CASIMIR OPERATORS OF SUBALGEBRAS OF THE POINCARE LIE ALGEBRA AND OF REAL LIE ALGEBRAS OF LOW DIMENSION[†]

J. PATERA, R.T. SHARP*, P. WINTERNITZ

Centre de Recherches Mathématiques Université de Montréal Montréal, Canada

and

H. ZASSENHAUS**

Department of Mathematics Caltech, Pasadena California

(Talk presented by J. Patera at the 4th International Colloquium on Group Theoretical Methods in Physics, Nijmegen, Netherlands, June 1975.)

1. Introduction

The Poincaré group generated by three space rotations L_1 , L_2 , L_3 , three Lorentz boosts K_1 , K_2 , K_3 , and four translations P_0 , P_1 , P_2 , P_3 is the fundamental transformation group of special relativity. Many of its properties have been studied during the last 70 years by both mathematicians and physicists. Only recently, however, a list of its continuous subgroups has been obtained¹, thus providing an exhaustive description of all possible "subsymmetries" of continuous type.

For many applications in mathematical physics it is essential to know the (Casimir) operators which commute with all generators of each subalgebra S and are themselves elements of the enveloping algebra of S. Thus, for instance, these operators provide a convenient way of labelling representations of S and defining bases for the representations of the entire group, their eigenvalues are measurable physical quantities (quantum numbers), etc.¹.

The purpose of this contribution is to present the list of subalgebras of the Poincaré Lie algebra P (nonconjugate under the connected part of the Poincaré group) which have Casimir operators or other invariant operators, as explained below. A physical interpretation and further use of these operators is postponed to subsequent publications.

[†] Work supported in part by NATO.

^{*} Permanent address: Department of Physics, McGill University, Montreal, Canada.

^{**} Fairchild Distinguished Scholar; permanent address: Department of Mathematics, Ohio State University, Columbus, Ohio.

Since there are many subalgebras of dimensions 3 and 4 quite a few among them being isomorphic to each other, we found advantageous first to classify the subalgebras of dimension ≤ 4 into isomorphism classes, then to find the invariant operators for each isomorphic class, and then only to "interpret" the operators using generators of each nonconjugate subalgebra of P. For that we use the list of nonisomorphic real Lie algebras of low dimension as given by Mubarakzyanov². We do not follow, however, the notations of Ref. 2 where algebras of different physical significance are often denoted by the same symbol.

The method for finding the invariant operators is briefly described in Sec. II together with the types of operators obtained. In Sec. III the Tab. I is described. It containes the real nonisomorphic Lie algebras of dimension ≤ 4 , their Casimir and other invariant operators. In Sec. IV the isomorphisms between subalgebras of P are presented. Invariant operators of subalgebras of dimension 3 and 4 are given in Tab. II, and for subalgebras of dimension exceeding 4 they are in Tab. III.

II. A Method for Finding Invariants of Lie Algebras

The number of Casimir operators of a semisimple Lie algebra is equal to its rank. Therefore our problem is in the nonsemisimple Lie algebras for which no easy criterion is known to decide readily whether or not they possess a Casimir operator. (For other invariant operators see Ref. 3.)

Consider a Lie algebra \pounds generated by A_1, \ldots, A_n satisfying

$$[A_{i},A_{k}] = f_{ik}^{\ell}A_{\ell}.$$
 (1)

We represent the generators A_i as differential operators acting on a space of functions $F(a_1, \ldots, a_n)$ by putting

$$A_{i} = \sum_{k,\ell=1}^{n} f_{ik}^{\ell} a_{\ell} \frac{\partial}{\partial a_{k}} \quad (i = 1, 2, \dots, n).$$
(2)

In order to find an operator valued function $P(A_1, \ldots, A_n)$ such that equation

$$[A_{i},P(A_{1},...,A_{n})] = 0 \quad \text{for} \quad i = 1,2,...,n,$$
(3)

holds, we find first a numerical function $P(a_1, \ldots, a_n)$ annihilated by all operators A_i in (2). Thus we get a system of n linear homogeneous differential equations

$$\sum_{\substack{k,l=1}}^{n} f_{ik}^{l} a_{l} \frac{\partial}{\partial a_{k}} P(a_{1},\ldots,a_{n}) = 0, \quad (i = 1,2,\ldots,n)$$
(4)

where some of the equations may be trivial, depending on actual values of the structure constants f_{ik}^{ℓ} of each algebra. Having found solutions $P(a_1, \ldots, a_n)$ of the

system (4), we replace the variables a_i by A_i , symmetrize the solutions with respect to A_i 's, and arrive thus at the invariant operators we were searching for.

Generally, three situations may arise:

(i) The system (4) does not have a solution different from zero. Then the algebra $\mathcal L$ does not have an invariant operator.

(ii) One or several solutions of (4) exist and are of polynomial form. Then we choose a convenient integrity basis for them (i.e. a minimal set of invariant operators such that any other invariant operator can be expressed through them as a polynomial) and call it the Casimir operators of the algebra (1).

(iii) Solutions of (4) are of nonpolynomial form. Then we have "generalized Casimir operators" which still commute with the algebra in the sense (4) and thus have fixed numerical values within each irreducible representation of \pounds . These invariants do not belong to the enveloping algebra of \pounds . A case of special interest is when these invariant operators are rational functions of the generators.

