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Statement of Originality

Chapters 2 and 3 are based mostly on the articles [2] and [3] written

in collaboration with Jerome Gauntlett, Eran Palti, James Sparks, and

Daniel Waldram.

Chapters 4, 5, and 6 are based on the article [4] with James Sparks.

Original contributions reported in this thesis include:

• The identification of the generalized holomorphic Killing vector field

dual to the R-symmetry in every superconformal field theory that

admits a holographic description as an AdS5 solution of type IIB

supergravity (section 3.3).

• The discovery of a canonical symplectic structure for such solutions

and the related contact volume formulas (section 3.5).

• The definition of a notion of “generalized Sasakian geometry” and

its reduction to a differential system in four dimensions (chapter 4).

• The extension of the procedure of volume minimization beyond the

Sasaki-Einstein case (chapter 5).

• The new (if somewhat partial) solutions dual to massive deformations

(chapter 6).



Abstract

The most general AdS5 × Y solutions of type IIB string theory that are

AdS/CFT dual to superconformal field theories in four dimensions can be

fruitfully described in the language of generalized geometry, a powerful hy-

brid of complex and symplectic geometry. We show that the cone over the

compact five-manifold Y is generalized Calabi-Yau and carries a general-

ized holomorphic Killing vector field ξ, dual to the R-symmetry. Remark-

ably, this cone always admits a symplectic structure, which descends to a

contact structure on Y , with ξ as Reeb vector field. Moreover, the contact

volumes of Y , which can be computed by localization, encode essential

properties of the dual CFT, such as the central charge and the conformal

dimensions of BPS operators corresponding to wrapped D3-branes. We

then define a notion of “generalized Sasakian geometry”, which can be

characterized by a simple differential system of three symplectic forms on

a four-dimensional transverse space. The correct Reeb vector field for an

AdS5 solution within a given family of generalized Sasakian manifolds can

be determined—without the need of the explicit metric—by a variational

procedure. The relevant functional to minimize is the type IIB supergrav-

ity action restricted to the space of generalized Sasakian manifolds, which

turns out to be just the contact volume. We conjecture that this contact

volume is equal to the inverse of the trial central charge whose maximiza-

tion determines the R-symmetry of the dual superconformal field theory.

The power of this volume minimization is illustrated by the calculation

of the contact volumes for a new infinite family of solutions, in perfect

agreement with the results of a-maximization in the dual mass-deformed

generalized conifold theories.
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Chapter 1

Introduction and results

One of the most significant advances in contemporary theoretical physics has been the

realization that certain geometric solutions in string theory have completely equiv-

alent descriptions as ordinary quantum field theories. Thanks to this gauge/gravity

correspondence, many new insights have been obtained on both sides. The archetypal

example is the AdS5 × S5 solution of type IIB supergravity, with the round Einstein

metric on S5, which corresponds to N = 4 super Yang-Mills theory [5]. In fact, ac-

cording to the AdS/CFT correspondence, any supersymmetric AdS5 solution admits

a dual description in terms of a four-dimensional superconformal field theory (SCFT).

In this thesis we elucidate the geometric structure of such general solutions, and ex-

plain how it maps to important properties of SCFTs. We start by reviewing some

key results about the well-studied class of Sasaki-Einstein solutions, which provides

us with an outline of what we want to generalize.

1.1 Sasaki-Einstein solutions

Following on from the AdS5 × S5 solution, a rich class of special solutions takes the

form AdS5 × YSE, where YSE is a Sasaki-Einstein five-manifold, and the only non-

trivial flux is the self-dual five-form [6, 7, 8, 9]. By definition, a Sasaki-Einstein

manifold YSE is a compact manifold whose metric cone C(YSE) ∼= R+× YSE is Kähler

and Ricci-flat, that is Calabi-Yau. The dual SCFTs have (at least) N = 1 supersym-

metry and can be understood as arising on a stack of D3-branes located at the apex

of the cone. There has been much progress in understanding the AdS/CFT corre-

spondence in this setting. For example, there are large sets of explicit Sasaki-Einstein
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metrics [10, 11, 12], and there are also powerful constructions using toric geometry,

whose corresponding dual SCFTs have been identified [13, 14, 15, 16].

Some essential properties of every SCFT with N = 1 supersymmetry, such as the

central charge and the conformal dimensions of chiral primary operators, are captured

by its Abelian R-symmetry [17]. This R-symmetry manifests itself in the Sasaki-

Einstein geometry as a canonical Killing vector field ξ, which is real holomorphic with

respect to the complex structure on the Calabi-Yau cone, and is also the Reeb vector

field associated with the contact structure on YSE descending from the symplectic

structure of the cone. Recall that a contact form on a five-dimensional manifold is

a one-form σ such that σ ∧ dσ ∧ dσ is nowhere zero, that is a volume form, and the

Reeb vector field is the unique vector field such that ξyσ = 1, ξydσ = 0. The central

charge of the field theory may then be expressed as the volume of YSE [18, 19], while

the volumes of supersymmetric three-submanifolds give the conformal dimensions

of chiral primary operators corresponding to wrapped D3-branes. Using symplectic

geometry these volumes can be written as Duistermaat-Heckman integrals on the

cone and hence evaluated by localization.

A very useful perspective [19, 20] is to regard Sasaki-Einstein metrics as criti-

cal points of the Einstein-Hilbert action restricted to a space of Sasakian metrics,

whose cones are by definition Kähler but not necessarily Ricci-flat. More precisely,

on the space of Sasakian metrics whose cones admit a nowhere-vanishing holomor-

phic (3, 0)-form Ω, with homogeneity of degree three under the Euler vector field r∂r,

the Einstein-Hilbert action precisely reduces to the volume functional. This volume

actually depends only on the Reeb vector field, and a critical point (in fact a mini-

mum) hence determines the unique Reeb vector field for which a Sasakian manifold

is also Einstein, provided such a metric exists. This makes it possible to extract

important geometric information without having to know the Sasaki-Einstein metric

explicitly (which, apart from some special classes of solution, remains out of reach).

This is extremely useful since there are now many existence results for Sasaki-Einstein

metrics (for a review, see [21]), with vast classes of examples not known explicitly.

Notwithstanding this ignorance, one can still compute the volumes of these solu-

tions by volume minimization [19, 20] and compare them to BPS quantities in the

dual SCFTs.
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As first suggested in [20], the determination of the Reeb vector field by volume min-

imization corresponds to the determination of the R-symmetry of a four-dimensional

N = 1 SCFT by a-maximization [22]. The procedure involves constructing a trial

R-symmetry, which mixes arbitrarily with the set of global (flavour) Abelian sym-

metries, and imposing anomaly cancellation constraints. The correct R-symmetry at

the infrared fixed point is then the one which (locally) maximizes the trial central

charge. A proof that the trial central charge function (appropriately interpreted)

is equal to the inverse of the “off-shell” Sasakian volume function was presented in

[23] for toric (that is U(1)3-invariant) Sasakian metrics, and very recently in [24] for

general Sasakian metrics.

1.2 Generalization

The most general solutions of type IIB supergravity that are dual to four-dimen-

sional N = 1 SCFTs take the form AdS5 × Y , where Y is a compact Riemannian

five-manifold which is not necessarily Sasaki-Einstein. The first detailed analysis of

such solutions with generic fluxes activated was carried out in [25]. The conditions

for supersymmetry boil down to a set of Killing spinor equations on Y for two spinors

(when Y is Sasaki-Einstein there is only one such spinor). By analyzing these equa-

tions, a set of necessary and sufficient conditions for supersymmetry were established.

In light of the progress summarized above for the Sasaki-Einstein case, it is natural

to investigate the associated geometry of the cone over Y . This is the first goal of

this thesis.

As we discuss in detail in chapter 3, the requirement of supersymmetry puts cer-

tain constraints on Y , which can be conveniently formulated in terms of a specific

kind of generalized geometry on the cone C(Y ) ∼= R+ × Y (some aspects of gen-

eralized geometry are reviewed in chapter 2). This approach was already pursued

in [26, 27]. By viewing AdS5 × Y as a supersymmetric warped product R1,3 × C(Y )
(see figure 1.1), we will see that the cone admits two compatible generalized almost

complex structures [28, 29]. One of these two generalized structures is actually inte-

grable, which implies that the cone C(Y ) is generalized Calabi-Yau, in the sense of

Hitchin [30]. The integrability of the second generalized structure is obstructed by

the presence of the fluxes, but it nevertheless defines a symplectic structure on the
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Figure 1.1: The AdS5×Y geometry generated by a stack of D3-branes can be viewed
as a warped product R1,3×C(Y ) of Minkowski space with the cone C(Y ) ∼= R+×Y .

cone [3] (provided the five-form flux sourced by D3-branes is non-vanishing). Pre-

cisely as in the Sasaki-Einstein case, one can define a canonical Killing vector field ξ

which is also the Reeb vector field associated with the induced contact structure on Y .

However, ξ is now generalized holomorphic, that is holomorphic with respect to the

generalized complex structure (there is no complex structure in general). We briefly

comment on some relations between generalized holomorphic objects and dual BPS

operators. Remarkably, the volume formulas for the central charge and the conformal

dimensions of chiral primary operators still hold in this generalized setting, but now

in terms of contact volumes [2]. 1 We obtain the following formulas for the central

charge a and the conformal dimension ∆(OΣ3) = 3R(OΣ3)/2 of the chiral primary

operator OΣ3 dual to a D3-brane wrapped on a supersymmetric submanifold Σ3 ⊂ Y :

aN=4

a
=

1

(2π)3

∫

Y

σ ∧ dσ ∧ dσ , ∆(OΣ3) =
2πN

∫

Σ3
σ ∧ dσ

∫

Y
σ ∧ dσ ∧ dσ

, (1.1)

where aN=4 = N2/4 is the (large N) central charge for SU(N) N = 4 super Yang-

Mills theory, and N is the quantized five-form flux through Y . We illustrate some of

our results using the Pilch-Warner solution.

Since a-maximization applies in principle to every N = 1 SCFT, it is clearly

desirable to extend the procedure of volume minimization beyond the Sasaki-Einstein

1In the Sasaki-Einstein case these contact volumes are equal to the Riemannian volumes defined
by the metric. This is no longer true in the general case with fluxes.
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case, to the most general supersymmetric AdS5 solutions of type IIB supergravity.

The motivation is the same as in the Sasaki-Einstein case: explicit solutions will form

a very small subset of the space of all solutions, since finding them always relies on

having a large amount of symmetry. On the other hand, one might hope that the

development in this thesis will eventually lead to existence results, say for toric AdS5

solutions with general fluxes. Then volume minimization will allow one to compute

BPS quantities for these solutions.

In chapter 4 we express the constraints imposed on the cone C(Y ) by super-

symmetry in a geometric form [4]. In the Sasaki-Einstein case, one can carry out

a symplectic reduction of the Calabi-Yau cone to obtain a four-dimensional trans-

verse Kähler-Einstein space which, in general, is only locally defined; constructing

locally defined Kähler-Einstein spaces has been a profitable way to construct Sasaki-

Einstein manifolds, see for instance [31]. Here we will show, using the formalism of

generalized reduction developed in [32, 33], that for general Y there is an analogous

reduction of the corresponding six-dimensional generalized Calabi-Yau cone geome-

try to a four-dimensional space, which is generalized Hermitian. This means that

the four-dimensional geometry admits two compatible generalized almost complex

structures, one of which is integrable.

After this reduction, the supersymmetry conditions turn into a system of equations

on a four-dimensional transverse space for a triple of orthogonal symplectic forms

{ω0, ω1, ω2}, a structure first studied in [34], and two functions h and ∆̂. More

precisely, the symplectic forms satisfy

dωi = 0 ∀ i ∈ {0, 1, 2} , (1.2)

ωi ∧ ωj = 0 ∀ i 6= j , (1.3)

ω0 ∧ ω0 = α1 ω1 ∧ ω1 = α2 ω2 ∧ ω2 6= 0 , (1.4)

where α1 and α2 are positive functions depending on h and ∆̂, together with the

following differential conditions:

ω1 =
1

2
LHh

ω2 , LHh
(LHh

ω1) = LH
e−4∆̂

ω2 . (1.5)

Here the notationHh ≡ ω−1
0 ydhmeans the Hamiltonian vector field for the function h,

with respect to the symplectic form ω0. This differential system defines what we call a
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“generalized Sasakian geometry”. 2 In fact, there is in general also a special subspace

of Y where h diverges and ∆̂ is constant, along which the geometry is simply Sasakian.

This is the so-called type-change locus T and corresponds physically to the mesonic

moduli space of the dual SCFT [35, 26] (for a Sasakian manifold T is of course the

whole space, rather than a subspace). The rationale behind this definition is that

when such a generalized Sasakian manifold satisfies an additional condition on the

lengths of the three symplectic forms, it precisely provides a general supersymmetric

AdS5 solution of type IIB supergravity. This additional condition is effectively the

Einstein equation, and so the resulting geometry can be called “generalized Sasaki-

Einstein”. The reduction of the complicated supergravity equations to a simple

system not only gives hope of finding new solutions but is also a significant step

towards addressing existence and uniqueness questions.

In chapter 5 we explain how volume minimization works for generalized Sasakian

manifolds [4]. We show that the type IIB supergravity action reduces, when restricted

to a space of generalized Sasakian manifolds, to the contact volume, and that the

latter is then a strictly convex function of the Reeb vector field. It follows that

a supersymmetric AdS5 solution that is in the same deformation class as a given

generalized Sasakian manifold is obtained by minimizing the contact volume over a

space of Reeb vector fields. As a concrete example, the critical Reeb vector field for

which a toric generalized Sasakian manifold satisfies also the Einstein equation is

obtained by minimizing the volume of a polytope, just as in the Sasakian case.

However, in contrast to the Sasakian case, generalized volume minimization re-

quires not the standard holomorphic (3, 0)-form Ω, but rather the pure spinor Ω−,

which is a formal sum of one-, three-, and five-forms, to be homogeneous of degree

three under the Euler vector field. This imposes additional constraints on the space

of Reeb vector fields that is to be minimized over. Here, our current understanding of

the space of Reeb vector fields for a deformation class of generalized Sasakian mani-

folds is not yet as developed as in the Sasakian case [19, 20]. We will nevertheless show

in examples that this space is non-trivial, and that generalized volume minimization

2Note that we define a generalized Sasakian structure only in dimension five. Indeed, the defi-
nition is primarily motivated by the five-dimensional supersymmetry conditions we wish to study.
It might be possible to extend the definition to manifolds of general dimension 2n− 1, but we shall
not comment further on this here.
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agrees with computations in dual SCFTs. In fact, we go further and make the nat-

ural conjecture that the volume function is equal to the inverse of the trial central

charge of the dual SCFT, again checking this is indeed true in examples. As a very

simple illustration we recurrently refer to a so-called “β-transform” of C3 = C(S5)

by a bivector β, which is known to be dual to a certain marginal deformation of

N = 4 super Yang-Mills theory [36, 26, 27]. In chapter 6 we then study a new class

of examples [4] obtained by massive deformation of generalized conifolds C(Lm,n,m)

[12, 37]. After making some physically motivated assumptions on the geometry, we

verify in this class of examples the equivalence of generalized volume minimization

and a-maximization.
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Chapter 2

Aspects of generalized geometry

We first recall a few relevant facts about generalized geometry, whose study was

initiated in [30]. We refer the reader to [38] for an extensive mathematical introduction

or to the review [39] for physicists. Generalized geometry can be seen as a hybrid

of complex and symplectic geometries, to which it reduces in extreme cases. Many

of the concepts from these classical geometries extend to generalized geometry, and

one can for instance define “generalized vectors”, which consist of an ordinary vector

and a differential one-form. Other important concepts, such as spinors, metrics, and

almost complex structures, also generalize. The advantage of such a perspective is

that the action of the Neveu-Schwarz B-field which is usually present in string theory

can be naturally incorporated.

2.1 Generalized vectors

The essential idea of generalized geometry is to consider the generalized tangent bundle

E over a manifoldX , which is an extension of the tangent bundle TX by the cotangent

bundle T ∗X :

0 −→ T ∗X −→ E −→ TX −→ 0 . (2.1)

Sections of E, which we refer to as generalized vectors, may be written locally as

V = v + ν ∈ Γ(E) with v ∈ Γ(TX) and ν ∈ Γ(T ∗X). More precisely, this extension

is obtained by twisting with a gerbe [40]. A gerbe is simply a higher-degree version of

a U(1)-bundle with unitary connection: just as a U(1)-bundle is determined topolog-

ically by its first Chern class in H2(X,Z), the topology of a gerbe is determined by a

class in H3(X,Z). Consider an open cover {Ui} of X together with a set of functions
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gijk : Ui ∩ Uj ∩ Uk → U(1) defined on triple overlaps. These are required to satisfy

gijk = gjik
−1 = gikj

−1 = gkji
−1, as well as the cocycle condition gjklgikl

−1gijlgijk
−1 = 1

on quadruple overlaps. A connective structure on a gerbe is a collection of one-forms

Λ(ij) defined on double overlaps Ui ∩ Uj satisfying Λ(ij) + Λ(jk) + Λ(ki) = g−1
ijkdgijk on

triple overlaps. In going from one coordinate patch Ui to another Uj , the extension

(2.1) is defined by the connective structure:

v(i) + ν(i) = v(j) +
(

ν(j) − v(j)ydΛ(ij)

)

. (2.2)

The generalized tangent bundle E is in fact isomorphic to TX ⊕ T ∗X . However,

the isomorphism is not canonical but depends on a choice of splitting, defined by a

curving B, which is a collection of two-forms B(i) on Ui satisfying

B(j) − B(i) = dΛ(ij) . (2.3)

It follows that, for any V = v + ν ∈ Γ(E),

v + (ν − vyB) ∈ Γ(TX ⊕ T ∗X) . (2.4)

Thus the definition (2.2) of E can be viewed as encoding the patching by the two-form

curving B. Note that (2.3) implies that dB(j) = dB(i) = H is a global closed three-

form on X , called the curvature, and, in cohomology, H ∈ H3(X,Z). The relevance

of generalized geometry for string theory stems from the fact that the curving B

adequately describes the Neveu-Schwarz B-field, and H = dB its curvature.

Writing d for the real dimension of X , there is a natural O(d, d)-invariant metric

〈·, ·〉 on E, given by

〈V,W 〉 ≡ 1

2
(vyµ+ wyν) , (2.5)

with V = v + ν, W = w + µ, or in two-component notation,

〈V,W 〉 =
1

2

(

v ν
)

(

0 1
1 0

)(

w
µ

)

. (2.6)

This metric is invariant under O(d, d)-transformations acting on the fibres of E, defin-

ing a canonical O(d, d)-structure. A general element O ∈ O(d, d) may be written in

terms of d× d matrices a, b, c, and d as

O =

(

a b
c d

)

, (2.7)
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under which a general element V ∈ Γ(E) transforms as

V =

(

v
ν

)

7→ OV =

(

a b
c d

)(

v
ν

)

. (2.8)

The requirement that 〈OV ,OV 〉 = 〈V, V 〉 implies aT c + cTa = 0, bTd+ dT b = 0 and

aTd+ cT b = 1. Note that the GL(d) action on the fibres of TX and T ∗X embeds as

a subgroup of O(d, d). Concretely, it maps

V 7→ V ′ =

(

a 0
0 a−T

)(

v
ν

)

, (2.9)

where a ∈ GL(d). Given a two-form b, one also has the Abelian subgroup

eb =

(

1 0
b 1

)

such that V = v + ν 7→ V ′ = v + (ν − vyb) . (2.10)

This is usually referred to as a B-transform. Given a bivector β, one can also define

another Abelian subgroup of β-transforms:

eβ =

(

1 β
0 1

)

such that V = v + ν 7→ V ′ = (v + βyν) + ν . (2.11)

Note that the patching (2.2) corresponds to a B-transform with the two-form dΛ(ij).

Similarly, the splitting isomorphism between E and TX ⊕ T ∗X defined by B (see

(2.4)) is also a B-transform:

E
eB

⇄

e−B

TX ⊕ T ∗X . (2.12)

There is a natural bracket on generalized vectors known as the Courant bracket,

which encodes the differentiable structure of E. It is defined as

[V,W ] ≡ [v, w]Lie + Lvµ−Lwν −
1

2
d (vyµ− wyν) , (2.13)

where [v, w]Lie is the usual Lie bracket between vectors and Lv is the Lie derivative

along v. The Courant bracket is invariant under the action of diffeomorphisms and

closed B-transforms, giving an automorphism group which is a semi-direct product

Diff(X) ⋉ Ω2
closed(X). Note, however, that in string theory only B-transforms by

the curvature of a unitary line bundle on X are gauge symmetries, as opposed to

transforms by arbitrary closed two-forms, leading to a smaller automorphism group.

Under an infinitesimal diffeomorphism generated by a vector field v and a B-transform

10



by b = dν, one has the generalized Lie derivative by V = v+ν on a generalized vector

field W = w + µ

LVW ≡ [v, w]Lie + (Lvµ− wydν) . (2.14)

This is also known as the Dorfman bracket [V,W ]D, the anti-symmetrization of which

gives the Courant bracket (2.13). Note that since the metric 〈·, ·〉 is invariant under
O(d, d)-transformations, its generalized Lie derivative vanishes. Given a particular

choice of splitting (2.3) defined by B, the Courant bracket on E defines a Courant

bracket on TX ⊕ T ∗X , known as the twisted Courant bracket. It is given by

[v + ν, w + µ]H ≡ eB [e−B(v + ν), e−B(w + µ)]

= [v + ν, w + µ] + wyvyH , (2.15)

where by an abuse of notation we are writing v+ν and w+µ for sections of TX⊕T ∗X ,

whereas above they were sections of E.

2.2 Generalized spinors

Given the metric 〈·, ·〉, one can define Spin(d, d)-spinors, which we call generalized

spinors. Since the volume element of Cliff(d, d) squares to one, one can take its

±1-eigenspaces to define two spin bundles S±(E) with opposite helicities and take

spinors to be Majorana-Weyl. A section of S±(E) on Ui can be identified with a

even- or odd-degree polyform Ω± ∈ Ωeven/odd(X) restricted to Ui, that is a formal

sum of differential forms of various even or odd degrees: Ω+ = Ω0 + Ω2 + · · · or
Ω− = Ω1 + Ω3 + · · · with Ωp a p-form. The Clifford action of V ∈ Γ(E) on such

polyforms is given by

V · Ω± ≡ vyΩ± + ν ∧ Ω± , (2.16)

and it is easy to see that

(V ·W +W · V ) · Ω± = 2〈V,W 〉Ω± , (2.17)

as required for a Clifford algebra. Using this Clifford action, the B-transform (2.10)

on spinors is given by

Ω± 7→ ebΩ± = (1 + b+
1

2
b ∧ b+ · · · ) ∧ Ω± . (2.18)

11



The patching (2.2) of E then implies that

Ω
(i)
± = edΛ(ij)Ω

(j)
± . (2.19)

Furthermore, a curving B also induces an isomorphism between S±(E) and S±(TX⊕
TX∗)

S±(E)
eB

⇄

e−B

S±(TX ⊕ T ∗X) . (2.20)

If Ω± is a section of S±(E), we will sometimes write ΩB± ≡ eBΩ± for the corresponding

section of S±(TX ⊕ T ∗X) defined by the curving B.

There is actually a slight subtlety in the relation between generalized spinors

and polyforms. Given the embedding (2.9) in O(d, d) of the GL(d) action on the

fibres of TX , one actually finds that the Clifford action (2.16) implies that on Ui

we can identify S±(E) with |∧dT ∗X|−1/2 ⊗ ∧even/oddT ∗X : there is an additional

factor of the determinant bundle |∧dT ∗X|. Since this bundle is trivial, generalized

spinors can indeed be written as polyforms patched by (2.19), but there is no natural

isomorphism to make this identification. The simplest solution, and one which will

also allow us to incorporate the dilaton in a natural way, is to extend the O(d, d)

action to a conformal action O(d, d) × R+. One can then define a family of spinor

bundles S
(k)
± (E) transforming with weight k under the conformal factor R+, that is

with sections transforming as Ω± → ρkΩ± where ρ ∈ R+. If one embeds the GL(d)

action on TX in O(d, d) as in (2.9) and, in addition, makes a conformal scaling by

ρ = det a then sections of S
(−1/2)
± (E) can be directly identified with polyforms patched

by (2.19).

The real Spin(d, d)-invariant spinor bilinear on sections Φ and Ψ of S±(E) is a

top-form given by the Mukai pairing 1

〈Φ,Ψ〉 ≡ [Φ ∧ λ(Ψ)] |top , (2.21)

where the operator λ is defined as

λ(Ψp) ≡ (−1)[p/2]Ψp , (2.22)

with Ψp the p-form in Ψ and [p/2] the integer part of p/2. The Mukai paring is

invariant under B-transforms: 〈ebΦ, ebΨ〉 = 〈Φ,Ψ〉. For the case d = 6 of interest in

1This will hopefully not be confused with the O(d, d)-invariant metric 〈·, ·〉 defined in (2.5).
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this thesis, it is anti-symmetric. The usual action of the exterior derivative on the

component forms of Ω± is compatible with the patching (2.19) and defines an action

d : S±(E) → S∓(E) , (2.23)

while the generalized Lie derivative on spinors is given by

LVΩ± = LvΩ± + dν ∧ Ω± = d(V · Ω±) + V · dΩ± . (2.24)

Note that given a curving B, the operator on ΩB± ∈ S±(TX ⊕T ∗X) corresponding to

d is the twisted differential dH defined by

dHΩ
B
± ≡ eBd(e−BΩB±) = (d−H ∧ )ΩB± , (2.25)

where H = dB. Furthermore, one has

LVΩ± = e−B (LV B − vyH ∧ ) ΩB± , (2.26)

where V B ≡ eBV = v + (ν − vyB).

A generalized spinor Ω is called pure if its annihilator space

LΩ ≡ {V ∈ Γ(EC) : V · Ω = 0} , (2.27)

with EC = E ⊗C the complexification of the generalized tangent bundle, is maximal

isotropic, which means that 〈V,W 〉 = 0 for any V,W ∈ LΩ and that LΩ has maximal

dimension 2d. At any given point on X a complex pure spinor Ω ∈ Γ(E ⊗ C) takes

the general form [38]

Ω = α θ1 ∧ · · · ∧ θk ∧ e−b+iω , (2.28)

where α is some complex function, θi are k complex one-forms, and b, ω are real

two-forms. The integer k is called the type of the pure spinor. For example, the

holomorphic (3, 0)-form Ω(3,0) on a Calabi-Yau three-fold is a pure spinor that is

everywhere of type k = 3, with b = ω = 0. On the other hand, a symplectic form ω

gives rise to a pure spinor exp(iω) that is everywhere of type k = 0. Note that it is an

important feature of generalized geometry that the type of a pure spinor can change

along a distinguished sublocus of X , called the type-change locus. In this thesis we

will want to replace the holomorphic (3, 0)-form on a Calabi-Yau three-fold by a pure

spinor of type one on a dense open subset of X , but which can jump to type three.
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2.3 Generalized metrics

A generalized metric G on E is the equivalent of a Riemannian metric g on TX . We

have seen that there is a natural O(d, d)-structure on E defined by the metric 〈·, ·〉
in (2.5). The generalized metric G defines an O(d) × O(d)-substructure. It splits

the generalized tangent bundle as E = C+ ⊕ C− such that the metric 〈·, ·〉 gives a

positive-definite metric on C+ and a negative-definite metric on C−, corresponding to

the two O(d)-structure groups. One can define G as a product structure on E, that

is G : E → E with G2 = 1 and 〈GV ,GW 〉 = 〈V,W 〉, such that (1 ± G)/2 project

onto C±. In general G has the form

G =

(

g−1B g−1

g − Bg−1B −Bg−1

)

=

(

1 0
−B 1

)(

0 g−1

g 0

)(

1 0
B 1

)

, (2.29)

where g is a metric on X and B is a two-form. The patching of E implies that B

satisfies (2.3), so that B may be identified with the curving of the gerbe used in the

twisting of E. Thus the generalized metric G defines a particular splitting of E. In

particular, we see from (2.29) that G = e−BG0e
B where G0 is a generalized metric on

TX ⊕ T ∗X defined by g.

