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A radiative polarization process in storage rings polarizes electrons in a definite direction determined by the
location of the particles in the ring and by the structure of the ring. From the experimental point of view, it is
desired to change the direction of the electron spins as easily as possible. It is known that in a ring with low
beam energy the spin can be flipped by imposing a perturbation resonating with the spin motion. In high­
energy rings, however, the effect of the synchrotron radiation becomes important in the above spin-flip
process. This effect is quantitatively estimated in the present paper, together with the effect of synchrotron
oscillations which exists in proton rings as well. The results are summarized in a few formulae suitable for
designing the spin-flipping devices.

1. INTRODUCTION

In electron storage rings, electrons become polarized due to spin-flip synchrotron
radiation in a direction which is determined by the structure of the ring and by the
location of the electrons in the ring. In the usual planar rings, this direction is vertical
all around the ring. Since longitudinal polarization is desired for high-energy physics,
ring designs are being studied in some laboratories in which the polarization is
longitudinal at the collision points.

From the experimental standpoint, however, not only longitudinal polarization, but
also helicities whose sign can easily be changed are desired. Unfortunately, this is very
difficult to achieve. For instance, in the present proposal of HERA,! some magnets
must be moved in order to change the sign of the helicity. In the so-called vertical S­
bend scheme it seems impractical to change the helicity because not only the magnets,
but also the detectors must be rearranged. Moreover, in either case, the helicities of
electron and positron beams are always the same at a given collision point and it is
impossible to collide beams with opposite helicities.

The Novosibirsk 2 group has proposed a method in which the spin can be flipped
through adiabatic resonance crossing by an artificial perturbation synchronized with
the spin-precession frequency. This has been done in VEPP-2M and satisfactory results
have been obtained. In this method, experiments with both signs of helicities can be
done without moving magnets and detectors. Moreover, it is possible in principle to
invert the polarization either of electron or positron beams by using travelling waves. A
drawback is that the polarization is restored to its former direction in a time of the
order of the polarization time after the spin-flip. But long experimental time can
effectively be obtained by repeating this process.

A problem in applying this method to rings of higher energy has also been pointed
out by the same group.2 During the spin-flip process, the coherence of the spin phase
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will be lost by the stochastic change of particle energy due to synchrotron radiation
and the beam may be depolarized. In order to avoid this phenomenon, the spin must
be flipped fast enough. Hence a very large perturbation is required to keep the adiabat­
icity of the resonance crossing.

Their argument may be summarized as follows. The variation of the spin precession
phase <I> can be expressed as

d<l>
da = ya = Yoa(l + E), (1.1)

where ais the generalized azimuth of the machine, y and Yo are the Lorentz factors of
the relevant particle and the equilibrium particle, € is equal to (y - Yo)/Yo, and a is the
coefficient of the anomalous magnetic moment. Let ~€i be the change of € due to a
synchrotron radiation at a= ai • Then the spin phase will be shifted by the amount

at the azimuth aafter the emission. Here the synchrotron-oscillation tune is denoted by
VS • Summing up all the effects of radiations between a = 0 and a = a, we have the total
change of phase

(1.2)

Averaging ~<I>2(a) over many radiations, we get

(1.3)

Here dN/da is the mean number of emitted photons during one radian of a. Ignoring
the periodic term after integration, we get

(1.4)

Using the relation

(1.5)

where 1;ev is the revolution period and 'to is the radiative polarization time for the iq.eal
ring, we find the expectation value of the square of the spin phase shift during
n( = a/2n) revolutions

(1.6)

The right-hand side of this equation has strong dependence on the beam energy
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(approximately the seventh power) for a given ring. Hence at high energies n must be
very small in order to keep <~<I>2>below unity, i.e., the resonance must be crossed very
quickly.

More quantitiative discussion is required for the actual design of the spin-flipper. In
addition, the influence of non-diffusive synchrotron oscillations that the particle had
before the resonance crossing may not be negligible because the synchrotron
oscillation tune is generally very large in high-energy electron storage rings. The
present paper deals with these problems. Effects of non-diffusive synchrotron
oscillations are studied in Section 2 and discussions with diffusion are given in
Section 3. A summary of the results and numerical examples are given in Section 4.
All the mathematical complications are left to an appendix.

2. INFLUENCE OF SYNCHROTRON OSCILLATIONS

In this section the effects of synchrotron oscillations without radiative diffusion are
discussed. Hence the results can be applied to the spin-flip of proton beams if the
assumed parameters lie in the allowable range.

