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Abstract

The quantum field theory describing linear gravitational perturbations is important from

a cosmological viewpoint, in particular when formulated on de Sitter spacetime, which

is used in inflationary models. There is currently an ongoing controversy pertaining to

the existence of a de Sitter invariant vacuum state for free gravitons. This thesis is a

mathematically rigorous study of the theory and all constructions are performed in as

general a setting as is possible, which allows us to then specialise to a particular spacetime

when required. In particular, to study the case of de Sitter spacetime with a view to

resolving the aforementioned controversy. The main results include the full construction

of the classical phase space of the linearized Einstein system on a background cosmological

vacuum spacetime, which includes proving when various gauge choices can be made. In

particular, we prove that within a normal neighbourhood of any Cauchy surface, in a

globally hyperbolic spacetime, one may pass to the synchronous gauge. We also consider

the transverse-traceless gauge but show that there is a topological obstruction to achieving

this, which rules out its general use. In constructing the phase space it is necessary to obtain

a weakly non-degenerate symplectic product. We prove that this can be achieved for the

case that the background spacetime admits a compact Cauchy surface by using results

from the Arnowitt-Deser-Misner (ADM) formalism, specifically the initial data splittings

due to Moncrief. The system is quantized using Dirac’s prescription, which permits the

construction of an algebra of observables consisting of gauge-invariant smeared fields. It

is shown that this algebra satisfies a time-slice condition. Finally, the states of the system

are considered: we formulate the Hadamard condition and show that the Fock vacuum in

Minkowski spacetime satisfies this definition.
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Chapter 1

Introduction

The twentieth century heralded many great advances in our understanding of the physical

world. Around 1915, Einstein put forward his general theory of relativity, which provided

explanations for previously unexplained phenomena, such as the advance of the perihelion

of Mercury, and also made new predictions, like the deflection of light rays by massive

objects. It is currently the standard theory of gravity, against which all future expansions

need to be judged. However, even before Einstein had proposed general relativity, various

experiments were revealing that an entirely new framework, far removed from the ‘classi-

cal’ approaches to physics, was required to describe nature on the microscopic scale. This

framework came to be known as quantum theory and since its introduction the philosophi-

cal implications of it have been a cause for great debate amongst the scientific community.

However, there is no doubting its extraordinarily accurate experimental predictions and

the focus since its formulation has been on incorporating various physical systems into its

framework. In particular, a tremendous amount of research has been devoted to the attain-

ment of a full quantum description of gravity. A number of candidate theories have been

put forward, most notably string theory and loop quantum gravity, but as yet a quantum

theory of gravity proves to be elusive.

A first approximation to combining gravity and quantum theory comes from the sub-

ject of quantum field theory in curved spacetimes. Here one treats the gravitational field

classically within the framework of general relativity and studies the behaviour of quan-

tum matter fields propagating on various spacetimes, with the goal of gaining an insight

into the interaction between gravity and quantum theory. Currently the best descrip-

tions for the behaviour of matter are conventional quantum field theories (formulated in

Minkowski spacetime); therefore if we are to claim to have understood the various parti-
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cle physics experiments that are carried out at colliders across the world within a lightly

curved spacetime geometry and not the perfectly flat Minkowski spacetime, then it is vital

that it be possible to formulate quantum field theories within curved spacetimes. Also, the

early universe and other cosmological phenomena are all described by non-flat spacetime

geometries, so if we wish to understand more clearly the behaviour of matter throughout

the universe, then quantum field theory in curved spacetimes provides a very good method

of approaching this. Indeed it is only when conditions become extreme, such as at the

singularity of a black hole or the Big Bang singularity that the theory will break down and

a full quantum description of gravity becomes necessary.

Many striking predictions have been made using quantum field theory in curved space-

times, but the most celebrated of these are the Hawking effect [56], where a black hole

is predicted to radiate particles at the Hawking temperature, and the Fulling-Unruh ef-

fect [46, 89], which describes how an accelerated observer in Minkowski spacetime will

register the presence of particles in the vacuum state that is set by the inertial observers.

The book of Wald [92] provides a full discussion of these topics.

Over the past fifty years, research into how to correctly formulate a quantum field

theory on a curved spacetime has provided significant insights into the inner workings of

quantum field theory itself. In particular, it has been found which structures and concepts

are necessary to actually formulate the theory and which are merely useful for simplifying

calculations. Most notably, when it comes to formulating rigorous results, it has led to the

abandonment of the particle approach to quantum field theory, due primarily to the lack of

Poincaré covariance and a preferred vacuum state on a general curved spacetime, and the

use of the algebraic approach, first laid down for the case of Minkowski spacetime by Haag

and Kastler [53] and fully generalised to arbitrary globally hyperbolic curved spacetimes

by the local covariant approach of Brunetti, Fredenhagen and Verch [22]. We will give a

more detailed discussion about this in section 3.1.

Unfortunately, quantum field theory in curved spacetimes still possesses the caveat

that the gravitational field is treated entirely as a classical object. A first approxima-

tion to overcoming this is to utilise linear perturbation theory: by fixing a background

spacetime and studying the behaviour of linear perturbations of the spacetime metric.