The generalized metric G naturally encodes the Neveu-Schwarz fields g and B of

string theory as the coset space O(d, d)/O(d)× O(d). The dilaton φ appears when

one considers the conformal group O(d, d) × R+, used to express the generalized

spinors as true polyforms. To define an O(d) × O(d)-substructure in O(d, d) × R+,

one must give, in addition to G which gives the embedding in the O(d, d)-factor, the

embedding in the conformal factor ρ ∈ R+. Given the metric g we can define the

generic embedding by ρ = e2φ/
√
g for some positive function e2φ, which we identify

as the dilaton. Note that ρ is by definition invariant under O(d, d) and so one finds

the conventional T-duality transformation of the dilaton under O(d, d).

A generalized vector is called generalized Killing if it preserves the generalized

metric under the generalized Lie derivative, that is LVG = 0, which implies [41]

Lvg = 0 , LvB − dν = 0 , (2.30)

so that LvH = 0 where H = dB.

Given G we may decompose generalized spinors in Spin(d, d) under Spin(d) ×
Spin(d). In fact one can go further. Using the projection π : E → TX the two
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Spin(d) groups can be determined and one can use the Clifford map to identify

bispinors 6Φ = η1 ⊗ η̄2, where η1,2 are Spin(d)-spinors, with generalized spinors Φ of

S±(TX ⊕ T ∗X) ∼= ∧even/oddT ∗X :

6Φ =
∑

p

1

p!
Φi1···ip γ

i1···ip ←→ Φ =
∑

p

1

p!
Φi1···ip dx

i1 ∧ · · · ∧ dxip ,(2.31)

where the sum is over p even/odd for the chiral spinors Φ± respectively. The Cliff(d, d)-

action is realized via left- and right-multiplication by the Spin(d) gamma matrices

γi. We also note here the Fierz identity

6Φ =
1

nd

∑

p

1

p!
Tr
(

6Φγip···i1
)

γi1···ip , (2.32)

with nd = 2[d/2]. Generalized spinors may then be decomposed as bispinors of Spin(d):

Ω± = e−φe−BΦ± . (2.33)

In this expression, Φ± ∈ Γ(S±(TX ⊕ T ∗X)) is mapped to a spinor Ω± ∈ Γ(S±(E))

by a choice of curving B, and the factor of e−φ appears because, as explained in the

previous section, the polyforms are really sections of S
(−1/2)
± (E) transforming with

weight −1/2 under conformal rescalings.

The generalized metric also defines an action ⋆G on generalized spinors which is

the analogue of the Hodge star. It is given by

⋆GΩ± = e−B ⋆ λ(eBΩ±) , (2.34)

where λ is the operator defined in (2.22) and ⋆ denotes the ordinary Hodge star for

the metric g. The Mukai norm of a pure spinor Ω is defined (here in the case d = 6) as

‖Ω‖2 ≡ i
〈Ω, Ω̄〉
vol

, (2.35)

where vol denotes the Riemannian volume form of the metric g. In addition, we define

the following convenient norms:

|Ω|2 ≡ 〈Ω, ⋆λ(Ω̄)〉
vol

, |Ω|2B ≡ |eBΩ|2 . (2.36)
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2.4 Generalized complex structures

If d = 2n one can also introduce a generalized almost complex structure on E. This is

a map J : E → E with J 2 = −1 and 〈J V ,JW 〉 = 〈V,W 〉 and gives a decomposition

EC = LJ ⊕ L̄J , (2.37)

where LJ denotes the +i-eigenspace of J :

LJ ≡ {V ∈ Γ(EC)) : J · V = iV } . (2.38)

Note that LJ is maximal isotropic, since for V,W ∈ LJ one finds 〈V,W 〉 = 〈J V ,JW 〉
= 〈iV , iW 〉 = −〈V,W 〉 = 0. This defines a U(n, n) ⊂ O(2n, 2n) structure on E. Since

by definition J preserves the metric 〈·, ·〉 it is an element of O(2n, 2n), but given that

J 2 = −1 this implies that 〈V,JW 〉+ 〈J V ,W 〉 = 0, and so it can also be viewed as

an element of the Lie algebra o(2n, 2n). A generic J can be written locally as

J =

(

I P
Q −I∗

)

, (2.39)

where I∗ is the linear map on T ∗X dual to the map I on TX , P is a bivector, and

Q is a two-form. When the twisting (2.2) is trivial, so that E = TX ⊕ T ∗X , there

are two canonical examples of generalized almost complex structures. The first is an

ordinary almost complex structure I on TX , giving 2

JI =

(

I 0
0 −I∗

)

, (2.40)

and the second is a non-degenerate (stable) two-form ω, giving

Jω =

(

0 ω−1

−ω 0

)

. (2.41)

If dω = 0, this corresponds to a symplectic structure. A generalized almost complex

structure J is integrable if L is closed under the Courant bracket: given V,W ∈ LJ ,

then [V,W ] ∈ LJ . In the above two cases (2.40), (2.41), this reduces to integrability

of I and the closure of ω, respectively. Viewing J as a Lie algebra element, one can

define its action on generalized spinors via the Clifford action [42]. Explicitly, one has

J · =
1

2

(

Qmndx
m ∧ dxn ∧ + Imn[∂my, dx

n ∧ ] + Pmn∂my∂ny
)

. (2.42)

2 Note that we have chosen the opposite sign in (2.40) compared with [38]. This is so that the
+i-eigenspace is identified with T (1,0) ⊕ T ∗(0,1).
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Note that for any generalized vector V , one has [J ·, V ·] = (J V )·.
A generalized almost complex structure J corresponds to (the conformal class of)

a pure spinor Ω through the identification of the +i-eigenspace LJ with the annihilator

space LΩ:

J ↔ Ω if LJ = LΩ . (2.43)

Notice that LΩ is invariant under conformal rescalings Ω 7→ fΩ, for any function f ;

a generalized almost complex structure is therefore more precisely equivalent to the

pure spinor line bundle generated by Ω. Integrability of J can be expressed as the

condition dΩ = V ·Ω for some V ∈ Γ(E). If one can find a nowhere-vanishing globally-

defined Ω then one has an SU(n, n)-structure, and if in addition dΩ = 0 then one has

a generalized Calabi-Yau structure in the sense of Hitchin [30]. 3 For example, in the

complex structure case (2.40) one has Ω = cΩ̄(n,0), where Ω(n,0) is the holomorphic

(n, 0)-form and c is a non-zero constant (the reason why the complex conjugate Ω̄(n,0)

appears rather than Ω(n,0) is directly related to the comment in footnote 2).

Given a curving B, one can define the corresponding generalized complex objects

on TX ⊕ T ∗X . In particular, if J is the generalized almost complex structure for

a pure spinor Ω, then the corresponding generalized almost complex structure on

TX ⊕ T ∗X is defined in terms of the annihilator of ΩB = eBΩ and is given by

J B ≡ eBJ e−B. In particular, integrability of J is equivalent to integrability of J B

using the twisted Courant bracket (2.15), or equivalently dHΩ
B = V · ΩB.

A generalized vector V is called generalized holomorphic if it preserves the gener-

alized complex structure, that is LVJ = 0. Equivalently, LV preserves the spinor line

bundle generated by the corresponding pure spinor Ω: LVΩ = fΩ for some function f .

A generalized almost complex structure J defines a grading on generalized spinors.

If Ω ∈ Γ(S±(E)) is a pure spinor corresponding to J , one defines the canonical pure

spinor line bundle Un ⊂ S±(E) as sections of the form ϕ = fΩ for some function f .

One can then define

Un−k ≡ ∧kL̄J ⊗ Un . (2.44)

3Beware the existence of a different definition of generalized Calabi-Yau in [38] which requires
two integrable generalized structures.
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Elements of Uk have eigenvalues ik under the Lie algebra action of J given in (2.42).

These bundles give a grading of the spinor bundles S±(E). A generalized vector

V ∈ Γ(E) acting on an element of Uk gives an element of Uk+1⊕Uk−1. In particular,

an annihilator of Ω acts by purely raising the level by one. If the generalized complex

structure J is also integrable, the exterior derivative splits into the sum

d = ∂ + ∂̄ , (2.45)

where

C∞
(

Uk
) ∂̄←−−→

∂
C∞

(

Uk−1
)

. (2.46)

A pair of generalized almost complex structures J1 and J2 are said to be compat-

ible if

[J1,J2] = 0 , (2.47)

and the combination

G = −J1J2 (2.48)

is a generalized metric. If Ω1 and Ω2 are the corresponding pure spinors, the condition

(2.47) is equivalent to 〈Ω1, V · Ω2〉 = 〈Ω̄1, V · Ω2〉 = 0 for all V ∈ Γ(E), or also to

J1 ·Ω2 = 0, that is Ω2 ∈ U0
1 . An example of a pair of compatible pure spinors is (2.40)

and (2.41), the compatibility condition being that Ikiωjk = gij is positive definite.

Note that this gives ωij = −gikIkj, this mathematics convention differing by a sign

from the usual physics convention. A pair of compatible generalized almost complex

structures defines an SU(n)× SU(n)-structure. A generalized Kähler structure is an

SU(n)× SU(n)-structure where both generalized structures are integrable, while for

a generalized Hermitian structure only one need be integrable.

Note that an SU(n) × SU(n)-structure can equivalently be specified by a gener-

alized metric and a pair of chiral Spin(2n)-spinors. For example, for d = 6 a pair of

chiral spinors η1+, η
2
+ can be used to construct an SU(3)× SU(3)-structure given by

Ω± = e−φe−Bη1+ ⊗ η̄2± , (2.49)

with η2− ≡ (η2+)
c. This will play a central role in the following chapters. Similarly, for

d = 4 a pair of chiral spinors η1+, η
2
+ give rise to an SU(2)×SU(2)-structure specified

by two compatible pure spinors, but both of them consist of sums of even forms, since
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now (η2+)
c is a positive chirality spinor. That the spinors have the same chirality is

necessary for them to be compatible in four dimensions [38].

2.5 Example: the generalized structures of Calabi-

Yau cones

As a simple example, let us formulate the familiar case of a Calabi-Yau three-fold X

in the language of generalized geometry. Here X is equipped with a pair of compatible

pure spinors Ω− and Ω+ given by

Ω− = Ω̄ , (2.50)

Ω+ = exp (iω) , (2.51)

where Ω is a holomorphic (3, 0)-form and ω is the Kähler form. 4 For example, taking

X = C3 equipped with its flat metric, we have

Ω = dz1 ∧ dz2 ∧ dz3 , ω =
i

2

3
∑

i=1

dzi ∧ dz̄i , (2.52)

where z1, z2, z3 are standard complex coordinates on C3. In this case both pure spinors

are closed, dΩ− = dΩ+ = 0, and thus the corresponding generalized almost complex

structures are integrable. These are the same as in the above examples (2.40) and

(2.41):

J− =

(

I 0
0 −I∗

)

, J+ =

(

0 ω−1

−ω 0

)

, (2.53)

respectively, where I denotes the integrable complex structure tensor on X and ω is

the Kähler form (compatible and symplectic). Indeed, the compatibility condition

gives I∗ · ω = 0, which says that ω is a (1, 1)-form with respect to the complex

structure I. From the expressions for J− and J+ above, we obtain from (2.29) and

(2.48) that

gX = ω(I, ·) , B = 0 . (2.54)

4 The complex conjugation in (2.50) is due to an unfortunate choice of conventions in the gener-
alized geometry literature, see footnote 2 above.
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Finally, for a Ricci-flat Kähler metric, the Mukai pairings (2.21) of the pure spinors

(or equivalently their Mukai norms (2.35)) are equal:

i

8
〈Ω−, Ω̄−〉 =

i

8
Ω ∧ Ω̄ =

1

3!
ω3 =

i

8
〈Ω+, Ω̄+〉 . (2.55)

Without this condition, one instead has only a Kähler metric on a complex manifold

with zero first Chern class, but the metric is not Ricci-flat.

For application to AdS5 solutions of string theory, we are interested more specifi-

cally in conical geometries, as will be explained in detail in section 3.2. In the above

context of Calabi-Yau three-folds, this means that by definition the Kähler metric

takes the conical form gX = dr2 + r2gY , with gY a metric on a Sasaki-Einstein five-

manifold Y , and that the holomorphic (3, 0)-form Ω is homogeneous of degree three

under the Euler vector field r∂r, that is Lr∂rΩ = 3Ω. Notice however that Ω+ de-

fined in (2.50) does not have a well-defined homogeneity under r∂r, since the Kähler

form ω is homogeneous of degree two. Instead, the pure spinors associated with the

Calabi-Yau cones appearing in the AdS/CFT correspondence take the rescaled forms

[3]:

Ω− = Ω̄ ,

Ω+ = r3 exp
(

i
ω

r2

)

. (2.56)

Both pure spinors are now homogeneous of degree three, and the resulting Riemannian

metric is conformal to the cone metric: gX = r−2(dr2+ r2gY ). Notice that gX here is

homogeneous of degree zero, and in fact setting t = log r ∈ (−∞,∞) we see that gX

is a cylinder over Y : gX = dt2 + gY . The crucial difference after the rescaling is that

Ω+ is no longer closed, and hence J+ is not integrable. This may sound peculiar, but

these are the natural pure spinors associated with the geometry in AdS/CFT. Indeed,

the lack of closure of Ω+ may be understood as due to the presence of background

fluxes on the cone. In the Sasaki-Einstein case discussed in this example, only the

Ramond-Ramond five-form flux F5 sourced by D3-branes is non-zero.

In this thesis we will study the generalization of the above geometric structure

to the case where all the background fields of type IIB supergravity, including the

B-field and all the components of the Ramond-Ramond fluxes, can be turned on.
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Chapter 3

Supersymmetric AdS5 solutions as
generalized geometries

In this chapter we study the generalized geometry of the most general solutions of

type IIB supergravity (the low energy limit of type IIB string theory) that are dual

to superconformal field theories with N = 1 supersymmetry. The ten-dimensional

solutions of interest have the form AdS5×Y , which can also be viewed using Poincaré

coordinates as the warped product R1,3 × X of Minkowski space-time with a six-

dimensional cone X ∼= R+ × Y . As already mentioned, general solutions can involve

background fluxes. The effect of the Neveu-Schwarz H-flux is nicely described by

generalized geometry, and in particular there is an integrable generalized structure on

the cone, in terms of which we can define a generalized Killing vector corresponding to

the R-symmetry of the dual SCFT. However, the Ramond-Ramond fluxes F obstruct

the integrability of the second compatible generalized structure. There is nevertheless

a canonical symplectic structure on the cone, and we put it to good use by writing

down formulas for the central charge and the conformal dimensions of certain BPS

operators in terms of symplectic volumes. We illustrate our results with the Pilch-

Warner solution.

3.1 Supersymmetric AdS5 solutions of type IIB su-

pergravity

After reviewing type IIB supergravity, we focus on the most general solutions that

admit a dual SCFT with N = 1 supersymmetry. Those solutions are of the form
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AdS5 × Y , with AdS5 the five-dimensional anti-de Sitter spacetime and Y a com-

pact five-dimensional manifold, and satisfy some supersymmetry conditions, as first

studied in [25] in terms of spinor bilinears.

Type IIB supergravity describes the dynamics of the ten-dimensional metric gE

(in Einstein frame), the dilaton φ, the Neveu-Schwarz (NS) B-field with curvature

H = dB, and the Ramond-Ramond (RR) potential C ≡ C0 + C2 + C4, written here

as a polyform, that is a formal sum of a zero-form C0, a two-form C2, and a four-form

C4. The corresponding RR flux is F ≡ F1+F3+F5 = (d−H∧)C, or in components

F1 = dC0 , F3 = dC2 −HC0 , F5 = dC4 −H ∧ C2 . (3.1)

The five-form flux has the particularity that it is self-dual under the action of the

Hodge star operator: ⋆10F5 = F5. In terms of the convenient choice of fields

P1 ≡
i

2
eφF1 +

1

2
dφ , Q1 ≡ −1

2
eφF1 ,

G3 ≡ −ieφ/2F3 − e−φ/2H , (3.2)

the equations of motion for the bosonic fields read [43, 25]

RMN −
1

2
RgMN = PMP

∗
N + PNP

∗
M − gMN |P1|2

+
1

8
(GMP1P2G

∗ P1P2
N +GNP1P2G

∗ P1P2
M )− 1

4
gMN |G3|2

+
1

96
FMP1P2P3P4F

P1P2P3P4
N ,

DMP
M = − 1

24
GMNPG

MNP ,

DPG
MNP = PPG

∗MNP − i

6
FMNP1P2P3GP1P2P3 , (3.3)

where for a (complex) p-form Ap we write

|Ap|2 ≡
1

p!
gM1N1 · · · gMpNpAM1···Mp

ĀN1···Np
. (3.4)

The covariant derivative DM , with respect to local Lorentz transformations and local

U(1) transformations with gauge field QM , acts on a field Ap of charge q as

DMAp = (∇M − iqQM)Ap . (3.5)

Here P has charge 2 and G charge 1.
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In order for a bosonic solution to preserve some supersymmetry, the fermionic

fields of type IIB supergravity, namely the gravitino ψM and the gaugino λ, must be

invariant under supersymmetry transformation, that is δψM = 0 and δλ = 0. This

implies the following “Killing spinor equations”:

DMǫ−
1

96

(

Γ P1P2P3
M GP1P2P3 − 9ΓP1P2GMP1P2

)

ǫc

+
i

192
ΓP1P2P3P4FMP1P2P3P4ǫ = 0 ,

iΓMPMǫ
c +

i

24
ΓP1P2P3GP1P2P3ǫ = 0 . (3.6)

Here the ten-dimensional Dirac gamma matrices ΓM satisfy {ΓM ,ΓN} = 2gMN and

generate the Clifford algebra Cliff(1, 9), while ǫ = ǫ1 + iǫ2 is a complex combination

of the two Majorana-Weyl spinors ǫi of type IIB supergravity, and ǫc is its charge-

conjugate.

We are interested in the most general class of backgrounds that consist of the

warped product of AdS5 with a five-dimensional compact manifold Y :

gE = e2∆(gAdS + gY ) , or gMN = e2∆(gµν + gmn) . (3.7)

The metric on AdS5 is normalized to have unit radius, so that the Ricci tensor is

Rµν = −4gµν , which gives RAdS = −20 for the Ricci scalar. In order to preserve

the SO(4, 2) symmetry of AdS5, all the fields have to be pullbacks of fields on the

internal space Y (in particular, the warp factor ∆ in (3.7) is a function on Y ); the only

exception is the five-form field strength, which satisfies the so-called Freund-Rubin

ansatz

F5 = f5 (volAdS + volY ) , or FMNPQR = f5 (εµνλρσ + εmnpqr) ,(3.8)

with f5 a constant. In this thesis we will demand that F5 6= 0, or equivalently

f5 6= 0 . (3.9)

Physically this corresponds to having non-vanishing D3-brane charge. It would be

interesting to know whether or not all supersymmetric AdS5 solutions of type IIB

supergravity necessarily have this property.
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The ten-dimensional gamma matrices ΓM decompose accordingly:

Γµ = ρµ ⊗ 1⊗ σ3 ,

Γm = 1⊗ βm ⊗ σ1 . (3.10)

Here the ρµ generate Cliff(1, 4), that is {ρµ, ρν} = 2ηµν , and the βm generate the

Clifford algebra for gY , that is {βm, βn} = 2gmnY . Equivalently, with respect to any

orthonormal frame the corresponding β̂m satisfy {β̂m, β̂n} = 2δmn. We have chosen

β̂12345 = +1. In addition, σi are the usual Pauli matrices. Similarly, the supersym-

metry spinor decomposes as

ǫ = e∆/2 (ψ ⊗ ξ1 ⊗ θ + ψc ⊗ ξc2 ⊗ θ) , (3.11)

where we assume that the spinor ψ satisfies the Killing spinor equation ∇µψ = ρµψ/2

to ensure that supersymmetry is preserved on AdS5. Plugging this expression into the

supersymmetry conditions (3.6) leads to the conditions for a supersymmetric AdS5

background in terms of the two five-dimensional spinors ξ1 and ξ2 on Y [25] . There

are two differential conditions:

(∇m −
i

2
Qm)ξ1 +

i

4

(

e−4∆f5 − 2
)

βmξ1 +
1

8
e−2∆Gmnpβ

npξ2 = 0 ,

(∇m +
i

2
Qm)ξ2 −

i

4

(

e−4∆f5 + 2
)

βmξ2 +
1

8
e−2∆G∗

mnpβ
npξ1 = 0 , (3.12)

and four algebraic conditions:

βm∂m∆ξ1 −
1

48
e−2∆βmnpGmnpξ2 −

i

4

(

e−4∆f5 − 4
)

ξ1 = 0 ,

βm∂m∆ξ2 −
1

48
e−2∆βmnpG∗

mnpξ1 +
i

4

(

e−4∆f5 + 4
)

ξ2 = 0 ,

βmPmξ2 +
1

24
e−2∆βmnpGmnpξ1 = 0 ,

βmP ∗
mξ1 +

1

24
e−2∆βmnpG∗

mnpξ2 = 0 . (3.13)

Various spinor bilinears involving ξ1 and ξ2 were also introduced in [25], namely

the following scalar bilinears:

A ≡ 1

2

(

ξ̄1ξ1 + ξ̄2ξ2
)

, Z ≡ ξ̄2ξ1 ,

sin ζ ≡ 1

2

(

ξ̄1ξ1 − ξ̄2ξ2
)

, S ≡ ξ̄c2ξ1 , (3.14)
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the one-form bilinears:

K ≡ ξ̄c1β(1)ξ2 , K4 ≡
1

2

(

ξ̄1β(1)ξ1 − ξ̄2β(1)ξ2
)

,

K3 ≡ ξ̄2β(1)ξ1 , K5 ≡
1

2

(

ξ̄1β(1)ξ1 + ξ̄2β(1)ξ2
)

, (3.15)

and the two-form bilinears:

V ≡ − i

2
(ξ̄1β(2)ξ1 − ξ̄2β(2)ξ2) , W ≡ −ξ̄2β(2)ξ1 , (3.16)

where β(p) ≡ βm1···mp
dym1∧· · ·∧dymp/p!. It was shown in [25] that the supersymmetry

conditions impose

A = 1 , Z = 0 , sin ζ =
f5
4
e−4∆ . (3.17)

Another key result of [25] is that K#
5 , the vector dual to the one-form K5, is a

Killing vector that preserves all of the fluxes. This was identified as corresponding

to the R-symmetry of the dual SCFT. The Killing spinors ξ1 and ξ2 were used to

introduce a canonical five-dimensional orthonormal frame in appendix B of [25], which

is convenient for certain calculations. We will refer to that paper for further details.

Using the following equation of [25],

D(e6∆W ) = −e6∆P ∧W ∗ +
f5
4
G , (3.18)

and recalling the definition (3.2), we can obtain expressions for the two-form potentials

B and C2 in terms of the bilinear W introduced in (3.16) as well as two real closed

two-forms that we call b2 and c2:

B = −e
2∆+φ/2

sin ζ
ReW + b2 , (3.19)

C2 = −e
2∆+φ/2

sin ζ

(

C0ReW − e−φ ImW
)

+ c2 . (3.20)

Notice that B− b2 is a globally defined two-form on Y , so that H = dB is exact, and

that C2 − c2 is also globally defined (up to large gauge transformations of C0). Since

the B-transform of b2 by an exact form is a generalized diffeomorphism, and a gauge

symmetry of string theory, we see that the physical information in b2 is represented

by its cohomology class in H2(X,R) (or more to the point in H2(Y,R)). More pre-

cisely, large gauge transformations of the B-field, which correspond to tensoring the
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underlying gerbe by a unitary line bundle on X , lead to the torus H2(X,R)/H2(X,Z)

(with suitable normalization). Turning on the two-form b2 corresponds to giving vac-

uum expectation values to moduli (of the NS field B) and so is a symmetry of the

supersymmetry equations. It is therefore left undetermined. In the field theory dual,

the cohomology class of b2 thus corresponds to a marginal deformation.

3.2 Reformulation as generalized geometries

The supersymmetric AdS5 solutions described in the previous section can be advan-

tageously reformulated in terms of generalized geometry, as in [26, 27]. The basic

observation is that these solutions can be viewed as warped products of flat four-

dimensional space with a six-dimensional manifold X , satisfying a set of supersym-

metry conditions that imply the existence of a particular generalized geometry [28, 29].

We begin by rewriting the unit AdS5 metric in a Poincaré patch as

gAdS =
dr2

r2
+ r2gR1,3 . (3.21)

Switching from the Einstein frame to the string frame through gσ = eφ/2gE, we can

consider (3.7) as a special case of a warped supersymmetric R1,3 solution of the form

gσ = e2AgR1,3 + gX , (3.22)

where the warp factor is given by

e2A = e2∆+φ/2r2 , (3.23)

and

gX = e2∆+φ/2

(

dr2

r2
+ gY

)

. (3.24)

The six-dimensional manifold X , on which gX is a metric, is a product R+×Y , where
r may be interpreted as a coordinate on R+. This implies that X is non-compact. It

thus follows that supersymmetric AdS5 solutions are special cases of supersymmetric

R1,3 solutions.

We now provide a map between the five-dimensional spinors ξ1,2 appearing in the

previous section and six-dimensional spinors η1,2+ . We first use the Cliff(5) gamma
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matrices β̂m, with m = 1, . . . , 5, to construct Cliff(6) gamma matrices γ̂i, with i =

1, . . . , 6, via

γ̂m = β̂m ⊗ σ3 , γ̂6 = 1⊗ σ1 , (3.25)

These satisfy {γ̂i, γ̂j} = 2δij. The corresponding gamma matrices for the six-dimensional

metric gX will be denoted γi. We define the six-dimensional chirality operator to be

γ̃ ≡ −iγ̂123456 = 1⊗ σ2 . (3.26)

As usual with gamma matrix technology, we need to fix a consistent set of conventions

for the various intertwiner operators (see for instance [44]). The A-, C-, and D-

intertwiners in five dimensions operate as A5βmA
−1
5 = β†

m, C
−1
5 βmC5 = βT

m, and

D−1
5 βmD5 = β∗

m. We choose the D6 intertwiner D6 = D5 ⊗ σ2, where D5 = C5 is the

intertwiner of Cliff(5) discussed in more detail in appendix A of [25], and one checks

D−1
6 γiD6 = −γ∗i . Taking A5 = 1, we have A6 = 1 and γ†i = γi, so that η̄ ≡ η† is

just the Hermitian conjugate. If η+ is a Weyl spinor, satisfying γ̃η+ = η+, then the

conjugate spinor η− ≡ ηc+ ≡ D6η
∗
+ satisfies γ̃η− = −η−.

To construct the relevant six-dimensional spinors we write

ξ1 = χ1 + iχ2, ξ2 = χ1 − iχ2 , (3.27)

where χ̄1χ1 = χ̄2χ2 = 1/2 with χ̄ ≡ χ†. We then define

η1+ = eA/2
(

χ1

iχ1

)

, η1− = eA/2
(

−χc1
iχc1

)

,

η2+ = eA/2
(

−χ2

−iχ2

)

, η2− = eA/2
(

χc2
−iχc2

)

, (3.28)

where χci ≡ D̃5χ
∗
i denotes five-dimensional charge conjugation.

After some detailed calculation we find that the five-dimensional supersymmetry

equations (3.12)-(3.13) are equivalent to the following six-dimensional spinor equa-

tions:
(

Di −
1

4
Hi

)

η1+ +
eφ

8
6Fγiη2+ = 0 , (3.29)

1

2
eA 6∂A η1+ −

1

8
eA+φ 6Fη2+ = 0 , (3.30)

6Dη1+ +
(

6∂(2A− φ)− 1

4
6H
)

η1+ = 0 , (3.31)
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as well as additional equations obtained by applying the rule:

η1 ↔ η2 , 6F → −6F † , H → −H . (3.32)

In these equations we are using the notation that, for example,

Hi ≡
1

2
Hijkγ

jk, 6F ≡ Fiγ
i +

1

3!
Fijkγ

ijk +
1

5!
Fijklmγ

ijklm . (3.33)

These agree precisely with the general conditions derived in [29, 45] for an N = 1

supersymmetric R
1,3 background (with vanishing four-dimensional cosmological con-

stant).