The equation of the spin motion can generally be written as

(2.1)

Here, no is the spin precession frequency vector for the equilibrium particle, nF is the
driving force of the spin-flipping and ne is the contribution of the relative energy error
E. Since no is a periodic function of ewith period 21t, the equation for the equilibrium
particle

ds
de = no x s (2.2)

has three right-handed orthonormal solutions °1 , 02 and °3 , one of which, °3 , is
periodic. The other solutions, 01 and °2 , have the periodicity

where Vo is the spin-tune for the equilibrium particle. In planar machines, 03 is directed
to the vertical axis.

Let us rewrite Eq. (2.1) using spinor representation. We define two-component
spinor \II(e) by

3

S = L \II*crj\ll· OJ'
j=l

(2.4)

where cr/s are Pauli matrices and asterisks denote Hermitian conjugates on spinors
and matrices and complex conjugate on scalars. Using the fact that o/s satisfy Eq. (2.2),
one can easily verify that the equation

(2.5)
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is equivalent to Eq. (2.1). This equation can be written using the representation of Pauli
matrices

as

(0 1) (0 -i) (1 0)
(J 1 = 1 0' (J2 = i 0' 0'3 = 0 -1 ' (2.6)

(2.7)

We make the following assumptions on !lE. Since !lE·"1 and !lE·"2 oscillate rapidly,
we will neglect them. The term !lE· 03 gives the dependence of spin-tune v on E. It is
given by3

(dV) = _~ f2" an£ .03 dG.
dE E = 0 21t 0 OE

Neglecting rapidly oscillating components, we assume

In actual rings the expression

(dV)- = 'fo a
dE E=O

(2.8)

(2.9)

is a very good approximation. Hence we use this expression, although the results can
easily be extended to a general case. From now on, we will abbreviate Yo by y.

Next, we make assumptions for !IF. We will ignore !IF· °3, since it gives
merely a weak modulation of the spin phase and does not contribute to spin-flip. As for
!IF· (01 + i02), we will keep resonating terms only

(2.10)

as is usually done. Here VI is a real positive constant, n is an integer and <PF(8) is the
phase of the spin-flipper, which varies as

(2.11)

where fo = - Vo - n is the frequency (in units of revolution frequency) of the flipper at
the very instant of resonance crossing and rt is a constant that gives the speed of
crossing. We will assume that rt is positive, but the results for negative rt can be obtained
simply by replacing rt with Irtl in the final expressions of depolarization.



RADIATION DIFFUSION AND SPIN FLIP

Under the above assumptions, Eq. (2.7) can be written as

43

d\}J

de

-ya€

2 -V1 exp( _~ cx8 2 + i<!lFO) ya€

We have derived this equation in a general way since the ring we treat here is not planar
in general, but the same equation can be obtained for planar rings. (See, for example,
Ref. 4.)

Replacing the independent variable e with t = e(lt)1/2 and rotating the axis around
"3 as

we get an equation for 'iJ

d'iJ i- = -(Ho + ~H)'iJ,
dt 2

with

(
-t b)

Ho = b t'

~H = (ya€o/fi 0)
-ya€/fi '

and

Substituting with

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

where €max is the amplitude, Vs the synchrotron-oscillation tune, <Po the phase at the
moment of resonance crossing and J.l is defined by J.l = vs/ Ja, we have

(2.18)

with

We are going to solve the differential Eq. (2.14) approximately with Eqs. (2.15) and
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(2.18). It contains four parameters, b, U, J.l and <Po. In the following we employ the
approximations b ;<: 1 and U ;$ 1. The former says that the polarization is inverted
almost completely if there is no synchrotron oscillation. Indeed, the exact solution in
the absence of ~H has been given by Froissart and Stora. 5 When the beam is
completely polarized along the direction of "3 at t = - 00, the polarization at t = + 00

is given by

P
FS

= 2e(-1t/2)b2
- 1. (2.19)

The latter condition is necessary because we will employ the perturbation expansion in
terms of ~H.

Now let us denote the two independent solutions to the unperturbed equation

(2.20)

by Wl(t) and W2(t) which correspond to complete polarization in the direction +"3 and
- °3 , respectively, at t = - 00. At t = + 00 these solutions show almost complete
polarization in the opposite direction because of the condition b ;<: 1. They satisfy the
orthogonality relation

(i,j = 1, 2) (2.21)

at any t, where bij is the Kronec~er delta. In addition, it can easily be verified that the
spin vectors for these solutions are always opposite, i.e.,

(j = 1, 2, 3). (2.22)

Let us expand the solution W(t) to the perturbed Eq. (2.14) in terms of the unper­
turbed solutions as

(2.23)

with

The initial conditions at t = - 00 are

(2.24)

and (2.25)

Because of the synchrotron oscillation, C1 and C2 will gradually move away from these
values. The spin component along 03 at t is given by

