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Abstract

This thesis is mainly devoted to the calculation of nuclear matrix element for neutrinoless double

beta decay (hereafter 0νββ). In addition to the calculations with spherical QRPA (Quasi-particle

Random Phase Approximation) methods and other methods previously used by many groups,

we develope the deformed version of QRPA, using the deformed wave-functions derived from the

Woods-Saxon potential. We adopt a realistic force as the residual interaction, in order to get

reliable intermediate states which are very important in the QRPA formalism. This generalization

makes the QRPA method applicable to all nuclei either spherical or deformed.

In chapter 2, a detailed derivation and illustration of different possible emission mechanisms for

0νββ are demonstrated. We introduce different new physics models which will produce new phe-

nomena beyond the Standard Model (SM). We give the Lagrangians which are related to lepton-

number violation and weak interaction. With these terms we describe possible inner processes of

the 0νββ by Feynman Diagrams.

In Chapter 3, we go on with realistic calculations of this process and deduce the half-lives from

the underlying mechanisms. We transform the interactions originally between quarks to that of

nucleons by the so-called hadronization process, and the non-relativistic approximation for nuclei

is justified. A derivation of the complete expressions for both 2νββ and 0νββ NME is given.

In chapter 4, we introduce the many-body techniques which are required in the calculations, such

as QRPA, NSM (Nuclear Shell Model) and others. Our focus is on the pn-QRPA(proton-neutron

Quasi-particle Random Phase Approximations), we give the numerical details of the method and

the modifications to treat deformed calculations. Finally we give also a derivation of the formulae

for the NME (Nuclear Matrix Elements).

In the last chapter 5, we give our detailed results on this calculation. First some details of the wave-

functions derived from the mean field approximations and also the pairings are discussed. Then

we solve the QRPA equations. With these solutions we can give the multipole transition strength

distributions as well as NMEs for 0νββ and 2νββ. The distributions then can be compared with

experiments to assess the reliability of our approach. The NME is what one really needs. It is the

most important step on the final determinations of neutrino mass 〈m〉ee. Our calculation is the

calculation of 0νββ decay with realistic forces in deformed nuclei. The results for 150Nd show that

the general structure of the 0νββ, such as the gpp dependence and the dependence on the angular

momenta of the neutron pairs, changed into proton pairs, have not been modified drastically except

for a suppression from the overlaps between the BCS vacua for the parent and daughter nuclei. Our

results give optimistic predictions, that 150Nd should have the shortest 0νββ half-life. And with

this achievement we may now have all 0νββ NMEs available. We wait now for the breakthroughs

v
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from the experiments with values for 0νββ lifetimes. This will bring us further to the new era of

physics beyond the Standard Models.



Chapter 1

Introduction

The establishment of the electroweak theory[1, 2] is one of the greatest achievements of physics

in the last century. Together with the SU(3) Quantum ChromoDynamics(QCD) for strong inter-

action [3], physicists finally built the so called Standard Model (SM) based on quantum field theory

developed in the middle of 20th century by Feynman, Schwinger et. al. [4, 5]. Experiments after-

wards at the energy scales below several hundred GeV proved the success of the model except the

lack of observation of the Higgs particle [6] which is responsible for the mass of various fermions

and weak bosons. However, the faith of the existence of one unified interaction which incorporates

all known interactions (electromagnetic, weak, strong and gravitation) pushed particle physics for-

ward to search for new physics beyond standard model. There are experimental indications for

this: The neutrino oscillations which proved the massive nature of the neutrinos. These ask for

new theories: either modification of the standard model or for new physics beyond the SM. After

the first decade of the new century, the LHC experiments started the search for not only the Higgs

particle predicted by the SM but also other particles implicated by new physics models competing

with the SM. But for the search of new physics, LHC experiments are the most promising but

not the only ones. In fact the search for new particles from cosmic rays have already started, to-

gether with the search for lepton number violating processes in nuclei. All these experiments and

observations will surely open a new era of physics and broaden our view of the universe further.

The economically cheapest way to detect physics beyond the SM, however, may be the confirmation

of the 0νββ, although these experiments are supposed to be time-consuming in account of the long

half-life of the 0νββ. But once the 0νββ is observed, this surely gives evidence of the incompleteness

of the standard model and further data can also give us clues about new physics. Nonetheless,

despite the claim of events for 0νββ from the Heildelberg-Moscow experiments [7], there is still not

enough direct evidence wether the lepton-number and/or lepton-flavor violating processes truly

exist in nature. Double beta-decay is a kind of special nuclear β decay first proposed by Mayer [8],

which is originating from the energy difference between odd-odd and even even nuclei as shown in

fig.1.1. These differences stem from the nuclear pairing which makes the even-even nuclei much

more stable, because pairing between neutron or/and proton pairs will lower the energy of the

ground state, the energy difference is the so called pairing energy(named gap) described in the

BCS theory. So in this case, the emission with two electrons is possible since the neighboring odd-

1
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Figure 1.1: Graphical sketch of the energy levels for ββ-emitters. They(X) are even-even nuclei,

and more stable than their neighboring odd-odd nucleus M. So single β-decay is forbidden, but decay

to a neighboring even-even nucleus Y with Z+2,A.

odd nuclei is less stable compared to neighboring even-even nuclei with the same nucleon number

A. Thus the even-even mass parent nucleus can decay to a neighboring even-even nucleus with

Z+2 and N-2:

(A,Z)→ (A,Z + 2) + 2e− + 2ν̄ (1.1)

Usually, in the SM, this process will emit two electrons together with two anti-electron neutrinos

just as two successive single beta decays except the intermediate nucleus being replaced by in-

termediate virtual states. But, if the neutrinos are of Majorana nature, things will become more

interesting. In this case, neutrinos are antiparticles of themselves, this makes it possible that the

neutrino produced in double beta decay be reabsorbed, so no neutrinos will be observed. This is

called neutrinoless double beta decay(0νββ):

(A,Z)→ (A,Z + 2) + 2e− (1.2)

This process violates the conservation of lepton number which is thought to be an accidental

symmetry but conserved in the SM. And this is important for the creation of baryons in the Big

Bang. Present observation suggests a large excess of baryons over anti-baryons. Through the

so-called leptongenesis mechanism [9], the non-conservation of lepton number will finally make our

universe to be matter dominant.

Lepton number violation is not possible in the SM, so modifications or new theories beyond the SM

are needed. This can be done by introducing lepton number violating interactions. We shall check

different new physics theories for this. In fact, even for the SM, the lepton number as well as the

baryon number are not conserved separately. B − L should be instead a much more fundamental

symmetry. In many new physics theories, the lepton number symmetry is violated. This allows

the 0νββ.

The easiest way of extending the SM to include the neutrino mass is to add a mass term of

Majorana neutrinos which spontaneously violates the lepton number conservation. But this will not

answer the question why the neutrino is so light (Current experiments from β decay and neutrino

oscillations tell us that the mass of the electron neutrino is smaller than 1eV , compared with
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0.5MeV of the lightest charged lepton, the electron). So new mechanisms were proposed to explain

this mass hierarchy, of which the most promising one is the so-called ”See-Saw” mechanism[10],

with prediction of heavy right-handed neutrinos, together with Dirac and Majorana mass terms

this can explain the smallness of the left-handed neutrino mass. There are different types of See-

Saw depending on the types of Higgs particles which are responsible for all the mass terms. They

are also closely related with the vacuum structure. These new Higgs particles are usually singlets

of the SM but are multiplets of extra symmetries beyond the SM.

It has long been a dream of Grand Unification Theory (GUT) to unify electroweak and strong

interactions into one[11] force. In this way, a larger gauge group is needed to be introduced as

well as more Higgs particles responsible for the spontaneous symmetry breaking (SSB) at a higher

energy scale above the SSB of electroweak interactions. In GUT theories of SO(10), in certain

SSB patterns [12], a left-right symmetric subgroup (SUL(2) × SUR(2)) is predicted and hence

the possible existence of right-handed neutrinos. This scenario will also give the appearance of a

See-Saw model. The mass of left- and right- handed neutrinos in this model can be quite different

due to the structure of the scalar vacuum. This will also affect the 0νββ due to neutrino mixings

between the left- and right-handed ones. But considering the heavy mass of the right-handed

gauge bosons (Must larger than W and Z bosons), this contribution should be small with the ratio

κ = ML/MR. The L−R symmetric model with suitable Higgs sectors will automatically give the

see-saw mechanism with the lepton number violation (only B−L is conserved). But new problems

may emerge such as the proton decay and the hierarchy problem due to the huge difference between

the broken energy scales.

To realize the see-saw mechanism, there are also other possibilities such as that of the existence of

extra dimensions[13] which are warped with a small radius. This will lower the Planck scale and

solve the naturalness problem of the SM by the hierarchy between the mass scales of electroweak

and gravity. In this scenario, if we introduce sterile neutrinos[14] (not the neutrinos of the SM)

which can travel in this short warped interval while SM particles are sticked to a 3-brane (our

world) located somewhere in the fifth dimension. This is an attractive proposal, as we need only

to add one single sterile neutrino and this new five dimensional particle will automatically give the

smallness of the left-handed neutrinos like that in See-Saw. In this case, after the compactification

of the fifth dimension, we can get many resonant states of neutrinos called Klein-Kaluza particles

which act as the right-handed neutrinos in see-saw. And with certain boundary conditions we

will find the lightest states to be left-handed states and also the smallness of neutrino mass can

be explained. By adjusting the position of the brane in the fifth dimension and the compactified

radius we can get the correct magnitude of the decay width of the 0νββ as from GUT without the

annoyance of many extra heavy gauge bosons and Higgs particles.

Above we discussed the mediating neutrinos which must be Majorana particles. Are there possi-

bilities that the mediating particle can be something other than neutrinos? The answer is perhaps

yes. In the supersymmetry if the R parity, which is +1 for SM particles and -1 for their SUSY

partners, is violated. Then there is the possibility for heavy SUSY particles to decay into SM

particles and also quarks into leptons which allows 0νββ. SUSY theory[15] is considered to be one

of the most promising theories beyond the SM, it relates the fermions with the bosons by super-

symmetry, and the equality of boson and fermion degrees of freedom may solve many problems in
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the SM and GUT such as the axial symmetry anomaly from introductions of new particles and the

hierarchy problem. Because of the non-observation of these superpartners of the SM particles, it is

suggested that the symmetry is broken, and if we introduce the R-parity and its conservation, we

will have the lightest SUSY particle (LSP) which is stable with heavy mass served as the candidate

for Dark matter. However, to incorporate lepton and baryon number violation, we must take into

consideration the violation of R-parity. But in addition to 0νββ, this will also give arise to the

existence of proton decay, so this violation should be well constraint by recent experiments. For

0νββ, in this case, weak bosons and mediating neutrinos are replaced by SUSY particles.

The above mechanisms should not be the only possibilities for the 0νββ. Actually new theories

beyond the SM may contribute, especially those, which contain lepton number violating terms. If

these mechanisms co-exist, the important task is to determine whether one is dominant or if they

contribute of comparable weight. The nature of these mechanisms can be a proof of new physics

beyond SM. So we need first to calculate the experimental observables from the realistic, effective

theories instead of interactions from first principles. Usually one replaces then quarks by nucleons

and one integrates out the heavy mediating particles as in weak interactions the W and Z bosons.

In the 0νββ we expect that the weak interactions are most important, since comparing with other

new particles from theories beyond the SM, weak bosons should have the lightest masses hence give

the largest interaction strength at an effective four-fermion vertex. So if the neutrinos are truly

Majorana, then we can take the most simple emission mechanism of Majorana neutrinos to be the

leading contribution. Besides these mechanisms for 0νββ discussed above, we should be aware that

the nuclear environment which guarantees this process should also be carefully examined.

So we need well established nuclear structure theories which could well interpret both 0νββ and

2νββ. As 2νββ is well observed for varies nuclei and contains only physics we know, it can serve

as a good test for nuclear theories which can then be applied to the 0νββ. After decades of

development, from the early simple treatment by the time of discovery of the 2νββ, we now have

several tools for the calculation of ββ-decay.

The ββ emitters lie in the medium and heavy atomic mass region with nucleon numbers from tens

to hundred, the lightest one is 48Ca, with 20 protons and 28 neutrons. So we are dealing with

nuclear many-body systems which are complicated to deal with not only because of the many-body

problems but also the troublesome and mainly unknown nucleon-nucleon interactions. Nucleons

are bound systems of quarks and feel the strong interactions. The strong interaction are described

by quantum chromodynamics(QCD). The important feature of this theory is asymptotic freedom

and color confinement. This poses great difficulties for the calculations of the nucleon properties

from first principles. In spite of some non-perturbative attempts such as ”Lattice QCD”, we resort

here to nuclear models. In nuclear structure theories, these models can be classified into different

categories as empirical or phenomenological. The empirical models are constructed from the bare

nuclear force, such as the Brückner G-matrix [16]. These realistic nucleon-nucleon interactions

are then suitable for describing the nuclei. The phenomenological ones are constructed with some

analytic expressions with several parameters which are adjusted to reproduce the properties of

nuclei, i.e. the Skyrme force [18] or the Gogny force [17]. The nuclear many-body problems

are usually dealt with the Hatree-Fock(HF) approach or its generalization Hatree-Fock-Bogliubov

(HFB) taking into consideration also nuclear pairing.
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Table 1.1: Half-life and experimental nuclear matrix element values for the two neutrino double beta

decay [28]

Isotope T1/2(2ν), yr M2ν

48Ca 4.4+0.6
−0.5 × 1019 0.0238+0.0015

−0.0017

76Ge (1.5± 0.1)× 1021 0.0716+0.0025
−0.0023

82Se (0.92± 0.07)× 1020 0.0503+0.0020
−0.0018

96Zr (2.3± 0.2)× 1019 0.0491+0.0023
−0.0020

100Mo (7.1± 0.4)× 1018 0.1258+0.0037
−0.0034

100Mo-100Ru(0+
1 ) 5.9+0.8

−0.6 × 1020 0.1017+0.0056
−0.0063

116Cd (2.8± 0.2)× 1019 0.0695+0.0025
−0.0024

128Te (1.9± 0.4)× 1024 0.0249+0.0031
−0.0023

130Te (6.8+1.2
−1.1)× 1020 0.0175+0.0016

−0.0014

150Nd (8.2± 0.9)× 1018 0.0320+0.0018
−0.0017

150Nd-150Sm(0+
1 ) 1.33+0.45

−0.26 × 1020 0.0250+0.0029
−0.0034

238U (2.0± 0.6)× 1021 0.0271+0.0053
−0.0033

130Ba; ECEC(2ν) (2.2± 0.5)× 1021 0.105+0.014
−0.010

The approaches used commonly for the 0νββ are the nuclear shell model(NSM) and the Quasi-

particle Random Phase Approximations(QRPA). The shell model gives a very good description of

the observed properties of nuclei. In principle, it can be the most reliable method, however, for

the medium and heavy nuclei involved in ββ-decay, the basis space increases so drastically, that it

makes the numerical calculations beyond pf -shell impossible. Only for the candidate 48Ca a full

pf-shell calculation has been performed [19], for other ββ decay nuclei, severe truncations are used.

This makes the calculation less reliable. But for QRPA these severe truncations can be avoided

with however limited many-body configurations included. The pn-QRPA is an approximation to

the nuclear many body problems, which uses the groundstates derived from the HF meanfield

with pairing and constructs the states of the intermediate nucleus by neutron-proton quasiparticle

excitations. It is the most popular method for calculating the ββ-decay. However, there are also

drawbacks: The matrix elements become extremely sensitive at the physically acceptable region

to the particle-particle strength (gpp), this is due to the overestimation of the ground state cor-

relations which lead for increased particle-particle force to a collapse of the QRPA ground states.

Since QRPA uses the Quasiboson approximation(QBA), which violates the Pauli exclusion prin-

ciple. So generalizations are made to remove this violation. This is the so-called Renormalized

QRPA(RQRPA)[21, 22, 23]. pn-RQRPA largely reduces the overestimated groundstate correla-

tions and prevents the collapse of pn-QRPA solutions and makes the matrix element less sensitive

to gpp. But it has also shortcomings. It violates of the Ikeda sum rule and the particle number

conservation. This was further investigated and the Fully Rennormalize QRPA(FRQRPA)[24] was

proposed to overcome these problems. Besides these two methods, a bunch of other methods are

also used for the calculations, such as pseudo-SU(3)[25], the projected HFB[26], and the IBM-2[27].
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These methods are good cross checks for the calculations.

Currently, over 10 2νββ nuclei have been observed. Their half-lives range from 1019 up to 1024

years(see table.1.1). Despite of the quite different half-lives, the matrix elements M2ν are somehow

of the same magnitude. So the difference comes largely from the difference of the phase space factor

related to the decay energy. We expect this to be similar for the 0νββ-decay. From table1.1, we see

that 150Nd has the shortest 2νββ life time. From table1.2, we see that it has also the largest phase

space factors for both 0νββ and 2νββ. One can expect it has also the shortest half-life for the

0νββ. This expectation can be verified with a reliable calculation of the nuclear matrix element.

But we have also a new challenge as 150Nd is heavier and also known to be deformed. All the

discussion above are based on the assumption, that the nuclei are spherical. This in fact may be

true for most of the medium mass nuclei, since the measured deformations are rather small, but

for 150Nd, this could be a different story. As 150Nd seems to be the best candidate for the 0νββ,

we need also reliable calculations for it. Thus realistic calculations for deformed nuclei are needed.

The basic idea here is to generalize the spherical calculations to the deformed case by abandoning

certain symmetries such as the rotational symmetry. Then the angular momentum is no longer a

good quantum number and the degeneracy of states with different angular momentum projections

is destroyed. This increases the number of separate energy levels. So for the shell model, it becomes

even more impossible to do realistic calculations, while for QRPA we can avoid this difficulty. The

deformed pn-QRPA approach, was developed by ref.[29] for 2νββ,and good agreement has been

achieved with experiments. In this work we will extend this approach to the calculations of the

0νββ and predict the half-life of 150Nd.

Table 1.2: characteristics of 2νββ candidates [28]

Isotope T0, keV (G2ν)−1, yr (G0ν)−1, yr
48Ca 4274± 4 2.52× 1016 4.10× 1024

76Ge 2039.00± 0.05 7.66× 1018 4.09× 1025

82Se 2995.5± 1.9 2.30× 1017 9.27× 1024

96Zr 1142.9± 1.9 4.34× 1020 1.57× 1026

100Mo 3030± 6 1.06× 1017 5.70× 1024

116Cd 2809± 4 1.25× 1017 5.28× 1024

128Te 868.0± 1.5 1.18× 1021 1.43× 1026

130Te 2533.3± 2.0 2.08× 1017 5.89× 1024

150Nd 3367.7± 2.2 8.41× 1015 1.25× 1024

238U 1144.2± 1.2 1.47× 1018 1.68× 1024

The thesis is arranged as follows: in chapter 2 we will discuss the underlying new physics which

may govern the 0νββ process. Various models with new physics beyond the SM are introduced

and the 0νββ Feynman diagrams are constructed, which show how the processes take place at the

fundamental level. In chapter 3, we are dealing with the problem of how to realize this process at

the nucleon and nuclear level and perform the actual calculations. In Chapter 4, different many
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body approaches are introduced with the details of how to finalize the calculations of ββ NME;

and in the last chapter we show the results of our calculation and make some predictions on the

0νββ for 150Nd.
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Chapter 2

New Physics and Emission

Mechanism for 0νββ

In this chapter, we will present the possible underlying physics behind the 0νββ, since in the SM

the lepton number violation is strictly forbidden. Nevertheless, for various models beyond the

SM, the B − L (Baryon minus Lepton number) symmetry instead of separate lepton and baryon

conservations are commonly considered as intrinsic symmetries. In this sense, many new physics

models may be eyed as underlying theories for the 0νββ from GUT to SUSY. We will present these

theories and also demonstrate how these theories can be realized in the actual 0νββ process. In this

chapter we study first the underlying emission mechanisms, these are at the level of quarks which

are thought to be the basic constituent of hadronic matter. In the next chapter we will describe

the realization of these mechanisms at the levels of hadrons and nuclei. This will involve many

effective theories. So in this chapter we will try to construct the Feynman diagrams. To do this, we

notice that at the underlying level, this process is due to two d quarks decaying into two u quarks

with two electrons e− emitted(for 2νββ also two neutrinos), as illustrated in fig.2.3. What we need

now is the structure inside the black box in fig.2.3. Usually the decay has an energy of several

MeV. It is therefore impossible for massive decay products but perhaps for massless particles. We

will in the following explore all these possibilities of the underlying emission mechanisms.

2.1 Neutrinos

The simplest theory for lepton number violation is that the neutrinos are Majorana particles. A

Majorana mass term will yield the lepton number violation. In this case we can construct the

0νββ process with a virtual intermediate neutrino, as we shall see in this section. To deal with

Majorana neutrinos, first we must have some basic knowledges on neutrinos.

Neutrinos were first proposed by Pauli [30] in 1930’s in order to explain the continuum electron

energy spectrum of β decay, and only later it was discovered [31]. It has no electric charge, and

thus is only engaged in weak interaction. In the SM, it is the up component of left-handed lepton

doublet which interact with W and Z bosons with assigned hypercharge Y = −1. There exists a

one-to-one correspondence for neutrinos and charged leptons: e− νe, µ− νµ, τ − ντ , From the Z0

9
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Reps. Y mass range(
U

D

)
L

(3,3,1) 1/3 1MeV-100GeV

UR (3,1,1) 4/3 1MeV-100GeV

DR (3,1,1) -2/3 1MeV-100GeV(
N

E

)
L

(1,3,1) -1 eV-GeV

ER (1,1,1) -2 MeV-GeV

NR(?) (1,1,0) 0 (?)

Table 2.1: Fermions in Standard Models with symmetry SU(3)c × SU(2)L × U(1)Y , where quarks

undergo both strong and electroweak interactions, while leptons participate in electroweak interac-

tions. We have no direct experimental evidence for the right-handed neutrinos, so we have no idea

whether they exist nor how heavy they are.

decay experiments [32] we can derive, that only 3 generations of neutrinos (below 45GeV ) exist

just as quarks and charged leptons, which engage in weak interactions (see table.2.1). If we add

the right handed neutrinos into this model, then they are just singlets for all gauge interactions

in the SM. This means they will not interact with other SM particles. In the SM, Higgs particles,

which are thought to be the origin of masses for heavy weak bosons and leptons, will not give mass

to neutrinos. So, in the SM, neutrinos are massless Dirac fermions. This is supposed so until the

discoveries of the neutrino oscillations.

2.1.1 Neutrino Oscillation and mixing

Neutrino Oscillations were first proposed by Pontecorvo [33] to explain the deviation between the

theory and observed flux of solar neutrinos. Instead of modifying the the nuclear fusion model

for stars, the loss of the observed neutrinos is assigned to the mixing among different flavors of

neutrinos, just as the so-called Cabbibo angle [34] for quarks. This process requires two conditions:

the massive nature of neutrinos with inequality of their masses and different eigenvectors for mass

and weak eigenstates in Hilbert space. As with the CKM [34, 35] matrix for quarks, the weak

neutrino eigenstates can be expressed as decompositions of mass eigenstates:

νL =
∑
i

VLiνi (2.1)

where L is the family index for weak interaction and i’s are the mass indices. VLi is the mixing

matrix, which is unitary as for quark mixing. This matrix is called PMNS (Pontecorvo-Maki-

Nakagawa-Sakata) matrix [33, 36]. For three generations, the PMNS matrix is 3 × 3, which has

8 parameters, if it is unitary. But some of the parameters can be absorbed into the phases of the

fermions. If neutrinos are Dirac particles, then 3 phases (one for each generation) and one overall

phase can be absorbed, so 4 parameters are left for the CKM and the PMNS matrices, 3 are

rotational angles from the mass eigenstate basis to that of weak interactions, and one phase as for

quarks is responsible for CP violations. But if neutrinos are Majorana particles, 2 more phases will
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be present in the PMNS matrix, and it will play an important role in the calculations of effective

neutrino mass in the 0νββ as we shall see. In literature, the most frequently used parameterization

has the form as [37]:

V = R23U13R12P12 (2.2)

R23 and R12 are just rotation matrix between the three mass eigenvector space:

R12 =


cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

 R23 =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23


and U13 is similar but combined with one dirac phase and P12 pure phase matrix:

U13 =


cos θ13 0 sin θ13e

−iδ

0 1 0

− sin θ13e
iδ 0 cos θ13

 P12 =


eiβ1 0 0

0 eiβ2 0

0 0 1


where β1 and β2 are Majorana phases which equal to 0 if neutrinos are Dirac particles and δ is

the Dirac phase. This is the most apparent parameterization which shows the essentials of the

neutrino mixing. But it is more convenient to adopt the following one:

V = U23U13U12 (2.3)

where the phases are absorbed into rotation matrix with:

U23 =


1 0 0

0 cos θ23 sin θ23e
−2δ23

0 − sin θ23e
iδ23 cos θ23



U13 =


cos θ13 0 sin θ13e

−iδ13

0 1 0

− sin θ13e
iδ13 0 cos θ13



U13 =


cos θ12 sin θ12e

−iδ12 0

− sin θ12e
iδ12 cos θ12 0

0 0 1

 (2.4)

Here the phases are related to the Dirac and Majorana phases as: δ23 = β2, δ13 = δ + β1 and

δ12 = β1 − β2. With these matrix we can show how the oscillation takes place.

In quantum mechanics, the free neutrinos propagate in vacuum as plane waves |νi(t) >= e−i(Eit−~p·~x)|νi(0) >.

If the neutrino has a very small mass, then the energy Ei =
√
p2 +m2

i ≈ p+ m2
i

2p , and thus p ≈ E.

The neutrino travels with nearly the velocity of light. So when neutrino travels for a distance L,

the evolution of the neutrino wave function has the form

|νi(t) >≈ e−ipLe
−im2

i L

2E |νi(0) > (2.5)

Apart from a common irrelevant phase e−ipL, which drops out, if one calculates probabilities.

Because of the mixing among different weak eigenstates, the flavor eigenstates can be expanded as

|νL(t) >=
∑
i

ULi|νi(t) >= e−ipL
∑
i

ULie
−im2

i L

2E |νi > (2.6)
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during the propagation. As we know, only anti-electron neutrino can be produced at the core of

the sun with the reaction 4H →4 He + 2e− + 2ν̄e, however, if we observe it from the earth and

neglect the effect of the medium of the solar and earth sphere, the probability is

Pe′e = | < νe|νe(solar) > |2 = |
∑
i

U∗eiUeie
−im2

i L

2E |2 (2.7)

Here L is the distance from the sun to the earth. If we make a simple assumption that only two

generations of neutrinos exist, we reduce the PMNS matrix to:(
cos θ sin θ

− sin θ cos θ

)
(2.8)

with Ve1 = cos θ and Ve2 = sin θ. Then we can get the probability of observing an ν̄e originally

emitted from the sun as:

Pe′e = | cos2 θe
−im2

1L
2E + sin2 θe

−im2
2L

2E |2 = 1− sin2 θ sin
∆m2

12L

4E
(2.9)

here ∆m2
12 is defined as ∆m2

12 ≡ m2
2 −m2

1. As we can see here the measured number of neutrinos

at earth will not equal to the numbers produced in the sun unless that ∆m2
12L

4E = 2nπ(n ∈ Z). This

perfectly explains the missing neutrinos. If we generalize this to three generations, the expression

will become complicated, the expression are given in ref.[37].

Current experimental results for mixing parameters are [38]: the mixing angles with θ23 ≈ π/4,

θ13 6 π/13, θ12 ≈ π/5.4 and the square mass difference δm2
21 ≈ 7.65 × 10−5eV 2, |δm2

23| ≈
2.4× 10−3eV 2. These are derived from solar neutrino and also atmospheric neutrino experiments.

As we saw above, the neutrino oscillation experiments give us only the differences of the squared

masses but not the absolute magnitude. So from the current results of ∆m2
ij , we still can have

different schemes for neutrino masses:

i)Normal hierarchy: m1,m2 � m3. In this case the three masses have a normal order as the flavor

states, and the mass of m3 ≈
√
δm2

23. There may be two different cases as well, that is m1 ≈ m2

or the full hierarchy case m1 � m2.

ii)Inverted hierarchy:m1 ≈ m2 � m3. In this case the heaviest neutrinos are ν1 and ν2, since

m2
12 � m2

23, so we can say that ν1 and ν2 have nearly degenerate masses.

iii)Degenerate masses: m1 ≈ m2 ≈ m3. in order to realize this relation, we should have the

inequality as m2
3 ≈ m2

2 � m2
23.

The improvement of the precision of the experiments will not help us to distinguish among above

possibilities, instead we need other experiments besides the oscillations. These can be the single

and double beta decays which measure the absolute mass scale of the neutrino mass. The single β

decay measures the neutrino mass as me =
√∑

j |Uej |2m2
j directly from the electron spectrum’s

end point. In this work we will discuss the 0νββ, which will give us also an effective mass of the

electron neutrino in the form of |〈mββ〉| = |
∑
j

V 2
ejmj | as well as the Dirac or Majorana nature of

neutrino.

2.1.2 see-saw mechanism

The main question concerning the neutrino mass is that it is too small compared even to the

electron, the lightest electrically charged fermion in the SM. For the degenerate case, the mass
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scale for neutrinos is of about 1eV, while the electron has a mass of 0.5MeV , the τ 1.777GeV and

the top quark 174GeV . This large mass hierarchy is somehow very unnatural, so various theories

were proposed. For the top quark mass there is the top see-saw, and for neutrinos the neutrino

see-saw [39] model. The general idea of the see-saw mechanism is that the low mass of the particle

we observe is due to the existence of another superheavy particle which mixes with the former,

after diagonalisation, the tiny mass will appear. We assume also the existence of right-handed

neutrinos. The mass is a mixture of both Dirac and Majorana masses. So in the mass Lagrangian,

both terms will be present

Lmass = mLν
c
LνL +mDν̄LνR +MRν

c
RνR + h.c. (2.10)

so we have the mass matrix as: (
mL mD

mT
D MR

)
(2.11)

By dignolization, we can have the mass eigenvalues, for the light neutrinos:

mν = mL −mDM
−1
R (MD)T (2.12)

Depending on wether the first or the second terms dominate in the expression, the see-saw mech-

anism can be divided into two types: Type I which is usually without the mL term and Type II

which usually has the first terms by the introductions of the triplet Higgs particles [40] as we shall

see later.