Using the two chiral Spin(6)-spinors η1+ and η2+ we may define the bispinors

Φ+ ≡ η1+ ⊗ η̄2+, Φ− ≡ η1+ ⊗ η̄2− . (3.34)

As we explained in section 2.3, these bispinors may also be viewed via the Clifford

map (2.31) as elements of Ω∗(X,C). We will therefore mainly tend to think of Φ±

as complex differential polyforms of even/odd degree. These generalized Spin(6, 6)-

spinors are in fact both pure spinors, and they are also compatible. They then define

an SU(3)×SU(3)-structure on TX ⊕ T ∗X . In terms of Φ±, the spinor equations for

a general supersymmetric R1,3 solution (not necessarily associated with an AdS5 so-

lution, but with vanishing four-dimensional cosmological constant) may be rewritten

as [45] (see also [28])

dH
(

e2A−φΦ−

)

= 0 , (3.35)

dH
(

e2A−φΦ+

)

= e2A−φdA ∧ Φ̄+

+
1

16
e2A
[

(|η1+|2 − |η2+|2)F + i(|η1+|2 + |η2+|2) ⋆ λ(F )
]

,(3.36)

where from (2.22) we have λ(F ) = F1 − F3 + F5. Note that the Hodge star is with

respect to the metric gX , with positive orientation given by −dr∧volY . The remaining

Bianchi identities and equations of motion are (see equations (4.9)-(4.10) in [45])

dH = 0 , dHF = δ(source) , (3.37)

d(e4A−2φ ⋆ H)− e4AFn ∧ ⋆Fn+2 = 0 , (3.38)

(d +H ∧ )(e4A ⋆ F ) = 0 . (3.39)
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Here the higher-form analog of the Dirac delta function δ(source) is the charge density

of D-brane sources. The equation of motion for F can also be written as

d
[

e4Ae−B ⋆ λ (F )
]

= 0 , (3.40)

and follows from the supersymmetry equations. In fact, for AdS5 solutions it was

shown in [25] that supersymmetry implies all of the equations of motion and Bianchi

identities dHF = 0. In particular, this implies that there can be no D-branes sources

in the background, that is δ(source) = 0.

For a supersymmetric R1,3 background, the spinor norms must satisfy

|η1+|2 + |η2+|2 = eAc+ , |η1+|2 − |η2+|2 = e−Ac− , (3.41)

where c± are constants. Upon squaring and subtracting these equations we obtain

‖Φ±‖2 =
1

8
|η1+|2|η2+|2 =

1

32

(

e2Ac2+ − e−2Ac2−
)

. (3.42)

For the particular case of AdS5 solutions the above equations simplify somewhat. In

this case it is possible to fix the constant c− in (3.42) by the scaling of Φ± with r

which, using (3.23), implies that c− = 0 and hence |η1+| = |η2+|. This is consistent

with the equation Z = 0 in (3.14), since from (3.28) we see that |η1±| = |η2±| is
equivalent to ReZ = 0. Notice that c− = 0 is also a necessary condition in order

to have supersymmetric probe branes [46]. The normalization that was used in [25]

implies |η1+|2 = |η2+|2 = eA and hence c+ = 2. One can actually go a little further.

In [26] it was assumed that there was an SU (2)-structure on the cone. In terms of

the spinors η+i this is equivalent to the condition that, in addition to c− = 0, one

has η̄1+η
2
+ + η̄2+η

1
+ = 0. However it is easy to see that this is equivalent to ImZ = 0,

which again is required by supersymmetry on Y . Thus in fact all supersymmetric

AdS5 solutions necessarily satisfy the SU (2) condition of [26].

Just as in (2.33), we can now define the following pure spinors of S±(E):

Ω± ≡ e2A−φe−BΦ± , (3.43)

where we have also rescaled by exp(2A) for convenience. With these definitions we

can write the supersymmetry equations for AdS5 solutions in terms of a pair of pure

spinors Ω± with equal Mukai norms (2.35),

‖Ω−‖2 = ‖Ω+‖2 =
1

8
e6A−2φ , (3.44)

29



as two differential equations:

dΩ− = 0 , (3.45)

dΩ+ = dA ∧ Ω̄+ +
i

8
e3Ae−B ⋆ λ (F ) . (3.46)

We see that Ω− is closed, and so the associated generalized almost complex structure,

which we denote by J−, is integrable. Combined with the fact that the norm of Ω− is

nowhere vanishing, this means that the cone X is a generalized Calabi-Yau manifold

in the sense of Hitchin [30].

However, the presence of the RR fluxes F on the right-hand side of (3.46) obstructs

the integrability of the generalized almost complex structure J+ associated to Ω+. If

it were integrable, we would have a generalized Kähler manifold. It is worth noting

that the differential constraint (3.46) can be split as

d
(

e−AReΩ+

)

= 0 , (3.47)

d
(

eAImΩ+

)

=
1

8
e4Ae−B ⋆ λ (F ) , (3.48)

and that in turn equation (3.48) can be rewritten as [47]

e−BF = 8J− · d
(

e−3A ImΩ+

)

= 8dJ−
(

e−3A ImΩ+

)

, (3.49)

where dJ− ≡ −[d,J−·]. The Bianchi identity (3.37) without sources then implies that

d(e−BF ) = 8ddJ−

(

e−3A ImΩ+

)

= 0 . (3.50)

We now relate the pure spinors Ω± to the spinor bilinears used in [25]. Using the

definition of Ω±, the Fierz identity (2.32), and the results of section 3.1, we find the

following expression for Ω−:

Ω− = θ ∧ e−b−+iω− , (3.51)

with

θ = −r
3

8
e4∆(iK + Sd log r) ,

b− =
e2∆+φ/2

sin ζ sin2 2φ̄

(

cos2 2φ̄d log r ∧ ImK3 −K4 ∧ ReK3

)

+ b2 ,

ω− =
e2∆+φ/2

sin ζ sin2 2φ̄

(

cos 2θ̄ cos 2φ̄d log r ∧ ReK3 +K5 ∧ ImK3

)

, (3.52)
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where b2 was introduced in (3.19). Note that b− and ω− are not uniquely defined

since we can add any two-form that vanishes when wedged with θ. Here the angles θ̄

and φ̄ (which appear in appendix B of [25] without bars) are functions on the link Y

that are related to the scalar spinor bilinears through

sin ζ = cos 2θ̄ cos 2φ̄ , |S| = − sin 2θ̄ cos 2φ̄ . (3.53)

Using the results of [25], we have the important result that θ is exact 1

θ = d

(

− r
3

24
e4∆S

)

≡ d
(

r3θ0
)

. (3.54)

In addition, we see from the supersymmetry equation (3.48) that, given that we

assume that F5 6= 0, the imaginary part of Ω+ must have a scalar component and

hence Ω+ is of type zero (compare with (2.28)):

Ω+ = α+e
−b++iω+ . (3.55)

In terms of the bilinears of [25] we find

α+ = −i f5
32

e−Ar4 ,

b+ = −e
2∆+φ/2

sin ζ
d log r ∧ ImK3 + b2 ,

ω+ =
e2∆+φ/2

sin ζ
(d log r ∧K4 − V ) . (3.56)

3.2.1 Mesonic moduli space

A key point is that the type of Ω− is generically one, but has the property that it

can jump to three on the type-change locus T = {θ = 0}. This locus can be neatly

parameterized through the angles θ̄ and φ̄. Since we assume that f5 6= 0, we have

from (3.17) that sin ζ is nowhere zero and then (3.53) implies that both cos 2φ̄ and

cos 2θ̄ are nowhere zero. Using the expression for K in appendix B of [25], we see

that

sin 2θ̄ = 0 ⇐⇒ θ0 = 0 , (3.57)

sin 2θ̄ = sin 2φ̄ = 0 ⇐⇒ θ = 0 . (3.58)

1The fact that θ is closed was essentially observed in [35], and in [26] it was also shown to be
exact in the special cases of the Pilch-Warner and Lunin-Maldacena solutions.
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The locus {θ = 0} is thus a sublocus of {θ0 = 0}. Notice that, where θ = 0, Ω− is not

identically zero, as one might have naively expected from (3.51), but instead reduces

to a finite, non-zero three-form. Indeed, the powers of sin 2φ̄ in the denominator of

b− and ω− are cancelled by those in K, K3, and K4.

The type-change locus T = {θ = 0} can be given a physical interpretation as

the Abelian mesonic moduli space of the dual SCFT. This follows from the study of

the conditions for a D-brane configuration to be supersymmetric, which means that

it must wrap a generalized calibrated cycle Σ in the cone X [35]. In the case of

spacetime-filling D-branes, these conditions read, in our notations,

PΣ[ReΩ+] ∧ eFΣ|top = 0 D-flatness ,

PΣ[(dx
m ∧+∂my)Ω−] ∧ eFΣ|top = 0 F-flatness , (3.59)

where PΣ is the pullback on the worldvolume of the brane, and FΣ is the worldvolume

field-strength (without the B-field to form a gauge-invariant combination, since our

Ω± are essentially B-transforms of the Ψ± in [35]).

Now the Abelian mesonic moduli space of the dual SCFT can be identified with

the moduli space of a supersymmetric probe D3-brane in X , since strings stretched

between this probe brane and the stack of D3-branes at the origin will appear as a

meson. A spacetime-filling D3-brane is located at a point of X , and so the cycle Σ is

zero-dimensional. The supersymmetry conditions thus become the scalar conditions

ReΩ+|0 = Reα+ = 0 D-flatness ,

∂myΩ−|0 = ∂myθ = 0 F-flatness . (3.60)

The D-flatness condition is trivially satisfied in our case since we saw in (3.56) that

the zero-form part of Ω+ is always purely imaginary. The F-flatness condition on the

other hand coincides precisely with the type-change locus T = {θ = 0}.
Notice that in the Sasaki-Einstein case, the pure spinor Ω− reduces to the holo-

morphic (3, 0)-form Ω, which is everywhere of type three. Then the space of possible

probe D3-brane configurations, and thus the mesonic moduli space of the dual SCFT,

is the entire cone: T = XCY. In the generalized case however, the mesonic moduli

space is restricted to a sublocus of X . We shall see examples of this in section 3.6

and in chapter 6.
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3.3 Generalized Killing vector fields

In this section we identify the generalized Killing vector fields which correspond to

the dilatation symmetry and the R-symmetry of the dual SCFT.

3.3.1 Dilatation symmetry

We begin with the Euler vector field r∂r, which corresponds to the dilatation sym-

metry. It immediately follows from (3.23), (3.28), and (3.34) that the pure spinors

Φ± are homogeneous of degree one under r∂r:

Lr∂rΦ± = Φ± , (3.61)

and therefore, since the B-field, the warp factor ∆, and the dilaton φ are pull-backs

from Y , so that Lr∂reA = eA, the pure spinors Ω± (3.43) are homogeneous of degree

three:

Lr∂rΩ± = 3Ω± . (3.62)

This implies that r∂r preserves the associated generalized structures J±:

Lr∂rJ± = 0 . (3.63)

To see this, recall that J± are defined by identifying their +i-eigenspaces LJ±
with the

annihilator spaces LΩ±
of Ω±, and these are clearly preserved under the one-parameter

family of diffeomorphisms generated by r∂r. It further follows that Lr∂rG = 0, where

G is the generalized metric G = −J+J−, so that r∂r is generalized Killing. Moreover,

equation (3.63) says that r∂r is a generalized holomorphic vector field for the integrable

generalized complex structure J−.
2 This clearly generalizes the standard result that

the Euler vector r∂r is Killing and holomorphic in the case where Y is Sasaki-Einstein

and X = C(Y ) is Calabi-Yau.

3.3.2 R-symmetry

We next define the generalized vectors

ξ ≡ J−(r∂r) , (3.64)

η ≡ J−(d log r) . (3.65)

2We shall not use this terminology for J+ since it is not integrable.
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Note that the conical form (3.24) of the metric gX and the fact that B has no com-

ponent along dr implies that

G(d log r) = e−2∆−φ/2r∂r , G(r∂r) = e2∆+φ/2d log r , (3.66)

and hence we may also write

ξ = e2∆+φ/2J+(d log r) , η = e−2∆−φ/2J+(r∂r) . (3.67)

In a fixed splitting of E, we may split ξ and η into vector and one-form parts, denoted

by subscripts “v” and “f”, respectively:

ξ = ξv + ξf , η = ηv + ηf . (3.68)

By carrying out a calculation, presented in appendix A, we may then write these as

bilinears constructed from the five-dimensional Killing spinors (3.15):

ξv = K#
5 , ξf = ξvyb2 ,

ηv = e−2∆−φ/2 ReK#
3 , ηf = 4

f5
e4∆K4 + ηvyb2 . (3.69)

As discussed in appendix A, it is the B-transform ξB of the generalized vector ξ that

is naturally related to the bilinears of [25]. We have obtained (3.69) by performing an

inverse B-transform using the expression for the B-field in terms of bilinears presented

in (3.19). In particular, this is where the closed two-form b2 appears.

In [25] it was shown that K#
5 is a Killing vector that preserves all the fluxes,

and thus K#
5 was identified as being dual to the R-symmetry in the SCFT. In the

generalized geometry we can show the stronger conditions that

LξJ± = 0 , (3.70)

and hence the generalized vector ξ is generalized holomorphic and generalized Killing.

Again, this clearly generalizes the result that in the Sasaki-Einstein case the vector

field ξ ≡ I(r∂r) is a holomorphic Killing vector field on the Calabi-Yau cone.

In fact it is straightforward to show LξΩ− = −3iΩ− and hence LξJ− = 0. Indeed

since dΩ− = 0 and r∂r − iξ ∈ LJ−
= LΩ−

annihilates Ω−, using (2.24) and (3.62) we

have

LξΩ− = d (ξ · Ω−) = −id (r∂r · Ω−) = −iLr∂rΩ− = −3iΩ− . (3.71)
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To show that LξΩ+ = 0 and hence LξJ+ = 0 requires a bit more work. We

start by deriving a few useful results. Recall first that the compatibility condition

[J−,J+] = 0 can be rephrased as J− · Ω+ = 0, or Ω+ ∈ U0
−. This implies that

d(e−3A ImΩ+) = (∂̄ + ∂)(e−3A ImΩ+) ∈ U1
− ⊕ U−1

− , and so we can write e−BF ≡
F 1 +F−1 ∈ U1

−⊕U−1
− . Writing r∂r ≡ r∂+r + r∂−r with r∂±r : Uk

− → Uk±1
− , we get from

r∂ry(e
−BF ) = 0 that r∂+r yF

1 = r∂−r yF
−1 = 0. Using that the Lie algebra action of ξ

on generalized spinors is given by ξ· = J−(r∂r)· = [J−·, r∂ry], we can then calculate

ξ · J− · (e−BF ) = J− · r∂ryJ− · (e−BF )
= iJ− · [(r∂+r + r∂−r )y(F

1 − F−1)]

= iJ− · (r∂−r yF 1 − r∂+r yF−1) = 0 , (3.72)

where in the last step we used that r∂−r yF
1 − r∂+r yF

−1 ∈ U0
−. Next, using the

supersymmetry constraint (3.48) we get

J− · (e−BF ) = 8J− · J− · d(e−3A ImΩ+)

= −8d(e−3A ImΩ+)

= 32e−3AdA ∧ ImΩ+ − 8e−4Ad(eA ImΩ+)

= 32e−3AdA ∧ ImΩ+ − e−B ⋆ λ(F ) . (3.73)

Notice that we can write down two independent annihilators of Ω−:

Z−
1 ≡ (1− iJ−)r∂r = r∂r − iξ ,

Z−
2 ≡ (1− iJ−)d log r = d log r − iη , (3.74)

as well as two independent annihilators of Ω+:

Z+
1 ≡ (1− iJ+)r∂r = r∂r − ie2∆+φ/2η ,

Z+
2 ≡ (1− iJ+)e

2∆+φ/2d log r = e2∆+φ/2d log r − iξ , (3.75)

and from the fact that these are null isotropic generalized vectors,
〈

Z±
i , Z

±
j

〉

= 0, we

obtain the useful relations

ξvyd log r = ηvyd log r = r∂ryξf = ξvyξf = r∂ryηf = ηvyηf = 0 ,

ξvyηf + ηvyξf = 1 . (3.76)
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Acting on (3.73) with ξ gets rid of the left-hand side because of (3.72), and acting

with d log r gets rid of the last term because r∂ryF = 0 implies ⋆λ(F ) = d log r∧ · · · .
Then using the annihilator constraint Z+

2 · Ω+ = 0, we are left with

(ξvydA)d log r ∧ ImΩ+ = 0 , (3.77)

from which we conclude, since the zero-form part of ImΩ+ is non-zero by (4.40), that

ξvydA = 0 and so ξvyd(∆ + φ/4) = 0.

We are now in a position to show that Ω+ is preserved by ξ. From (3.46) we

obtain

LξΩ+ = ξ · dΩ+ + d(ξ · Ω+)

= (ξ ·+ie2∆+φ/2d log r∧)
[

dA ∧ Ω̄+ +
i

8
e3Ae−B ⋆ λ(F )

]

+id log r ∧ de2∆+φ/2 ∧ Ω+

= 2ie2∆+φ/2d log r ∧ [d(∆ + φ/4)− dA] ∧ Ω+ = 0 . (3.78)

This implies LξJ+ = 0, and since we already know that LξJ− = 0, we conclude that

the generalized Reeb vector ξ preserves the generalized metric, LξG = 0, or in terms

of the metric g and the two-form B,

Lξvg = LξvB − dξf = 0 . (3.79)

Finally, using (3.48), (3.73), (3.75), and (3.47), we calculate

Lξ

(

e4Ae−B ⋆ λ(F )
)

= d
[

ξ ·
(

e4Ae−B ⋆ λ(F )
)]

= 4d
[

de4∆+φ ∧ dr2 ∧ e−AReΩ+

]

= 0 . (3.80)

Then since LξveA = Lξe
−B = 0 and Lξvg = 0, this leads to LξvF = 0, or equivalently

Lξ(e
−BF ) = 0 . (3.81)

Thus, we have established that ξ ≡ J−(r∂r) is a generalized holomorphic vector field,

which moreover is generalized Killing for the generalized metric G = −J−J+, and

also preserves the RR fluxes. This implies that ξ generates a full symmetry of the

supergravity solution.
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To conclude this section we note that when f5 6= 0 the vector field ξv = K#
5 is

nowhere vanishing on Y . One can see this from the formula [25]

|K#
5 |2 = sin2 ζ + |S|2 , (3.82)

and using (3.17). Thus ξv acts locally freely on Y and hence its orbits define a one-

dimensional foliation of Y . This is again precisely as in the Sasaki-Einstein case

(although in the Sasaki-Einstein case the norm of ξv is constant).

3.4 BPS operators and generalized holomorphic

spinors

In the Sasaki-Einstein case, holomorphic functions on the Calabi-Yau cone with a

definite scaling weight λ under the action of r∂r also have a charge λ under the action

of ξ (see for instance [48]). This stems from the intimate connection (via Kaluza-Klein

reduction on the Sasaki-Einstein manifold) between (anti-)holomorphic functions on

the cone and BPS operators in the dual CFT, in fact (anti-)chiral primary operators.

For general AdS5 solutions we might expect that the holomorphic functions should

be replaced by polyforms and that the BPS condition of matching charges should

be with respect to the generalized Lie derivative L discussed in chapter 2. We now

derive such a result, leaving the detailed connection with Kaluza-Klein reduction on

the internal space Y for future work.

Consider a generalized spinor Ψ satisfying

Ψ ∈ Uk
− , Lr∂rΨ = λΨ , (3.83)

for some k and λ. Then we obtain

∂̄−Ψ = 0 , (r∂r + iξ) ·Ψ = 0 =⇒ LξΨ = iLr∂rΨ . (3.84)

In other words, subject to the constraints (3.83), a generalized spinor is BPS if it is

generalized holomorphic and is annihilated by r∂r + iξ. To see this result, we first

write r∂r = (r∂r + iξ)/2 + (r∂r − iξ)/2 and use (3.83) to deduce that

∂−[(r∂r + iξ) ·Ψ] + (r∂r + iξ) · ∂−Ψ = 0 ,

∂̄−[(∂r − iξ) ·Ψ] + (r∂r − iξ) · ∂̄−Ψ = 0 . (3.85)
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In obtaining this we used the fact that since r∂r − iξ is an annihilator of Ω− it raises

the level of Ψ and similarly r∂r+iξ lowers the level, while ∂̄− and ∂− raises and lowers

it respectively. We then compute

LξΨ = iLr∂rΨ− i {d [(r∂r + iξ) ·Ψ] + (r∂r + iξ) · dΨ}
= iLr∂rΨ− i

{

∂̄− [(r∂r + iξ) ·Ψ] + (r∂r + iξ) · ∂̄−Ψ
}

. (3.86)

In a similar way, given (3.83) we also have

∂−Ψ = 0 , (r∂r − iξ) ·Ψ = 0 =⇒ LξΨ = −iLr∂rΨ . (3.87)

3.5 Contact volume formulas

In the previous sections we have shown how much of the geometric structure of Sasaki-

Einstein solutions of type IIB supergravity can be “generalized” to the most general

solutions admitting a dual description in terms of N = 1 SCFT. We now show that

part of this structure, namely the symplectic structure on the cone, is still present

in the general solutions, exactly as in the Sasaki-Einstein case, that is without the

need to be generalized. This symplectic structure descends to a contact structure on

Y and the associated Reeb vector field is the generalized Killing vector ξv studied in

section 3.3.2. A direct benefit is that the central charge and conformal dimensions

of certain BPS operators in the dual superconformal field theory can be expressed

neatly as contact volumes.

3.5.1 A canonical symplectic structure

We claim that the rescaled two-form

ω ≡ e−2Ar4ω+ (3.88)

defines a canonical symplectic structure on the cone X = C(Y ) ∼= R+ × Y . To see

this, we first observe that Y admits a contact structure defined by the one-form

σ ≡ 4

f5
e4∆K4 . (3.89)

Recall that for a one-form σ to be contact, the top-degree form σ ∧ dσ ∧ dσ must

be nowhere vanishing, and thus a volume form. Using (3.19) of [25], and results in
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appendix B of [25], we can show that 3

σ ∧ dσ ∧ dσ = −128
f 2
5

e8∆volY = − 8

sin2 ζ
volY . (3.90)

We then observe that

ω =
1

2
d(r2σ) , (3.91)

which shows that ω is closed and non-degenerate, and hence defines a symplectic

structure on the cone X . Alternatively, we can see the formula (3.91) for ω directly

from the supersymmetry equation (3.47) on noting that e−AΩ+ has scaling dimension

two under r∂r. Furthermore, again using the results of appendix B of [25], we have

ξvyσ = 1 , ξvydσ = 0 , (3.92)

which shows that ξv is also the unique Reeb vector field associated with the contact

structure. Notice also that (3.91) implies that r2/2 is precisely the Hamiltonian

function for the Hamiltonian vector field ξv, that is d(r
2/2) = −ξvyω. It is remarkable

that these features, which are well-known in the Sasaki-Einstein case, are valid for all

supersymmetric AdS5 solutions (with f5 6= 0).

We remark here that although we have a symplectic structure, we do not quite

have a Kähler structure, as in the Calabi-Yau case, but it is quite close. Using the

last equation in (3.69) and the definition (3.89) we see that

ηf = σ + ηvyb2 , (3.93)

and thus
(

eb2η
)

|f = σ. Since eb2(d log r) = d log r manifestly, and by definition

η ≡ J−(d log r), we have, using (2.39),

σ = J b2
− (d log r)|f = −(Ib2− )∗(d log r) . (3.94)

This is precisely analogous to the formula for the contact form in the Sasakian case.

We then have

dJ
b2
− r2 = −r2 d

(

Qb2
− +

1

2
Imm

)

− (Ib2− )∗(d(r2)) , (3.95)

3In terms of the orthonormal frame in appendix B of [25] we have volY = e12345.
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where dJ− ≡ [J−, d], and we use (2.42) for the action on generalized spinors. From

this it follows that

ω =
1

4
ddJ

b2
− r2 +

1

4
d(r2) ∧ d

(

Qb2
− +

1

2
Imm

)

. (3.96)

Thus r2 is almost a Kähler potential, for the b2-transformed complex structure J b2
− ≡

eb2J−e
−b2 , except for the last term.

3.5.2 The central charge as the contact volume

Recall that in any four-dimensional CFT there are two central charges, usually called

a and c, that are constant coefficients in the conformal anomaly

〈T µµ 〉 =
1

120(4π)2

(

c(Weyl)2 − a

4
(Euler)

)

. (3.97)

Here Tµν denotes the stress-energy tensor, and “Weyl” and “Euler” denote certain

curvature invariants for the background four-dimensional metric. For SCFTs, both a

and c are related to the R-symmetry via [17]

a =
3

32

(

3TrR3 − TrR
)

, c =
1

32

(

9TrR3 − 5TrR
)

. (3.98)

Here the trace is over the fermions in the theory. For SCFTs with AdS5 gravity duals,

in fact a = c holds necessarily in the large N limit [49]. The central charge of the

SCFT is then inversely proportional to the dual five-dimensional Newton constant G5

[49], obtained by Kaluza-Klein reduction on Y . The Newton constant, in turn, was

computed in appendix E of [25], and is given by

G5 =
G10

V5
=

κ210
8πV5

, (3.99)

where G10 is the ten-dimensional Newton constant of type IIB supergravity, and we

have defined

V5 ≡ −
∫

Y

e8∆volY . (3.100)

Using the relation (3.17), we may rewrite this as

V5 = −f
2
5

16

∫

Y

1

sin2 ζ
volY . (3.101)
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Importantly, the constant f5 is quantized, being essentially the number of D3-branes

N . Specifically, we have

N =
1

(2πls)4gs

∫

Y

dC4 =
1

(2πls)4gs

∫

Y

(F5 +H ∧ C2) . (3.102)

Using the Bianchi identity DG = −P ∧ G∗ and the result (3.18), one derives that

d(H ∧ C2) = −(2/f5)d[e6∆Im(W ∗ ∧G)] and so we can also write

N =
1

(2πls)4gs

∫

Y

(

F5 −
2e6∆

f5
Im [W ∗ ∧G]

)

. (3.103)

We may evaluate this expression in terms of the orthonormal basis of forms ei intro-

duced in appendix B of [25], and after some calculation we find

N =
f5

(2πls)4gs

∫

Y

1

sin2 ζ
volY = − V5

f5(πls)4gs
. (3.104)

Combining these formulas and using 2κ210 = (2π)7l8sg
2
s leads to the result

G5 =
8V5

π2f 2
5N

2
. (3.105)

Consider now the integral

IDH ≡ 1

(2π)3

∫

X

e−r
2/2ω

3

3!
. (3.106)

This is the Duistermaat-Heckman integral for a symplectic manifold (X,ω) with

Hamiltonian function r2/2, which we have shown is the Hamiltonian for the Reeb

vector field ξv. Using (3.90) and (3.91) we may rewrite

ω3

3!
= −16

f 2
5

e8∆r5dr ∧ volY . (3.107)

Performing the integral over r in (3.106) allows us to rewrite the five-dimensional

Newton constant as

G5 =
πIDH

2N2
. (3.108)

Since IDH = 1 for the round five-sphere solution, we obtain the ratio G5/GS5 = IDH.

Recalling that this is, by AdS/CFT duality, the inverse ratio of central charges [49],

we deduce the key result

aN=4

a
=

1

(2π)3

∫

X

e−r
2/2ω

3

3!
=

1

(2π)3

∫

Y

σ ∧ dσ ∧ dσ . (3.109)
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Here aN=4 = N2/4 denotes the (large N) central charge of N = 4 super Yang-Mills

theory.

The formula (3.109) implies that the central charge depends only on the symplectic

structure of the cone (X,ω) and the Reeb vector field ξv. This is perhaps surprising:

one might have anticipated that the quantum numbers of quantized fluxes would

appear explicitly in the central charge formula. However, recall from formulas (3.19),

(3.20) that the two-form potentials B − b2 and C2 − c2 are globally defined. This

implies for example that the period of H = dB through any three-cycle in Y is zero.

