωm ∧ ω̃n =

π

k + 2

Γ
(
m+1
k+2

+ q
)

Γ
(
k−m+1
k+2

) (B.45)

Substituting this into (B.27) and using (B.25) we get the extremal correlators on S2 (2.93b).
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Appendix C

Kähler Ambiguities in 4d N = 2
SCFTs

C.1 Introduction

Recent years have witnessed remarkable progress in obtaining the exact partition function
of supersymmetric field theories in various background geometries. When the geometry
is S1 ×Md−1 the partition function admits a standard Hilbert space interpretation as a
supertrace over the states of the theory onMd−1. In other geometries, such as on a sphere
Sd, the physical interpretation of the partition function must be sought.

In [76] it has been shown that the partition function of 4d N = 2 superconformal field
theories (SCFTs) on S4 computes the exact Kähler potential K on the space of exactly
marginal couplings, also referred to as the conformal manifold. This result was proven both
by using supersymmetric localization [140] and by conformal dimension regularization on
S4, and extends the proof in [83] that the S2 partition function of 2d N = (2, 2) SCFTs
computes the exact Kähler potential on the conformal manifold, as conjectured by [107]
based on the exact formulae in [15,61] (see also [60,83]). In detail, [76] demonstrated that

ZS4 = eK/12 . (C.1)

These identifications provide a physical and geometrical interpretation of the sphere par-
tition function of 4d N = 2 and 2d N = (2, 2) SCFTs. These results also provide a
computational pathway for obtaining the exact metric in the conformal manifold, which
are interesting new observables in these theories, acted on by dualities (see e.g. recent
work [9] [7]).
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Here we present an elementary proof of the formula (C.1) using supersymmetry Ward
identities. This new proof does not require localization nor that the 4d N = 2 SCFT
admits a Lagrangian description. By virtue of the relation (C.1) identifying the S4 parti-
tion function with the Kähler potential K on the conformal manifold, it follows that the
partition function is subject to the Kähler ambiguity transformations

K(τ, τ̄)→ K(τ, τ̄) + F(τ) + F̄(τ̄) , (C.2)

where F is an arbitrary holomorphic function and τ are holomorphic coordinates on the
conformal manifold. This ambiguity implies that the partition function is a section over
the space of exactly marginal couplings.

We also give the microscopic realization of the Kähler ambiguity (C.2) by constructing
the local supergravity counterterm in 4d N = 2 off-shell supergravity that when evaluated
on the supersymmetric S4 background yields (C.2). This is the 4d counterpart of the
Kähler ambiguity counterterm for 2d N = (2, 2) SCFTs constructed in [76].

The plan is as follows. In section C.2 we use supersymmetry Ward identities to show
that the S4 partition function of 4d N = 2 SCFTs computes the Kähler potential in the
conformal manifold. In section C.3 we identify the off-shell 4dN = 2 Poincaré supergravity
theory in which the S4 is a supersymmetric background. In section C.4 we construct the
supergravity invariant in the relevant Poincaré supergravity theory that once evaluated on
S4 provides a first principles realization of the Kähler transformation (C.2).

C.2 Kähler Potential from S4 Partition Function

An exactly marginal operator in a four dimensional N = 2 SCFT is a scalar operator of
dimension four which is a superconformal descendant of a scalar chiral primary operator of
U(1)R charge w = 2. An N = 2 SCFT can be deformed while preserving superconformal
invariance by1

1

π2

∫
d4x

∑
I

(
τIOI + τ̄ĪŌĪ

)
. (C.3)

The exactly marginal couplings τI are holomorphic coordinates in the space of exactly
marginal deformations, known as the conformal manifold. The canonical metric in the
conformal manifold gIJ̄ is the Zamolodchikov metric

〈OI(x)ŌJ̄(0)〉 =
gIJ̄
x8

, (C.4)

1We use the same conventions as in [76].
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which in four dimensional N = 2 SCFTs is Kähler, that is

gIJ̄ =
∂

∂τI

∂

∂τ̄J̄
K(τ, τ̄) ≡ ∂I∂J̄K(τ, τ̄) . (C.5)

An N = 2 SCFT can be canonically placed on S4 by the stereographic projection. The
N = 2 superconformal transformations on S4 are parametrized by chiral conformal Killing
spinors εi and εi of opposite chirality transforming as doublets of the SU(2)R R-symmetry,
which obey2

∇mε
i = γmη

i ∇mεi = γmηi , (C.6)

so that ηi = 1
4
∇/εi and ηi = 1

4
∇/εi.

An exactly marginal operator in an N = 2 SCFT can be represented as the top com-
ponent of a four dimensional N = 2 chiral multiplet of R-charge w = 2, whose bottom
component realizes the parent chiral primary operator. The holomorphic coordinates on
the conformal manifold can be promoted to supersymmetric background chiral superfields
with vanishing R-charge w = 0. The N = 2 superconformal transformations of a chiral
multiplet with R-charge w on S4 are given by [19] (we use [141]):3

δA =
1

2
εiΨi

δΨi = ∇/(Aεi) +
1

2
Bijε

j +
1

4
ΓabF−abεijε

j + (2w − 4)Aηi

δBij = ε(i∇/Ψj) − εkΛ(iεj)k + 2(1− w)η(iΨj)

δF−ab =
1

4
εijεi∇/ΓabΨj +

1

4
εiΓabΛi −

1

2
(1 + w)εijηiΓabΨj

δΛi = −1

4
Γab∇/ (F−abεi)−

1

2
∇/Bijε

jkεk +
1

2
Cεijε

j − (1 + w)Bijε
jkηk +

1

2
(3− w)ΓabF−abηi

δC = −∇m(εijεiγ
mΛj) + (2w − 4)εijηiΛj , (C.7)

where in Euclidean signature F−ab is a self-dual rank-two tensor. Indeed, for w = 2, the
integrated top component is superconformal invariant and we have the identification

CI = OI for w = 2 . (C.8)

2Γa denotes tangent space gamma matrices while γm = ema Γa denotes curved space ones.
3Throughout a barred spinor is λ̄ = λTC, where C is the charge conjugation matrix.
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For w = 0, an arbitrary covariantly constant background value for the bottom component
of the chiral multiplet4 is superconformal invariant, and serves as the spurion field for the
holomorphic coordinates on the conformal manifold

AI = τI for w = 0 . (C.9)

We denote by AI the chiral multiplets to which the coordinates in the conformal manifold
have been promoted.

Consider now the SCFT partition function on S4 as a function of the exactly marginal
couplings ZS4(τ, τ̄). The second derivative

∂I∂J̄ logZS4 =
1

π4

〈∫
S4

d4x
√
g CI(x)

∫
S4

d4y
√
g C̄J̄(y)

〉
(C.10)

is the integrated connected two-point function of exactly marginal operators. This correla-
tor is ultraviolet divergent, divergences arising when the operators collide. These ultraviolet
divergences can be regularized by introducing a massive deformation. Regulating diver-
gences in a supersymmetric manner leads us to consider the OSp(2|4) massive subalgebra
of the N = 2 superconformal algebra on S4, which is the supersymmetry algebra of an
arbitrary massive four dimensional N = 2 theory on S4.

The OSp(2|4) massive subalgebra on S4 is generated by supercharges that anticommute
to the SO(5) isometries of S4 and an SO(2)R ⊂ SU(2)R R-symmetry. Conformal generators
and U(1)R are projected out. The OSp(2|4) transformations are generated by Killing
spinors which obey

∇mχ
j =

i

2r
γmχ

j , (C.11)

where
χj = εj + τ jk1 εk (C.12)

so that5

εi = χiL εi = τ1ijχ
j
R (C.13)

and τ jkp = (iσ3,−1,−iσ1) = (τpjk)
∗, where σp are the Pauli matrices. In stereographic

coordinates, where ds2 = 1(
1+ x2

4r2

)2dxmdx
m, we have

χj =
1√

1 + x2

4r2

(
1 +

i

2r
xmΓm

)
χj0 . (C.14)

4All other components in multiplet must vanish.
5PL and PR are the spinor chirality projectors: P 2

L = PL, P 2
R = PR and PL + PR = 1. The Killing

spinors obey PLε
i = εi and PRεi = εi.
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The constant spinors χj0 parametrize the transformations of the eight supercharges in
OSp(2|4). If these parameters are chiral

PLχ
j
0 = 0 , (C.15)

the corresponding spinors generate an OSp(2|2) subalgebra OSp(2|4). The chiral compo-
nents of these spinors χjL and χjR

χjL = PLχ
j =

i/2r√
1 + x2

4r2

xmΓmχj0R χjR = PRχ
j =

1√
1 + x2

4r2

χj0R , (C.16)

vanish at the North and the South poles of the sphere respectively. If the parameters are
further constrained by

χi0 = τ ij1 εjkΓ1Γ2χ
k
0 , (C.17)

the corresponding spinors generate a further SU(1|1) subalgebra

Q2 = J +R (C.18)

of OSp(2|2) ⊂ OSp(2|4), where J = J12 + J34 is a self-dual rotation on S4 and R is the
SO(2)R ⊂ SU(2)R R-symmetry.

Our strategy is to first prove that the integrated top component of the chiral multiplet
in (C.10) can be written as an SU(1|1) ⊂ OSp(2|4) supersymmetry transformation δ ev-
erywhere except at the North pole of S4, where the corresponding Killing spinor vanishes.
The proof is completed by showing that the correlator of the integrated top component C
with an arbitrary operator O invariant under the SU(1|1) supersymmetry transformation
δ reduces to the correlator of the bottom component A at the North pole with O. In detail〈∫

S4

d4x
√
g C(x)O

〉
= 32π2r2 〈A(N)O〉 . (C.19)

The supersymmetry transformation of the fermions in a chiral multiplet with R-charge
w = 2 can be written as (C.7)6

δΨi = τ1ij /∇(AχjR) +
1

2
~B · ~τijχjL +

1

4
ΓabF−abεijχ

j
L (C.20a)

δΛi =− 1

4
Γab /∇F−abτ1ijχ

j
R −

i

4r
ΓabF−abτ1ijχ

j
L +

1

2
Cεijχ

j
L

− 1

2
/∇ ~B · ~τijτ jk1 εklχ

l
R −

3i

2r
~B · ~τijτ jk1 εklχ

l
L (C.20b)

6 ~B = (B1, B2, B3) such that Bij = ~B · ~τij =
∑
pBpτpij .
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Using the SU(1|1) supersymmetry transformation δ obtained by imposing the constraints

(C.15) and (C.17) on the Killing spinors, we get after multiplying (C.20a) by τ2ijτ
jk
1 χiL

†

and (C.20b) by τ2ijε
jkχiL

†
that

B1 =− δ

(
χiL
†
Ψk

‖χL‖2

)
τ2ijτ

jk
1 +

χiL
†

‖χL‖2
/∇(AχjR)τ2ij −

1

4

χiL
†
ΓabχjL
‖χL‖2

τ3ijF
−
ab (C.21a)

C =− δ

(
χiL
†
Λk

‖χL‖2

)
τ2ijε

jk − 1

2

χiL
†
γmχjR
‖χL‖2

τ2ij∇mB1 +
3i

r
B1

+
1

4

χiL
†
ΓabγmχjR
‖χL‖2

τ3ij∇mF
−
ab +

i

4r

χiL
†
ΓabχjL
‖χL‖2

τ3ijF
−
ab (C.21b)

where we have used that for the SU(1|1) Killing spinors ‖χL‖2 := ‖χ1
L‖2 = ‖χ2

L‖2, where
‖λ‖2 = λ†λ. The terms proportional to F−ab and ∇µF

−
ab in (C.20a) (C.20b) also vanish.

Their coefficients are anti-self-dual in the tangent space indices since

χiL
†
Γabγ(r)χjL/R = χiL

†
Γ∗Γ

abγ(r)χjL/R = −1

2
εabcdχ

i
L

†
Γcdγ(r)χjL/R , (C.22)

where γ(r) is the product of r distinct gamma matrices. Since F−ab is self-dual in Euclidean
signature, all the terms involving F−ab vanish. We can eliminate B1 from (C.21b) by using
(C.21a), which yields

C = − 1

2

χiL
†

‖χL‖2
/∇

([
χkL
†

‖χL‖2
/∇(AχlR)

]
χjR

)
τ2ijτ2kl +

i

r

χiL
†

‖χL‖2
/∇(AχjR)τ2ij

+ δ
(
Ξ(Λi,Ψi, χ

i)
)
, (C.23)

where, for brevity, we have defined

Ξ(Λi,Ψi, χ
i) := −χ

i
L
†
Λk

‖χL‖2
τ2ijε

jk +
1

2

χiL
†
γmχjR
‖χL‖2

∇m

(
χkL
†
Ψt

‖χL‖2

)
τ2ijτ2klτ

lt
1 −

3i

r

χiL
†
Ψk

‖χL‖2
τ2ijτ

jk
1 .

(C.24)
We now show that the sum of the terms in (C.23) involving A are a total derivative.