S-03 = o/(t)*cr3 o/(t) = W(t)*cr 3 o/(t)

= IC l 1
2

o/1*cr3o/1 + /C2 /
2

o/2 *cr3 W2 + 2Re(C1*C2 Wl*cr 3 W2)' (2.26)

We may omit the last term by averaging over many particles. Then, using Eqs. (2.22)
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and (2.24), we get the beam polarization at t = + 00 as

with

AP = 2· lim <IC2 (t)1 2
).

t-+ + 00

45

(2.27)

Here '1J 1 *0"3 '1J 1 is just the final polarization PFS given by Froissart and Stora. Hence we
have

P = (1 - AP)PFS . (2.28)

Since we consider only the case where the spin flips almost completely in the absence of
synchrotron oscillation, i.e., PFS ~ -1, we may think that the depolarization due to
synchrotron oscillation is given by AP. Now what we have to know is C2 ( 00).

The equation that C1 and C2 must satisfy is

(2.29)

Taking the first-order perturbation of AH and substituting for C1 and C2 on the right­
hand side with the unperturbed solutions C 1(t) = 1 and C2 (t) = 0, we get

C2(t) = ~L00 W2*(t) dH(t) W1 ( t )dt

= ~ u Loo cos(~t + <PO)(W2* cr3Wl)dt,

and, therefore,

(2.30)

Now let us introduce the Fourier transform G(m) of '1J2*0"3'1J1 defined by

and

(2.31)

where Co is a real constant added for convenience. We can choose Co so that G(m) is real
w.hen b » 1. By using G(m) we can rewrite Eq. (2.30) as

1tU
C2 ( 00) = i 2 exp(ico)[exp(i<po)G(J,t) + exp( - i<Po)G( - J,t)J. (2.32)
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Averaging the absolute square of this expression over the initial phase of the
synchrotron oscillation <Po, we get

(2.33)

Since G(co) is very small for co < 0 as stated below, the following expression is sufficient
in practice

(2.34)

If we average this expression over the distribution of €max' we get finally

(2.35)

where €rms is the r.m.s. relative energy spread.
The calculation of G(co) is given in the appendix. It is plotted in Fig. 1 for several

values of b. When b is large, G(co) for co ~ 0 is very small. (The value G(O) is of the order
of b1/3 exp( -rtb2/4).) It increases rapidly with co when co > 0 and reaches a maximum
at COmax ' which approaches b from above as b goes to infinity. For co > COmax ' G(co)
oscillates with the amplitude decreasing as 1/co.

An example is shown in Fig. 2 where ~p calculated by Eq. (2.34) is plotted in a full
line against Jl with u fixed to 0.5. The crosses show the results of computer simulation
or, in more proper words, numerical integration of the differential Eq. (2.14). They
agree with each other quite well except around Jl = 2 to 3 where ~p is very large and,
therefore, our perturbation approximation is not very good.

A remarkable fact seen from this figure is that the depolarization ~p does not
monotonically increase with synchrotron-oscillation frequency. This behavior of ~p
can be understood as a kind of resonance between the synchrotron oscillation and
the spin precession during the spin-flip. The first peak corresponds to Jl ~ b or,
equivalently, vs ~ v1 . This is due to the fact that the spin precesses around 01 (or 02) at
frequency v1 at the very moment of the resonance crossing. At arbitrary time, however,
the instantaneous spin precession frequency co(8) (in units of the revolution frequency)
is equal to (V 1

2 + et282
)1/2, since the spin rotates at the frequency et8 around 03 and at

V1 around 01 (or O2 ). This spin motion contains frequency components higher than v1 ,

which explains the complicated behavior for Jl ;(; b. As one can see in the appendix,
G(co) is essentially the Fourier transform of exp(i Sco(8)d8). A similar resonance-like
behavior has been found by R. D. Ruth8 in the case of weak resonances, i.e., spin­
nonflip.

It is the case that Vs is usually considerably smaller than V 1 in proton rings. In future
high-energy electron rings, however, this effect may not be negligible, as shown in
Section 4, because the synchroton-oscillation tune Vs is generally very high there.