III. Isomorphic Classes of Real Lie Algebras of Dimension ≤ 4

All one-dimensional Lie algebras are isomorphic to each other. We denote them by A_1 . The only generator is obviously also a Casimir operator of A_1 .

An algebra of dimension 2 is isomorphic either to a direct sum A_1+A_1 which we denote by $2A_1$ (its two generators are again Casimir operators), or to a non-Abelian algebra generated by e_1 , e_2 :

$$[e_1e_2] = e_1.$$
 (5)

This algebra, denoted by A_o, does not have any invariant operator.

An algebra of dimension 3 which is a direct sum is isomorphic to one of the two:

$$3A_1 \equiv A_1 + A_1 + A_1 \quad \text{or } A_1 + A_2. \tag{6}$$

The algebra $3A_1$ has all its generators as Casimir operators, for $A_1 + A_2$ only the generator of A_1 is a Casimir operator. The remaining 3-dimensional algebras do not decompose into a direct sum of lower algebras. They are described by the entities $A_{3,1}, A_{3,2}, \dots, A_{3,9}$ in Tab. I, which contains also their invariant operators.

Let us point out the $A_{3,5}^a$ and $A_{3,7}^a$ each represent a continuum of non-isomorphic algebras corresponding to different values of the parameter a; this fact is underlined by the appearance of the upper index a.

A 4-dimensional real Lie algebra is isomorphic either to one of the following direct sums

$$^{4A_1}, ^{2A_1+A_2}, ^{2A_2}, ^{A_1+A_3}, i$$
 (i = 1,2,...,9) (7)

or to one of the algebras $A_{4,1}, A_{4,2}^a, \dots, A_{4,12}$ of Tab. I. The invariants of algebras (7) are obviously given, by the Casimir operator of each A_1 and the corresponding operators of $A_{3,i}$. For $A_{4,i}$ (i = 1,...,12) the operators are listed in the Tab. I, whenever they exist.

The entities $A_{4,2}^{a}$, $A_{4,5}^{a,b}$, $A_{4,6}^{b}$, $A_{4,9}^{b}$, $A_{4,11}^{a}$ are again infinite families of nonisomorphic algebras for each value of the parameters whithin the specified range.

IV. Invariants of the Subalgebras of the Poincaré Lie Algebra

Representatives of conjugacy classes of subalgebras of the Poincaré Lie algebra P are denoted as in Tab. 3 and 4 of Ref. 1, i.e. either by $P_{i,k}$ or by $\tilde{P}_{m,n}$. Their generators are also found in those tables.

All 1-dimensional subalgebras of P are isomorphic to A_1 and their generators are also their Casimir operators. These algebras are:

 $\overset{P}{P}_{11,6}, \overset{P}{P}_{12,10}, \overset{P}{P}_{13,9}, \overset{P}{P}_{14,9}, \overset{P}{P}_{15,8}, \overset{P}{P}_{15,9}, \overset{P}{P}_{15,10}, \overset{\tilde{P}}{P}_{12,23}, \overset{\tilde{P}}{P}_{12,26}, \overset{\tilde{P}}{P}_{13,15}, \overset{\tilde{P}}{P}_{14,24}, \overset{\tilde{P}}{P}_{14,25}, \overset{and}{P}_{14,26}, \overset{\tilde{P}}{P}_{14,26}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_{14,26}, \overset{\tilde{P}}{P}_{14,25}, \overset{\tilde{P}}{P}_$

The subalgebras of dimension 2 which are not Abelian are all isomorphic to A_2 and they do not have an invariant operator. These algebras are: $P_{8,9}$, $P_{11,5}$, $P_{13,7}$, $\tilde{P}_{8,17}$, $\tilde{P}_{13,13}$.

The Abelian 2-dimensional subalgebras are all isomorphic to 2A₁ and all their generators are also their Casimir operators. These algebras are:

 $\overset{P}{P}_{9,6}, \overset{P}{P}_{10,5}, \overset{P}{P}_{12,7} \overset{+}{} \overset{P}{}_{12,9}, \overset{P}{P}_{13,8}, \overset{P}{P}_{14,7}, \overset{P}{P}_{14,8}, \overset{P}{P}_{15,5} \overset{+}{} \overset{P}{}_{15,7}, \overset{\widetilde{P}}{P}_{10,6}, \overset{\widetilde{P}}{P}_{12,19} \overset{+}{} \overset{P}{}_{12,22}, \overset{P}{P}_{13,14}, \overset{P}{P}_{14,20} \overset{+}{} \overset{P}{}_{14,23}.$

The subalgebras of P of dimension 3 and 4 are given in Tab. II together with their generators and invariants whenever these exist. Isomorphic classes are indicated.

The subalgebras of dimension ≥ 5 are given in Tab. III with their generators and invariants. None of these subalgebras are isomorphic to each other.

References

- 1. J. Patera, P. Winternitz, and H. Zassenhaus, J. Math. Phys. <u>16</u>, 1597 (1975) and references therein.
- 2. G.M. Mubarakzyanov, Izv. Vyssh. Uch. Zav. 32, 114 (1963) (in Russian).
- 3. E.G. Beltrametti and A. Blasi, Phys. Lett. <u>20</u>, 62 (1966).