For any OSp(2|2) supersymmetry parameter χj and any scalar quantity X we have
that7

χjL
†

‖χjL‖2
∇/
(
XχjR

)
= ∇m

(
χjL
†
γmχjR
‖χjL‖2

X

)
+

4irX

x2
. (C.25)

7By using that ∇mχ†L = − i
2rχ
†
Rγm.
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Using this, the top component C of a chiral multiplet with w = 2 can be written locally
as the sum of an SU(1|1) supersymmetry transformation δ and total derivatives

C = δ
(
Ξ(Λi,Ψi, χ

i)
)
− 1

2
∇m

(
χiL
†
γmχjR
‖χL‖2

∇n

[
χkL
†
γnχlR
‖χL‖2

A

])
τ2ijτ2kl

+ 8ir∇m

(
χiL
†
γmχjRA

‖χL‖2x2

)
τ2ij +

i

r
∇m

(
χiL
†
γmχjR
‖χL‖2

A

)
τ2ij . (C.26)

This formula fails at the North pole, where ‖χ1
L‖ = ‖χ2

L‖ = 0 and Ξ diverges. Therefore the
integrated top component is non-trivial in correlation functions, as it is not supersymmetry-
exact globally, but the entire contribution localizes to the North pole, just as in the analysis
of 2d N = (2, 2) SCFTs in [76].8

Let us consider the integrated correlator with an operator O obeying δO = 0〈∫
S4

d4x
√
g C(x)O

〉
= lim

R→0

[〈∫
S4\B4

R

d4x
√
g C(x)O

〉
+

〈∫
B4
R

d4x
√
g C(x)O

〉]
.

(C.27)
We have divided S4 into two-regions: a four-dimensional ball B4

R of radius R around the
North pole and its complement S4\B4

R. In the R→ 0 limit the ball contribution vanishes9

and we are left with

lim
R→0

〈∫
S4\B4

R

d4x
√
g C(x)O

〉
. (C.28)

Using (C.26), which is valid in S4\B4
R, and δΦ = 0, we can replace C by the last three

terms in (C.26), which inside (C.28) can be written as an integral over the three-sphere
S3
R of radius R at the boundary of S4\B4

R. For any OSp(2|2) Killing spinor χj (C.16), we
have that in the R→ 0 limit

χiL(R) ∼ O(R), χiR(R) ∼ O(1)⇒ χiL
†
γµχiR
‖χL‖2

∼ O

(
1

R

)
. (C.29)

Therefore, a simple scaling argument shows that the last term in (C.26) cannot compensate
for the R3 measure factor coming from S3

R and gives a vanishing contribution in the R→ 0

8We note that had we assumed that the partition function can be regulated while preserving full N = 2
superconformal invariance, we would have concluded that the partition function is independent of the
moduli, as the top component C is globally superconformal-exact.

9The R4 measure factor suppresses the ball contribution in the R→ 0 limit.
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limit. Therefore, we have shown that in the presence of δ-closed operators∫
S4

d4x
√
g C(x) = lim

R→0

∫
S4\B4

R

d4x
√
g C(x)

=− 1

2
lim
R→0

∫
S4\B4

R

d4x ∂m

(
χiL
†
γmχjR
‖χL‖2

∂n

[
χkL
†
γnχlR
‖χL‖2

A(x)
√
g

])
τ2ijτ2kl

+ 8ir lim
R→0

∫
S4\B4

R

d4x ∂m

(
χiL
†
γmχjR

‖χL‖2x2
A(x)

√
g

)
τ2ij .

(C.30)

In the limit R → 0 we can replace the bottom component A(x) by its value at the North
pole A(N), as higher order terms in the expansion in R vanish in the limit, and using
Stoke’s theorem ∫

S4

d4x
√
g C(x) = lim

R→0

∫
S3
R

V · η̂ , (C.31)

where

V m := −1

2

χiL
†
γmχjR
‖χL‖2

∂n

(
χkL
†
γnχlR
‖χL‖2

√
g

)
A(N)τ2ijτ2kl + 8ir

χiL
†
γmχjR

‖χL‖2x2
A(N)

√
gτ2ij , (C.32)

and η̂ is the unit vector towards the North pole of S4 along the radial direction.10 Going
to spherical coordinates, where R is the radial coordinate, we find that

V · η̂ =
512A(N)r6(R2 − 2r2)

R3(R2 + 4r2)3
+

2048A(N)r8

R3(R2 + 4r2)3
=

512A(N)r6(R2 + 2r2)

R3(R2 + 4r2)3
. (C.33)

The integration in (C.31) is over S3
R, therefore∫

S3
R

V · η̂ =
512A(N)r6(R2 + 2r2)

R3(R2 + 4r2)3
2π2R3 , (C.34)

and

lim
R→0

512A(N)r6(R2 + 2r2)

R3(R2 + 4r2)3
2π2R3 = 32A(N)π2r2 . (C.35)

10The unit radial vector in cartesian coordinates is given by η̂a = − xa
√
x2

.
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This yields the desired formula〈∫
S4

d4x
√
g C(x)O

〉
= 32π2r2 〈A(N)O〉 . (C.36)

The integrated top component C of a chiral multiplet is equivalent to inserting the bottom
component A at the North pole. A very similar analysis yields〈∫

S4

d4x
√
g C̄(x)O

〉
= 32π2r2

〈
Ā(S)O

〉
. (C.37)

The integrated top component C̄ of an anti-chiral multiplet is equivalent to inserting the
bottom component Ā at the South pole.

We can now use (C.36) and (C.37) to express the derivative of the partition function
in (C.10) as an unintegrated two-point function

∂I∂J̄ logZS4 =
1

π4

〈∫
S4

d4x
√
g CI(x)

∫
S4

d4y
√
g C̄J̄(y)

〉
=
(
32r2

)2 〈
AI(N)ĀJ̄(S)

〉
.

(C.38)

It follows from the first equation in (C.7) that the correlator
〈
AI(N)ĀJ̄(S)

〉
is δ invariant,

since SU(1|1) supersymmetry parameters εj and εj vanish at the North pole and South
pole respectively, and therefore δAI(N) = δĀJ̄(S) = 0.

Using the supersymmetry Ward identity
〈
AI(N)ĀJ̄(S)

〉
= r4

48

〈
CI(N)C̄J̄(S)

〉
[76], that〈

CI(N)C̄J̄(S)
〉

= 1
(2r)8 gIJ̄ defines the Zamolodchikov metric gIJ̄ and that the metric is

Kähler (C.5) we arrive at

∂I∂J̄ logZS4 =
1

12
gIJ̄ =

1

12
∂I∂J̄K . (C.39)

Therefore, the four sphere partition function of a four dimensional N = 2 SCFT computes
the Kähler potential in the conformal manifold (C.1), and is subject to Kähler transfor-
mation ambiguities (C.2), which do not affect the Zamolodchikov metric.

C.3 Off-shell N = 2 Poincaré Supergravity for S4

The partition function of a field theory in a curved geometry can be ambiguous. These
ambiguities are encoded in finite counterterms for the background fields that capture the
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background geometry and the parameters of the theory. When the partition function of a
supersymmetric theory can be regulated in a diffeomorphism invariant and supersymmetric
manner, the counterterms are supergravity invariants constructed out of the supergravity
multiplet encoding the background geometry and the supersymmetry multiplets to which
the other parameters of the theory can be promoted, since all parameters in a supersym-
metric field theory can be promoted to background supermultiplets [146].

Constructing these supergravity invariants requires identifying first the supergravity
theory in which the curved geometry over which the partition function is computed is a
supersymmetric background. This can be analyzed in the framework of off-shell super-
gravity [65]. In this section we identify the four dimensional N = 2 off-shell Poincaré
supergravity theory and the background fields in that supergravity multiplet that give rise
to the OSp(2|4)-invariant four-sphere background geometry.

A conceptual way of constructing off-shell Poincaré supergravity theories is to start
with off-shell conformal supergravity and partially gauge fix the conformal symmetries
down to Poincaré by adding compensating supermultiplets. Different choices of compen-
sating multiplets give rise to different off-shell Poincaré supergravity theories, with different
sets of auxiliary fields.11 The Poincaré supersymmetry transformations of the gauge fixed
theory are constructed by combining the Poincaré supersymmetry transformations in con-
formal supergravity with field dependent superconformal transformations that are needed
to preserve the gauge choice.12

Our starting point is four dimensional N = 2 conformal supergravity [52] (we refer
to [68] for more details). Off-shell N = 2 superconformal transformations are realized on
the Weyl multiplet, whose independent fields are

bosonic: eam, bm, V
j

m i , A
R
m, T

−
ab, D

fermionic:ψim, χ
i . (C.40)

The fields eam, bm, V
j

m i , A
R
m, ψ

i
m are the gauge fields for translations, dilatations, SU(2)R,

U(1)R and Poincaré supersymmetry generators in the N = 2 superconformal algebra. The
Weyl multiplet is completed by the bosonic auxiliary fields T−ab and D, and the fermionic
auxiliary field χi. In Euclidean signature T−ab is a self-dual rank-two tensor. The embedding
of the OSp(2|4)-invariant S4 in conformal supergravity appeared in [97] [114].

11For instance, old and new minimal four dimensional N = 1 Poincaré supergravity arises from N = 1
conformal supergravity by using a compensating chiral and tensor multiplet respectively.

12We refer to the [68] for more background material and references, in particular for 4d N = 2 super-
gravity.
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Four dimensional N = 2 Poincaré supergravity [64] contains a graviphoton gauge field
Am. This field is furnished in the conformal approach by coupling an abelian vector
multiplet to the Weyl multiplet [51] [50]. An N = 2 vector multiplet, also known as
a restricted chiral multiplet, is an N = 2 chiral multiplet (C.7) with w = 1 subject to
constraints, and consists of

bosonic:X,Am, Yij

fermionic: Ωi (C.41)

a complex scalar X, a gauge field Am, a triplet of real auxiliary fields Yij = Yji and gauginos
Ωi. The vielbein eam and gravitino ψim of the Weyl multiplet and the gauge field Am in
the vector multiplet complete the on-shell content of four dimensional N = 2 Poincaré
supergravity multiplet.

The first step in constructing a Poincaré supergravity theory is to gauge fix special
conformal transformations. This can be accomplished by setting

bm = 0 . (C.42)

In order to preserve this gauge, supersymmetry transformations must be accompanied by
a compensating special conformal transformation, which acts nontrivially on bm. Fortu-
nately, all elementary fields in conformal supergravity and all fields in N = 2 matter
multiplets transform trivially under special conformal transformations, and therefore the
supersymmetry transformations of these fields are not modified by the gauge choice (C.42).

Dilatations and U(1)R are gauge fixed by setting [52]

X = µ , (C.43)

where µ is an arbitrary mass scale, while [52]

Ωi = 0 (C.44)

fixes the special conformal supersymmetry transformations. Under supersymmetry [68]

δX =
1

2
εiΩi (C.45)

δΩi = D/Xεi +
1

4
ΓabFabεijεj +

Yij
2
εj + 2Xηi , (C.46)
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where δ ≡ δε + δη, and (εi, εi) and (ηi, ηi) parametrize the Poincaré and conformal super-
symmetry transformations. Fab is the superconformal covariant field strength (see equation
(20.77) in [68]) and

DµX = (∂µ − bµ − iARµ )X − 1

2
ψ
i

µΩi (C.47)

is the superconformal covariant derivative acting on the scalar field X. In order to preserve
the gauge choice (C.43)(C.44), we must accompany the Poincaré supersymmetry transfor-
mations δε with a field dependent compensating conformal supersymmetry transformation
δη with parameter13

ηi =
i

2
A/Rεi −

1

2µ

(
1

4
ΓabFabεij +

Yij
2

)
εj . (C.48)

Different Poincaré supergravity theories depend on the choice of a second multiplet
which gauge fixes the remaining SU(2)R symmetry. Three choices for this compensating
multiplet have been considered in the literature (see [48]): a non-linear multiplet, a hyper-
multiplet and a tensor multiplet. We now demonstrate that the OSp(2|4)-invariant S4 is a
supersymmetric background of the N = 2 Poincaré supergravity theory constructed with
a tensor multiplet (and not with the non-linear or hypermultiplet).

Consider the off-shell N = 2 Poincaré supergravity multiplet constructed by coupling
a vector multiplet and a tensor multiplet to the Weyl multiplet. An N = 2 tensor multi-
plet [48]

bosonic : Lij, G,Emn

fermionic : φi (C.49)

consists of a triplet of real scalars Lij = Lji, a tensor gauge field Emn, a complex scalar G
and a doublet of spinors φi. The SU(2)R symmetry can be gauge fixed by setting

Lij = τ1ijϕ , (C.50)

which breaks SU(2)R down to SO(2)R. The supersymmetry transformation [141]

δLij = ε(iφj) + εikεjlε
(kφl) (C.51)

implies that to preserve (C.50), we must accompany the Poincaré supersymmetry trans-
formation δε with a compensating SU(2)R transformation δSU(2)R(Λk

j) with parameter14

Λk
j = −τ km1

(εmφj − εimεjlεiφl)
ϕ

. (C.52)

13Since (C.44) preserves δX, no other compensating transformation in required.
14The parameter is determined only up to an SO(2)R transformation.
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In summary, this off-shell Poincaré supergravity multiplet constructed by gauge fixing a
Weyl, vector and tensor multiplet completes the on-shell multiplet eam, ψ

i
m, Am with bosonic

auxiliary fields and fermionic auxiliary fields χi, φi. The Poincaré supersymmetry transfor-
mations in this N = 2 Poincaré supergravity theory are given by the following combination
of superconformal transformations

δε + δη + δSU(2)R(Λk
j) (C.53)

with η in (C.48) and Λk
j in (C.52).