As discussed in [19], the Duistermaat-Heckman integral in (3.109) may be eval-

uated by localization. The integral localizes where ξv = 0, which is formally at the

tip of the cone at r = 0. Unless the differentiable and symplectic structure is smooth

here (which is only the case when X ∪ {r = 0} is diffeomorphic to R6), one needs to

equivariantly resolve the singularity in order to apply the localization formula. No-

tice here that since ξv preserves all the structure on the compact manifold (Y, gY , σ),

the closure of its orbits defines an U(1)s action preserving all the structure, for some

s ≥ 1. Here we have used the fact that the isometry group of a compact Riemannian

manifold is compact. Thus (X,ω) comes equipped with a U(1)s action.

Rather than attempt to describe this in general, we focus here on the special case

where the solution is toric: that is, there is a U(1)3 action on Y under which σ, and

hence ω under the lift to X , is invariant. Notice that we do not necessarily require

that the full supergravity solution is invariant under U(1)3 (we shall illustrate this in

the next section with the Pilch-Warner solution, where σ and the metric are invariant

under U(1)3, but the G3-flux is invariant only under a U(1)2 subgroup). For the

arguments that follow, it is only σ, and hence ω, that we need to be invariant under

a maximal dimension torus U(1)3. In fact any such symplectic toric cone is also an

affine toric variety. This implies that there is a (compatible) complex structure on X ,

and that the U(1)3 action complexifies to a holomorphic (C∗)3 action with a dense

open orbit. There is then always a symplectic toric resolution (X ′, ω′) of (X,ω),

obtained by toric blow-up. In physics language, this is because one can realize (X,ω)

as a gauged linear sigma model, and one obtains (X ′, ω′) by simply turning on generic

Fayet-Iliopoulos parameters. One can also describe this in terms of moment maps as

follows. The image of a symplectic toric cone under the moment map µ : X → R3
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is a strictly convex rational polyhedral cone (see [19]). Choosing a toric resolution

(X ′, ω′) then amounts to choosing any simplicial resolution P of this polyhedral cone.

Here P is the image of µ′ : X ′ → R3. Assuming the fixed points of ξv are all isolated,

the localization formula is then simply [19]

1

(2π)3

∫

X

e−r
2/2 ω

3

3!
=

∑

vertices p∈P

3
∏

i=1

1

〈ξv, upi 〉
. (3.110)

Here upi , i = 1, 2, 3, are the three edge vectors of the moment polytope P at the

vertex point p, and 〈·, ·〉 denotes the standard Euclidean inner product on R
3 (where

we regard ξv as being an element of the Lie algebra R
3 of U(1)3). The vertices of

P precisely correspond to the U(1)3 fixed points of the symplectic toric resolution

X ′ = XP of X . Thus, remarkably, these results of [19] hold in general, even when

there are non-trivial fluxes turned on and X is not Calabi-Yau.

3.5.3 Conformal dimensions of BPS branes

A supersymmetric D3-brane wrapped on a three-submanifold Σ3 ⊂ Y manifests itself

as a BPS particle in AdS5. The quantum field Ψ whose excitations give rise to this

particle state then couples, in the usual way in AdS/CFT, to a dual chiral primary

operatorOΣ3 in the boundary SCFT. More precisely, there is an asymptotic expansion

of Ψ near the AdS5 boundary,

Ψ ∼ Ψ0r
∆−4 + AΨr

−∆ , (3.111)

where Ψ0 acts as the source for OΣ3 and ∆ = ∆(OΣ3) is the conformal dimension of

OΣ3 . In [50], following [51], it was argued that the vacuum expectation value AΨ of

OΣ3 in a given asymptotically AdS5 background may be computed from exp(−SE),

where SE is the on-shell Euclidean action of the D3-brane wrapped on Σ4 = R
+×Σ3,

where R+ is the radial direction parameterized by r. In particular, via the second term

in (3.111) this identifies the conformal dimension ∆ with the coefficient of the loga-

rithmically divergent part of the on-shell Euclidean action of the D3-brane wrapped

on Σ4. We refer to section 2.3 of [50] for further details.

We are thus interested in the on-shell Euclidean action of a supersymmetric D3-

brane wrapped on Σ4 = R+ × Σ3. The condition of supersymmetry is equivalent to
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a generalized calibration condition, namely equation (3.16) of [46]. In our notation

and conventions, this calibration condition reads

Re
[

−iΦ+ ∧ eF
]

|Σ4 =
|η1+|2
8

√

det(h+ F) dx1 ∧ · · · ∧ dx4 . (3.112)

Here h is the induced (string frame) metric on Σ4, and F = FΣ − B, with FΣ the

worldvolume field-strength, satisfying

dF = −H |Σ4 . (3.113)

Recalling from section 3.2 that |η1+|2 = eA, we may then substitute for Φ+ in terms

of Ω+ using (3.43) and (3.55) to obtain

Re
[

−iΦ+ ∧ eF
]

|Σ4 =
f5
64

eA+φ
[

d log r ∧ σ ∧ dσ − e−4Ar4(FΣ − b+)2
]

|Σ4 ,(3.114)

where, as in (3.56),

b+ = −e
2∆+φ/2

sin ζ
d log r ∧ ImK3 + b2 . (3.115)

Here b2 is a closed two-form, whose gauge-invariant information is contained in its

cohomology class in H2(X,R)/H2(X,Z). In writing b+ in (3.114) we have chosen a

particular representative two-form for the class of b2 in H2(X,R)/H2(X,Z). Then

under any gauge transformation of b+ (induced from a B-transform of Ω+), the world-

volume field-strength FΣ transforms by precisely the opposite gauge transformation

restricted to Σ4, so that the quantity FΣ − b+ is gauge invariant on Σ4. We now

choose the worldvolume gauge field FΣ to be

FΣ = b2 |Σ4 , (3.116)

so that (3.114) becomes simply

Re
[

−iΦ+ ∧ eF
]

|Σ4=
f5
64

eA+φd log r ∧ σ ∧ dσ |Σ4 . (3.117)

In fact, there is a slight subtlety in (3.116). If the cohomology class of b2/(2πls)
2 |Σ4 in

H2(Σ4,R) is not integral, then the choice (3.116) is not possible as FΣ is the curvature

of a unitary line bundle. Having said this, notice that H2(Σ4,R) ∼= H2(Σ3,R), and

thus in particular that if H2(Σ3,R) = 0 then every closed b2 |Σ4 is exact, and thus

may be gauge-transformed to zero on Σ4. Then (3.116) simply sets FΣ = 0. For every
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example of a supersymmetric Σ3 that we are aware of, this is indeed the case. In any

case, we shall assume henceforth that the choice (3.116) is possible.

The calibration condition (3.112) for a D3-brane with worldvolume Σ4 and with

gauge field (3.116) is thus

f5
8
d log r ∧ σ ∧ dσ |Σ4 = e−φ

√

det(h− B + b2) dx1 ∧ · · · ∧ dx4 . (3.118)

Notice the right hand side is precisely the Dirac-Born-Infeld Lagrangian, up to the

D3-brane tension τ3 = 1/(2π)3l4sgs. From (3.118), and the comments above on the

scaling dimension ∆(O(Σ3)) of the dual operator O(Σ3), we thus deduce

∆(O(Σ3)) = −τ3f5
8

∫

Σ3

σ ∧ dσ , (3.119)

where the sign is just arising from a convenient choice of orientation. Using (3.104)

and (3.90) we have

f5 = − 8(2πls)
4gsN

∫

Y
σ ∧ dσ ∧ dσ

, (3.120)

and hence

∆(O(Σ3)) =
2πN

∫

Σ3
σ ∧ dσ

∫

Y
σ ∧ dσ ∧ dσ

. (3.121)

This is our final formula for the conformal dimension of the chiral primary operator

dual to a BPS D3-brane wrapped on Σ3. Since we may write

∫

Σ3

σ ∧ dσ =

∫

Σ4

e−r
2/2ω

2

2!
, (3.122)

we see that it depends only on the symplectic structure of (X,ω) and the Reeb vector

field ξv. This may again be evaluated by localization, having appropriately resolved

the tip of the cone Σ4.

3.6 Example: the Pilch-Warner solution

In this section we illustrate the general results derived so far with the Pilch-Warner

solution of type IIB supergravity [52, 53]. Some aspects of the generalized complex

geometry of this solution have already been discussed in [26]. Recall that the Pilch-

Warner solution is dual to a Leigh-Strassler fixed point theory [54] which is obtained
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by giving a mass to one of the three chiral superfields (in N = 1 language) of N = 4

SU(N) super Yang-Mills theory and following the resulting renormalization group

flow to the IR fixed point theory (see section 6.1 for more detail). This latter theory

is an N = 1 SU(N) gauge theory with two adjoint fields Za, a = 1, 2, which form a

doublet under an SU(2) flavour symmetry, and a quartic superpotential. Since the

superpotential has scaling dimension three, this fixes ∆(Za) = 3/4, implying that the

IR theory is strongly coupled. The mesonic moduli space is SymN
C2.

The Pilch-Warner supergravity solution [52] was rederived in [25], and we shall

use some of the results from that reference too. We have Y = S5 with non-trivial

metric

gY =
1

9

[

6dϑ2 +
3 cos2 ϑ

1 + sin2 ϑ
(σ2

1 + σ2
2) +

3 sin2 2ϑ

2(1 + sin2 ϑ)2
σ2
3

+4

(

dϕ +
cos2 ϑ

1 + sin2 ϑ
σ3

)2 ]

, (3.123)

where 0 ≤ ϑ ≤ π/2, 0 ≤ ϕ ≤ 2π, and σi, i = 1, 2, 3, are left-invariant one-forms on

SU(2) (denoted with hats in [25]). The dilaton φ and axion C0 are constant, while

the warp factor is

e4∆ =
f5
4
(1 + sin2 ϑ) . (3.124)

There are also non-trivial NS and RR three-form fluxes given by (recall (3.2))

G3 =
(2f5)

1/2

33/2
e2iϕ cosϑ

(

dϕ ∧ dϑ− i sin 2ϑ

2(1 + sin2 ϑ)
dϕ ∧ σ3

− cos2 ϑ

(1 + sin2 ϑ)2
dϑ ∧ σ3

)

∧ (σ2 − iσ1) . (3.125)

We introduce the Euler angles (α, β, γ) on SU(2) (as in [25]), so that

σ1 = − sin γdα− cos γ sinαdβ ,

σ2 = cos γdα− sin γ sinαdβ ,

σ3 = dγ − cosαdβ . (3.126)

In terms of these coordinates, the R-symmetry vector ξv is4

ξv = ∂ψ =
3

2
∂ϕ − 3∂γ . (3.127)

4Note that this, more conventional, normalization of ψ differs from the corresponding coordinate
in [25] by a factor of three.
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Using the explicit formulas in [25], it is easy to show that the contact form is

σ = −2
3

(

cos 2ϑ dϕ+ cos2 ϑσ3
)

. (3.128)

The Pilch-Warner solution is toric, in the sense that both σ and the metric are

invariant under shifts of ϕ, β and γ. However, notice that the G3-flux in (3.125) is

not invariant under shifts of ϕ, thus breaking this U(1)3 symmetry to only a U(1)2

symmetry of the full supergravity solution. This is expected, since the dual field

theory described above has only an SU(2)× U(1)R ⊃ U(1)2 global symmetry.

On Y = S5 there are precisely three invariant circles under the U(1)3 action,

where two of the U(1) actions degenerate, namely at {ϑ = π
2
}, {ϑ = 0, α = 0}, and

{ϑ = 0, α = π}. A set of 2π-period coordinates on U(1)3 are

ϕ1 = ϕ, ϕ2 = −1
2
(ϕ+ γ − β), ϕ3 = −1

2
(ϕ+ γ + β) . (3.129)

These restrict to coordinates on the above three invariant circles, respectively. On

X ∼= R6 \ {0} we also have three corresponding moment maps

µ1 =
r2

3
sin2 ϑ , µ2 =

2r2

3
cos2 ϑ cos2

α

2
, µ3 =

2r2

3
cos2 ϑ sin2 α

2
, (3.130)

so that ω = d(r2σ)/2 =
∑3

i=1 dµi∧dϕi. It follows that the image of the moment map

(the space spanned by the µi coordinates) is the cone (R+)
3, where the three invariant

circles map to the three generating rays u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1).

The Reeb vector (3.127) is then computed in this basis to be

ξv =
3

2
∂ϕ1 +

3

4
∂ϕ2 +

3

4
∂ϕ3 . (3.131)

Since the symplectic structure is smooth at r = 0, we may evaluate the Duistermaat-

Heckman integral (3.109) by localization without having to resolve X at r = 0. In the

case at hand, we have the single fixed point at r = 0, and from (3.131) one obtains

the known result for the central charge aPW of the SCFT dual to the Pilch-Warner

solution:

aN=4

aPW
=

1

ξv1ξv2ξv3
=

32

27
. (3.132)

The key point about this calculation is that we performed it knowing only the sym-

plectic structure and the Reeb vector field ξv.
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We may similarly compute the conformal dimensions of the operators detZa, using

(3.121), by interpreting them as arising from a BPS D3-brane wrapped on the three-

spheres at α = 0 and α = π, respectively. It is simple to check these indeed satisfy

the calibration condition (3.118) and are thus supersymmetric. Using (3.122) and

localization at r = 0 implies that (3.122) is equal to 1/ξv1ξv2, 1/ξv1ξv3, respectively,

which in both cases is 8/9. The formula (3.121) thus gives ∆(detZa) = 3N/4, or

equivalently ∆(Za) = 3/4, which is indeed the correct result.

Next recall from subsection 3.2.1 that the mesonic moduli space should be the

locus {θ = 0}, where the complex one-form is θ = d(r3θ0) = −d(r3e4∆S)/24. This

is the locus where sin 2θ̄ = sin 2φ̄ = 0. For the Pilch-Warner solution, we may easily

compute

sin 2θ̄ = −
√
3 sin2 ϑ√

1 + 3 sin4 ϑ
, cos 2φ̄ =

√
1 + 3 sin4 ϑ

1 + sin2 ϑ
. (3.133)

Thus, as discussed in [26], the mesonic moduli space is equivalent to ϑ = 0, which is a

codimension two submanifold in R6 diffeomorphic to R4. Moreover, this is C2 in the

induced complex structure, and we thus see explicit agreement with the field theory

Abelian mesonic moduli space.

Finally, although the Pilch-Warner solution is generalized complex, rather than

complex, we note that one can nevertheless define a natural complex structure [55].

The relation between this integrable complex structure and the generalized geometry

has been discussed in [26]. Let us conclude this section by elucidating this connection.

One can introduce the following complex coordinates [26] in terms of the angular

variables (3.129):

s1 = r3/2 sin ϑ e−iϕ1 ,

s2 = r3/4 cos ϑ cos
α

2
eiϕ2 ,

s3 = r3/4 cos ϑ sin
α

2
eiϕ3 . (3.134)

This makes R6 ∼= C3. However, because of the minus sign in the phase of the first

coordinate in (3.134), the corresponding integrable complex structure, which we call

I∗, is not the unique complex structure that is compatible with the toric structure

of the solution: the latter instead has complex coordinates s̄1, s2, s3. Also, the Reeb

vector field ξv is not given by I∗(r∂r). This makes the physical significance of this
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complex structure rather unclear. Nevertheless, one can show that I∗ does in fact

come from an SU(3)-structure defined by a Killing spinor η∗. Following [26], we

define

2âη∗ = η1+ + iη2+ = eA/2
(

ξ2
iξ2

)

, (3.135)

where by definition we require η̄∗η∗ = 1. It is then convenient to define â ≡ |â|eiz,
where |â|2 = eA|ξ2|2/2 = eA(1− sin ζ)/2. We then introduce the bilinears correspond-

ing to the SU(3)-structure defined by η∗:

J∗ ≡ −iη̄∗γ(2)η∗ , Ω∗ ≡ η̄c∗γ(3)η∗ . (3.136)

We compute that dΩ∗ = 0, implying that the corresponding complex structure I∗ is

integrable, and moreover that

e2izΩ∗ = −e2iα
√
2f

3/2
5

9e3A
ds1 ∧ ds2 ∧ ds3 , (3.137)

implying that (3.134) are indeed complex coordinates for this complex structure. We

also compute

J∗ = −e
2A

r2

[

d log r ∧ 2

3

(

dϕ +
cos2 ϑ

1 + sin2 ϑ
σ3

)

+
d(cos2 ϑσ3)

3(1 + sin2 ϑ)

]

. (3.138)
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Chapter 4

Generalized Sasakian geometry

In this chapter we propose a generalization of the concept of a Sasakian manifold.

We saw in chapter 3 that the requirement of supersymmetry for AdS5 solutions of

type IIB supergravity may be expressed in terms of a pair of compatible generalized

structures with pure spinors Ω− and Ω+. It consists in the differential constraints

(3.45), (3.47), and (3.50):

dΩ− = 0 ,

d(e−AReΩ+) = 0 , ddJ−(e−3A ImΩ+) = 0 , (4.1)

together with the equal Mukai norm condition (3.44):

‖Ω−‖2 = ‖Ω+‖2 . (4.2)

Here the function A is a conformal factor, J− is the (integrable) generalized complex

structure associated with Ω−, and dJ− ≡ [J−, d]. We will define the concept of

a generalized Sasakian manifold Y by imposing the constraints (4.1) on the cone

X ∼= R+ × Y , while relaxing the condition (4.2) on the norms of Ω±. This definition

reduces to the definition of a Sasakian manifold 1 in the case with only the five-form

flux. Although these conditions resulted from the supergravity analysis of section 3.2,

here we shall argue that they are rather natural from a purely geometric point of view,

and follow carefully the consequences of each condition. The closure of Ω− implies

of course that the cone is generalized Calabi-Yau [30], in the sense of Hitchin. The

generalized Darboux theorem of [38] then allows us to put Ω− locally into a normal

1Strictly speaking this gives a Sasakian manifold which is transversely Fano, as defined for ex-
ample in [21].
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form, which determines a symplectic foliation of X . The second pure spinor Ω+ is

instead related to the background RR fluxes. This structure is not integrable, but

it nevertheless provides a symplectic structure on the cone. After reduction along

the Euler and Reeb vector fields, the compatibility condition between Ω− and Ω+

leads to a system involving a symplectic triple on the transverse space to the Reeb

foliation. More precisely, this is true away from the type-change locus along which

the generalized Sasakian structure becomes Sasakian. The RR fluxes also satisfy a

Bianchi identity, the third equation in (4.1), which gives an additional differential

constraint.

4.1 Generalized Calabi-Yau structure

In this section we consider an integrable generalized complex structure J− on a six-

manifold X that is associated with a closed pure spinor Ω−:

dΩ− = 0 . (4.3)

According to Hitchin’s definition [30], this makes X a generalized Calabi-Yau mani-

fold. We will also choose Ω− to be of odd type k. Then Ω− will generally have the

lowest odd type possible, that is k = 1, over a dense open subset X0 ⊂ X , but at

special loci T the type may change to k = 3. As explained in section 3.2, this is

the case of interest for application to AdS5 solutions of type IIB string theory. For

example, as already mentioned, a Calabi-Yau three-fold is everywhere of type k = 3.

In the remainder of this chapter we focus almost exclusively on the dense open

set X0 ⊂ X where Ω− has type one. The limit points of X0 are then by assumption

of type three, and one can view these as imposing certain boundary conditions on

the various type-one objects on X0 that we study. In fact we shall not study these

boundary conditions in detail here, since for our purposes it will be sufficient to know

simply the local conditions on X0, together with the fact that certain structures are

in fact defined globally on X .

The most general algebraic form for a closed polyform of type k = 1 is [38]

θ ∧ e−b−+iω− , (4.4)
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with θ a complex one-form and b−, ω− real two-forms. By the generalized Darboux

theorem [38], this structure is locally equivalent, via a diffeomorphism and a closed

B-transform (2.10), to the direct sum of a complex structure of complex dimension

one and a symplectic structure of real dimension four. More precisely, for any point

in X0 there is a neighbourhood with a symplectic foliation that is isomorphic to

an open set in C × R4, with transverse complex coordinate z = x + iy and real

coordinates {x1, y1, x2, y2} on the symplectic leaves. 2 The appropriate leaf-preserving

diffeomorphism ϕ is such that the pull-back of the two-form ω− to each leaf is the

standard Darboux symplectic form ω0:

ϕ∗ω−|R4×{pt} = ω0 ≡ dx1 ∧ dy1 + dx2 ∧ dy2 . (4.5)

The freedom to shift the exponent in (4.4) by a two-form whose wedge product with

θ vanishes allows us to trade b− for a closed two-form b0, and obtain 3

ϕ∗ [θ ∧ exp(−b− + iω−)] = dz̄ ∧ e−b0+iω0 . (4.6)

We dispose of b0 by a closed B-transform, and take the resulting polyform as the

definition of Ω− in this open neighbourhood:

Ω− ≡ dz̄ ∧ eiω0 . (4.7)

In the application to physics, the above closed B-transform will also act on the com-

patible pure spinor Ω+ introduced in section 4.2, and will be reabsorbed into its

definition. Notice that such closed B-transforms are symmetries of the supergravity

equations, but that globally only integer-period closed B-transforms are symmetries

of string theory.

The generalized structure corresponding to (4.7) combines a standard complex

structure I0 on the complex leaf space with a symplectic structure on the leaves (recall

the standard examples in (2.53)). In the coordinate basis {∂z, ∂z̄, ∂x1 , ∂y1, · · · , dx2, dy2}
2When we introduce the compatible pure spinor Ω+ in section 4.2, we shall see that there is

another foliation by orbits of ∂z . In fact the latter will turn out to be a global vector field on X , not
simply a local vector field in a neighbourhood of a point in X0, and on Y this will reduce to a Reeb
foliation (see section 4.3).

3The reason for choosing the anti-holomorphic one-form dz̄ is to align with the sign conventions
in section 2, see (2.40) and (2.50).
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of the (complexified) generalized tangent bundle it is given by

J− =









I0 02
04 ω−1

0

02 −I∗0
−ω0 04









.

The two-form ω0 gives an isomorphism between the tangent and cotangent spaces of

the leaves, as ω0 : (∂xa , ∂ya) 7→ (dya,−dxa), a = 1, 2, with inverse ω−1
0 : (dxa, dya) 7→

(−∂ya,∂xa). The group action of J−, viewed as an element of O(6, 6), is

J−(∂z) = i∂z , J−(∂z̄) = −i∂z̄ ,
J−(dz) = −idz , J−(dz̄) = idz̄ ,
J−(∂xa) = dya , J−(∂ya) = −dxa ,
J−(dxa) = ∂ya , J−(dya) = −∂xa .

(4.8)

On the other hand, J− may also be regarded as an element of the Lie algebra o(6, 6),

and the algebra action of J− on differential forms is then defined via the Clifford

action as J−· ≡ −I∗0 · −ω0 ∧ +ω−1
0 y, with the bivector ω−1

0 ≡ ∂y1 ∧ ∂x1 + ∂y2 ∧ ∂x2 .

Example: β-transform of C3

Let {z1, z2, z3} be standard complex coordinates on C3, which is the complex

structure associated with the pure spinor

Ω = dz1 ∧ dz2 ∧ dz3 . (4.9)

If we deform as in (2.11) by a bivector 4

β = z2∂z2 ∧ z1∂z1 + c.p. , (4.10)

where “c.p.” means the cyclic permutations of pairs of indices {1, 2, 3}, we obtain

eβΩ = d(z1z2z3) + dz1 ∧ dz2 ∧ dz3

= d(z1z2z3) ∧ exp

(

dz1 ∧ dz2
3z1z2

+ c.p.

)

. (4.11)

4 More generally, the deformation complex of a generalized structure on a complex manifold
M is ⊕p+q=2H

p(M,∧qT1,0). If M is a compact Calabi-Yau manifold, only H1(M,T1,0), whose
elements are ordinary complex deformations, is non-vanishing. There is therefore no bivector β ∈
H0(M,∧2T1,0) that can be used to deform it. However, as observed by Wijnholt [56], for Calabi-
Yau manifolds X that are cones over regular Sasaki-Einstein manifolds Y with Kähler-Einstein base
M , one can consider elements β ∈ H0(M,∧2T1,0) and then holomorphically extend these over the
entire cone to obtain a non-commutative deformation. In general, there might be obstructions in
⊕p+q=3H

p(M,∧qT1,0) to the integrability of such deformations. For the CP
2 base of C3, Gualtieri

showed that the obstructions vanish [38].
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This deformed pure spinor is of type three on the locus {d(z1z2z3) = 0}, corresponding
to the union of the three complex lines {zi = zj = 0 | i, j ∈ {1, 2, 3}, i < j}, but is

otherwise of type one as shown by the expression on the second line.

We now assume that X ∼= R+×Y , with Y compact, and introduce an appropriate

homogeneity property under the Euler vector field r∂r, where r is a coordinate on

R+. For a Calabi-Yau cone, recall that the holomorphic (3, 0)-form Ω is required to

be homogeneous of degree three under r∂r, that is Lr∂rΩ = 3Ω. Following section

3.2, we thus similarly impose this condition on the polyform Ω−:

Lr∂rΩ− = 3Ω− . (4.12)

This gives in general separate conditions on each of the one-, three-, and five-form

components of Ω−. Recall that this implies that r∂r is generalized holomorphic, that

is Lr∂rJ− = 0, as explained below (3.63). Next, we define the generalized Reeb vector

ξ = ξv + ξf and the generalized contact form η = ηv + ηf as

ξ ≡ J−(r∂r) , η ≡ J−(d log r) . (4.13)

From the fact that the complex combination r∂r − iξ annihilates Ω−, it follows that

Ω− has a definite charge under ξ (see (3.71)):

LξΩ− = −3iΩ− , (4.14)

and so ξ is generalized holomorphic as well, that is LξJ− = 0.

This homogeneity requirement leads to the following results, which for clarity we

present as a proposition [4]. Of course, these are to be understood as local expressions,

defined in the coordinate patch in which Ω− takes the form (4.7).

Proposition 1.

a) The complex coordinate z can be expressed in terms of the radial coordinate r,

a real function h, and a phase ψ as:

z = r3e3he3iψ . (4.15)

Here ∂rh = ∂rψ = 0, which means that h and ψ are pullbacks from (a neigh-

bourhood in ) Y . Moreover, h depends only on the symplectic (leaf ) coordinates.
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b) The Euler vector field takes the form

r∂r = 3(z∂z + z̄∂z̄)−Hϕ , (4.16)

where we define the Hamiltonian vector field as Hϕ ≡ ω−1
0 ydϕ, which is tangent

to the symplectic leaves, and the function ϕ also depends only on the symplectic

coordinates.

Proof.

Consider the general ansatz dz = µ0d log r + ν1, with µ0 a function and ν1 a one-

form such that ∂ryν1 = 0. The one-form part of the homogeneity condition (4.12) is

Lr∂rdz = 3dz , (4.17)

which leads to 3ν1/µ0 = d log(µ0/r
3). Since ∂ryν1 = 0, we can write µ0 = 3r3e3he3iψ

with h and ψ real functions, independent of r. But dz = d(r∂rydz)/3 = dµ0/3 and so

z = µ0/3 + c = r3e3he3iψ + c, with c a constant which we may set to zero by shifting

the origin of z. This proves a), except for the last statement that h is independent

of z.

To show b), notice first that it is clear from the condition (4.17) and its complex

conjugate that r∂r has to contain the term 3(z∂z + z̄∂z̄). Now the three-form part of

the homogeneity condition (4.12), dz ∧Lr∂rω0 = 0, can only be satisfied non-trivially

by a term of Lr∂rω0 proportional to dz∧dz̄. But since the action of the Lie derivative

on ω0 will leave one symplectic component intact in every term, there is no such term

in Lr∂rω0, and we must then have

Lr∂rω0 = 0 . (4.18)

This fixes r∂r up to a Hamiltonian vector field Hϕ tangent to the leaves such that

Hϕyω0 = −d̃ϕ, with d̃ the exterior derivative along the symplectic leaves and ϕ =

ϕ(z, z̄, xa, ya) an arbitrary real function.

To show that ϕ is independent of z, we use the homogeneity of Ω− under the

generalized Reeb vector ξ, which in terms of generalized Darboux coordinates reads

ξ = 3i(z∂z − z̄∂z̄) + d̃ϕ = ∂ψ + d̃ϕ . (4.19)
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This implies in particular that dz̄ ∧ d(d̃ϕ) = 0 and so d(d̃ϕ) = 0, which means that

locally we can write d̃ϕ = dϕ̃, with ϕ̃ = ϕ̃(xa, ya). We can then set ϕ = ϕ̃.