3. INFLUENCE OF RADIATIVE DIFFUSION

In this section we will discuss the depolarization caused by the diffusion of spin phase
due to synchrotron radiations during the process of spin-flip.
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FIGURE 1 Function G(ro) for several values of b, calculated by numerical integration of Eq. (A.12).
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FIGURE 2 An example of the depolarization due to continuous synchrotron oscillations. The full line is
plotted using the formula (2.34) and the crosses show the results of the numerical integration of the
differential Eq. (2.14). The parameters used are b = 2 and u = 0.5.
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The starting point is Eq. (2.14) with Eqs. (2.15) and (2.16). In the present case, € in
Eq. (2.16) can be written as

€(t) = L ~€ j cos ~(t - tj )· 0(t - tj ) exp[ - A(t - tj )]. (3.1)
j

Here ~€ j is the change of € due to the radiation at t = t j , 0 is the unit step function and
Athe damping constant, which is related to the longitudinal damping time "C e by

(3.2)

In a manner similar to that of the previous section, we find the perturbation of C2 ( (0)
up to the first order of ~H as

Making use of a Fourier-transformation formula

with

1 -im
V(m) = -2 2 2 2·A'Ttm -~ - zoo

(3.4)

(3.5)

we can rewrite Eq. (3.3) as

ya fooC2 ( (0) = iTt I:"~ ~€j dm V( - m)G(m) exp(imt). (3.6)
yCl J -00

Since there is no correlation among different radiations, the absolute square of the
expression (3.6) can be averaged as

(IC2 (ooW) = (1t:a)2 (~A€/If~oo dffi V(-ffi)G(ffi)eXP(iffitjf)

= (1tya)2 (A€.2) dN de
Cl J de dt

x f~oo dtj ff dffidffi' V(-ffi)G(ffi)V*(-ffi')G*(ffi')exp(itj(ffi - ffi'))

= (1t:a)2 (A€/) ~~ fi- f~oo dffilV(-ffi)G(ffiW·



(3.8)
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Hence, using Eqs. (1.5), (2.27) and (3.5), we get

11 1;ev (ya)2 foo ro
2

( ) 2 (3 )
~p = 18·- ~ dro( 2 2)2 4"122I Gro l. .7

'to cry cr - 00 ro - Jl + I'v ro

Since G(ro) is very small for negative ro, as stated in the previous section, the lower limit
of this integration can be set to zero.

One sees that the integrand of Eq. (3.7) has a sharp peak near ro = Jl with a width of
the order of A. First, let us consider the physical meaning of this peak. Since Ais much
smaller than Jl, we may approximate G(ro) by G(Jl) around the peak. Then the
contribution of this peak ~Pl is calculated to be

!1 =~. Trev (yaf ~ IG( )\2
Pi 18 'to tI..~ 4)" Il,

which can be rewritten by using Eq. (3.2) as

!1P = 1h
z

't£ (ya)Z IG(IlW.
1 36 'to cr

Using the expression of the equilibrium energy spread in electron storage rings

€;ms = ~ 't£,
36 'to

(3.9)

one finds that Eq. (3.8) exactly coincides with Eq. (2.35). Hence the peak at ro = Jl is
the contribution of the energy spread that the beam had before the spin-flip. Indeed,
one finds that such a spread has already been included in the expression (3.1) where
the summation over j runs to t j = - 00.

Next, let us consider the integral (3.7) as a whole. In general, we have to carry out
numerical integration, but we may integrate approximately under the assumption
Jl « bwhich seems to be a practically important region because of the following rea­
son. For rings with beam energy higher than about 20 GeV, the factor (1tya€max)2 in
Eq. (2.35) is at least about 0.02. Therefore, if G(Jl) is of the order of unity, i.e., if Jl t'.; b,
sufficient spin-flip cannot be obtained unless cr is more than 0.5 or so. On the other
hand, b must be larger than about 2 in order to suppress the depolarization expressed
by Froissart and Stora's formula. Hence one has to make V1 = (cr)1/2b ~ 1. But this
means that the spin-flipper has a strength that is enough to rotate the spin by more than
360 degrees during one single passage through the flipper. This seems to be very difficult
in practice. Therefore, in order to reduce the value of the expression (2.35), one has to
make IG(Jl) I « 1 which is achieved by making Jl considerably smaller than b. (As one
can see from Fig. 1., IG(Jl)Ihas dips where Jl > b. This point will be discussed later.)

Now, under this assumption, i.e., Jl « b, G(Jl) is very small and the integrand of
Eq. (3.7) consists of two portions which can clearly be distinguished. They are the sharp
peak around ro t'.; Jl and the broad bump around ro t'.; b. The former is the contribution
of the continuous synchrotron oscillation discussed above and the latter is that of the
diffusion, which we denote by ~P2. Since near ro t'.; b the factor in front of IG(ro)1 2 can
be approximated by ro - 2, we have

!1Pz = ~ Trev (ya)Z K(b) (3.10)
18 'to cr~ ,
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K(b) = fro dffi--;'IG(ffiW.
l/b ro

(3.11)

Here we take the lower limit of integration as 1Ib, because the integrand diverges at
ro = O. This value lib is near the minimum of the integrand. Since IGI 2 is a small quan­
tity of the order of exp( -nb212) near the origin, K(b) is insensitive to the value of the
lower integration limit. When b is large, evaluation of this integral gives

1
K(b) = 4b' (3.12)

as shown in the appendix. This is a very good approximation. The error is less than 10
percent even at b = 2.