Besides these possibilities, it is also possible to introduce a singlet neutrino which can have in-

teractions with the right handed neutrinos, in this case, the left- and right- handed neutrinos are

both Dirac particles with definite mass, and the Majorana mass term orignates from the singlet

neutrino, the mass matrix may have the form:
0 mLR 0

mLR 0 MRS

0 MT
RS MSS

 (2.13)

this is called the double see-saw mechanism [41].

All these mechanisms assume that the small masses of the neutrinos come from a large mass scale

from neutrinos which are singlets in the SM, but the origin of the neutrino mixing is still unclear.

Theories concerning the mixing usually related it to the family symmetry, which is global and

broken by a Goldstone boson[42].

2.2 Majorana Neutrinos in Neutrinoless Double-Beta-Decay

2.2.1 Simple Addition to SM

In the SM, the electroweak interaction is mediated by electroweak gauge bosons which span the

adjoint representation of the SU(2)L × U(1)Y symmetry group. Left handed fermions form the

fundamental representation of the SU(2)L (For the first generation, the quark doublet ψTL =

(uL, dL) and lepton doublet (νL, eL)). The right handed fermions are the singlets of SU(2)L such
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as eR, uR and dR (notice that the right-handed neutrinos have zero hypercharge). Under gauge

symmetry, the Lagrangian for fermions can be written as:

L = −1
4

(GaµνG
aµν +BµνB

µν) + ψ̄Li /DψL + ψ̄Ri /DψR (2.14)

Here, Gaµν ≡ ∂µW
a
ν − ∂νW

a
µ − g2ε

abcW bµW c
ν and Bµν ≡ ∂µBν − ∂νBµ are field strength for

the non-Abelian SU(2)L and Abelian U(1)Y electroweak gauge bosons, and the gauge covariant

derivative for the doublet is /DψL ≡ γµ(∂µ + i g12 Y Bµ + ig2
τa

2 W
a
µ )ψL while for singlet /DψR ≡

γµ(∂µ + i g12 Y Bµ)ψR. Here Y is the so called hypercharge listed in table 2.1 for different particles

in the SM and we can see from table 2.1, that right handed neutrinos have a hypercharge zero.

They will not interact with the standard model gauge bosons.

From the above Lagrangian, we see that in gauge theory, no mass term can be presented due to the

gauge invariance. However, if there exists a complex scalar doublet (named after Higgs[6]) which

interacts with gauge bosons like:

LH = (DµΦ)∗DµΦ− V (Φ) (2.15)

where DµΦ = (∂µ + i g12 Bµ + ig2
τa

2 W
a
µ ) is the gauge covariant derivative for the scalar field and if

this Higgs particle has the potential of the form V (Φ) = −µ2Φ†Φ +λ(Φ†Φ)2, with the minimum of

this potential not at the point Φ = 0. Then the Higgs field has a nonzero vacuum expectation value

< Φ >T= (0, v) with v ≡
√
ν2/λ corresponding to this minimum of the potential. If we expand

the Higgs field around the minimum, then the vacuum expectation value will give the gauge boson

mass.

Lmass = (
vg2

2
)2W+

µ W
−µ +

v2

8

(
W 3
µ Bµ

)( g2
2 −g1g2

−g1g2 g2
1

)(
W 3µ

Bµ

)

= (
vg2

2
)2W+

µ W
−µ +

v2

8

(
Z0
µ Aµ

)( g2
1 + g2

2 0

0 0

)(
Z0µ

Aµ

)
(2.16)

In this case the charged weak bosons (W+ =
√

1/2(W1 − iW2) and W− =
√

1/2(W1 + iW2)) get

mass of about hundred GeV The combination of a left-handed boson W 3 with the hypercharged

boson B yields a massive boson Z0 = cos θWW3 − sin θWB with a mass around hundred GeV,

and one massless boson combination, which we call photon A = sin θWW3 + cos θWB. Here

θW = tan−1(g1/g2) is the Weinberg angle. Three of the four scalar field components are absorbed

by the gauge bosons with one left being the massive Higgs particle we are looking for. Also from

the Yukawa coupling between scalar particles and fermions, fermions acquire mass.

LY ukawa = − v√
2

(fuūu+ fdd̄d+ feēe) = −muūu−mdd̄d−meēe (2.17)

Here the coupling constant f and masses m’s are 3 × 3 matrices, since we have three generations

of fermions so far. And the weak interaction Lagrangian for the fermions has the form under the

broken or hidden symmetry:

L = −ψ̄Lγµ
 1

2 (Y + 1)eAµ + 1
2
g22−Y g

2
1√

g21+g22
Z0
µ gW+

µ

gW−µ
1
2 (Y − 1)eAν + 1

2
g22+Y g21√
g21+g22

Zµ

ψL (2.18)

(2.19)
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Figure 2.1: Fynmann diagram for β decay.
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Figure 2.2: Fynmann diagram for 2νββ-decay.

From the Lagrangian above we can construct the Feynman diagram for the usual beta-decay which

has the form like figure 2.1, a d quark decays into an u quark with emission of an electron and

an anti-electron-neutrino through the virtual intermediate charged weak boson W . Because of

the heavy mass of the intermediate weak bosons, the weak interaction hence has a much smaller

effective interaction strength(GF√
2

= g22
8M2

W
) compared with strong and even with electromagnetic

interactions. Thus the interaction has a very short range according to the uncertainty principle.

This character makes it possible to treat it as an approximate point interaction in nuclear physics.

Double beta decay is a rare process which is allowed due to nuclear pairing. It changes the electric

charge by 2 units, so there will be two weak interaction vertices. This is then a second order

process. This process is nearly the slowest one in nature.

2νββ is the process with the emission of two electrons and two neutrinos, and the Feynman diagram

simply has the form of just two beta decays, fig.2.2.

However, 0νββ is a process with a change of lepton number, ∆L = 2. So we will look for these
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e −
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Figure 2.3: Fynmann diagram for 0νββ in the fundamental level, here the black box denote the all

the possible mechanism.

interactions in new theories beyond the SM which may fulfill this requirement, in other words we

look for Lagrangians with lepton number violating terms. First we briefly give some analyses how

we can construct the required Feynman diagram from a Lagrangian of new physics. As we know,

the products of 0νββ are two electrons and a daughter nucleus with two more protons than its

parent. On the fundamental level, this is a process of two down quarks transformed to two up

quarks with the byproducts of two electrons as illustrated in fig.2.3. The content of the ”black box”

in fig.2.3 is what we are exploring. The lepton number violation can happen in a vertex or in an

inner propagator. So we can search it in both mass or kinetic and interaction terms to find a way

to construct the needed diagrams. This is the program we will now follow.

The most economic way should be adding a Majorana mass term for neutrinos as we discussed

before which modifies minimally the SM and we just consider the digonalised mass matrix for

left-handed neutrinos and ignore its origin since that will not effect the decay width. So we add a

term

Lνmass =
∑
i

mνiν
c
i νi =

∑
l1l2

Ml1l2νl1ν
c
l2 (2.20)

with νl =
∑
i Vliνi, we can see in this term, the lepton number is violated by 2. One scatters a

neutrino into an anti-neutrino and vice versa. This is what we need for the 0νββ, and we can

easily construct the required process as in fig.2.4. The lepton number violation happens in the

neutrino propagator. Thus the virtual neutrino, because of the Majorana nature, can be emitted

in the first vertex and be reabsorbed in the second vertex. Comparing to the 2νββ, where at each

weak interaction vertex an electron e− and an electron anti-neutrino ν̄e are emitted, this process

has only two emitted electrons.

If the see-saw mechanism is taken into account, then we can have the heavy right-handed neutrinos

in the virtual process besides the light left-handed neutrinos. More complicated physics will be

involved since we need to add right-handed neutrinos and more Higgs particles, but essentially, this

will not change the decay width of the neutrinoless double beta decay drastically. We will discuss

this in next chapter.
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Figure 2.4: Fynmann diagram for 0νββ-decays in the case of virtual neutrino.

Majoron Mode

In the previous section we considered the probability that lepton symmetry is an accidental sym-

metry in the SM, and then it is natural to add the Majorana mass term. But if lepton number

symmetry is an exact one, then we should treat it differently and take into account of the possi-

bility of spontaneously breaking of this symmetry[47]. As we know, lepton number symmetry is a

global symmetry, it is well known that such broken symmetries are accompanied with a massless

Goldstone boson according to the Goldstone theorem [43, 44, 45]. In the case of a broken lepton

number symmetry, we call this the Majoron. So besides Higgs bosons, we need to introduce extra

scalar bosons. The most general way is as in [46], the introduction of two more Higgs multiplet:

ϕ (l = −2)

h =

(
h+/

√
(2) h++

h0 −h+/
√

(2)

)
(l = −2) (2.21)

This is the so-called 1 − 2 − 3 model, that has one singlet ϕ, one doublet Φ from the SM, one

triplet h, all are complex scalar fields. So the total number of field component is 12 and of which 6

are neutral. In this system, the broken pattern is SU(2)L × U(1)Y × U(1)L → U(1)EM (U(1)L is

the group for the lepton number symmetry). Here we consider only the neutral particles and the

Higgs particles should have the real VEV like:

< ϕ >=< ϕ̄ >≡ x

< Φ0 >=< Φ̄0 >≡ λ

< h0 >=< h̄0 >≡ y

(2.22)

In this case we split the field into a real and an imaginary part:

ϕ = ϕr + iϕi

Φ0 = Φ0
r + iΦ0

i

h0 = h0
r + ih0

i (2.23)

The Goldstone bosons and the absorbed bosons should come from the imaginary part of the neutral

field. If the interactions between different Higgs field are allowed, particles such as the Majoron
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should be combinations of different neutral fields. And to get these combinations, one can vary

the Higgs Potential V (ϕ,Φ, h) and then can get the correct combination [46], the Majoron has the

form J = [4λ2y4 + x2(λ2 + 4y2)2 + y2λ4]−1/2[−2λy2φ0
i + x(λ2 + 4y2)Φi + yλ2h0

i ]. Then one can

introduce the Yukawa couplings, the details depend on the group structure of the Higgs particles.

φ is an SU(2)L singlet and has zero hypercharge and lepton number of −2. So ϕ will only interact

with right-handed neutrinos. Φ is the Higgs field in the SM, with the right-handed neutrinos there

will be a Dirac mass term for neutrinos such as that for down quarks in the quark sector. h has

lepton-number −2, and will only interact with leptons. So in this case the introduction of more

Higgs particles will not affect the electroweak interactions of the quark sector. This is the general

Yukawa interactions for leptons:

LY l = ifLLL
TCτ2hL+ fLRL̄ΦeR + fRLL̄Φ̃νR + fRRν

T
RCτ2νR +H.c. (2.24)

where τ2 is the second component of the weak isospin, and Φ̃ = τ2Φ∗ is the complex conjugate of

the Higgs field Φ.

After the symmetry breaking, we find that the charged lepton mass is unchanged as in SM, and

the neutrino mass is:

Lνmass = yfLLν
T
LCνL + λfRLν̄LνR + xfRRν

T
RCτ2νR +H.c. (2.25)

this is the mass matrix of neutrinos. A careful observation shows that this is similar to the See-Saw

mechanism with a hidden lepton symmetry. For convenience, we can redefine the neutrino in terms

of the two component Majorana form νe ≡ νL and Ne ≡ C(ν̄R)T , then the mass term read:

Lνmass = MLν
T
e Cνe +MRN

T
e CNe + 2MDν

T
e CNe +H.c.

=
(
νTe NT

e

)
C

(
ML MD

MT
D MR

)(
νe

Ne

)
(2.26)

Here ML = yfLL, MD = λfRL/2 and MR = −xfRR. The first and third terms change the

lepton number by two caused by the spontaneous lepton symmetry breaking, and by diagonalizing

this mass matrix we can find the mass eigenstates light ν and heavy N neutrinos. It is easy

to generalize this to three flavors, by replacing νe and Ne with the vector νTf = (νTe , ν
T
µ , ν

T
τ ) and

NT
f = (NT

e , N
T
µ , N

T
τ ), in this case each component in the mass matrix is replaced by a 3×3 matrix,

and by diagonalization we can get the mass eigenstates νT = (νT1 , ν
T
2 , ν

T
3 ), NT = (NT

1 , N
T
2 , N

T
3 )

and the transformation matrix U(
νf

Nf

)
= U

(
ν

N

)
=

(
V U

UN V N

)(
ν

N

)
(2.27)

Hence the Yukawa interaction for neutrino can be written as:

L =
(
νTf NT

f

)
C

(
MLh

0/y MDΦ0/λ

MT
DΦ0/λ MRφ

∗/x

)(
νf

Nf

)
(2.28)

To make things a bit easier, we can make a simplification of dropping out the Higgs triplet, then

we have a model called 1− 2 model. This may give us a clear scenario on how it can be connected
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to the 0νββ. Without the triplet, the Majoron has the form J = ϕi = Im(ϕ) , and the mass

matrix is now:

L =
(
νTf NT

f

)
C

(
0 MD

MT
D MR

)(
νf

Nf

)
(2.29)

As we know the mass scale of left-handed neutrinos is very tiny, so in this case, just as in see-saw

models a large MR is required since mν ≈MT
DM

−1
R MD, this means either a larger x or larger fRR

or both, and because the Majoron will not interact with SM particles, we can not predict which

one should be dominant. GUT’s predict a right-handed neutrino with a mass around GUT scale

or below. This makes the right-handed neutrino mediating 0νββ a lower order process as we will

see in next chapter.

Now considering the 0νββ, the Majorana mass terms are obviously lepton number violating, similar

to the possibility we considered above of a simple Majorana mass term added to the SM. In such

a model, the process of fig.2.4 is allowed. Besides this possibility, we have other possible diagrams.

The decay energy Q is about several MeV . Thus besides electrons, only particles with tiny masses

can be emitted, in 2νββ such a particle is the neutrino. In 0νββ, no neutrinos are emitted, but

there may be other particles with a small mass. In this model, a good candidate is Majoron J ,

it is massless, while emission of other massive particles are not allowed since they have very large

masses. Because Majoron has a lepton number of 2, so this process conserves the lepton numbers.

As we have shown, Majoron can only interact with heavy neutrinos:

LMajoron =
1
x
NT
f CMRNfJ (2.30)

Only the left-handed neutrinos participate in weak interactions, and thus in the 0νββ, we are only

interested in νeL. So we need the interactions of the Majoron J with left-handed neutrinos, in

four-component representation, the interaction can be derived directly from above fundamental

interactions as:

LMajoron =
i

2
geff ν̄eLγ5νeϕ+H.c. (2.31)

Here the effective interaction strength has the value of:

geff =
1
x

∑
f1f2

Sef1(MRR)f1f2Sf2e (2.32)

Here f1 and f2 are flavor indices and the transformation matrix S connects the left- and right-

handed neutrinos by the mass eigenstates, Sfe =
∑
i

UNfiV
∗
ei+V

N
fi U

∗
ei. This is the general Lagrangian

although somehow suppressed by the smallness of V N and U . But there are other effective mod-

els which may have a different underlying mechanism which will yield a much larger interaction

strength c.f. [48].

From the above interactions, we can construct the Feynman diagrams as in fig.2.5: a Majoron is

emitted during the propagation of the virtual neutrino, this changes the electron spectrum since

the scalar particle will take away the decay energy and the momentum and in next chapter we will

calculate the decay rates for this process.
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Figure 2.5: Fynmann diagram for 0νββ in the case of Majoron emission.

2.2.2 Grand Unification Theory

The success of the unification of the electromagnetic and weak interactions has inspired further

attempts of the unifications of all the interactions in our universe, the so-called theory of every-

thing(TOE). We are far from this final aim, but the SM give us some enlightenment, after more

than one century ago Maxwell unified the magnetic and electric force into the electromagnetic force,

one succeeded to combine the weak and electromagnetic interactions into one electroweak force.

So one wonders that if the electroweak and QCD (quantum chromodynamic) can be incorporated

into one larger symmetry group as a single force.

Large Gauge Symmetry

The aim of GUT is to embed the SM symmetry to a larger symmetry group. Since SUc(3) ×
SUL(2) × UY (1) is a product of Lie algebra, this larger symmetry should be a simple or a semi-

simple or even a non-simple Lie symmetry group. The advantage of the simple Lie algebra is that

a unified coupling constant can be predicted, while this is not the case for products of symmetry

groups. The symmetry group of SM has a rank of 4 which requires the underlying symmetry group

should have a rank equal or larger than 4. The simplest simple Lie group of this case is the SU(5)

proposed by [11].

The general idea of GUT is similar to that of the SM, that all the fermions and bosons lie in some

representations of the underlying symmetry group. By choosing suitable VEV(vacuum expectation

value)’s of certain Higgs scalars, the symmetry was broken spontaneously to the group structure

we need while the gauge bosons of the broken symmetry became massive by absorbing the Higgs

particle, altogether with the remaining massive Higgs particles[6]. As an example, for the SU(5)

group, for each family, the fermions are assigned the representations of 5∗ and 10, the former is

the complex fundamental representation and the latter is the antisymmetric product of 2 5’s((5×
5)A), these 15 particles include up and down quarks each with three color and their antiparticles

altogether 12 quarks, 1 left-handed neutrino and 1 electron with its antiparticle, the positron, so

in this case, no right-handed neutrinos is involved and the neutrinos are massless. The gauge

bosons in this case reside in the adjoint representation of SU(5), in total 24 particles. From
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the SM we know that the SSB pattern should have the form SU(5) MX−−→ SUc(3) × SU(2)L ×
UY (1) MW−−−→ SUc(3) × UEM (1), so the simplest Higgs sector should have two multiplets, of which

one is consistent with the SM Higgs and the other is responsible for the symmetry breaking at high

energies. The former in this case is in the representation 5 and has the VEV at the direction of the

vT = (0, 0, 0, 0, 1)v0 and the latter should be in representation 24 which may have a VEV of the

form diag(a, a, a, b, b). Of course more Higgs particles can be added, but this will make the SSB

much more complicated especially the Higgs potentials. For the gauge boson sector we see that

there will be 12 heavy bosons besides the SM gauge bosons. But this allows proton decay. The

half-life of proton is one of the important constraints for the broken scale MX . The SU(5) GG

model is the simplest examples of GUT, the least number of extra particles are introduced. But it

has also many drawbacks such as the massless neutrinos, the hierarchy problem etc. In the SU(5)

model no 0νββ is allowed. This is not the GUT we need in our discussion.

Another group which has a larger rank is SO(10), this group is anomaly free as SU(5) and it

admits complex representation[49]. The fermions reside in a 16 dimensional complex spinor σ+[50],

which contains the 15 SM fermions and 1 right-handed neutrino for each family. The adjoint

representation is 45 dimensionals, so we have 45 gauge bosons in this case and most of them

become very heavy after SSB. For this rank 5 Lie group, there are different SSB patterns which

lead to the final SM symmetry group, they are summarized in refs.[51, 12, 52]:

SO(10) MG−−→ SU(5) M−→ Gs

SO(10) MG−−→ G′
M−→ Gs

SO(10) MG−−→ SUc(4)× SUL(2)× UR(1) Mc−−→ SUC(3)× SUL(2)× UR(1)× U ′(1) M−→ Gs

(2.33)

Here Gs ∼ SUc(3)×SUL(2)×UY (1) the SM symmetry and G′ ∼ SUc(3)×SUL(2)×SUR(2)×U(1)

is the left-right symmetric group. Different SSB pattern correspond to different Higgs sectors and

VEV structures. The first is just a trivial extension of the SU(5) GG model and the last is

compatible with the Pati-Salam model[53, 54]. Here we are interested in the L-R symmetry since

it can give the neutrino mass as we shall see later, it requires less steps of symmetry breaking than

others. The breaking from SO(10) to G′ can be acquired through a Higgs of representation 54 at

the mass scale MG ∼ 1014−15GeV as that of SU(5) GG model. Under G′ the 45 gauge bosons

have the transformation properties as:

45 = (8, 1, 1) + (1, 3, 1) + (1, 1, 3) + (1, 1, 1) + (3∗, 2, 2) + (3, 2, 2) + (3, 1, 1) + (3∗, 1, 1)

(2.34)

The former four types have altogether 15 gauge bosons g, WL(R) and B, which are massless after

the first stage of the symmetry breaking while the the latter 4 types have 30 gauge bosons with

a heavy mass around MG. These 30 bosons are decoupled from the late stage breaking. Here we

briefly introduced the idea of GUT and in the next section we will discuss intensively how we can

get the correct neutrino physics from the L-R symmetric model and the second stage SSB in the

SO(10) model.
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L-R Symmetry and Heavy Right-handed Gauge Bosons

The SO(10) GUT model is one of the most discussed and applied models till present, although

the idea of a large gauge symmetry is no longer popular. This first stage GUT symmetry break-

ing takes place at some energy scales between the Planck scale and the electroweak symmetry

breaking scale, roughly 1014 − 1015GeV . At a lower energy of about 100 GeV, the second stage

electroweak symmetry breaking happens successively. So we may have many heavy Higgs and also

heavy gauge bosons in this model. In this section we will discuss the possibility of a different elec-

troweak symmetry breaking pattern by introducing right-handed gauge bosons[54]. The smallness

of neutrino mass can be explained by the difference between the VEVs of different Higgs scalars

and the Majorana nature of the neutrino.

This model is a straightforward extension of the SM with an additional symmetry SU(2)R included.

The overall SSB process can be expressed as SO(10)→ SU(2)L×SU(2)R×U(1)B−L×SU(3)c →
U(1)EM ×SU(3)c with two sequential SSB at different energies. We also introduce the local B−L
symmetry which reduces to U(1)Y in the limit with only the right-handed symmetry breaking.

And we will focus on the second stage SSB, and neglect the possible effect from the first SSB with

very heavy gauge bosons and Higgs particles.

For the L − R symmetric electroweak model, we should first introduce the right handed gauge

bosons which is similar to left-handed bosons in the SM. Now the symmetry group is extended, so

we will have also the right-handed gauge bosons W i
R.

Then the corresponding fermions, with the existence of SU(2)R, the right-handed fermions which

used to be singlets in the SM are now doublets which span a fundamental representation of SU(2)R.

In this case, we need to introduce the right-handed neutrinos which are not presented in SM. Now

we have a relation for the electrical charge Q similar to the Gell-Mann-Nishijima formula[55],

Q = I3L + I3R + B−L
2 . So for the first generation, the fermions can be categorized as:

qL =

(
uL

dL

)
(
1
2
, 0,

1
3

) qR =

(
uR

dR

)
(0,

1
2
,

1
3

)

ψL =

(
µL

eL

)
(
1
2
, 0,−1) ψR =

(
µR

eR

)
(0,

1
2
,−1) (2.35)

in SU(2)L × SU(2)R × U(1)B−L, here in the horizontal brackets (tL, tR, B − L), the notations

are the isospin of the left- and right-handed multiplets and the baryon number minus the lepton

number. For an anomaly free theory, some authors argue that more fermions should be included,

but that can only change our related electroweak interaction at loop level. so we omit this in the

current thesis.

Finally for the Higgs part which is responsible for the SSB and gives also the masses to fermions. In

the SM, we have only one Higgs with quantum number (1/2,1), which broke the SU(2)L×U(1)Y .

Now more Higgs particles are needed for a new model with a new symmetry. For the breaking

of U(1)B−L, the corresponding Higgs particle must have a certain value of B − L so that it can

interact with B − L bosons. From previous assignment we see that in order to build the Yukawa

interaction, B − L can only have the value 0(Dirac type Yukawa interaction) or ±2 (Majorana

type Yukawa interaction)(No Majorana type Yukawa interaction for quarks exists because only

neutrinos can be Majorana particles). So two types of Higgs are needed, one for fermion mass and
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another for breaking of local B−L symmetry. For the first type, we can use a similar technique as

used in the SM, but instead of a doublet, now a bidoublet, which is both doublet for SU(2)L and

SU(2)R, and from the argument in [40], the different mass scale for fermions and gauge bosons may

imply two different bidoublets, one couples with fermions and another couples with gauge bosons.

For the latter type, for the Majorana mass terms, the best choices are the triplets, because of the

L− R symmetry, two triplets are needed, one is left handed and another right-handed. From the

discussion above we find the Higgs set as:

ϕf (
1
2
,

1
2
, 0) ϕW (

1
2
,

1
2
, 0)

∆L (1, 0, 2) ∆R (0, 1, 2) (2.36)

in representations of SUL(2) × SUR(2) × UB−L(1). Here we have two Higgs particles ϕ, one

responsible for fermion mass and the other for the gauge boson mass. The general SSB pattern

should have the form:

〈ϕf 〉 =

(
κf 0

0 κ′f

)
〈ϕW 〉 =

(
κW 0

0 κ′W

)

〈∆L〉 =

(
0 0

vL 0

)
〈∆R〉 =

(
0 0

vR 0

)
(2.37)

Here all κs, κ′s and vs are the VEV’s with values to be determined from the experiments. From

current knowledge of the SM, we can at first have some constraints on these VEVs. The mass

difference from fermion masses and gauge boson masses tell us that 〈ϕf 〉 � 〈ϕW 〉. In oder to

suppress the L−R mixing which should be small from the results of recent experiments, one must

request κ′ � κ[40]. The smallness of ∆S = 2 transitions induced by Higgs requires vR � κ[40].

Finally the stability condition of the Higgs potential requires vL = γ(κ2/vR), γ is some ratios of

Higgs self-coupling constants with the values around unity [40].

From the above structure of the VEV’s, we can construct the mass matrix for fermions and gauge

bosons. As we discussed before, ∆L and ∆R lead to the lepton number violating terms since it

breaks the B − L symmetry spontaneously. So this model allows 0νββ process as we shall see.

The Yukawa coupling terms for the fermions are:

LY = h1ψ̄LϕfψR + h2ψ̄Lϕ̃fψR + h3Q̄LϕfQR + h4Q̄Lϕ̃fQR

+ih5(ψTLCτ2∆LψL + ψTRCτ2∆RψR) +H.c. (2.38)

From (2.38) we can easily derive the masses for different fermions for one generation. For charged

fermions, the masses emerge as:

me = h1κ
′
f + h2κf

mu = h3κf + h4κ
′
f

md = h4κf + h3κ
′
f (2.39)



24 CHAPTER 2. NEW PHYSICS AND EMISSION MECHANISM FOR 0νββ

and the mass matrix for neutrinos with the conventions νe ≡ νL and Ne ≡ Cν̄TR are:

Lνmass = (h1κf + h2κ
′
f )νTe CNe + h5(vLνTe Cνe − vRNT

e CNe) +H.c.

=
(
νTe NT

e

)
C

(
h5vL

1
2 (h1κf + h2κ

′
f )

1
2 (h1κf + h2κ

′
f ) −h5vR

)(
νe

Ne

)

=
(
νTe NT

e

)
C

(
ML MD

MD MR

)(
νe

Ne

)
(2.40)

Therefore the mass eigenstates ν and N for neutrinos are given as:

ν = νe cos ξ +Ne sin ξ

N = −νe sin ξ +N cos ξ (2.41)

with tan 2ξ = 2MD

MR−ML
≈ 2MD/MR. From the above analysis we find that tan ξ � 1, so ξ ≈

− 1
2h1κf/h5vR, this again predicts a tiny mixing between the left- and right-handed neutrinos. So

we get the approximate mass mν ≈ML−M2
D/MR ≈ (h5γ+h2/4h1)κ2/vr, which naturally explains

the smallness of neutrino mass, and MN ≈ MR predicts a very heavy right-handed neutrino. At

the limit vR → ∞, we get mν → 0 and MN → ∞. The advantage of the choice of the two ϕ’s is

that we needn’t adjust MD to fit the gauge boson masses. The Majorana terms in (2.38) allows

the 0νββ as these terms change the lepton number by two. This implies a lepton number violation

in the intermediate propagator.

Now, we should turn our attentions to the gauge sector, especially the charged weak currents which

are responsible for the β decay. At the elementary level, this is a process with a transformation

d → u, it involves also the e− → ν lepton current. Breaking the gauge symmetry gives the gauge

bosons masses. Given the configurations for each Higgs, we have for these particles the general

transformation properties under SU(2)L and SU(2)R as:

∆L → UL∆LU
†
L ∆R → UR∆RU

†
R ϕ→ ULϕU

†
R (2.42)

So, the kinetic and covariant terms for all the Higgs particles are given by:

LK = (Dνϕf )†Dνϕf + (DνϕW )†DνϕW + (DLµ∆L)†DL
µ∆L + (DRµ∆R)†DR

µ∆R (2.43)

Here Dµ = ∂µ − i g2 t
a
LW

a
Lµ − i

g
2 t
a
RW

a
Rµ and DL(R)

µ = ∂µ − igT aL(R)W
a
L(R)µ − 2ig′Bµ, here ta and T a

are both generators for different representations for SU(2).

After breaking the symmetry [40] with a suitable choice of the Higgs potential, six out of seven

gauge bosons acquire mass with one photon remains massless. For the charged sector, we have:

W1 = WL cos ε+WR sin ε

W2 = −WL sin ε+WR cos ε (2.44)

with

m2
W1

' 1
2
g2(κ2 + κ′2 + 2v2

L)

m2
W2

' 1
2
g2(κ2 + κ′2 + 2v2

R) (2.45)
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While for the neutral bosons, one has

Aµ = sin θW (W 3
Lµ +W 3

Rµ +
√

cos 2θWBµ)

ZLµ ' cos θWW 3
Lµ − sin θW tan θWW 3

Rµ − tan θW
√

cos 2θWBµ

ZRµ '
√

cos 2θW
cos θW

W 3
Rµ − tan θWBµ (2.46)

where tan θW = g′/(g2 + g′2)1/2 and the masses are

mA = 0

m2
ZL '

g2

2
1

cos θW
(κ2 + κ′2 + 4v2

L)

m2
ZR ' 2(g2 + g′2)v2

R (2.47)

In this case the Weinberg angle θW is defined similar to that of the SM, so e2 = g2 sin θ2
W .