Specifically, one quantizes these perturbations and treats them as another quantum field

propagating on the chosen fixed classical background. This approach has found applica-

tions particularly in early universe cosmology, where one studies tensor fluctuations in the

cosmic microwave background (CMB), see [94, Ch. 4 & 10] for a discussion of inflation and
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tensor fluctuations. A particular class of spacetimes used in the study of cosmology are the

Friedmann-Robertson-Walker spacetimes, and there has been extensive research pertaining

to the behaviour of quantized linear gravitational perturbations on these spacetimes, for

further information see [43] and references therein.

Another important cosmological case is de Sitter spacetime, which becomes relevant

for issues relating to inflation. In fact, its importance becomes even greater due to the

persistence of a controversy concerning the existence of a suitable de Sitter invariant vac-

uum state for the free graviton field. By ‘suitable’ it is meant that the singular behaviour

of the graviton two-point function in this state is of the Hadamard form, meaning that

the state is a Hadamard state, and that there are no physical infrared divergences present.

In [42] it was shown that if one constructs the graviton two-point function in the transverse-

traceless and synchronous gauge, associated with the conformally flat coordinates defined

on the Poincaré coordinate patch of de Sitter spacetime, then the expression for the two-

point function is divergent due to an infrared divergence in the integral over modes. There

are two distinct parties to this controversy, those [61] who maintain that there does exist a

de Sitter invariant state and that the infrared divergence is a gauge artifact, and others [71]

who argue to the non-existence of such a state. The main contention between the two sides

is the validity of the use of Euclidean and analytic continuation methods, and the freedom

to add gauge-breaking terms.

Therefore it seems appropriate to attempt to resolve these differences by means of an-

other method, which is devoid of any of the previously mentioned techniques. The major

theme of this thesis is to elaborate on an approach that was proposed jointly by the author

with Dr C. J. Fewster in [34]. What is proposed is a rigorous framework for the considera-

tion of the quantization of linear gravitational perturbations on general globally hyperbolic

spacetimes, which obey the vacuum Einstein equation with cosmological constant,

Gab + Λgab = 0.

The reason for the restriction to these vacuum spacetimes is to ensure the gauge invariance

of the linearized Einstein tensor with cosmological constant, which will be fully discussed

in section 4.2. Such a formulation will then permit one to, when required, specialise down

to a specific choice of background and also provides a setting for a rigorous investigation

to be made into the Hadamard states using techniques from microlocal analysis.

Of course, there exist numerous treatments of the quantization of linear gravitational

perturbations. In particular, the paper of [3] stands out for its treatment of the Hadamard
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condition. However, this quantization scheme was formulated by introducing gauge-breaking

terms and ghost fields, and the Hadamard condition itself was not formulated using the

now accepted and fully rigorous microlocal definition, which was originally introduced for

the scalar field by Radzikowski [79]. The microlocal definition was expanded to include

theories formulated in terms of vector bundles by Sahlmann and Verch [82]. As the mo-

tivation for formulating this approach was to circumvent the methodologies used by the

parties in the controversy, we wish to avoid the introduction of gauge-breaking terms and

auxiliary fields, and so will not discuss the results of [3] any further.

We adopt a minimalistic approach along the lines first laid down by Dimock for the case

of the electromagnetic field [28], which like linearized gravity is a gauge theory. Indeed it

is an interesting point that Dimock studied the quantization of the scalar field [26], Dirac

field [27] and the electromagnetic field [28] on arbitrary globally hyperbolic spacetimes,

but did not consider the graviton case. Therefore our approach also acts to fill a gap in

the literature. In fact, not long after our paper [34] was submitted, the paper of Hack

and Schenkel [55] appeared and showed how our framework fits nicely into their general

approach to the quantization of linear theories with gauge invariance.

The essential content of Dimock’s idea from the electromagnetic case is that the smeared

fields, which are the basic observables of a quantum field theory, should be gauge invariant.

There exist numerous treatments where this is not the case, and hence such approaches

require further supplementary conditions (such as in the Gupta-Bleuler method), which

just appear to over-complicate matters. This becomes notable by the desire to allow

arbitrary smearings of the vector potential: if one permits arbitrary smearing tensors to

be used, then the result is not a gauge invariant object; however, if one only works with a

restricted class of smearing tensors, then it is possible to make the smeared vector potential

observables into gauge invariant objects and, as we will see, resolve several issues that

arise in the other methods. Dimock’s papers each utilise the framework of the algebraic

approach to quantum field theory and Dirac’s prescription [29] for quantization. These

two ideas entail that for our case, we construct a classical phase space and define a class

of observables (functions) on this space. This system is then quantized by constructing

an algebra of quantum observables, where Dirac’s prescription is utilised to obtain the

algebraic relations obeyed by the quantum observables.

We now briefly illustrate our approach. Given a spacetime (M, g) that solves the vac-

uum Einstein equation with cosmological constant, the classical phase space for linearized

gravity PC(M) consists of gauge equivalence classes of solutions to the linearized Einstein
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equation. Such equivalence classes are denoted by [γ]. The observables we consider are

the classical counterparts of the quantum smeared fields and are defined as follows. Given

a smooth compactly supported rank (0, 2) tensor field f , one considers the smeared field

observable Ff : PC(M)→ C defined by

Ff ([γ]) :=

∫
M

γabf
abdvolg.