In this N = 2 Poincaré supergravity theory the supersymmetric backgrounds where
the background values of all fermions vanish are solutions to the following equations

(δε + δη)ψ
i
m = 0 (δε + δη)χ

i = 0 (δε + δη)φ
i = 0 (C.54)

with η in (C.48), since Λk
j = 0 vanish on bosonic backgrounds. The explicit form of these

transformations are [51] [50] [48] (we use [141])

δψim =

(
∂m +

1

2
bm +

1

4
Γabωmab −

1

2
iARm

)
εi + V i

m jε
j − 1

16
ΓabT−abε

ijγmεj − γmηi

δχi =
1

2
Dεi +

1

6
Γab
[
−1

4
D/ T−abε

ijεj − R̂ab(U
i
j )εj + iR̂ab(T )εi +

1

2
T−abε

ijηj

]
δφi =

1

2
/DLijεj +

1

2
εijE/ εj −

1

2
Gεi + 2Lijηj , (C.55)

with η in (C.48). D is superconformal covariant derivative and R̂ab(T ) and R̂ab(U
i
j ) are

covariant curvatures for U(1)R and SU(2)R.

The OSp(2|4)- supersymmetric S4 background is described by the following Killing
spinor equations (C.11)

∇mε
i =

i

2r
γmτ

ij
1 εj ∇mεi =

i

2r
γmτ1ijε

j . (C.56)

From (C.55) we find that S4 is a supersymmetric background of this supergravity theory
with the following non-vanishing background fields turned on

eam = eam|S4 Y ij = −2iµ

r
τ ij1 Yij = −2iµ

r
τ1ij other = 0 . (C.57)
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With these background fields turned on δψim realizes the S4 Killing spinor equations (C.56),
while δξi and δφi vanish identically.15 The algebra of supergravity transformations when
evaluated on the background (C.57) realizes the OSp(2|4) symmetry of S4.

C.4 The Kähler ambiguity Supergravity Counterterm

In this section we construct the N = 2 Poincaré supergravity invariant constructed out
of the supergravity multiplet and the w = 0 chiral multiplets AI (see below (C.9)) which
when evaluated on the OSp(2|4)-supersymmetric background (C.63) realizes the Kähler
ambiguity (C.2).

Our approach is to construct a superconformal invariant constructed out of the Weyl
multiplet, the compensating vector multiplet Φ, the compensating tensor multiplet and
the chiral multiplets AI , the supermultiplets to which the coordinates in the conformal
manifold τI have been promoted. This invariant, when evaluated on the Poincaré gauge
fixing choice described in the previous section yields an invariant in the associated N = 2
Poincaré supergravity theory. We first recall some facts about the construction of super-
conformal invariants.

Consider an abstract chiral multiplet (C.7) with w = 2, which we denote by Â, coupled
to the Weyl multiplet (C.40). The following superconformal invariant can be constructed
from such a chiral multiplet [52]

I[Â] =

∫
d4x
√
g

[
Ĉ(x)− 1

4
Â
(
T+
ab

)2
+ fermions

]
, (C.58)

where Ĉ and Â denote the top and bottom components of the multiplet Â. The coupling
of the chiral multiplet to the Weyl multiplet is responsible for the appearance of the terms
after Ĉ in (C.58). The product of two chiral multiplets with R-charge w1 and w2 yields
another chiral multiplet of R-charge w1 +w2. Therefore, superconformal invariants can be
constructed from products of chiral multiplets with total R-charge w = 2.

Consider now the compensating vector multiplet that appears in the construction of
N = 2 Poincaré supergravity, which we denote by Φ. It is important to note that an N = 2
vector multiplet is a chiral multiplet with w = 1 subject to reducibility constraints [47],

15A similar analysis for the Poincaré supergravity theories constructed with a compensating non-linear
multiplet and hypermultiplet demonstrates that the background fields that yield the S4 Killing spinor
equations are incompatible with the vanishing of the supersymmetry variations of the fermions in these
multiplets. Therefore, S4 is not a supersymmetric background of these supergravity theories.
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which express the last two components of the chiral multiplet in terms of the previous ones.
It is also known as a restricted chiral multiplet. The components of a chiral multiplet (C.7)
are given in terms of the fields in the abelian vector multiplet (C.41) by

A|Φ = X

Ψi|Φ = Ωi

Bij|Φ = Yij

F−ab
∣∣
Φ

= F−ab
Λi|Φ = − εij /DΩj

C|Φ = − 2DaD
aX̄ − 1

2
F+
abT

ab+ − 3χ̄iΩ
i (C.59)

where Fab is the superconformal covariant field strength. Expressing a vector multiplet as
a w = 1 chiral multiplet provides a way of constructing a superconformal invariant out of
Φ using (C.58).

We will now construct the supergravity counterterm that realizes the Kähler ambiguity
by writing down a supergravity invariant constructed out of a composite chiral multiplet
with w = 2. From the compensating vector multiplet Φ, which has w = 1, it is possible to
construct two chiral multiplets with w = 2

T(log Φ̄) and Φ2 , (C.60)

where the first is the so called non-linear kinetic multiplet [49] [21].16 Given a chiral multi-
plet A with bottom component A and R-charge w, the multiplet logA is a chiral multiplet
whose bottom component, namely logA, transforms inhomogeneously under dilatations
but its higher components in the multiplet (in particular the top component) transform
as if they belonged to a chiral multiplet with w = 0 [21]. The usefulness of this multiplet
comes from the fact that the top component of a chiral multiplet with w = 0 is the bottom
component of an anti-chiral multiplet with w = 2, and in particular a superconformal
primary (i.e. invariant under S-supersymmetry). Taking the CPT conjugate we find that
the top component of log Φ̄ is a chiral primary with w = 2. Therefore we can build a chiral
multiplet with w = 2 by applying the Q-supersymmetry generators on the top component
of log Φ̄ and this multiplet is precisely T(log Φ̄) [21].

The supergravity counterterm responsible for the Kähler ambiguity is the superconfor-
mal invariant (C.58) constructed from the w = 2 composite chiral multiplet

F(AI)T(log Φ̄) , (C.61)

16Given an anti-chiral multiplet Ā with w = 0, the corresponding kinetic multiplet T(Ā), which has
w = 2, is defined as: T(Ā) ∝ D̄4Ā, where D̄4 involves all four anti-chiral covariant superspace derivatives.
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where F is an arbitrary holomorphic function of the w = 0 chiral multiplets AI describing
the coordinates in the conformal manifold.17 The associated N = 2 Poincaré supergravity
invariant is

I
[
F(AI)T(log Φ̄)

]
. (C.62)

We will now evaluate this invariant in the OSp(2|4) invariant background field config-
uration:

Weyl: eam = eam|S4

vector: A|Φ = X = µ , Bij|Φ = −2iµ

r
τ1ij , C|Φ =

4µ

r2

chiral: A|F(AI) = F(τI) , (C.63)

Since the only field with nonzero expectation value in the Weyl multiplet is the vier-
bein, the only term from (C.58) that survives in this background is the top component
of the product chiral multiplet F(AI)T(log Φ̄). The product of two chiral multiplets with
bosonic components (A,Bij, F

−
ab, C) and (a, bij, f

−
ab, c) yields a new chiral multiplet with

bosonic components (setting all fermions to zero, as they vanish in the OSp(2|4)-invariant
background (C.63))(

Aa,Abij + aBij, Af
−
ab + aF−ab, Ac+ aC − 1

2
εikεjlBijbkl + F−abf

−ab
)
. (C.64)

We need the bosonic components of the chiral multiples F(AI) and T(log Φ̄) to compute
the top component of their product. Since only the bottom component of F(AI) is nonzero
in the background (C.63), to compute the top component of the product F(AI)T(log Φ̄)
according to (C.64) we only need to know the top component of T(log Φ̄). The components
of T(log Φ̄) were computed in terms of the components of Φ̄ in [21]. Using their expressions,
in the background (C.63), the top component becomes:

C|T(log Φ̄) = 4D2D2 log µ̄− 8RabDaDb log µ̄+
8

3
RD2 log µ̄+

2

3
D2R− 2RabRab +

2

3
R2 ,

(C.65)

17An analogous w = 2 chiral multiplet constructed out of Φ2, namely F(AI)Φ2 can be used to construct
another counterterm but when evaluated on the OSp(2|4) invariant background (C.63) the invariant be-
comes: I[F(AI)Φ2] = 32π2µ2r2. Yet another natural guess for the Kähler counterterm can be constructed
from the w = 2 chiral multiplet W abWabF(AI), where Wab is a chiral multiplet that encodes the covariant
Weyl multiplet (C.40). However, upon evaluating these terms on the background (C.63) they all vanish,
as these terms involve the Weyl tensor, which vanishes on S4. Supergravity couplings involving W 2 have
been considered in the literature [125]. For other higher derivative invariants in N = 2 supergravity see
e.g. [23] [53] [21] [117] [22].
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where Da is space-time covariant derivative, D2 ≡ DaD
a, Rab is the Ricci curvature on the

sphere, and R is the scalar curvature. Since log µ̄ and R are covariantly constant scalars
all the terms in (C.65) with derivatives vanish and after substituting the values for Rab

and R, (C.65) becomes:

C|T(log Φ̄) =
24

r4
, (C.66)

and finally

C|F(AI)T(log Φ̄) = F(τI)
24

r4
. (C.67)

Thus, we find that the invariant (C.62) is:

I
[
F(AI)T(log Φ̄)

]
=

∫
S4

√
gF(τI)

24

r4
= 64π2F(τI) . (C.68)

Therefore, the marginal supergravity counterterm

1

768π2

(
I[F(AI)T(log Φ̄)] + I[F̄(ĀI)T(log Φ)]

)
(C.69)

is responsible for the Kähler ambiguity (C.2) in the four sphere partition function of four
dimensional N = 2 SCFTs

ZS4 ' ZS4e
1
12(F(τ)+F̄(τ̄)) . (C.70)

This provides a microscopic realization of Kähler ambiguities in these SCFTs.
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Appendix D

Background Materials on 4d N = 2
SCFTs

D.1 Integrability of tt∗ Equations

In this appendix we will show that the tt∗ equations together with the WDVV equations for
any 4d N = 2 SCFT are integrable, in the sense that these equations can be written as the
flatness condition of a one parameter family of connections on a certain vector bundle over
the conformal manifold M, which is equivalent to the Lax representation (with spectral
parameter) of a classically integrable system. Recall that the WDVV equations [57,58,152]
and the tt∗ equation are [139]

∇iC
L
jK = ∇jC

L
iK , ∇īC

L̄

j̄K̄ = ∇j̄C
L̄

īK̄ , (D.1a)

[∇i,∇j]
L
K = [∇ī,∇j̄]

L̄
K̄ = 0, (D.1b)

[∇i,∇j]
L
K = −[Ci, Cj]

L
K + gij̄δ

L
K

(
1 +

R

4c

)
, (D.1c)

where i, j run over chiral primaries of ∆ = 2, K,L run over all chiral primaries, and CK
IJ

are OPE coefficients defined as:

OI(x)OJ(0) = CK
IJOK(0) + · · · . (D.2)

CI can be thought of as an operator acting on chiral primaries whose matrix components
are CK

IJ . In (D.1c), R is the R-charge of the chiral primaries that comprise the fibre of
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the bundle VR →M on which the covariant derivatives and the Ci’s act, c is the central
charge of the SCFT, and gij̄ is the Zamolodchikov metric on M. We also note the fact
that CI (C Ī) is covariantly holomorphic (antiholomorphic) [139]

∇īCI = ∇iC Ī = 0 . (D.3)

Now consider the holomorphic vector bundle VR⊗L⊗n with n = −(4c+R), where L is
the supercharge bundle.1 L is a holomorphic line bundle overM whose curvature is given
by [139]

Fij = Fīj̄ = 0, Fij̄ =
1

4c
gij̄. (D.4)

This nontrivial curvature encodes the ambiguity in defining the phase of the supercharges,
i.e., the following automorphism of the N = 2 superconformal algebra:

Qi
α → eiθQi

α, Q
ī

α̇ → e−iθQ
ī

α̇, Siα → e−iθSiα, S
ī

α̇ → eiθS
ī

α̇. (D.5)

(D.4) implies that the curvature of L⊗n, let it be denoted by F n, is given by:

F n
ij = F n

īj̄ = 0, F n
ij̄ =

n

4c
gij̄ = −

(
1 +

R

4c

)
gij̄. (D.6)

Let the covariant derivative on L⊗n be denoted by ∇Li and define the following one param-
eter family of connections on VR ⊗ L⊗n:

∇ξ
i ≡ ∇i + ξCi +∇Li , ∇ξ

ī ≡ ∇ī + ξ−1C ī +∇Lī , (D.7)

where ∇i and Ci are the same operators that appear in (D.1). The flatness condition of
this connection for any value of the parameter ξ is:

[∇ξ
i ,∇

ξ
j ] = [∇ξ

ī ,∇
ξ

j̄ ] = [∇ξ
i ,∇

ξ

j̄ ] = 0, ∀ ξ ∈ C. (D.8)

Using (D.7), (D.6) and noting that operators on VR commute with operators on L⊗n we
get:

[∇ξ
i ,∇

ξ
j ] = [∇i,∇j] + ξ(∇iCj −∇jCi) + ξ2[Ci, Cj] (D.9a)

[∇ξ

ī ,∇
ξ

j̄ ] = [∇ī,∇j̄] + ξ−1(∇īC j̄ −∇j̄C ī) + ξ−2[C ī, C j̄] (D.9b)

[∇ξ
i ,∇

ξ

j̄ ] = [∇i,∇j̄] + [Ci, C j̄]−
(

1 +
R

4c

)
gij̄ + ξ−1[∇i, C j̄]− ξ[∇j̄, Ci] . (D.9c)

1Negative power of a line bundle is defined as the positive power of the dual bundle, i.e., if E →M is

a line bundle then for some negative real number m < 0 we have E⊗m ≡ (E∗)
⊗|m|

.
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Equation (D.8) must be satisfied at each order in ξ. The Ci’s commute among themselves
and so do the C ī’s [139], so the O(ξ2) and O(ξ−2) terms vanish. The O(ξ) and O(ξ−1)
terms of (D.9c) vanish due to (D.3). By imposing (D.8) order by order on the rest of terms
in (D.9) we recover precisely (D.1), thus proving integrability of WDVV and tt∗ equations
of four-dimensional N = 2 SCFTs. They are governed by a Hitchin integrable system.