Name	Non-zero commutation relations	Invariants	Comments
A3,1	$[e_2e_3] = e_1$	ย	nilpotent (Algebra of Weyl group)
A ₃ ,2	$[e_1e_3] = e_1, [e_2e_3] = e_1+e_2$	$e_1 exp\left(-\frac{e_2}{e_1}\right)$	solvable
A _{3,3}	$[e_1e_3] = e_1, [e_2e_3] = e_2$	62 1	solvable, $D = T_2$
A3,4	$[e_1e_3] = e_1, [e_2e_3] = -e_2$	e ₁ e ₂	solvable, E(1,1)
A ^a ,5	$[e_1e_3] = e_1, [e_2e_3] = ae_2 (0< a <1)$	e2e1 e2e1	solvable
A3,6	$[e_1e_3] = -c_2, [e_2e_3] = e_1$	e ² +e ² 1+e ²	solvable, E(2)
A3,7	$[e_1e_3] = ae_1-e_2, [e_2e_3] = e_1+ae_2 (a>0)$	$\left(e_{1}^{2}+e_{2}^{2}\right)\left(\frac{e_{1}+ie_{2}}{e_{1}-ie_{2}}\right)^{ia}$	solvable,
A _{3,8}	$[e_1e_3] = -2e_2$. $[e_1e_2] = e_1$, $[e_2e_3] = e_3$	2e2+e1e3+e3e1	semisimple, SU(1,1
A3,9	$[e_1e_2] = e_3, [e_2e_3] = e_1, [e_3e_1] = e_2$	$e_1^{2+e_2^2+e_3^2}$	simisimple, SU(2)
A4,1	$[e_2e_4] = e_1, [e_3e_4] = e_2$	e ₁ , e ² -2e ₁ e ₃	nilpotent
A ^a ,2	$[e_1e_4] = ae_1$, $[e_2e_4] = e_2$, $[e_3e_4] = e_2 + e_3$ $(a \neq 0)$	$\frac{e^2}{e_1}$, $e_2 \exp\left(-\frac{e_3}{e_2}\right)$	solvable, derived algebra ~ 3Å _l
A4,3	$[e_1e_4] = e_1, [e_5e_4] = e_2$	e_2 , $e_1 \exp\left[-\frac{e_3}{e_2}\right]$	solvable, derived algebra ~ 3A ₁

TABLE I. Real Lie algebras of dimensions 3 and 4 which are not direct summs of Lie algebras of lower dimensions.

Non-zero commutation relations	Invariants	Comments
$[e_1e_4] = e_1$, $[e_2e_4] = e_1+e_2$, $[e_3e_4] = e_2+e_3$	$e_1 e_{xp}\left(-\frac{e_2}{e_1}\right), \frac{2e_1e_3-e_2^2}{e_1}$	solvable, derived algebra ~ 3A _l
[e ₁ e4] = e ₁ , [e ₂ e4] = ae ₂ , [e ₃ e4] = be ₃ (ab≠0, -1≤b≤a≤1)	$e_1^{e_1}$, $e_2^{e_1}$	solvable, derived algebra ~ 3A ₁
[e ₁ e ₄] = ae ₁ , [e ₂ e ₄] = be ₂ ^{-e} ₃ , [e ₃ e ₄] = e ₂ ⁺ be ₃ (a≠0,b≥0)	$\frac{\frac{2b}{e_1}}{\frac{e_2}{2}+e_3} \cdot e_1 \frac{\frac{1-b}{a}}{(e_2-ie_3)+e_1} \frac{\frac{-b-i}{a}}{(e_2+ie_3)}$	solvable, derived algebra ~ 3A _l
 $[e_2e_3] = e_1$, $[e_1e_4] = 2e_1$, $[e_2e_4] = e_2$, $[e_5e_4] = e_2^{+e_3}$	лопе	solvable, derived algebra ~ A _{3,1}
$[e_2e_3] = e_1, [e_2e_4] = e_2, [e_3e_4] = -e_3$	e ₁ , e ₂ e ₃ +e ₅ e ₂ - ² e ₁ e ₄	solvable, derived algebra ~ A ₃ ,1
 $[e_2e_3] = e_1$, $[e_1e_4] = (1+b)e_1$, $[e_2e_4] = e_2$, $[e_3e_4] = be_3$ (-1 (bill)	none	solvable, derived algebra ~ A _{3,1}
 $[e_2e_3] = e_1$, $[e_2e_4] = -e_5$, $[e_5e_4] = e_2$	e ₁ , 2e ₁ e ₄ +e ² +e ²	solvable, derived algebra ~ A ₃ ,1
$[e_2e_5] = e_1$, $[e_1e_4] = 2ae_1$, $[e_2e_4]^{+=} ae_2^{-e_3}$ $[e_3e_4] = e_2^{+ae_3}$ (a>0)	none	solvable, derived algebra ~ A ₅ ,1
$[e_1e_3] = e_1$, $[e_2e_3] = e_2$, $[e_1e_4] = -e_2$, $[e_2e_4] = e_1$	none	solvable, derived algebra ~ 2A ₁