To ensure that this observable is gauge-invariant, that is, independent of the choice of

representative used in the integral, one must restrict the smearing tensors to those which

satisfy ∇af(ab) = 0.

One might be concerned as to whether this class of observables is ‘large enough’, in

the sense that they are sufficient to distinguish different points of the phase space. In

fact, as we will see in section 5.4, this issue is closely related to the weak non-degeneracy

of the symplectic product, which we can show to be weakly non-degenerate for the case

that the background spacetime admits a compact Cauchy surface. This result utilises the

decompositions of initial data by Moncrief [72], which were derived in the Arnowitt-Deser-

Misner (ADM) formulation of general relativity (we review this formulation in section 5.2).

We prefer not to employ the ADM framework anywhere else as it emphasises a slicing of

the spacetime, which might bring with it suspicions of dependence of our method on a

particular slicing, coordinates or choices of linearized lapse and shift functions.

The remaining issue to be addressed, regarding the classical observables, is the cal-

culation of the Poisson bracket of two of the observables. This is explicitly computed in

section 5.4 and is found to agree with a result previously posited by Lichnerowicz [70].

With the phase space and observables established, the system can now be quantized by

means of the algebraic framework and Dirac’s prescription. The result is a ∗-algebra of

observables that consists of polynomials of smeared quantum fields.

Having established this solid and rigorous framework, one is free to examine issues

relating to Hadamard states using techniques from microlocal analysis. For the case of

electromagnetism, this approach is described in [35], and due to the close links between

the theories that we have already mentioned, we will adapt their approach to the linearized

gravity case. A definition of Hadamard states is given in section 6.2.2, but it requires the

introduction of two new concepts, namely the trace and trace-reversal of a bi-distribution

that acts on smooth compactly supported rank (0, 2) tensor fields. We show that the

vacuum state of the standard Minkowski Fock space construction of the graviton field is a
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Hadamard state by our definition. However, we were not able to resolve this issue for the

case of de Sitter spacetime, but we do provide discussions regarding its resolution within

the conclusions made in chapter 7.

The overall strategy that has been put forward has numerous advantages. Firstly, it

achieves the goal of avoiding the use of gauge-breaking terms or auxiliary fields, which are

used by the parties to the controversy that was described earlier. Secondly, the approach is

completely gauge-invariant, so there can be no arguments that any results depend upon a

choice of gauge. Though, in particular instances, it will prove useful to make use of certain

choices of gauge to simplify calculations involving gauge-invariant objects. Thirdly, the

method can be implemented in arbitrary globally hyperbolic cosmological vacuum space-

times, such as the important de Sitter case. Fourthly, it provides a nice clean separation

between issues relating to observables (the algebra) and the issues pertaining to states,

such as the Hadamard condition. This separation is one of the key points of the alge-

braic framework. Fifthly, the approach circumvents the known [18, 86] non-existence of a

Wightman theory of linearized gravity on Minkowski spacetime that allows for arbitrary

smearings. We will discuss the final point at length in section 6.1. Finally, a fully rigorous

definition of Hadamard states is given, which has the potential to resolve the de Sitter

controversy. There is however a disadvantage to our method, namely that the restriction

on the available class of smearing tensors would prevent one from coupling this field to

other fields. However, here we are purely interested in the free theory and so this issue is

not of immediate concern.

This thesis is structured as follows. Chapter 2 outlines the various mathematical struc-

tures that will be used throughout the thesis. Particular attention is paid to the theory of

differential operators and Green’s operators, which will play a prominent role in the discus-

sions of later chapters. We show how one can extend the action of the ‘standard’ Green’s

operators of [11], from smooth compactly supported tensor fields to smooth time-compact

tensor fields, in particular, this leads to the proof of a generalisation of the usual exact

sequence of [11, Thm 3.4.7]. This generalisation will be extremely useful when it comes

to discussing the observables of the theory and isolating the algebraic relations which they

satisfy. In chapter 2 we also provide a brief introduction to the theory of wavefront sets,

which characterise the singular behaviour of a distribution. This concept will be important

when it comes to addressing the issue of Hadamard states, where their very definition is

given in terms of a wavefront set.

In chapter 3 we give an introduction to quantum field theory in curved spacetime. A
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brief historical overview of the development of the algebraic approach is given as well as the

advantages of its use. We then develop the theory of the real scalar field along exactly the

same lines as we will use for linearized gravity, so as to provide the reader with a familiar

setting with which to compare our approach. When the phase space for the scalar field is

constructed we address the frequently overlooked issue of how a smooth structure is placed

upon it. The presence of a smooth structure is important as the standard definition of the

Poisson bracket, see, for example, [1, pp. 566-568], is given in terms of the differential of the

observables. We show how the use of a Frölicher space provides the answer to this issue.

Finally in chapter 3 we give a brief historical overview of Hadamard states for the scalar

field, noting the history of their development to becoming the primary attribute for a state

in a free quantum field theory to be deemed physical. The Hadamard condition itself is

also discussed within the framework of microlocal analysis, in preparation for considering

the Hadamard condition for the free graviton quantum field.