D.2 Deforming N = 2 SCFT on S4 by Chiral Opera-

tors

When we place an N = 2 SCFT on S4 via the stereographic map, then the Lagrangian
preserves the full superconformal symmetry. However, the partition function and various
other observables need to be regulated in the ultraviolet. The maximal subalgebra that can
be preserved by the regulator is osp(2|4). This is because this subgroup does not include
conformal transformations but only isometries of the sphere. In this appendix we discuss
F -term deformations of the action that preserve osp(2|4), i.e.

S → S − τU
∫
S4

d4x
√
g U(x) , (D.10)

such that the deformation term is osp(2|4) invariant, i.e.

δ

(
τU

∫
S4

d4x
√
g U(x)

)
= 0 , (D.11)

where δ represents an osp(2|4) transformation. Here τU is the coupling constant corre-
sponding to the operator U . If τU has Weyl weight 0 then such a deformation is marginal
but here we are interested in more general deformations where τU can have arbitrary Weyl
weight. The systematic way to find such deformations is to start with an N = 2 super-
field and integrate it over the chiral superspace (

∫
d4θ) with the appropriate measure and

evaluate the resulting term on the S4 background.

In order to achieve this, we begin by promoting the coupling constant τU to an N = 2
chiral multiplet with Weyl weight (2−w) whose bottom component is τU . We also consider
another chiral multiplet of Weyl weight w whose bottom component will be called U . We
will denote these two multiplets as τU and U and denote the component fields of these
two multiplets as (τU , ψi, bij, f

−
ab, λi, c) and (U ,Ψi, Bij, F

−
ab,Λi, C), respectively.2 bij, Bij are

2i, j are su(2)R indices and a, b are local frame indices on S4.
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symmetric and in Euclidean signature f−ab, F
−
ab are selfdual tensors. Now the following term

is manifestly osp(2|4) invariant:∫
S4

d4x

∫
d4θ E τU(x, θ)U(x, θ) , (D.12)

where E is the chiral density. Since we want τU to be a background multiplet, we need
to restrict its components in such a way that the required supersymmetry algebra is un-
broken. First, in order to preserve rotational invariance on S4 we can give the spacetime
scalars τU , bij and c constant expectation values and let all the other fields in τU vanish.
Supersymmetry is preserved if the supersymmetry variations of all the background fields
vanish.

The Supersymmetry (SUSY) variations of a chiral multiplet of Weyl weight w, with
component fields written as (A,Ψi, Bij, F

−
ab,Λi, C), under an N = 2 superconformal trans-

formation are given by (see e.g. [76]):

δA =
1

2
εiΨi (D.13a)

δΨi = ∇/(Aεi) +
1

2
Bijε

j +
1

4
γabF−abεijε

j + (2w − 4)Aηi (D.13b)

δBij = ε(i∇/Ψj) − εkΛ(iεj)k + 2(1− w)η(iΨj) (D.13c)

δF−ab =
1

4
εijεi∇/γabΨj +

1

4
εiγabΛi −

1

2
(1 + w)εijηiγabΨj (D.13d)

δΛi = −1

4
γab∇/(F−abεi)−

1

2
∇/Bijε

jkεk +
1

2
Cεijε

j − (1 + w)Bijε
jkηk +

1

2
(3− w)γabF−abηi

(D.13e)

δC = −∇m(εijεiγ
mΛj) + (2w − 4)εijηiΛj . (D.13f)

where δ is a generic N = 2 superconformal transformation being generated by the chiral
conformal Killing spinors εi, ηi and εi, η

i, and we use the matrices τ ijp ≡ {iσ3,−12×2,−iσ1} =:
τ ∗pij. γm are curved space gamma matrices defined in terms of the vierbein eam and the flat
space gamma matrices Γa as γm(x) ≡ eam(x)Γa. The conformal Killing spinors satisfy the
equations:

∇mε
i = γmη

i , ∇mεi = γmηi . (D.14)

The osp(2|4) transformations can be generated by imposing the following constraints on
the conformal Killing spinors:

ηj =
i

2r
τ jk1 εk , ηj =

i

2r
τ1jkε

k . (D.15)
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In the background where the fermions are all vanishing the variations of the bosonic fields
automatically vanish. So for the background fields in τU we demand that the fermionic
variations in (D.13) vanish:

δψi =
1

2
bijε

j +
i

r
(2− w)τOτ1ijε

j = 0 (D.16)

δλi =
1

2
cεjεij −

i

2r
(3− w)bijε

jkτ1klε
l = 0 . (D.17)

These equations are satisfied when:

bjk =
2i

r
(w − 2)τ1jkτU , (D.18a)

c =
2

r2
(w − 2)(w − 3)τU . (D.18b)

Now, the product of two chiral multiplets is another chiral multiplet whose bottom compo-
nent is the product of the bottom components of the individual chiral multiplets and this
multiplication is defined in a way such that the integration over the chiral superspace in
(D.12) will simply pick out the top component of the product chiral multiplet τU U . The
general expression for the top component of τU U is given by:

τOC +Oc− 1

2
εikεjlBijbkl + F−abf

−
ab + εij

(
Ψiλj + ψiΛj

)
. (D.19)

When we use the background values where τU is a constant, fab and all the fermions in τU
vanish and the rest of the fields satisfy (D.18), this becomes:

τU C(x) ≡ τU

[
C(x) +

2

r2
(w − 2)(w − 3)A(x)− i

r
(w − 2)τ ij1 Bij(x)

]
, (D.20)

and (D.12) reduces to:

τU

∫
S4

d4x
√
g C(x). (D.21)

D.3 Ward Identity

For a chiral multiplet (A,Ψi, Bij, F
−
ab,Λi, C) of weight w recall the combination (D.20):

C(x) ≡ C(x) +
2

r2
(w − 2)(w − 3)A(x)− i

r
(w − 2)τ ij1 Bij(x) . (D.22)
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In this appendix we prove the following identity: If U is some osp(2|4) supersymmetric
operator, i.e. δSUSYU = 0, then〈(∫

S4

d4x
√
g C(x)

)
U
〉

= 32π2r2〈A(N)U〉 , (D.23)

where N is the North Pole of the sphere. Similarly, for an anti-chiral multiplet we have:〈
U
(∫

S4

d4x
√
g C(x)

)〉
= 32π2r2〈U A(S)〉 , (D.24)

where S is the South Pole.

From (D.14) and (D.15) we see that the nonchiral Killing spinors generating the osp(2|4)
algebra preserved on S4 satisfy the equation:

∇mχ
j =

i

2r
γmχ

j , (D.25)

where, χj ≡ εj + τ jk1 εk. In steregraphic coordinates the solutions to (D.25) are given by:

χj =
1√

1 + x2

4r2

(
1+

i

2r
xmΓm

)
χj0 . (D.26)

The constant spinors χj0 parametrize the eight supercharges of osp(2|4). We choose an
su(1|1) ⊂ osp(2|4) by imposing the following constraints:

PLχ
i
0 = 0, χi0 = τ ij1 εjkΓ1Γ2χ

k
0 . (D.27)

The chosen Killing spinors and the supersymmetry transformation they generate will hence-
forth be denoted by χi and δ respectively. χi satisfy the following equations:

χiL
†

‖χL‖2
∇/(AχjR)τ2ij = ∇m(UmA)− 8ir

x2
A , ∇mU

m =
8ir

x2
− 4i

r
, (D.28)

where we have defined:

‖χL‖2 ≡ ‖χ1
L‖2 = ‖χ2

L‖2 and, Um ≡ χiL
†
γmχjR
‖χL‖2

τ2ij . (D.29)
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Now, using the supersymmetry transformation of a chiral multiplet (A,Ψi, Bij, F
−
ab,Λi, C)

of weight w (D.13, D.15) we can write3

1

2
τ ij1 Bij

mod δ
= ∇m(UmA)− 8ir

x2
A− 2i

r
(w − 2)A (D.30a)

C
mod δ
= − 1

4
Um∇mBijτ

ij
1 +

3i

2r
τ ij1 Bij +

i

2r
(w − 2)τ ij1 Bij . (D.30b)

For a chiral multiplet with w = 2 this calculation was done in more detail in [81] and it
was shown that we have the following schematic form:

Cw=2(x)
mod δ
= f(Aw=2(x)) (D.31)

where f is a function that satisfies:∫
S4

d4x
√
g f(A(x)) = 32π2r2A(N) . (D.32)

We want to repeat this computation now for arbitrary w. We define:

∆C(x) ≡ C(x)− f(A(x)) . (D.33)

To compute ∆C we can use (D.30a) in (D.30b) to write C entirely in terms of A and then
if we consider the expression for C as a polynomial in (w − 2) then ∆C is given by the
terms that depend on (w − 2). After some simplifications using (D.28) we find:

∆C
mod δ
=

2i

r
(w − 2)∇m(UmA) +

16

x2
(w − 2)A+

2

r2
(w − 2)(w − 1)A . (D.34)

Multiplying (D.30a) by −2i
r

(w−2) and adding it to the above equation we find the desired
result

∆C +
2

r2
(w − 2)(w − 3)A− i

r
(w − 2)τ ij1 Bij

mod δ
= 0 , (D.35)

or equivalently:

C(x) +
2

r2
(w − 2)(w − 3)A(x)− i

r
(w − 2)τ ij1 Bij(x) = C(x)

mod δ
= f(A(x)) . (D.36)

Integrating the two sides of
mod δ
= on S4 and putting them inside a correlator with U gives

us the desired identity (D.23). The proof of (D.24) follows similarly.

3Using (D.13) will also result in some terms proportional to F−ab and ∇mF−ab in (D.30), but these terms
are vanishing, because while F−ab is selfdual in Euclidean signature, their coefficients will be proportional

to χiL
†
Γabγ(r)χjL/Rτ3ij , where γ(r) is a product of r distinct gamma matrices, and these terms are anti-

selfdual as they satisfy: χiL
†
Γabγ(r)χjL/R = χiL

†
Γ∗Γ

abγ(r)χjL/R = − 1
2ε
ab
cdχ

i
L
†
Γabγ(r)χjL/R, where Γ∗ is the

chirality matrix.
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D.4 tt∗ Equations from Sphere Partition Function

In this appendix we prove that the two-point functions in SU(N) N = 2 SQCD (with
2N fundamental hypermultiplets) satisfy the coupled tt∗ equation. We denote by τ, τ̄ the
marginal coupling which parametrizes the conformal manifold. The chiral ring is generated
by the N − 1 generators

φk ∝ Tr (ϕk) , k = 2, ..., N (D.37)

and a convenient basis for the chiral primaries is

Oi ≡ Oi2,i3,...,iN =
N∏
k=2

φikk . (D.38)

We will define the matrix of two-point functions on the sphere (dropping the S4 subscript)

Mab =
〈
Oa(N)Ob(S)

〉
. (D.39)

As a consequence of the mixing explained in section 3.3, Mab is in general not zero even
when Oa and Ob are not of the same dimension. The physical operators {O′a} can be
obtained by doing a Gram-Schmidt procedure with respect to all the lower-dimensional
CPOs (chiral primary operators):

O′a = Oa −
∑

∆i<∆a

〈
Oa(N)O′i(S)

〉〈
O′i(N)O′i(S)

〉O′i . (D.40)

The physical two-point functions which correspond to the flat space two-point functions
are obtained from

Gab =
〈
O′a(N)O′b(S)

〉
, (D.41)

which is non zero only if ∆a = ∆b.

We will define the matrix M ij
∆′ to be the inverse of the submatrix of Mij that includes

all the operators up to dimension ∆′. Another useful notation is to denote operators of
the form φ2Oa by O∂a, and the corresponding matrix elements are

M∂i,j =
〈
φ2Oi(N)Ōj(S)

〉
, Mi,∂j =

〈
Oi(N)φ2Oj(S)

〉
. (D.42)

Derivatives with respect to τ, τ̄ bring down insertions of φ2, φ̄2 such that the following
relations between the matrix elements hold

∂τMIJ = M∂I,J −M10MIJ

∂τ̄MIJ = MI,∂J −M01MIJ

(D.43)
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where
M10 = 〈φ2(N)〉 , M01 =

〈
φ2(S)

〉
. (D.44)

In the proceeding of this section, we will use the indices a, b, c to denote operators of
dimension ∆, indices i, j, k, l to denote operators of dimension smaller than ∆ and I, J,K
to denote operators up to dimension ∆. Contracted indices are summed over all their
possible values unless specified differently. Due to the Gram-Schmidt procedure, we can
write Gab in the following way (∆a = ∆b = ∆)

Gab = Mab −MaiM
ij
∆−2Mjb . (D.45)

It will be useful to show that the inverse of Gab denoted by Gbc is equal to Gbc = M bc
∆ .