Comments	Abelian									solvable	-	-	 	nilpotent		
Invariants	all generators									P2	L3	2 2	Pl	P0-P3		
Generators	L ₂ +K ₁ , L ₁ -K ₂ , P ₀ -P ₃	L ₃ , P ₀ , P ₃	K ₃ , P ₁ , P ₂	$L_{2}^{+K_{1}}$, $P_{0}^{-P_{3}}$, P_{2}	P ₀ -P ₃ , P ₁ , P ₂	P ₁ , P ₂ , P ₃	P ₀ , P ₁ , P ₂	$L_{2}^{+K_{1}}$, $L_{1}^{-K_{2}+P_{2}}$, $P_{0}^{-P_{3}}$	$L_2 + K_1 - \frac{1}{2} (P_0 + P_3), P_0 - P_3, P_2$	L ₂ +K ₁ , K ₃ , P ₂	K ₃ , P ₀ -P ₃ , L ₃	K ₅ , P ₀ -P ₃ , P ₂	K ₃ ^{+aP} 2, P ₀ ^{-P} 3, P ₁ (a>0)	L ₂ +K ₁ , P ₁ , P ₀ -P ₃	$L_{2}^{+K_{1}}$, $P_{2}^{+bX_{3}}$, $P_{0}^{-P_{3}}$ (b=0)	$L_{2}^{+K_{1}-P_{2}}, L_{1}^{-K_{2}-P_{1}+aP_{2}}, P_{0}^{-P_{3}}$ (a>0)
Notation Ref. 1	P10,4	P ₁₂ ,5	P ₁₃ ,6	P ₁₄ ,4	P _{15,2}	P _{15,3}	P ₁₅ ,4	Ĩ,10,11	P _{14,13}	P _{8,8}	P9,5	P _{13,5}	P _{13,5}	P14,5	P ₁₄ ,6	P _{10,12}
Class of isomorphism	3A1			·						A2+A1				A3,1		

TABLE II. Invariant operators of 3- and 4-dimensional subalgebras of the Poincaré Lie algebra

Comments	nilpotent									solvable		sólvable, D m T ₂	
Invariants	P0-P3									$(P_0 - P_3) exp\left(-\frac{1}{a} \frac{L_2 + K_1}{P_0 - P_3}\right)$	$(P_0^{-P_3}) \exp\left(-\frac{1}{b} \frac{L_2^{+K_1}}{P_0^{-P_3}}\right)$	L ₁ - K ₂ L ₂ + K ₁	0 0 - 9 3 L2 + K1 L2 + K1
Generators	$L_{2}^{+K_{1}}P_{2}$, $L_{1}^{-K_{2}}P_{1}^{+P_{1}}P_{2}$, $P_{0}^{-P_{3}}$ (a>0)	$L_2 + K_1 - P_2$, $L_1 - K_2 - P_1$, $P_0 - P_3$	$L_2 + K_1 + P_2$, $L_1 - K_2 + P_1$, $P_0 - P_3$	$L_2 + K_1 - \frac{1}{2} (P_0 + P_3), P_1, P_0 - P_3$	L ₂ +K ₁ -P ₂ , P ₁ , P ₀ -P ₃	L ₂ +K ₁ +P ₂ , P ₁ , P ₀ -P ₃	$L_2 + K_1 - \frac{1}{2} (P_0 + P_3), P_2 + bP_1, P_0 - P_3 (b \neq 0)$	$L_{2}^{+K_{1}-P_{2}}, P_{2}^{+bP_{1}}, P_{0}^{-P_{3}}(b \neq 0)$	$L_{2}^{+K_{1}+P_{2}}, P_{2}^{+bP_{1}}, P_{0}^{-P_{3}}$ (b=0)	L ₂ +K ₁ , K ₃ +aP ₁ , P ₀ -P ₃ (a>0)	L2+K1, K3+bP1+aP2, P0-P3 (a>0,b=0)	K ₃ , L ₂ +K ₁ , L ₁ -K ₂	K ₃ , L ₂ +K ₁ , P ₀ -P ₃
Notation Ref. 1	P _{10,13}	P _{10,14}	P _{10,15}	P _{14,14}	P _{14,15}	P ₁₄ ,16	P _{14,17}	P _{14,18}	$\tilde{\tilde{P}}_{14,19}$	P _{8,14}	P _{8,16}	P7,5	P8,7
Class of isomorphism	A3,1									A3,2		Å3,3	