The gauge interactions for fermions are as in the SM:

LF = ψ̄i /Dψi (2.48)

In 0νββ we only need the charged weak currents. The charged current interaction from the above

Lagrangian is:

LlCC =
g√
2

[(cos εν̄LγνeL + sin εν̄RγνeR)W−ν1 + (cos εν̄RγνeR − sin εν̄LγνeL)W−ν2 ]

+H.c.

=
g√
2

(j(1)
ν W−ν1 + j(2)

ν W−ν2 ) +H.c. (2.49)

L
q
CC =

g√
2

[(cos εūLγνdL + sin εūRγνdR)W−ν1 + (cos εūRγνdR − sin εūLγνdL)W−ν2 ]

+H.c.

=
g√
2

(J (1)
ν W−ν1 + J (2)

ν W−ν2 ) +H.c. (2.50)

In this case we can construct more diagrams similar to fig.2.4, and now many left-handed particles

can be replaced by the right-handed ones, but because of the small mixing between the left- and

right-handed neutrinos and the gauge bosons and also the different masses of the left- and right-

handed gauge bosons, c.f. fig.2.6, the leading contributions are those originate from the SM with

a Majorana neutrino.

The generalization to three generations is straightforward. For the gauge interaction, the 2nd and

3rd generations have the same interactions as the 1st generation. The change comes from the

Yukawa coupling terms. Now the coupling constant h become a 3 × 3 matrix. The non-diagonal

matrix elements indicate the mixing between different flavors. In quark sector, this is the so-called

CKM matrix[34, 35] and in lepton sector, the PNMS matrix[33, 36]. In this model, we can not

tell where the mixing matrix among the three generations comes from. This needs perhaps the

breaking of the family symmetry.

2.2.3 Sterile Kaluza-Klein Neutrinos in Extra Dimensions

The idea of introducing warped Extra Dimensions to particle physics was first proposed by [13], the

general idea is the existence of wrapped small dimensions (number of the dimensions is from 1 to
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Figure 2.6: Feynman diagram for 0νββ with GUT. In this case of both the left- and right-handed

currents can be involved.

even more). Our universe is a 3 + 1 dimensional ”brane” sticked to the extra dimensions which are

wrapped up. And only gravitons can propagate across the extra dimensions and all SM particles

are restricted to the brane. But there is one exception, the right handed neutrino, since it has no

SM symmetry charges, it is not bounded to the brane and can propagates in the extra dimensions.

The main advantage of extra dimensions is that it can explain the mass scale hierarchy between the

electroweak scale (roughly 1 TeV) and the gravitational scale (Planck scale 1018GeV ). In warped

space, the gravitational scale is expressed as MF ≈ M
2

2+δ
P /R

δ
2+δ , nearly 1 TeV. This solves the

Puzzle of mass Hierarchy naturally, so it can be the best candidate for new physics beyond SM

without introductions of complicated structures.

If restricted to 1 + (3 + 1) (one extra-dimension) spacetime, the general geometrical setup is the

the orbifold (an orbit space) S1/Z2 in the warped dimension. In geometry this is a circle with a

permutation Z2 being excluded, the SM particles are restricted to the brane[56]:

ψL(x) =

(
νLx

eL(x)

)
eR(x)

qL(x) =

(
uLx

dL(x)

)
uR(x) dR(x) (2.51)

And one extra (bulk) neutrino singlet which can be written in the form of two two-component

spinors in the Weyl basis [57]:

N(x, y) =

(
ξ(x, y)

η̄(x, y)

)
(2.52)

The orbifold of the fifth dimension requires that N(x, y) = N(x, y+2πR), where y is the coordinate

of the fifth dimension and R is the radius of fifth compactified dimension. General assumption is

that ξ is symmetric and η is antisymmetric under y reflection: ξ(x, y) = ξ(x,−y) and η(x, y) =

−η(x,−y). Next we introduce the γ matrices in five dimensions[58]:

γµ =

(
0 σν

σ̄µ 0

)
γ4 =

(
−1 0

0 1

)
(2.53)



2.2. MAJORANA NEUTRINOS IN NEUTRINOLESS DOUBLE-BETA-DECAY 27

With these spinors and matrices, we can write down the general form Lagrangian in five dimensions

[58, 59]:

Leff (x) =
∫ 2πR

0

dy{N̄(x, y)(iγν∂µ + γ4∂y)N(x, y)− 1
2

(MNTC(5)−1N +H.c.)

+δ(y − a)[
hl1

M
δ/2
F

ψ̄LΦ̃∗ξ +
hl2

M
δ/2
F

ψ̄LΦ̃∗η +H.c.] + δ(y − a)LSM} (2.54)

The Yukawa coupling constant is a vector: hl1(2)

T = (he1(2), h
µ
1(2), h

τ
1(2)), as before Φ̃ = iσ2Φ∗ is

the Hypercharge conjugate, which is also responsible for the mass of the up component of quark

sector. The five-dimensional charge conjugate is defined as: C−1γµC = −γTµ .

From the periodicity and the reflection symmetry Z2, we can expand the five dimensional neutrino

field by separating the coordinates as[60]:

ξ(x, y) =
1√
2πR

ξ0(x) +
1√
πR

∞∑
n=0

ξn(x) cos(
ny

R
)

η(x, y) =
1√
πR

∞∑
n=0

ηn(x) sin(
ny

R
) (2.55)

Here ξn(x) and ηn(x) are called infinite towers of Kaluza-Klein(KK) neutrinos, as shown above,

they have different reflection symmetries also different CP as well. So the simultaneous existence of

both terms in the interaction with the weak bosons may bring CP violation into weak interactions.

After substituting (2.55) into the Lagrangian we may get the effective interactions for an infinite

tower of KK modes as:

L = LSM + ξ†0(iσ̄µ∂µ)ξ0 + (hl(0)
1 ψ̄LΦ̃∗ξ0 −

1
2
MξT0 (iσ2)ξ0 −H.c.)

+
∞∑
n=1

[ξ†n(iσ̄µ∂µ)ξn + η†n(iσ̄µ∂µ)ηn +
n

R
(ξTn (iσ2)ηn + ξ̄T (iσ2)η̄)

− 1
2
M(ξTn (iσ2)ξn + ηTn (iσ2)ηn +H.c.)

+
√

2(hl(n)
1 ψ̄LΦ̃∗ξn + h̄

l(n)
2 ψ̄LΦ̃∗ηn +H.c.)] (2.56)

Here the effective Yukawa coupling constants are

h
l(n)
1 =

hl1
(2πMFR)δ/2

cos(
na

R
) = (

MF

MP
)δ/nghl1 cos(

na

R
)

h
l(n)
2 =

hl2
(2πMFR)δ/2

sin(
na

R
) = (

MF

MP
)δ/nghl2 sin(

na

R
) (2.57)

The last step of the r.h.s is due to the large Planck mass. The Dirac mass for neutrinos is suppressed

due to the large MP , for MF ≈ 1TeV , MF /MP ≈ 10−15. If the brane is located at y = 0, there

exists only the ξ particles. In this case, the lepton numbers is preserved. So shifting the brane

from away the origin is need for lepton number violation.

From non-diagonal mass terms in(2.56), we see it is convenient to define χ±n = (ξn±ηn)/
√

2, after

SSB, with the VEV 〈ΦT 〉 = (0, v), one gets the mass terms for neutrinos and effective particles.

The kinetic term is written as:

Lkin = χ̄i ¯σmu∂µχ− (
1
2
χT (iσ2)Mχ+H.c.) (2.58)
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The multiplet is defined as χT = (νL, ξ0, χ1, χ−1, . . . , χn, χ−n, . . .), the mass matrix behaves like

M =



0 m(0) m(1) m(−1) m(2) m(−2) . . .

m(0) M 0 0 0 0 . . .

m(1) 0 M + 1
R 0 0 0 . . .

m(−1) 0 0 M − 1
R 0 0 . . .

m(2) 0 0 0 M + 2
R 0 . . .

m(−2) 0 0 0 0 M + 2
R . . .

. . . . . . . . . . . . . . . . . . . . .


(2.59)

here m(±n) ≡ v√
2
(hl(n)

1 cos(naR )±hl(n)
2 sin(naR )). We see that this is similar to the see-saw mechanism

with zero left handed neutrino Majorana masses and small Dirac masses together with large right

handed neutrino Majorana masses. But this model is more complicated because of the infinite

number of effective right handed neutrino states. It is useful to define k0 ≡ [MR] (the symbol []

get the the integer part of the values inside), ε ≡M − k0/R which should be the smallest mass of

the KK states. And one can rearrange the Mass Matrix like[60]:

M =



0 m(0) m(1) m(−1) m(2) m(−2) . . .

m(0) ε 0 0 0 0 . . .

m(1) 0 ε+ 1
R 0 0 0 . . .

m(−1) 0 0 ε− 1
R 0 0 . . .

m(2) 0 0 0 ε+ 2
R 0 . . .

m(−2) 0 0 0 0 ε+ 2
R . . .

. . . . . . . . . . . . . . . . . . . . .


(2.60)

Different from above definition is here m(n) ≡ v
√

2(h1 cos[ (n−k0)R
a ] +h2 sin[ (n−k0)R

a ]) = m cos( nR −

φh) with m = v
√
h̄2

1 + h̄2
2 = v(MF /Mp)δ/ng

√
hl1

2 + hl2
2 and φh = tan−1(hl1/h

l
2) − k0R/a. The

eigenvalue equation of this matrix can be derived analytically from [60] if a = πR/n, where n is

an integer greater than 2:

λ = πm2R{cos2[φh − a(λ− ε)] cot[πR(λ− ε)]− 1
2

sin[2φh − 2a(λ− ε)]} (2.61)

If |ε| � m, an rough estimation of left handed neutrino mass is[60]:

mν = πm2R{cot(πRε) +
sin[(π − 2a/R)MR]

sin(πMR)
} (2.62)

The value m2R supposed to be tiny for m is highly suppressed, but different from see-saw, the

dependence of mν on M is not the leading term, the magnitude of the radii for the warped

dimensions determines the mass scale of light neutrinos and also the heavy ones as they have the

approximated mass m(n) ≈ n
R + ε [60].

Although the mass matrix can not be easily diagonalizaed, we can obtain the approximate trans-

formation after making some truncations on n. As in see-saw, we can expand the left handed

neutrinos by their mass eigenstates:

|νl >=
3∑
i=1

Uli|νi > +
∞∑

n=−∞
Uln|Nn > (2.63)
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Nn are the mass eigenstates for KK modes. And as shown in the Appendices in [59], this matrix

obey the sum rule as: ∑
i

UliU
∗
l′i +

∑
n

UlnU
∗
l′n = δll′∑

i

UlimiU
∗
l′i +

∑
n

Ulnm(n)U
∗
l′n = 0 (2.64)

So now the Lagrangian of the charged weak currents can be written as:

LWint = −gW√
2
W−µ

∑
l=e,µ,τ

l̄LγµνlL +H.c.

= −gW√
2
W−µ

∑
l=e,µ,τ

(
3∑
i=0

Uli l̄Lγµνi +
∞∑

n=−∞
Uln l̄LγµNn) (2.65)

As Nn and νi are Majorana neutrinos, we can construct the Feynman diagram for 0νββ, just as in

the previous section, and the lepton violating process happens in the virtual neutrino propagator

section as before, see fig.2.4

2.3 R Parity Violated SuperSymmetry

In this section we will explore another possibility for the 0νββ, that is the process without virtual

intermediate neutrino. In the previous section we saw that the existence of right handed neutrinos

and massive Majorana neutrinos give rise to a lepton number 2 violating intermediate process. But

in the new theory of SUSY, no neutrinos are involved, this is indeed ”neutrinoless”.

2.3.1 SuperSymmetry Theories and MSSM

The fermions and bosons have rather different properties such as the commutation relations and

the space-time transformation rules. However, the idea of Supersymmetry is that fermions and

bosons are in fact correlated by a symmetry which is allowed by the Coleman-Mandula theorem[61]

which exclude the possibilities of combinations of space-time and internal symmetries. In the math-

ematical form, this is different from the normal Lie algebra. one needs the graded Lie algebra[62]

which introduces the anti-commutating besides normal commutating generators.

The infinitesimal supersymmetric transformations for scalars and spinors have the form:

δφ = ξψ, δφ∗ = ξ†ψ†

δψα = i(σµξ†)α∂µφ, δψ†α̇ = −i(ξσµ)α̇∂µφ∗ (2.66)

Here ξ is the infinitesimal transformation parameters. This transformation will leave the free

fermion and scalar field unchanged.

From above supersymmetric transformations, one can introduce the spinor supercharge for SUSY

in the form 4-component Dirac spinor as [63]:

Qa =

(
Qaα

Q̄aα̇

)
(2.67)
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Here Qaα (α = 1, 2) is a left-handed Weyl spinor and Q̄aα̇ = (Qaα)† a right-handed Weyl spinor,

both of which are in the representation of SO(1, 3) of the space-time. a = 1, · · · ,N, N is the

number of the independent supersymmtries of the algebra. If the graviton is the particle with the

largest spin, then the maximum value of N can be 8. Qa transforms between the fermions and

bosons and the commutation relations is defined as:

{Qaα, Q̄bβ̇} = 2δabσµ
αβ̇
Pµ

{Qaα, Qbβ} = 2εαβZab (2.68)

Here Zab is the central charge which is anti-symmetric in the indices of a and b, For N = 1 this

obviously gives that Zab = 0. And the supercharge Q1 itself commute with translations.

With the supercharge operator we can construct the supersymmetry multiplets, as the fermionic

operator Q generates the transformations as:

Q1|Boson〉 = |Fermion〉 Q1|Fermion〉 = |Boson〉 (2.69)

From the commutation relations we may draw the conclusion that the Bosonic and Fermionic

degrees of freedom are equal[15] in SUSY (supersymmetry). In the SM we have different fermions

and bosons but it is obvious that they cannot be particles in the same SUSY multiplets. For the

simplest case we take N = 1, in this case we can have the chiral fermions and parity violations.

The simplest possibility for a supermultiplet is then a single Weyl spinor and two real scalars(or

a complex scalar), nB = nF = 2, this is called a chiral or matter of scalar supermultiplet. If we

include a massles spin-1 vector boson in a supermutiplet, which has a degree of freedom nB = 2,

this then may correspond to a superpartner of a massless Weyl spinor. So for N = 1, we have these

two type of mutiplets which should be enough for the SM.

The Minimal Supersymmetric SM(MSSM) is the minimal extension of the SM. Now all the particles

in the SM may have their superpartners, for fermions, they are named by adding a ’s’ in front and

for bosons by adding a suffix ’ino’. In the superfield formalism, the SM multiplets can be expressed

in the forms of the chiral superfields for Higgs and fermions while the gauge vector superfields

for gauge bosons. This is listed in table 1.1 and 1.2 in Ref.[63]. We have the left-handed chiral

superfield Qi for the quarks and Li for the leptons for the ith generation, Hu and Hd for Higgs

particles, while U i and Di for right-handed quarks and Ei for right-handed leptons, again i is

the indices for the generations. The reason for the requirement of two Higgs superfield is that in

supersymmetry, the complex conjugation of the superfield is not supersymmetric invariant, to give

mass to right handed chiral superfields, we need one more Higgs chiral superfield. For the gauge

part, we should have gauge superfields V αg , V iW and VB for SUc(3), SUL(2) and U(1)Y respectively.

With above field contents, we can construct the supersymmetric Lagrangian using the superfield

formalism introduced in Appedix A. The superpotential for MSSM is:

WMSSM = Ū iyiju Q
jHu − D̄iyijd Q

jHd − Ēiyije LjHd + µHuHu (2.70)

Here the y’s are 3× 3 Yukawa coupling matrices.

Since we have only observed the SM particles but not their superpartners, so if SUSY exists, it must

be broken. In SUSY, as for other symmetries, the breaking comes from a finite VEV. This can be
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obtained by the non-zero constant F or D terms such as the ”Fayet-Iliopoulso term”LF.I. = ξD [64]

or the ”O’Raifeartaigh term” [65]. These terms may originate from the gravitational interactions

at the Planck scale or from gauge interactions with a ”Messenger” chiral superfield[66, 67, 68, 69].

For MSSM, the soft supersymmetry breaking terms can be written as[63]:

LMSSM
soft = −1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.)

−(ũiRa
ij
u Q̃

jHu − d̃iRa
ij
d Q̃

jHd − ẽiRaije L̃jHd + c.c.)

−Q̃i†mij
Q

2
Q̃j − L̃i†mij

L

2
L̃j − ũi†Rm

ij
u

2
ũjR − d̃

i†
Rm

ij
d

2
d̃jR

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + c.c.) (2.71)

Here M1, M2, M3 are the bino, wino and gluino mass terms, each a is a 3 × 3 mass matrix with

dimension [M ], each m2 is also 3 × 3 matrix for scalar particles. And it is expected all these

quantities have similar mass at the tree level, that is:

M1,M2,M3, au, qd, ae ∼ m0 m2
Q,m

2
L,m

2
U ,m

2
D,m

2
E ,m

2
Hu ,m

2
Hd
, b ∼ m2

0 (2.72)

But at the TeV level the mass may be different due to the renormalization effects and from the

renormalization group (RG) equations we can expect the sfermions for the first generation to have

the mass as[63]:

m2
Q = m2

0 +K3 +K2 +
1
36
K1

m2
U = m2

0 +K3 +
4
9
K1

m2
D = m2

0 +K3 +
1
9
K1

m2
L = m2

0 +K2 +
1
4
K1

m2
E = m2

0 +K1 (2.73)

Here K’s are contributions from the renormalizations of different gauge interactions, and it is found

at one loop level to be:

Ka(Q) =


3/5

3/4

4/3

×
1

2π2

∫ lnQ0

lnQ

dtg2
a(t)|Ma(t)|2 (a = 1, 2, 3) (2.74)

ga is the running gauge coupling constant for three different interactions and Ma(t) the running

mass of gauginos. Q0 is the input scales for RG.

Higgs particles get an extra mass contributions from the SUSY symmetry breaking. We have the

two Higgs potential as (if we set H+
u = H−d = 0):

V = (|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (bH0

uH
0
d + c.c.)

+
1
8

(g2 + g′
2)(|H0

u|2 − |H0
d |2)2 (2.75)

This potential will give the non-zero VEV’s for Hu and Hd (va and vb respectively), these VEV’s

are responsible for the SM fermion masses as in the SM.
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After gauge SSB, a mixture between the neutral SUSY partners of gauge bosons and Higgs bosons

is induced. The mass matrix for the neutral particles ÑT = (B̃, W̃ 0, H̃0
d , H̃

0
u) is:

MÑ =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0

 (2.76)

Here M1 and M2 come directly from soft SUSY breaking of MSSM as in (2.71) while −µ comes

from the Higgsino mass from superpotential (2.70). The g and g′ terms comes from the Higgs-

Higgsino-gaugino coupling from the ”Kähler Potential” in Appedix A, with the Higgs VEV’s from

the broken symmetry. After diagonalization, we can get the mass eigenstates χi the so-called

neutrilinos:

χ̃i = NijNj (2.77)

which gives the diagonalized matrix elements

Mχ = N∗MÑN
−1 =


Mχ1 0 0 0

0 Mχ2 0 0

0 0 Mχ3 0

0 0 0 Mχ4

 (2.78)

If the condition mZ � |µ±M1|, |µ±M2| is imposed we can get the mass eigenstates very close to

superpartner states, with χ1 ≈ B̃0, χ2 ≈ W̃0 and χ3, χ4 ≈ (H̃0
u ± H̃0

d)/
√

2 with mass eigenvalue:

mχ1 = M1 −
m2
Z sin2 θW (M1 + µ sin 2β)

µ2 −M2
1

+ ...

mχ2 = M2 −
m2
Z(M2 + µ sin 2β)

µ2 −M2
2

+ ...

mχ3 = |µ|+ m2
Z(I − sin 2β)(µ+M1 cos2 θW +M2 sin2 θW )

2(µ+M1)(µ+M2)

mχ4 = |µ|+ m2
Z(I + sin 2β)(µ−M1 cos2 θW −M2 sin2 θW )

2(µ−M1)(µ−M2)
(2.79)

Here θW is the Weinberg angle and β = tan−1(vu/vd) and I can be ±1.

Above we briefly introduced the MSSM, which is the minimal extension of SM under SUSY. Here,

we haven’t found terms which can lead to 0νββ, this will be discussed immediately as we introduce

the R-Parity which is important for the decays of LSP(Lightest SUSY particle).

2.3.2 R Parity and Lepton Number Conservation

As we did show in last section, by replacing the SM particles by corresponding superfields, we can

construct the SUSY Lagragian as in the SM. However, we can find some extra terms which are

SUSY invariant but do not originate from the SM:

f = ŪD̄D̄ +QD̄L+ LĒL+ LH (2.80)
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These terms will introduce some extra interactions which may lead to instability of LSP and

also the decay of the proton. So one new discrete symmetry called R-parity(or matter parity) is

introduced[70, 71], the most convenient definition is:

M → −M V → V, θ → −θ X → X, θ̄ → −θ̄ (2.81)

Here M are matter superfields, V vector superfield and X denote other chiral superfields (e.g.

Higgs superfield). As we can see, SUSY partners are R-parity odd (empirical definitions: Rp =

(−1)3B+L+2S , B for baryon number, L for lepton number and S for spin). This prevents the

spontaneous decay of the LSP’s, since it is the lightest R-parity odd particle. This also makes

LSP the best candidate for Dark Matter. Also in this case, above superpotential (2.80) is R-parity

violating and cannot be presented in the MSSM.

However, the Supersymmetry breaking may also accompanied with the Rp violation[72]. Current

experiments have strong constraints on this violation and make Rp nearly an exact discrete sym-

metry. In this occasion, 0νββ is allowed but should be suppressed. So the 0νββ can be a good

indicator for this violation of R-parity if this mechanism dominates the process. We now discuss

this possibility.

In the MSSM model, with three generations of leptons and quarks, the R-parity violating terms

can be written as:

f/Rp = λijkLiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k (2.82)

Here i, j, k are indices of the generations and the Last term in (2.80) has been rotated away by the

redefinition of superfield L[73], the coupling constants λ(λ′) are antisymmetric in the first(last)

two indices. As pointed out before, the simultaneous existence of these three terms will lead to the

proton decay since B and L are violated together, this makes the λs extremely small from current

experiments. But if we, instead of Rp, impose another discrete symmetry which is compatible with

GUT theories[73, 74]:

(Q, Ū , D̄)→ −(Q, Ū , D̄), (L, Ē,H1,2)→ (L, Ē,H1,2) (2.83)

Then the third term in (2.82) is excluded out (λ′′ = 0), in this case the Baryon number is conserved

while the lepton number is violated, this prevents the proton decay. For the 0νββ, only the first

generation of the fermions (u, d, e) are concerned and we are interested in the lepton number

violations. Thus we can write down the Lagrangians which are involved in this decay as following,

first the lepton number violating terms in the Rp violating superpotential:

L/Rp
= λ′111[

(
ūL d̄L

)( eCR

−νCR

)
d̃R +

(
ēL ν̄L

)
d̄R

(
ũ∗L

−d̃∗L

)

+
(
ūL d̄L

)
d̄R

(
ẽ∗L

−ν̃∗L

)
+H.c.] (2.84)

Then the interactions for gluino(for colored particles) and neutralino with the SM fermions and
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their superpartners:

Lg̃ = −
√

2g3

λ
(a)
αβ

2
(q̄αLg̃

aq̃βL − q̄
α
Rg̃

aq̃βR) +H.c. (2.85)

Lχ =
√

2g2

4∑
i=1

[εLi(ψi)ψ̄Lχiψ̃L + εRi(ψi)ψ̄Rχiψ̃R] +H.c. (2.86)

Here α and β are color indices and λ’s are the SU(3)c generators (the Gell-Mann Matrices).

Neutrilino χ’s are the mass eigenstates of the electrical neutral superpartners mentioned above,

the coupling constants ε’s are defined as [75]:

εLi(ψ) = −T3(ψ)Ni2 + tan θW [T3(ψ)−Q(ψ)]Ni1

εRi(ψ) = Q(ψ) tan θWNi1 (2.87)

Q(ψ) and T3(ψ) are the electrical charge and third component of weak isospin for fermions respec-

tively. And Nij comes from the diagonalizations of the mass matrix χi = Ni1B̃+Ni2W̃
3 +Ni3H̃

0
1 +

Ni4H̃
0
2 expressed in the previous section, θW is the Weinberg angle. The mass terms are included

in the SUSY soft-breaking Lagrangians we mentioned above.

With these interactions in hand, we can begin to construct the required 0νββ Feynmann diagrams.

As we have mentioned before, the basic 0νββ process at the quark level is a process with two

incoming d quarks, two outgoing u quarks and two outgoing electrons, fig.2.3. For the moment we

consider only tree level diagrams, so from the topological point of view, to connect six fermion lines,

from above Lagrangians with only 3-particle interactions(Fermion-scalar-fermion interactions), one

needs four vertices and three intermediate propagators. Among these three propagators, one should

be fermionic due to the continuation of fermion lines in Feynman diagram (This is because fermion

has a mass dimension of 3/2, and the overall mass dimensions for any interactions must be integers).

So first we chose from the above Lagrangian the required vertices, which contains only terms of

ū(uC), ē(eC) and d(d̄c) for the possible external lines. This gives (together with the illustrated

graph, fig.2.7):

i a). λ′111ūLe
c
Rd̃R b). λ′111ēLdRũ

∗
L c). ūLdRẽ

∗
L

ii a). −
g3λ

(a)
αβ√
2
d̄αLg̃

ad̃βL b).
g3λ

(a)
αβ√
2
d̄αRg̃

ad̃βR c). −
g3λ

(a)
αβ√
2
ūαLg̃

aũβL d).
g3λ

(a)
αβ√
2
ūαRg̃

aũβR

iii a).
√

2g2

4∑
i=1

εL(R)i(u)ūL(R)χiũL(R) b).
√

2g2

4∑
i=1

εL(R)i(d)d̄L(R)χid̃L(R)

c).
√

2g2

4∑
i=1

εL(R)i(e)ēL(R)χiẽL(R) (2.88)

We find that the /Rp interactions correspond to the vertices of two SM fermions with one SUSY part-

ner scalars while the gluino and neutrilino interactions correspond to vertices of one SM fermion,

one SUSY scalar and one SUSY fermion. From the above analysis we can see, that the diagrams

should contain two vertices of the /Rp type and the other two vertices of the gluino or neutralino

types. Then we can choose the required vertices which contain required out and in particles. E.g.

first choose two vertices of /Rp types containing two fermions, then choose two vertices from gluino

or neutralino terms which contain the two SM fermions not included in the two previous vertices,
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Figure 2.7: The interaction vertexes which are involved in 0νββ, the corresponding Lagrangian refer

to (2.88).
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Figure 2.8: In this graph, we list all the possible diagrams for 0νββ under the /Rp.

these vertices should be connected by proper propogators. And we give an illustrated example of

these procedures:

i)choose the vertex ūLeCRd̃
∗
R, then we have two incoming d quarks, one outgoing u quarks and one

outgoing e− remained;

ii)choose a vertex ūLdRẽ∗L, now only one incoming d quark and one outgoing e− left;

iii)Now we should find the two vertices from the gluino or neutrilino terms which contain d̃R and

ẽL, besides, they can be connected by a fermion propagator, these can be easily found: χ̄dRd̃∗R and

χ̄eLẽ
∗
L, then we have an internal fermionic propagator of χ.

Following this procedure, we construct all the possible diagrams as in 2.8. We see here that one

can divide these diagrams into two different types called ’Diagonal’ and ’non-diagonal’ ones. The

former is graphically symmetric under the reflex around the axis of the intermediate heavy fermions

propagators, the latter is somehow without this symmetry.

This is the most direct way to get the Feynman diagrams. However, using the effective field

theories, one can get the same results, the advantages of this method are that no diagrams will be

missed or repeated and the interaction strengths can be well calculated in the mean time.

The effective Lagrangian according to [73] can be defined from:

R0νββ = 〈(A,Z + 2|T exp(i
∫
d4xLint(x))|(A,Z)〉

≈ i

∫
d4x〈(A,Z + 2|L∆Le=2

eff (x)|(A,Z)〉 (2.89)

With Lint = L/Rp
+ Lg̃ + Lχ. In principle the expansion of the exponent include all the possible

diagrams for tree levels and loops. For simplicity, one considers only the leading order – the tree

level diagrams, the loop diagrams can be neglected at this stage due to the heavy mass of the

intermediate propagators. Because of the definite initial and final states, the expansions of the
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effective actions which don’t include the in and out particles in the 0νββ will be excluded out

automatically. The effective Lagrangian were derived by integrating out the heavy particles. The

propagators for fermions and scalar bosons can be written as:

〈0|T (ψi(x)ψ̄j(y))|0〉 = SF (x− y) ≈ −δ4(x− y)
i

mi
δij (mi � pF )

〈0|T (φi(x)φ∗j (y))|0〉 = DF (x− y) ≈ −δ4(x− y)
i

m2
i

δij (mi � pF ) (2.90)

In this model, heavy fermions are g̃ and χ, heavy bosons are the SUSY partners of the SM fermions.

Because of their heavy mass, the interactions behave like point-interactions similar to Fermi’s

four-fermion point interaction. We will discuss how to realize these point-like interactions at the

hadron level in next chapter. For color charged particles, we should make sure their combinations

are colorless in the final expression due to the color confinement. We add the color summation to

those color independent Lagrangian L/Rp
and Lχ, e.g. L =

√
2/3g2εLi(ψ)d̄αLχid̃

α
L. After integrating

out the heavy particles we should get the general form for the effective Lagrangian as:

L∆Le=2
eff =

∑
α,β,γ,δ

C
σ,ω
α,β,γ,δū

αdβ · ūγdδ · ēσecω (2.91)

The coefficient C is color dependent and this has the general form as point-like current-current

interactions for the quark and electron currents.

