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I. Introduction 

The Poincar@ group generated by three space rotations LI, L2, L3, three Lo- 

rentz boosts KI, K2, K3, and four translations P0' PI' P2' P3 is the fundamental 

transformation group of special relativity. Many of its properties have been studied 

during the last 70 years by both mathematicians and physicists. Only recently, how- 

ever, a list of its continuous subgroups has been obtained I , thus providing an ex- 

haustive description of all possible "subsymmetries" of continuous type. 

For many applications in mathematical physics it is essential to know the 

(Casimir) operators which commute with all generators of each subalgebra S and are 

themselves elements of the enveloping algebra of S. Thus, for instance, these 

operators provide a convenient way of labelling representations of S and defining 

bases for the representations of the entire group, their eigenvalues are measurable 

physical quantities (quantum numbers), etc. I . 

The purpose of this contribution is to present the list of subalgebras of the 

Poincar@ Lie algebra P (nonconjugate under the connected part of the Poincar@ 

group) which have Casimir operators or other invariant operators, as explained 

below. A physical interpretation and further use of these operators is postponed 

to subsequent publications. 
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Since there are many subalgebras of dimensions 3 and 4 quite a few among them 

being isomorphic to each other, we found advantageous first to classify the sub- 

algebras of dimension < 4 into isomorphism classes, then to find the invariant 

operators for each isomorphic class, and then only to "interpret" the operators 

using generators of each nonconjugate subalgebra of P. For that we use the list 

of nonisomorphic real Lie algebras of low dimension as given by Mubarakzyanov 2. 

We do not follow, however, the notations of Ref. 2 where algebras of different 

physical significance are often denoted by the same symbol. 

The method for finding the invariant operators is briefly described in Sec. 

II together with the types of operators obtained. In Sec. III the Tab. I is des- 

cribed. It containes the real nonisomorphic Lie algebras of dimension ~ 4, their 

Casimir and other invariant operators. In Sec. IV the isomorphisms between sub- 

algebras of P are presented. Invariant operators of subalgebras of dimension 3 

and 4 are given in Tab. II, and for subalgebras of dimension exceeding 4 they are 

in Tab. III. 

II. A Method for Finding Invariants of Lie Algebras 

The nUmber of Casimir operators of a semisimple Lie algebra is equal to its 

rank. Therefore our problem is in the nonsemisimple Lie algebras for which no easy 

criterion is known to decide readily whether or not they possess a Casimir operator, 

(For other invariant operators see Ref. 3.) 

Consider a Lie algebra £ generated by AI,...,A n satisfying 

= f~kA~. (I) EAi,A k] 

We represent the generators A. as differential operators acting on a space of 
1 

functions F(al,...,a n) by putting 

n 

A i: (i=1,2 ,nl 12) 
k,Z=1 ka~ ''" " 

In order to find an operator valued function P(AI,...,A n) such that equation 

[Ai,P(AI,...,An)] = 0 for i = 1,2,...,n, (3) 

holds, we find first a numerical function P(al,...,a n) annihilated by all operators 

A i in (2). Thus we get a system of n linear homogeneous differential equations 

n Z ' a P(a I 0, (i 1,2,..,n) (4) Z fika£ ~ , . . . , a n )  = = . 
k,~=1 

where some of the equations may be trivial, depending on actual values of the 

structure constants fZ ik of each algebra. Having found solutions P(al,...,a n) of the 
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system (4), we replace the variables a i by Ai, symmetrize the solutions with res- 

pect to A.'s, and arrive thus at the invariant operators we were searching for. 
l 

Generally, three situations may arise: 

(i) The system (4) does not have a solution different from zero. Then the 

algebra Z does not have an invariant operator. 

(ii) Ofie or several solutions of (4) exist and are of polynomial form. 

Then we choose a convenient integrity basis for them (i.e. a minimal set of in- 

variant operators such that any other invariant operator can be expressed through 

them as a polynomial) and call it the Casimir operators of the algebra (I). 

(iii) Solutions of (4) are of nonpolynomial form. Then we have "generalized 

Casimir operators" which still commute with the algebra in the sense (4) and thus 

have fixed numerical values within each irreducible representation of £. These 

invariants do not belong to the enveloping algebra of £. A case of special in- 

terest is when these invariant operators are rational functions of the genera- 

tors. 

III. Isomorphic Classes of Real Lie Algebras of Dimension < 4 

All one-dimensional Lie algebras are isomorphic to each other. We denote 

them by A I . The only generator is obviously also a Casimir operator of A I . 

An algebra of dimension 2 is isomorphic either to a direct sum AI+A I which 

we denote by 2A I (its two generators are again Casimir operators), or to a non- 

Abelian algebra generated by el, e2: 

Eele 2] = e I. (5) 

This algebra, denoted by A2, does not have any invariant operator. 

An algebra of dimension 3 which is a direct sum is isomorphic to one of the 

two: 

3A 1 e AI+AI+AI or AI+A 2. (6) 

The algebra 3A I has all its generators as Casimir operators, for AI+A 2 only the 

generator of A I is a Casimir operator. The remaining 3-dimensional algebras do not 

decompose into a direct sum of lower algebras. They are described by the entities 

A3,I,A3,2,...,A3, 9 in Tab. I, which contains also their invariant operators. 

a and a each represent a continuum of non-isomor- Let us point out the A3, 5 A3, 7 
phic algebras corresponding to different values of the parameter a; this fact is 

underlined by the appearance of the upper index a. 

A 4-dimensional real Lie algebra is isomorphic either to one of the following 

direct sums 
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4A I, 2AI+A 2, 2A 2, AI+A3, i (i = 1,2 ..... 9) (7) 

A a ,A4, of Tab. I. The invariants of alge- or to one of the algebras A4,1, 4,2'''' 12 

bras (7) are obviously given, by the Casimir operator of each A I and the correspon- 

ding operators of A3, i. For A4, i (i = I,...,12) the operators are listed in the 

Tab. I, whenever they exist. 

The entitiesA a .a,b .a,b A b A a 4,2' A4,5' A4,6' 4,9' 4,11 are again infinite families of non- 

isomorphic algebras for each value of the parameters whithin the specified range. 

IV. Invariants of the Subalgebras of the Poincar@ Lie Algebra 

Representatives of conjugacy classes of subalgebras of the Poincar@ Lie al- 

gebra P are denoted as in Tab. 3 and 4 of Ref. I, i.e. either by Pi,k or by Pm,n. 

Their generators are also found in those tables. 

All l-dimensional subalgebras of P are isomorphic to A I and their generators 

are also their Casimir operators. These algebras are: 

P PI PI PI PI + PI PI ~11,6' 2,1~' P13,9' 4,9' P15,8' 5,9' P15,10' 2,23 2,26' 3,15' P14,24' 

P14,25' and P14,26" 
The subalgebras of dimension 2 which are not Abelian are all isomorphic to 

A 2 and they do not have an invariant operator. These algebras are: P8,9' P11,5' 

P13,7' P8,17' P13,13" 
The Abelian 2-dimensional subalgebras are all isomorphic to 2A I and all their 

generators are also their Casimir operators. These algebras are: 

~9,6' PI~,5' P12~7 + P12,9' P13,8' P14,7' P14,8' P15,5 + P15,7' PI0,6' P12,19 + 

P12,22' P13,14' P14,20 + Pih,23" 
The subalgebras of P of dimension 3 and 4 are given in Tab. II together with 

their generators and invariants whenever these exist. Isomorphic classes are in- 

dicated. 

The subalgebras of dimension ~ 5 are given in Tab. III with their generators 

and invariants. None of these subalgebras are isomorphic to each other. 
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