Comments	solvable, D H T ₂	solvable, E(1,1)			solvable, E(2)			r					solvable, S(3)
Invariants	$\frac{P_0 - P_3}{L_2 + K_1}$	$p_0^2 - p_3^2$			$(L_{2}^{+K_{1}})^{2}+(L_{1}^{-K_{2}})^{2}$			$P_1^{2+P_2^2}$					$\left[\left(L_{2}^{+}k_{1}\right)^{2}+\left(L_{1}^{-}k_{2}\right)^{2} \right] \left[\frac{L_{2}^{+}k_{1}^{+}+\dot{\imath}\left(L_{1}^{-}k_{2}^{-}\right) }{L_{2}^{+}k_{1}^{1}-\dot{\imath}\left(L_{1}^{-}k_{2}^{-}\right) } \right]^{\dot{\imath}tanc}$
Generators	K ₃ +aP ₂ , L ₂ +K ₁ , P ₀ -P ₃ (a>0)	coscL ₃ +sincK ₃ , P ₀ , P ₃ (0 <c<π,c≠π 2)<="" td=""><td>K₃, P₀, P₃</td><td>$K_3^{+aP_2}$, P_0, P_3 (a>0)</td><td>L₃, L₂+K₁, L₁-K₂</td><td>$L_{3}^{+\frac{1}{4}}(P_{0}^{-P_{3}}), L_{2}^{+K_{1}}, L_{1}^{-K_{1}}$</td><td>$L_{3}^{-\frac{1}{4}}(P_{0}^{-P_{3}}), L_{2}^{+K_{1}}, L_{1}^{-K_{1}}$</td><td>$\operatorname{coscl}_{3}$+sincK₃, P₁, P₂ (0<c<\pi, c<math="">\pi/2)</c<\pi,></td><td>$L_{3}^{+\frac{1}{4}}(P_{0}^{+}P_{3}^{-}), P_{1}^{+}, P_{2}^{-}$</td><td>$L_{3}^{-\frac{1}{4}}(P_{0}^{+}P_{3}^{-}), P_{1}^{-}, P_{2}^{-}$</td><td>$L_{5}^{+aP_{0}}, P_{1}, P_{2}$ (a>0)</td><td>$L_{3}^{+bP_{3}}, P_{1}, P_{2} (b \neq 0)$</td><td>coscL₃+sincK₃, L₂+K₁, L₁-K₂ (0<c<*.c=# 2)<="" td=""></c<*.c=#></td></c<π,c≠π>	K ₃ , P ₀ , P ₃	$K_3^{+aP_2}$, P_0 , P_3 (a>0)	L ₃ , L ₂ +K ₁ , L ₁ -K ₂	$L_{3}^{+\frac{1}{4}}(P_{0}^{-P_{3}}), L_{2}^{+K_{1}}, L_{1}^{-K_{1}}$	$L_{3}^{-\frac{1}{4}}(P_{0}^{-P_{3}}), L_{2}^{+K_{1}}, L_{1}^{-K_{1}}$	coscl_{3} +sincK ₃ , P ₁ , P ₂ (0 <c<\pi, c<math="">\pi/2)</c<\pi,>	$L_{3}^{+\frac{1}{4}}(P_{0}^{+}P_{3}^{-}), P_{1}^{+}, P_{2}^{-}$	$L_{3}^{-\frac{1}{4}}(P_{0}^{+}P_{3}^{-}), P_{1}^{-}, P_{2}^{-}$	$L_{5}^{+aP_{0}}, P_{1}, P_{2}$ (a>0)	$L_{3}^{+bP_{3}}, P_{1}, P_{2} (b \neq 0)$	coscL ₃ +sincK ₃ , L ₂ +K ₁ , L ₁ -K ₂ (0 <c<*.c=# 2)<="" td=""></c<*.c=#>
Notation Ref. 1	P.8,15	P _{11,4}	P13,4	ñ 13,12	P6,4	P.6,9	P _{6,10}	P _{11,3}	P _{12,15}	P _{12,16}	P _{12,17}	P _{12,18}	P5,4
Class of isomorphism	A _{3,3}	A3,4			A3,6					4 <u></u>			A3,7

(cont.)	
TABLE II.	

Class of isomorphism	Notation Ref. 1	Generators	Invariants	Comments
A3,8	P4,4	L ₃ , K ₁ , K ₂	$L_{3}^{2}-K_{2}^{2}-K_{2}^{2}$	semisimple, SU(1,1)
^A 3,9	P3,4	L ₁ , L ₂ , L ₃	$L_{1}^{2}+L_{2}^{2}+L_{3}^{2}$	senisimple, SU(2)
4A ₁	P _{15,1}	P ₀ , P ₁ , P ₂ , P ₃	all generators	Abelian, T ₄
$A_2^{+2A_1}$	P _{13,2}	K ₃ , P ₀ -P ₃ , P ₁ , P ₂	P ₁ , P ₂	
A3, 1 ^{+A} 1	P _{10,3}	$L_{2}^{+K_{1}}, L_{1}^{-K_{2}}, P_{0}^{-P_{3}}, P_{2}$	$L_{2}^{+K_{1}}$, $P_{0}^{-P_{3}}$	
	P ₁₄ ,2	$L_{2}^{+K_{1}}$, $P_{0}^{-P_{3}}$, P_{1} , P_{2}	P ₀ -P ₃ , P ₂	
	P 10,9	$L_{2}^{+K_{1}}, L_{1}^{-K_{2}-P_{1}}, P_{0}^{-P_{3}}, P_{2}$	$L_2 + K_1$, $P_0 - P_3$	
	P _{10,10}	$L_{2}^{+K_{1}}, L_{1}^{-K_{2}^{+P_{1}}}, P_{0}^{-P_{3}}, P_{2}$	L ₂ +K ₁ , P ₀ -P ₃	
	P ₁₄ ,10	$L_{2}^{+K_{1}-\frac{1}{2}}(P_{0}^{+P_{3}}), P_{0}^{-P_{3}}, P_{1}, P_{2}$	P ₀ -P ₃ , P ₂	
A3,2 ^{+A} 1	ř8,11	K ₃ +aP ₂ , L ₂ +K ₁ , P ₀ -P ₃ , P ₂ (a>0)	P_2 , $(P_0 - P_3) \exp\left[\frac{1}{a} \frac{L_2 + K_1}{P_0 - P_3}\right]$	
A3, 3 ^{+A} 1	P8,4	K ₃ , L ₂ +K ₁ , P ₀ -P ₃ , P ₂	$P_{2}, \frac{L_{2}+K_{1}}{P_{0}-P_{3}}$	
A3,4 ^{+A} 1	P9,4	L ₃ , K ₃ , P ₀ , P ₃	L_5 , $P_0^2 - P_3^2$	
	P _{13,3}	K ₅ , P ₀ , P ₁ , P ₃	P ₁ , P ₀ ² -P ₃ ²	
	P _{13,10}	K ₃ +aP ₂ , P ₀ , P ₁ , P ₃ (a>0)	$P_1, P_0^2 - P_3^2$	