Then finally we get

(3.13)

for Jl « b or, equivalently, Vs « VI.

A comment should be added on the fact that this formula does not depend on Vs as
long as Vs « VI' The value of <i\<1> 2 >estimated in the Introduction is proportional to
Vs -2, which means that a slow synchrotron oscillation gives large diffusion of the spin
phase. We have to note, however, that we have dropped the periodic term between
Eqs. (1.3) and (1.4) in the course of the estimation of <i\<1>2). This is allowed only if the
relevant time interval is long enough to satisfy vs8 » 2n. In the opposite case,
vs 8 « 2n, <i\<1>2> does not depend on Vs ' In the actual case, 8 should be taken to be
the typical time scale of the resonance crossing.

Now, let us consider the possibility of making use of the dips of IG(ro)1 2
• When Jl is

exactly equal to the n-th zero ron of G(ro), i\Pl vanishes and by using Eq. (3.7), we get

with

A_II 1;ev (ya)2 (b)IJ.P2 - ----Q
18 to rtfi n

(3.14)

(3.15)

In particular, for the first zero, the following formulae derived in the appendix give very
good approximations.

ro l = b + 1.866 b- l
/
3

b 1
Ql(b) = 21 + 1.866 b- 4 / 3 ·

(3.16)

(3.17)
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4. SUMMARY AND NUMERICAL EXAMPLES
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Our aim is to find the optimum values of the parameters of the flipper, VI and rl, which
give a sufficient spin-flip under the given parameters of the storage ring.

Firstly, the depolarization given by Froissart and Stora is

~PFS = 2 exp( -rtb2 /2), (4.1)

Secondly, the effect of the continuous synchrotron oscillation is

(4.2)

Here, G is a function of Jl = vs/ Ja- and b. Its coarse values can be read from Fig. 1 and
more accurate values can be calculated by Eq. (A.17).

Finally, the contribution of the radiative diffusion is given by

(4.3)

or by

(4.4)

where 0)1 and QI are given by Eqs. (3.16) and (3.17). For other values of Vs we have
to evaluate Eq. (3.7) numerically to get ~Pl + ~P2.

As an illustration we take an example of the parameters of the TRISTAN ring6 in
which

R = 480m, p = 246m and Vs = 0.1.

The polarization time and the energy spread are

(
25)5

to = 294 E sec,

and

-3 E
€rms = 1.37 x 10 25

where E is the beam energy in units of GeV.
We adopt b = 2 so that ~PFS is small. Hence what is to be decided is just one

parameter. First, consider the case Vs « VI. Equations (4.2) and (4.3) give

(4.5)
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_2(E)7 3
~P2 = 0.83 x 10 25 Jl. (4.6)

By using Eq. (A.14) for G(Jl) as a very coarse approximation, we get the rough solutions
Jl = Jll and Jl2 to Eqs. (4.5) and (4.6), respectively, as

(
25)1.0 (~Pl)0.25

Jl2 ~ 0.72 E 0.02 ·

and

(25)7/3 (~P2)1/3
Jl2 ~ 1.34 E 0.02 .

The corresponding r:t,'s and v1 's are

(
E )2.0 (0.02)0.50

cx'i '" 0.020 25 API '

(
E )14/3 (0.02)2/3

cx'2 '" 0.0056 25 AP
2

'

(
E )1.0 (0.02)0.25

V11 '" 0.28 25 API '

and

(
E )7/3 (0.02)2/3

V12 '" 0.15 25 AP
2

•

(4.7)

(4.8)

Hence a stronger flipper field v1 is required in order to suppress ~Pl than to suppress
~P2' for our parameters, i.e. the effect of continuous synchrotron oscillations is more
serious than that of diffusion. A large value of v1 ~ 0.3 is necessary to give the de­
polarization less than a few percents.

Next, consider the case Jl = 0)1' As in the above case one easily sees that the larger
the value of b, the worse is the situation. Hence, we again assume b = 2. Then all
parameters are fixed as r:t, = 8 X 10- 4 and V 1 = 0.057. In this case V 1 is small but the
depolarization is found to be a very large value

Therefore, unless E is le~s than 15 GeV, this case is far from practical.
We have given a prescription to find optimum values of spin-flipper parameters.