Chapter 4 fully introduces the classical theory of linearized gravity. We introduce the

theory using the geometrical approach of Stewart and Walker [84] and describe how one

obtains the linearized Einstein equation that governs the behaviour of the perturbation.

We will restrict attention to solutions obeying a certain type of boundary condition known

as spacelike-compactness (see Definition 2.4.1). The motivations for this restriction are

given in section 3.2.1. The restriction to spacelike-compactness forces one to consider two

subspaces of pure gauge perturbations, which are in general not equal. As emphasised

earlier, our approach is built upon gauge independence; however, particular choices of

gauge do prove to be useful for technical purposes and so we describe three well-known

choices of gauge and give particular attention to the circumstances under which they can

be achieved. These gauges are the de Donder gauge, the transverse-traceless gauge and the

synchronous gauge. The discussions of the de Donder gauge is largely standard. However,

we are able to prove new results concerning the existence of the transverse-traceless gauge

and the synchronous gauge. In particular, we find that there exists a topological obstruction

to the attainment of the transverse-traceless gauge if the background spacetime solves the

vacuum Einstein equation with vanishing cosmological constant. We also prove that on

a normal neighbourhood of any Cauchy surface, the synchronous gauge condition can be

satisfied by an arbitrary perturbation. The existence and uniqueness of solutions to the

linearized Einstein equation is also reviewed in that chapter and we provide proofs for

the case that the perturbation has spacelike-compact support. Similar results concerning

existence and uniqueness are sketched in [41] for the case that the background spacetime
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admits a compact Cauchy surface. The final section of chapter 4 proves various results

concerning the Green’s operators used in linearized gravity. In particular, we show how

any solution to the linearized Einstein equation is gauge equivalent to a perturbation that

is equal to the action of the solution operator on a smearing tensor. We also show how the

action of the Green’s operators intertwines with the action of other operations, notably

the trace, trace-reversal and the Lie derivative.

Chapter 5 considers the construction of the phase space and classical observables for

linearized gravity. In particular, we prove that when the background spacetime admits

a compact Cauchy surface, the space of degeneracies of the pre-symplectic product are

precisely the pure gauge solutions. This is achieved using the splitting theorem’s of Mon-

crief [72], which are proved within the ADM framework. We provide a full introduction

to the ADM framework, as well as generalising the Moncrief splitting theorems from the

case that the background spacetime solves the vacuum Einstein equation with vanishing

cosmological constant to the case that the background solves the vacuum Einstein equa-

tion with a possibly non-vanishing cosmological constant. Unfortunately, a proof that,

for the non-compact case, the space of degeneracies are just pure gauge solutions is not

presently forthcoming and so we must conjecture that the result continues to hold in that

instance. In chapter 5 we also define our classical observables and show how they are gauge

invariant, and calculate their Poisson bracket. We also show how the commutator of our

observables is equal to that originally conjectured by Lichnerowicz [70]. He used analogy

with electromagnetism as well as previous results from Minkowski spacetime to motivate

his commutator, whereas we show that the commutator arises from the Dirac quantization

of our classical observables.

Chapter 6 deals with the quantum field theory. We discuss the algebra of observables

for the graviton quantum field and show that this algebra respects a time-slice condition,

meaning that the algebra of a slice of spacetime (containing a Cauchy surface) coincides

with the algebra of the entire spacetime. A brief discussion is given into how our construc-

tion respects the axioms of local covariance [22], and we also discuss how our approach

circumvents the issues pointed out by Strocchi regarding the non-existence of a Wight-

man formulation of the graviton quantum field on Minkowski spacetime. The final part of

this chapter then deals with issues relating to states. We briefly comment on issues first

raised by Moncrief [75] regarding linearization instabilities; this result states that if the

background spacetime admits a compact Cauchy surface and global Killing vector fields,

then for a state to be deemed physical it must be invariant under the action of the group
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of isometries (the Killing vector fields). However, our main focus in this chapter is on fully

defining the Hadamard condition and checking whether or not our definition is respected

by the standard Fock vacuum state from Minkowski spacetime. In fact, as we will show,

the Minkowski Fock vacuum does respect our definition of Hadamard. Unfortunately, we

are not able to report here on a resolution to the de Sitter controversy.

Finally, in chapter 7 we provide concluding remarks, where we summarise the main

results of this thesis and provide an outlook for future research possibilities.
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Chapter 2

Mathematical Structures

Motivated by the study of quantum fields on curved spacetimes, in this chapter we will

discuss the various mathematical structures which underpin the theory and that will sub-

sequently be used in later chapters. After firstly discussing the notations used here, we

will begin by defining which mathematical restrictions we will place upon the spacetimes

considered here. We assume that the reader has a knowledge of general relativity and

differential geometry equivalent to part I and appendices A, B & C of [91].

2.1 Notation

We now briefly review the notation that will be used in the subsequent chapters, beginning

with the function spaces. Our attention will be restricted to smooth tensor fields on a

manifold M ; as such we adopt the notation C∞(M ; K) for the space of smooth K-scalar

valued functions on M , and use C∞(T ab (M ; K)) to denote the space of smooth rank (a, b)

K-valued tensor fields on M . In the subsequent chapters we will always be clear as to our

choice of K = R or K = C. The support of a function or tensor field is defined to be the

topological closure of the subset of points on which the field is non-zero. The subspaces

consisting of elements with compact support are denoted by C∞0 (M ; K) and C∞0 (T ab (M ; K))

respectively. Two further subscripts on the function spaces will appear later, they are:

SC denoting that a tensor has spacelike-compact support (see Definition 2.4.1), and TC

denoting that a tensor has timelike-compact support (see Definition 2.4.4). The notation

S2
0(M ; K) (resp. S0

2(M ; K)) will be used to denote the symmetric elements of T 2
0 (M ; K)

(resp. T 0
2 (M ; K)).