Proof:

GabG
bc = (Mab −MaiM

ij
∆−2Mjb)M

bc
∆ = MabM

bc
∆ −MaiM

ij
∆−2MjbM

bc
∆

= MabM
bc
∆ +MaiM

ij
∆−2MjkM

kc
∆ = MabM

bc
∆ +MaiM

ic
∆ = δca .

(D.46)

The tt∗ equations (D.1c) in the holomorphic gauge and in these notations take the form

∂τ̄ (∂τGabG
bc) = G∂a,∂bG

bc −G2δ
c
a −Ga∂iG

ijδc∂j . (D.47)

In order to prove (D.47), we need to compute ∂τ̄ (∂τGabG
bc). Do it in steps:

∂τGab = ∂τ (Mab −MaiM
ij
∆−2Mjb)

= M∂a,b −M10Mab −M∂a,iM
ij
∆−2Mjb −MaiM

ij
∆−2M∂j,b+

+MaiM
ik
∆−2M∂k,lM

lj
∆−2Mjb +M10MaiM

ij
∆−2MjbMaiM

ij
∆−2Mjb

= M∂a,b −M10Gab −M∂a,iM
ij
∆−2Mjb −MaiM

ij
∆−2M∂j,b +MaiM

ik
∆−2M∂k,lM

lj
∆−2Mjb

= M∂a,b −M10Gab −M∂a,iM
ij
∆−2Mjb −

∑
∂k∈∆

MaiM
ik
∆−2M∂k,b +

∑
∂k∈∆

MaiM
ik
∆−2M∂k,lM

lj
∆−2Mjb

= M∂a,b −M10Gab −M∂a,iM
ij
∆−2Mjb −

∑
∂k∈∆

MaiM
ik
∆−2G∂k,b

(D.48)
and

∂τGabG
bc =

(
M∂a,b −M10Gab −M∂a,iM

ij
∆−2Mjb −

∑
∂j∈∆

MaiM
ij
∆−2G∂j,b

)
M bc

∆

= M∂a,bM
bc
∆ −M10δ

c
a +M∂a,iM

ij
∆−2MjkM

kc
∆ −

∑
∂j∈∆

MaiM
ij
∆−2δ

c
∂j

= M∂a,bM
bc
∆ −M10δ

c
a +M∂a,iM

ic
∆ −

∑
∂j∈∆

MaiM
ij
∆−2δ

c
∂j .

(D.49)
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and finally

∂τ̄ (∂τGabG
bc) = ∂τ̄

(
M∂a,bM

bc
∆ −M10δ

c
a +M∂a,iM

ic
∆ −

∑
∂j∈∆

MaiM
ij
∆−2δ

c
∂j

)
. (D.50)

Compute the different terms:

∂τ̄M∂a,IM
Ic
∆ = M∂a,∂IM

Ic
∆ −M01M∂a,IM

Ic
∆ −M∂a,IM

IJ
∆ (MJ,∂K −M01MJK)MKc

= M∂a,∂IM
Ic
∆ −M01M∂a,IM

Ic
∆ −M∂a,IM

IJ
∆ MJ,∂KM

Kc +M∂a,IM
IJ
∆ M01MJKM

Kc

= M∂a,∂bM
bc
∆ +M∂a,∂iM

ic
∆ −M∂a,∂iM

ic
∆ −M∂a,IM

IJ
∆ MJ∂bM

bc
∆ = G∂a,∂bG

bc .

(D.51)

Second term:
∂τ̄ (−M10δ

c
a) = −(M11 −M10M01)δca = −G2δ

c
a . (D.52)

Last term:

−
∑
∂j∈∆

δc∂j∂τ̄ (MaiM
ij
∆−2) = −

∑
∂j∈∆

δc∂j(Ma∂iM
ij
∆−2 −MalM

lk
∆−2Mk,∂iM

ij
∆−2)

= −
∑

∂i,∂j∈∆

δc∂j(Ma∂iM
ij
∆−2 −MalM

lk
∆−2Mk,∂iM

ij
∆−2) = −

∑
∂j∈∆

δc∂jGa∂iG
ij .

(D.53)

Putting everything together we get exactly (D.47).

D.5 Scheme Independence of the Results

The sphere partition function is subject to Kähler ambiguity transformations

lnZ[S4]→ lnZ[S4] + f(τ i) + f̄(τ̄ ī) . (D.54)

That is, sphere partition functions that were computed in different regularization schemes
may differ by holomorphic functions in the exactly marginal couplings [81]. More generally,
the deformed partition function Z[S4](τ i, τ̄ ī, τA, τ̄ Ā) is subject to holomorphic ambiguities,
as discussed in section 3.2.4.

The expressions obtained for the extremal correlators in our prescription are, by con-
struction, unambiguous. The effect of the holomorphic ambiguities on sphere correllators is
in holomorphic contributions to the mixing of chiral primaries with lower dimensional chi-
ral primaries (see equations (3.41-3.42)), and the Gram-Schmidt procedure subtracts these
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holomorphic contributions. The algorithm described in section 3.2.5 is therefore guaran-
teed to yield results that are scheme independent. Here we would like to demonstrate how
this works.

Let us start with the example of gauge group SU(2). Using the recursive formula
(3.66), the invariance of the extremal two-point functions follows from the invariance of
the boundary condition G2 = 16 ∂τ∂τ̄ lnZ[S4] under Kähler transformations. Alternatively,
consider the formula (3.3) and note that

∂lτ∂
j
τ̄

(
ef(τ)Z[S4]

)
= ef(τ)∂lτ∂

j
τ̄Z[S4] +

l−1∑
k=0

(
l
k

)(
∂l−kτ ef(τ)

)
∂kτ ∂

j
τ̄Z[S4] . (D.55)

The second term in the right hand side of the equation above is a linear combination of
the first l columns of the matrix defined by the first term, and therefore does not affect
the determinant,

det
(
∂lτ∂

j
τ̄

(
ef(τ)Z[S4]

) )
= det

(
ef(τ)∂lτ∂

j
τ̄Z[S4]

)
. (D.56)

It follows that equation (3.3) is invariant under holomorphic transformations (and similarly
under antiholomorphic transformations.)

More generally, every extremal two-point function that we would like to compute is
given in our prescription in terms of determinants of the Gram-Schmidt matrix of two-point
functions on the sphere. The holomorphic mixing can always be canceled by subtracting
from columns linear combinations of the previous columns, and therefore the holomorphic
ambiguities do not affect the (appropriately normalized) determinants. Importantly, non-
holomorphic contributions to lnZ[S4], such as the one due to the anomaly discussed in [82],
do not simply mix columns and rows with the previous ones, and they do affect the result
of the Gram-Schmidt procedure.
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Appendix E

Accompanying Computations for
Topological Holography

E.1 Integrating the BF interaction vertex

In this appendix we evaluate the integrals in (4.80).

φ2

φ

φ1 ,
φ2

φφ1

. (E.1)

We split up each integral into two, based on whether the bulk point is above or below the
line operator. We use angular coordinates defined as in the above diagrams. One subtlety
is that, from the definition of the propagators in the Cartesian coordinate we can see that
the integrand1 is even under reflection with respect to the line. So, we just have to make
sure that when we divide up the integral in the aforementioned way, even when written
in angular coordinates, the integrand does not change sign under reflection. With this in

1including the measure
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mind, the integrals we have to evaluate are:

Vαβγ·|| (x1, x2) =
~2

(2π)3
fαβγ

∫ 2π

0

dφ1

∫ π

φ1

dφ2

(∫ φ1+π

π

dφ+

∫ φ1−π

π

dφ

)
,

Vαβγ|·| (x1, x2) =
~2

(2π)3
fαβγ

∫ 2π

0

dφ1

∫ π

φ1

dφ2

(∫ φ2+π

φ1+π

dφ+

∫ φ2−π

φ1−π
dφ

)
,

Vαβγ||· (x1, x2) =
~2

(2π)3
fαβγ

∫ 2π

0

dφ1

∫ π

φ1

dφ2

(∫ 2π

φ2+π

dφ+

∫ 0

φ2−π
dφ

)
.

All three terms are equal to ~2

24
fαβγ.

E.2 Quantum Mechanical Hilbert Spaces

E.2.1 Fermionic

The quantum mechanical action (4.23) is written in terms of fermions ψ and ψ that trans-
form under GLN × GLK according to the representations V := N ⊗K and V := N ⊗K
respectively. The kinetic term in the action is first order in derivative, which establishes ψ
and ψ as canonically conjugate variables, in other words, the phase space of the QM is:

V ⊕ V = T ∗V . (E.2)

The Hilbert space of this theory can now be written as the space of functions on V – since
V is a fermionic vector space, functions on this space can be written as anti-symmetric
polynomials in the dual vectors:

Hfer = O(V ) = ∧•(V ) . (E.3)

Let us look at the anti-symmetric polynomials of degree n, which can be defined as the

subspace of V
⊗n

where Sn acts by sign – Sn being the permutation group of n objects:

∧n
(
V
⊗n
)

= HomSn

(
ε, V

⊗n
)
∼= HomSn

(
ε,N⊗n ⊗K

⊗n
)
. (E.4)

Here ε is the one dimensional sign representation of the symmetric group Sn. Using Schur-
Weyl duality we can decompose spaces such as N⊗n into irreducible representations of
Sn ×GLN :

∧n
(
V
⊗n
)

=
⊕

|Y |=|Y ′|=n

HomSn

(
ε, πY ⊗HN

Y ⊗ πY ′ ⊗HK
Y ′

)
, (E.5)
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where Y and Y ′ are Young tableau, the sum is over tableau containing n boxes, πY is the
irreducible representation of Sn parametrized by the tableaux Y , HK

Y ′ is the irreducible

representation of GLK parametrized by the tableaux Y ′ and HK
Y ′ is its dual. Since we are

computing Sn equivariant Hom, we can focus on the Sn representations:

HomSn(ε, πY ⊗ πY ′) ∼= HomSn(ε⊗ πY , πY ′) = HomSn(ε⊗ πY , πY ′) , (E.6)

where we have used the fact that representations of Sn are self-dual. Now, tensoring
with the sign representation exchanges the role of rows and columns in a Yaoung tableau
parametrizing a representation of Sn [71], and by Schur’s lemma, there is exactly one (up
to scalar multiples) map of representations between two irreducible representations if they
are isomorphic and no such map if they are not. These two facts tell us that:

HomSn(ε⊗ πY , πY ′) = δY T ,Y ′C , (E.7)

where Y T denotes the transpose of the tableaux Y . This leaves just one sum in (E.5):

∧n
(
V
⊗n
)

=
⊕
|Y |=n

HN
Y T ⊗HK

Y . (E.8)

The full fermionic Hilbert space (E.3) is then the following sum:

Hfer =
⊕
Y

HN
Y T ⊗HK

Y . (E.9)

Note that, this is a finite sum, since the tableau Y can have at most K rows and at most
N columns – this is of course a consequence of exclusion principle for fermions.

E.2.2 Bosonic

Let us replace the fermions in the action (4.23) with bosons and change nothing else.
Representations of the bosons are the same as their fermionic counterpart and therefore
we still have the phase space T ∗(V ) where V = N ⊕K. The difference, compared to the
fermionic case, is that the Hilbert space now consists of symmetric polynomials in V (c.f.
(E.3)):

Hbos = Sym•(V ) . (E.10)

Then, instead of (E.4) we have:

Symn
(
V
⊗n
)

= HomSn

(
C,N⊗n ⊗K

⊗n
)
, (E.11)
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where C is the trivial representation of Sn. Following a similar computation as we did for
the fermionic case we now end up with the following Hom between representations of Sn
(c.f. (E.7)):

HomSn(πY , πY ′) = δY,Y ′C , (E.12)

which leads to the following description of the bosonic Hilbert space:

Hbos =
⊕
Y

HN
Y ⊗HK

Y . (E.13)

Note that, as opposed to the fermionic case, we now have no restriction on the number of
columns of Y (number of rows is restricted to be at most min(N,K)) and therefore the
Hilbert space is infinite dimensional, as expected given the lack of any exclusion principle
for bosons.

E.3 Yangian from 1-loop Computations

At the end of §4.5.3, by computing 1-loop diagrams, we concluded that quantum corrections
deform the coalgebra structure of the classical Hopf algebra U(glK [z]). Since ASc(Tbk) is
an algebra to begin with, we conclude that at one loop, we have a deformation of the
classical algebra as a Hopf algebra. We are using the term “deformation” (alternatively,
“quantization”) in the sense of Definition 6.1.1 of [30], which essentially means that:

• ASc(Tbd) becomes the classical algebra U(glK [z]) in the classical limit ~→ 0.

• ASc(Tbk) is isomorphic to U(glK [z])J~K as a CJ~K-module.

• ASc(Tbk) is a topological Hopf algebra (with respect to ~-adic topology).