Finally, we would like to pay attention to a point which may be important if the
resulting value of V1 is large. All our results are based on the differential Eq. (2.14),
which has been derived by eliminating all Fourier components except the resonating
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one. If, however, the flipper field is localized at a single point on the ring and is very
large, this procedure may not be justified. In that case one has to solve a difference
equation rather than a differential equation. This effect can be qualitatively checked by
solving the differential equation numerically with wide integration steps. If the
depolarization happens to be large even when the values predicted above are small, we
have to divide the flipper into many pieces all around the ring. But it is beyond the
scope of the present paper to answer generally how many are enough.

ACKNOWLEDGMENT

The author would like to express his thanks to Prof. T. Suzuki for careful reading of the
manuscript.

REFERENCES

1. K. Steffen, DESY HERA 81/05, Hamburg, March, 1981.
2. Ju. Shatunov, DESY M-82/09, Hamburg, April, 1982, p. 01.
3. K. Yokoya, "A Possible Method to Reduce Spin Tune Spread", to be published in Particle Accelerators.
4. E. D. Courant and R. D. Ruth, BNL 51270, UC-28, ISA 80-5, Upton, September 1980.
5. M. Froissart and R. Stora, Nucl. Instrum. Meth., 7, 297 (1960).
6. "Abridged Description of TRISTAN Electron-Positron Colliding-Beam Machine," KEK, Tsukuba,

October, 1981.
7. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
8. R. D. Ruth, CERN/ISR-TH/82-21, 1982.

APPENDIX

In this appendix we investigate the properties of Froissart and Stora's solutions,*1 and*2 and the Fourier transform G(co).
Among the solutions to the Eq. (2.14) with (2.15), the solutions which show the

polarization in the direction ±"3 at t = + 00 are given by

(
f(t)) (-g*(t))
g(t) and f*(t) ,

respectively. Here, f(t) and g(t) are defined by using the parabolic cyclinder function U
as

( 1t 2)U(1 i 2 (1t .))f(t) = exp -16 b -"2 + 4: b , t exp 4" l

and

) b ( 1t 2 1t.)U(1 i 2 (1t .))g(t = -"2 exp - 16 b + 4" l +"2 + 4: b , t exp 4" l .

See Ref. 7 for the definition of U.

(A.1)
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The same functions f(t) and g(t) can be used to express the solutions which show
polarization in the direction ±"3 at t = - 00;

(
f(-t))

'!J1(t) = _ g( _ t) , (
g*(-t))

'!J2(t) = f*( '-- t) . (A.2)

These functions have the asymptotic forms at t ~ + 00

and (A.3)

Time-inverted functions f( - t) and g( - t) can be expressed by linear combinations of
f(t), g(t) and their complex conjugates as

f( -t) = C11 f(t) + C12 g*(t)

g( - t) = C21 f*(t) + C22 g(t)

with

and

This coefficient C11 gives the famous formula of Froissart and Stora;

(A.4)

PFS = 21Cll 1
2

- 1.

The asymptotic forms of f(t) and g(t) at t = - 00 can easily be derived by (A.3) and
(A.4)

So far, all formulae are exact. But since the case of almost complete spin-flip is
enough for our purpose, let us derive approximate formulae which are easier to handle.
Substituting \jJ = (f(t), g(t)) into Eq. (2.20) with (2.15), we get

(A.5)

Elimination of 9 from this equation gives

(A.6)
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Now, under the assumption b ;<: 1 which means almost complete spin-flip, we employ
the WKB approximation which is, in our case, an asymptotic expansion uniform in t
for large b. Then two independent solutions to Eq. (A.6) are

(
i b

2 t2) -1/4 [ It (t 2
b

2
i)1/2 J2 + 4 + 4 exp ±i 0 4 + 4 + 2 dt.

Multiplying a constant factor by this expression so that it has the same behavior for
t = 00 as Eq. (A.3), we find

(t + Jt 2
+ b

2
)1/2 [i ( b

2)J 1f(t) = b exp "8 b2 1 - log 4 J2 F*(t)(l + O(b- 2
)), (A.7)

with

(A.8)

which satisfies

F*(t) = F( -t).

Similarly, for g(t), we get

Now what we want to know is G(co). Using the relation

with

we have

exp( - ico) J00 •
G{co) = ~2*a3~ 1 exp( -lcot) dt

2n - 00

1 Joo= 21t _ 00 (F(tW exp( - irot) dt

1 Joo ( b
2 )1/2 [i ( t) J= 21t -00 t 2 + b2 exp 2 tJt

2 + b
2 + b

2
sinh-

1 b - irot dt.

(A.10)
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FIGURE 3 The integration contour of Eq. (A. 10). The integration along the real axis is replaced with that
along A1 + A2 + A3 . The path A2 is defined by Eq. (A.11).