Class of isomorphism	Notation Ref. 1	Generators	Invariants	Comments
A3,6 ^{+A} 1	P6,3	L ₃ , L ₂ +K ₁ , L ₁ -K ₂ , P ₀ -P ₃	$P_{0}^{-p_{3}}, (L_{2}^{+k_{1}})^{2} + (L_{1}^{-k_{2}})^{2}$	
	P9,3	L ₃ , K ₃ , P ₁ , P ₂	K_3 , $P_1^2 + P_2^2$	
	P ₁₂ ,2	L ₅ , P ₀ -P ₃ , P ₁ , P ₂	$P_{0}-P_{3}, P_{1}^{2}+P_{2}^{2}$	
	P _{12,3}	L ₃ , P ₁ , P ₂ , P ₃	P ₃ , P ² +P ² P ₃ , P ² +P ²	
	P12,4	L ₃ , P ₀ , P ₁ , P ₂	² P ₀ P ₁ ² +P ₂ ²	
	P ₁₂ ,11	$L_{3^{+}1}(P_{0^{+}P_{3}}), P_{0^{+}P_{3}}, P_{1}, P_{2}$	$p_{0-p_3}, p_1^2 + p_2^2$	
	P _{12,12}	$L_{3}^{-\frac{1}{4}}(P_{0}^{+}P_{3}), P_{0}^{-}P_{3}^{+}, P_{1}^{+}, P_{2}^{-}$	$P_{0}-P_{3}, P_{1}^{2}+P_{2}^{2}$	
	ř _{12,13}	L ₃ +aP ₀ , P ₁ , P ₂ , P ₃ (a>0)	$p_3, p_1^{2+p_2^2}$	
	P ₁₂ ,14	L ₃ +bP ₃ , P ₀ , P ₁ , P ₂ (b×0)	P ₀ , P ₁ ^{2+P2}	
A3,8 ^{+A} 1	P4,3	L ₅ , K ₁ , K ₂ , P ₃	$P_3, L_3^2 - K_2^2 - K_2^2$	
A3,9 ^{+A} 1	P3,3	L1, L2, L3, P0	$p_0, L_1^{2+L_2^2+L_3^2}$	
A4,1	P14,3	L ₂ +K ₁ , P ₀ , P ₁ , P ₃	P ₀ -P ₃ , P ₂ -P ₁ -P ₂	
	P.10,7	$\begin{array}{c} L_{2}^{+K_{1}-\frac{1}{2}}(P_{0}^{+}P_{3}^{}), \ L_{1}^{-K_{2}} + \frac{b}{2} P_{1}^{}, \\ P_{0}^{-}P_{3}^{}, \ P_{2}^{} \end{array} $	$P_0^{-P_3}, P_2^{+P_3^{-}-P_0^{-}+2}(P_0^{-P_3})(L_2^{+K_1^{+}bP_2})$	