The reason that we adhere to these conditions is that, there is a well known uniqueness
theorem (Theorem 12.1.1 of [30]) which says that the Yangian is the unique deformation of
U(glK [z]) in the above sense. Therefore, if we can show that our algebra ASc(Tbk) satisfies
all these conditions and it is a nontrivial deformation of U(glK) then we can conclude
that it is the Yangian. From 1-loop computations we already know that it is a non-trivial
deformation. That the first condition in the list above is satisfied is the content of Lemma
4.5.2. The second condition is satisfied because ~ acts on the generators of our algebra
by simply multiplying the external propagators by ~ in the relevant Witten diagrams, this
action does not distinguish between classical diagrams and higher loop diagrams. Satisfying
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the last condition is less trivial. While it seems known to people working in the field, we
were unable to find a reference to cite, therefore, for the sake of completion, we provide
a proof in this appendix, that the algebra ASc(Tbk) is indeed an (~-adic)topological Hopf
algebra.

We shall prove this by reconstructing the algebra ASc(Tbk) from its representations.
As mentioned in §4.3.4, representations of this algebra are carried by Wilson lines, which
form an abelian monoidal category. A morphism between two representations V and U
in this category is constructed by computing the expectation value of two Wilson lines
in representations U and V ∨ and providing a state at one end of each of the lines. For
example, if % and %′ are two homomorphisms from glK to U and V ∨ respectively, then for
two lines L and L′ in the topological plane of the CS theory and any ψ ⊗ χ∨ ∈ U ⊗ V ∨,
the expectation value 〈W%(L)W%′(L

′)〉 (ψ ⊗ χ∨) is a morphism V → U .

Classically, these same Wilson lines carry representations of the classical algebra U(glK [z]).
When viewed as representations of the deformed (alternatively, quantized) algebraASc(Tbk),
we shall call the category of Wilson lines as the quantized category and viewed as represen-
tations of U(glK [z]) we shall refer to the category as the classical category. Given any two
Wilson lines U and V , any non-trivial morphism between them in the quantized category
is a quantization of a non-trivial morphism in the classical category.2 In fact, there is a
one-to-one correspondence between morphisms between two lines in the classical category
and the morphisms between the same lines in the quantized category.

For the sake of proof, let us abstract the information we have. We start with a C-linear
rigid abelian monoidal category C = RepC(H) which is the representation category of a
Hopf algebra H. We then find a CJ~K-linear abelian monoidal category C~, whose objects
are representations of some, yet unknown, Hopf algebra H~, with the following properties:

• ob(C~) = ob(C) ,

• HomC~(U, V ) ∼= HomC(U, V )J~K as CJ~K-modules .

Given this information we shall now prove that H~ is unique and that it is topological with
respect to ~-adic topology.

2Recall that a morphism between two Wilson lines is the expectation value of the lines when provided
with a state at one end. A classical morphism is computed with classical diagrams and its quantization
amounts to adding loop diagrams. A zero morphism is constructed by providing zero states, this is
independent of quantization, i.e., a quantized morphism is zero, if the provided states are zero, but then
so is the original classical morphism.
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E.3.1 Tannaka formalism

The aim of this formalism is to realize certain abelian rigid monoidal categories as the repre-
sentation (or corepresentation) categories of Hopf algebras (possibly with extra structures).
To avoid running into some subtlety in the beginning (we shall explain the subtlety later in
this section), we first consider the reconstruction from the category of corepresentations.

Reconstruction from corepresentation. Let k be a field, C an abelian (resp. abelian
monoidal and End(1) = k) category such that morphisms are k-bilinear, and let R be a
commutative algebra over k – if there is an exact faithful (resp. monoidal) functor ω from
C to Modf (R)3 such that the image of ω is inside the full subcategory Projf (R)4, then we
shall say that C has a fiber functor ω to Modf (R).

Theorem E.3.1 (Tannaka Reconstruction for Coalgebra and Bialgebra). With the no-
tation above, if moreover R is a local ring or a PID5, then there exists a unique flat
R-coalgebra (resp. R-bialgebra) A, up to unique isomorphism, such that A represents the
endomorphism of ω in the sense that ∀M ∈ IndProjf (R) 6

HomR(A,M) ∼= Nat(ω, ω ⊗M) .

Moreover, there is a functor φ : C → CorepR(A) which makes the following diagram com-
mutative

C CorepR(A)

Modf (R)

ω

φ

forget

and φ is an equivalence if R = k.

Our strategy in proving this theorem basically follows [54]. First of all, we need the
following

Lemma E.3.2. C is both Noetherian and Artinian.

3finitely generated modules of R
4finitely generated projective modules of R
5PID=Principal Ideal Domain
6IndProjf (R) means category of inductive limit of finite projective R-modules, which is equivalent to

category of flat R-modules.
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Proof. Take X ∈ ob(C), and an ascending chain Xi of subobjects of X, apply the func-
tor ω to this chain, so that ω(Xi) is an ascending chain of finitely generated projective
submodules of finitely generated projective module ω(X), thus there is an index j such
that rank(ω(Xj)) = rank(ω(X)). Now the quotient of ω(X) by ω(Xj) is ω(X/Xj), which
is again finitely generated projective, so it has zero rank, hence trivial. Faithfulness of ω
implies that X/Xj is zero, i.e. X = Xj, so C is Noetherian. It follows similarly that C is
Artinian as well.

Next, we define a functor

⊗ : Projf (R)× C → C

by sending (Rn, X) to Xn, recall that every finitely generated projective module over a
local ring or a PID is free, thus isomorphic to Rn for some n. Define Hom(M,X) to be
M∨ ⊗X. For V ⊂M and Y ⊂ X, we define the transporter of V to Y to be

(Y : V ) := Ker(Hom(M,X)→ Hom(V,X/Y ))

We now have the following:

Lemma E.3.3. Take the full abelian subcategory CX of C generated by subquotients of
Xn, consider the largest subobject PX of Hom(ω(X), X) whose image in Hom(ω(X)n, Xn)
under diagonal embedding is contained in (Y : ω(Y )) for all subobjects Y of Xn and all n.
Then the Theorem (E.3.1) is true for CX with coalgebra defined by AX := ω(PX)∨.

Proof. PX exists because C is Artinian. Notice that ω takes Hom(M,X) to HomR(M,X)
and (Y : V ) to (ω(Y ) : V ), so it takes PX , which is defined by⋂

(Hom(ω(X), X) ∩ (Y : ω(Y )))

to ⋂
(EndR(ω(X)) ∩ (ω(Y ) : ω(Y ))) .

Hence ω(PX) is the largest subring of EndR(ω(X)) stabilizing ω(Y ) for all Y ⊂ Xn and all
n. It’s a finitely generated projective R module by construction, and so is AX . Note that
only finitely many intersection occurs because Hom(ω(X), X) is Artinian.
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Next, take any flat R module M ,7 since CX is generated by subquotients of X, an
element λ ∈ Nat(ω, ω ⊗ M) is completely determined by it is value on X, so λ ∈
EndR(ω(X))⊗M . Since −⊗RM is an exact functor, we have:⋂

(HomR(ω(X), ω(X)⊗RM) ∩ (ω(Y )⊗RM : ω(Y )))

=
(⋂

(EndR(ω(X)) ∩ (ω(Y ) : ω(Y )))
)
⊗RM .

This follows because there are only finitely many intersections and finite limit commutes
with tensoring with flat module. Therefore,

λ ∈ ω(PX)⊗
R
M .

Conversely, every element in ω(PX) ⊗R M gives rise to a natural transform in the way
described above. Hence we establish the isomorphism

Nat(ω, ω ⊗M) ∼= ω(PX)⊗RM ∼= HomR(AX ,M) .

AX is unique up to unique isomorphism (as a flat R module) because it represents the
functor M 7→ Nat(ω, ω ⊗M).

Next, we shall define a co-action of AX on ω, a counit and a coproduct on AX which
makes AX an R-coalgebra and ω a corepresentation:

ρ ∈ Nat(ω, ω ⊗ AX) ∼= EndR(AX)

corresponds to the identity map of AX , and

ε ∈ HomR(AX , R) ∼= Nat(ω, ω)

corresponds to Idω. The co-action ρ tensored with IdAX gives a natural transform between
ω ⊗ AX and ω ⊗ AX ⊗ AX , whose composition with ρ gives the following commutative
diagram:

ω ω ⊗ AX

ω ⊗ AX ⊗ AX

ψ

ρ

ρ⊗IdAX
.

7Recall that a R module is flat if and only if it is a filtered colimit of finitely generated projective
modules.
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Take ∆ to be the image of ψ in HomR(AX , AX ⊗R AX). It follows from definition that
AX is counital and ρ : ω → ω ⊗ AX is a corepresentation. It remains to check that ∆ is
coassociative.

Observe that the essential image of ω ⊗ AX is a subcategory of the essential image of
ω, hence every functor that shows up here can be restricted to ω ⊗ AX , in particular, ρ,
whose restriction to ω ⊗ AX is obviously ρ⊗ IdAX . It follows from the definition that

(ρ⊗ IdAX ) ◦ ρ = (Idω ⊗∆) ◦ ρ ∈ Nat(ω, ω ⊗ AX ⊗ AX) .

Restrict this equation to ω ⊗ AX and we get

(ρ⊗ IdAX ⊗ IdAX ) ◦ (ρ⊗ IdAX ) = (Idω ⊗ IdAX ⊗∆) ◦ (ρ⊗ IdAX ) .

Composing with ρ, the LHS corresponds to (∆ ⊗ IdAX ) ◦∆ and the RHS corresponds to
(IdAX ⊗∆) ◦∆ whose equality is exactly the coassociativity of AX .

It follows that ∀Z ∈ CX ,

ρ(Z) : ω(Z)→ ω(Z)⊗R AX

gives ω(Z) a AX corepresentation structure and this is functorial in Z, thus ω factors
through a φ : CX → CorepR(AX).

Back to the uniqueness of AX . It has been shown that it is unique up to unique isomor-
phism as a flat R module. Additionally, if φ : AX → A′X is an isomorphism such that it
induces identity transformation on the functor M 7→ Nat(ω, ω⊗M) then, φ automatically
maps the triple (∆, ε, ρ) to (∆′, ε′, ρ′), so φ is a coalgebra isomorphism.

Finally, it remains to show that when R = k, φ is essentially surjective8 and full:

• Essentially Surjective: If M ∈ Corepk(AX), then define

M̃ := Coker(M ⊗ ω(PX)⊗ PX ⇒M ⊗ PX) ,

where two arrows are ω(PX) representation structure of M and PX respectively, then

ω(M̃) = M ⊗
ω(PX)

ω(PX) = M .

8In fact, φ is essentially surjective even without the assumption that R = k.
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• Full: If f : M → N is a AX-corepresentation morphism, then by the k-linearlity of
CX , f lifts to morphisms

f ⊗ IdPX : M ⊗ PX → N ⊗ PX ,

and
f ⊗ Idω(PX) ⊗ IdPX : M ⊗ ω(PX)⊗ PX → N ⊗ ω(PX)⊗ PX .

Thus, passing to cokernel gives rise to f̃ : M̃ → Ñ which is mapped to f by ω.

Next we move on to recover the category C by its subcategories CX . Define an index
category I such that its objects are isomorphism classes of objects in C, denoted by Xi

for each index i, and a unique arrow from i to j if Xi is a subobject of Xj. I is directed
because for any two objects Z and W , they are subobjects of Z ⊕W . Observe that if X
is a subobject of Y , then CX is a full subcategory of CY , so a functorial restriction

HomR(AY ,M) ∼= Nat(ωY , ωY ⊗M)→ Nat(ωX , ωX ⊗M) ∼= HomR(AY ,M) ,

gives rise to a coalgebra homomorphism AX → AY . Futhermore, this homomorphism is
injective because ω(PY ) → ω(PX) is surjective, otherwise Coker(ω(PY ) → ω(PX)) will be
mapped to the zero object in CorepR(AY ), which contradicts with ω being faithful.

Lemma E.3.4. Define the coalgbra

A := lim−→
i∈I

AXi ,

then it is the desired coalgebra in Theorem E.3.1.

Proof. A is flat because it is an inductive limit of flat R modules. Moreover

HomR(A,M) = lim←−
i∈I

HomR(AXi ,M) ∼= lim←−
i∈I

Nat(ωXi , ωXi ⊗M) = Nat(ω, ω ⊗M) ,

which gives the desired functorial property and this implies that A is unique up to unique
isomorphism. Finally, when R = k, the functor φ is defined and it is fully faithful because
it is fully faithful on each subcategory CXi . It’s also essentially surjective because every
corepresentation V of A comes from a corepresentation of a finite dimensional sub-coalgebra
of A,9 and A is a filtered union of sub-coalgebras AXi , so V comes from a corepresentation
of some AXi .

9Take a basis {ei} for V , the co-action ρ takes ei to
∑
j ej ⊗ aji, then it is easy to see that span{aji}

is a finite dimensional sub-coalgebra of A.
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Proof of Theorem E.3.1. It remains to prove the theorem when C is monoidal. This amounts
to including m : C � C → C and e : 1 → C with associativity and unitarity constrains,
where 1 is the trivial tensor category with objects {0, 1} and only nontrivial morphisms
are End(1) = k. Using the isomorphism:

HomR(A⊗R A,A⊗R A) ∼= Nat(ω � ω, ω � ω ⊗ A⊗R A) ,

we get a homomorphism

τ : HomR(A⊗R A,M)→ Nat(ω � ω, ω � ω ⊗M) .