Using the properties of the Gell-Mann matrices, it is easy to get:

λkαβ · λkγδ =
16
9
δαδδγβ −

1
3
λkαδ · λkγβ (2.92)

The second term is the color octet, it will not contribute to the final expressions because of the

color confinement. So with these δ’s, one gets overall colorless effective actions. By using Fierz

rearrangement, one can get the effective Lagrangian as[73]:

L∆Le=2
eff (x) = 8πα2λ

′2
111

4∑
i=1

1
mχi

[
ε2Li(e)
m4
ẽL

(ūαLdRα)(ūβLd
β
R)(ēLecR)

+
ε2Li(u)
mũ4

L

(ūαLu
c
Rβ)(ēLdRα)(ēLd

β
R) +

ε2Ri(d)
m4
d̃R

(ūαLe
c
R)(ūβLe

c
R)(d̄cLαdRβ)

+ (
εLi(u)εRi(d)
m2
ũL
m2
d̃R

+
εLi(u)εLi(e)
m2
ũL
m2
ẽL

+
εLi(e)εRi(d)
m2
ẽL
m2
d̃R

)(ūαLd
β
R)(ūLβecR)(ēLdRα)]

+ λ
′2
111

8παs
mg̃

λaαβ
2

λaγδ
2

[
1

m4
ũL

(ūαLu
cγ
R )(ēLd

β
R)(ēLdδR) +

1
m4
d̃R

(ūαLe
cγ
R )(ūγLe

c
R)(d̄cβLd

δ
R)

− 1
m2
d̃R
m2
ũL

(ūαLd
δ
R)(ūγLe

c
R)(ēLd

β
R)] (2.93)

This formula has a one to one correspondence to the Feynman diagrams in fig.2.8. The gauge

coupling constants are defined as α2 = g2
2/(4π) and αs = g2

3/(4π), and it is highly dependent on

the energy scale due to the renormalization. The usual treatment is to take the Z boson pole[76]:

αs(MZ) = 0.127 and α2(MZ) = 0.0337. These Dirac bilinears are not colorless, but as a whole,

the interactions are colorless, by suitable arrangement we can make the these bilinears colorless as

we shall see.
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As we have seen in fig.2.8, there are different currents for different diagrams such as electrical

charged and neutral quark currents and also quark-lepton currents. These currents make the

calculations of 0νββ in this model rather complicated, but since the mediating particles are ex-

tremely heavy (heavier than W boson), so these interactions are point-like four- or six-fermion

interaction. It is convenient to rearrange the orders of the fermion in these fermion pairs by Fierz

transformations. These are deduced by [73]:

L∆Le=2
eff (x) =

G2
F

2mP
[(ηg̃ + ηχ)(JPSJPS −

1
4
JµνT JTµν) + (ηχẽ + η′g̃ − ηχf̃ )JPSJPS ][ē(1 + γ5)ec]

(2.94)

The currents J are defined as:

JPS = ūα(1 + γ5)dα

JµνT = ūασµν(1 + γ5)dα, σµν =
i

2
[γµ, γν ] (2.95)

These are different from the weak currents which are with a V −A type. In SUSY theory, one has

then the pseudoscalar and tensor currents. And all the violating parameters η are defined as:

ηg̃ =
2παs

9
λ′

2
111

G2
Fm

4
d̃R

mp

mg̃
[1 + (

md̃R

mũL

)4]

ηχ =
πα2

6
λ′

2
111

G2
Fm

4
d̃R

4∑
i=1

mp

mχ
[ε2Ri(d) + ε2Li(u)(

md̃R

mũL

)4]

η′g̃ =
4παs

9
λ′

2
111

G2
Fm

4
d̃R

mp

mg̃
(
md̃R

mũL

)2

ηχẽ = 2πα2
λ′

2
111

G2
Fm

4
d̃R

(
md̃R

mẽL

)2
4∑
i=1

mp

mχ
ε2Li(e)

ηχf̃ = πα23
λ′

2
111

G2
Fm

4
d̃R

(
md̃R

mẽL

)2
4∑
i=1

mp

mχ
[εRi(d)εLi(e) + εLi(u)εRi(e)(

md̃R

mũL

)2]

(2.96)

We see that in these effective Lagrangians, we divided the quark currents from the lepton currents,

and this eases the final calculations of the NME. Here we have many parameters such as the masses

and the coupling constants from MSSM which are supposed to be derived from the renormalization

group techniques, as it was supposed that above the SUSY broken scale, these masses should have

similar origin and values. With the running behaviors of the coupling constants in RG method,

one can get their values at the low energies, and these results are illustrated in the last section.



Chapter 3

Decay Width and Nuclear Matrix

Element for Double Beta Decay

The 0νββ has not been observed yet, though there’re some highly contesting speculations[7]. With

its observation, one can then get the half-lives, and also other measurables such as the electron

spectrum. In this sense, a precise calculation of the half-lives is very important. A comparisons

between the theoretical and experimental results can give us information on the underlying physics

of this process.

0νββ is a weak process with the emissions of two electrons: at the nucleon level, two neutrons

transform into two protons n + n → p + p + e− + e−, at the level of nuclei, a parent nucleus

transform into a daughter nucleus: (A,Z) → (A,Z + 2) + e− + e−. In the previous chapter, we

discussed the possible underlying physics behind this process, which describes this process at the

quark level: d + d → u + u + e− + e−. At this level we have Quantum Field Theory as a tool to

describe this process, so everything can be deduced analytically. But this is not enough for the

descriptions of the actual process, since the decay takes place in the complicated nuclear system

(due to the nuclear pairing this process can happen). But until now we can’t find a perfect way

to describe the properties of this system, despite the fact that it has been studied for nearly one

century. This is due to the limitations of our knowledge on the few- and many- body theories.

And also because of the complicated forces between the nucleons. These nucleons are governed

by the strong interaction. This interaction is the strongest interaction, it can be well described

by Quantum Chromodynamics (QCD) which was developed at 70s of the last century. However,

due to strong interaction strength at low energies, it cannot be treated by normal perturbative

methods. And a lack of treatment for the non-pertubative theory makes it really hard to deduce

the details of the nucleon-nucleon forces from QCD. So one usually builds some empirical models

to describe these interactions. Because of the difficulties mentioned above, it is nearly impossible

to perform exact calculations for these nuclear processes. What we can do now is to use the nuclear

models and reduce all uncertainties as far as possible from these models. Then one gets optimized

values hopefully close to the experimental values. At the hadron level, if we compare the processes

to those at at the quark level, one finds that the u and d quarks are replaced by the protons

and neutrons. We now consider the interactions on the lepton and hadron level. Normally, these

39
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Figure 3.1: The sketch for how we simulate the nuclear process step by step from the underlying

mechanism

hadrons in our case refer to nucleons. But as there are mesons inside the nuclei, in this case one

can also replace the quark-antiquark pairs in the Feynman Diagrams with the mesons (the lightest

mesons are the pions). Besides, there exists also the possibility that the quarks are replaced by

exotic nucleons such as N∗[89] in the nuclei.

3.1 General Results of Decay Widths

The Half-life is the most important observable for ββ decay. From quantum theories we know that

it is related with the decay width Γ given by the transition probability, t1/2 = 1/Γ. We treat the

nucleons and the nuclear many body problem non-relativistically. But neutrinos and electrons need

a fully relativistic descriptions. Our treatment for the ββ decay is a combination of QM and QFT

methods. For relativistic particles as electrons we use the QFT. By making some assumptions, we

can separate Γ into two parts: first the integrations over the momenta of the electrons and for the

2νββ also of the neutrinos yielding a phase space factor and second the nuclear matrix element

(NME).

3.1.1 Decay width for 2νββ

First, we give the expression of NMEs for the 2νββ. This process has been observed and the half-

lives for different nuclei are tabulated in table.1.1. The reason we calculate the decay widths for

2νββ first is that we use the same methods for calculating the nuclear matrix elements (NME’s) for

both 0νββ and 2νββ. In our calculations, the NME for 2νββ is important for the determination

of the parameters in our model. Values of the NME’s in other nuclear models are good crosschecks

for their respective quality.

The differential decay width for 2νββ decay is giving in [95, 96]:

dΓ2ν =
∏
i

d3pi
(2π)3p0

i

∑
jk

|Mjk|2 (3.1)

Here pi are momenta for two electrons p1,p2 and two neutrinos k1, k2 respectively. j, k are indices

for the neutrino mass eigenstates. In the nuclear Coulomb field, the electron has the form of a

plane wave e−ipx multiplied by the square-root of the Fermi factor F (Z, p) = (p0/|~p|)2παZ[1 −
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exp(−2παZ)]−1 with Z the electric charge of the nucleus and α the fine-structure constant. Then

we get the amplitude M as:

Mjk =
εjk√

2
(
GF√

2
)2VeiVej

∫
d4x

∫
d4y[F (Z + 2, p0

1)F (Z + 2, p0
2)]

1
2 {ei(p1+k1)xei(p2+k2)y

× ūe(p1)γµ(1− γ5)vνi(k1)ūe(p2)γν(1− γ5)vνj (k2)

× 〈Nf |
∑
n

T (e−iH0x0Jµ(~x)|Nn〉〈Nn|Jν(~y)e−iH0y0)|Ni〉 − (p1 ↔ p2)} (3.2)

V is the neutrino mass matrix element in Eq.2.2. The statistical factor εjk comes from the exchange

between two neutrinos, εjk = 1 for j 6= k and εjk = 1/
√

2 for j = k. The weak currents Jµ has the

form:

JµL(~(x)) =
A∑
n=1

τ+
n [gµ0gV (q2) + gµjgA(q2)σj ]δ(~x− ~rn), j = 1, 2, 3 (3.3)

from the non-relativistic impulse approximations. Because the momenta of the outgoing particles

are small, we can neglect here the form factors of the lepton-nucleon interaction.

The decay from the initial nucleus to the final nucleus into the ground state is a transition without

changes of the angular momentum and parity. In this case we should choose the J = 0 operators

such as 1 · 1 for 0+ and ~σ ·~σ for 1+ intermediate states from (3.2). By making the assumption that

each electron-neutrino pair shares half of the Q value, one arrives at the expression of the decay

width for the 2νββ as [88, 90]:

Γ2ν(0+ → 0+) = G2ν |M2ν |2 = a2νm
2
eF0(T )g4

A|(
gV
gA

)2M2ν
F −M2ν

GT |2 (3.4)

Here the nuclear matrix element M is defined as[81]:

M2ν
F =

∑
M,n,m

〈0+
f |τ+

n |0+
M 〉〈0

+
M |τ+

m|0+
i 〉

EM − (Ei − Ef )/2

M2ν
GT =

∑
M,n,m

〈0+
f |τ+

n ~σ|1+
M 〉 · 〈1

+
M |τ+

m~σ|0+
i 〉

EM − (Ei − Ef )/2
(3.5)

Ei and Ef are just the masses of the initial and final nuclei. And the quantities a2ν and F0(T ) in

the phase space factor G2ν have the form [88, 91]:

a2ν =
1
4
G4
Fm

9
e

2π7
[

2πα(Z + 2)
1− exp(−2πα(Z + 2))

]

F0(T ) =
24m11

e

11!
T 7(T 4 + 22T 3 + 220T 2 + 990T + 1980) (3.6)

Here T = (Mi −MF − 2me)/me is the total kinetic energy in units of the electron mass for all

the out going particles. And the electron-neutrino phase space integrations are separated from the

nuclear transition part, the NME. We get the phase space factors analytically. From the half-lives,

one can then get the NME as listed in table 1.1.

3.1.2 Half-lives for the 0νββ

The general Feynman diagrams for the 0νββ at the different levels are shown in fig. 3.1.
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Light Majorana neutrino mechanism

For the simplest case, we have the intermediate Majorana neutrinos. We consider the light ones,

that is mi ∼ 0. In this case the calculations are close to that of the 2νββ, but now the neutrinos

are virtual, carrying the internal momenta. So the outgoing particles are two electrons only. Then,

the differential decay widths can be written as [88]:

dΓ0ν =
2∏
i=1

d3pi
(2π)3p0

i

|M|2 (3.7)

The amplitude M is given by[88, 91]:

M =
∫
d4xd4y

∫
d4q

(2π)4

1
(p1 + q)2 −M2

W

1
(p2 + q)2 −M2

W

× 1√
2

(1− P12)
3∑
i=1

U2
ei[F (Z + 2, p0

1)F (Z + 2, p0
2)]

1
2 ei(p1x+p2y)eiq(x−y)

× [ū(p2)γµ(1− γ5)
/q +mi

q2 −m2
i

γν(1 + γ5)v(p1)]

×
∑
M

e−i(EM−Ei)y0e−i(EM−Ef )x0〈f |Jµ(~x)|M〉〈M |Jν(~y)|i〉 (3.8)

Using the γ matrices technique, one gets ū(p2)γµ(1 − γ5)(/k + mi)γν(1 + γ5)v(p1) = ū(p2)γµ(1 −
γ5)miγ

νv(p1), one finds that for the light Majorana neutrino mechanism with the SM symmetry,

the neutrino propagator is suppressed by the helicity.

Using the non-relativistic impulse reductions, we get the current Jµ in the form

Jµ(~x) =
A∑
n=1

τ+
n [gµ0J0

n(~q2) + gµkJkn(~q2)]δ(~x− ~rn), k = 1, 2, 3

J0(~q2) = gV (~q2)

~Jn(~q2) = gM (~q2)i
~σn × ~q
2mp

+ gA(~q2)~σ − gP (~q2)
~q~σ · ~q
2mp

We have for the 0νββ larger momentum transfer inside the loop in fig.3.1 than for 2νββ because the

neutrino is virtual. For the size the nucleus, the uncertainty principle gives the average momentum

of neutrino as about |~q| ≈ 20MeV . For such an exchange momentum, we must consider the

form factors of the nucleons. We adopt the form factors in our numerical calculation from [81]:

gV (~q2) = gV /(1+~q2/Λ2
V )2, gM (~q2) = (µp−µn)gV (~q2), gA(~q2) = gA/(1+~q2/Λ2

A)2. From PCAC, one

obtains gP (~q2) = 2mpgA(~q2)(1−m2
π/Λ

2
A)/(~q2+m2

π). Here, gV = 1 and gA ≈ 1.25, (µp−µn) = 3.70.

We choose different cutoffs for different interactions Λ2
V = 0.71(GeV )2 and ΛA = 1.09GeV [81].

We focus on the 0+ → 0+ case. For this case, the final result is given as in [91] by integrations

over the momenta of the electrons:

Γ0ν = G0ν
01 |mee|2|g2

VMF − g2
A(MGT −MT )|2

= g4
Aa0νF01(T )|mee|2|(

gV
gA

)2MF − (MGT −MT )|2 (3.9)

with F01(T ) = 1
15T (T 4 + 10T 3 + 40T 2 + 60T + 30), T is the same as defined before for ground

state decay of 2νββ as total kinetic energy of the two emitted electrons. Here we see that the
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dependence on the Q value Q = Mi −Mf is for 2νββ approximately Q11 and for 0νββ Q5. This

is the final expression of ground state decay width for 0νββ, and this is also considered to be the

leading contributions for the decay width (much larger than that of decay to the excitation state).

Here, mee is the effective neutrino mass defined as:

mee =
∑
j

V 2
ejmj (3.10)

with Vej the neutrino mass matrix elements defined in Eq.2.2.

The coefficients a0ν and the Nuclear matrix elements have the form:

a0ν =
G4
Fm

7
e

2(2π)5
[

2πα(Z + 2)
1− exp(−2πα(Z + 2))

]2

MF = 〈Nf |
A∑

n,m=1

τ+
n τ

+
mHF (rnm)|Ni〉/g2

V

MGT = 〈Nf |
A∑

n,m=1

τ+
n τ

+
mHGT (rnm)σnm|Ni〉/g2

A

MT = 〈Nf |
A∑

n,m=1

τ+
n τ

+
mHT (rnm)Snm|Ni〉/g2

A (3.11)

with

HF (rmn) =
∫

d3q

(2π)3

g2
V (~q2)ei~q·~rmn

q0(q0 + En − (Ef − Ei)/2)

HGT (rmn) =
∫

d3q

(2π)3

[gA(~q2) + 1
3
~q2

4m2
p
(2gM (~q2)− ~q2g2

P (~q2) + 4mpgP (~q2)gA(~q2))]ei~q·~rmn

q0(q0 + En − (Ef − Ei)/2)

HT (rmn) =
∫

d3q

(2π)3

1
3
~q2

4m2
p
(gM (~q2) + ~q2g2

P (~q2)− 4mpgP (~q2)gA(~q2))ei~q·~rmn

q0(q0 + En − (Ef − Ei)/2)
(3.12)

With ~rnm = ~rn − ~rm σnm = ~σn · ~σm, while Snm = 3(~σn · ~q~σm · ~q) − σmn. The functions H’s are

usually called the neutrino potentials, and if the nucleons are point-like, then this integration may

give us the value H ∼ 1/r, this is the leading order term in these expressions. So for 0νββ at

the leading order, we have the Coulomb like neutrino potentials because of the smallness of the

neutrino masses.

We have to add one more correction to this final result. As we are dealing with the problems in

the nuclear system, the strong repulsive nature of the nuclear forces may prevent the two nucleons

to get closer. So, the 0νββ potentials are changed at the short range. In our calculation, one adds

the Short-Range-Correlation (SRC) to the neutrino potential to account this effect, the expression

now looks like Mi = 〈Nf |
∑A
n,m=1 O(n,m)f(rnm)HF (rnm)f(rnm)|Ni〉. The simplest form of this

correction is of the Jastrow type [92]:

f(r) = 1− e−ar
2
(1− br2) (3.13)

with a ≈ 1, 1fm−2 and b ≈ 0.68fm−2.

This is the complete expression for 0νββ with the light Majorana neutrino mechanism and in the

present thesis we mainly focus on this mechanism with numerical calculations for several nuclei.
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Other mechanisms

In the previous chapter, we discussed different emission mechanisms for the 0νββ. Different mech-

anisms will probably give different half-lives of the 0νββ decay.

For the see-saw mechanism, one has the right-handed neutrino besides the left-handed one. The

right-handed neutrino is very heavy, with a scale from TeV to even the GUT energy scale. So

their contribution will be suppressed by their heavy mass. The detailed expression of the half-lives

are given in [107]. Calculations of 0νββ with sterile neutrinos in a model of extra dimensions are

performed in [59, 60].

With the L-R (Left-Right) symmetrical model, one can have more complicated mechanisms for the

half-lives of the 0νββ. A full expression is given in [94]. And a simplified result neglecting the

mixing between the left- and right-handed gauge bosons is derived by [91].

For /Rp SUSY, the result was derived in [73]. But one finds extra contributions from the intermediate

pions in [78, 79, 80].

As we don’t have enough experimental evidence, it is hard to say which mechanism will contribute

the most to the 0νββ. One would think that the light Majorana neutrino mechanism dominates,

as a light neutrino has a long range which is not suppressed by SRC. So in this thesis we focus on

this mechanism and all the following numerical calculations are with this one.

3.2 Nuclear Matrix Element For 0νββ

In this section, we briefly represent the form of the NME for the 0νββ, and in next chapter, we

will give detailed expressions for different methods. As we have seen in the previous sections,

the NME’s can be viewed as the two-body contributions. The general form of NME from above

discussions looks like:

MI = 〈Ni|
A∑
n,m

τ+
n τ

+
mHI(rnm)OI |Nf 〉 (3.14)

HI(rnm) is the neutrino potential, which we derived in the proceeding sections. If we abandon the

closure approximation by introduction of virtual intermediate states, the expressions may become

slightly different as we will show in next chapter. From this point of view, we need to construct

the initial and final ground states and sometimes the intermediate states. The details of these

technique are the tasks of the next chapter.



Chapter 4

Many Body Approaches for

Calculation of NME

In previous chapter, we derived the expression for 0νββ decay widths (or the half-lives) for dif-

ferent mechanisms. They can be divided in two parts: the phase space factor G which can be

calculated analytically and the NME. The latter is important because it allows to determine the

lepton-violation scales for different new physics models. For calculations of NME, we need nuclear

structure theories which can simulate the microscopic nuclear transitions. Till present, there is

no final theory which could perfectly describe the nucleus since this is a complicated many-body

system. Many nuclear structure models have been proposed. The mean field theory is a starting

point of them. An average mean field is calculated from the two and three body interactions by

the so-called Hatree-Fock method which is also widely applied for other many-body systems such

as atoms. From these mean fields, physicists usually construct the nucleus ground state, and then

the excited states can be calculated.

As we have shown, 0νββ decay is governed by a two-body operator transforming two initial neutrons

into two final protons in the nucleus environment. This is a charge changing process and its two-

body transition matrix elements can be calculated by using the methods of many-body theory.

In this section we will introduce how the NME for 0νββ decay can be calculated by different

methods. The first method we are using is the pn-QRPA (proton-neutron quasiparticle random

phase approximation), then we consider another important method: the Nuclear Shell Model. We

will also mention other methods.

4.1 Quasi-particle RPA

The QRPA formalism is one of the widely used approaches for calculations of 0νββ decay[104]. It is

developed in the Random Phase Approximation(RPA)[99] which has its origin from the TDA[98]

method. So at first, we briefly introduce the RPA formalism following Ref.[101]. In the RPA

formalism, we can define the excitation phonon operators as:

Q†m =
∑

l>F,i<F

[Xm
li c
†
l ci − Y

m
li c
†
i cl] (4.1)

45
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Here F is the Fermi energy, X and Y are the forward and backward amplitudes respectively, and c

and c† are the single particle annihilation and creation operators. Then the ground state, namely

the RPA vacuum, is defined by the relation Q|RPA〉 = 0. The excitation states are defined as:

|m〉 = Q†m|RPA〉 for the mth states.

To get the forward and backward amplitudes, we need first to get the RPA equations. With the

variational methods: δ〈m|H|m〉 = 0, one can get [101]:

〈RPA|[δQm, [H,Q†m]]|RPA〉 = (Em − E0)〈RPA|[δQm, Q†m]|RPA〉 (4.2)

We then get the RPA equations from δ〈m|H|m〉/δX(Y ) = 0,

〈RPA|[c†i cl, [H,Q
†
m]]|RPA〉 = ωm〈RPA|[c†i cl, Q

†
m]|RPA〉

〈RPA|[c†l ci, [H,Q
†
m]]|RPA〉 = ωm〈RPA|[c†l ci, Q

†
m]|RPA〉 (4.3)

where the excitation energies are defined as ωm ≡ Em−E0 for the states |m〉’s. To derive the final

form of these equations, we adopt the following approximation, by replacing the RPA ground state

with the HF ground state. Then, we have, c†i |RPA〉 = 0(i < F ) and cl|RPA〉 = 0(i > F ). This

gives the commutation relation:

〈RPA|[c†i cl, c
†
ncj ]|RPA〉 = δijδln − δln〈RPA|cjc†i |RPA〉 − δij〈RPA|c

†
ncl|RPA〉

= δijδln (4.4)

This commutation relation treats the product of two single-particle operators as a single boson

operator, so this approximation is sometimes called Quasi-Boson Approximation(QBA). But in the

QBA the Pauli Exclusion principle(PEP) is somehow violated, this will bring out some problems

as we shall see later.

With the approximation of QBA, one then arrives to the the final form of the RPA equations

from(4.3): (
A B

B∗ A∗

)(
Xm

Y m

)
= ωm

(
1 0

0 −1

)(
Xm

Y m

)
(4.5)

The vectors (Xm)ij = Xm
ij and (Y m)ij = Y mij are forward and backward amplitudes for the

excitation states |m〉 and ωm are the energies of these excitation states. The matrices A and B

have the form:

Alinj = 〈RPA|[c†i cl, [H, c
†
ncj ]]|RPA〉 = (εl − εi)δlnδij + V̄ljin

Blinj = 〈RPA|[c†i cl, [H, c
†
jcn]]|RPA〉 = V̄lnij (4.6)

Here the Hamiltonian has the form: H = H0 + Hi = εic
†
i ci + (1/4)V̄ijklc

†
i c
†
jclck, with ε the

single particle energy and V the residual interaction, V̄ii′jj′ = Vii′jj′ − Vii′j′j for convenience.

By diagonalizing these RPA equations, one can get the excitation energy and the forward and

backward amplitudes X and Y.

As we have mentioned earlier, nuclear pairing is important in the nuclei, and the quasi-particle

RPA(QRPA) approach[100]takes into account this important phenomenon. So for a introduction

of QRPA method, we first introduce the usual treatment of nuclear pairing, within the BCS
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formalism. In this formalism, nucleons near the Fermi surface are paired with each other by the

residual interactions, and calculations show that the pairs with total angular momentum J = 0

are energetically favorite, so the ground state, namely the BCS vacuum, should be with only

J = 0 pairs. These pairs are formed by nucleons with the same angular momentum and opposite

projections. So the BCS vacuum is defined as[105]:

|BCS〉 =
∏
k>0

(uk + vkc
†
kc
†
k̃
)|0〉 (4.7)

Here k > 0 refer to all states with positive angular momentum projections Jz, and k̃ are the time-

revesed states which have an opposite Jz, so the states (k, k̃) run out the whole space, uk and vk

are the BCS coefficients, and v2
k is the occupation probability of states (k, k̃). In our thesis, we

consider only the proton-proton and the neutron-neutron pairing. Because in even-even nuclei, all

protons and neutrons can be paired, so this brings out the existence of the 0νββ decay. And, one

can see that the BCS formalism is suitable to describe the ground states of these even-even nuclei,

and all the 0νββ emitters are even-even nuclei. To get the BCS coefficients, we mush first derive

the BCS equations and solve it. The Halmitonian include the pairing interactions reads:

H =
∑
k>0

εk +
∑
k,k′>0

vkk̃k′k̃′c
†
kc
†
k̃
ck̃′ck (4.8)

we can get the BCS equations by variational methods: 〈BCS|Ĥ − λN̂ |BCS〉:

2ε̃kukvk + ∆k(v2
k − u2

k) = 0, k > 0 (4.9)

with

ε̃k = 1/2(εk + εk̃)− λ

∆k = −
∑
k′>0

v̄kk̃k′k̃′uk′vk′

And then one can get the solution for uk and vk as:

v2
k =

1
2

[1− ε̃k√
ε̃2k + ∆2

k

]

u2
k =

1
2

[1 +
ε̃k√

ε̃2k + ∆2
k

] (4.10)

In BCS formalism, with the the BCS coefficients, one can introduce a new kind of annihilation and

creation operators, the so-called Bogoliubov quasi-particle operators, defined as:

α†i = uic
†
i − vicīα

†
ī

= uic
†
ī

+ vici

Under this formalism, the BCS vacuum can then be written in a much simpler form:

|BCS〉 ∝
∏
i

αi|0〉 (4.11)

The QRPA formalism, as a generalization of RPA, uses the quasi-particle operators to replace the

single particle operators. So in the QRPA, the phonon creation operators are now defined as[106]:

Q†m =
∑
ii′

[Xm
ii′α
†
iα
†
i′ − Y

m
ii′ αiαi′ ] (4.12)
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QRPA ground states are defined in the same manner: Qm|QRPA〉 = 0. And the QRPA ground

states is replaced by the BCS vacuum by using the QBA. Using the same Hamiltonian as in the

case of RPA, one can derive the QRPA equations [101]:

Aii′jj′ = 〈QRPA|[αi′αi, [H,α†jα
†
j′ ]]|QRPA〉

= (Ei + Ei′)δijδi′j′ + V̄ii′jj′(uiui′ujuj′ + vivi′vjvj′)

+ V̄ij̃′ ĩ′j(uivi′ujvj′ + viui′vjuj′)− V̄ij̃ĩ′j′(uivi′vjuj′ + viui′ujvj′)

Bii′jj′ = −〈QRPA|[αi′αi, [H,αjαj′ ]]|QRPA〉

= V̄ii′jj′(uiui′vjvj′ + vivi′ujuj′)

+ V̄ijĩ′ j̃′(uivi′ujvj′ + viui′vjuj′)− V̄ij′ ĩ′ j̃(uivi′vjuj′ + viui′ujvj′) (4.13)

Ei =
√
ε̃i

2 + δ2
i is the quasiparticle energy. To get the forward and backward amplitudes in QRPA,

one need to diagonalize the matrices A and B. The obtained eigenvalues are the excitation energies.

4.1.1 Introduction of the pn-QRPA

The 0νββ decay changes the electrical charge of the nucleus by 2. Two neutrons in the initial

even-even nucleus transform into two protons in the final even-even nuclei. An intermediate odd-

odd nucleus is virtually excited in this process. To describe the states of this intermediate odd-odd

nucleus, we use the pn-QRPA(proton-neutron QRPA) approach. In pn-QRPA formalism, these

virtual states of the odd-odd nucleus are described as the excitations from the ground states of

the even-even nuclei. Hence, these excitations involve the transitions from proton (neutron) to

neutron (proton). So now we can introduce the two-quasiparticle creation operators in pn-QRPA,

which have a general form as A†pn = α†pα
†
ñ. In different system they may have different forms, e.g.,

for spherical system, they have a form where two quasiparticles are coupled to specific angular

momentums[81]. In subsequent section, we discuss mainly the deformed pn-QRPA. This method

is introduced to deal with the heavily deformed nuclei such as 150Nd. Later on, we will introduce

some modifications to the pn-QRPA formalism.

4.1.2 pn-QRPA for deformed Nuclei

In the deformed system, the angular momentum is no longer a good quantum number, so one

cannot couple the quasiparticles to a specific angular momentum. From now on we work in the

intrinsic frame. In this case only the projections K are good quantum numbers, one can then

define the phonon operators for the excitations as Qm†Kπ =
∑
pnX

m
pn,KπA

†
pn,Kπ + Y mpn,Kπ Āpn,Kπ .

The two quasiparticle creation and annihilation operators are defined as A†pn,Kπ = α†pα
†
ñ and

Āpn,Kπ = αp̃αn with the selection rule Ωp − Ωn = K and πpπn = π. The definition of the

quasiparticle is as before α†τ = uτ c
†
τ − vτ cτ̃ , c† is creation operator for single particle states, and

the tilde denotes the time-revesred states. In the following part we will introduce the pn-QRPA

approach in the deformed systems.