Similarly, the generalized contact form reads

η =
i

6
d log

z̄

z
−Hh = dψ −Hh , (4.20)

with the Hamiltonian vector field Hh ≡ ω−1
0 ydh. A priori, η contains an additional

term I∗0 · dh, but the condition dz̄ ∧ (ηvyω0 + d log r − iηf) = 0 from the fact that

d log r − iη annihilates Ω− gives dz̄ ∧ I∗0 · dh = 0, and so ∂zh = 0. The function h is

thus a function on the symplectic leaves, h = h(xa, ya).

4.2 Compatible structure of symplectic type

We now introduce a second generalized structure J+ on X , with an associated pure

spinor Ω+. We require that J− and J+ are compatible, which means that they should

commute and define a positive definite generalized metric via

G ≡ −J−J+ . (4.21)

We assume that Ω+ is everywhere of type zero:

Ω+ ≡ α+e
−b++iω+ , (4.22)

with α+ a nowhere-vanishing complex function, and b+, ω+ real two-forms. As ex-

plained in section 3.2, in the context of string theory solutions this assumption is

equivalent to the background having non-zero five-form flux sourced by the D3-brane

charge.

The next condition we wish to impose is an appropriate homogeneity condition

under the Euler vector field r∂r. Recall that an ordinary metric on X = R+ × Y

is said to be conical if it is homogeneous of degree two under r∂r, and moreover

r∂r is orthogonal to all tangent vectors in Y . Such a metric then takes the form

dr2+r2gY . At the end of chapter 2 we explained that in applying generalized geometry

to AdS5 × Y backgrounds, the metric gX defined by the generalized metric (2.29) is

conformal to the cone metric over Y , via gX = r−2(dr2 + r2gY ). In fact this is

the metric of a cylinder over Y , which is characterized by Lr∂rgX = 0 and r∂r being
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orthogonal to the base Y of the cylinder. It is then natural to extend these conditions

to the generalized metric G by imposing

Lr∂rG = 0 , and G(r∂r) = e2∆̂d log r , (4.23)

with ∆̂ a real homogeneous function of degree zero, Lr∂r∆̂ = 0. 5 It is straightforward

to show that these conditions are equivalent to the two-form B in (2.29) being basic

with respect to r∂r, that is Lr∂rB = r∂ryB = 0, and that the metric on X takes the

form

gX = e2∆̂
(

dr2

r2
+ gY

)

, (4.24)

where gY is the metric on the compact space Y . Thus gX is in general conformal

to a cylinder metric, with e2∆̂ being an invariant conformal factor. The Riemannian

volume form on X is, with a sign convention chosen to match that of chapter 3,

volX ≡ −√gXd log r ∧ d5y = −e6∆̂d log r ∧ volY . (4.25)

The homogeneity condition Lr∂rG = 0 together with Lr∂rJ− = 0 imply that J+

must be invariant under r∂r. As for Ω−, we may thus similarly impose the following

homogeneity condition on Ω+:

Lr∂rΩ+ = 3Ω+ . (4.26)

From a purely geometrical point of view, it would now be natural to impose

that J+ is also integrable. The manifold would then be generalized Kähler, in the

sense of [38]. This is the case, for instance, in the topological string and in purely

Neveu-Schwarz solutions of type II string theories (a short and highly incomplete list

of references is [57, 58, 59]). For general AdS5 solutions of type IIB string theory,

however, the presence of background RR fluxes on the cone is an obstruction to the

integrability of J+. As we pointed out in section 2.5, this is true even for Sasaki-

Einstein solutions. Thus imposing the closure of Ω+ would be too strong in our

context. We instead impose the weaker differential conditions

d(e−AReΩ+) = 0 , ddJ−(e−3A ImΩ+) = 0 . (4.27)

5The function ∆̂ is related to the warp factor ∆ and the dilaton φ in chapter 3 through ∆̂ =
∆ + φ/4. The presence of the dilaton is due to the transition from the Einstein frame gE to the
string frame gσ, which is carried out by a Weyl rescaling gσ = eφ/2gE.
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Here eA is a homogeneous function of degree one, Lr∂reA = eA, and dJ− ≡ [J−, d].

The first constraint in (4.27) will ensure that the cone X is symplectic, as we shall

prove below. Clearly, this is a natural geometric condition to impose. The presence

of the e−A factor sets the homogeneous degree of this symplectic form to two, again

as we would expect for a symplectic cone.

The second constraint in (4.27) is physically none other than the Bianchi iden-

tity, d(e−BF ) = 0, for the RR fluxes of type IIB supergravity. These fluxes can be

encapsulated in the odd polyform F ≡ F1 + F3 + F5, where Fp is a p-form. From

a geometric point of view, we simply define this polyform directly in terms of the

imaginary part of Ω+ as

e−BF ≡ 8dJ−(e−3A ImΩ+) . (4.28)

Again, as part of the homogeneity conditions, we impose that the RR fluxes are basic

with respect to the foliation defined by r∂r:

Lr∂rF = 0 , r∂ryF = 0 . (4.29)

These conditions now explain the presence of e−3A in the definition (4.28): its homo-

geneity property is required to balance the degree three of Ω+.

For the five-form component F5, the condition (4.29) implies that F5 = f5volY ,

where a priori f5 is a homogeneous function of degree zero. The final condition that

we impose is that f5 is a (non-zero) constant. From the string theory point of view,

this follows since in type IIB supergravity the full RR five-form is self-dual, and thus

of the form (recall (3.8))

f5(volAdS + volY ) . (4.30)

The Bianchi identity is dF5 = H ∧ F3, but the right-hand side vanishes since by

construction H and F3 are three-forms on Y . Thus f5 is necessarily constant. This

constant is then necessarily non-zero if Ω+ is everywhere type zero, as we have already

assumed, and as shown in Proposition 2 below.

This is the full set of conditions that we shall impose. The motivation largely

came from the fact that these conditions are implied by supersymmetry, as shown in

chapter 3. However, hopefully the above discussion also motivates these as natural
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geometric conditions. As we mentioned in the introduction of this chapter, this is not

quite the full set of conditions required for a supersymmetric AdS5 solution. In fact

the structure we have now defined is in some sense the generalized version of Kähler

cones, which by definition are cones over Sasakian manifolds, and we analogously call

the base Y a generalized Sasakian manifold. The following proposition [4] summarizes

the consequences of the above conditions, which also justify our use of terminology:

Proposition 2.

a) The function eA is related to the radial function r and the conformal factor ∆̂

through

eA = re∆̂ . (4.31)

b) The generalized Reeb vector ξ preserves the generalized metric as well as the

RR fluxes:

LξG = 0 , Lξ(e
−BF ) = 0 . (4.32)

c) The cone is symplectic with symplectic form

ω =
1

2
d(r2σ) , (4.33)

where the contact one-form associated with the Reeb vector field ξv is

σ = ηf − ηvyb2 = dψ +Hhyb2, (4.34)

with b2 a closed two-form.

d) The pure spinor Ω+ ≡ α+ exp(−b+ + iω+) can be expressed as

α+ = −i f5
32
r3e−∆̂ , (4.35)

ω+ =
e2∆̂

r2
ω , (4.36)

b+ = e2∆̂d log r ∧ ηvyω+ + b2

= −e4∆̂d log r ∧ HhyωT + b2 . (4.37)

Here we have defined ωT ≡ dσ/2, which is the symplectic form on the transverse

space to the Reeb foliation descending from ω. Notice that Ω+ being type zero

implies that f5 6= 0.

59



In particular, the vector part ξv of the generalized Reeb vector ξ, defined via the

integrable generalized complex structure J− in (4.13), is indeed the Reeb vector field

for the contact structure induced by the symplectic form ω on the cone. Thus Y is

a contact manifold, and this contact structure is in some sense compatible with the

generalized complex structure J−. The generalized Reeb vector is also generalized

Killing, LξG = 0. These properties all mimick those of Kähler cones, or equivalently

Sasakian manifolds. We give some examples of these generalized structures in section

4.5 below.

Proof of a).

The definition (4.28) of the RR fluxes can be rewritten as [47]

d(eA ImΩ+) =
1

8
e4Ae−B ⋆ λ(F ) , (4.38)

with λ(F ) ≡ F1 − F3 + F5. The Hodge star operator on X can be written as ⋆Fp ≡
(−1)pFpyvolX . Since F5 = f5volY , the one-form part of (4.38) immediately gives

d(eA Imα+) = −f5
8
e4(A−∆̂)d log r . (4.39)

Since eA and e∆̂ are homogeneous of degree one and zero respectively, we deduce that

eA Imα+ = −γr4, with γ a constant. We set γ = f5/32 by shifting A by a constant

appropriately and obtain

e4A = r4e4∆̂ , Imα+ = − f5
32
r3e−∆̂ . (4.40)

The first equation establishes a), and the second will be used in the proof of d).

Proof of b). The proof given in section 3.3.2 goes through without modification.

Proof of c).

From d(e−AReΩ+) = 0 and Lr∂rα+ = 3α+ (since Ω+ is homogeneous degree

three), we obtain

Reα+ = 0 , d(e−A Imα+ω+) = 0 , db+ ∧ ω+ = 0 . (4.41)

The second equation, combined with the fact that the Mukai pairing of Ω+ is nowhere

vanishing, 〈Ω+, Ω̄+〉 = −(4i/3)|α+|2ω3
+ 6= 0, implies that the two-form

ω ≡ e−2∆̂r2ω+ (4.42)
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is closed and non-degenerate, and hence symplectic. The justification for the presence

of e−A in the differential condition for ReΩ+ is that it leads to a symplectic form ω

which is homogeneous of degree two, as usual for a symplectic cone. We may thus

globally write ω ≡ d(r2σ)/2 for a real one-form σ, called the contact form, which is

basic with respect to r∂r, r∂ryσ = r∂rydσ = 0. Comparison with the annihilator

constraint r∂ryω+ = e2∆̂(ηf − ηvyb+) arising from (r∂r − ie2∆̂η) · Ω+ = 0 leads to

σ = ηf − ηvyb+. From (3.76) and the annihilator constraint ξvyω+ = −e2∆̂d log r, we
obtain

ξvyσ = 1 , ξvydσ = 0 , (4.43)

as expected for a contact form σ and its associated unique Reeb vector field ξv.

It remains to show that ηvyb+ = ηvyb2, with b2 a closed two-form. The fact that

(3.75) annihilate Ω+ gives e2∆̂ηvyω+ = r∂ryb+ and ξvyb+ = ξf, while the homogeneity

of Ω+ under r∂r and ξ implies the conditions Lr∂rb+ = 0 and Lξvb+ = dξf. This allows

us to write the general ansatz

b+ = d log r ∧ e2∆̂ηvyω+ + b2 , (4.44)

where b2 is a real two-form with r∂ryb2 = 0 and r∂rydb2 = ξvydb2 = 0. Since

ηvyd log r = 0, this shows ηvyb+ = ηvyb2. From the term in d log r in db+ ∧ ω = 0, we

get d(e2∆̂ηvyω+) ∧ dσ + 2db2 ∧ σ = 0, and contracting with ξv gives db2 = 0.

Recall that in section 4.1 we performed a closed B-transform of Ω− by b0 to put

it into the product form (4.7) of a complex and a symplectic structure. This B-

transform will similarly act on Ω+, and we consider that b0 has been reabsorbed into

the definition of b+, and more precisely in its closed part b2.

Proof of d).

Statement d) is obtained from (4.40), (4.41), (4.42), and (4.44).

Note also that the condition r∂ryb2 = 0 gives 3(z∂z + z̄∂z̄)yb2 = Hϕyb2, while the

annihilator constraint ξvyb2 = ξf gives 3i(z∂z− z̄∂z̄)yb2 = dϕ, from which we conclude

that b2 can be expressed as

b2 = (d log r + dh) ∧Hϕyb̃2 + dψ ∧ dϕ+ b̃2 , (4.45)

where b̃2 is the part of b2 along the symplectic leaves defined by the J− foliation.
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4.3 Generalized reduction

In the Sasakian case one can consider the symplectic reduction of the Calabi-Yau cone

metric with respect to the R-symmetry Killing vector ξ (or alternatively a holomorphic

quotient with respect to r∂r − iξ). Generically ξ does not define a U(1)-fibration

and the four-dimensional reduced space is not a manifold. Nonetheless, locally one

can consider the geometry on the transversal section to the foliation formed by the

orbits of ξ in the Sasaki-Einstein space. The result of the reduction is that this

four-dimensional geometry is Kähler-Einstein. Thus locally one can always write the

Sasaki-Einstein metric as

gSE = ξ♭ ⊗ ξ♭ + gKE , (4.46)

where ξ♭ ≡ gY (·, ξ) and gKE is a Kähler-Einstein metric.

The existence of the generalized holomorphic vectors r∂r and ξ in the generic case

suggests one can make an analogous generalized reduction to four dimensions. In this

section, we show that this is indeed the case following the theory of generalized quo-

tients developed in [32, 33]. We apply their formalism to our particular case, showing

that there is a generalized Hermitian structure on the local transversal section, and

giving the conditions satisfied by the corresponding reduced pure spinors.

There are two different ways we can view the generalized reduction, mirroring the

complex quotient and the symplectic reduction in the Sasaki-Einstein case. In the

first case, we take the quotient of X by the complex Lie group generated by r∂r− iξv.

In the second case, we first restrict to the zero-level set of the moment map µ = log r

before taking the quotient by the Lie algebra generated by ξv alone. As in the Sasaki-

Einstein case, both methods lead to the same reduced structure on the reduced space

M red = X/span{r∂r − iξv} = µ−1(0)/span{ξv}.
In order to construct the reduced pure spinors, first note that the reduction gives

a splitting of the generalized tangent space E = EK⊕KG (see section 4 of [3] for more

detail) such that the O(6, 6) metric 〈·, ·〉 factors into an O(2, 2) metric on EK and

an O(4, 4) metric on KG. Thus we can similarly decompose sections of the spinor

bundles S±(E) into spinors of Spin(2, 2) × Spin(4, 4) ⊂ Spin(6, 6). In particular,

generic sections Ω± in S±(E) can be written as

Ω± = Θ± ⊗ Ω̃+ ⊕Θ∓ ⊗ Ω̃− . (4.47)
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It is then the spinor components of Ω̃± in S±(KG) which correspond to the reduced

pure spinors.

To make this explicit we need a basis for the Spin(6, 6) gamma matrices reflecting

this decomposition. We first introduce coordinates adapted to the reduction. Let

um with m = 1, · · · , 4 be coordinates on the transversal section to the R-symmetry

foliation. This means that ξvydu
m = 0 and, in particular, the metric decomposes as

gY =
ξ♭v ⊗ ξ♭v
‖ξv‖2

+ gredmndu
mdun , (4.48)

in analogy to (4.46). The reduction structure already defines a natural basis on EK

given by

f̂1 = r∂r , f 1 = d log r , f̂2 = ξ , f 2 = η , (4.49)

and satisfying 2〈f i, f̂j〉 = δij and 〈f i, f j〉 = 〈f̂i, f̂j〉 = 0. We can then define an

orthogonal basis on KG given by

êm = e−b2∂um − η̃mξ , em = dum − ηmξ (4.50)

where η̃m = 2〈η, e−b2∂um〉 and ηm = 2〈η, dum〉 = ηvydu
m. This basis again satisfies

2〈em, ên〉 = δmn and 〈em, en〉 = 〈êm, ên〉 = 0.

Given such a basis we can then write a generic Spin(6, 6)-spinor using the standard

raising and lowering operator construction. Consider the polyform Ω(0) = e−b2 ∈
Γ(S+(E)). It is easy to see that we have the Clifford actions

f̂i · Ω(0) = êm · Ω(0) = 0 , (4.51)

for all i and m. Thus we can regard Ω(0) as a ground state for the lowering operators

(f̂i, êm). A generic spinor is then given by acting with the anti-commuting raising

operators (f i, em). Acting with the em first, we see that a generic (non-chiral) spinor

has the form

Ω = e−b2Ω̃0 + f 1 · e−b2Ω̃1 + f 2 · e−b2Ω̃2 + f 1 · f 2 · e−b2Ω̃3 , (4.52)

where Ω̃i are polyforms in dum, and e−b2Ω̃i transform as a Spin(4, 4)-spinor under the

Clifford action of (em, êm).
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We can now write the supersymmetry pure spinors Ω± in the form (4.52). Requir-

ing that r∂r − iξ and d log r− iη annihilate Ω− while r∂r − ie2∆̂η and d log r− ie−2∆̂ξ

annihilate Ω+ we find that the only possibility is

Ω− = r3e−3iψ(d log r ∧ −iη·)e−b2Ω1 ,

Ω+ = r3(1 + ie2∆̂d log r ∧ η·) e−b2Ω2 , (4.53)

where Ω1 and Ω2 are both even polyforms in dum. We have introduced factors of r3

and e−3iψ so that Ω1 and Ω2 are independent of the r and ψ coordinates. In general,

they are only locally defined.

We can immediately deduce that

dϕ = 0 . (4.54)

Indeed, Ω− has no terms in d log r ∧ dψ, whereas given the form of b2 in (4.45) the

right-hand side contains a term in d log r ∧ dψ ∧ dϕ. Recalling (4.16) and (4.19), we

see that this gives

r∂r = 3(z∂z + z̄∂z̄) , ξ = ξv = 3i(z∂z − z̄∂z̄) , (4.55)

which means that the foliation determined by r∂r and ξv coincides with the complex

transverse space of the local foliation defined by J−. Since by definition r∂r and ξv

are both global vector fields on X , it follows that ∂z, which was initially defined only

as a local vector field in X0, is in fact also a global vector field on X . Henceforth

we shall use the term foliation only with respect to the Reeb foliation defined by

ξv, which is a global foliation of Y . The above comments also imply that b2 = b̃2 is

a two-form on the four-dimensional transverse space to the Reeb foliation, or more

precisely it is basic with respect to this foliation.

The pair of reduced pure spinors turns out to be

Ω1 = 3e3h exp (b2 + iω0) ,

Ω2 = −i f5
32

e−∆̂ exp
(

ie2∆̂ωT

)

, (4.56)

where the symplectic form ωT on the transverse reduced space is

ωT ≡ 1

2
dσ =

1

2
LHh

b2 . (4.57)
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The corresponding generalized structures are

J1 =

(

−ω−1
0 b2 ω−1

0

−ω0 − b2ω−1
0 b2 b2ω

−1
0

)

, J2 =

(

0 e−2∆̂ω−1
T

−e2∆̂ωT 0

)

.(4.58)

The generalized structure J1 is integrable since we have dΩ1 = 3dh ∧ Ω1.

The compatibility of J− and J+ reduces to the compatibility of J1 and J2 [32],

which thus define a generalized metric GT on the transverse space with the following

transverse metric gT and B-field BT:

gT = e2∆̂ωTb
−1
2 ω0 ,

BT = e4∆̂ωTb
−1
2 ωT = −ω0b

−1
2 ω0 − b2 . (4.59)

The compatibility condition J1 ·Ω2 = 0 is most easily analyzed by first performing a

B-transform by −b2 to put J1 in the standard symplectic form

e−b2J1e
b2 =

(

0 ω−1
0

−ω0 0

)

. (4.60)

The equivalent compatibility condition (e−b2J1e
b2) · e−b2Ω2 = 0 then gives

b2 ∧ ω0 = b2 ∧ ωT = ω0 ∧ ωT = 0 , (4.61)

e4∆̂ω2
T = b22 − ω2

0 . (4.62)

Note that ω0∧ωT = 0 is already implied by b2∧ω0 = 0 and the fact that ωT = LHh
b2/2.

4.4 Differential system

In this section we present the full set of conditions for a generalized Sasakian geometry

reduced on the space transverse to the Reeb foliation. We will see that this amounts

to a simple differential system for three orthogonal symplectic forms on this transverse

space. The only supersymmetry condition from chapter 3 that we have not imposed

is the equality of the norms of Ω+ and Ω−. For Kähler cones, this condition is

equivalent to the Einstein equation, and indeed directly leads to the Monge-Ampère

equation in this case. Imposing this condition in the generalized setting thus leads

to a supersymmetric AdS5 solution, which in our terminology would be generalized

Sasaki-Einstein. 6

6Although here Einstein is meant to indicate that the Einstein equations of supergravity are
satisfied, rather than gY is an Einstein metric, which in general it is not.
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4.4.1 Bianchi identity

The condition in (4.27) on the imaginary part of Ω+ corresponds to the physical

requirement that away from any source the RR fluxes must satisfy the Bianchi identity

d(e−BF ) = 0. To obtain the physical RR fluxes, we need to undo the closed B-

transform by b2 that we performed at the very beginning in section 4.1 to put Ω−

into the local form of a complex/symplectic product (4.7). 7 We then obtain the

following explicit formulas for the fluxes:

F1 = −f5
4

(

HhyLHh
ωT −He−4∆̂yb2

)

, (4.63)

e−(B−b2)F |3 =
f5
4

[

σ ∧ LHh
ωT + 2 (Hh −H∆̂)yω

2
T

]

, (4.64)

e−(B−b2)F |5 = −f5
2
σ ∧ ω2

T . (4.65)

The Bianchi identity then gives one new condition:

LHh
(LHh

ωT) = LH
e−4∆̂

b2 . (4.66)

4.4.2 Einstein condition

By definition, the Mukai pairings 〈Ω−, Ω̄−〉 and 〈Ω+, Ω̄+〉 are nowhere-vanishing top-

degree forms on X , and as such they must be proportional:

〈Ω−, Ω̄−〉 = ef〈Ω+, Ω̄+〉 or ‖Ω−‖2 = ef‖Ω+‖2 , (4.67)

with f a real function independent of r, such that ef is homogeneous of degree zero

under r∂r. This leads to a corresponding relation between the “lengths” of ωT and

ω0. The calculation here is again most easily carried out in terms of the reduced pure

spinors. Because of the factor of e2∆̂ in the decomposition of Ω+, the proportionality

condition (4.67) becomes

〈Ω1, Ω̄1〉 = efe2∆̂〈Ω2, Ω̄2〉 , (4.68)

which gives

(

96

f5

)2

e6hω0 ∧ ω0 = e4∆̂+fωT ∧ ωT . (4.69)

7It is a curious fact that without this transform we obtain in particular e−BF |5 = 0.
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Note that combining this condition with the compatibility condition (4.62) we get

b2 ∧ b2 =

[

1 +

(

96

f5

)2

e6h−f

]

ω0 ∧ ω0 , (4.70)

which implies that b2 is also non-degenerate, and hence a symplectic form on the

transverse space to the Reeb foliation.

Let us compare again with the standard Kähler setting (see section 2.5). For a

Kähler cone with metric dr2 + r2gY and trivial canonical bundle, so that (Y, gY ) is a

transversely Fano Sasakian manifold, the equal norm condition (4.67) becomes

i

8
Ω ∧ Ω̄ =

ef

3!
ω3 . (4.71)

The Ricci-form is ρ = i∂∂̄f and the Ricci scalar is then R = −△Xf , where △X

denotes the Laplacian on X . When f is constant, the Kähler metric is Ricci-flat

and hence Calabi-Yau, which means that (Y, gY ) is Sasaki-Einstein. Moreover, (4.71)

immediately leads to the Monge-Ampère equation for such a metric. We thus refer

to the condition that f is a constant, which we can set to zero by rescaling, as the

Einstein condition:

f = 0 . (4.72)

More physically, adding this condition to the definition of generalized Sasakian ge-

ometry implies that our structure satisfies all the supersymmetry conditions for an

AdS5 solution of type IIB supergravity as shown in section 3.2, and in particular the

Einstein equation. For such a solution, the physical dilaton φ is defined by the norms

of the pure spinors as in (3.44):

‖Ω−‖2 = ‖Ω+‖2 ≡
1

8
e6A−2φ . (4.73)

This allows us compute an expression for the volume form on Y in terms of the

contact volume. Using

〈Ω+, Ω̄+〉 = −i4
3
|α+|2ω3

+ = −i
(

f5
32

)2

e4∆̂r6d log r ∧ σ ∧ dσ2 , (4.74)

and volX = −e6∆̂d log r ∧ volY , this gives

volY = − f 2
5

128
e−8∆σ ∧ dσ2 , (4.75)

where ∆ ≡ ∆̂− φ/4, in agreement with (3.90).
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4.4.3 Symplectic triple

We have now reduced our definition of a generalized Sasakian geometry to a simple

differential system on the transverse space to the Reeb foliation of a contact mani-

fold [4]. More precisely, this system holds on Y0 = X0 |{r=1}, the open dense subset

where Ω− has type one. The compatibility condition, the Bianchi identity and the

proportionality of the norms of the pure spinors boil down to a system of algebraic and

differential equations for three transverse orthogonal symplectic forms ω0, ω1 ≡ ωT,

and ω2 ≡ b2:

dωi = 0 ∀ i ∈ {0, 1, 2} , (4.76)

ωi ∧ ωj = 0 ∀ i 6= j , (4.77)

which induce the same orientation:

ω0 ∧ ω0 = α1 ω1 ∧ ω1 = α2 ω2 ∧ ω2 nowhere zero , (4.78)

where the positive proportionality functions are

α1 =

(

f5
96

)2

e4∆̂−6h+f , α2 =

[

1 +

(

96

f5

)2

e6h−f

]−1

. (4.79)

This is called a “symplectic triple” in [34] and can be chosen as an orthogonal basis for

the space Λ+ of positively oriented two-forms on the transverse leaf space of the Reeb

foliation (see for example [60]). There are also the following differential conditions:

ω1 =
1

2
LHh

ω2 , LHh
(LHh

ω1) = LH
e−4∆̂

ω2 , (4.80)

where Hh = ω−1
0 ydh for the real function h and similarly for e−4∆̂.

Altogether, this set of conditions characterizes what we have called a “generalized

Sasakian structure”, at least on the dense open subset Y0 ⊂ Y . As mentioned at the

beginning, the type-change locus points that are limit points of Y0 in Y effectively

lead to boundary conditions on the above structure, which degenerates at these limit

points. We shall not analyse this in generality in this thesis, but rather comment

only in examples (see [32, 33] for preliminary mathematical studies). Notice that,

nevertheless, the contact structure and Reeb foliation are defined globally on Y .
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To obtain a generalized Sasaki-Einstein manifold, we must also impose the Ein-

stein condition

f = 0 . (4.81)

Note that the system for a triple of symplectic forms looks very similar to a hyper-

Kähler structure on the transverse space. We can indeed define three almost complex

structures

I ≡
√

α1

α2
ω−1
1 ω2 , J ≡ √

α2ω
−1
2 ω0 , K ≡ 1√

α1
ω−1
0 ω1 , (4.82)

which satisfy the hyper-Kähler relations

I2 = J2 = K2 = IJK = −1 . (4.83)

This implies that the reduced transverse space carries an SU(2)-structure, in reso-

nance with our discussion in section 3.2.

However, the fact that the symplectic forms here have different lengths means

that these almost complex structures are not integrable. Thus there is no (natural)

integrable complex structure on this transverse space. This is the key difference from

Sasakian geometry, where the corresponding transverse space is Kähler, and hence

both symplectic and complex.

4.5 Example: β-transform of Kähler cones

To make sure that our definition is not vacuous, we now present an explicit class of

examples of generalized Sasakian manifolds. There are two important points here.

First, these give a large family of such geometries that have varying Reeb vector fields

and contain a generalized Sasaki-Einstein geometry (with f = 0) as a special case.

Second, we will see that these are in a very precise sense generalizations of Kähler

cones that are not Ricci-flat. Indeed, our strategy will be to perform a β-transform

of the complex and symplectic structures of a cone that is Kähler but not Ricci-flat

in general. Perhaps the most important issue that our work raises is to understand

better this space of generalized Sasakian structures, or more pressingly the associated

space of Reeb vector fields in a given deformation class. We will content ourselves

here with showing that there are non-trivial examples, with non-trivial spaces of Reeb
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vector fields. This will be sufficient to show that the generalized volume minimization

we define in the next chapter is indeed a non-trivial problem in general.