Three conventions will be utilised to denote tensorial objects. Boldface type is used to
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indicate a tensor written with its indices suppressed. We also employ the abstract index

notation, see [91, p. xi], as well as component expressions in a particular basis. It will

be explicitly stated when coordinate expressions are being used, so one should assume

otherwise that the abstract index convention is in use.

We adopt the standard convention that w[ denotes the covariant form of a vector field

w and v] denotes the contravariant form of a covector field v. In both instances the

spacetime metric g is used to perform the transformation.

We take, as in [57, 91], the Riemann tensor to be defined by

R d
abc ωd := (∇a∇b −∇b∇a)ωc (2.1.1)

and the Ricci tensor by

Rac := R b
abc . (2.1.2)

Finally, we will work in units for which ~ = c = 1.

2.2 Spacetime

A spacetime is a pair (M, g) consisting of a four-dimensional, smooth, real, connected,

Hausdorff, orientable manifold without boundary M together with a smooth Lorentzian

metric g of signature (−+++), with respect to which M is time-orientable. All spacetimes

will also be assumed to be globally hyperbolic, which is a condition that will be fully

discussed in section 2.3. As our spacetimes are four-dimensional, real, connected, Hausdorff

and admit a smooth Lorentzian metric, then by the Theorem in the appendix of [49], our

spacetimes will be second countable, and hence [1, Prop. 5.5.5] paracompact. Note that our

signature convention is not the standard one used when discussing quantum field theory

in curved spacetimes, where the (+ − −−) convention is most prevalent. However, our

(−+++) convention is prevalent in the mathematical relativity literature, which motivates

our choice.

The condition of time-orientability ensures that a consistent notion of future and past

can be made across the entire manifold. Specifically, at each point p ∈M the tangent space

TpM can be divided into three classes: timelike vectors satisfy g(v,v) < 0, null vectors

obey g(v,v) = 0 and spacelike vectors fulfil the condition g(v,v) > 0, where v ∈ TpM .

The timelike vectors form a double cone (vertices meeting at the origin) with the null

vectors making up the boundary. However, there is no natural distinction between the
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two cones, that is, no natural future or past direction. A time-orientation is a continuous

choice of one of these cones at each point of the manifold, and this is equivalent to choosing

a continuous timelike vector field [77, Lem. 5.32].

On a time-orientable manifold one is able to discuss the causal structure of a spacetime.

From this point forward we take causal curve to mean a curve whose tangent vector is

always non-spacelike. A curve is said to be a future-directed timelike (resp. causal) curve

if its tangent vector is always future-directed and timelike (resp. causal). Past-directed

timelike curves and past-directed causal curves are defined similarly. The chronological

(resp. causal) future of a set S is defined to be the collection of points that can be

connected to at least one element of S by a smooth past-directed timelike (resp. causal)

curve. The chronological and causal past of a set are defined similarly by replacing past-

directed with future-directed. The chronological (resp. causal) future of a set S is denoted

by I+(S) (resp. J+(S)) and the chronological (resp. causal) past of that set is denoted by

I−(S) (resp. J−(S)).

2.3 Global hyperbolicity

We shall now discuss the causal restriction of globally hyperbolicity, which is a condition

that we assume our spacetimes satisfy. The condition was first introduced by Jean Leray

in his unpublished lecture notes on hyperbolic partial differential equations from 1952. He

was motivated to obtain solutions to such differential equations on manifolds. The essential

content is that global hyperbolicity ensures the well-posedness of certain partial differential

equations and hence the uniqueness of certain Green’s operators by ruling out various causal

pathologies that a general spacetime, which may or may not solve the Einstein equation,

can contain. Global hyperbolicity is therefore important from a physical standpoint where

we want to be able to make predictions about the future and retrodictions of past events.

The definition of global hyperbolicity used here is the one given by Bernal and Sánchez,

see item (i) from [16, p. 748].

Definition 2.3.1 A spacetime (M, g) is globally hyperbolic if it contains no closed causal

curves and the set J+(p) ∩ J−(q) is compact for all p, q ∈M .

Previously it was thought that the condition of strong causality, which entails that

there are no ‘almost’ closed causal curves (see [77, Dfn 14.11]), was required instead of just

causality, but [16, Thm 3.2] showed that the condition of compactness of J+(p) ∩ J−(q)

for all p, q ∈M means that causality implies strong causality.
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This definition of global hyperbolicity is equivalent to the perhaps more intuitive defini-

tion that a spacetime admits a particular type of hypersurface known as a Cauchy surface.