Class of isomorphism	Notation Ref. 1	Generators	Invariants	Comments
A4,1	Ĩ0,8	$L_{2}^{+K_{1}-\frac{1}{2}}(P_{0}^{+P_{3}}), L_{1}^{-K_{2}}, P_{0}^{-P_{3}}, P_{2}$	$P_0 - P_3, P_2^2 + P_3^2 - P_0^2 + 2(P_0 - P_3)(L_2 + K_1)$	
	ñ14,11	L ₂ +K ₁ - ² P ₂ , P ₀ , P ₁ , P ₃	P ₀ -P ₃ , P ₁ ² +P ₃ ^{-P₂}	
	Ĩ4,12	L ₂ +K ₁ + ¹ P ₂ , P ₀ , P ₁ , P ₃	$P_0 - F_3$, $P_1^2 + P_3^2 - P_2^2$	
A ¹ ,2	P.7,7	K ₃ +aP ₁ , L ₂ +K ₁ , L ₁ -K ₂ , P ₀ -P ₃ (a>0)	$\frac{t_1 - K_2}{p_0 - p_3}, (t_1 - K_2) \exp \frac{B_3}{a(p_0 - P_3)}$	
A ¹ ,1 4,5	P _{7,4}	K ₃ , L ₂ +K ₁ , L ₁ -K ₂ , P ₀ -P ₃	$\frac{L_{2}+K_{1}}{P_{0}-P_{3}}, \frac{L_{1}-K_{2}}{P_{0}-P_{3}}$	
Atanc,0 A4,6	P11,2	<pre>coscL₃+sinK₃, P₀-P₃, P₁, P₂</pre>	$p_1^{2+p_2^2}, (p_0^{-p_3})^{i \cot c} (p_1^{-i p_2})^{+(p_0^{-p_3})^{-i \cot c}} (p_1^{+i p_2})$	
A ^a ,a 4,6	P5,3	coscL ₃ +sincK ₃ , L ₂ +K ₁ , L ₁ -K ₂ , P ₀ -P ₃	$[(L_{2}^{+K_{1}})^{2},(L_{1}^{-K_{2}})^{2}](P_{0}^{-P_{3}})^{-2},$	
(a ≡ tanc)		(0 <c<fr></c<fr> c <fr></fr> */2)	<pre>[L₁-K₂-i(L₂+K₁)](P₀-P₃)icotc-1 + + [L₁-K₂+i(L₂+K₁)](P₀-P₃)⁻¹-icotc</pre>	
A4,10	ř6,7	L_3 , L_2 + K_1 - P_2 , L_1 - K_2 - P_1 , P_0 - P_3	$P_0 - P_3, L_3 (P_0 - P_3) + \frac{1}{3} (L_2 + K_1 - P_2)^2 + \frac{1}{4} (L_1 - K_2 - P_1)^2$	
	P _{6,8}	L ₅ , L ₂ +K ₁ +P ₂ , L ₁ -K ₂ +P ₁ , P ₀ -P ₃	$P_0 - P_3, L_3 (P_0 - P_3) + \frac{1}{3} (L_2 + K_1 + P_2)^2 + \frac{1}{4} (L_1 - K_2 + P_1)^2$	
A ⁰ 4,9	P8,5	K ₃ , L ₂ +K ₁ , P ₀ -P ₃ , P ₁	попе	
	P8,6	$K_3, L_2^{+K_1}, P_0^{-P_3}, P_2^{+bP_1}$ (b≠0)	none	

u	Generators	Invariants	Connents
<pre><3+aP2, L2+K1, PC</pre>) ^{-P} 3, P ₁ (a>0) none		
^x ^{3+aP} ^{2, L2+K} ^{1, P} ⁰	P3, P2+bP1 none		
(a>0,b≠0			
⁴ 3, ⁴ 3, ⁴ 2, ⁴ 1, ¹ 1	- K ₂ none		

Subalgebra	Dim	Generators	Invariants	Comments
PI	10	L1, L2, L3, Kk, K2, K3, P0, P1, P2, P3	$m^{2} = p_{0}^{2} - p^{2}, s^{*}$	Poincaré
P2,1	œ	L ₁ -K ₂ , L ₂ +K ₁ , L ₃ , K ₃ , P ₀ , P ₁ , P ₂ , P ₃	m^{2} , $L_{3} = \frac{P_{2}}{P_{0} - P_{3}} (L_{2} + K_{1}) = \frac{P_{1}}{P_{0} - P_{3}} (L_{1} - K_{2})$	maximal solvable
P2,2	~	L ₁ -K ₂ , L ₂ +K ₁ , L ₃ , K ₃ , P ₀ -P ₃ , P ₁ , P ₂	$L_3 = \frac{P_2}{P_0 - P_3} (L_2 + K_1) = \frac{P_1}{P_0 - P_3} (L_1 - K_2)$	
P3,1	7	L ₁ , L ₂ , L ₃ , P ₀ , P ₁ , P ₂ , P ₃	^п 2, Р ₀ , Ž.р̀	E(3) = P ₀
P4,1	7	L ₃ , K ₁ , K ₂ , P ₀ , P ₁ , P ₂ , P ₃	^{m², P₃, L₃P₀-K₁P₂+K₂P₁}	E(2,1) = P ₃
P ₅ ,1	7	coscL ₅ +sincK ₃ , L ₁ -K ₂ , L ₂ +K ₁ , P ₀ , P ₁ , P ₂ , P ₃ (0 <c<π,c≭π 2)<="" td=""><td>2 E</td><td>S(3) = T₄</td></c<π,c≭π>	2 E	S(3) = T ₄
P _{6,1}	2	L ₃ , L ₁ -K ₂ , L ₂ +K ₁ , P ₀ , P ₁ , P ₂ , P ₃	^{m², P₀-P₃, L⁴F₄P₂-K₂P₁-L₃P₀}	Е(2) п T ₄
P _{7,1}	~	K ₅ , L ₁ -K ₂ , L ₂ +K ₁ , P ₀ , P ₁ , P ₂ , P ₃	B2	
P1,2	v	L ₁ , L ₂ , L ₃ , K ₁ , K ₂ , K ₅	Ĭ·Ř, Ľ²-Ř²	SL(2,C) ~ 0(3,1)
P3,2	ور	L1, L2, L3, P1, P2, P3	₹ ² , č•₽	E(3)
P4,2	¢	L ₅ , K ₁ , K ₂ , P ₀ , P ₁ , P ₂	P ² -P ² -P ² , L ₃ P ₀ +K ₂ P ₁ -K ₁ P ₂	E(2,1)
P5,2	9	coscL ₃ +sincK ₃ , L ₁ -K ₂ , L ₂ +K ₁ , P ₀ -P ₃ , P ₁ , P ₂	none	
P6,2	9	L ₃ , L ₁ -K ₂ , L ₂ +K ₁ , P ₀ -P ₃ , P ₁ , P ₂	$P_0 - P_5$, $(P_0 - P_5)L_5 - P_1(L_1 - K_2) - P_2(L_2 + K_1)$	
*) S denotes t	the sc	quare of the Pauli-Lubanski spin operator.		