In the deformed basis, many quantities are derived by the decompositions over the spherical basis

since we have these quantities expressed in that basis already, so we have first to derive the

decomposition coefficients. The single particle deformed basis decompositions over the spherical
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one are presented in Appendix B. For the particle-hole or particle-particle pairs(ph or pp), they

can be expressed as the superpositions of the of quasiparticle pairs in spherical basis:

|τ τ̄ ′〉 =
∑
ητητ′J

F JKτηττ ′ητ′ |ητητ ′ , JK〉

|ττ ′〉 =
∑
ητητ′J

F JK
τητ τ̃ ′ητ′

|ητητ ′ , JK〉 (4.14)

Here τ and τ ′ refer to neutron or proton. The coupled quasiparticle pairs in spherical basis have

the form:

|ητητ ′ , JK〉 =
∑

ΩτΩτ′

CJKjτΩτ jτ′Ωτ′
|ητΩτ 〉|ητ ′Ωτ ′〉 (4.15)

The decomposition coefficients are:

F JKτηττ ′ητ′ = BτητB
τ ′

ητ′
(−1)jτ′−Ωτ′CJKjτΩτ jτ′−Ωτ′

(4.16)

Here Bτητ is the single particle decomposition coefficients derived in Appendix B.

The BCS coefficients can be derived from the BCS equations. In the deformed case, using the

realistic forces as pairing interactions, one can get the gaps in the form[29]:

∆τ = −
∑
J

∑
τ>0

F J0
τητ τ̃ητF

J0
τ ′ητ′ τ̃

′ητ′
G(ητητ̃ητ ′ητ̃ ′ , J)uτ ′vτ ′ (4.17)

Here τ , τ ′ are proton or neutron levels. G is the G-matrix of realistic forces in the spherical

harmonic oscillator basis. With these gaps, one can solve the BCS equations and get the BCS

coefficients. With the BCS coefficients, one can define the two-quasiparticle operators and the

QRPA phonon operators.

The pn-QRPA equations are similar to the QRPA equations. To get the matrices A and B, we have

to derive the correct forms of the residual interactions in the deformed systems. These interactions

can be express as the form of G-matrix. These matrix elements in the deformed basis can be

decompositions over that in the spherical harmonic oscillator basis. With the above decomposition

coefficients, we get:

Vpn̄,p′n̄′ = −2
∑
J

∑
ηpηn

∑
ηp′ηn′

F JKpηpnηnF
JK
p′ηp′n

′ηn′
G(ηpηnηp′ηn′ , JK) (4.18)

Vpn,p′n′ = 2
∑
J

∑
ηpηn

∑
ηp′ηn′

F JK
′

pηpn̄ηnF
JK′

p′ηp′ n̄
′ηn′

G(ηpηnηp′ηn′ , JK ′) (4.19)

Here K ′ = Ωp + Ωn. We include two types of interactions, one for ph and one for pp because these

two types of interactions are presented in the A and B matrices in (4.13). With the two-quasi

particle operators and the residual interactions, we get the pn-QRPA equations in the deformed

basis with the form:(
A(Kπ) B(Kπ)

−B(Kπ) −A(Kπ)

)(
Xm
Kπ

Y mKπ

)
= ωKπ,m

(
Xm
Kπ

Y mKπ

)
(4.20)
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The matrices A and B have the form:

Apn,p′n′(Kπ) = δpn,p′n′(Ep + En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

−gph(upvnup′vn′ + vpunvp′un′)Vpn′p′n

Bpn,p′n′(Kπ) = −gpp(upunvp′vn′ + vpvnup′un′)Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′)Vpn′p′n (4.21)

Here we have introduced two new parameters: gph(the renormalization parameter for ph interac-

tions) and gpp(the renormalization parameter for pp interactions). We need to determine these two

parameters to solve the QRPA equation, this will be presented later.

The details of the diagonalizations of these matrices can be found in [29], after the diagonalizations,

one can get the solutions for the eigenvalues and the eigenvectors. And with the solution, we can

construct the virtual states of odd-odd nuclei. In our calculations, we use two sets of intermediate

states. They are excitations from either the initial or the final states:

|Kπ,mi(f)〉 = Q
mi(f)†
Kπ |RPA〉 (4.22)

This is the representation of the states in the intrinsic system. One usually needs these states in

the laboratory systems under the angular momentum representations. In the laboratory frame,

the states of angular momentum J with projection M can be represented as superpositions of the

wave functions in the intrinsic frame:

|JM(K),m〉 =

√
3

16π2
[DJ

MK(φ, θ, ψ)Q†m,K

+ (−1)J+KDJ
M−K(φ, θ, ψ)Q†m,−K ]|0+

g.s.〉 (K 6= 0)

|JM(K),m〉 =

√
3

8π2
[DJ

MK(φ, θ, ψ)Q†m,K |0
+
g.s.〉(K = 0) (4.23)

Here D are the rotation matrices which connect the lab system with the intrinsic system. In this

case we neglect the effect of the Coriolis force which may mixes states with different K. And one

can prove that the calculations in these two different frames are equivalent [29], so later on we

consider only calculations in the intrinsic frame.

4.1.3 Final Expression for NME

With the solutions for the QRPA equations, we can proceed to the calculations of the NME’s. The

NME’s for ββ decays are expressed in the preceding chapter in a general form, in this section we

will introduce the detailed forms of these expressions in the QRPA formalism.

As we have seen, the operators or the states may be transformed from one frame to another under

the rotations of the axes. But the rotational symmetry will prompt the invariance of measured

quantities such as the decay rates in different frames, so different choices of these frame will not

change the final results of the NME’s. For calculations of the deformed nuclei, it is convenient to

work in the intrinsic frame.

For 2νββ decay, one finds contributions from both the Fermi and GT transition operators(3.5), but

one can safely neglect the contributions from the Fermi operator as it arises from isospin mixing
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effect[94]. So for 2νββ, only contributions from GT operator present. So only intermediate states

K 6 1 and π = +1 are included from the selection rules. We then have nuclear matrix elements

for 2νββ with the form:

M2ν
GT =

∑
K=0,±1

∑
mi,mf

(−1)K
〈0+
f |β
−
−K |K+

, mf 〉〈K+,mf |K+,mi〉〈K+,mi|β−K |0
+
i 〉

ω̄K,mimf
(4.24)

Here β−K =
∑
pn
〈p|τ+σK |n〉c†pcñ, this operator is derived directly from (3.5). In (3.5), the energy

denominator is defined as EM − (Ei +Ef )/2→ (Emi +Emf )/2− (Ei +Ef )/2 = (ωmi + ωmf )/2,

this is the usual definition in QRPA calculations. Now we made some modifications[29] in order

to fit the first experimental 1+ energy of the intermediate nucleus. This then gives the energy

denominator the form as ω̄K,mimf = (ωK,mf − ωK,1f + ωK,mi − ωK,1f )/2 + ω̄1+
1

, here ω̄1+
1

is the

experimental energy of 1+ state defined as M(A,Z + 1)− (M(A,Z) +M(A,Z + 2))/2 + E1+
1

, M

are the masses of these nuclei and E1+
1

the energy of the first 1+ excited states for the odd-odd

intermediate nucleus, if the ground states of the odd-odd nuclei is 1+, then E1+
1

= 0. The two sets

of the intermediate states, the initial one and the final one expand on the same Hilbert space, the

overlap factors have been calculated [106, 29]:

〈Kπ,mf |Kπ,mi〉 =
∑
lilf

[Xmf
lf ,KπX

mi
li,Kπ − Y mflf ,KπY

mi
li,Kπ ]Rlf li〈BCSf |BCSi〉 (4.25)

The factors Rlf li which include overlaps of single particle wave functions of the initial and final

nuclei are given by:

Rll′ = 〈pρp|p′ρp′〉(u(i)
p u

(f)
p′ + v(i)

p v
(f)
p′ )〈nρn|n′ρn′〉(u(i)

n u
(f)
n′ + v(i)

n v
(f)
n′ ) (4.26)

And the last term 〈BCSf |BCSi〉 is the overlap factor of the initial and final BCS vacua, It was

given in [106].

And now we come to the calculations of 0νββ. In 0νββ, more intermediate states are involved. As

we have seen in (3.11), the NME is in fact the matrix elements of two-body operators. In QRPA

calculation we restore the intermediate states which are set to be unity matrix under the closure

approximations. In this case, the NME’s have the form:

MI =
∑
Kπ

∑
pn,p′n′

〈p′n′|OI |pn〉〈0f |c̃†p′cñ′ |K
π,mf 〉〈Kπ,mf |Kπ,mi〉〈Kπ,mi|c†pcñ|0i〉 (4.27)

The overlap factors between the initial and final intermediate states are the same as that for 2νββ.

The initial(final) leg of the transitions between the initial(final) nucleus to the intermediate nucleus

can be written as:

〈0f |c̃†pcñ|Kπ,mf 〉 = vpunX
mf
pn,Kπ + upvnY

mf
pn,Kπ

〈Kπ,mi|c†pcñ|0i〉 = upvnX
mi
pn,Kπ + vpunY

mi
pn,Kπ (4.28)

The most important part is the neutrino potential. It behaves as a two-body operator here in this

formula. It is an integration over the momentum space and can be calculated numerically. In the

deformed basis, it can be expressed as decompositions over the spherical ones :

〈p′n′|OI |pn〉 =
∑
J

∑
ηpηnηp′ηn′

F JKpηpnηnF
JK
p′ηp′nηn′

ssphηpηp′ηnηn′ (J) (4.29)
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Here ssphηpηp′ηnηn′ (J) has the form[81]:

ssphηpηp′ηnηn′ (J) =
∑

J

(−1)jn+jp′+J+JĴ

{
jp jn J

jp′ jn′ J

}
〈ηp′ηn′ , J‖OI‖ηpηn, J〉 (4.30)

Where Ĵ =
√

2J + 1The operator forms of these neutrino potentials have been derived in the

previous chapter. For example, the light Majorana neutrino mediating potentials are given as:

OF = HF (r12)OGT = ~σ · ~σHGT (r12)OT = S12HT (r12)

The detailed form of HI(r12) is expressed in the previous chapter as a result of the integration

on the transfered momentum, and r12 the interval between the two nucleons. The total NME is

expressed in (3.11).

In the expression of HI(r12), we see that the dependence on the excitation energies of the in-

termediate states may make the numerical calculation too difficult to perform, so we make the

approximations by replacing the energy denominator by some closure energies as in [81].

The derivations of the NMEs for other mechanisms are similar, only the neutrino potential and

the two-body transition operators are changed, the detailed expressions of these NME’s are given

in[80, 107].

4.1.4 Modification and Improvement for QRPA

The pn-QRPA formalism with the QBA approximations can solve a lot of many-body problems

in nuclear physics, but it has also drawbacks, the most serious one is that the solution of the

QRPA equations will collapse for large gpp, this is due to the overestimation of the ground states

correlations. In order to overcome these drawbacks, some modifications of this approach have been

proposed. The first attempt is the Renormalized QRPA(RQRPA)[21, 22, 108, 109], it partially

restores the PEP in (4.4) by changing the QBA approximation, But this method brings a new

problem of the violation of the Ikeda sum rule (ISR). So a further improvement of this method has

been brought out, the Fully-Renormalized QRPA(FRQRPA), it includes scattering terms[24, 110]

in the two-quasipartilce operator, then the ISR violated in RQRPA is restored.

The main change of RQRPA formalism from the QRPA is the modification of the QBA approxi-

mation as it violated the PEP, we now adopt the true QRPA vacuum as the ground state, now the

commutation relation in pn-QRPA has the form[109]:

〈RPA|[Apn, A†p′n′ ]|RPA〉 = δpp′δnn′ − δpp′〈RPA|α†n′αn|RPA〉 − δnn′〈RPA|α
†
pαp′ |RPA〉

= δpp′δnn′Dpp′nn′ (4.31)

If we set |RPA〉 = |BCS〉, then this expression reduces to the QBA form Dpp′nn′ = 1 as in QRPA.

Under this new RQBA approximation, the QRPA equation has a form as:(
A(Kπ) B(Kπ)

−B(Kπ) −A(Kπ)

)(
Xm
Kπ

Y mKπ

)
= ωKπ,mD

(
Xm
Kπ

Y mKπ

)
(4.32)

Here A and B have the same definitions as before, and we now have new definitions: Ā =

D−1/2AD−1/2, B̄ = D−1/2BD−1/2 and X̄ = D1/2X, Ȳ = D1/2Y , these new definitions make
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the QRPA equations the same form as before[109]:(
Ā(Kπ) B̄(Kπ)

−B̄(Kπ) −Ā(Kπ)

)(
X̄m
Kπ

Ȳ mKπ

)
= ωKπ,m

(
X̄m
Kπ

Ȳ mKπ

)
(4.33)

Now the normalization relations read:∑
pn

X̄m
pn,KπX̄k

pn,Kπ − Ȳ mpn,Kπ Ȳ kpn,Kπ = δkm∑
m

X̄m
pn,KπX̄m

p′n′,Kπ − Ȳ mpn,Kπ Ȳ mp′n′,Kπ = δpp′δnn′∑
m

X̄m
pn,Kπ Ȳ mp′n′,Kπ − Ȳ mpn,KπX̄m

p′n′,Kπ = 0 (4.34)

If we follow the mappings of the quasiboson operator in [109]:

α†pαp′ =
∑
n

A†pnAp′n

α†nαn′ =
∑
p

A†pnApn′

we have the self-sonsistent equation for D:

Dpnp′n′ = δpp′δnn′ − δpp′
∑
p′′

Dp′′np′′n′

∑
m

Ȳ m∗p”n′ Ȳ
m
p′′n − δnn′

∑
n′′

Dpn′′p′n′′

∑
m

Ȳ m∗pn′′ Ȳ
m
p′n′′

(4.35)

As we can see, the renormalization matrix D also depends on the RQRPA solutions, so we can use

the numerical iterative methods to solve the RQRPA equations.

The RQRPA partially preserves the PEP, reduces the correlations in the ground states, but it

also brings a serve problem, that is the violation of the ISR[104]. To solve this problem, some

modifications were proposed[24] by introducing the Fully-renormalized QRPA(FRQRPA). In this

modified formalism, they checked the differences between the RPA and QRPA phonon operators,

and found that, from RPA to QRPA, there may be some terms missing in the phonon operators.

Starting from the RPA formalism, one can then have phonon in the form: Qm† =
∑
pn

[xmpnC
†
pn −

ympnC̃pn] with C†pn = c†pcñ. Rewrite this operator in the quasiparticle form, we get[24] Qm† =∑
pn

[Xm
pnĀ

†
pn − Y mpn ˜̄Apn], and here the two quasiparticle operators have a different form from that

in QRPA: Ā†pn = A† + (unvnB† − upvpB̃)/(v2
n − v2

p) with B† defined as B† = α†pαñ being the

quasiparticle scattering term. Unlike two-quasiparticles in QRPA, because these operators originate

from the particle creation and annihilation operators, they commute with the number operator N̂ .

So now one can simulate the RQRPA by replace the two-quasiparticle operator with the new one,

the QRPA equations become:(
A(Kπ) B(Kπ)

−B(Kπ) −A(Kπ)

)(
Xm
Kπ

Y mKπ

)
= ωKπ,mU

(
Xm
Kπ

Y mKπ

)
(4.36)

A and B defined as before but with new two-quasiparticle operators. And now the new renormal-
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ization matrix U has the form:

Upp′nn′ = 〈RPA|[Āpn, Ā†p′n′ ]|RPA〉

= δpp′δnn′Rpn

Rpn = 1 + ((u2
n − v2

n)Nn − (u2
p − v2

p)Np)/(v2
n − v2

p) (4.37)

Here Nτ = 〈RPA|α†τατ |RPA〉 is the relative quasiparticle occupation number for level τ in RQRPA

vacuum calculated by [109]. With the notations

Ā = U−1/2AU−1/2

B̄ = U−1/2BU−1/2

X̄ = U1/2X, Ȳ = U1/2Y (4.38)

We come to the final form of FRQRPA equations:(
Ā(Kπ) B̄(Kπ)

−B̄(Kπ) −Ā(Kπ)

)(
X̄m
Kπ

Ȳ mKπ

)
= ωKπ,m

(
X̄m
Kπ

Ȳ mKπ

)
(4.39)

These equations are similar to those of RQRPA, as one can see, FRQRPA has nearly the same

form as RQRPA, except the inclusions of the scattering terms, this new formalism gives us the

fulfillment of ISR[24].

Under RQRPA and FRQRPA formalism, the expression for NME may change a bit. For 2νββ,

these new formalisms may change expressions for the two decay branches from the initial and final

nucleus to the intermediate nucleus, and the overlap factors in (4.24) but keep the general forms

for the NME’s[24], for RQRPA:

〈Kπmi|β−|0+
i 〉 =

∑
pp′nn′

〈p|σ|n〉(Di
pp′nn′)

1/2[X̄i
p′n′u

i
p′v

i
n′ + Ȳ ip′n′v

i
p′u

i
n′ ]

〈0+
f |β

+|Kπmf 〉 =
∑
pp′nn′

〈p|σ|n〉(Di
pp′nn′)

1/2[X̄i
p′n′v

i
p′u

i
n′ + Ȳ ip′n′u

i
p′v

i
n′ ]

〈Kπ,mf |Kπ,mi〉 =
∑
lilf

[X̄mf
lf ,KπX̄

mi
li,Kπ − Ȳ mflf ,Kπ Ȳ

mi
li,Kπ ]Rlf li〈BCSf |BCSi〉 (4.40)

For FRQRPA the renormalization matrix U replace D in RQRPA .

For 0νββ, the situation is similar, the forward- and backward- amplitudes are replaced by the

renormalized one with the multiplication of
√

D in RQRPA or
√

U in FRQRPA.

The RQRPA and FRQRPA formalisms have been used for the calculations of double beta decay

for spherical nuclei[109, 110] and did solve the problems of the collapse of the QRPA solutions.

But an extension to the deformed nuclei are somehow difficult. This is due to the fact the iterative

calculations of the renormalization matrices D or U are very time consuming and are out of the

reach of current computational capacities.

4.2 Nuclear Shell Model

Another approach which is widely used in double beta decay calculations is the Nuclear Shell

Model method[112, 113, 19]. In this method, the ground states are constructed in a way different
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from the QRPA. And for 0νββ decay, they usually use the complete closure approximation in their

calculations, no intermediate states are involved. For this approach, the ground states of the initial

and final nuclei are not derived directly from the mean field. These states are calculated by suitable

effective interactions and basis space, they can correctly reproduce many spectroscopic data of the

nuclei. There are many shell model codes dealing with these calculations. A review of these codes

can be found in[114], these codes all use the Lanczos algorithm. With this algorithm, one get the

Hamiltonian in the form of a tridiagonal H matrix, which is a bit simpler to digonalize. Due to

the blowing up of the dimensions of the configurations with the increase of the levels, truncations

are always needed, the truncated single-particle space is called the valence space.

The basis can be written in two forms, the m-scheme and the coupled scheme.

In the case of the m-scheme, the states of basis are the Slater Determinants(SD) of A particles

distributed in k single-particle orbits |nljmτ〉

Φa1...aA(1, ..., A) = det{φak(r(k))} =
∏
k

a†ak |0〉 (4.41)

As in this case only (Jz, Tz) are good quantum number, the degeneracy of the (J, T ) are not

considered, so the dimensions of the configurations should be maximal. To reduce the dimension,

we can have the second possibilities.

In the case of the coupled scheme (J or JT), the basis is defined as following: first for n particles in

a given j shell, |γi〉 = |(ji)ni viJixi〉 (here vi is the seniority); the next step is to couple the states of

different shells successively [[[|γ1〉|γ2〉]Γ2 |γ3〉]Γ
3 · · · |γk〉]Γk , these are the basis state of the coupled

scheme. Comparing to the m-scheme, the dimensions are largely reduced, but the calculations of

matrix elements are much more complicated. And if we calculate the deformed nuclei, where J

and T is no longer good quantum number, this scheme is not available.

Using the Lanczos diagonalization methods[115], first one needs to choose a good pivot state. By

acting on the state by the Hamiltonian successively, one gets more states which are orthogonal

to each other. Then we can get a tridiagonal H matrices in the basis space, the diagonalizations

of these matrices will give us the eigenvalues and eigenstates. The states with the lowest energy

should be ground states, and with these ground states we can carry on the calculations. For 2νββ,

the next step is to build the door-way states ~σt−|0+
i 〉 and ~σt+|J+

f 〉, using the Lanczos strength

function, for one of these states at the iterations N , one can produce N 1+ excitation states with

excitation energy Em, increasing the number of the iterations until it reaches the full converge,

then we can overlap these different states with another doorway state, adding the N contributions

together with the approximate energy to get M2ν
GT . For 0νββ, the closure approximation is used

since the the momenta of the neutrinos are much larger than the excitation energies. In this way,

the expression of M0ν is the two-body matrix elements between the ground states of the initial

and final nuclei, without summations over the intermediate states. All the intermediate energies

which appear in the calculations of the NME’s are now replaced by a constant value, this is similar

to our deformed QRPA calculations. But in the QRPA, we have the transitions from the initial

and final nucleus to the intermediate nucleus.

As compared with the QRPA, the SM method has only one disadvantage: smaller s.p. basis that

can be included due to the blowing up of the dimension of the basis space. It can essentially

calculate any spectroscopic observable. This is in contrast to the QRPA, in which only two-
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quasiparticle excitation of the ground states are considered. However, for the medium and heavy

nuclei, a realistic NSM calculation becomes impossible due to the drastic increase of the shell

model basis dimension, especially for levels beyond the pf -shell. To perform such calculations,

severe truncations are needed, and this makes the results less reliable.

4.3 Other Methods

Except the approaches mentioned above, there are also some other methods. These methods are

somehow not so intensively used, most of them are simplifications of the NSM method, use similar

calculation techniques as that of NSM, but with different choices of the model spaces, or effective

interactions, to reduce the complexity of NSM calculations.

To make the simplifications of the shell model, many methods use a much simpler basis space, such

as the pseudo-SU(3)[25] approach. In this method, there exists such approximated symmetries

which exclude many configurations and also the ββ operators are divided into different representa-

tions of the pseudo-SU(3) group. This largely reduces the dimension of the states space, simplifies

the diagonalizatins of the Hamiltonian, make the calculations for the deformed nuclei much easier.

In this method the closure approximation is used since no intermediate states are included. But

there is also doubt about these symmetries, whether it can describe the nuclear system well and

whether these simplifications really work. As in [25], a prediction was made that for certain nuclei

such as 160Gd, ββ decays are suppressed by the pseudo symmetry, despite of the fact Qββ > 2me.

So this could be a good test for this model, especially for 160Gd which has a decent phase space

and could be a good candidate for 0νββ in addition to150Nd in the heavy mass region.

The projected-HFB (Hatree-Fock-Bogliubov) methods[26] can be viewed as a simplified version of

the QRPA, using the HFB meanfield together with the projections of the angular momentum in

the deformed nuclei to construct the ground states. But in contrast to the QRPA, they have no

intermediate states involved in the calculations. The closure approximations are also used as one

did in pseudo SU(3) model and the derivations of the NME’s are similar.

The IBM (interacting boson model) has been applied to ββ decay recently[27]. This method

constructs the ground states with different proton (neutron) pairs, and uses the SDI (surface delta

interaction) as the effective interaction to diagonalize the Hamiltons. And then, with the closure

approximation and the ground states, one can calculate the NME’s for ββ decay.

We give a very short introductions on these models, and we see that they are more or less similar

to the NSM, but in the process of making some approximations, there may be some inaccuracies

brought in, and one just know little about how large these inaccuracies can be since a full NSM

calculations are not allowed for most of the nuclei in ββ decay. But these methods can be a good

test of the calculations of the NME’s for ββ decay.



Chapter 5

Results and Outlook

In this chapter we will describe the calculation results. We start from constructions of the single

particle wave functions for the ground states for both the initial (parent) and final (daughter)

nuclei, with nuclear pairing. The next step is the solution of the QRPA equations, that is needed

for the calculations of nuclear matrix elements. In our calculation, we have two free parameter in

the QRPA equations, the particle-hole interaction strength gph and particle-particle strength gpp

for the residual interaction. These parameters renormalize the Brückner G matrix elements derived

from the realistic Bonn CD NN force. These parameters should be fixed for our final calculation

and can be determined from our calculations of the Gamow-Teller strength distributions and the

NME for 2νββ decay [29]. After that, we can proceed to the final calculation of the NME for the

0νββ decay.

In our work, we concentrate on two nuclei, 76Ge and 150Nd. The former is typical medium-mass

nucleus, which is well studied in different nuclear models and whose 2νββ decay was observed by

different experiments. While the latter is a typical heavy nucleus, which is strongly deformed.
150Nd is thought to be the best candidate for 0νββ experiments because of its large phase space

(due to a large Q value and a large Z which increases the overlap of the electrons with the nucleus).

As 76Ge has fewer protons and neutrons, thus a smaller model space is needed. This makes 76Ge

easier to calculate and one could find out how different approximations can affect the calculation

result. These studies may give us a rough assessment on our calculations for the decay of heavier
150Nd.

This chapter is arranged as following. First we will give the parameter sets derived either from the

experiments or from theoretical estimations. We then use them for the calculations of both the

ground and the excited states. Then we give some results of the pn-QRPA solutions and make an

evaluation of how well our solutions can reproduce the experimental results, such as 2νββ decay or

GT transitions. The final part is dedicated to a detailed analysis of the 0νββ-NME, with a special

emphasis on how different parameterizations and approximations affect the results.

57
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5.1 Choice of Model Parameters

As we know, the nucleus is a very complicated many-body system, in which there isn’t a simple

central potential such as the Coulomb potential in atomic physics for electrons. Instead, we use

the mean-field together with the spin-orbit term, obtained in the so-called Hatree-Fock approxi-

mation, and get the single particle states with their shell structures. This choice can reproduce

the ”Magic number”s of the nuclei. In this case, the choice of the mean-field potential in a suitable

parameterization is needed. For the spherical nuclei, it is not a good choice to use the harmonic

oscillator potential having the form V (r) ∼ ωr2 (and for the deformed nuclei, the deformed Har-

monic Oscillator potential). We adopt the deformed Woods-Saxon potential as an improvement,

which allows to reproduce well single-particle level schemes. The general form of this potential is

given in the Appendix B. Here we introduce the parameterizations from [117] to determine the

deformed basis:

V0 = −1
2

(v1 + v2)− Tz(v1 − v2)(
N − Z
A

),

Vs.o. = 0.263(1 + 2
N − Z
A

)V0

r0 = rs.o. = rc = 1.24fm,

a0 = as.o. = ac = 0.63fm (5.1)

Here v1 = 19.7MeV , v2 = 87.0MeV , and Tz = 1/2 for protons and Tz = −1/2 for neutrons is

the third component of isospin operator. For the meaning of different symbols, one can look into

Appendix B of this work or [101]. Here, in contrast to the previous work [29], we changed the

parameterizations of [118] for superheavy nuclei to the one previously used for spherical nuclei

[117]. This is due to the following: First, the former parameterization can not reproduce the

GT position at a realistic value of the parameter gph without changing the spin-orbit interaction

strength[29], an extra factor of 1.2 is needed. The second reason is that a too large value of 〈r2〉
for neutrons is obtained with parameterization in [118] and this gives a too thick neutron skin.

Because of these arguments, we find that the parameterizations in [118] is not suitable for our

treatment of ββ-decay and charge-exchanging multipole transitions in the QRPA. The parameters

of [117], however, have been proved to be more suitable for the QRPA calculations[119, 120] and

can avoid these problems.

With this parameterization, the calculated single-particle energy levels are shown in figures 5.1

and 5.2 for the nuclei to which we focus on in this work, 76Ge and 150Nd (initial nuclei) and
76Se and 150Sm (the ββ-decay products). Deformation splits the degenerated states which have

in spherical system the same single particle angular momentum. Although the single-particle

angular momentum is not conserved in deformed nuclei, time reversal symmetry is conserved (the

Hamiltonian is invariant under the time-reversal). Now a new set of quantum numbers to define

different single particle states is used, (N,nz,Λ,Ω) (here N is the principal quantum number

N = nz+|Λ|+2nρ, and nz is the number of quanta in the z-direction, Λ and Ω are the projections on

the z-axis of the orbital and total angular momenta) instead of that used previously in the spherical

system where the angular momentum j is a good quantum number as well as the principal N and

the magnetic Ω quantum numbers. This new basis makes the realistic calculations more difficult

since without the j-degeneracy, more states are now involved in the calculation and the numbers
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Figure 5.1: Proton and neutron energy levels around the Fermi surface for 76Ge and 76Se as functions

of deformations. The bold dash-point line is the Fermi surface, and the y axis is the energies of the

levels. The upper panels are for 76Ge, with the left panel for protons and the right panel for neutrons.

The lower panels are the corresponding graphs for 76Se. Here β2 is the input of our Wood-Saxon

mean field, and it should be distinguished from the experimental quadrupole deformation β.

of non-degenerate levels increase drastically. This then means increase of computation time in the

calculations of ββ decay. For the prolate deformations (β2 > 0), the states with larger Ω are shifted

to higher energies while for oblate deformations (β2 < 0), they are shifted down. The permanent

deformations tends to change the behaviors of the single particles, with more particles with low Ω

below the Fermi levels for the oblate shapes, and more high Ω states below the Fermi level in the

prolate shapes. On the other hand, the Fermi energies are also changed by the deformations.

Our levels have all the characteristics demonstrated in[101]:

i) the shells which are determined by the single particle angular momentum j at zero deformation,

split up into (2j + 1)/2 levels for β2 6= 0.

ii)the quadrupole field r2Y20 causes the levels with lower Ω values to be shifted downwards for pos-

itive deformations (prolate shapes) and shifted upwards for negative deformations (oblate shapes).

iii)For larger deformations, it can happen that the curves of the levels change their slope, etc.

The shell structure gets now completely destroyed for large deformations, the level schemes become

totally different, not only the energies of different levels, but also the order of each level has been

changed. So the spherical shell model is no longer suitable to deal with deformed nuclei. To

deal with the ββ decays, the QRPA seems a more appropriate method. As we can see, when
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Figure 5.2: Energy levels of 150Nd and 150Sm, upper panels for 150Nd and lower panels for 150Sm,

left ones for protons and right ones for neutrons.

deformations are small, although the structures inside the shells are destroyed, but different shells

may still be well separated. This gives us the freedom to truncate the level space approximately

by the corresponding shell structures in spherical systems. But this kind of truncations may bring

us a problem for very large deformations. Since in that case, the shell structures become rather

different, many levels with large principle number N may go below the Fermi surface. And the

truncations will drop many such levels near the Fermi surface out if we just truncate the level space

by just the major shells with the same quantum number N . So by making truncations, one must

be aware of this change in the level schemes.