To explain what a Cauchy surface is, we will utilise the concept known as the domain of

dependence of a set. Essentially, a point p will be in the domain of dependence of a set S if

the state of, for instance, a physical field at that point is completely determined by its state

on the surface S; this entails that no other ‘information’ can be propagated to p without

first coming into contact with S. In relativity it is assumed that the speed of light is the

speed limit at which information can be propagated and so the domain of dependence is

defined accordingly.

Firstly we have to consider when a curve can be extended. Following [91, p. 193],

a point p is said to be a future (resp. past) endpoint of a curve γ : (a, b) → M if the

image of the curve converges to p for any increasing (resp. decreasing) sequence, where

by increasing we mean that the curve parameter value increases as the sequence increases.

Specifically, given any open neighbourhood O of p there exists a T ∈ (a, b) such that for

all t > T (resp. t < T ) we have γ(t) ∈ O. If a curve does not possess a future (resp. past)

endpoint then it will be said to be future (resp. past) inextendible.

This allows one to define the domain of dependence of a set S ⊂ M . However, S

will not be completely arbitrary. It will be assumed to be achronal, meaning that no two

points in it can be joined by a timelike curve. This restriction is imposed because we are

interested in applying the domain of dependence only to sets that will in a certain sense

represent an instant of time. The future domain of dependence of an achronal set S is [77,

Dfn 14.35] the set

D+(S) := {p ∈M | every past-inextendible smooth causal curve through p hits S}.

It is important to only use inextendible curves because an extendible curve could freely

terminate just prior to reaching S and hence this would entail, trivially, that D+(S) = S.

The past domain of dependence D−(S) is defined similarly but with future-inextendible

replacing past-inextendible. The (total) domain of dependence of S is then defined to be

D(S) := D+(S) ∪D−(S).

A Cauchy surface is [91, p. 201] a closed, achronal set whose domain of dependence is the

entire spacetime manifold. One could equivalently use the definition [77, Dfn 14.28] that

a Cauchy surface is a subset met once by every inextendible timelike curve; equivalence of
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the two definitions comes from [77, Lem. 14.29]. Note that some authors [57, pp. 204-205]

use acausal in their definition instead of achronal, and so exclude some possible Cauchy

surfaces that would be considered by others. However, here we are only ever concerned with

spacelike Cauchy surfaces and so in that case the difference between the two definitions is

irrelevant. Now, by [77, Prop. 14.25], a Cauchy surface will be a topological hypersurface,

and it serves as an initial surface where suitable data can be prescribed for the Cauchy

problem. In fact, one can slice up an entire globally hyperbolic spacetime into a foliation

of Cauchy surfaces of constant ‘time’.

Originally Geroch [51, Thm 11] proved that global hyperbolicity is equivalent to the

existence of a (topological) Cauchy surface and that the spacetime manifold is homeomor-

phic [51, Property 7] to the product manifold R× Σ, where Σ is the (topological) Cauchy

surface. However, this is not very satisfactory, given that we predominantly work with

smooth manifolds and attempt to solve differential equations smoothly. In a series of pa-

pers [13, 14, 15, 16], Bernal and Sánchez showed how Geroch’s result can be generalised

from the continuous case to the smooth case. Their main result [13, Thm 1] entails that

if (M, g) is globally hyperbolic then it is diffeomorphic to R × Σ, where Σ is a smooth

spacelike Cauchy surface.

We end this section by stating some examples of globally hyperbolic and non-globally

hyperbolic spacetimes. Minkowski spacetime, de Sitter spacetime and the exterior Schwarzschild

spacetime are all globally hyperbolic, whereas anti de Sitter spacetime and the Gödel uni-

verse are not globally hyperbolic.

2.4 Partial differential equations on manifolds

The classical fields that we will consider all obey certain types of partial differential equa-

tions. It will therefore be necessary to appeal to various results concerning differential

equations defined on manifolds and so those results are collated here.

2.4.1 Differential operators

We now summarise the main results of [11] that are relevant to our case. Everything will

be explained in terms of smooth tensor fields on a globally hyperbolic spacetime (M, g),

rather than in terms smooth sections of general vector bundles as is done in [11]. Note

that smooth tensor fields are an example of smooth sections of a vector bundle.
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We will primarily be interested in certain types of second-order differential operators P :

C∞(T ab (M ; K)) → C∞(T ab (M ; K)). Given a u ∈ C∞(T ab (M ; K)), then in local coordinates,

the action of a second-order linear differential operator takes the form

P (u)AB = mijAC
BD(x)

∂

∂xi
∂uDC
∂xj

+ niACBD(x)
∂uDC
∂xi

+ oACBD(x)uDC ,

where A and D are a shorthand notation for a contravariant spacetime indices, and B and

C are a shorthand notation for b covariant spacetime indices. The mijAC
BD(x), niACBD(x) and

oACBD(x) are smooth matrices on the spacetime (M, g).

The principal symbol of this operator is obtained [24, p. 397] by considering only the

leading order derivative terms, and replacing the partial derivatives ∂j by iξj ∈ T 0
1 (M ; C)

in those terms. Hence, at each point x ∈ M , the principal symbol of P is a linear map

from rank (a, b) tensors at x to itself, given by

σx(P )(ξ) = −mijAC
BD(x)ξiξj,

where ξ ∈ T ∗xM . The differential operator P will be said to have injective principal

symbol if for each ξ 6= 0, the linear map σx(P )(ξ) is injective [12, p. 383]. If σx(P )(ξ) =

−gijξiξjδADδCB , where g is the spacetime metric and δAD = δµ
1

ν1 . . . δ
µa

νa , then P is said to be

normally hyperbolic1 [11, Ch. 1.5]. Note that if the metric was Riemannian as opposed to

Lorentzian, then such an operator would be elliptic.