Consider a Kähler cone metric on C3 that is a cone with respect to the weighted

Euler vector field r∂r =
∑3

i=1 ξiri∂ri , where the weights ξi ∈ R+ are the components

of the Reeb vector field, ξ =
∑

i ξi∂φi .
8 The holomorphic (3, 0)-form is

Ω = dz1 ∧ dz2 ∧ dz3 , (4.84)

with standard complex coordinates zi = ri exp(iφi), while the Kähler form is as

usual ω = i∂∂̄r2/2. A natural choice [21] for the Kähler potential in this case is

r2 =
∑

i r
2/ξi
i , which gives

ω =
∑

i

r
2/ξi
i

ξ2i
d log ri ∧ dφi =

i

2

∑

i

r
2/ξi−2
i

ξ2i
dzi ∧ dz̄i . (4.85)

We then have

i

8
Ω ∧ Ω̄ = ef

ω3

3!
, (4.86)

where the real function f is given by

ef/2 = ξ1ξ2ξ3r
1−1/ξ1
1 r

1−1/ξ2
2 r

1−1/ξ3
3 . (4.87)

Note that the homogeneity condition Lr∂rΩ = 3Ω implies that ξ1 + ξ2 + ξ3 = 3.

After a β-transform (2.11) by β = γ(∂φ1∧∂φ2 +c.p.) on the associated pair of pure

spinors (2.56) (multiplied by 1/8 and −i/8 respectively to agree with the conventions

in section 3.2; see also appendix B), we get

eβΩ− =
γ

8
d(z̄1z̄2z̄3) ∧ exp

[

1

3γ

dz̄1 ∧ dz̄2
z̄1z̄2

+ c.p.

]

,

eβΩ+ = −ir
3

8
exp

[

i

r2
ω − γ

r4

(

r
2/ξ1
1 r

2/ξ2
2

ξ21ξ
2
2

d log r1 ∧ d log r2 + c.p.

)]

. (4.88)

The exponent of eβΩ− can be put in the generalized Darboux form by shifting by a

two-form proportional to d(z̄1z̄2z̄3). This then gives

z =
γ

8
z1z2z3 =

γ

8
r1r2r3e

i(φ1+φ2+φ3) ,

ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 ,

b0 = −ξ1ξ2ξ3
3γ

dx1 ∧ dx2 +
3γ

ξ1ξ2ξ3
dy1 ∧ dy2 , (4.89)

8We use the same notation for the first two components of the Reeb vector field as for the
five-dimensional spinors ξ1,2 introduced in (3.11) but this will hopefully not lead to ambiguities.
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with the symplectic coordinates

x1 = log
r
1/ξ1
1

r
1/ξ3
3

, y1 =
ξ1ξ2ξ3
3γ

(

φ3

ξ3
− φ2

ξ2

)

,

x2 = log
r
1/ξ2
2

r
1/ξ3
3

, y2 =
ξ1ξ2ξ3
3γ

(

φ1

ξ1
− φ3

ξ3

)

. (4.90)

The two-form b2 is the difference of the part of b+ that is independent of r, which we

call b′2, and b0: b2 = b′2 − b0.
We can obtain the contact one-form, and so ωT = dσ/2, by contracting the Euler

vector field r∂r with ω in (4.85):

σ =
∑

i

r
2/ξi
i

ξir2
dφi . (4.91)

It is then straightforward to verify that the generalized Sasakian conditions com-

piled in the last section are satisfied for all values of the Reeb vector field ξ. However,

the Einstein condition does not hold in general, and we rather have

‖eβΩ−‖2 = ef‖eβΩ+‖2 . (4.92)

We have thus constructed a family of explicit generalized Sasakian geometries which

contains a generalized Sasaki-Einstein geometry with f = 0.
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Chapter 5

Volume Minimization

In this chapter we show that the Reeb vector field ξ for a generalized Sasaki-Einstein

manifold can be determined by a (finite-dimensional) variational problem on a space

of generalized Sasakian manifolds. Given that generalized Sasaki-Einstein manifolds

provide AdS5 × Y solutions of type IIB supergravity, the relevant functional to min-

imize is an action whose Euler-Lagrange equations are the equations of motion for

the type IIB bosonic fields on the five-dimensional compact space Y . We rewrite

this functional in terms of pure spinors and show that, when restricted to a space of

generalized Sasakian manifolds, it reduces to the contact volume (corresponding to

the central charge of the dual SCFT). This result precisely generalizes the volume

minimization introduced in [19] for Sasaki-Einstein manifolds.

5.1 Supergravity action

We now construct an effective action for the bosonic fields on Y in a supersymmetric

AdS5 background in type IIB supergravity. The Euler-Lagrange equations for this

action give rise to the equations of motion satisfied by the fields.

5.1.1 Five-dimensional action

Let us first analyze the Einstein equation in (3.3). Recall that under a Weyl rescaling

g = e2αḡ in D dimensions, the Ricci tensor and the Ricci scalar transform as

RMN = R̄MN + (D − 2)[−∇̄M∂Nα + ∂Mα∂Nα]

−[∇̄2α+ (D − 2)|dα|2]ḡMN , (5.1)

R = e−2α[R̄ − 2(D − 1)∇̄2α− (D − 2)(D − 1)|dα|2] , (5.2)
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where ∇̄ denotes the Levi-Civita connection for ḡ, and the indices are contracted with

ḡ. Defining ḡ = gAdS + gY we then have R̄MN = Rµν + Rmn, and the Ricci scalar is

R̄ = RAdS +RY . The Freund-Rubin ansatz (3.8) gives

FMP1P2P3P4F
P1P2P3P4

N = 4!f 2
5 (−gµν + gmn) . (5.3)

Using the above formulas, the Einstein equation then splits as

Rµν −
1

2
RY gµν = −

[

10 + 8∇2∆+ 28|d∆|2 + |P1|2 +
e−4∆

4
|G3|2 +

e−8∆f 2
5

4

]

gµν ,

Rmn −
1

2
RY gmn = 8(∇m∂n∆− ∂m∆∂n∆) + PmP

∗
n + PmP

∗
n

+
e−4∆

8
(Gmp1p2G

∗ p1p2
n +Gnp1p2G

∗ p1p2
m )

−
[

10 +∇2∆+ 28|d∆|2 + |P1|2 +
e−4∆

4
|G3|2 −

e−8∆f 2
5

4

]

gmn ,

which gives the Ricci scalar on Y

RY =
100

3
+

8

3
(8∇2∆+ 37|d∆|2) + 2|P1|2 −

e−4∆

6
|G3|2 −

5

6
e−8∆f 2

5 . (5.4)

The consistency between the two parts of the Einstein equation requires

e−4∆

8
|G3|2 +

e−8∆f 2
5

4
− 4 = ∇2∆+ 8|d∆|2 . (5.5)

For later reference, note that multiplying the right-hand side by e8∆ and integrating

by parts over Y gives zero, and so we have 1

∫

d5y
√
gY e

8∆

(

e−4∆

8
|G3|2 +

e−8∆f 2
5

4
− 4

)

= 0 . (5.6)

The equations for P1 and G3 can be rewritten as

e−8∆Dm(e
8∆Pm) = −e

−4∆

24
GmnpG

mnp ,

e−8∆Dp(e
4∆Gmnp) = e−4∆PpG

∗mnp − i
e−8∆

6
f5ε

mnp1p2p3Gp1p2p3 . (5.7)

In terms of real fields (recall (3.2)) this reads

∇m(e
8∆+2φ∂mC0) = −e

4∆+φ

6
FmnpH

mnp , (5.8)

∇m(e
8∆∂mφ) = e8∆+2φ|F1|2 +

1

2
e4∆+φ|F3|2 −

1

2
e4∆−φ|H|2 , (5.9)

∇p(e
4∆+φFmnp) = −f5

6
εmnp1p2p3Hp1p2p3 , (5.10)

∇p(e
4∆−φHmnp) = e4∆+φ∂pC0F

mnp +
f5
6
εmnp1p2p3Fp1p2p3 . (5.11)

1This result can also be obtained by imposing the equation of motion for G3, or by combining
the equation of motion for the warp factor ∆ and the Einstein equations.
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All of these equations of motion can be derived from the variation of the following

effective action on Y : 2

SIIB =

∫

Y

d5y
√
gY e

8∆
(

RY − 20 + 72|d∆|2 − 1

2
|dφ|2 − 1

2
e−4∆−φ|H|2

−1
2
e2φ|F1|2 −

1

2
e−4∆+φ|F3|2 +

1

2
e−8∆f 2

5

)

+f5

∫

Y

H ∧ C2 . (5.12)

This is the action with which we shall work. Notice in particular the final Chern-

Simons-type term.

5.1.2 On-shell action and central charge

We will now show that our action SIIB reduces on shell, that is when supersymmetry

and the equations of motion of type IIB supergravity are imposed, to the contact

volume of Y . For a supersymmetric solution, this is the inverse central charge of the

dual SCFT, as shown in [2, 3]. Notice that going on shell corresponds to imposing

the generalized Sasakian conditions together with the Einstein condition. This is

therefore stronger than the restriction to generalized Sasakian manifolds which is

appropriate for our variational problem. We will see how to implement this in the

next section.

When the metric is on shell, that is when we impose the Einstein equation and

hence (5.4), the action reduces to

SIIB(gY on shell) =

∫

Y

d5y
√
gY e

8∆

(

40

3
− 2

3
e−4∆|G3|2 −

1

3
e−8∆f 2

5

)

+ f5

∫

Y

H ∧ C2 .

The Chern-Simons term can be rewritten on shell as

f5

∫

Y

H ∧ C2 =
f5
2!3!

∫

Y

d5y
√
gYHmnpCqrε

mnpqr

= −1
2

∫

Y

d5y
√
gYCmn∇p(e

4∆+φFmnp)

=
1

2

∫

Y

d5y
√
gY e

4∆+φ∇pCmnF
mnp , (5.13)

2Notice that to obtain a canonical Einstein term
√
g′R′, one has to rescale the metric as gY =

e−16∆/3g′.
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where the second equality uses the equation of motion (5.10) contracted into Cmn.

On the other hand, we have

e4∆|G|2 = e4∆+φ|F3|2 + e4∆−φ|H|2

= e4∆+φ∇mCnpF
mnp − C0

e4∆+φ

3
FmnpH

mnp

+2e8∆+2φ∂mC0∂
mC0 − 2∇m(e

8∆∂mφ)

= e4∆+φ∇mCnpF
mnp + 2∇m

[

e8∆(e2φC0∂
mC0 − ∂mφ)

]

, (5.14)

where we have used (5.9) in going from the first line to the second, and (5.8) from

the second to the last. When integrated over Y , the total divergence vanishes so that

the Chern-Simons term gives on shell

f5

∫

Y

H ∧ C2 =

∫

Y

d5y
√
gY

e4∆

2
|G3|2 . (5.15)

Using also (5.6) we obtain finally

SIIB(on shell) = 8

∫

Y

d5y
√
gY e

8∆ . (5.16)

For a supersymmetric solution we also have (4.75), and hence obtain the result that

the supersymmetric on-shell SIIB is proportional to the contact volume of Y :

SIIB(on shell) = −f
2
5

16

∫

Y

σ ∧ dσ ∧ dσ . (5.17)

5.2 Restriction to generalized Sasakian manifolds

In order to set up the variational problem, we would like to obtain an expression for

SIIB when it is not necessarily fully on shell, in the sense that the generalized Sasakian

conditions are imposed but the Einstein condition is lifted. This is analogous to the

computations of the Einstein-Hilbert action restricted to a space of Sasakian metrics

in [19, 20], and indeed generalizes these computations to general backgrounds with

all fluxes activated. Following the latter references, we first need to rewrite SIIB as an

integral over a finite segment of the six-dimensional cone X , and express the integrand

in terms of the pure spinors Ω±.

Before carrying the computation, we should begin by clarifying how we relate

the fields in the action (5.12) to the generalized Sasakian structures we have defined

75



in chapter 4. A generalized Sasakian structure involves choosing compatible pure

spinors Ω± on the cone X , and these in particular then define a Riemannian metric

gX of the form (4.24) and B-field that is basic with respect to r∂r, thus leading to a

metric gY , B-field and scalar function ∆̂ on Y . The RR fluxes F are then defined in

terms of the generalized structure via (4.28). Since the Bianchi identity d(e−BF ) = 0

is part of our definition of generalized Sasakian structure, we may hence introduce

RR potentials C. This then defines all the quantities in the action (5.12), except for

the warp factor ∆ and dilaton φ. Instead the generalized Sasakian structure gives us

a function ∆̂; we shall give the relation between these functions below.

We also make some mild topological assumptions, which conveniently bypass some

of the subtleties involved in defining integrals of forms that are not gauge invariant. 3

It is convenient to assume that b1(Y ) = 0, so that F1 = dC0 holds for a globally

defined potential C0 on Y . This is a necessary condition in the Sasaki-Einstein case,

by Myers’ theorem [61], and every known supersymmetric AdS5 solution also satisfies

this condition. Without this assumption, one has to be a little more careful about

global issues in the integrations by parts that will follow. In fact we have tacitly

already assumed that the B-field is a globally defined two-form in writing the original

supersymmetry conditions in the form (4.1). This is in fact a mild assumption, since

in section 3.2 it was shown that the differential form H is always exact for any

supersymmetric AdS5 solution. More precisely, the difference B − b2, which is what

we shall integrate by parts below, may be expressed in terms of globally-defined spinor

bilinears, see (3.19). This leaves the possibility of adding to B a discrete torsion B-

field, which we shall again suppress. In any case, as we have defined a generalized

Sasakian structure, B is a globally-defined two-form on Y , since both Ω± were defined

as global differential forms. More generally there can also be a topological twisting by

a gerbe, on which B is a curving (see chapter 2). A similar comment applies also to

the RR potential C2. Of course, we are then only interested in generalized Sasakian

structures with these global properties also, since a continuous deformation of such a

structure cannot change the topological class of these objects.

We begin by rewriting the Chern-Simons term. By a succession of integrations by

parts, bearing in mind the above comments that C0, B and C2 are all global forms

3This is really just to avoid such issues entirely: we do not believe the following assumptions are
necessary.
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on Y , we obtain

f5

∫

Y

H ∧ C2 = f5

∫

Y

e−(B−b2)F |5 − F5 −
1

2
d
[

C0(B − b2)2
]

. (5.18)

The integral on Y of the exact term vanishes on using Stokes’ theorem. Using also

the formulas F5 = f5volY and e−(B−b2)F |5 = −(f5/2)σ ∧ ω2
T = (16/f5)e

8∆volY from

(4.65) and (4.75), we get

f5

∫

Y

H ∧ C2 =

∫

Y

(

16e8∆ − f 2
5

)

volY . (5.19)

This agrees with the calculation (3.104). 4 Inserting this form of the Chern-Simons

term into SIIB then gives

SIIB =

∫

Y

d5y
√
gY e

8∆
(

RY − 4 + 72|d∆|2 − 1

2
|dφ|2 − 1

2
e−4∆−φ|H|2

−1
2

(

e2φ|F1|2 + e−4∆+φ|F3|2 + e−8∆f 2
5

)

)

. (5.20)

We now want to write the action SIIB, expressed in (5.12) and (5.20) in terms of

the warped metric e2∆gY , as an integral on the cone X with metric gX , or rather its

truncation at r = 1, which we call X1
∼= [0, 1] × Y . The metrics on X and Y are

related through (4.24):

gX = e2∆̂r−2(dr2 + r2gY ) . (5.21)

Note that the metric gE in (3.7) is in the Einstein frame, whereas in the application

of generalized geometry to type IIB the metric gX is in the string frame. The two

are hence related by the Weyl rescaling gX = eφ/2gE, which introduces the dilaton φ.

This then implies ∆̂ = ∆+ φ/4, relating the generalized Sasakian function ∆̂ to this

particular combination of the physical fields ∆ and φ. Using that r2R̄X = RY − 20

for a metric ḡX = dr2 + r2gY , and performing a Weyl rescaling by e2∆̂r−2, we get

RY − 20 = e2∆̂
(

RX + 10∇2∆̂− 20|d∆̂|2 − 20e−2∆̂
)

. (5.22)

4Remember that in string theory the five-form flux F5 +H ∧ C2 is quantized (3.102):

∫

Y

F5 +H ∧C2 = (2πls)
4gsN .

Since F5 +H ∧ C2 = dC4, the potential C4 is an example of a necessarily non-globally-defined RR
potential. This is true of course even in the Einstein case. The vanishing of the integral of the exact
term in (5.18) implies that e−(B−b2)F |5 satisfies the same quantization condition.
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The functional can now be written as an integral over X1:

SIIB = 6

∫

X1

r6drd5y
√
gXe

4∆−φ
(

RX −
1

2
|H|2 − 16e−2∆̂

+12|dA|2 − 16dA · dφ+ 4|dφ|2 − 1

2
e2φ|F |2

)

, (5.23)

where |F |2 = |F1|2 + |F3|2 + |F5|2.
A general formula appeared in [62] (following [63]) for the combination RX−H2/2

of the Ricci scalar on X and the kinetic term of the H-flux. These are defined via

the generalized metric (2.48) associated to a pair of compatible pure spinors Φ and

Ψ with equal norms, ‖Φ‖2 = ‖Ψ‖2 ≡ e6A−2φ/8 (as in (4.73)). In our notation (recall

in particular the norms defined in (2.36)), the expression in [62] reads 5

RX −
1

2
H2 = 32e2φ−6A

[

|dΦ|2B + e2A|d(e−AReΨ)|2B + e−2A|d(eA ImΨ)|2B

+32

∣

∣

∣

∣

〈Ψ, dΦ〉
volX

∣

∣

∣

∣

2

+ 32

∣

∣

∣

∣

〈Ψ̄, dΦ〉
volX

∣

∣

∣

∣

2
]

+28dA2 + 4dφ2 − 20dA · dφ+ 10∇2A− 4∇2φ (5.24)

+4(dφ− 2dA) · (u1R + u2R)− 2∇m(u1R + u2R)m + 4
[

(u1R)
2 + (u2R)

2
]

,

where the one-forms u1,2R ≡ (u1,2m + u∗1,2m )dxm on X can be expressed as

u1m =
〈γBmΦ̄, dΦ〉
2〈Φ, Φ̄〉 + eA

〈γBmΨ̄, d(e−AReΨ)〉
〈Ψ, Ψ̄〉 ,

u2m =
〈Φ̄γBm, dΦ〉
2〈Φ, Φ̄〉 + eA

〈ΨγBm, d(e−AReΨ)〉
〈Ψ, Ψ̄〉 . (5.25)

Here we have defined (omitting the Clifford map slashes)

γBmΦk ≡ e−B(γme
BΦk) = e−B[(dxm ∧+ gmn∂ny)e

BΦk] ,

Φkγ
B
m ≡ e−B(eBΦkγm) = (−1)ke−B[(dxm ∧ − gmn∂ny)eBΦk] . (5.26)

Now recall that without imposing the Einstein condition (4.72) our pure spinors Ω±

do not have equal norms, but satisfy instead ‖Ω−‖2 = ef‖Ω+‖2. We thus choose

Φ = e−f/2Ω− and Ψ = Ω+. The pure spinor Φ is not closed, but nevertheless defines

an integrable generalized almost complex structure since

dΦ = −1
2
df ∧ Φ . (5.27)

5There is a typographical error in (C.3) of [62]: the term +22(dA)2 should read +28(dA)2. We
thank Luca Martucci for communications about this point.
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Note that whenever Φ is integrable, the second line in (5.24) vanishes by compatibility.

When the differential constraints (4.1) on Ω± are taken into account many terms

cancel and we are left with

RX −
1

2
H2 = −1

2
e2φ|F |2 + 28|dA|2 + 4|dφ|2 − 20dA · dφ+ 10∇2A− 4∇2φ

+(4dA− 2dφ) · df +∇2f . (5.28)

As a check on this result, consider the case where Y is Sasakian, rather than gener-

alized Sasakian, so that X is Kähler. In this case ∆ = φ = H = 0, F = 4volY , and

this gives the correct result that RX = 20 +∇2f , where f is the Ricci potential for

the corresponding Kähler cone metric. 6

In the expression for SIIB in (5.23) the Ricci scalar is multiplied by e4∆̂−2φ and

integrated over X1. The integration of ∇2f over r can be performed trivially since

f is independent of r, and then integrating by parts we see that the two terms in

the second line of (5.28) cancel each other. Similar cancellations also happen after

integrating the Laplacians of A and φ by parts and we are left with

SIIB = 6

∫

X1

r6drd5y
√
gXe

4∆−φ
(

24e−2∆̂ − e2φ|F |2
)

.

Using the expressions (4.63) for the RR fluxes and the generalized Sasakian conditions,

we find

|F |2 = 16e8∆e−10∆̂ (5.29)

+
f 2
5 e

−4∆̂

4volX
d log r ∧ dψ ∧ d

[

e4∆̂

4

(

ωT ∧He−4∆̂yb2 −Hhy(ωT ∧ LHh
ωT)
)

]

.

The second term produces an exact term in SIIB, which vanishes on using Stokes’

theorem when integrated over Y . In fact this step, although correct, is a little cavalier:

notice that the above formula is really valid only on the dense open set Y0 ⊂ Y where

the integrable structure is of type one. Thus strictly speaking we end up with an

integral over an infinitesimal boundary around the type-change locus after applying

Stokes’ theorem. One can then check that the integrand is smooth as one approaches

6The factor of 20 arises here because RX is the Ricci scalar not of the Kähler cone metric, but
rather of the corresponding cylindrical metric that is related to it by a conformal factor of r2.
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the type-change locus and thus this integral is indeed zero. To see this, we note that

the three-form in square brackets in (5.29) may be rewritten as

e4∆̂

4

(

ωT ∧
4

f5
F1 − (HhyωT) ∧ LHh

ωT

)

. (5.30)

From the form of Ω+ given in Proposition 2 d), which recall is a global polyform on

X , we see that e∆̂ and HhyωT are in fact everywhere smooth on Y . Moreover, ωT

lifts to a global smooth two-form on Y , since it is dσ/2 with σ the contact one-form.

This demonstrates that the above three-form is in fact a smooth three-form on Y ,

not just on Y0. On the other hand, the function h itself certainly diverges along the

type-change locus.

We thus finally obtain that for generalized Sasakian manifolds Y , the action func-

tional is proportional to the contact volume:

SIIB|gen. Sasakian = 8

∫

Y

d5y
√
gY e

8∆ = −f
2
5

16

∫

Y

σ ∧ dσ ∧ dσ . (5.31)

This allows us to define a functional Z which is the action SIIB restricted to a space

of generalized Sasakian manifolds, normalized such that it gives exactly the contact

volume of Y divided by the volume of the round metric on S5:

Z ≡ − 2

f 2
5π

3
SIIB|gen. Sasakian = − 16

f 2
5π

3

∫

Y

d5y
√
gY e

8∆

=
1

(2π)3

∫

Y

σ ∧ dσ ∧ dσ =
1

π3

∫

Y

σ ∧ ω
2
T

2!
. (5.32)

Defining the contact volume of a (2n−1)-dimensional manifold Y2n−1 whose transverse

space carries a symplectic form ωT = dσ/2 by

Volσ(Y2n−1) ≡
∫

Y2n−1

σ ∧ ωn−1
T

(n− 1)!
, (5.33)

we can simply write

Z =
Volσ(Y )

Vol(S5)
. (5.34)

Note that in the case of Sasakian manifolds, for which the warp factor vanishes,

∆ = 0, the notion of contact volume coincides with the ordinary notion of Riemannian

volume, so for instance Volσ(S
5) = Vol(S5).

80



5.3 Volume minimization: summary

We are now in a position to outline the procedure of volume minimization for gener-

alized Sasakian manifolds [4].

In the previous section we have shown that if we restrict the action (5.12) for

a space of supergravity fields on Y to generalized Sasakian structures, it becomes

precisely the contact volume Z (5.34). The contact volume, in turn, depends only on

the Reeb vector field ξ, that is Z = Z(ξ). A general proof of this statement, which

supersedes the proofs in [19], may be found in appendix D. The Reeb vector field ξ

for which a generalized Sasakian manifold is also Einstein is then a critical point of

the contact volume Z over the Reeb vector fields of a space of generalized Sasakian

structures. As also shown in appendix D, Z is strictly convex, and thus such a

critical point is necessarily a minimum. Provided we work within a deformation class

of generalized Sasakian structures, implying that the space of Reeb vector fields we

are minimizing over is path-connected, then this minimum will be a global minimum.

Clearly, all these statements generalize the results of [19] to general supersymmetric

AdS5 solutions of type IIB string theory (with the only constraint that the background

has non-zero D3-brane charge, f5 6= 0).

The main technical difference to the Sasakian case, which is currently also a defi-

ciency, is that we do not yet have a good understanding of the space of generalized

Sasakian structures, and thus the corresponding space of Reeb vector fields over

which we are to vary Z. In the next chapter we shall make some reasonable assump-

tions about this, based on physical arguments in some particular examples, and show

that the geometric result above indeed agrees with the field theory a-maximization

computation (see next section). It should be noted, however, that even in Sasakian

geometry there is currently no general understanding of the deformation space. In

fact a global picture may not even be necessary, depending on what one wants to

show. For example, one of the motivations for [19] was to prove that the on-shell

Z is an algebraic number, since this is a definite prediction of a-maximization in

field theory. As pointed out in [2], this follows in the general case for quasi-regular

Reeb vector fields, which by definition generate a U(1) action on Y , since then the

on-shell Z is a rational number, again as expected from field theory. What about

irregular critical Reeb vector fields? Since the Reeb vector field also generates an
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isometry, and the isometry group of Y is necessarily compact, it follows that such a

Reeb vector field lies in the Lie algebra t of some torus T of rank at least two that

acts isometrically on Y . If we assume that there is at least a one-parameter family of

deformations of generalized Sasakian structures away from such a critical point, with

Reeb vector fields defining a curve in t, then the Duistermaat-Heckman formula for

the contact volume in [19] implies that the critical Reeb vector field ξ∗ is algebraic,

and hence that Z(ξ∗) is also algebraic, as desired. To see this, one notes that there

is then always a nearby generalized Sasakian structure with Reeb vector field ξ0 that

is quasi-regular, and thus one can apply the Duistermaat-Heckman formula to the

total space of the associated complex line bundle over the orbifold Y/U(1)0, where

ξ0 defines the action of U(1)0 on Y . This formula is then a rational function of the

Reeb vector field with rational coefficients determined by certain Chern classes and

weights, and thus setting its derivative to zero will give polynomial equations for ξ∗

with rational coefficients. We refer to [19] for the details.

In fact the only case over which there is complete control is the case of toric

Sasakian structures. In this setting the paper [20] provides a complete description. It

is worth contrasting this situation with the corresponding case in generalized geome-

try. Thus, as in [2], we define a toric generalized Sasakian manifold to be a generalized

Sasakian manifold for which the symplectic structure on the cone is invariant under

T ∼= U(1)3. We also assume that the corresponding Reeb vector field lies in the Lie

algebra of this torus. 7 Notice that this does not imply that the whole structure is

invariant under U(1)3 (for example, the Pilch-Warner solution discussed in section

3.6 is a non-trivial solution with fluxes which is toric in this sense, but for which only

a U(1)2 = U(1) × U(1)R subgroup preserves the fluxes). In any case, in this setting

there is a moment map µ under which the image of the cone X is a strictly convex

rational polyhedral cone C∗ ⊂ t
∗ ∼= R3. This is a set of the form

C∗ = {y ∈ t
∗ | 〈y, va〉 ≥ 0 , a = 1, . . . , d} ⊂ R

3 , (5.35)

where the integer vectors va ∈ Z3, a = 1, . . . , d, are the inward normal vectors to

the d ≥ 3 faces of the polyhedral cone C∗. The Reeb vector field ξ then defines a

hyperplane {〈y, ξ〉 = 1/2} in R3 that cuts C∗ in a compact convex two-dimensional

7The cases where this is not true form a finite and uninteresting list [64].
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polytope, and the contact volume is simply the Euclidean volume of this polytope, as

a function of ξ. Thus the minimization problem we want to solve involves minimizing

this volume over an appropriate space of Reeb vector fields ξ. As explained in [21], ξ

lies necessarily in the interior CInt of the dual polyhedral cone C ⊂ t since µ(ξ) = r2/2.

However, in the Sasakian case, the condition that the holomorphic volume form Ω has

charge three then further restricts ξ to lie in the intersection of CInt with a hyperplane.

This then leads to a well-defined volume minimization problem, with a unique (finite)

critical point ξ∗.