Our Woods-Saxon single-particle wave-functions are expanded in the basis of deformed harmonic

oscillator introduced in Appendix B. To make the coefficients converge faster, we use a somewhat

different definition of the harmonic oscillator basis than the conventional one. Usually, deformation

of the basis is described geometrically, with the oscillator lengths bz, b⊥ represent through the

spherical one b0: bz = b0[(1 −
√

5/16πβ2)/(1 + 2
√

5/16πβ2)1/3 and b⊥ =
√
b30/bz to keep the

volume conservation. We use here bz = b0[(1 −
√

5/16πβ2)/(1 + 2
√

5/16πβ2)]1/6, and also the

volume conservation condition is imposed. This is the optimal choices in our calculations[121].

The mass differences between the odd-odd and even-even nuclei remind us the existence of the

nuclear pairings originating from the residual interactions beyond the mean field approximations.

In this work, neutron-neutron and proton-proton pairings have been taken into consideration,

and for the possible neutron-proton pairing which have been studied for the ββ-decay in [107] is
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neglected. With the five-term formula from [123], one can extract the phenomenological pairing

gaps from the experimental mass differences. By renormalizing the G-matrix with the strengths

gppair and gnpair, one can reproduce these pairing gaps, calculate the BCS pairing gaps and get

the Bogoliubov coefficients u and v, Eq.(4.10). The relations between renormalized strengths

gpair’s and the deformation parameters were studied in [111]. The Brückner G-matrix elements

are obtained by solving the Bethe-Goldstone equation with a realistic NN potentials (in our case

the Charge Dependent Bonn one boson exchange potential [122], other potentials lead to similar

results). With the pairing gaps, after solving the BCS equations, one can get the Fermi energy(or

chemical potential) λ (Eq.(4.10)) and also the occupation probabilities v2 (Eq.eq4.10), here we

use the level-dependent gaps instead of the constant one. The results for the Fermi levels in 76Ge

and 76Se are shown in figures 5.1 for both neutrons and protons. From fig.5.1 one finds that

deformations change the chemical potential for both the protons and the neutrons. For neutrons,

λ is shifted up with the deformation while for protons the opposite is true. For neutrons, the

deformation will change the depth of the potential well and hence the Fermi energies increase; due

to the change of the Coulomb potentials, for protons, the behavior is different.
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Figure 5.3: The occupation probabilities for 76Ge and 76Se in the spherical and deformed cases,

different symbols are illustrated in the graph, 56 lev. corresponds to a level space from 0 to 5~ω while

31 lev. corresponds to a truncated level space from 2 to 4~ω. The deformation parameters β2 are

listed in table??.
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Figure 5.4: The occupation probabilities for 150Nd and 150Sm, different symbols are illustrated in

the graph, 84 lev. means a level space from 0 to 6~ω while 64 lev. means a truncated level space from

4 to 6~ω.

The solutions of the BCS equations for realistic residual interaction is similar to previous calcu-

lations with constant gaps in various references ([101] and references therein), only small changes

for certain levels are observed, see figs. 5.3 and 5.4. We see again that around the Fermi surface,

the occupation probabilities are smooth functions instead of a step function for the non-pairing

case, and most of the levels far away from the Fermi level are either nearly fully occupied or empty.

So, the pairing interaction mainly changes the behavior of the single particle levels near the Fermi

levels. The effects of the deformations on the solutions were studied in [29], and the authors showed

that the deformations make the behavior of the occupation probabilities of single particle levels

become much smoother, and our calculations agree well with this. We have also evaluated here how

the truncations may affect the calculations. Here we truncate the model space, by the principal

number N , N = 2− 4 for 76Ge and N = 4− 6 for 150Nd, this means fewer nucleons are involved

in the pairing. The results show that these truncations basically have no effects on the occupation

probabilities of different levels since the levels excluded in our calculations are one major shell away

from the central active shell (where the Fermi energy lies in). This is also an important check for

the QRPA calculations since the strengths of the transitions are are strongly dependent on the

occupation probabilities of quasi-particles.
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Table 5.1: BCS solutions for Fermi energies λ in several nuclei. Here FS (Full space) denotes a

model space include all the major shells 0 − 5~ω and TS (Truncated space) a truncated space with

major shells 2− 4~ω.

nuclei β2 λp (MeV) λn (MeV)

FS TS FS TS
76Ge 0.0 -9.98 - 9.97 -7.69 -7.69

0.1 -10.20 -10.21 -7.86 -7.86
76Se 0 -7.43 -7.44 -9.40 -9.40

0.16 -7.27 -7.28 -9.73 -9.73
150Nd 0 -8.49 -8.54 -5.32 -5.32

0.24 -9.13 -9.22 -6.28 -6.31
150Sm 0 - 6.90 -6.97 -6.35 -6.36

0.153 -7.15 -7.23 -7.00 -7.03

Table 5.2: Experimental and theoretical quadrupole deformation parameters β from different ref-

erences for the nuclei in question. The first column contains the data obtain from the Coulomb

reorientation experiments, the second column contains data from the exp. B(E2) transition probabil-

ities. The third and fourth columns contain theoretical results: obtained from the realistic mean field

calculations (column 3) and from the HF mean field calculations (column 4).

nucleus experimental theory

Ref.[124] Ref.[125] Ref.[126] Ref.[127]
76Ge +0.095(30) 0.2623(39) 0.157 0.143
76Se +0.163(33) 0.3090(37) -0.244 -0.241

150Nd +0.367(86) 0.2853(21) 0.221 0.243
150Sm +0.230(30) 0.19312(22) 0.176 0.206

The experiment data indicates that 76Ge and 76Se may be slightly deformed, while 150Nd and
150Sm are undoubtably strongly deformed. To determine the deformations (in this work only the

quadrupole deformation β2 are taken into account, and other deformations such as the hexadecapole

one are not expected to change the results much and are neglected), various methods, theoretical

or experimental, are applied. In table ??, values of β obtained from different methods such as

that derived from experimental B(E2) strengths or the Coulomb reorientation method, or from the

minimum of the binding energies in HF calculations theoretically are presented. To extract the

values of β from different experimental datas, the conventional way is to use the formula

β =
√
π

5
Qp
Zr2

c

(5.2)

from the measured quadrupole moments Qp in intrinsic frame, and rc is the charge radius. The

values of the first column in table?? are derived in this way; and the values of the second column
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comes from the formula

β = (4π/3ZR2
0)[B(E2)(0+ → 2+)/e2]1/2 (5.3)

from the measured B(E2)(0+ → 2+) (the reduced E2 transition probability from the ground states

to the final 2+ states), Z is the proton number, e is the charge of the proton and R0 = 1.24A1/3fm.

Hereafter, β denotes the quadrupole deformation parameter derived from above formulas and β2

is actual quadrupole deformation parameter we adopt as an input for the Woods-Saxon mean

field. One finds that for 76Ge and 76Se, the values in the first and second rows seem reasonable

despite the theoretical predictions of a negative β in the third and fourth columns for 76Se. But

for 150Nd and 150Sm, the values in the first column have too large errors. So, we prefer the values

from the B(E2) transitions, and instead of taking the deformation parameters β directly from

above formulas, we adopt a consistent approach which fits the measured β. We first calculate the

Quadrupole moment microscopically for the input β2 and then using above formula connecting

Q and β to get the value βfit, then we compare this βfit to the measured one, we repeat these

process until we find the correct β2 input of WS mean field.

Table 5.3: Theoretical and experimental β values from different references for 150Nd and 150Sm. We

fit in our calculations the quadrupole moments extracted from the B(E2) values, comparing with the

experimental values from the Coulomb orientation methods (first column) and from the B(E2) (second

column). Here β2 is the quadrupole deformation input for our calculations. Q2 is the quadrupole

moment measured in the laboratory system.

nucleus Q2(Exp.)[124] Q2(Exp.)[125] β(Exp.)[125] β2 βfit Qfit2

150Nd -2.00(51) -1.50(1) 0.2853(21) 0.240 0.285 -1.46
150Sm -1.32(19) -1.05(1) 0.1932(21) 0.153 0.193 -1.03

The microscopic quadrupole moment can be expressed as Qp =
∑
i

〈i|Q20|i〉v2
i , here the |i〉’s are

single particle wave-functions which are introduced in Appendix B, which depend on the deforma-

tion parameters β2. By adjusting the input β2, we can correctly reproduce Qp and sequentially β

together with the mean charge radius 〈rc〉 =
√∑

i〈r2〉v2
i . The results are listed in the table??,

one finds the ratio βexp/β2 is about 1.2, and the quadrupole moments predicted by the B(E2)

experiments[125] are somewhat smaller than those determined from the Coulomb Reorientation

experiments[124] for 150Nd and 150Sm. And in this work, we adopt as the β input for the wave

functions for 76Ge and 76Se the values from the first column in table??, and for 150Nd and 150Sm

the fitted values in table??.

From the determined parameters of the mean field potential we then get the s.p. energies and

wave functions for both the initial and final nuclei in ββ decay as described in previous chapter

and form the s.p. bases for the QRPA descriptions of the intermediate states for the unstable

odd-odd nuclei. The intermediate states are constructed in the QRPA from the ground states by

quasiparticle p− n pair excitations.

The initial and and final ground states are generally not the same, and it is discovered in [110]

that the BCS overlaps between these two ground states may introduce suppressions to the NME,
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as described in the previous chapter. These overlaps come from the differences between the initial

and final BCS vacua, f 〈BCS|BCS〉i. The results tell us that a suppression can happen even for

the spherical initial and final nuclei, and the analyses show that the differences of the deformations

between the initial and final nuclei may give a further reduction [29].

5.2 Illustration of the Results for M 2ν and M 0ν

0 5 10 15
Eex (MeV)

0

5

10

S(
G

T- ) (
M

eV
-1

)

gph=0.895(fitted)
gph=0.8
gph=1.0
Exp.

Figure 5.5: In this graph the GT strength distributions for 76Ge with different values of gph are

plotted. By comparing with the experiment one (the dot-dashed line) we can determine the values of

gph for the pn-QRPA calculation. The best fit is gph = 0.895(the bold solid line), that reproduce the

experimental GT resonance energy.

In the preceding section we studied some properties of the ground states of the initial and final

nuclei. These ground states are the initial and final states for the ββ decay. But as we see

in the previous chapter, in our QRPA calculation, we need also the intermediate states for the

intermediate nucleus. This then gives us more accurate results beyond the closure approximations.

We renormalize the particle-particle and particle-hole channels of G-matrix of the nuclear Hamilto-

nian by introducing the parameters gpp and gph (Eq.(4.21)). We fit the gph values by reproducing

the position of the giant Gamow-Teller resonance (GTR). The particle-particle strength parameter

gpp is fixed to reproduce the experimental 2νββ decay half-lives. With these G-matrix elements,
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one can obtain the A and B matrices in Eq.(4.21) and solve the QRPA equations to get the forward

and backward amplitudes X and Y . These amplitudes together with the BCS solutions and the

neutrino potentials can give us the final result of M0ν from Eq.(4.27).

5.2.1 Multipole Transition Strength from pn-QRPA
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Figure 5.6: GT strength distributions calculated for 76Ge and 76Se for spherical and deformed nuclei

by pn-QRPA. The thin solid line is the experimental data. The definitions of the different lines are

give in the graphs. Here as before, the 31 lev. or 56 lev. corresponds to different model spaces, and

different gA with the corresponding fitted gpp are as in table??.

The adjustment of gph has been done as illustrated in fig.5.6. The experimental position of GT

resonance (GTR) is around the excitation energy of 11MeV in 76Ge. Here, the relative calculated

excitation energies of the intermediate nuclei, discussed in [29], are defined as EK,iex = EK,iQRPA −
EK,1QRPA, with EK,1QRPA the first eigenvalue of the Kπ states (Here after K denotes the projection

of angular momentum on z-axis and J the asymptotic total angular momentum). In fig.5.5, we

plot the GT strength distributions for different gph for 76Ge. It can be seen from the figure that

an increase of gph shifts the position of the GT resonance to higher excitation energy. But the

general distribution style of GT strength remains unchanged, one can see that the three peaks

have one-to-one correspondence to that of the charge-exchange scattering experiments. As in the

case of the GTR, the other two peaks are also shifted to higher excitation energy by the increase

of gph, but the change of their positions is not so significant as that of the GTR. As can be seen

this graph, the best fitted value for gph is about 0.895, somewhat smaller than the previous result

in [29]. They had a value of about 1.15[29]. The difference in gph is due to the different choice

of the parameterizations of the WS mean field. This fitted value of gph is then applied to the
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QRPA calculation of 150Nd, since as argued in [29], gph should have an universal value for most

ββ emitters.

The adjustment of gpp is related to the 2νββ NME, we will discuss this later in the next section.

Here we use in advance the fixed value from table.?? for our analyses on the multipole transitions.

The GT transition is used to determine gph, but it can also be served as a test for the pn-QRPA

approach. For this purpose, we have calculated other multipole transitions as well. For different

multipole transitions, we choose the same values of the renormalized interaction strengths gph and

gpp. It is believed that in the same nuclei, for the same interaction, one should apply the same

parameters for all channels. This is not the case for the separable force: These phenomenological

forces need different parameterizations for different channels, one needs to fit these interaction

strengths by hand with the experiments. This is why one choose the realistic interactions for the

0νββ decay calculation.
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Figure 5.7: The same as in fig.5.6 but for the case of 150Nd →150 Sm (only theoretical results are

shown.

First, we study the GT transition as it is well studied by charge-exchange reaction experiments

for 76Ge. The GT strengths are important for 2νββ decay, as β− transition for the initial and

β+ transition for the final nuclei are just the initial and final legs of the 2νββ-NME. We study

only the relevant strength distributions, that is β+ transition for the final nuclei and β− for the

initial nuclei. The transition probabilities can be derived from the charge exchanging scatterings

for certain nuclei experimentally, as the thin solid line in fig.5.6 for 76Ge. We plotted the GT

strength distributions as functions of the excitation energy of the intermediate nucleus in fig.5.6

for 76Ge and 76Se and fig.5.7 for 150Nd and 150Sm for both the spherical limits and deformations

with the values of β2 we adopt in this work. The distributions of the GT strength have been folded

with Gaussian functions of 1MeV width. So that the original discrete spectrum is transformed
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into a continuous profile. In fig.5.6, we plot the results for different model spaces and different gpp
values corresponding to the 2νββ NME obtained with different axial vector coupling constants gA.

And in fig.5.7, we plot different results for 150Nd and 150Sm for different gpp values obtained in

the same way for 150Nd.
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Figure 5.8: Theoretical spin-dipole strength distributions for 76Ge for both the spherical and de-

formed cases, with the gpp values corresponding to the bare gA = 1.25, see table.??.

From the graphs we see that for β− strength for the initial nucleus 76Ge, we have clearly the 1+

excitation states as well as the GT resonance. The GTR has a one-to-one correspondence to the

experimental data. When the deformation of 76Ge is taken into account, the peaks become much

more fragmented. This is due to the violation of spherical symmetry, the QRPA energies split for

the different projection states K which are degenerate in the spherical case. This modifies the

strength distributions by increasing the widths and reducing the height of the peaks. For final

nucleus, the β+ has a different scale than that of β−, about one order of magnitude lower. This is

the consequence of Pauli blocking. While the occupation probability amplitudes favor β− strength,

they are very small factors in the β+ strengths when connecting similar proton and neutron states.

Now the distributions of β+ for the spherical and deformed nuclei are rather different. The reason

is the same as that for β−. The peak structure changes a lot when deformation is taken into

account.

For heavier nuclei such as 150Nd, we have similar GT strength distributions for β− especially for

the GT resonance. For 150Nd the total β− strength is much larger, this comes from the Ikeda
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Figure 5.9: The same as fig.5.8 but for the case of 150Nd.

sumrule[110]

S−GT − S
+
GT =

∑
K=0,±1

∑
p,n

|〈p|τ+σK |n〉|2(v2
n − v2

p)

= 3(N − Z) (5.4)

and because the β+ strength is suppressed as explained above, S−GT ≈ 3(N − Z). This explains

the larger total GT strength for 150Nd. We see here that for 150Nd, the majority of the transition

strength comes from the GT giant resonance. For β+ strength of 150Sm, we can also observe the

resonance peak near the position of the GT giant resonance for β− strength of 150Nd which for

the medium nucleus 76Se is suppressed. And unlike the β− transition for 150Nd, one finds also

comparable contributions from low energy states. When taking into considerations of quadrupole

deformation, one finds similar changes as β− transitions for 76Ge and β− transition for 76Se. Due

to the splits of the originally degenerated states, the shapes of the peaks are changed. They are

much more fragmented.

Two sets of gpp originating from different choices of the axial coupling constant gA are used here.

We see that for β− transition, gpp has almost negligible effect on the position and distribution of GT

transitions. Especially, the change of gpp does not change appreciably the position of the GT giant

resonance. But for β+, for 76Se, the increase of gpp reduces the strength of lower energy excitation

states while enhances that for high energy states. For 150Sm, there are also such behaviors, but

the effect is not so significant. In fig.5.6, for comparison, we also adopt different model spaces for

calculations of 76Ge and 76Se: a full space from 0~ω shell to 5~ω shell and a smaller space from

2~ω to 4~ω. The results come out that this truncations hardly affect the strength distributions.

To test the validity of our decision of choosing the same gph and gpp for different multipole

channels, we can calculate also the strength distributions for other transitions. As an exam-
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ple, we calculate the Spin-Dipole(SD) transitions. The spin dipole transition has the form as

β−SD(K) =
∑
pn
〈p|τ−r2(~σ × ~Y2)K |n〉c†pcñ. The results are plotted in fig.5.8 for 76Ge and fig.5.9 for

150Nd, the solid lines are for the spherical nuclei and the dashed lines for deformed ones. These

strength distributions include contributions form different projections of the 2− intermediate states.

Here we list only the results for the initial nuclei. Comparing with the GT strength distributions,

one find a rich structure of resonances at the range of excitation energy from 10 − 25MeV for
76Ge and 15− 30MeV for heavy nucleus 150Nd. There are more resonance peaks than that of GT

transitions. The position of giant resonance is around the excitation energy of more than 20MeV

for 76Ge and 15Nd. The sum of the strength is much smaller than that of GTR especially for

heavy nuclei. If we take into consideration of the deformations, the same effects as that for GT

transition apply. We see that some of the resonances will be split into more because of the breaking

of degeneracy. The distributions become more smoothed and some peaks are wiped away.

5.2.2 NME for 2νββ

In this section, we will discuss the NME for 2νββ in pn-QRPA calculation with account of the

deformation. The NME is expressed in(4.24) in the previous chapter for the pn-QRPA method.

From (4.24), we see that the NME depends on the overlap factors for different intermediate states

and also the initial (β−) and final legs (β+) of the GT strengths as well as the energy denominators.

The overlap factors depend on the overall BCS vacua overlap, in [29] we see that this overlap

depends on the differences between the two quadrupole deformation parameters of the initial and

final nuclei. So if there is a large difference in deformations during the decay process, the process

is suppressed. Even for two spherical nuclei, the overlap factor is less than unity, as the BCS vacua

for the two nuclei are definitely different. In table?? we list the BCS overlap factors between the

initial and final nuclei for decays of the two nuclei 76Ge and 150Nd for both the spherical and

deformed cases. The energy denominators are also important for the derivation of 2νββ-NME, we

have redefined the energy denominators in (4.24). These definitions are different to the previous

definitions of ωK,mi,m+f = (ωKmi+ω
K
mf

)/2[129], and the comparisons between results obtained with

these two definitions have been done by [29].

Table 5.4: Basic parameters for the two 2νββ processes derived from the 2νββ experiments. Here T1/2 is

the half life in years, NME I corresponds to gA = 1.25 and NME II corresponds to gA = 0.94. Eex(1+) is

the relative energy of the first 1+ state to mean energy of ground states for the initial and final nuclei derived

from the experiments.

Process T1/2(year) 2νββ NME Eex(1+)(keV)

I II
76Ge→76 Se+ 2e− + 2ν 2.5± 0.1× 1021[28] 0.15 0.27 1927.82

150Nd→150 Sm+ 2e− + 2ν 8.2± 0.9× 1018[28] 0.07 0.12 1770.12

We have already studied the behaviors of the initial and final (β±) legs for ββ decay. Now we

come to the discussions of the 2νββ NME. The values of the NME can be extracted from the

experimental half-lives by (3.4). The phase space factors for different nuclei are presented in [107].
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Table 5.5: The values of the deformation parameter of Woods-Saxon mean field β2 for initial and

final nuclei fitted in the calculation to reproduce the experimental quadrupole moment. Also the

fitted values of the p-p strenrth parameter gpp are listed (with I for the values obtained with the bare

axial vector coupling constant gA = 1.25 and II for gA = 0.94). For each case of 76Ge →76 Se, the

upper entry is obtained with a full space calculation and the lower one with a truncated space.

nuclei β2i β2f 〈BCSi|BCSf 〉 gppI gppII
76Ge→76 Se 0.0 0.0 0.81 0.68 0.63

0.78 0.71

0.1 0.16 0.74 0.71 0.66

0.82 0.74
150Nd→150 Sm 0.0 0.0 0.86 1.01 0.99

0.24 0.15 0.61 1.05 1.00

The NME’s are presented in table.?? for the two nuclei concerned. One should be aware that here

the coefficient g4
A in (3.4) have been taken into the phase space factor. For comparison, we adopt

two values of the axial coupling constant, the bare one gA = 1.25 and the quenched one gA = 0.94.

The different choices give us different values of NME in table.??. The fitting of the parameter gph
has been done by adjusting the position of GT giant resonance. It is argued in [117] that 2νββ

decay rate is especially suitable for the adjustment of gpp, because it involves the same initial and

final states as the 0νββ decay. So, with the 2νββ NME, we can fix the two parameters in our

calculation.

M2ν
GT for deformed nuclei were calculated first by [110] using the separable force. There instead

of the renormalized strength gph and gpp, they have the phenomenological constants κ and χ.

And one finds the similar behaviors of NME with these interaction strengths, as that for the

realistic force[29]. Because we have different single-particle mean field parameterization from[29],

we recalculated M2ν
GT and found not a large difference. In fig.5.10, we illustrated the NME’s gpp

dependence for different nuclei without or with deformation, and the dashed lines for the truncated

space with the same truncation as before. One finds the reduction of M2ν
GT as the magnitude of

gpp increases. The increase of gpp also accelerate this reduction. From the analyses in [130] for

the sum rule, we see that for large values of gpp, the GT resonance gives a large reductions to the

NME, this is the reason for the rapid decreasing behavior at large gpp for M2ν
GT . When gpp is small,

the negative contributions from the GTR are small and the reductions are not significant. And

the experimental values of M2ν
GT (horizontal lines in fig.5.10) usually lies in the region where the

the curves drop rapidly. The large gpp sensitivity of M2ν
GT originates mainly from the transitions

to the collective resonances.

Considering the deformation, one finds that the spherical curves drop faster with gpp than the

deformed ones. This means that the deformed results are more stable to the choice of gpp. Defor-

mation introduces the further reduction to M2ν
GT by the BCS overlap factors. In fig.5.11, comparison

between of contributions to M2ν
GT from different Kπ states are plotted for the deformed case. For

small gpp, the equalities of contributions from transitions to different Kπ states are preserved, just

like in the spherical case. But for larger gpp, we find that deformation changes the behavior of
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Figure 5.10: The dependence of the GT 2νββ NME on gpp. Upper panels are for 76Ge →76 Se,

with the left one for the spherical and the right one for the deformed cases. Solid lines are for the full

0− 5~ω space. The dashed curves are obtained in the truncated 2− 4~ω space. Lower panels are for
150Nd →150 Sm. The two horizontal lines in all graphs are the exp. 2νββ NMEs corresponding to

the bare(dash-dotted lines) and quenched(dotted lines) gA respectively.

the MGT for different projection states drastically. The curve for |0+〉 drops more rapidly than

that for |1+〉. This comes from the splitting of the GT resonances with different projections K+

states in the deformed nuclei. From fig.5.11, we can draw the conclusion that the difference of

contributions to M2ν
GT for different projection states |K〉 emerges for large gpp (at the region where

its value sensitively affect the NME). The more sensitive the dependence of M2ν
GT on gpp is, the

larger is the difference. This difference breaks the spherical symmetry in deformed nuclei.

In fig.5.10, we have results for both the full six-shell-space 0 − 5~ω and the truncated three-

shell-space 2 − 4~ω. Comparing these two curves, we can see that for the same value of NME,

the truncated calculation may give a larger value of the fitted gpp. This can be explained as

following: for a larger space, the effect of the particle-particle interactions is enhanced, since more

levels are involved, the ground states correlations are strengthened. So the value of gpp for our

solution is basis space size dependent. As for the value of gA, since in our convention we have

(T 2ν
1/2)−1 = G2ν |M2ν

GT |2, which has incorporated the bare coupling constant gA = 1.25MeV inside

the calculation of G2ν , so if we use different gA, we get the corresponding NME as M2ν
exp(g

′
A) =
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Figure 5.11: The dependence of the 2νββ GT NME on values of gpp for Kπ = 1+ and Kπ = 0+

angular momentum projections for deformed 76Ge nuclei. This graph shows the difference of M2ν
GT ’s

dependence on gpp of the two projections which both belong to the same intermediate states with

angular momentum 1+ in the spherical limit.

(gA/g′A)2M2ν
exp(gA = 1.25). This will affect the fitted value of gpp as we can see from the M2ν(gpp)

curves. Even with the quenched gA value and consequently smaller NME, the corresponding value

of gpp still lies in the region where NME is sensitive to gpp. In this sense, a better determination

on the quenching factors is needed for the determinations of gpp.

The adjustment of gpp is done by fitting the experimental M2ν
GT , the results are listed in table??.

Here we have the results for both the full space and truncated space for 76Ge. Different gA are

adopted for both the cases without and with quenching. The deformation has also been taken into

consideration. These values of gpp are used in our following calculations for 0νββ.

5.2.3 NME for 0νββ

In present thesis, we calculate only the matrix elements for light Majorana neutrino mediating

mechanism as the leading contribution for 0νββ. The initial and final nuclei are in ground states,

that means the decay is from 0+ to 0+. Unlike 2νββ decay, in 0νββ decay more intermediate states

of different multipoles rather than Kπ = 0+, 1+ are involved. This is due to the mediating particles

which can carry the angular momentum. Unlike in 2νββ decay, an SSD(Single State Dominance)



74 CHAPTER 5. RESULTS AND OUTLOOK

hypothesis is not available for 0νββ because of so many multipoles. So it is difficult to extract

from experiments such as charge-exchange scattering experiments the values of M0ν despite of

some attempts[116]. The detailed expressions of the 0νββ NME are given in (4.27). One notices

that if we neglect the energies of the intermediate states and the finite nucleon size, with only the

first order nuclear currents, we will have from the inner loop momentum integration the Coulomb-

like radial dependence of the neutrino potential 1/r. In actual calculation, we divide the NME into

two parts, the leading order part corresponding to 1/r and all the corrections mentioned above are

added later. A third correction is incorporated later on, this is the short range Correlation (SRC)

originating from the strong repulsive nature of the nuclear force.
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Figure 5.12: The partial contributions M0ν(Kπ) of different intrinsic intermediate states with

projection and parity Kπ to the total calculated 0νββ-decay NME for the cases of realistic deformation

and in the spherical limit. In this illustrative figure only the leading, Coulomb-like, radial dependence

of the neutrino potential is taken into account for comparison between different choices of the single-

particle wave functions. Also, for simplicity, the BCS overlap factor is omitted in these results. The

Fermi and the GT contributions are shown in the upper and lower panels, respectively. The three

bars represent (from left to right) the results obtained with the spherical harmonic oscillator wave

functions with the spherical code, with the harmonic oscillator and Woods-Saxon wave functions in

the spherical limit with current code.

For axially deformed system, the angular momentum is not conserved. So when dealing these
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deformed nuclei in the intrinsic frame, one needs to replace the angular momentum by other

quantum numbers, the projections on z-axis K in our case. In order to compare our result with

that of the previous calculations in spherical nuclei [81], we make the following decompositions.

In spherical nuclei, the contributions of NME come from different projections of the intermediate

states with the some angular momentum should be equal due to the spherical symmetry, this gives:

M0ν(0+ → (Jπ,K)→ 0+) = M0ν(0+ → (JπK ′)→ 0+) (5.5)

so we have M0ν(Jπ,K) = M0ν(Jπ)
2J+1 , thus in the intrinsic system we have

M0ν(Kπ) =
∑
J>K

M0ν(Jπ)
2J + 1

(5.6)

Here Jπ (angular momentum and parity) are multipoles of different intermediate states in the

spherical nuclei. In this way, we can compare our results with the previous calculations in spherical

pn-QRPA. For the F part, in spherical system, only intermediate states with ’natural parity’

π = (−1)J will contribute, so in this case, we have the equality M0ν
F (Jπ;π 6= (−1J)) = 0, for

example 0−,1+ etc. In the intrinsic frame for the spherical limit, this corresponds to the relations

M0ν
F (Kπ;π = (−1)K) = M0ν

F ((K − 1)π) (5.7)

this can be a basic examination of our code at the spherical limit. And another basic relation for

the spherical calculations is that M0ν
GT (Jπ = 0+) = 0 (0+ intermediate states will not contribute),

this then gives

M0ν
GT (Kπ = 0+) = M0ν

GT (Kπ = 1+) (5.8)

in intrinsic frame. In this sense, the multipoles Jπ in the spherical system are now replaced by Kπ

in the intrinsic frame.

In order to test the reliability and consistency of our code, we make comparisons with previous

results of the spherical QRPA [81, 117] which makes use of the spherical harmonic oscillator wave

functions. So for a comparison, we substitute the Woods-Saxon wave function by the harmonic

oscillator wave function in the spherical limit. The procedure is the following: In our calculations

we expand the wave function over the deformed harmonic basis (see Appendix B). In the spherical

limit we expect which then is equivalent to the spherical harmonic oscillator basis (ω⊥ = ωz = ω0).