TABLE III. Invariants of subalgebras of dim 2 5 of the Poincaré Lie algebra.

Subalgebra	Dim	Generators	Invariants	Comments
P7,2	6	K ₃ , L ₁ -K ₂ , L ₂ +K ₁ , P ₀ -P ₃ , P ₁ , P ₂	none	
P8,1	6	K ₃ , L ₂ +K ₁ , P ₀ , P ₁ , P ₂ , P ₃	m ² , P ₂	
P9,1	9	L ₃ , K ₃ , P ₀ , P ₁ , P ₂ , P ₃	m ² , p ² -p ² p ² -p ² 3	
P _{10,1}	Q	L_1-K_2 , L_2+K_1 , P_0 , P_1 , P_2 , P_3	m ² , P ₀ -P ₃	
$ \widetilde{P}_{6,5} (\varepsilon=1) $ $ \widetilde{P}_{6,6} (\varepsilon=-1) $	ę	$L_{3} + \frac{\varepsilon}{4} (P_{0}+P_{3}), L_{1}-K_{2}, L_{2}+K_{1}, P_{1}, P_{2}, P_{0}-P_{3}$	$m^{2} + 4\varepsilon(P_{0}L_{3} - P_{2}K_{1} + P_{1}K_{2} - \tilde{L} \cdot \tilde{P}), P_{0} - P_{3}$	
P2,3	IJ	L ₁ -K ₂ , L ₂ +K ₁ , L ₃ , K ₃ , P ₀ -P ₃	$\frac{\left[(L_{1}-K_{2})^{2}+(L_{2}+K_{1})^{2}\right]}{\left(P_{0}-P_{3}\right)^{2}}$	
P7,3	ы	K ₃ , L ₁ -K ₂ , L ₂ +K ₁ , P ₀ -P ₃ , P ₂	$\frac{L_2+K_1}{p_0-P_3}$	
P8,2	2	K ₃ , L ₂ +K ₁ , P ₀ -P ₃ , P ₁ , P ₂	P2	
P8,3	s	K ₃ , L ₂ +K ₁ , P ₀ , P ₁ , P ₃	$p_0^2 - p_1^2 - p_2^2$	
P9,2	ى.	L ₅ , K ₃ , P ₀ -P ₅ , P ₁ , P ₂	$p_1^{2+p_2^2}$	
P _{10,2}	ŝ	$L_1^{-K_2}, L_2^{+K_1}, P_0^{-P_3}, P_1, P_2$	Po-P3	
P11,1	LQ I	coscl ₃ +sincK ₃ , P ₀ , P ₁ , P ₂ , P ₃ (c≠π/2,0 <c<π)< td=""><td>m^{2}, $p_{0}^{2}-p_{3}^{2}$, $(p_{0}-p_{3})^{2} \cot\left[\frac{p_{2}+ip_{1}}{2^{2}-ip_{1}}\right]^{1}$</td><td></td></c<π)<>	m^{2} , $p_{0}^{2}-p_{3}^{2}$, $(p_{0}-p_{3})^{2} \cot\left[\frac{p_{2}+ip_{1}}{2^{2}-ip_{1}}\right]^{1}$	

Subalgebra	Dim	Generators	Invariants	Comments
P _{12,1}	S	L ₃ , P ₀ , P ₁ , P ₂ , P ₃	^m ² , Р ₀ , Р ₃	-
P _{13,1}	Ŋ	K ₃ , P ₀ , P ₁ , P ₂ , P ₃	m ² , P ₁ , P ₂	
P14,1	S	L ⁺ +K ₁ , P ₀ , P ₁ , P ₂ , P ₃	m ² , P ₀ -P ₃ , P ₂	
P.7,6	S	K ₃ ^{+ap} 1, L ₁ ^{-K} 2, L ₂ ^{+K} 3, P ₀ -P ₃ , P ₂ (a>0)	$(P_0 - P_3)^a \exp\left[-2 \frac{L_2 + K_1}{P_0 - P_3}\right]$	
P.8,10	S	$K_{3}^{+aP}_{1}, L_{2}^{+K}_{1}, P_{0}, P_{1}, P_{3}$ (a>0)	$p_0^2 - p_1^2 - p_3^2$	
P _{10,6}	S	$L_{3}^{+K_{1}+\frac{1}{2}}(P_{0}^{+P_{3}}), L_{1}^{-K_{2}}, P_{0}^{-P_{3}}, P_{1}^{+}, P_{2}^{-P_{3}}$	P ₀ -P ₃	

r

т

Т