In the toric generalized setting, almost everything said above remains true. Thus

a toric generalized Sasaki-Einstein solution is similarly obtained by minimizing the

same two-dimensional polytope volume that appears above. The difference is that the

space of Reeb vector fields over which one minimizes is in general more constrained.

This is related to the fact that it is now the closed pure spinor Ω− on the cone that

is required to have charge three under the Reeb vector field, as part of our definition

of generalized Sasakian, so Lr∂rΩ− = 3Ω−, or equivalently LξΩ− = −3iΩ−. Since Ω−

is in general a polyform, the minimization is usually going to be over a smaller space.

We shall see some examples of precisely this in chapter 6. Although the general-

ized geometry in these examples is not under good control, fortunately the physical

interpretation is, and this allows us to determine the constraints on the Reeb vector

field and apply volume minimization. But even simpler examples are provided by the

β-transforms, to which we now turn.

5.3.1 Example: β-transform of C3

For concreteness, let us return to the class of generalized Sasakian manifolds pre-

sented in section 4.5. Recall that this arises from a family of generalized Kähler cone

structures on C3 with Reeb vector fields in R3
+. In fact these are toric, in the above

sense, and here R3
+ = CInt. We can then calculate the contact volume as a function

of the Reeb vector field ξ:

Z =
1

8π3

∫

Y

σ ∧ dσ ∧ dσ =
1

ξ1ξ2ξ3
. (5.36)

The homogeneity condition Lr∂rΩ− = 3Ω− imposes that the components of the Reeb

vector field ξ =
∑

i ξi∂φi satisfy

ξ1 + ξ2 + ξ3 = 3 . (5.37)
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Notice that everything is independent of the parameter γ appearing in the bivector

β. We see immediately that Z is minimized for ξ1 = ξ2 = ξ3 = 1, at which point

Z = 1 so that the contact volume of the generalized Sasaki-Einstein manifold Y is

equal to the volume of the five-sphere, Volσ(Y ) = Vol(S5) = π3. Given the definition

(4.87) of the function f , this then indeed corresponds to the Einstein condition f = 0.

We have thus reproduced the result that the β-transform of C3 does not change the

supergravity central charge [36]. Of course this is physically fairly obvious, since it

corresponds to a marginal “beta deformation” [54], but the important point is that

we have reproduced this in a non-trivial way using generalized geometry.

The above result presumably extends to general β-transforms of toric Kähler

cones, which could be treated as in [26, 27]. As explained above, the minimization

problem involves the volume function of precisely the same polytope.

5.4 Relation to a-maximization

As mentioned in the introduction, volume minimization corresponds to a-maximization

in the dual N = 1 SCFT. The equivalence of the two procedures has been proven

for the case of toric Sasakian manifolds in [23], and in a very interesting and recent

paper for non-toric Sasakian manifolds as well [24]. In this section we briefly review

the relation, and make a more general conjecture.

In [2] it was shown that for a general solution of type IIB supergravity of the form

AdS5 × Y , with Y a generalized Sasaki-Einstein manifold, the contact volume of Y

is related to the central charge a of the dual SCFT by the simple formula

Volσ(Y )

Vol(S5)
=

aN=4

a
, (5.38)

where aN=4 = N2/4 is the central charge for N = 4 super Yang-Mills theory with

gauge group SU(N) at large N . Moreover, it was shown in [3] that the Reeb vector

field corresponds to the R-symmetry of the dual N = 1 SCFT.

Just as the contact volume is determined by the Reeb vector field, so the central

charge a is completely determined by the R-symmetry through [17, 65]

a =
3

32

(

3TrR3 − TrR
)

. (5.39)
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Here the trace is over the fermions in the theory. More precisely, one typically com-

putes this quantity in a UV theory that has a Lagrangian description and is believed

to flow to an interacting superconformal fixed point in the IR, and then uses ’t Hooft

anomaly matching. For some time a major problem was identifying the correct global

symmetry in such a UV description that becomes the R-symmetry in the IR. This

was solved by Intriligator and Wecht in the beautiful paper [22]. The result is that,

among the set of potential R-symmetries that are free of ABJ anomalies, the cor-

rect R-symmetry is that which (locally) maximizes the central charge. That is, one

maximizes the trial central charge function over all admissible R-symmetries:

atrial =
3

32

(

3TrR3
trial − TrRtrial

)

. (5.40)

Of course, this immediately resembles Z-minimization, where one varies the contact

volume as a function of the Reeb vector field. Indeed, even the condition that the

superpotential has R-charge two is analogous to the condition that Ω has scaling

dimension three: both are immediate consequences of the supersymmetry parameters

having a canonical (non-zero) R-charge.

But in general even the dimensions of the spaces of trial R-charges and trial Reeb

vector fields are different. However, in [23] it was shown in the toric Sasakian case

that one can effectively perform the field theory a-maximization in two steps, the

first step resolving the mixing with global baryonic symmetries. The upshot of this

is that one obtains trial R-charges which are then functions of the Reeb vector field;

that is, the field theory trial R-charges satisfy the well-established AdS/CFT formula

[66, 67, 68, 69]

R(Φ) =
πVol(Σ3)

3Vol(YSE)
. (5.41)

Here Φ is a chiral matter field which is “dual” to a supersymmetric three-subspace

Σ3 ⊂ Y , and the Riemannian volumes agree, in this Sasakian case, with the contact

volumes, which are thus functions of the trial Reeb vector field. More geometrically, in

the Abelian mesonic moduli space, Φ = 0 defines a conical divisor in X , which is then

a cone over Σ3. It is a non-trivial and striking fact that the trial R-charges defined

this way satisfy the field theory anomaly cancellation conditions, for any choice of

trial Reeb vector field. The authors of [23] then proved that

Z(ξ) =
aN=4

atrial
, (5.42)
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holds as a relation between functions, with the right hand side understood also as a

function of the Reeb vector field, as described above.

It is then natural to conjecture that the relation (5.42) still holds for generalized

Sasakian manifolds. Of course, in general there would also be some analogue of the

baryonic mixing to resolve in the dual field theory. However, in the examples we shall

study in the next chapter there is no such mixing as there are no baryonic symmetries,

and the functions will agree on the nose. 8 We also note that, although the Abelian

mesonic moduli space in the field theory is only a subspace of X in general (namely

the type-change locus of Ω−), it is nevertheless still true in examples that one can

match chiral matter fields Φ with supersymmetric three-subspaces Σ3, and that (5.41)

still holds, but now in terms of contact volumes (recalling that ∆ = 3R/2 for chiral

primaries, we see this is in fact (3.121)). This was verified for the explicit Pilch-

Warner solution in section 3.6, and we shall see it is also true of the new examples in

the next chapter.

8It is a straightforward exercise to check that this is also the case in the β-transform example,
but this is somewhat trivial.
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Chapter 6

Massive deformation of generalized
conifolds

In this chapter we present new examples of superconformal field theories whose dual

geometries are generalized Sasaki-Einstein. They are obtained by massive defor-

mations of quiver gauge theories describing the worldvolume theories of a stack of

D3-branes located at so-called “generalized conifold” singularities [70]. The simplest

such example is the suspended pinch point singularity [7], but this generalizes to an

infinite family of generalized conifolds which are cones over the Lm,n,m Sasaki-Einstein

orbifolds [12, 37]. The massive deformation induces an renormalization group flow,

and the field theory analysis suggests that these theories flow to interacting super-

conformal fixed points in the infrared [54]. The Abelian mesonic moduli spaces of

the corresponding SCFTs are not (N symmetrized copies of) the original Calabi-Yau

singularities, but rather only a subspace. Given the identification [35, 26] between the

mesonic moduli space and the type-change locus T of Ω− in X , this means that the

dual supergravity solutions are indeed necessarily generalized Sasaki-Einstein. Notice

that these theories must have a dual AdS5 type IIB description, since they have been

obtained by deformation of a Sasaki-Einstein background of type IIB. Although we

do not know the supergravity solutions explicitly, we will show that with some rea-

sonable assumptions about their geometry, we have enough information to perform

the generalized Z-minimization described in the previous chapter, and hence compute

geometrically the central charge of the dual SCFTs and the conformal dimensions of

certain chiral primary operators. We then show that these agree with the dual field

theory a-maximization computations, and moreover that the quantities even agree off
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shell, as we conjectured in (5.42).

6.1 Massive deformation of super Yang-Mills the-

ory

Before considering massive deformations of generalized conifolds, we start by looking

at a simple well-known example in order to acquire some geometric intuition.

One way to deform N = 4 super Yang-Mills theory is by giving a mass to one of

its three chiral superfields Φi with i = 1, 2, 3 (in N = 1 language), which are all in

the adjoint representation of SU(N). The corresponding superpotential deformation

is thus 1

WmSYM = Φ1[Φ2,Φ3] +
m1

2
Φ2

1 . (6.1)

The resulting theory flows to an infrared fixed point with N = 1 supersymmetry,

as argued by Leigh and Strassler [54]. After integrating out the massive field Φ1 by

putting it on shell, Φ1 = −[Φ2,Φ3]/m1, we obtain a quartic superpotential:

WmSYM = λ1[Φ2,Φ3]
2 , (6.2)

with λ1 = −1/(2m1). The requirement that the superpotential has R-charge two

gives, with the notation Ri for the R-charge of the chiral superfield Φi,

R1 = R2 +R3 = 1 . (6.3)

The ABJ anomaly for the R-symmetry then vanishes automatically. The trial central

charge is

atrial =
27N2

32
R2R3 . (6.4)

A local maximum is obtained for R2 = R3 = 1/2, which gives

aN=4

amSYM

=
32

27
. (6.5)

Of course, in this example a-maximization is somewhat redundant, since the global

SU(2) symmetry at the fixed point requires in any case that R2 = R3.

1An overall trace is always implicit in these formulas.
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The dual geometry is the Pilch-Warner solution [52, 53] already discussed in sec-

tion 3.6. It involves a non-trivial metric (3.123) on S5, as well as three- and five-form

fluxes. It follows that topologically X = C(S5) ∼= R6. Although the solution is gener-

alized complex, rather than complex, it is nevertheless convenient to write it in terms

of complex coordinates on R6 ∼= C3. This structure is essentially inherited from that

of the original solution before mass deformation, which is C3 with its flat Calabi-

Yau metric. The complex coordinates zi, effectively get rescaled (as the R-symmetry

changes), and in polar coordinates they have weights ξi and are given by

z1 = rξ1 sinϑeiφ1 , ξ1 = 3/2 ,
z2 = rξ2 cosϑ cos α

2
eiφ2 , ξ2 = 3/4 ,

z3 = rξ3 cosϑ sin α
2
eiφ3 , ξ3 = 3/4 .

The closed pure spinor Ω− is given by

Ω− =
√
3
f5
96

dz̄21 ∧ e−b−+iω− , (6.6)

with the rather complicated expression

−b− + iω− = −2i
√

2f5
3

1

3r3(r3 + |z1|2)

[

− r3(r3 + |z1|2)
z̄1

dz̄2dz̄3

−z21 z̄1dz̄2dz̄3 +
z̄21
2
(2z1dz2dz3 − z3dz2dz1 + z2dz3dz1)

+r3/2
(

1

2
(z1z̄

2
2 − z̄1z23)dz2dz̄3 −

1

2
(z1z̄

2
3 − z̄1z22)dz3dz̄2

+
1

4
(|z2|2 + |z3|2)dz1(z̄3dz̄2 − z̄2dz̄3)

−1
2
(z̄1z2z3 + z1z̄2z̄3)(dz2dz̄2 − dz3dz̄3)

)

]

. (6.7)

Notice that z ∝ z̄21 corresponds to the superpotential WmSYM in (6.2), provided we

identify the complex coordinate z1 with the scalar component of the chiral superfield

Φ1 = −[Φ2,Φ3]/m1. Indeed, this is generally expected from the observation that the

condition dz = 0 reproduces the F-term equations of the theory on the worldvolume

of a probe D3-brane [35, 26] (see subsection 3.2.1). Thus the type-change locus

T = {dz = 0} of the pure spinor Ω− always corresponds to the mesonic moduli

space of the SCFT. Here T = {z1 = 0} is a copy of C2 ⊂ R6, on which Ω− reduces

to a three-form

Ω−|T = i

√
2f

3/2
5

72
dz̄1 ∧ dz̄2 ∧ dz̄3 . (6.8)
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Notice that in such expressions we do not mean a pullback to T , but rather a re-

striction of the bundle of forms to T .

After shifting the exponent by a suitable two-form proportional to dz1 to put Ω−

in the generalized Darboux form, we obtain

ω0 =
1

3

√

f5
6

[

1

z̄21
(2z̄1dz̄2 ∧ dz̄3 − z̄2dz̄1 ∧ dz̄3 + z̄3dz̄1 ∧ dz̄2) + c.c.

]

, (6.9)

while the expression for b0 is rather complicated and we thus omit it. The symplectic

form on X ∼= R6 is

ω =
1

2

∑

i

dr2i ∧
dφi
ξi

, (6.10)

with r1 = r sinϑ, r2 = r cosϑ cos(α/2), r3 = r cosϑ sin(α/2). We have explicitly

verified that all the conditions enunciated in subsection 4.4.3 for a generalized Sasaki-

Einstein solution are indeed satisfied by this Pilch-Warner solution, which is thus also

a further check on our equations.

Of course, in this case we know the explicit solution and hence the Reeb vector

field. However, we may now show how to recover some of these results without using

the full solution, which is in fact quite complicated. The key observation is that

(6.10) describes the standard symplectic structure on R6, as observed in [3]. In

order to perform Z-minimization, we let the Reeb vector field ξ =
∑

i ξi∂φi ∈ R3
+ be

arbitrary in the expression (6.10) for the symplectic form, which then leads to the

contact volume

Z(ξ) =
1

ξ1ξ2ξ3
. (6.11)

Note that this is the same contact volume function (5.36) as for the β-transform of

Kähler cones on C3, since in both cases the symplectic structure on R6 ∼= C3 is the

standard one. The generalized holomorphy condition LξΩ− = −3iΩ− gives constraints

on the Reeb vector field. In particular, the three-form condition gives ξ1+ξ2+ξ3 = 3,

which is easily deduced by looking at the homogeneity of Ω−|T in (6.8), while, in

contrast to the β-transform example, the one-form condition Lξdz̄21 = −3idz̄21 gives

the additional condition ξ1 = 3/2, as does the five-form condition. We thus have the

constraints

ξ1 + ξ2 + ξ3 = 3 , ξ1 =
3

2
. (6.12)
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Minimizing Z under these constraints indeed gives the correct Reeb vector field ξ∗ =

(3/2, 3/4, 3/4). Using the relation between the Reeb vector field and the R-charges,

ξi/3 = Ri/2, we see that the conditions (6.12) and (6.3) match and that the conjecture

(5.42) indeed holds:

Z =
aN=4

atrial
. (6.13)

6.2 Suspended pinch point

Before turning on massive deformations, we first review the gauge theory on N D3-

branes probing the suspended pinch point singularity [7].

The suspended pinch point (SPP) is a non-isolated hypersurface singularity given

by

XSPP = {u2v = wz} ⊂ C
4 , (6.14)

where u, v, w, z are complex coordinates on C4. All such hypersurface singularities are

Calabi-Yau (or, more precisely, Gorenstein), in the sense that they admit a nowhere

zero holomorphic (3, 0)-form Ω on the locus of smooth points. This particular singu-

larity is also toric, meaning that there is a holomorphic action of TC = (C∗)3 with a

dense open orbit. It may thus be rewritten in the language of toric geometry, reviewed

very briefly in section 5.3 (we also refer the reader to [20], where the suspended point

point singularity is discussed in further detail). In particular, the image of XSPP

under the moment map for any choice of toric Kähler metric on XSPP is given by a

polyhedral cone C∗ in R3 of the form (5.35), where the inward-pointing normal vectors

are

v0 = (1, 1, 0) , v1 = (1, 2, 0) , v2 = (1, 1, 1) ,

v3 = (1, 0, 1) , v4 = (1, 0, 0) . (6.15)

Here we have used the fact that for any toric Gorenstein singularity one can conve-

niently set the first component of the normal vectors to 1 by an appropriate SL(3;Z)

transformation of the torus. They are thus of the form va = (1, wa), where wa ∈ Z2.

Figure 6.1 shows the toric diagram, which is the convex hull of the {wa} in R2, or

equivalently is the projection of the dual cone C to the plane e1 = 1. The four external
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Figure 6.1: Toric diagram for the suspended pinch point. The four external vertices
correspond to toric divisors Dα = C(Yα), with α = 1, 2, 3, 4.

vertices correspond to four torus-invariant divisors Dα = C(Σα), α = 1, 2, 3, 4, which

are cones over three-subspaces Σα ⊂ YSPP. It is the additional vertex point w0 = (1, 0)

on the interior of an external edge that signifies thatXSPP is not an isolated singularity

(in fact there is an A1 singularity running out of u = v = w = z = 0, at every non-

zero value of v). The relation between the toric and algebraic descriptions is obtained

as usual by noting that the normal vectors satisfy
∑4

α=1Qαvα = 0, with the U(1)B

charge vector Q = (−1, 2,−2, 1). We may then associate complex coordinates Zα to

each divisor C(Σα), in terms of which we construct U(1)B-invariant monomials as

u = Z1Z4 , v = Z2Z3 , w = Z2
1Z2 , z = Z3Z

2
4 . (6.16)

These generate all such invariants, and satisfy our original algebraic equation u2v =

wz. Indeed, being holomorphic functions on XSPP of definite charge under the torus

action, they define lattice points inside the cone C∗, and then precisely generate its

lattice points over Z≥0. Thus with this interpretation we also have

u = (1, 0,−1) , v = (0, 0, 1) , w = (0, 1, 0) , z = (2,−1,−1) , (6.17)

being the generators of C∗. We shall need these formulas later.

It was only recently that an explicit Calabi-Yau cone metric was constructed on

XSPP [12, 37]. Indeed the corresponding Sasaki-Einstein orbifold metric on YSPP is

one of these Lp,q,r spaces, namely L1,2,1. However, before this metric was known (and

in fact known to exist), the Reeb vector field ξ and hence volumes of YSPP and its

supersymmetric toric subspaces Σα were computed using volume minimization in the
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original paper [20]. These are given by

Vol(Y ) =
π

2ξ1

∑

α

Vol(Σα) , (6.18)

Vol(Σα) = 2π2 (vα−1, vα, vα+1)

(ξ, vα−1, vα)(ξ, vα, vα+1)
, (6.19)

where (u, v, w) denotes the determinant of the 3× 3 matrix whose rows are u, v, and

w. With the choice of normal vectors in Figure 6.1 we obtain

Vol(Σ1) =
2π2

ξ3(2ξ1 − ξ2 − ξ3)
, Vol(Σ4) =

2π2

ξ2ξ3
,

Vol(Σ2) =
2π2

(ξ1 − ξ3)(2ξ1 − ξ2 − ξ3)
, Vol(Σ3) =

2π2

ξ2(ξ1 − ξ3)
, (6.20)

Z =
2ξ1 − ξ3

8ξ2ξ3(ξ1 − ξ3)(2ξ1 − ξ2 − ξ3)
. (6.21)

In the basis in which the normal vectors to C∗ all have their first component equal to

one, the holomorphic three-form Ω satisfies L∂/∂φ1Ω = iΩ and L∂/∂φ2,3Ω = 0, so the

homogeneity condition requires the first component of the Reeb vector field ξ to be

equal to three [20]:

ξ1 = 3 . (6.22)

Then it is straightforward to check that Z has a (global) minimum for

ξ∗ =

(

3,
3 +
√
3

2
, 3−

√
3

)

. (6.23)

Recall that in the Sasaki-Einstein case the contact volume Z reduces to the Rieman-

nian volume of Y , relative to that of the round metric on S5, and so we have

Vol(YSPP) =
2π3

3
√
3
, Vol(Σ1,4) =

2π2

3
, Vol(Σ2,3) =

4π2

3 + 3
√
3
. (6.24)

The gauge theory on N D3-branes at such a singularity was first studied by Mor-

rison and Plesser [7] and Uranga [70]. This is of quiver form, with the quiver diagram

shown in Figure 6.2. Here the three nodes represent three U(N) gauge groups, and

the arrows represent bifundamental chiral superfields. More precisely, a field Φij con-

necting the ith node to the jth node is in the fundamental representation of U(N)i

and the anti-fundamental of U(N)j ; the field Φ33 is in the adjoint representation of

U(N)3. The superpotential is
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Figure 6.2: Quiver diagram for the gauge theory on N D3-branes probing the sus-
pended pinch point. There are three U(N)i gauge groups, with six bifundamental
fields Φij and one adjoint field Φ33.

WSPP = Φ12Φ21Φ13Φ31 − Φ23Φ32Φ21Φ12 + Φ33(Φ32Φ23 − Φ31Φ13) . (6.25)

Focusing on the Abelian theory with N = 1, we find the following F-term and

D-term conditions:

Φ23Φ32 = Φ13Φ31 , Φ33 = Φ12Φ21 ,

|Φ21|2 − |Φ12|2 + |Φ31|2 − |Φ13|2 = 0 , U(1)1 ,

|Φ21|2 − |Φ12|2 + |Φ23|2 − |Φ32|2 = 0 , U(1)2 . (6.26)

Notice here that we have neglected the branch of solutions to the F-term equations

in which Φ23 = Φ32 = Φ13 = Φ31 = 0, for which then Φ33, Φ12 and Φ21 are left

unconstrained by the F-terms; imposing also the D-terms on this branch leads to a

copy of C2, which exists precisely because the singularity is not isolated and fractional

branes can move along the residual singularity. Ignoring this branch, we can construct

the following U(1)1,2-invariant monomials in the fields, which then generate the top-

dimensional irreducible component of the mesonic moduli space:

u = Φ23Φ32 = Φ13Φ31 , v = Φ33 = Φ12Φ21 ,
w = Φ13Φ32Φ21 , z = Φ12Φ23Φ31 .

(6.27)

We see that these indeed satisfy the suspended pinch point hypersurface relation

u2v = wz.
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By comparing the expressions for u, v, w, z in terms of the coordinates Zα associ-

ated with the three-subspaces Σα (6.16), and in terms of the gauge theory fields Φij

(6.27), we deduce that the vanishing locus of a field Φij is associated with a divisor

Dα = C(Σα) as in Table 6.1.

3-subspace Fields QB R-charge

Σ1 Φ32,Φ13 −1 1/
√
3

Σ2 Φ21 2 1− 1/
√
3

Σ3 Φ12 −2 1− 1/
√
3

Σ4 Φ31,Φ23 1 1/
√
3

Σ2 ∪ Σ3 Φ33 0 2− 2/
√
3

Table 6.1: Divisors Dα = C(Σα), fields, and charges for the SPP theory.

We now perform a-maximization for the superconformal fixed point of this theory,

at large N . The requirement that the superpotential has R-charge two gives

R12 +R21 +R23 +R32 = 2 ,

R23 +R32 = R13 +R31 , R12 +R21 = R33 . (6.28)

Using this, we can see that anomaly cancellation is then automatically satisfied. The

trial central charge is then

atrial =
9N2

32

[

3 +
∑

i,j

(Rij − 1)3

]

, (6.29)

which is locally maximized for

R23,32,13,31 =
1√
3
, R12,21 = 1− 1√

3
, R33 = 2− 2√

3
. (6.30)

This gives

aN=4

aSPP
=

2

3
√
3
. (6.31)

We now wish to compare this with Z-minimization already performed. The R-

charge of a dibaryonic operator Bα = detΦij arising from wrapping a D3-brane over

Σα is computed using the AdS/CFT formula (5.41). Using the toric volumes above,

we can see that the conditions on the R-charges are equivalent to the condition ξ1 = 3,

and that the contact volume Z is equal to the inverse of the central charge, where one

95



takes the trial R-charges to be functions of the trial Reeb vector ξ using the volume

formula (5.41):

Z =
aN=4

atrial
. (6.32)

Of course, this was proven in generality by Butti and Zaffaroni [23].

Massive deformation

After this summary of the suspended pinch point theory, we now turn to its massive

deformation [4]. We thus consider deforming the theory by adding a mass term for

the adjoint field:

WmSPP = WSPP +
m

2
Φ2

33 .

Integrating out the massive field by imposing its equation of motion, Φ33 = (Φ31Φ13−
Φ32Φ23)/m, we are left with a quartic superpotential

WmSPP = Φ12Φ21Φ13Φ31 − Φ23Φ32Φ21Φ12 − λ33(Φ32Φ23 − Φ31Φ13)
2 , (6.33)

with λ = 1/(2m). Neglecting as before the uninteresting branch of the moduli space

(which the reader may check is a copy of C), we obtain the F-terms

Φ13Φ31 = Φ23Φ32 , Φ12Φ21 = 0 . (6.34)

The D-terms are the same as for the SPP theory, and we may similarly construct the

gauge-invariant monomials

p = Φ23Φ32 = Φ13Φ31 , q = Φ12Φ21 , s = Φ13Φ32Φ21 , t = Φ12Φ23Φ31 .(6.35)

The F-term condition q = 0 also enforces that either s or t vanishes. The moduli

space is thus {u, s, t = 0} ∪ {u, t, s = 0} ≃ C2 ∪C C2, that is two copies of C2

intersecting over C. The a-maximization computation below suggests the existence

of a non-trivial interacting IR fixed point for this theory, and then the fact that this

mesonic moduli space is not a three-fold implies that the dual type IIB description

must involve a generalized Sasaki-Einstein manifold.

The R-charges at the putative IR fixed point can be determined by a-maximization.

The condition that the superpotential has R-charge two gives

R12 +R21 = 1 , R23 +R32 = 1 , R13 +R31 = 1 . (6.36)
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The condition of vanishing ABJ anomaly is then automatically satisfied. The trial

central charge is

atrial =
27N2

32
(R12R21 +R13R31 +R23R32) . (6.37)

A local maximum is obtained when all the R-charges are equal to 1/2, which gives

aN=4

amSPP
=

32

81
. (6.38)

Numerically, this is slightly less than the central charge for the SPP theory,

amSPP

N2
=

81

128
≈ 0.63 <

aSPP
N2

=
3
√
3

8
≈ 0.65 . (6.39)

This is then consistent with the a-theorem, aIR < aUV, which in turn is based on the

intuition that we are integrating out degrees of freedom when flowing to the IR.

One of the new results in this thesis is that we now have some understanding

of the dual Z-minimization to perform on the gravity side. However, to apply this

we need to make two assumptions, which are motivated by our previous examples.

Firstly, we assume that the symplectic structure of X is left unchanged by the massive

deformation. This ensures that the toric diagram remains the same as for the original

SPP singularity. This is true of the explicit Pilch-Warner solution, which is the IR

fixed point of a similar massive deformation of N = 4 super Yang-Mills. It would

certainly be nice to understand better the physical significance of this. The second

condition is easier to justify. Here we assume that the homogeneity condition on the

pure spinor Ω− for the putative IIB dual requires

ξ3 = 3/2 . (6.40)

The reason for this is that the one-form part of the pure spinor Ω− is precisely related

to the scalar part of the superpotential. Hence Ω− ∝ dv̄2, where recall that in the

Abelian moduli space of the original SPP theory v = Φ33, and we deformed by the

mass term mΦ2
33/2. This is indeed precisely what happens for the Pilch-Warner

solution, as we reviewed in section 6.1. In the basis we have chosen one immediately

sees from (6.17) that the one-form part of the homogeneity condition Lξdv2 = 3idv2

gives precisely ξ3 = 3/2.
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With the homogeneity condition ξ1 = 3, the function Z then reads

Z =
1

2ξ2(9− 2ξ2)
, (6.41)

which is minimized at ξ2 = 9/4. Using again (5.41), we verify the equivalence of the

Z and a functions:

Z =
aN=4

atrial
. (6.42)

The contact volumes of YmSPP and the subspaces Σα after mass deformation are

Volσ(YmSPP) =
32π3

81
, Volσ(Σα) =

16π2

27
, ∀α = 1, 2, 3, 4 . (6.43)

We also see that the AdS/CFT formula (5.41), which was shown to hold also for

generalized geometries in subsection 3.5.3 provided the volumes are interpreted as

contact volumes, gives the correct result that the R-charge of each bifundamental

field is 1/2. That is,

R(Φij) =
πVolσ(Σα)

3Volσ(YmSPP)
=

1

2
, (6.44)

which acts as a further check on this result.