For each state from the Woods-Saxon potential, we set the largest expansion coefficient to be unity

and other coefficients be zero. So now the Woods-Saxon wave function is reduced to the spherical

harmonic oscillator one. Using this reduced wave function in our code for the deformed nuclei,

we try to reproduce the results obtained by previous calculations in spherical nuclei. In fig.5.12,

we illustrate the final results of 0νββ NME (M0ν
F and M0ν

GT ) for 76Ge in the leading order (the

neutrino potential takes the form H(r) = 1/r). For different Kπ, we have three bars in the graph,

the first is obtained in the spherical basis by a transformation in Eq.(5.6), the second is calculated

by our code with a harmonic oscillator wave-function in the spherical limit, and the the third is

obtained with the Woods-Saxon wave-functions also in the spherical limit. From the first two bars

in fig.5.12, one sees the perfect agreement between the spherical and deformed codes for both the

GT and F parts. Here we see that the relations (5.7) and (5.8) are fulfilled. These results connect
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the calculations between the spherical and deformed codes, ensure us the consistency between

them. This confirms the reliability of the generalization of pn-QRPA from the spherical system to

the deformed one. The second and third bars in graph5.12 are results obtained with the harmonic

oscillator and Woods-Saxon wave functions. This gives us a comparison of M0ν between these

two different wave function. Here the same parameters of gph and gpp are used for both cases, we

have a very good agreement on these results for M0ν for all multipole Kπ except the 0+ and 1+

states. The reason of this exception will be explained later. One can draw the conclusion that in

the spherical limit, choices of HO or WS wave functions (or the mean fields) have limited effects

on the general results of M0ν .

We could also have a look at the multipole decomposition of the NME’s in the leading order in the

spherical limit. We expect the results of contributions for high multipoles (larger K) to converge.

This is the case in fig.5.12. Large proportion of the contributions comes from low multipoles

such as 0+, 1+, 2+ and 0−, 1−. The M0ν decrease rapidly with the increase of K. We also

see that for the intermediate states with K larger than 9, their contributions can be neglected

in the calculations. This is due to the choice of our model space, for which the numbers of high

K configurations are limited. In other words, these states come from the excitations to or from

single-particle states far away from the Fermi surface. Their contributions to M0ν are suppressed

anyhow by the small occupation amplitude. Another observation here is that the contributions

from intermediate states with negative parity are with nearly the same magnitude as from the

states with positive parity. So in this sense, we must choose a moderate model space to include the

intermediate states with negative parity in our calculations. One would expect the positive parity

states contributions mainly come from excitations within the same shell, while the negative ones

comes from the excitations between the neighboring shells. This will help us to choose the correct

truncations of the model space.

By including the corrections from the form factors, the intermediate energies and high order nuclear

currents, one gets in total the reductions of about 20% to M0ν
F and 40% to M0ν

GT . In fig.5.13 (the

white bars in the graph are the reductions from above corrections) and table.5.6, these results are

illustrated. In our calculation, we neglect the contributions from the tensor part, as it is small

compared to the GT and F parts(about 10% of the F part and 5% of the GT part [81]). For

simplifications, we use the closure intermediate energy of Ē ≈ 7MeV to replace excitation energies

obtained from QRPA (EmKπ − (Ei + Ef )/2). This changes the energy denominators, and will

surely introduce an error to the final result. But by comparing Ē with the mean momentum of

visual neutrino of ∼ 100MeV , one expects this error to be small. The inclusion of these correction

reduces the total magnitude for each multipole, but it doesn’t change the general structure of these

multipoles. The relations (5.7) and (5.8) for the spherical nuclei are fulfilled exactly.

Another important correction comes from the SRC (short-range correlations), which originate from

the short-range repulsion of the realistic NN interaction. We find that if we use the conventional

Jastrow type of corrections, then there is an overall reductions of NME about 15% (fig.5.13, the

shadowed area) for both the F and the GT parts. This has nearly the same magnitude as that of

the FNS (finite nucleon size) and high order currents corrections. But if we use modern version

of Brückner CCM (coupled-cluster method) corrections[120], the suppressions to the NME is only

about 5% as we see in table.5.6. So the choice of the SRC is important for the determinations of
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Figure 5.13: The NME for different multipole channels for the spherical case of 76Ge with gpp value

corresponding to bare gA(upper panel) and quenched one(lower panel). The white bars are subtracted

from the total value and represent high order currents and finite nucleon size effects etc. The gray

area is a reduction due to Jastrow SRC The black bar is the results including all these corrections.

For each multipole Kπ, the left bar is for −M0ν
F and right bar for M0ν

GT .

the 0νββ NME M0ν .

As 76Ge has less protons and neutrons than heavy nuclei such as 150Nd, a smaller model space is

needed in our calculation. This nucleus is numerically easy to calculate with such a model space.

We can check for this nucleus how different treatments will affect the final results and these results

will give us rough estimations on the uncertainties in our calculations for 150Nd. Calculations for
150Nd are more time-consuming, and we have to make some approximations due to capacity of

current computers.

In the following, we consider three different aspects of our calculation: Fig.5.14 for the consideration

of deformations, fig.5.15 for different choices of model space and fig.5.16 for different choices of gA,

this also related with different choices of gpp.

In fig.5.14, we see an excellent agreement between the deformed and the spherical nuclei if the

BCS overlap factor of the ground states is not taken into consideration. This perfect agreement

shows that the difference between the spherical and deformed calculations comes mainly from the

overlaps of two ground states. The only exception comes from the 0+ and 1+ multipoles, the

relations (5.8) is broken here, just as the inequality between the Kπ = 0+ and 1+ in 2νββ decay.

This is only the conclusions for the small deformations and for larger deformations such as that
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Figure 5.14: Comparisons between the 0νββ NME’s for 76Ge in leading order(no corrections in-

cluded) for both spherical and deformed cases without considerations of the BCS overlap factors. The

left bars are for spherical and right bars for the deformed cases with deformation parameters given in

table??.

of 150Nd, we will check later. For calculations of 76Ge →76 Se, the quadrupole deformations for

both nuclei are very small. As one can see in fig.5.1, for values of deformation we adopted for our

calculations, the levels are although non-degenerated, but not far from the degenerated spherical

levels. So the transition strengths should be approximately the same for the same single states.

Because we have an one-to-one correspondence for the model spaces for the spherical limit and the

deformed case, one can obtain such a coincidence. But such a high coincidence is somehow out of

our expectation.

For the calculations for 150Nd, it is almost impossible to include all the levels due to the capacity of

the computers. For these heavy ββ emitters with strong deformation, a truncation is always needed.

One would wonder how the results may be changed with the introduction of these truncation, so

we study here this effect of truncation for 76Ge. Because 76Ge is much lighter than 150Nd, both

a full and a truncated space calculations are possible. In fig5.15, making the same truncation as

for the 2νββ NME, we get a very good agreement between the full and truncated model space

calculations. As we can see, the truncation brings some changes to the NME. There are only minor

modifications to all the multipoles Kπ. Those intermediate states which are excluded out by
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Figure 5.15: Comparisons between the 0νββ NME’s for 76Ge in leading order for different space

without considerations of BCS overlap factors. The left bars are for a full 0− 5~ω space and the right

bars are results for a truncated 2− 4~ω space.

our truncation gives very small contributions because of the suppressions by their low occupation

amplitudes. As we have seen earlier, the truncations keep the occupation probabilities of neutrons

and protons unchanged, and all the active levels (which is neither fully occupied nor empty) have

already been included in our calculations. So in this sense, we should take all the active levels not

far from the Fermi surface within the truncated space to avoid the loss of the NME while making

truncations.

A third comparison has been done for the considerations of the quenching effects in the nuclei. In

this case, we have different values of M2ν for different gA as shown in table.??, so different values

of gpp have been derived. In proceeding part, we will have detailed analyses on M0ν ’s dependence

on gpp in a full region from 0 to the collapse limit. Here, in fig.5.16, one finds that there are slight

changes for MF and MGT due to the different gA. However, MGT is more sensitive to gA than

MF . As we will discuss later, the changes of the overall M0ν may come largely from the values of

gA than from the changes from gpp.

So we now check the dependence of the NME on gpp in the leading order. As we have shown

above, a truncation of the model space will not affect the values of M0ν much, so we analyze this

dependence within a truncated model space. This dependence for the spherical nuclei was studied
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Figure 5.16: Comparisons between the 0νββ NME’s for 76Ge in leading order for normal and

quenched gA without considerations of the BCS overlap factors. For each multipole, the left bar is for

gA = 1.25 and right bar for gA = 0.94.

in [117], their conclusion is that the contributions of Jπ = 1+ multipole for both modes of the ββ

decay depend very sensitively on the strength of gpp. In fig.5.17, the dependences of M0ν(Kπ) are

plotted for the deformed nuclei. One finds that only the contributions from multipoles Kπ of 0+

and 1+ of GT part depend sensitively on gpp, and this is in accordance to conclusions of [117]. One

also notices that the M0ν
GT for multipoles 0+ and 1+ depend on gpp less sensitive than M2ν

GT . This is

because the M2ν
GT elements for Kπ = 0+ and 1+ involve only Jπ = 1+ states, but for M0ν

GT , many

other Jπ states are involved. As for the other multipoles, there is no such sensitivity. So when

they all are added together, the sensitivity of 0+ and 1+ contributions are reduced. The reason of

this sensitivity is that the Gamow-Teller correlations (spin one, isospin zero pairs) are very near

the corresponding phase-transition in the Jπ = 1+ channel (corresponding to the collapse of the

QRPA equation of motion) [117]. All the other multipoles Jπ correspond to small amplitude of

the collective motion, so there is no such phase transition and they are insensitive on gpp. For

deformed nuclei, one finds that the spherical limit gives a good approximation for the F part, as

the relations (5.7) are fulfilled as gpp changes. But for 0+ and 1+ of GT part, the relation (5.8) is

broken, this is similar to the 0+ and 1+ contributions to M2ν
GT . And, again, the magnitude of this
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Figure 5.17: The dependence of the 0νββ NME’s of 76Ge on gpp for different multipoles.

The final results are sums of the contributions of all multipoles, this is in contrast to the 2νββ case

where one has only the contribution from the intermediate Jπ = 1+ states. These total NMEs of

M0ν
F and M0ν

GT as functions of gpp are plotted in fig.5.18. Because the 0+ and 1+ contributions

are ones of the largest contributions of to the total M0ν
GT , we observe the changes of slope of the

M0ν
GT (gpp) curve. The curve M0ν

F (gpp) has a nearly constant small slope. In the deformed case,

M0ν
F is less sensitive to gpp than M0ν

GT .

The overall 0νββ NME in our convention has the form:

M0ν(g′A) = (g′A/gA)2[M0ν
GT (g′A)− (gV /gA)2M0ν

F (g′A)) (5.9)

here gA = 1.25 is bare axial coupling constant for nucleons. It is commonly accepted that in

the nuclear environment, this constant is quenched, but the detailed value is unknown. As M2ν
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Figure 5.18: The total M0ν as a function of gpp. For each gpp the experimental M2ν
GT is fitted by a

choice gA. So along the curves gA is changing. The two dotted vertical lines give the fit of gpp for the

values gA = 1.25 and gA = 0.94

depends also on the value of gA, for different gA’s, M2ν
GT is different and it sensitively depends on

gpp, This means that our fitted values of gpp depends also on the value of gA. Now we can proceed

our discussions in two-fold.

On one hand, let us set gA to be a constant, and consider only the gpp dependences of the 0νββ

NME’s. This is usually used in the occasion where the measured 2νββ half-lives are with large error

bars. Then from the gpp dependences of M0ν
F and M0ν

GT one can find that M0ν is gpp dependent,

there may be a change of magnitude for 2 − 3 times before the collapse of the QRPA. But this

dependence is not as sensitive as that of M2ν , and M0ν are generally more stable against gpp.

On the other hand, if there is a measured half-life T 2ν of the ββ emitter, one can get the M2ν
GT as a

function of gA (as gA is quenched in the nuclei and the exact value is still unclear). The fitted value

of gpp then become an indirect function of gA from the functions of M2ν(gpp). For 76Ge, we have

the M2ν
exp(gA = 1.25) = 0.15MeV −1, while varying gA, M2ν changes, so does gpp, this then changes

M0ν
F and M0ν

GT . We want to observe here how these changes of gA will modify the final values of

M0ν . In fig.5.18, we have illustrated this relation. This is obtained by following procedure: For

different gpp (from 0 to the value corresponding to M2ν
GT with bare gA), we calculate M2ν

GT together

with M0ν
F and M0ν

GT . From the calculated M2ν
GT , we can get the corresponding gA, with these

gA’s and the formula(5.9) we have the dependence of M0ν on gpp. The final results (illustrated

in fig.5.18) are somehow unexpected: From this graph we find that M0ν has less dependence on
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gpp than M0ν
GT . We have the maximum and minimum values of M0ν when the 2νββ half-life of

the nucleus is known, with an uncertain gA. In this sense a particular choice of gA does not have

that significant effect on the determinations of M0ν as one supposed to. If the 2νββ half-life is

measured accurately, one can obtain M0ν with an uncertainty of about 25% for different gA.

In the above discussion we considered the deformation effect for the leading order contribution to

M0ν . In fig.5.13 and Table5.6, we show the results of deformed calculations for the overall M0ν with

all the corrections. The deformation haven’t largely changed the multipole structures of the NME,

but the overall magnitude has been reduced by the BCS overlaps. And we can generalize all the

discussions applicable in the leading order to the full results. In particular, the same dependence

on gpp can be applied to the corrected NMEs.

Table 5.6: Different contributions to the total calculated NME’s for 0νββ decay 76Ge→76Se. The

BCS overlap is taken into account. The results for the 0νββ NME’s are listed for the spherical

(β2 = 0.0) and deformed nuclei (β2 = 0.10 for 76Ge and β2 = 0.16 for 76Se) and for bare axial coupling

constant gA = 1.25 and the quenched one gA = 0.94. The table gives the Fermi part MF , the Gamow-

Teller part MGT and the total 0νββ transition matrix elements. The different contributions are: the

leading, coulomb like, contribution M(1/r), of higher order currents and the finite nucleons size

(eq. (3.9) to (3.12)) ∆M , the Jastrow SRC eq(3.13) δM(J) and Brückner SRC[117, 119] δM(BCD)

calculated with the Bonn CD force. The last two columns give the total final 0νββ matrix elements

with Jastrow tot(J) and with Brückner tot(BCD) correlations for the Fermi MF , the Gamow-Teller

MGT and the total contributions M0ν defined in eq.(5.9). The calculations are done in a 6~ω space,

N=0 to 5.

Full space 0− 5~ω
β2 gA M(1/r) ∆M δM(J) δM(BCD) tot(J) tot(BCD)

0.0 (0.0) 1.25 MF -3.15 0.78 0.45 -0.09 -1.92 -2.47

MGT 6.37 -2.85 -1.01 0.20 2.52 3.72

M0ν 3.75 5.30

0.94 MF -3.31 0.82 0.46 -0.10 -2.03 -2.59

MGT 7.28 -3.15 -1.04 0.21 3.10 4.35

M0ν 3.05 4.10

0.10 (0.16) 1.25 MF -2.83 0.69 0.40 -0.08 -1.74 -2.22

MGT 5.59 -2.49 -0.88 0.18 2.21 3.27

M0ν 3.33 4.69

0.94 MF -2.98 0.73 0.40 -0.18 -1.85 -2.34

MGT 7.69 -3.65 -1.47 0.27 2.83 3.93

M0ν 2.77 3.70

There are systematic analyses of the uncertainties in the calculations of M0ν by different nuclear

structure theories [117]. We can follow these discussions and give some rough estimations on

the uncertainties in our calculations. The uncertainties may arise from different aspects of the

calculations, the first is the limitation of different methods adopted, this is hard to estimate, as

different methods really differ a lot and different approximations are used. But the choices of

model space in different methods may have similar effects, so in this sense, the small model space
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Table 5.7: Different contributions to the total calculated NME’s for 0νββ decay 76Ge→76Se. The

BCS overlap is taken into account. The results are the same as in table5.6 but in a restricted model

space 2− 4~ω.

Truncated space 2− 4~ω
β2 gA M(1/r) ∆M δM(J) δM(BCD) tot(J) tot(BCD)

0.0 (0.0) 1.25 MF -2.89 0.71 0.42 -0.09 -1.76 -2.26

MGT 6.19 –2.72 -0.94 0.20 2.53 3.67

M0ν 3.66 5.12

0.94 MF -3.07 0.76 0.43 -0.09 -1.89 -2.40

MGT 7.12 -3.02 -0.96 0.21 3.14 4.31

M0ν 2.98 3.97

0.10 (0.16) 1.25 MF -2.58 0.63 0.37 -0.08 -1.85 -2.34

MGT 5.41 -2.37 -0.81 0.17 2.22 3.21

M0ν 3.23 4.50

0.94 MF -2.75 0.67 0.38 -0.09 -1.71 -2.17

MGT 6.38 -2.68 -0.84 0.19 2.86 3.89

M0ν 2.70 3.57

adopted by Nuclear Shell Model may bring a severe loss in the total transition strength of 0νββ

decay. Then the different parameterizations and approximations of the same methods may bring

also errors, these are listed in [117]. In this work for the deformed nuclei, we can also give some

assessment on these errors from our calculations following the discussion in [117]:

i) The quasiparticle mean field may change the results slightly except M0ν
GT for intermediate states

0+ and 1+ which are sensitive on gpp. In our calculations we compared the Woods-Saxon potential

and the Harmonic oscillators in the spherical limit, they differ only a little. Other mean fields may

give the similar results;

ii)we have discussed gpp dependence of the final results. One finds only contributions of GT part

from the multipoles Kπ = 1+ and Kπ = 0+ are sensitive to gpp, other multipoles evolve with gpp

steadily. In this sense, the experimental errors of the half-lives will bring the uncertainties to M0ν

mainly for multipoles (Kπ) 0+ and 1+. Because of the different magnitudes of gpp sensitivities of

M0ν and M2ν , an uncertainty in the 2νββ half-life will produce a much smaller relative error bar

0νββ decay half-life.

iii) For certain values of 2νββ NME, 0νββ NME is also related with another parameter in our

calculation, the axial vector coupling constant gA, and we find that with the choices of different

gA, one may obtain an error of about 20% at the leading order. Here MF change slightly and

MGT changes a bit with the change of gA. But for the final NME, as the GT part depends also on

the values of gA which is also depends on M2ν , the effect of the change of MGT is not significant

in the overall NME M0ν . For the choices we made for the gA values, in consideration of all the

corrections, there is a 23% change in the spherical case and 21% for the deformed case. In this

case the determination of the value of gA can reduce the uncertainty of M0ν ;

iv) The effect of the sizes of model spaces are also intensively discussed in this thesis. A truncation
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Figure 5.19: The NME’s for different multipole channels for the deformed case of 76Ge with the gpp

values fitted to the 2νββ decay with the bare gA(upper panel) and the quenched one (lower panel).

The results are the same as in fig.5.13 but allowing for deformations (β2 = 0.1 in 76 and β2 = 0.16 in
76Se).

of the model space may also bring an error of about several percents to the final result. In the

spherical case, from table5.7, less than 5% if all the other parameters are the same, and with

deformation, the errors are similar as listed in table5.7. So even with a larger deformation, with

suitable truncation, we expect the error to be within 10%;

v) It is estimated that using the closure energy to replace the intermediate energies, the error could

be within 10%[117]. This is because the mediating neutrino’s average momentum is of ≈ 100MeV ,

considerably larger than the nuclear excitation energies which have a magnitude of 10− 20MeV ;

vi) The higher order terms and the finite nucleon size give us a total correction of about 30% to

the overall NME. So in this sense, the correct high order terms and correct form factors may be

important for the determination of M0ν ;

vii) The different choices of SRC, may change the value greatly, as can be seen in table5.7, the

Jastrow type gives a 15% reduction to the final M0ν comparing to 5% to the Brückner CCM style

SRC. In this sense a more accurate SRC is needed;

viii) The overlap factors of initial and final nuclei also reduce the NMEs, especially for the deformed

nuclei. This suppression comes from the different BCS vacua of the initial and final nuclei. For

the two nuclei with large deformation differences, this suppression is significant, can be as large as

40%. Even in the case that both the initial and final nuclei are spherical, a nearly 20% reduction
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has been derived;

ix) the last important topic is the effect of the different shapes of the nuclei, deformation, which

is the objective of this work. We have seen that the effect of deformation can reduce M0ν largely,

this signifies the importance of the deformed calculation for heavy nuclei since many of them are

usually strongly deformed.

From above analyses, the importance and priorities of different approximations become clear. First,

the effect of deformation affects most strongly the BCS vacua overlap between the grounds states

of the initial and final nuclei, we will check this again for the heavy deformations. In addition, all

the corrections as the finite nucleon size, the higher order currents and SRC must be taken into

account. As for the truncations, if we keep all the neighboring shells of the active shell, then small

errors are expected. A suitable choice of gA is also important for the final result.

To conclude of this discussion, we give the results of calculations for the deformed 76Ge, with the

corresponding uncertainties. The results are listed in table5.6 and table5.7. The largest value is

M0ν = 4.69 when we use the Brückner CCM SRC and ignore the quenching of gA in nuclei. And

the smallest value 2.70 is obtained when we make the truncations, use the Jastrow type SRC and

take into consideration the quenching effect. All these different choices of parameters such as the

SRC, the quenching etc give a total reduction of about 40%. And now we come to the calculations

of 150Nd, following all the calculation results we obtained for 76Ge.

As an example we showed how the different uncertainties may arise from different approximations

and assumptions used in the deformed calculations for 76Ge. And this can give us some insight

into our calculations of 150Nd which has more nucleons and a larger level space. In the deformed

calculations, the enlargement of the level space makes the computational time increase drastically,

so we need to choose suitable truncations for these calculation. From the above discussions we

see that the effects of the far away single particle states can be indeed eliminated, or at least

substantially reduced. So we make the truncation to drop the shells 0 − 3~ω from the full space

0− 6~ω. This reduces the total numbers of the single particle levels from 84 to 64 and saves a lot

of computational time. In the following part, we will illustrate the results for 0νββ of 150Nd which

definitely is deformed and previous spherical calculations are with big deviations.

The input deformation parameters for our Woods-Saxon potential have been given in preceding

section for 150Nd. For comparison, we make also the calculations in the spherical limit. We cal-

culated two sets of results corresponding to the bare and quenched axial vector coupling constants

gA respectively. The contributions of different multipoles to NME are illustrated in fig.5.22 in the

spherical limit, and fig.5.23 for the deformed case. They have the similar multipole structures as

in the case of 76Ge, the low multipoles contribute more, and the high multipoles can be neglected

in the calculations. The detailed results is illustrated in table.5.8 for sums of all the multipoles for

the leading order contributions and different corrections. We see that in our calculation for 150Nd,

the reduction from the high order terms of the nucleon currents and form factors is about 20% for

M0ν
F and 40% for M0ν

GT respectively. These reductions produce about 30% overall reduction in the

final M0ν . In addition, the SRC is important here, depending on which scheme we use we may

have reductions varying from as large as 20% to less than 5%.

And as for 76Ge, we made several comparisons for different approximations in the calculation

for 150Nd in figs.5.20,5.21 at the leading order, to evaluate the uncertainties. First one is the
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Figure 5.20: Comparisons between the NME’s for 150Nd→150 Sm in leading order for both spherical

and deformed case without considerations of the BCS overlap factors. The left bars are for spherical

and right bars for the deformed case with deformation parameters given in table.??. The upper panel

is for the Fermi part while the lower panel shows the Gamow-Teller part (eq.(5.9)). Kπ are for the

intermediate states, i.e. for (pn) pair.

deformation, we see that for 150Nd, the deformation may change the structure of NME, comparing

with the case of 76Ge. This may come from the larger deformation of 150Nd, which is twice as

large as than that of 76Ge. For such large deformation, the level scheme has changed greatly from

that of the spherical case. This means that in heavily deformed nuclei, there is a bigger change

of NME. It is different from the small deformation case where the NME of the single states is

nearly the same as the corresponding ones in the spherical nuclei. If large suppressions from BCS

overlap factors are not taken into consideration, we can have a reduction of 24%, of which the F

part contributes a bit more than GT part. So in the heavily deformed nuclei, the importance of

the choices of deformation parameters becomes much more crucial.

The gpp dependence of M0ν seems not so significant here for realistic gpp ∼ 1, and we believe that

the similar behavior applies here as in the case of 76Ge. One finds only small changes of multipoles

0+ and 1+, for a change of gpp for 0.02. The large change of 2νββ NME from the change of gA is

compensated by the the sensitivity of M2ν
GT to gpp. Hence, with the different choices of gA, M0ν

F

and M0ν
GT can be viewed as constants. Under this assumption, the value of gA we adopt may play

a crucial role for the determination of the final M0ν from Eq.(5.9).
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Figure 5.21: Comparison between the NME in the leading order for unquenched gA = 1.25 and

quenched gA = 0.94, without considerations of the BCS overlap factors. The left bars are for gA = 1.25

and right bars for gA = 0.94. It corresponds to fig.5.16 for 76Ge.

Here we used a truncated space because a full space calculation is somehow unrealistic at present

due to the limitation of the computers. From the experience of 76Ge we expect that our truncation

will at most bring an error of 10%, comparing with uncertainties brought by the deformation

parameters and axial coupling constant, this is really a small error.

For the full consideration of all the corrections, the reductions stemming from the deformation for
150Nd is about 40%. Noticing that the BCS overlap factors gives the reductions about 30%, we may

conclude that in this case, the reductions of M0ν largely comes from the BCS overlap factors. We

also investigate the effect of the quenching of gA, for the quenched axial vector coupling constant

gA, we have a reduction of about 30% for M0ν . This is because in the quenched case we have

a smaller contribution from M0ν
GT due to a smaller gA. And the largest predicted value of M0ν

for 150Nd in our calculation is 3.34, with the Brückner style SRC and bare gA, while the smallest

value is 1.79 with the Jastrow type SRC and quenched gA, so the total uncertainty of 46%. And

it is clear that Jastrow type SRC over reduced the results [119] and it is commonly accepted that

there are quenching effects in the nuclei, with these assumptions, we would like to recommend the

value 2.06 as the best value of our calculations.

In tabel5.9 the calculated NME M0ν for 150Nd is listed and compared with the calculation results

by other approaches. One can see that the NME M0ν of this work calculated with the neglect
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Figure 5.22: The 0νββ NME’s in spherical nuclei for different multipole channels of 150Nd with gpp

value fitted with the bare gA(upper panel) and the quenched gA (lower panel). It is similar to fig.5.13

for 76Ge.

of deformation (column 3) agrees well with the previous ones of the spherical QRPA [117]. A

small difference can have its origin in the somewhat different approximations involved (use of the

Woods-Saxon single particle wave-functions and the BCS overlap factors, the different SRC and

truncations of the model space). By including deformation(column 4), one gets a much smaller

NME M0ν . The main origin of the suppression is given above, stemming from the BCS overlap

factors as well as the quenching of gA.

Our present NME M0ν for 150Nd, obtained within the state-of-the-art QRPA approach that ac-

counts for nuclear deformation, and it has nearly the same magnitude as NME of other approaches

(columns 5, 6, 7) when the quenching effect is taken into consideration. The 0νββ decay half life

T 0ν
1/2 corresponding to the effective Majorana neutrino mass mββ = 50meV gives a rough estimation

of 1026 year, in agreement with the general results obtained by different methods.

5.3 Prospect of Neutrinoless Double Beta Decay

Alhough with the claim by [7], we till now don’t have enough evidence for the existence of the

0νββ. Till now we have just lower limits for the 0νββ half-lives for most of the candidate nuclei.

We need more accurate experiments with improved measurements and detection technology to

confirm or deny the possibility of the 0νββ, we are still far from full understanding the whole
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Figure 5.23: The 0νββ NME’s for different multipole channels for the deformed case of 150Nd with

gpp fitted with the bare gA(upper panel) and quenched one(lower panel).

process both experimentally or theoretically. Even if the 0νββ is observed, a lot of work will be

needed for identifying the underlying physics.

For the matrix element calculations of the deformed nuclei, we now developed the deformed pn-

QRPA methods, together with previous versions of QRPA approaches, we can deal with nearly

all the nuclei which decay with the ββ-decay. With several nuclear system measured and matrix

elements M0ν calculated for different mechanisms, in this case, we can determine which mechanism

is dominant. This can also be determined by the comparisons of half-lives for decays to different

final states such as the ground states or the 1+ and 2+ excitation states, but the observation of

these decays maybe difficult because of the large 2νββ background.

However, the determination of NME is not simple, a comparison of different methods may give us

some clues, but till now the discrepancies among different models are still very large, especially

that between the two main approach, QRPA and NSM. At the present stage, to close the gaps

between them should be the most realistic and necessary, since we have no idea when one will

discover the 0νββ.

On the other hand, 0νββ can also be viewed as a good constraint on new physics beyond the SM. An

apparent situation is the problems of the neutrino, we now have the difference of the masses squared

as well the mixing angle measured from the oscillation experiments. But these values do not help

us to answer questions like how small is neutrino mass and are they Majorana particles. Answers

to these problem now wait the results from 0νββ as well as other experiments and observations,



5.3. PROSPECT OF NEUTRINOLESS DOUBLE BETA DECAY 91

Table 5.8: Different contributions to the total calculated NME’s for 0νββ decay 150Nd→150Sm for

model space 4−6~ω. The BCS overlap is taken into account. The different contributions are described

in table5.6.