This expression is not suitable for numerical evaluation because the phase of the
integrand varies rapidly with t. Hence, we deform the integration contour as shown in
Fig. 3.

The path A2 approaches arg(t) = nl4 and 3nl4 at large It 1 and crosses the imaginary
axis between the two branch points ± ib of the integrand. Since the contributions
of the arcs Al and A3 vanish if the radius of the circle is infinitely large, we have

The expression becomes simple when we take A2 as

-00 < 't < +00. (All)

Here and hereafter, the branches of square roots are chosen so that their arguments are
larger than -n12 and smaller than or equal to n12. Then we have

b frO d't ( rob nb
2

b
2

G(ro) = - exp - yT=it - - - - J1+7
4n -00 J1+7 J2 8 4

ib
2

• -1)+ 4 sInh 't. (A.12)
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Results of the numerical integration of this expression are plotted in Fig. 1 for several
values of b.

The general shape of G(ro) can be divided into three regions. In the first region ro ~ b,
G(ro) oscillates with ro rapidly. Estimation of Eq. (A.12) by the saddle-point method
gives

(
2)1/2 b 1 (. J 2 2 2 1 ro 1t)G(ro) ~- cos- ro ro - b - b cosh- - - -, (A.13)1t (roJro 2 - b2)1/2 2 b 2

for ro» b.

In the second region 0 ;S ro ;S b, G(ro) increases exponentially with ro from a small value
to a value of order unity. Again the saddle-point method gives

G(oo) ~ fi(ooJb 2~ (02 )1/2 exp~(ooJb2 - 00
2

- b2COS-1~) (A. 14)

for 0« ro « b.

In the third region ro ;S 0, G(ro) is very small as long as b ~ 1. In the vicinity of the
origin it can be approximated by

G(oo) ~ Ai(O)b1/3 exp ( -i b2 + bOO) x (1 + O(b- 4
/
3

)) (A15)

for Irol;S lib.

Here Ai(O) is the value of the Airy function at the origin given by

Ai(O) = 3- 2/3 Ir(2/3) = 0.35503.

In particular, since G(O) is given by

(A.16)

IG(0)1 2 is of the order of the depolarization of Froissart and Stora's formula. In the
present approximation, namely the asymptotic expansion for large b, this value should
be taken to be zero.

Here, it may be necessary to make a comment on the physical meaning of G(O). As
one can see from the results of Section 2 [Eq. (2.33)], G(O) is related to the
depolarization of an off-energy particle with infinitely slow synchrotron oscillation.
However, such a particle does not experience any depolarization because its effect is
merely to shift the time of resonance crossing. Indeed, one finds that the differential
Eq. (2.14) with J..l = 0 is equivalent to the unperturbed Eq. (2.20), by shifting the origin
of t. In spite of this property of our starting equation, the resulting G(O) is not exactly
zero. The cause is not the WKB approximation. In fact, we can express G(ro) exactly
from the expressions (A. 1), using confluent hypergeometric functions of the second
kind (those which have logarithmic singularity at the origin). But in that expression not
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only G(O) is non-zero but G(ro) diverges at the origin as l/ro, although the residue is very
small. What is wrong in our approach is the perturbation expansion in terms of ~H. If
we make the synchrotron oscillation slower with its amplitude fixed, the shift of the
spin phase due to energy deviation during the half period of synchrotron oscillation
becomes larger, and the solution goes away from the unperturbed one. Hence, in order
to treat such a limiting case, we have to change the decomposition into Ho and ~H.

However, in that case the depolarization is small any way as long as u is small, which we
have already assumed. Therefore, in our perturbation expansion, the absolute error of
the resulting depolarization formula is very small even though the relative error might
be large. Moreover, G(ro) of WKB approximation is easier to handle than the exact
expression using a confluent hypergeometric function not only because the former is
simpler mathematically, but also because it does not diverge at the origin.

Now, among the three regions stated above, the first and the second regions together
with their transition region are covered by the single formula

G{co) = 2b[4C02(CO~ _ b2)T/4'[Ai(-~) + O(b- 4
/
3

)]

for ro ~ lib.

Here, ~ is defined by

(A.17)

(ro > b)

(ro < b), (A.18)

and the factor ~/(ro2 - b2
) is always positive. The function Ai is the Airy function,

which is related to the Bessel functions by

(~ ~ 0)

and is tabulated, for instance, in Ref. 7. From the expression (A.17) one finds romax which
gives the maximum of G(ro);

romax = b + (2b) -1/3ao + O(b - 5/3),

G(romax) = (2b)1/3 [Ai( - ao) + O(b -4/3)J,
(A.19)
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where - ao is the maximum point of Ai and its value is 7

ao = 1.0188,

Ai( - ao) = 0.53566.