It is an isomorphism because for each pair of subcategories (CX , CY )

HomR(AX ⊗R AY ,M) ∼= HomR(AX , R)⊗R HomR(AY ,M)
∼= Nat(ωX , ωX)⊗R Nat(ωY , ωY ⊗M)
∼= Nat(ωX � ωY , ωX � ωY ⊗M)

and it is compatible with the homomorphism given above, so after taking limit, τ is an
isomorphism. We also have a homomorphism:

Nat(ω, ω ⊗M)→ Nat(ω � ω, ω � ω ⊗M) ,

by taking any α ∈ Nat(ω, ω ⊗M), and composing with the isomorphism ω � ω(X � Y ) ∼=
ω(X ⊗ Y ). This homomorphism in turn becomes a homomorphism

µ : A⊗R A→ A .

And the obvious isomorphism

HomR(R,M) = M → Nat(ω1, ω1 ⊗M) ,

together with the unit functor e : 1→ C give a homomorphism

ι : R→ A .

All of the homomorphisms are functorial with respect to M so µ and ι are homomorphisms
between coalgebras. Now the associativity and unitarity of monoidal category C translates
into associativity and unitarity of µ and ι, which are exactly conditions for A to be a
bialgebra. This concludes the proof of Theorem E.3.1.
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Remark E.3.5. In the statement of Theorem E.3.1, it is assumed that R is a local ring or
a PID, for the following technical reason: we want to introduce the functor

⊗ : Projf (R)× C → C

which is defined by sending (Rn, X) to Xn. This is feasible only if every finite projective
module is free, which is not always true for an arbitary ring. Nevertheless, this is true
when R is local or a PID. It is tempting to eliminate this assumption when C is rigid, since
we only use the Hom(ω(X), X) to define the crucial object PX , and there is no need to
define a Hom when the category is rigid. In fact, there is no loss of information if we define
PX by ⋂

(Hom(X,X) ∩ (Y : Y )) ,

then the fiber functor ω takes PX to⋂
(EndR(ω(X)) ∩ (ω(Y ) : ω(Y ))) ,

since ω is monoidal by definition and a monoidal functor between rigid monoidal categories
preserves duality and thus preserves inner Hom. 4

Following the above remark, we drop the assumption on ring R and state the following
version of Tannaka reconstruction for Hopf algebras:

Theorem E.3.6 (Tannaka Reconstruction for Hopf Algebra). Let R be a commutative k-
algebra, C a k-linear abelian rigid monoidal category (resp. abelian rigid braided monoidal)
with a fiber functor ω to Modf (R), then there exists a unique flat R-Hopf algebra A (resp.
R-coquasitriangular Hopf algebra), up to unique isomorphism, such that A represents the
endomorphism of ω in the sense that ∀M ∈ IndProjf (R)

HomR(A,M) ∼= Nat(ω, ω ⊗M) .

Moreover, there is a functor φ : C → CorepR(A) which makes the following diagram com-
mutative:

C CorepR(A)

Modf (R)

ω

φ

forget
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and φ is an equivalence if R = k.

Sketch of proof. The idea of proof basically follows [108]. Accoring to Remark E.3.5 and
Theorem E.3.1, there exists a bialgebra A which satisfies all conditions in the theorem, so
it remains to prove that there are compatible structures on A when C has extra structures.

(a) C is rigid. This means that there is an equivalence between k-linear abelian monoidal
categories

σ : C → Cop ,

by taking the right dual of each object, so it turns into an isomophism between R
modules

σ : Nat(ω, ω ⊗M)→ Nat(ωop, ωop ⊗M) .

According to the functoriality of the construction of the bialgebra A, there is a
bialgebra isomorphism:

S : A→ Aop ,

put it in another way, a bialgebra anti-automorphism of A. To prove that it satisfies
the required compatibility:

µ ◦ (S ⊗ Id) ◦∆ = ι ◦ ε = µ ◦ (Id⊗ S) ◦∆ ,

we observe that ι ◦ ε gives the natural transformation

Id⊗ ρω(1) : ω(X) = ω(X)⊗ ω(1) 7→ ω(X)⊗ ρ(ω(1)) ,

but 1 is the trivial corepresentation of A, so ρ(ω(1)) is canonically identified with
ω(1), so ι◦ε is just the identity morphism on ω(X). On the other hand, µ◦(S⊗Id)◦∆
corresponds to the homomorphism

ω(X)→ ω(X)⊗ ω(X)∨ ⊗ ω(X)→ ω(X)⊗ ω(X∨ ⊗X)→ ω(X)⊗ ω(1) = ω(X)

which is identity by the rigidity of C, hence µ◦(S⊗Id)◦∆ = ι◦ε. The other equation
is similiar.
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(b) C is rigid braided. This means that there is a natural transformation:

r : ω � ω → ω � ω ,

which gives the braiding. This corresponds to a homomorphism of R-modules

R : A⊗ A→ R ,

let’s define it to be the universal R-matrix. The fact that r is a natural transformation
is equivalent to the diagram below being commutative

ω(U)⊗ ω(V ) ω(U)⊗ ω(V )⊗ A⊗ A ω(U)⊗ ω(V )⊗ A

ω(V )⊗ ω(U) ω(V )⊗ ω(U)⊗ A⊗ A ω(V )⊗ ω(U)⊗ A

ρ⊗ρ

r

Id⊗Id⊗µ

r⊗Id

ρ⊗ρ Id⊗Id⊗µ

which in turn translates to the following equation of R:

R12 ◦ µ24 ◦ (∆⊗∆) = R23 ◦ µ13 ◦ τ13 ◦ (∆⊗∆) ,

where τ : A ⊗ A → A ⊗ A sends x ⊗ y to y ⊗ x. The compactibility of r with the
identity

ω(X) ω(X)⊗ ω(1)

ω(X) ω(1)⊗ ω(X)

Id r ,

translates to R ◦ (IdA ⊗ 1) = ε. And symmetrically R ◦ (1⊗ IdA) = ε.

Finally, the hexagon axiom of braiding:

(ω(X)⊗ ω(Y ))⊗ ω(Z)

(ω(Y )⊗ ω(X))⊗ ω(Z) ω(X)⊗ (ω(Y )⊗ ω(Z))

ω(Y )⊗ (ω(X)⊗ ω(Z)) (ω(Y )⊗ ω(Z))⊗ ω(X)

ω(Y )⊗ (ω(Z)⊗ ω(X))

r⊗1

r

1⊗r

,
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translates to the commutativity of the diagram

A⊗ A⊗ A A⊗ A⊗ A⊗ A

A⊗ A R

Id⊗Id⊗∆

µ⊗Id R13·R24

R

,

and the same hexagon but with r−1 instead of r gives another one:

A⊗ A⊗ A A⊗ A⊗ A⊗ A

A⊗ A R

∆⊗Id⊗Id

Id⊗µ R14·R23

R

.

So we end up confirming all the properties that universal R-matrix should satisfy,
and we conclude that A is indeed a coquasitriangular Hopf algebra.

Reconstruction from representation It is tempting to dualize everything above to
formalize the Tannaka reconstruction for the category of representations. In other words,
we can take the dual of A instead of A itself, and a corepresentation becomes the repre-
sentaion, and when the category has extra structures, those structures will be dualized,
for example, when C is a k-linear abelian rigid braided monoidal category, it should come
from the representation category of a flat R-quasitriangular Hopf algebra, since the dual of
those diagrams involved in the proof of Theorem E.3.6 are exactly properties of universal
R-matrix of a quasitriangular Hopf algebra.

This is naive because the statement:

HomR(U, V ⊗ A) ∼= HomR(U ⊗ A∗, V ) ,

is not true in general, sinceA can be infinite dimensional, thus the naive dualizing procedure
is not feasible. To resolve this subtlety, we observe that A is constructed from a filtered
colimit of finite projective R-modules, each is an R-coalgebra, and any finitely generated
corepresentation of A comes from a corepresentation of a finite coalgebra, so it is natural
to define the action of A∗ on those modules by factoring through some finite quotient A∗X
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for some X ∈ ob(C). Similiarly, the multiplication structure on A∗ can be defined by first
projecting down to some finite quotient and taking multiplication

A∗ ⊗ A∗ = lim←−
i∈I

AXi ⊗ lim←−
i∈I

AXi → AXi ⊗ AXi → AXi

which is compatible with transition map AXj → AXi then taking the inverse limit gives
the multiplication of A∗. For antipode S, its dual is a map A∗ → A∗.

On the other hand, the comultiplication on A∗, is still subtle. If we dualize the multi-
plication of A, cut-off at some finite submodule

AXi ⊗ AXj → A ,

we only get an inverse system of morphisms from A∗ to A∗Xi ⊗A
∗
Xj

and the latter’s inverse

limit is A∗⊗̂A∗, instead of A∗ ⊗ A∗. So we actually get a topological Hopf algebra with
topological basis

Ni := ker(A∗ → A∗Xi) ,

so that the comultiplication is continuous. Similiarly the counit, multiplication, and
anipode are continuous as well. Finally when C is braided, there exists an invertible
element R ∈ A∗⊗̂A∗, and the dual of the structure homomorphism in A is exactly the
condition that R is the universal R-matrix of a topological quasitriangular Hopf algebra.

So we can restate Theorem E.3.6 in terms of representations of topological Hopf alge-
bras:

Theorem E.3.7. Let R be a commutative k-algebra, C a k-linear abelian rigid monoidal
category (resp. abelian rigid braided monoidal) with a fiber functor ω to Modf (R), then
there exists a unique topological R-Hopf algebra H (resp. R-quasitriangular Hopf algebra)
which is an inverse limit of finite projective R-modules endowed with discrete topology, up
to unique isomorphism, such that H represents the endomorphism of ω in the sense that

H ∼= Nat(ω, ω) .

Moreover, there is a functor φ : C → RepR(H) which sends an object in C to a continuous
representation of H and makes the following diagram commutative:
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C RepR(H)

Modf (R)

ω

φ

forget ,

and φ is an equivalence if R = k.

Application to Quantization We now consider the case that we have a category C~,
which is a quantization of the category of representations of some Hopf algebra H over C.
The quantization, namely C~, of RepC(H) is a C-linear abelian monoidal category which has
the same set of generators as RepC(H), together with a fiber functor ω~ : C~ → Modf (CJ~K)
which acts on generators of RepC(H) by tensoring with CJ~K, and

HomC~(X, Y ) ∼= HomC~(X, Y )/~ = HomRepC(H)(X, Y )

for any pair of generators X and Y . For example, the classical algebra of local observables
in 4D Chern-Simons theory is U(g[z]), the universal enveloping algebra of Lie algebra g[z],
which has the category of representations generated by classical Wilson lines. Quantized
Wilson lines naturally generated a C-linear abelian monoidal category.

Applying Theorem E.3.7, (C~, ω~) gives us a (topological) CJ~K-Hopf algebra H~. Since
C~ and C shares the same set of generators, and the construction of those Hopf algebras as
CJ~K-modules only involves generators of corresponding categories, so H~ is isomorphic to
the completion of H ⊗ CJ~K in the ~-adic topology:

H~ := lim←−
i∈I

HXi ⊗ CJ~K ∼= lim←−
i∈I

lim←−
n

HXi ⊗ C[~]/(~n)

∼= lim←−
n

lim←−
i∈I

HXi ⊗ C[~]/(~n)

∼= lim←−
n

H ⊗ C[~]/(~n) .

For the same reason, tensor product of two copies of H~ and completed in the inverse limit
topology is isomorphic to the completion of H~ ⊗CJ~K H~ in the ~-adic topology:

H~⊗̂H~ ∼= lim←−
n

H~ ⊗CJ~K H~/(~n)

From the construction of those Hopf algebras and the condition that a morphism in C~
modulo ~ is a morphism in RepC(H), it is easy to see that modulo ~ respects all structure
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homomorphisms, thus H~ modulo ~ and H are isomorphic as Hopf algebras. Finally,
structure homomorphisms of H~ are continuous in the ~-adic topology because they are
~-linear. Thus we conlude that:

Theorem E.3.8. H~ is a quantization of H in the sense of Definition 6.1.1 of [30], i.e.
it is a topological Hopf algebra over CJ~K with ~-adic topology, such that

(i) H~ is isomorphic to HJ~K as a CJ~K-module;

(ii) H~ modulo ~ is isomorphic to H as Hopf algebras.

In our case, H = U(g[z]) for g = glK [z], so H~ is a quantization of U(glK [z]), and
according to Theorem 12.1.1 of [30], this is unique up to isomorphisms. This proves
Proposition (4.5.1).

E.4 Technicalities of Witten Diagrams

E.4.1 Vanishing lemmas

We introduce some lemmas to allow us to readily declare several Witten diagrams in the
4D Chern-Simons theory to be zero.