β2 gA M(1/r) ∆M δM(J) δM(BCD) tot(J) tot(BCD)

0.240 (0.153) 1.25 MF -2.09 0.51 0.33 -0.06 -1.25 -1.64

MGT 4.01 -1.86 -0.72 0.14 1.43 2.29

M0ν 2.23 3.34

0.94 MF -2.16 0.52 0.33 -0.06 -1.30 -1.70

MGT 4.44 -2.00 -0.73 0.14 1.71 2.58

M0ν 1.79 2.06

0.0 (0.0) 1.25 MF -4.07 0.99 0.67 -0.13 -2.41 -3.21

MGT 7.35 -3.54 -1.46 0.26 2.36 4.07

M0ν 3.90 6.12

0.94 MF -4.12 1.00 0.68 -0.13 -2.44 -3.25

MGT 7.69 -3.65 -1.47 0.27 2.58 4.31

M0ν 3.01 4.50

Table 5.9: The matrix elementsM0ν for the 0νββ decay 150Nd→150Sm calculated in different models.

The final result of this work obtained with account of deformation is given in column 4. A result

with neglect of deformation is also listed for comparison with the earlier result of Ref. [117]. The

corresponding half-lives T 0ν
1/2 (in the unit of 1025 years) for an assumed effective Majorana neutrino

mass 〈mββ〉 = 50 meV are also shown.

QRPA [117] def. QRPA(sph.) def. QRPA pseudo-SU(3) [25] PHFB [26] IBM-2 [27]

M0ν 5.17 6.12 2.06 1.57 1.61 2.32

T 0ν
1/2 1.72 1.23 10.8 18.7 17.7 8.54

the improvement of the precision of the experiments will bring us either the definite answers or

further constraints. Further, we may wonder why are neutrinos Dirac or Majorana particles, why

are their masses so tiny, etc. All these underlying problems require experimental determinations of

the 0νββ. In this sense, the discovery of the 0νββ will trigger a new era of physics together with

experiments such at the LHC and other high energy accelerators.
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Chapter 6

Summary and Conclusions

The absolute neutrino mass scale and the nature of neutrino (whether it is Majorana particle, i.e. it

is its own antiparticle) have long been important questions in particle physics since the observation

of the neutrino oscillations. The former question can be answered by different experiments and

observations. The single beta decay can give the anti-electron-neutrino mass. The current running

experiment for this task is the KATRIN in Karlsruhe with sensitivity of about 0.2 to 0.3 eV.

From the study of the cosmic microwave radiation spectrum as well as the study of the large

scale structure in the universe, one can get a limit on the sum of the neutrino masses of about

1.6eV from Sloan Digital Sky Survey(SDSS). And one can also extract this mass scale from the

neutrinoless double beta decay experiment, from the so-called effective neutrino mass. However,

only the latter experiments can reveal the Majorana nature of the neutrinos and can answer the

second question of the neutrino physics. Hence, the neutrinoless double beta decay experiments

have crucial importance in the neutrino physics and for new physics beyond the Standard Model

(SM).

Double beta decay is a rare decay with a half-life much longer than the age of our universe. It was

proposed by Maria Goeppert-Mayer in 1935, only one year after the Fermi weak interaction theory

was formulated. It originates from the nuclear pairing (the protons and neutrons get paired by the

residual interaction) which tends to lower the ground states of the even-even nuclei and makes them

more stable than the odd-odd ones with the same nucleon numbers. The decay is thus from even-

even nucleus to another even-even one with a larger binding energy, with a change of nucleus electric

charge by two units. To conserve the electric charge, two electrons are emitted. According to the

number of the emitted neutrinos, one can divide this decay into two types: If the lepton number

is conserved, then two anti-electron-neutrinos are emitted, (A,Z) → (A,Z + 2) + 2e− + 2ν̄e, this

process is called the two neutrino double beta decay; Otherwise, if there is no neutrinos presented

in the final state, (A,Z) → (A,Z + 2) + 2e−, the lepton number is violated by two units, this

decay is called the neutrinoless double beta decay. The two neutrino double beta decay has been

observed by different experiments, for different double beta decay emitters, its half-life lies in a

range from 1018 to 1021 years. But currently, there is no confirmed evidence for the existence of

neutrinoless double beta decay despite the highly contesting result from Klapdor-Kleingrothaus

group for 76Ge.
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From the above descriptions, one finds that neutrinoless double beta decay is a weak process with

the lepton number being violated. One of the origins of such violation is the Majorana nature of

the neutrinos, a Majorana mass term in the Lagrangian violates the lepton number conservation.

This is forbidden in the SM. But with a simple addition to the SM such as a basic type I see-saw

with both Dirac and Majorana mass terms, this violation can be achieved. And in some other new

physics models such as Grand Unification Theory (GUT), this violation is obtained automatically

from the interactions of fermions with the extra gauge bosons such as in the SO(10) GUT. There

may be also other origins of this violation, such as that coming from the R-parity violated SUSY,

where the violated lepton number is accompanied by the violated R-parity. For these different

possible underlying mechanisms, one prefers the basic mechanism with a simple addition of see-

saw, and it is supossed to be a dominant one with the contributions from the light neutrinos being

overwhelming.

As mentioned above, the neutrinoless double beta decay implies the Majorana nature of the neu-

trinos. If this process is truly mediated by a light virtual neutrino, one can extract the effective

neutrino mass from the measured half-life, but only if the nuclear matrix element (NME) is precisely

determined. The NME is closely related to nuclear physics, it describes the nuclear transitions of

the double beta decay process. The theoretical calculation of the NME for the two-neutrino double

beta decay can be a good cross check for the reliability of the calculated many-body wave functions

used in the neutrinoless double beta decay NME. The nucleus is a very complicated many-body

system, and to deal with such a system, one needs nuclear many-body theories. One of such

theories which is frequently often used in the calculations of NME is the Quasiparticle Random

Phase Approximation (QRPA). The QRPA methods use the mean field approximation to get the

single particle wave functions and solve the BCS pairing equations in the basis of these s.p. states

to construct the ground states of the initial and final nuclei. With the proton-neutron (pn) exci-

tations mixed by the residual interactions, one constructs the excited states in the intermediate

nucleus. The method has been shown to be capable of successfully describing the double beta

decay processes provided the particle-particle residual interaction is included along with the usual

particle-hole one. On the other hand, the calculated nuclear matrix elements for the double beta

decay, both for the two-neutrino and neutrinoless modes, turned out to be sensitive to the value

of the particle-particle interaction strength.

Of the different double beta decay emitters, 150Nd has the largest phase space and hence the largest

decay rate and the relatively shortest half-life of about 1025 years in the spherical QRPA calculation

(for the effective neutrino mass of 50 meV). So it could be the emitter with the largest discovery

potential of neutrinoless beta decay. But in contrast to other emitters, most of which are spherical,

it is heavily deformed. Most of the previous calculations of neutrinoless double beta decay NME

were done for the spherical case only. So one needs to develop the QRPA approach to deal with the

deformation. The deformed QRPA to treat the two neutrino double beta decay was developed by

Tübingen group. The deformed Woods-Saxon wave functions with the phenomenological residual

interactions are used and the Gamow-Teller-Resonace (GTR) and the two neutrino double beta

decay NME are successfully described. However, using the phenomenological forces for calculating

the neutrinoless double beta decay amplitude would immediately rise the problem of how to fix

the numerous strength parameters of the forces in different Jπ channels. So the realistic NN forces
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have been included into this calculation by Tübingen group to replace the phenomenological forces.

In order to perform the deformed QRPA calculations, the main effects of the deformation on the

ground state properties have to be clarified. Pairing interactions for protons and neutrons in the

even-even nuclei have to be described. The BCS equations were solved self-consistently to obtain

the occupation probabilities which enter the QRPA equations, and also to obtain gap parameters

as well as the chemical potentials for protons and neutrons. As a two-body interaction, the nuclear

G-matrix was used which is a solution of Bethe-Goldstone equation for the Bonn-CD one boson

exchange potential. The deformed G-matrix elements are obtained from a decomposition over the

spherical ones, the decomposition coefficients are calculated by space overlap integrals between the

single particle basis of spherical harmonic oscillator and the deformed wave functions. The single

particle states of the deformed basis are calculated in a deformed axially-symmetric Woods-Saxon

potential. The same G-matrix elements are also used for the residual interaction which mixes the

pn excitations. By solving the QRPA equations, one can get the wave functions for the states of

the intermediate nucleus. There are two parameters in this model, the renormalized particle-hole

strength gph and the renormalized particle-particle strength gpp, they are determined by the GTR

position and the NME of two neutrino double beta decay. This adjustment was first done for

the realistic forces in Mohamed Saleh Yousef’s work by Tübingen group. For the first time, they

developed the deformed QRPA by including the realistic forces and calculated the GTR and the

two neutrino double beta decay NME within the deformed QRPA frame.

The topic of this thesis is to apply the deformed QRPA with the realistic forces to the calculations

of the neutrinoless double beta decay. Following the previous works in Tübingen group done by

M. S. Yousef, we determine the free parameters of our QRPA calculation by adjusting the position

of GTR (for gph) and fitting the two neutrino double beta decay NME (for gpp). The two-neutrino

double beta decay is governed by the Gamow-Teller (GT) matrix elements connecting the final

and initial nucleus with the intermediate states. Then, with the fixed parameters, we calculated

also the Spin-Dipole (SD) transitions to verify the reliability of our method. Then we come to the

final calculation of the neutrinoless double beta decay NME.

Before calculation for 150Nd, we first calculated the NME for 76Ge as it is light and a smaller

model space is needed. These make this nucleus numerically easier for the calculations. Also

this nucleus is well studied by previous calculations with a spherical treatment. So, a comparison

between the deformed and spherical QRPA methods has been done with the deformations in the

deformed QRPA set to be zero (The spherical limit). At the leading order, one gets a perfect

agreements between the NME’s of these two calculations for both the Fermi (F) part and Gamow-

Teller (GT) part for all the multipoles Jπ or Kπ (here π is the parity, and J and K are the total

angular momentum and its projections on the symmetry axis respectively), which implies a good

consistency between the current deformed extension of the QRPA and the original spherical one.

If deformation is taken into account, one finds a reduction of the neutrinoless double beta decay

NME, which comes mainly from the BCS overlap between the ground states of the initial and final

nuclei. This BCS overlap depends on the difference between the deformations of the initial and

final nuclei, but one finds that even in the spherical limit, this overlap factor is less than unity. In

this thesis we also assess the different uncertainties which may arise from different approximations

adopted. The size of the model space will not affect the final results if one includes the active shell
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(where the Fermi level lies in) and its neighbors in the calculations. The two-neutrino double beta

decay NME depends sensitively on gpp, because only the multipole Jπ = 1+ is involved in this

calculation. But for neutrinoless double beta decay more multipoles are involved, and the NME

dependence on gpp is not very sensitive. Different choices of the axial vector coupling constatn

gA can affect the final results by as large as 20% because of these dependences on gpp. The high

order currents and the finite nucleon size give all together a reduction of about 40% in the GT part

and 20% in the F part. This gives a reduction to the overall NME by 30%. And different choices

of Short-Range-Correlation (SRC) may give a reduction from about 5% (Brückner CCM) to 20%

(Jastrow).

Coming to 150Nd, one gets similar results. Here for the reality of current computers, we truncated

the model spaces, and use a space 4 − 6~ω with shells with principal number N = 4, 6. Now

one has much larger deformations with a larger deformation difference, hence the reduction from

the BCS overlap is much larger, the BCS overlap is about 0.6. So a large reduction from the

deformation is expected compared with previous results with the spherical calculations. Similar

reductions from the high order currents and the finite nucleon size as well as the SRC are obtained,

these give an overall reduction for about 30% if one uses the Brückner CCM SRC, or about 40% if

the Jastrow SRC is adopted. One finds that our method gives a larger NME than other methods

and a corresponding half-life of about 1025−26 years for mββ = 50eV (depending on the actual

quenching effect of the axial vector coupling constant and the adopted SRC). This makes 150Nd

still the favorite among the neutrinoless double beta decay candidates.

The future of the double beta decay is promising. It is not only a big challenge but also a huge

chance for both the theorists and the experimentalists. Strong double beta programs in both

particles and nuclear physics are under way. The detection technology also develops rapidly,

making the sensitivity of the experiments higher and higher.
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Zusammenfassung

Neutrino-Oszillationen haben gezeigt, dass Neutrinos Masse besitzen. Die Neutrino-Oszillationen

können uns jedoch keine Information über die absoluten Massen liefern weil sie nur die Differenzen

der Massenquadrate der Neutrinos und die Mischungsmatrix zwischen den Massen- und Flavor-

Eigenzuständen geben. Im Neutrino-Sektor gibt es noch viele offene Probleme:

1. Ist das Neutrino ein Dirac- oder Majorana-Teilchen, d.h. ist es verschieden oder identisch mit

dem Antiteilchen?

2. Was ist die absolute Skala der Neutrinomassen?

3. Ist die Massen-Hierarchie der Neutrinos die natürliche (1-2-3) oder ist sie invertiert (3-2-1)?

4. Was ist die Dirac-Phase, die bei drei Generationen der Neutrinos in der Transformation z.B. im

Element (1,3) von Massen-zu Flavor-Neutrinos auftreten kann?

5. Was sind die beiden Majorana-Phasen?

Die absolute Skala der Neutrinomassen lässt sich in folgenden Experimenten bestimmen:

1. Einfacher Betazerfall, z.B. im Tritium-Zerfall mit dem sehr kleinen Q-Wert 18,6 keV. Hier

liegt die Obergrenze für die Elektron-Neutrinomasse bei 2,3 eV im Mainz und Troitsk-Experiment.

KATRIN-Experiment in Karlsruhe wird die obere Grenze bis 0,3 eV reduzieren.

2. Eine Zweite Möflichkeit entsteht durch die Untersuchung der Massenverteilung im Universum.

Bei der Strukturbildung sorgen massive Neutrinos dafür, dass mit zunehmender Summe der Massen

der drei Neutrinos die Wahrscheinlichkeit für Galaxien bei kleineren Abständen reduziert wird. Das

gemessene ”Power”-Spektrum der Massenverteilung legt für eine obere Grenze der Summe der drei

Neutrinomassen einen Wert von 1 bis 2 eV nahe. Die Zuverlässigkeit dieser Grenze ist aber eng

verbunden mit unserem Verständnis der Strukturformation im Universum, wo es auch noch viele

offene Fragen gibt.

3. Die dritte Möglichkeit der Festlegung der absoluten Neutrinomasse benutzt den neutrinolosen

Doppelten Betazerfall. Hierzu müssen dieÜbergangsmatrixelemente zuverlässig bekannt sein. Die

entsprechende Berechnung wird in dieser Dissertation zum ersten Mal mit realistischen Nukleon-

Nukleon-Kräften (das neueste Bonn CD-Potential) in deformierten Kernen durchgeführt.

Der neutrinolose Doppelte Betazerfall ist im Standard-Modell verboten. In Großvereinheitlichten

Theorien (GUT’s) und in Supersymmetrischen Modellen (SUSY) ist er jedoch erlaubt. In diesen

Theorien ist das Neutrino ein Majorana-Teilchen und besitzt Masse. Bisher gibt es nur obere
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Grenzen für den neutrinolosen doppelten Betazerfall, abgesehen von einer Messung in 76Ge von

Klapdor-Kleingrothaus und seinen Hiedelberger Mitarbaitern, die jedoch von dem Rest der Kol-

laboration und allen anderen Experten auf dem Gebiet des Doppelten Betazerfalls angezweifelt

wird.

Um aus den Übergangswahrsceinlichkeiten die Majorana-Masse zu bestimmen sind die Übergangs-

matrixelemente genau so wichtig wie die Daten.

Die Berechnungen der Übergangsmatrixelemente für den neutrinolosen doppelten Betazerfall wur-

den bisher mit realistischen NN-Kräften nur im sphärischen Fall durchgeführt. Der Zerfall von
150Nd mit einem sehr großen Phasernraum und daher einer großen Übergangswahrscheinlichkeiten

und einer relativ ”kurzen” lebensdauer in der Gegend von etwa 1025 Jahren (abhängig von der

unbekannten Neutrinomasse) verspricht mit sphärischen Rechnungen die beste Aussicht auf die

Entdeckung des neutrinolosen Doppelten Betazerfalls.
150Nd ist aber deformiert, und jede realistische Berechnung vom Übergangsmatrixelement muss

die starke Deformation des Kerns berücksichtigen. In dieser Doktorarbeit werden die benötigen

Vielteichenwellenfunktionen der Kerne im Rahmen der Quasi-Teichen-Random Phase-Näherung

(QRPA) berechnet. Zuerst, müssen die Einteilchen-Nukleon-Wellenfuktionen der Protonen und

Neutronen in einem deformierten Woods-Saxon-Potential berechnet werden. Diese deformierten

Nukleonwellenfunktionen werden dann in eine sphärische Basis entwickelt, in der dann die Nukleon-

Nukleon-Matrixelemente der Bonn CD-Kraft im Rahmen der Brückner Theorie durch Lösen der rel-

ativistischen Bethe-Salpeter-Gleichung (halb auf der Energieschale) mit Pauli-Operator berechnet

werden. Hierzu sind mehrfaches Umkoppeln der Drehimpulse für den Spin und den Bahndrehim-

puls und entsprechende Schritte auch im Isospin-Raum notwendig. Am Ende hat man nun die

Zweiköpermatrixelemente der realischen NN-Wechselwirkung in der deformierten Basis und kann

diese zusammen mit den Einteilchenenergien in die entsprechende QRPA Gleichungen einsetzen.

Die gleiche Transformation wird auch mit den Zweiköpermatrixelementen des Neutrinopotenzials

gemacht.

Mit der QRPA Lösung für Vielteichenwellenfunktionen werden die Übergangsmatrixelement für

den Doppelte Betazerfall in den Systemen 76Ge→76 Se und 150Nd→150 Sm berechnet. Zum Test

der Qualität dieses Elements ist die Berechnung des entsprechenden deformierten Zwei-Neutrino

Übergangsmatrixelements notwendig. Es wurde zuerst in Tübingen in der Doktorarbeit von Mo-

hamed Saleh Yousef gemacht. Durch dieser Rechnung erfärt man dass eine leichte Renormierung

der Teilchen-Teilchen und Teilchen-Loch Wechselwirkungen benötigt ist um die relevanten ex-

perimentellen Daten anzupassen. Die Gamow-Teller-Resonanz (GTR) könnte in ihre Position

in Zwischenkern durch eine Renormierung der Teilchen-Loch-Matrixelemente angepasst werden

(solch eine Anpassung ist jedoch in der Regel nicht notwendig, da schon die nackten Brükner-G-

Matrixelemente die experimentelle Lage der GTR fast genau wiedergeben). Die Renormierungs-

faktor der Teilchen-Teilchen-Wechselwirkung ist für 150Nd gpp ≈ 1. Das heißt die nackte Brückner-

G-Marix ist schon ziemlich genau in den QRPA Rechnungen.

Im Vergleich zu früheren sphärischen Berechnungen ist da in dieser Doktorarbeit berechnete Über-

gangsmatrixelement für den neutrinolosen doppelten Betazerfall 150Nd →150 Sm ziemlich stark,

um ca. 40%, reduziert. Das ist der Effekt der starken Deformation, und je grösser der Unterschied

zwischen den Deformationen im Anfangs- und Endkern wird, desto stärker wird die Reduktion.
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Diese Beobachtung stimmt mit den Resultaten anderer Methoden überein. Trotzt der Reduktion,

zeigen die Resultate dieser Arbeit, dass der neutrinolose doppelte Betazerfall für 150Nd→150 Sm

eine der besten Empfindlichkeiten für die Majorana Neutrinomasse hat.
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Appendix A

Brief Introduction to Superfield

Formulation

To construct the supersymetry multiplets, we can introduce the so-called superspace coordinate

which is Grassmann number behaving like a spinor. we introduce a left Weyl spinor coordinator

θα and its complex conjugate θ̄α̇ = (θα)†, satisfying [xµ, θα] = {θα, θβ} = {θα, θ̄β̇} = {θ̄α̇, θ̄β̇} = 0,

with these coordinates we can define the Superderivatives:

Dα ≡
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ D̄α̇ ≡ −
∂

∂θ̄α̇
− iθασµαα̇∂µ (A.1)

a general superfield can be defined as a function of superspace coordinates, the expansion on θ and

θ̄ reads:

S(x, θ, θ) = φ(x) + θψ(x) + θ̄χ̄(x) + θ̄σ̄µθAµ(x) + θθf(x) + θ̄θ̄g∗(x)

+ iθθθ̄λ̄(x)− iθ̄θ̄θρ(x) +
1
2
θθθ̄θ̄D(x) (A.2)

Under the superfield approach, the infinitesimal supersymmetric transformation has the form:

δS = (ξQ+ ξ̄Q̄)S (A.3)

Here the superchage is actually the same we defined before. But now it has the form:

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ Q̄α̇ =
∂

∂θ̄α̇
+ iθασµαα̇∂µ (A.4)

So the supercharges has just a different of sign with the superderivatives.

The general superfield can be reduced to several different irreducible superfields: the chiral super-

field and the vector ones with a special case the gauge superfield.

The chiral superfield Φ obeys the relation:

D̄α̇Φ = 0 (A.5)

This is the left chiral superfield and the right one is just its complex conjugate of the left one. By

solving the equation, we may have Φ expended in the superfield as:

Φ(x, θ, θ̄) = φ(x+) +
√

2θψ(x+) + θθF (x+) (A.6)
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Here the composite coordinate defined as xµ± = xµ± iθσµθ̄. Here φ and ψ are scalar and left Weyl

spinor field respectively and F auxiliary field.

The vector superfield V is obtained by imposing the condition on the general superfield

V = V † (A.7)

This requires χ = ψ, g = f and ρ = λ We are more interested in the gauge superfield since it

is related to the gauge theory. Gauge superfield is a special vector superfield where V is in the

representation of the gauge algebra under the transformation

eV → eV
′

= e−iΛ
†
eV eiΛ (A.8)

Where Λ may be also superfields transform under gauge group. There are extra degrees of freedom

in the gauge theory, and the usual way is to choose a particular gauge to remove these extra degrees

of freedom. In SUSY gauge theory, the commonly used one is the Wess-Zumino gauge, which set

χ = ψ = f = g = φ = 0, leaving the gauge superfield with the form:

V (x, θ, θ̄) = θ̄σ̄µθAµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1
2
θθθ̄θ̄D(x) (A.9)

Aµ is the gauge field. And a new particle λ, the gaugino, is introduced. Here D again is the

auxiliary field.

We can construct the Lagrangian from the superfield by integrating over the superspace. From

the expression of the superfield and properties of the superspace coordinates, only F and D terms

are non-vanishing after the integration. Because the superfield is supersymmetric invariant, the

Lagragian is automatically invariant, this is simpler than constructing the Lagrangian directly

and add the terms from the multiplets by hand. In the following, we show several examples of

constructing the supersymmetric invariant Lagragian.

We call any complex analytical functions f(Φ) depending on the left chiral superfield Φi (or the

right one but not on both) the superpotential, which itself is a left (right) chiral superfield. We

can construct the Lagrangian from the F -term of the superpotential’s superspace integrations:

Lf =
∫
d2θf(Φi) +

∫
d2θ̄ ¯f(Φi) = [f(Φi)]F + [ ¯f(Φi)]F (A.10)

This part correspond to the fermion and Higgs kinetic terms as well as fermion Yukawa couplings in

the SM, and of course after the integration on superspace coordinate we can have more interaction

such as which between Higgsino and sfermions.

Following the normal definition for gauge field, the gauge field strength is defined out of the gauge

superfield as

Wα = −1
4
D̄D̄(e−VDαe

V ) (A.11)

The kinetic terms of gauge field can be constructed as

LG =
∫
d2θτcc′(Φi)W cW c′ + c.c. = (τcc′(Φi)W cW c′)F + c.c. (A.12)

And the gauge-fermion interactions can be construct from the so called ”Kähler potential”:

LK =
∫
d2θ

∫
d2θ̄K(eV Φi, (Φi)†) = K(eV Φi, (Φi)†)D (A.13)

With these potentials, we can construct the gauge theories which we need.



Appendix B

Nuclear Mean Field

B.1 Nuclear Mean Field Potential for deformed nuclei

In this part, we briefly introduce the mean field potentials and wave functions we use in our work.

B.1.1 Harmonic Oscillators

The Harmonic Oscillator potentials are commonly used in quantum mechanics. For spherical

nuclei, it has the general form as 3-dimensional isotropic Harmonic oscillator:

V (r) = −V0[1− (
r

R0
)2] =

m

2
ω2

0(r2 −R2
0) (B.1)

Here V0 is the potential-well depth. R0 is the nuclei radius. The Harmonic oscillator potential

gives the energy eigenvalues εN = ~ω0(N + 3/2)− V0, here N = 2nr + l is the principal quantum

number with nr the radial quantum number and l the orbital angular momentum. The normalized

wave function for fermions can be written as:

|NlΛΣ〉 = |NlΛ〉|Σ〉 = ψnrl(r)ψ
Λ
l (θ, φ)χ(Σ) (B.2)

Here Λ is the z-projection of l, and Σ the spin with the spin wave function χ, the angular function

is just ψΛ
l (θ, φ) = YlΛ(θ, φ) the spherical harmonic function. The radial part of the wave function

can be expressed as:

ψlnr (r) = Cnrlν
l
2 e−

ν
2L

(l+ 1
2 )

nr (ν) (B.3)

ν ≡ r2

b20
is the dimensionless coordinate with b0 =

√
~

mω0
the oscillation length, Llnr (ν

2) are the

associate Laguerre polynomials, the normalization constant Cnrl = ( 2nr!
(nr+l+1/2)!b30

)
1
2 .

For the deformed case, the spherical symmetry is no longer valid. But in our case, the axial sym-

metry remains, then the harmonic oscillator potential may have the form in cylindrical coordinates

(ρ, z, φ) as:

V = −V0 +
m

2
(ω2
⊥ρ

2 + ω2
zz

2) (B.4)

From the solution of schrödinger equation, we can get the single particle energy as εN = ~ω⊥(2nρ+

Λ + 1) + ~ωz(nz + 1). λ and Σ are the projections of the orbital and spin angular momentum on

the z axis. The principal quantum number is defined in this case as N = nz+2nρ+ |Λ| with nz the
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axis quantum number, nρ radial quantum number. The projection of total angular momentum on

the z axis is K = Λ + Σ, the parity of the level may be defined as π = (−1)N . The wave function

of the deformed nuclei can be described as:

|NnzΛΣ〉 = |NnzΛ〉|Σ〉 = ψ|Λ|nρ (ρ)ψnz (z)
eiΛφ√

2π
χ(Σ) (B.5)

The radial function ψ
|Λ|
nρ is in the form:

ψ|Λ|nρ (ρ) = C |Λ|nρ (η) (B.6)

with η = (ρ/b⊥)2 a dimensionless coordinate, here b⊥ defined as before b⊥ =
√

~
mω⊥

is the

oscillation length for motion perpendicular to z axis , with the normalization constant C |Λ|nρ =

( 2nρ!

(nρ+|Λ|)!b2⊥
)

1
2 and L

n
|
ρΛ| the associate Laguerre polynomial. The axial wave function ψnz is written

in the similar manner with a dimensionless variable ξ ≡ z/bz, bz the axial oscillation length with

the form bz =
√

~
mωz

:

ψnz = Cnze
− ξ

2

2 Hnz (ξ) (B.7)

Here the normalization constant Cnz = (
√

(π)2nznz!bz)−
1
2 , Hnz is the Hermite polynomial.

In our calculation, we frequently use the transformation between the spherical and deformed sys-

tems. So we need to decompose the deformed harmonic oscillator over the spherical ones as:

|NnzΛ〉 =
∑
nrl

AN
′l

NnzΛ|N ′lΛ〉 (B.8)

The spatial overlap coefficient AN
′l

NnzΛ is a integral which can be calculated numerically in the

spherical system as:

AN
′l

NnzΛ =
√

2π
∫ ∞

0

[
∫ π

0

ψ|Λ|nρ (r sin θ)ψnz (r cos θ)Y ∗lΛ(θ, φ = 0)sinθdθ]ψnrl(r)r
2dr (B.9)

B.2 Deformed Woods-Saxon Potential

In this section we will introduce the single particle wave functions for deformed Woods-Saxon

potential with the spin-orbit and other interaction. It is composited of three part the centrifugal

potential, the spin-orbit interactions and the coulomb interactions which only affect the protons.

The centrifugal potential has the form as:

Vw.s.(r, θ, φ) =
V0

1 + exp|(r −R(θ, φ))/a(θ, φ)|
(B.10)

Here V0 is the depth of the potential well and R(θ, φ) is the nuclear radius which is may be expressed

as[101] R(θ, φ) = R0{1+β2

√
5

16πf(θ, φ)}, f(θ, φ) is a angular function expressed in[118], this shows

us the dependence of the potential on the shapes of the nuclei, and the surface diffuseness a(θ, φ) has

similar angular dependence[118] a(θ, φ) = a0F (θ, φ), and we should notice that we have different

parameters for protons and neutrons especially the depth of the potential well because of the

coulomb corrections.

The spin-orbit interactions have the form:

Vs.o.(r, θ, φ) = 2(
~

mπc
)2~∇ Vs.o.

1 + exp|(r −Rs.o.(r, θ, φ))/as.o.(r, θ, φ)|
· [~σ × ~p] (B.11)
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With Vs.o. the depth of the spin-orbit potential. Rs.o. and as.o. have the similar form as R and a

respectively.

The last part is coulomb potentials which can only have effect on the protons, which has the form:

Vc =
∫

ρ(r, θ, φ)
1 + exp|(r′ −Rc(r, θ, φ))/ac(r, θ, φ)|

1
|r − r′|

d3r′ (B.12)

Here ρ is the charge density distribution, and once again Rc and ac the similar form. And all the

radius can be written in the form R = rA1/3.

With the radial and spin-orbit potential (for proton also the coulomb potential), we can solve

the Shrödinger equation, noticing that the Wood-Saxon Potential is shape dependent (on the

quadrupole deformation β2 and Hexadecupole deformation β4, we usually neglect the latter since

it contribute less to the solution). We expand the solution on the deformed harmonic basis. In

the deformed system, angular momentum J is not a good quantum number. But the projection

on the symmetry axis is, also are the parity and the energy. For single particle state |τΩτ 〉 with

energy ετ , one has the state expanded on the deformed harmonic oscillator basis as:

|τΩτ 〉 =
∑
NnzΣ

bNnzΣ|NnzΛτ = Ωτ − Σ〉|Σ〉 (B.13)
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