At this point we introduce the notion of spacelike-compactness [11, p. 90], which will

be used extensively throughout the upcoming material.

Definition 2.4.1 A tensor field is said to be spacelike-compact (SC) if its support is con-

tained within J(K) for some compact subset K ⊂M .

Of course, for a spacetime that admits a compact Cauchy surface, all tensor fields are

spacelike-compact since M ⊂ J(Σ), for any compact Cauchy surface Σ.

Normally hyperbolic differential operators arise very frequently in physics, for instance,

the Klein-Gordon equation for the real scalar field and in the gauge theories of electromag-

netism and linearized gravity, where the Maxwell equations in the Lorenz gauge and the

linearized Einstein equations in the de Donder gauge both reduce to normally hyperbolic

differential equations. The Cauchy problem is well-posed for normally hyperbolic differ-

ential operators. This means that given some smooth initial data compactly supported

1Note that [11, Ch. 1.5] use the convention that ∂i → ξj , but instead insert a minus sign by hand.
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on a Cauchy surface (and a compactly supported source term) then there exists a unique

smooth solution with spacelike-compact support [11, Thm 3.2.11] and the solution depends

continuously on the initial data [11, Thm 3.2.12].

An object which will arise frequently throughout this thesis is a distribution. Given

a finite-dimensional K-vector space V , then, for us2, a V -valued distribution3 will be a

continuous linear map, which takes elements of C∞0 (T ab (M ; K)) to V . One can endow

the space C∞0 (T ab (M ; K)) with a suitable topology and so obtain a notion of convergence,

see [11, p. 2] for details. Continuity of a distribution u is then expressed [11, Dfn 1.1.2] by

the requirement that for all convergent sequences (f)n ∈ C∞0 (T ab (M ; K)), where fn → f ,

we have u(fn) → u(f), where convergence here is with respect to the standard topology

on a finite-dimensional vector space.

In forthcoming results it will be necessary to see how one can extend the notions of

support and action of a differential operator to distributions. We begin by addressing the

question of the support of a distribution. Given a distribution u : C∞0 (T ab (M ; K)) → V ,

then we denote by Su the set of points x ∈ M that each have an open neighbourhood

Ox ⊂ M for which u(f) = 0 for all test functions f ∈ C∞0 (T ab (Ox; K)). The support

of u, denoted supp(u), is then [11, Dfn 1.1.7] the complement of Su in M . Note that

this definition of support applied to functions and tensor fields is equivalent to the usual

definition of the support of a function and a tensor field, which is the closure of the set of

points on which the function or tensor field does not vanish.

To extend the action of a differential operator to distributions requires the introduction

of the formal adjoint of a differential operator. Specifically, associated to each linear

differential operator P : C∞(T ab (M ; K)) → C∞(T ab (M ; K)) is [11, p. 5] another uniquely

determined linear differential operator P ∗ : C∞(T ab (M ; K)) → C∞(T ab (M ; K)) called the

formal adjoint of P , which is essentially calculated via integration by parts as follows: for

all f ,f ′ ∈ C∞0 (T ab (M ; K)) we have∫
M

fBAP (f)ABdvolg =

∫
M

P ∗(f ′)′BAf
A
Bdvolg,

where A is shorthand notation for a contravariant spacetime indices, and B is shorthand

notation for b covariant spacetime indices. Note that [11] do not assume the presence of a

2If like [11, Dfn 1.1.2] we were considering general vector bundles, then the domain of the distribution
would just be the smooth compactly supported sections of the vector bundle in question.

3In Hörmander’s terminology, they are distribution densities, but due to the presence of a preferred
density, namely the one associated with the spacetime metric, the distinction between distributions and
distribution densities is irrelevant, see [63, pp. 144-145] for details.

22



spacetime metric and so define the adjoint in terms of the dual bundle. One is now able to

extend the action of a linear differential operator from smooth sections of a vector bundle

to distributions on the vector bundle by defining [11, p. 5], for a distribution u,

(Pu)(f) := u(P ∗f)

for all f ∈ C∞0 (T ab (M ; K)).

A differential operator P is said to be formally self-adjoint if P = P ∗. The differential

operators that we will be concerned with will all be formally self-adjoint.

2.4.2 Fundamental solutions and Green’s operators

Here we will discuss the main aspects of Green’s operators, which act in a certain sense

as inverses to a differential operator. As the hyperbolic differential operators that we

consider will be formally self-adjoint, then we will restrict attention to only that case in

the forthcoming material. Note that the theory of Green’s operators for non self-adjoint

differential operators is fully treated in [11].

Associated to each point x ∈ M and to the vector bundle under consideration (in our

case, the tensor bundle) is a distribution δx called the Dirac-delta distribution. The action

of this distribution is to take a test tensor field f ∈ C∞0 (T ab (M ; K)) and evaluate it at

x ∈M , that is,

δx(f) = f |x.