Lemma E.4.1. The product of two or three bulk-to-bulk propagators vanish when attached
cyclically, diagrammatically this means:

v0v1 = v0

v1

v2

= 0 . (E.14)

Proof. Two propagators: We can choose one of the two bulk points, say v0, to be at the
origin and denote v1 simply as v. This amounts to taking the projection (4.115), namely:
R4
v0
×R4

v1
3 (v0, v1) 7→ v1−v0 =: v ∈ R4. Then the product of the two propagators become:

P (v0, v1) ∧ P (v1, v0) 7→ P (v) ∧ P (−v) = −P (v) ∧ P (v) . (E.15)

This is a four form at v, however, P does not have any dz component, therefore the four
form P (v) ∧ P (v) necessarily contains repetition of a one form and thus vanishes.
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Three propagators: By choosing v0 to be the origin of our coordinate system we can
turn the product to the following:

P (v1) ∧ P (v2) ∧ P (v1, v2) . (E.16)

We now need to look closely at the propagators (see (4.115) and (4.118)):

P (vi) =
~
2π

xi dyi ∧ dzi + yi dzi ∧ dxi + 2zi dxi ∧ dyi
d(vi, 0)4

, (E.17a)

P (v1, v2) =
~
2π

x12 dy12 ∧ dz12 + y12 dz12 ∧ dx12 + 2z12 dx12 ∧ dy12

d(v1, v2)4
, (E.17b)

where vi := (xi, yi, zi, zi), xij := xi − xj, yij := yi − yj, · · · , and d(vi, vj)
2 := (x2

ij + y2
ij +

zijzij). Since the propagators don’t have any dz component the product (E.16) must be
proportional to ω :=

∧
i∈{1,2} dxi ∧ dyi ∧ dzi. In the product there are six terms that are

proportional to ω. For example, we can pick dx1 ∧ dy1 from P (v1), dz2 ∧ dx2 from P (v2)
and dy12 ∧ dz12 from P (v1, v2), this term is proportional to:

dx1 ∧ dy1 ∧ dz2 ∧ dx2 ∧ dy12 ∧ dz12 = −dx1 ∧ dy1 ∧ dz2 ∧ dx2 ∧ dy2 ∧ dz1 = +ω . (E.18)

The other five such terms are:

dy1 ∧ dz1 ∧ dz2 ∧ dx2 ∧ dx12 ∧ dy12 = − ω ,
dy1 ∧ dz1 ∧ dx2 ∧ dy2 ∧ dz12 ∧ dx12 = + ω ,

dz1 ∧ dx1 ∧ dy2 ∧ dz2 ∧ dx12 ∧ dy12 = + ω ,

dz1 ∧ dx1 ∧ dx2 ∧ dy2 ∧ dy12 ∧ dz12 = − ω ,
dx1 ∧ dy1 ∧ dy2 ∧ dz2 ∧ dz12 ∧ dx12 = − ω .

(E.19)

These signs can be determined from a determinant, stated differently, we have the following
equation:

det

 dy1 ∧ dz1 dz1 ∧ dx1 dx1 ∧ dy1

dy2 ∧ dz2 dz2 ∧ dx2 dx2 ∧ dy2

dy12 ∧ dz12 dz12 ∧ dx12 dx12 ∧ dy12

 = −6ω , (E.20)

where the product used in taking determinant is the wedge product. The above equation
implies that in the product (E.16) the coefficient of −ω is given by the same determinant
if we replace the two forms with their respective coefficients as they appear in (E.17).
Therefore, the coefficient is:

1

8π3d(v1, 0)4d(v2, 0)4d(v1, v2)4
det

 x1 y1 z1

x2 y2 z2

x12 y12 z12

 = 0 . (E.21)
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The determinant vanishes because the three rows of the matrix are linearly dependent.
Thus we conclude that the product (E.16) vanishes.

Lemma E.4.2. The product of two bulk-to-bulk propagators joined at a bulk vertex where
the other two endpoints are restricted to the Wilson line, vanishes, i.e., in any Witten
diagram:

v

p1 p2

= 0 . (E.22)

Proof. This simply follows from the explicit form of the bulk-to-bulk propagator. Compu-
tation verifies that:

ι∂x1∧∂x2
(P (v, p1) ∧ P (v, p2)) = 0 , (E.23)

where x1 and x2 are the x-coordinates of the points p1 and p2 respectively.

The world-volume on which the CS theory is defined is R2
x,y×Cz, which in the presence

of the Wilson line at y = z = 0 we view as Rx × R+ × S2. When performing integration
over this space we approximate the non-compact direction by a finite interval and then
taking the length of the interval to infinity. In doing so we introduce boundaries of the
world-volume, namely the two components B±D := {±D} × R+ × S2 at the two ends of
the interval [−D,D]. Our next lemma concerns some integrals over these boundaries.

Lemma E.4.3. The integral over a bulk point vanishes when restricted to the spheres at
infinity, in diagram:

lim
D→∞

∫
v0∈B±D

v1

vn

...v0 = 0 . (E.24)

Proof. Symbolically, the integration can be written as:

lim
D→∞

∫
B±D

dvolB±D ι∂y∧∂z (P (v0, v1) ∧ · · · ∧ P (v0, vn)) , (E.25)

where y and z are coordinates of v0. Note that the dz required for the volume form on
B±D comes from the structure constant at the interaction vertex, not from the propaga-
tors. In the above integration the x-component of v0 is fixed at ±D, which introduces D
dependence in the integrand. The bulk-to-bulk propagator has the following asymptotic
scaling behavior:10

P ((D, y, z, z), vj)
D→∞∼ D−2 +O(D−3) . (E.26)

10Keep in mind that ~ has a (length) scaling dimension 1.
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The integration measure on B±D is independent of D, therefore the integral behaves as
D−2n for large D, and consequently vanishes in the limit D →∞.

E.4.2 Comments on integration by parts

Finally, let us make a few general remarks about the integrals involved in computing
Witten diagrams. Since the boundary-to-bulk propagators are exact and the bulk-to-bulk
propagators behave nicely when acted upon by differential (see (4.116)), we want to use
Stoke’s theorem to simplify any given Witten diagram. Suppose we have a Witten diagram
with m propagators connected to the boundary, n propagators connected to the Wilson
line, and l bulk points. Let us denote the bulk points by vi for i = 1, · · · , l, the points on the
Wilson line by pj for j = 1, · · · , n, and the points on the boundary as xk for k = 1, · · · ,m.
The domain of integration for the diagram is then M l×∆n, where M = R×R+× S2 and
∆n is an n-simplex defined as:

∆n := {(p1, · · · , pn) ∈ Rn | p1 ≤ p2 ≤ · · · ≤ pn} . (E.27)

This domain may need to be modified in some Witten diagrams due to the integral over
this domain having UV divergences. UV divergences can occur when some points along
the Wilson line collide with each other. To avoid such divergences we shall use a point
splitting regulator, i.e., we shall cut some corners from the simplex ∆n. Let us denote the
regularized simplex as ∆̃n. The exact description of ∆̃n will vary from diagram to diagram,
and we shall describe them as we encounter them.

When we do integration by parts with respect to the differential in a boundary-to-bulk
propagator, we get the following three types of terms:

1. A boundary term. Boundaries of our integration domain comes from boundaries of
M and ∆̃n. For M we get:

∂M = B+∞ tB−∞ . (E.28)

Due to Lemma E.4.3, integrations over ∂M will vanish. Therefore, nonzero con-
tribution to the boundary integration, when we do integration by parts, will only
come from the boundary of the regularized simplex, namely ∂∆̃n. Schematically, the
appearance of such a boundary integral will look like:∫

M l×∆̃n

dθ ∧ (· · · ) =

∫
M l×∂∆̃n

θ ∧ (· · · ) + · · · . (E.29)

224



2. The differential acts on a bulk-to-bulk propagator. Due to (4.116), this identifies the
two end points of the propagator, schematically:

b ∈ {0, 1} ,
∫
M l×∂b∆̃n

dθ ∧ P ∧ (· · · ) =

∫
M l−1×∂b∆̃n

θ ∧ (· · · ) + · · · . (E.30)

3. The differential acts on a step function left by a previous integration by parts. This
does not change the domain of integration.

The third option does not to lead a simplification of the domain of integration. Therefore,
at the present abstract level, our strategy to simplify an integration is: first go to the
boundary of the simplex, and then keep collapsing bulk-to-bulk propagators until we have
no more differential left or when no more bulk-to-bulk propagator can be collapsed without
the diagram vanishing due the vanishing lemmas from §E.4.1.

E.5 Proof of Lemma 4.5.3

All the diagrams that we draw in this section only exist to represent color factors, their
numerical values are irrelevant. Which is why we also ignore the color coding we used in
the diagrams in chapter 4.

We start with yet another lemma:

Lemma E.5.1. The color factor of any Witten diagram with two boundary-to-bulk propa-
gators connected by a single bulk-to-bulk propagator, that is any Witten diagrams with the
following configuration:

...
...

µ ν

(E.31)

upon anti-symmetrizing the color labels of the boundary-to-bulk propagators, involves the
following factor:

f ξ
µν Xξ , (E.32)

for some matrix Xξ that transforms under the adjoint representation of glK. In partic-
ular, this color factor is the image in End(V ) of some element of glK where V is the
representation of some distant Wilson line.
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Proof. The two bulk vertices in the diagram results in the following product of structure
constants: f π

µo f o
νρ where the indices π and ρ are contracted with the rest of the diagram.

Anti-symmetrizing the indices µ and ν we get f π
µo f o

νρ − f π
νo f o

µρ , which using the Jacobi
identity becomes −f o

µν f
π

ρo . Once π and ρ are contracted with the rest of the diagram
we get an expression of the general form (E.32). Furthermore, any expression of the form
(E.32) is an image in End(V ) of some element in glK , since the structure constant f ξ

µν

can be viewed as a map:

f : ∧2glK → glK , f : tµ ∧ tν 7→ f ξ
µν tξ . (E.33)

Now composing the above map with a representation of glK on V gives the aforementioned
image.

Let us now look at the color factor (4.165) of the diagram (4.164), both of which we
repeat here:

µ ν

, f ξo
µ f πρ

ξ f σ
νπ %(to)%(tρ)%(tσ) . (E.34)

By commuting %(to) and %(tρ) in the color factor we create a difference which is the color
factor of the following diagram:

µ ν

. (E.35)

The key feature of the above diagram is the loop with three propagators attached to it.
Such a loop produces a color factor which is a glK-invariant inside (glK)⊗3, explicitly we
can write a loop and its associated color factor respectively as:

µ

ν

ξ

and f π
µo f o

νρ f
ρ

ξπ . (E.36)

The color factor is glK-invariant since the structure constant itself is such an invariant. To
find the invariants in (glK)⊗3 we start by writing glK as:

glK = slK ⊕ C , (E.37)

226



where by slK we mean the complexified algebra sl(K,C). This gives us the decomposition

(glK)⊗3 = (slK)⊗3 ⊕ · · · , (E.38)

where the “· · · ” contains summands that necessarily include at leas one factor of the center
C. However, none of the three indices that appear in the diagram in (E.36) can correspond
to the center, because each of these indices belong to an instance of the structure constant,
which vanishes whenever one of its indices correspond to the center.11 This means that
the glK invariant we are looking for must lie in (slK)⊗3. For K > 2, there are exactly two
such invariants [129], one of them is the structure constant itself, which is totally anti-
symmetric. The other invariant is totally symmetric. However the structure constant is
even (invariant) under the Z2 outer automorphism of slK whereas the symmetric invariant
is odd. Since our theory has this Z2 as a symmetry, only the structure constant can appear
as the invariant in a diagram.12 This means, as far as the color factor is concerned, we can
collapse a loop such as the one in (E.36) to an interaction vertex. As soon as we do this
operation to the diagram (E.35), Lemma E.5.1 tells us that the color factor of the diagram
is an image in End(V ) of an element in glK . This shows that we can swap the positions of
any of the two pairs of the adjacent matrices in the color factor in (E.34) and the difference
we shall create is an image of a map glK → End(V ). To achieve all permutations of the
three matrices wee need to be able to keep swaping positions, let us therefore keep looking
forward.

Suppose we commute %(to) and %(tρ) in (E.34), then we end up with the color factor
of the diagram (4.163). Now if we commute %(to) and %(tσ), we create a difference that
corresponds the color factor of the following diagram:

µ ν

. (E.39)

The key feature of this diagram is a loop with four propagators attached to it. The loop
and its associated color factor can be written as:

µξ

ν o

, f τ
µπ f σ

oτ f ρ
νσ f π

ξρ . (E.40)

11In other words, the central abelian photon in glK interacts with neither itself nor the non-abelian
gluons and therefore can not contribute to the diagrams we are considering.

12This is also apparent from the way this invariant is written in (E.36), since the structure constant is
invariant under this Z2, certainly a product of them is invariant as well.
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As before, the color factor is a glK-invariant in (glK)⊗4. This time, it will be more con-
venient to write the color factor as a trace. Noting that the structure constants are the
adjoint representations of the generators of the algebra we can write the above color factor
as:

tr ad(tµtotνtξ) . (E.41)

The adjoint representation of glK factors through slK , and the adjoint representation of slK
has a non-degenerate metric with which we can raise and lower adjoint indices. Suitably
changing positions of some of the indices in the color factor we can conclude:

tr ad(tµtotνtξ) = tr ad(tµtξtνto) . (E.42)

Using the cyclic symmetry of the trace we then find that the color factor is symmetric under
the exchange of µ and ν, therefore when we anti-symmetrize the diagram with respect to
µ and ν it vanishes.

In summary, starting from the color factor in (E.34), we can keep swapping any two
adjacent matrices and the difference can always be written as an image of some map
glK → End(V ). The same argument applies to the color factors of all the diagrams in
(4.163). This proves the lemma.
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