In addition, the n-th zero of G(ro) is given by

where -an is the n-th zero of Ai;

al = 2.3381, a2 = 4.0879 .....
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(A.20)

(A.21)

(A.22)

Next, let us consider some integrals appearing in the text. First, we evaluate K(b)
defined in Eq. (3.11). The range of the integration can be divided into two regions,
(lib, b) and (b, 00). One finds that the contribution of the first region is of the order of
b- 5/3 for large b, by using the approximate expression (A.14). If we use (A.13) for the
integration of the second region, we obtain

100 IG(ro)I2 100 2b2

dOl 2 = dOl cos2

bOOb 1tro3 Jro2
- b2

[
1 ( J 2 2 2 1 (0 1t)JX 2 00 00 - b - b cosh - b - 2" .

When b is large, the square of the cosine oscillates very rapidly and can be replaced by
the average value 1/2. Hence we have

and

foo d IG(ro)1 2
~ ~

b 00 002 ~ 4b

1
K(b) ~ 4b' (A.23)

Though the derivation is very rough, this expression gives a fairly good approximation
of K(b). Comparing with the results of numerical integration using Eq. (A.12), one finds
that the error of Eq. (A.23) is only 9 percent even for b = 2.

Next, let us estimate Qn(b) defined in Eq. (2.15). Using the representation (A.17) of
G(ro) and choosing ~ as the integration variable instead of 00, we have

Since the integrand is very small for negative 00, the lower limit of integration ~o, which
corresponds to 00 = 0, can be replaced with - 00. By using Eq. (A.18) we can expand 00

as

(0 = b + (2b)-1/3~ - ~ (2b)-5/3~2 + .....
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Then we get
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where an is the n-th zero of Ai( - ~). With the help of the formulae

f
oo Ai 2( -~) _ foo A· 2( ~)

(I; _ )2 dl; - 1 and 1 - ':> dl; = 0
- 00 an - 00 ~ - an

which will be proved below, we get

(A.24)

Comparing with the results of numerical integration, one sees that the following
formula gives much better approximation than the above one for not so large values of
b, although it is still poor for large n.

(A.25)

The relations (A.24) can be proved as follows. First let us consider a function M(y) of
a complex argument y defined by

M(y) = f Ai
2

(x) dx,
MX-y

(A.26)

where the integration contour denoted by M runs from - 00 to + 00, passing below the
pole at y which is the only singularity of the integrand. By using the differential
equation for Ai(x)

Ai"(x) - xAi(x) = 0 (A.27)

and by the repeated use of partial integration, one can easily show that M(y) obeys the
third order differential equation

M"'(y) - 4yM'(y) - 2M(y) = o. (A.28)

But this is exactly the same equation which is satisfied by the products of any two
solutions to the Airy's equation (A.27). Hence, M(y) is a linear combination of Ai2(y),
Ai(y)Bi(y) and Bi 2 (y), where Bi(y) is the other Airy function, which increases
exponentially as y -+ + 00. The coefficients of the combination are common in the
whole complex y-plane because M(y) is an entire function owing to the choice of the
contour. One sees from the definition of M(y) that M(y) is bounded under y -+ + 00.

Therefore, the term Bi2(y) is not contained in M(y). Moreover, M(y) is bounded under
Iyl -+ 00 in the upper half plane because in this case the contour can be taken to be the
real axis. But the only combination of Ai 2 and AiBi which has this property is
Ai(Ai + iBi) times a constant, as can be found by using the asymptotic forms of



RADIATION DIFFUSION AND SPIN FLIP 61

Ai(y) and Bi(y) for Iyl ~ 00.
7 Hence we have only to find the overall factor. When y is

real, one finds

f
oo Ai 2(x)

1m M(y) = 1m .0 dx = 1tAF(y),
-oox-y-z

which fixes the unknown factor to be ni. Hence, we find

f AF(x) dx = 1t[iAF(y) - Ai(y)Bi(y)].
MX-y

(A.29)

(A.30)

When y is equal to a zero Xn(= - an) of Ai(x), the contour can be taken to be the real
axis because in this case the integrand is free from singularities. Then we have

f
oo Ai2(x)

--dx = o.
- 00 x - X n

Similarly, putting y = X n after differentiation with respect to y, we obtain

Using the Wronskian relation 7

Ai(y)Bi'(y) - Ai'(y)Bi(y) = lin.

we get

f
oo Ai2(x) _

( fdx-I.
- 00 x - X n

This ends the proof.

(A.31)