We have thus predicted the existence of a supersymmetric AdS5 solution of type

IIB supergravity, with the same topology and toric symplectic structure as XSPP, a

Reeb vector field which in the above basis is ξ∗ = (3, 9/4, 3/2), a pure spinor Ω− with

one-form component proportional to dv̄2, where v is the complex-valued function on

XSPP specified above, and with a corresponding type-change locus T = C2∪CC2. This

is a substantial amount of information about this solution. In fact, this is essentially

as much as one knows about toric Calabi-Yau solutions for which we only know that

there exists a Sasaki-Einstein metric via the existence result of [71]. Our results then

show that the central charges and R-charges of chiral fields computed from such a

supergravity solution match those of the dual field theory using AdS/CFT.

6.3 Generalized conifolds

Having studied the SPP theory and its massive deformation in detail, we turn now

to a simple infinite family of generalizations of this example. Since the details are

similar, we shall be more brief.
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We begin with the generalized conifolds described by the hypersurface [70]

Xm,n = {unvm = wz} ⊂ C
4 . (6.45)

These are again also toric, and provided gcd(m,n) = 1 the corresponding polyhedral

cone C∗ has primitive normal vectors

v1 = (1, n, 0) , v2 = (1, m, 1) , v3 = (1, 0, 1) , v4 = (1, 0, 0) . (6.46)

The toric diagram is shown in Figure 6.3.

Figure 6.3: Toric diagram for the generalized conifolds Xm,n = C(Lm,n,m).

The dual cone C is also generated by four primitive vectors, namely

u = (1, 0,−1) , v = (0, 0, 1) , w = (0, 1, 0) , z = (n,−1, m− n) , (6.47)

which correspond to four holomorphic functions on Xm,n with definite charge under

the torus. It is again an elementary exercise to check that these generate over Z≥0

all lattice points in C∗. Notice that we have
∑4

α=1Qαvα = 0, with the U(1)B charge

vector Q = (−m,n,−n,m). Writing Zα, α = 1, 2, 3, 4, as coordinates on C4, then the

U(1)B invariants are spanned by the four functions

u = Z1Z4 , v = Z2Z3 , w = Zn
1Z

m
2 , z = Zm

3 Z
n
4 , (6.48)

which then satisfy unvm = wz. Again, this certainly requires gcd(m,n) = 1.

These generalized conifolds are cones over the Sasaki-Einstein orbifolds Lm,n,m.

The SCFT dual to N D3-branes probing Xm,n = C(Lm,n,m) was studied in [16].

Again, this is the IR limit of a quiver gauge theory, now with Ng = m + n U(N)
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Figure 6.4: Quiver diagram for the gauge theory on N D3-branes probing Xm,n =
C(Lm,n,m). The dashed arrows at both extremities are identified.

gauge group factors, the last n − m of which have an adjoint field. The quiver is

shown in Figure 6.4, and the superpotential is

WLm,n,m =

2m
∑

i=1

(−)iΦi,i−1Φi−1,iΦi,i+1Φi+1,i +

n−m
∑

i=2m+1

Φi,i(Φi,i+1Φi+1,i − Φi,i−1Φi−1,i) ,

where the index i is defined modulo Ng. Notice here that to each torus-invariant

divisor Dα = C(Σα), with Σα a three-subspace of the orbifold Y = Lm,n,m, we can

associate a set of the bifundamental fields Φij . Geometrically, the relaton is that

{Φij = 0} is the divisor Dα in the mesonic moduli space, which contains Xm,n. These

fields have multiplicities nα = |(vα−1, vα, vα+1)| [16], giving here n1 = n4 = n and

n2 = n3 = m, see Table 6.2.

After adding mass terms of the form
∑m+n

i=2m+1miΦ
2
i,i/2 and integrating out the

massive fields, we obtain

WmLm,n,m =
2m
∑

i=1

(−)iΦi,i−1Φi−1,iΦi,i+1Φi+1,i

−
n−m
∑

i=2m+1

λi(Φi,i+1Φi+1,i − Φi,i−1Φi−1,i)
2 , (6.49)

with n − m complex coupling constants λi = 1/2mi. The corresponding F-term

equations give rise to

v = Φi,i+1Φi+1,i = 0 for all odd i < 2m ,
u = Φj,j+1Φj+1,j for all j 6= i ,

(6.50)

where again we focus on the branch of the moduli space which does not correspond

to moving fractional branes along the residual singularity. In addition, we find the

following gauge-invariant monomials

w = Φ12 · · ·Φm+n,1 , z = Φ1,m+n · · ·Φ21 , (6.51)
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3-subspace Fields QB Multiplicity

Σ1 Φj+1,j −m n
Σ2 Φi,i+1 n m
Σ3 Φi+1,i −n m
Σ4 Φj,j+1 m n

Table 6.2: Divisors Dα = C(Σα), fields, charges, and multiplicities for the Lm,n,m

theories. Here, as in (6.50), the index i is odd and smaller than 2m, while the index
j covers the remainder.

which then satisfy unvm = wz. As an illustration, consider the L1,3,1 theory: the

F-terms lead to

u = Φ23Φ32 = Φ34Φ43 = Φ41Φ14 , v = Φ12Φ21 = 0 , (6.52)

and we can construct the U(1)1,2,3-invariant monomials

w = Φ12Φ23Φ34Φ41 , z = Φ14Φ43Φ32Φ21 , (6.53)

which satisfy u3v = wz.

In the general case the condition v = 0 implies that either w or z vanishes. The

moduli space is thus again two copies of C2, intersecting over C.

We next perform a-maximization for the IR fixed point of the massive deformation.

The requirement that the superpotential has R-charge 2 gives

R[Σ1] +R[Σ4] = 1 , R[Σ2] +R[Σ3] = 1 , (6.54)

where the field-divisor map is given in Table 6.2. The ABJ anomaly is then automat-

ically satisfied. The trial central charge function is

atrial =
27N2

32

Ng
∑

i=1

Ri,i+1Ri+1,i

=
27N2

32
(mR[Σ2]R[Σ3] + nR[Σ1]R[Σ4]) , (6.55)

which is locally maximized when all R-charges are equal to 1/2, at which point the

central charge is

aN=4

amLm,n,m

=
32

27Ng

=
32

27(m+ n)
. (6.56)
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In accord with the a-theorem, the central charge of the infrared theory is strictly

smaller than the central charge of the original theory given in [16], for all values of m

and n:

aLm,n,m =
27N2

16
m2n2

[

(2m− n)(2n−m)(m+ n) + 2(m2 −mn + n2)3/2
]−1

.(6.57)

Finally, we turn to the dual Z-minimization problem. Again, the homogeneity

condition for Ω− leads to ξ1 = 3 and ξ3 = 3/2, the latter condition again coming from

the expectation that the one-form part of Ω− is proportional to dv̄2, precisely as for

the Pilch-Warner solution and our discussion of the SPP theory. The Z function is

then

Z =
4Ng

3ξ2(3Ng − 2ξ2)
, (6.58)

which is minimized for ξ2 = 3Ng/4. The volume of Lm,n,m after mass deformation

and the volumes of the subspaces Σα are

Vol(mLm,n,m) =
32π3

27Ng
, Vol(Σα) =

16π2

9Ng
. (6.59)

Using again (5.41) in terms of contact volumes, we can verify that the conjectured

relation between Z and atrial indeed holds.
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Chapter 7

Discussion

In this thesis we developed a deeper understanding of general supersymmetric AdS5×
Y solutions of type IIB supergravity using generalized geometry. The cone over Y

is generalized Calabi-Yau and carries a generalized holomorphic vector field which

corresponds to the R-symmetry of the dual SCFT. The key point is that there is

a generalized complex structure on the cone, which becomes an ordinary complex

structure on a special type-change locus. Physically, this locus is the Abelian mesonic

moduli space of the dual field theory. In particular, there is an underlying contact

structure, and the associated Reeb vector field, dual to the R-symmetry, is generalized

holomorphic, generalized Killing, and related to r∂r via the integrable generalized

complex structure J−.

We identified a relationship between “BPS polyforms”, that is polyforms with

equal R-charge and scaling dimension, and generalized holomorphic polyforms that

should be worth exploring further. In particular, we would like to make a precise

connection between such objects and the spectrum of chiral operators in the SCFT

via Kaluza-Klein reduction on Y . It would also be interesting to relate the symplectic

volume of a generalized Calabi-Yau cone to some generalized index counting gener-

alized holomorphic objects. Encouragingly, such a generalization has been shown to

work in the context of topological strings [72].

We showed that with the assumption that the five-form flux sourced by D3-branes

does not vanish the cone is actually symplectic, and we obtained contact volume

formulas for the central charge of the dual SCFT and the conformal dimensions of

operators dual to BPS wrapped D3-branes. This assumption is not very restrictive

since all known solutions satisfy it. However, in principle there could exist AdS5
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solutions where all the D3-branes are replaced say by fractional D5-branes. It would

be interesting to determine whether such solutions do indeed exist.

In chapter 4 we introduced the notion of “generalized Sasakian geometry”, which

shares many properties with Sasakian geometry. It consists of a pair of compatible

pure spinors on a generalized Calabi-Yau cone satisfying certain rather natural differ-

ential conditions. Away from the type-change locus, the transverse space to the Reeb

foliation, instead of being Kähler as in the Sasakian case, is endowed with a triple of

orthogonal symplectic forms satisfying a system of differential equations. By analogy

with the Sasaki-Einstein case (see for example [31]) this perspective could be useful

for constructing new explicit solutions.

Most known AdS5 × Y solutions of type IIB supergravity with fluxes are actu-

ally part of continuous families of solutions containing a Sasaki-Einstein solution.

For example, starting with a toric Sasaki-Einstein solution one can construct new

β-transformed solutions using the techniques of [36], which corresponds to the addi-

tion of an exactly marginal deformation in the dual SCFT. It has also been shown

numerically in [73] that the Pilch-Warner solution (or more precisely its Z2-orbifold)

is part of a family that includes the conifold solution. In fact, the study of the con-

formal manifolds of CFTs [54, 74] reveals the existence of many other deformations

whose dual geometries are still to be discovered. The fact that the mesonic moduli

spaces of these deformed CFTs are in general not three-folds indicates that the dual

cones must be generalized geometric. It would be exciting to find a systematic way

to match geometric deformations of the cone over Y to conformal deformations of the

dual CFT.

Generalizing the results of [19], we then proved in chapter 5 that the action for

the bosonic supergravity fields is equal, when restricted to a space of generalized

Sasakian structures, to the underlying contact volume, and thus depends only on the

Reeb vector field. This implies that the Reeb vector field of a supersymmetric AdS5

solution is obtained by minimizing the contact volume over a space of Reeb vector

fields under which the pure spinor Ω− has charge three. Since at the critical point

this contact volume is equal to the inverse central charge of the dual field theory [2],

this is conjecturally the geometric counterpart of a-maximization in four-dimensional

N = 1 SCFTs.
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One important open issue is to gain a better understanding of the space of gener-

alized Sasakian structures. However, even for the space of Sasakian manifolds, which

has been studied since the 1960s, there is still no general understanding. The only

complete description [20] covers the case of toric Sasakian manifolds. We believe that

a similar level of understanding should be achievable for generalized toric Sasakian

manifolds, but leave this for future work. Notice that, in any case, our definition of

generalized Sasakian geometry reduces to that of Sasakian geometry when the gen-

eralized complex structure is complex, and that the β-transform of a Kähler cone is

a cone over a generalized Sasakian manifold.

In addition, we have not investigated the type-change locus T in any detail here.

It is necessary to understand what the constraints are on the type-change locus, and

to classify the types of boundary conditions associated with the structures introduced

in section 4. We note that this is very much an open problem in generalized geometry,

for which there are currently only some very preliminary results [32, 33].

In chapter 6 we bypassed most of the above open issues by focusing on some

examples for which we have a fairly good understanding of the physics on the SCFT

side of the correspondence. This allowed us to predict the existence of supersymmetric

AdS5 solutions of type IIB supergravity, with the same topology and toric symplectic

structure as the cones over Lm,n,m. Although we do not fully know the pure spinor Ω−,

we made some reasonable assumptions about the generalized geometry based on the

dual field theories and on the Pilch-Warner solution that these solutions generalize,

and thereby determined the type-change locus to be T = C2 ∪C C2. We were then

able to compute the critical Reeb vector field and hence the contact volumes. Using

the formulas in section 3.5, we found perfect agreement with the central charges and

R-charges of chiral primary fields computed via a-maximization in the dual SCFTs

obtained by massive deformation. Perhaps the main issue raised here is why the

toric symplectic structure is preserved after the renormalization group flow triggered

by the massive deformation. In fact, the field theory interpretation of the contact

or symplectic structure, which exists whenever the solution has non-zero D3-brane

charge, is still mysterious.
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Appendix A

Generalized Killing vector field

In this appendix we derive an expression for the generalized vector ξ in terms of the

bilinears introduced in [25]. We also use the results of [25] to give an alternative proof

that ξ preserves both generalized structures, that is LξJ± = 0, and is thus generalized

holomorphic and generalized Killing.

The projections of ξ onto the vector and form parts (in a fixed trivialization of

E) are denoted ξv, ξf, respectively. It will be convenient to introduce ξB ≡ eBξ =

ξv + (ξf − ξvyB). Since Z−
1 in (3.74) annihilates Ω−, using the definition (3.43) we

deduce that

r∂ryΦ− = i
(

ξvyΦ− + ξBf ∧ Φ−

)

. (A.1)

To proceed we use (3.28) to write

Φ− ≡ η1+ ⊗ η̄2− = eAχ1χ̄
c
2 ⊗ (σ3 + iσ1) . (A.2)

Since 6Φ− =
∑

odd p Φi1...ipγ
i1...ip/p! we have

vyΦ− =
1

2
{viγi,Φ−} , ν ∧ Φ− =

1

2
[νγi,Φ−] . (A.3)

Hence, using the Clifford algebra decomposition (3.25) and metric (3.24) we have

r∂ryΦ− =
1

2
{e∆+φ/4γ̂6,Φ−} =

1

2
eA+∆+φ/4χ1χ̄

c
2 ⊗ {σ1, σ3 + iσ1}

= ieA+∆+φ/4χ1χ̄
c
2 ⊗ 1 . (A.4)
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On the other hand using (3.76) we have

ξvyΦ− + ξBf ∧ Φ− =
1

2
{e∆+φ/4ξmv βm ⊗ σ3,Φ−}+

1

2
[e−∆−φ/4ξBf mβ

m ⊗ σ3,Φ−]

= e∆+φ/4v+mβ
m ⊗ σ3Φ− + e∆+φ/4v−mΦ−β

m ⊗ σ3
= eA+∆+φ/4

(

v+mβ
m(χ1χ̄

c
2) + v−m(χ1χ̄

c
2)β

m
)

⊗ 1

−eA+∆+φ/4
(

v+mβ
m(χ1χ̄

c
2)− v−m(χ1χ̄

c
2)β

m
)

⊗ σ2 , (A.5)

where recall that {βm, βn} = 2gYmn and we have defined

v±m ≡ 1

2
(ξvm ± e−2∆−φ/2ξBf m) . (A.6)

To satisfy (A.1) we thus require

v+mβ
m(χ1χ̄

c
2) = v−m(χ1χ̄

c
2)β

m =
1

2
χ1χ̄

c
2 , (A.7)

which implies

v+mβ
mχ1 =

1

2
χ1 , v−mβ

mχ2 =
1

2
χ2 , (A.8)

or equivalently

v+m =
χ̄1βmχ1

2χ̄1χ1
, v−m =

χ̄2βmχ2

2χ̄2χ2
. (A.9)

Hence, given the normalization χ̄1χ1 = χ̄2χ2 = 1/2, we deduce that, in terms of the

bilinears defined in (3.15),

ξv = K#
5 , ξBf = e2∆+φ/2ReK3 . (A.10)

A similar calculation using

r∂ryΦ+ = ie2∆+φ/2
(

ηvyΦ− + ηBf ∧ Φ+

)

, (A.11)

leads to

ηv = e−2∆−φ/2 ReK#
3 , ηBf = K5 . (A.12)

Using the expression for the B-field given in (3.19), we obtain the expressions for ξf

and ηf given in (3.69).

In [25] it was shown that K5 is a Killing one-form, so that its dual vector field K#
5

(with respect to gY ) is a Killing vector field. In fact K#
5 generates a full symmetry of
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the supergravity solution, in that all bosonic fields (warp factor, dilaton, NS three-

form H , and RR fluxes) are preserved under the Lie derivative along ξv = K#
5 .

However, importantly, the Killing spinors ξ1 and ξ2 are not invariant under ξv. In [25]

it was shown that

LξvS = −3iS , (A.13)

where S ≡ ξ̄c2ξ1. Notice that, since ξv preserves all of the bosonic fields, one may

take the Lie derivative of the Killing spinor equations (3.12)-(3.13) for ξ1, ξ2 along ξv,

showing that {Lξvξi} satisfy the same equations as the {ξi}. It thus follows that

Lξvξi = iµξi , (A.14)

where µ is a constant. Now (A.13) implies that 2µ = −3, and thus

Lξvξi = −3i
2
ξi . (A.15)

One can also derive this last equation directly from the Killing spinor equations

(3.12)-(3.13) of [25]. It thus follows that

LξvΦ+ = 0 , LξvΦ− = −3iΦ− . (A.16)

Next, using the following equation of [25],

D(e6∆W ) = −e6∆P ∧W ∗ +
f5
4
G , (A.17)

where W is the two-form bilinear defined in (3.16), we can show that

K#
5 y

(

4

f5
e6∆+φ/2 ReW

)

= e2∆+φ/2ReK3 , (A.18)

and furthermore that

d
(

e2∆+φ/2ReK3

)

= ξvyH . (A.19)

To see the latter, we can derive an expression for the left-hand side using, amongst

other things, (3.18), (3.38) and (B.10) of [25], and an expression for the right-hand

side using equation (3.38) and (B.8) of [25]. Using these results we can deduce that

LK#
5
B = d(K#

5 yb2) , LK#
5
C2 = d(K#

5 yc2) , (A.20)

where b2, c2 were introduced in (3.19), (3.20), respectively.
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From (A.19) we have dξBf = ξvyH and we deduce that

LξBΦ+ = ξvyH ∧ Φ+ , LξBΦ− = −3iΦ− + ξvyH ∧ Φ− . (A.21)

Since (A.19) is also equivalent to dξf = LξvB we deduce that

LξΩ+ = 0 , LξΩ− = −3iΩ− , (A.22)

and hence LξJ± = 0. Finally, it is also interesting to point out that

(LξB − ξvyH∧)F = 0 , or equivalently Lξ(e
−BF ) = 0 . (A.23)
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Appendix B

The Sasaki-Einstein case

Here we discuss the special case in which the compact five-manifold Y is Sasaki-

Einstein. Setting G = P = Q = 0, f5 = 4e4∆, and ξ2 = 0, the Killing spinor

equations (3.12)-(3.13) reduce to

∇mξ1 +
i

2
βmξ1 = 0 . (B.1)

In terms of appendix B of [25] we choose θ̄ = φ̄ = 0 and e2iᾱ = −1 (these angles had

no bars on them in [25]). We then have the equalities

η =
1

2
ξ̄1β(1)ξ1 = K5 = e1 ,

ωKE =
i

2
ξ̄1β(2)ξ1 = −V = e25 + e43 ,

ΩKE =
1

2
ξ̄1β(2)ξ

c
1 = (e2 + ie5) ∧ (e4 + ie3) , (B.2)

and

dη = 2ωKE ,

dΩKE = 3iη ∧ ΩKE . (B.3)

Observe that

η ∧ 1

2!
ω2
KE = −e12345 = −volY . (B.4)

Next using the map (3.28) between five- and six-dimensional spinors, we obtain

iη̄1+γ(2)η
1
+ = r(d log r ∧ e1 + ωKE) ≡

1

r
ωCY ,

−iη̄1c+ γ(3)η1+ = r(d log r − ie1)(e2 − ie5)(e4 − ie3) ≡ 1

r2
Ω̄CY . (B.5)
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It is worth noting that

ω3
CY

3!
= r6e123456 = r6d log r ∧ η ∧ ω

2
KE

2!
. (B.6)

We also find, directly from (3.43),

Ω− =
1

8
Ω̄CY ,

Ω+ = − ir
3

8
exp

(

i

r2
ωCY

)

. (B.7)

A useful check is that these expressions agree with those obtained from the general

expressions obtained in section 3.2.

We can also write down the corresponding reduced structures Ω1 and Ω2, as defined

in section 4.3, on the Kähler-Einstein space. We find

Ω1 =
1

8
e3iψΩ̄KE , Ω2 = − i

8
eiωKE , (B.8)

where ψ is the coordinate defined via ξv = K#
5 = ∂ψ.
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Appendix C

The hazards of dimensional
reduction

In section 5.1 we derived the equations of motion on Y for the bosonic fields of type

IIB supergravity from ten-dimensional equations, and then constructed an action Z

whose variation led to those equations. An alternative strategy to obtain Z would

have been to dimensionally reduce the type IIB action on AdS5 × Y , where the

“reduction” is along the AdS5 direction. However, this approach is complicated by

ambiguities inherent to the self-duality of F5, and to the lack of proper normalization

of the Chern-Simons term [75]. In this appendix we outline the relation between these

two approaches.

Even though the field equations of type IIB supergravity cannot be derived directly

from the variation of an action, one can have recourse to a pseudo-action that leads to

equations of motion that match the type IIB equations only when supplemented by

the self-duality condition ⋆F5 = F5. With F̃5 ≡ F5 +
1
2
d(B ∧ C2), this pseudo-action

reads [76]

S10
IIB =

1

2κ210

∫

d10x
√−gE

(

RE − 2|P1|2 −
1

2
|G3|2 −

1

4
|F̃5|2

)

− 1

4κ210

∫

dC4 ∧H ∧ C2 . (C.1)

After a Weyl rescaling ḡ = gAdS + gY = e−2∆gE this becomes

S10
IIB =

1

2κ210

∫

AdS5×Y

d10x
√
ḡe8∆

(

R̄− 18e−8∆∇M(e8∆∂M∆) + 72|d∆|2

−2|P1|2 −
1

2
e−4∆|G3|2 −

1

4
e−8∆|F̃5|2

)

− 1

4κ210

∫

dC4 ∧H ∧ C2 . (C.2)
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Splitting the integral into a part over AdS5 and a part over Y , one finds

S10
IIB =

VolAdS

2κ210

[

∫

Y

d5y
√
gY e

8∆

(

R(gY )− 20 + 72|d∆|2 − 2|P1|2 −
1

2
e−4∆|G3|2

)

−1
2

∫

Y

(

d5y
√
gY
|F̃5|2
2

+ f5H ∧ C2

)]

. (C.3)

Note that the prefactor VolAdS here is infinite. Pragmatically, one can simply dis-

card this prefactor in order to obtain an action for the bosonic fields on Y , although

in a more systematic treatment this should be regularized holographically following

Henningson and Skenderis [49]. The term |F̃5|2 should be understood only symbol-

ically, since the diabolic self-duality property makes it vanish. Naively, one might

be tempted to formally set |F̃5|2 = f 2
5 . Comparing with the action Z in (5.12), we

conclude that a factor of −2 is missing in front of the second line of (C.3). A similar

factor was already pointed out by Belov and Moore [75].
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Appendix D

The contact volume functional

Is this appendix we consider the contact volume

Volσ(Y ) ≡
∫

Y

σ ∧ ω
2
T

2!
=

1

8

∫

Y

σ ∧ dσ ∧ dσ =

∫

Y

volσ (D.1)

as a functional on an appropriate space of contact structures on a fixed five-manifold

Y . Thus here σ is a contact one-form on Y . We begin by showing that this volume

depends only on the unique Reeb vector field ξ that is associated with σ. As we

explain, this is analogous to the statement in symplectic geometry that the symplec-

tic volume depends only on the cohomology class of the symplectic form. We then

compute the first and second derivatives of the contact volume. In particular, pro-

vided one considers only deformations of the Reeb vector field that preserve σ, then

the volume functional is strictly convex. These results generalize those of [19, 71]

for Sasakian manifolds to general contact manifolds. Of course, the results that

follow hold in arbitrary odd dimension, with appropriate replacements of dimension-

dependent constants.

Consider a fixed contact one-form σ on Y , and a one-parameter family of defor-

mations σt, with σ0 = σ and t ∈ (−ǫ, ǫ) ⊂ R. We Taylor-expand σt = σ+ tσ′+O(t2),
with a similar expansion of the Reeb vector field ξt = ξ + tξ′ + O(t2). Since by

definition σt(ξt) = 1, ξtydσt = 0, one immediately deduces the first-order equations

σ′(ξ) = −σ(ξ′) , ξydσ′ = −ξ′ydσ . (D.2)
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We now compute

∫

Y

volσt −
∫

Y

volσ =
t

8

[
∫

Y

σ′ ∧ (dσ)2 + 2

∫

Y

σ ∧ dσ ∧ dσ′

]

+O(t2)

=
3t

8

∫

Y

σ′ ∧ (dσ)2 +O(t2)

= −3t
8

∫

Y

σ(ξ′) σ ∧ (dσ)2 +O(t2) , (D.3)

where in going from the first to the second line we have integrated the second term

by parts and used Stokes’ theorem, and in going from the second to the third line we

have used the first equation in (D.2). In particular, if we consider deformations of

the contact structure that leave fixed the Reeb vector field, then by definition ξ′ = 0

and the contact volume is invariant. Thus we may regard the contact volume as a

functional of ξ, as opposed to σ, and we have then shown that the first derivative of

the contact volume is

dVolσ[ξ
′] = −3

∫

Y

σ(ξ′)volσ . (D.4)

Of course, this result reproduces that in [19], but here we have used only contact

geometry. In the special case in which ξ generates a U(1) action on Y , the quo-

tient Y/U(1) is a symplectic orbifold and the contact volume is (proportional to)

the symplectic volume of Y/U(1). Deformations of the contact structure that leave

ξ invariant are then deformations of the symplectic structure on Y/U(1) that leave

the cohomology class fixed, which thus preserve the volume. More generally, such

deformations leave fixed the basic cohomology class of the symplectic structure on

the leaf space of the Reeb foliation.

We next deform again the contact form and the Reeb vector field as σt = σ +

tσ′′ +O(t2) and ξt = ξ + tξ′′ +O(t2), and similarly compute

d

dt

∫

Y

σt(ξ
′) σt ∧ (dσt)

2
∣

∣

∣

t=0
= 8

∫

Y

σ′′(ξ′) volσ +

∫

Y

σ(ξ′) σ′′ ∧ (dσ)2

+2

∫

Y

σ(ξ′) σ ∧ dσ ∧ dσ′′ ,

= −24
∫

Y

σ(ξ′) σ(ξ′′) volσ (D.5)

+8

∫

Y

σ′′(ξ′) volσ − 2

∫

Y

d(σ(ξ′)) ∧ σ′′ ∧ σ ∧ dσ .
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Here we have used precisely the same steps as when computing the first derivative in

(D.3). To deal with the last line, we write

d(σ(ξ′)) = Lξ′σ − ξ′ydσ , (D.6)

using Cartan’s formula. We now also impose that our original deformation vector

field ξ′ preserves the initial contact one-form, so Lξ′σ = 0. This means that ξ′ is in

the Lie algebra of strict contact deformations of σ. Notice that a similar assumption

was also made in [19], where the space of Sasakian metrics considered had a fixed

isometry group, with the Reeb vector field varied in the Lie algebra of this group.

Focusing on the last line in (D.5), we then have

8

∫

Y

σ′′(ξ′) volσ − 2

∫

Y

d(σ(ξ′)) ∧ σ′′ ∧ σ ∧ dσ =

∫

Y

σ ∧ ξ′y
[

(dσ)2 ∧ σ′′
]

=

∫

Y

σ(ξ′) σ′′ ∧ (dσ)2 ,

= −8
∫

Y

σ(ξ′) σ(ξ′′) volσ . (D.7)

Altogether we have thus shown that the second derivative of the contact volume is

d2Volσ[ξ
′, ξ′′] = 12

∫

Y

σ(ξ′) σ(ξ′′) volσ , (D.8)

thus showing that Volσ(Y ) is strictly convex. Again, notice that this formula repro-

duces that in [19].
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