The purpose of this distribution is to make the Dirac-delta function into a rigorous concept.

We now begin a full discussion of Green’s operators beginning with the objects which

they are constructed from, namely the fundamental solutions. A distribution which when

acted on by a linear differential operator P gives the Dirac-delta distribution δx is known

as a fundamental solution for P at x. Specifically it is a distribution Fx : C∞0 (T ab (M ; K))→
C∞0 (T ab (M ; K))|x satisfying

P (Fx) = δx.

If supp(Fx) ⊂ J+(x) (resp. supp(Fx) ⊂ J−(x)) then Fx is called the retarded4 (resp. ad-

vanced) fundamental solution at x. Given a normally hyperbolic operator P on a spacetime

(M, g), then it is known, see [11, Thm 3.3.1], for example, that at each point x ∈M , there

4Our naming convention agrees with the standard usage in electrodynamics, see [64], for example, but
differs from the convention chosen in [11].
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exists a unique advanced fundamental solution associated with P and a unique retarded

fundamental solution associated with P . One should note that various works, for exam-

ple, [44, 70] and indeed [11, Ch. 2], establish this and later results only for the local case,

that is, only on an open neighbourhood5 Ox ⊂ M of x. The implication would be that

for the local results, Fx would only be defined for C∞0 (T ab (Ox; K)) as opposed to the full

C∞0 (T ab (M ; K)) in the global case. Henceforth the retarded (resp. advanced) fundamental

solution will be denoted by F+
x (resp. F−x ).

We now consider linear maps E± : C∞0 (T ab (M ; K)) → C∞(T ab (M ; K)) that will be

inverses to the differential operator P on the space C∞0 (T ab (M ; K)). Specifically, for any

f ∈ C∞0 (T ab (M ; K)) we have

PE±f = f , (2.4.1)

and

E±Pf = f . (2.4.2)

They are known as the advanced (−)/retarded (+) Green’s operators6 and are uniquely

singled out by their support properties, namely that suppE±f ⊂ J±(suppf). The exis-

tence and uniqueness of such operators, on globally hyperbolic spacetimes, is guaranteed

by [11, Cor. 3.4.3], and [11, Prop. 3.4.2] entails that they take the form

(E±f)(x) = F∓x (f), (2.4.3)

where F∓x are the advanced/retarded fundamental solutions for P at x.

A subset S ⊂ M is said [11, p. 18] to be past (resp. future) compact if J−(p) ∩ S
(resp. J+(p) ∩ S) is compact for all p ∈M . This definition can be applied to the support

of a tensor field. A T ∈ C∞(T ab (M ; K)) is said to have past/future compact support if

supp(T ) is compact to the past/future. In particular, since J±(suppf) are past/future

compact [11, Lem. A.5.7] and suppE±f ⊂ J±(suppf), then E±f also have past/future

compact support. This leads us to consider the following theorem.

Theorem 2.4.2 Given a normally hyperbolic operator P : C∞(T ab (M ; K))→ C∞(T ab (M ; K)),

then there exists unique solutions with past/future compact support to the equation P (Φ) =

f , where f ∈ C∞0 (T ab (M ; K)). These solutions are Φ = E±f respectively, where E± are

5There are further restrictions imposed on this neighbourhood, which we do not discuss here, but
instead refer the reader to [11, Ch. 2].

6Note that [11, Dfn 3.4.1] use the naming convention that E+ is the advanced and E− is the retarded
operator.
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the retarded/advanced Green’s operators for P .

Proof. Consider theE+ case, theE− case follows analogously. We know from the preceding

discussions that there exists a linear operator E+ such that Φ = E+f solves P (Φ) = f

with past compact support. Now, assume that there exists another solution χ with past

compact support solving P (χ) = f . Then the difference Φ− χ solves P (Φ− χ) = 0 and

has past compact support. Therefore, by [11, Thm 3.1.1], it vanishes and so Φ = χ. �

We now define an operator that will be prevalent throughout future chapters. The

advanced-minus-retarded solution operator is defined as E := E− −E+.

In section 4.7 we will refer several times to a result of [11], which gives an exact sequence

built from the operators P and E. Recall that a sequence is exact if at each stage the

image of a map equals the kernel of the subsequent map. As this result [11, Thm 3.4.7] is

important, it is included here.

Theorem 2.4.3 Given a spacetime and a normally hyperbolic operator P with associated

advanced-minus-retarded solution operator E, then the following exact sequence holds:

0 C∞0 (T ab (M ; K)) C∞0 (T ab (M ; K)) C∞SC(T ab (M ; K)) C∞SC(T ab (M ; K)).
P E P

Proof. Our definition of a spacetime, see chapter 2.2, satisfies the requirements of [11,

Thm 3.4.7] and so the result follows from that theorem. �

We now consider a new support property, which will be known as time-compactness.

Intuitively, a tensor field will be said to have time-compact support if its support is bounded

between two Cauchy surfaces. This is made more precise in the following definition.

Definition 2.4.4 A tensor field T ∈ C∞(T ab (M ; K)) is said to have time-compact support

if there exists two Cauchy surfaces Σ and Σ′ with Σ ⊂ I+(Σ′), such that suppT ⊂ (J+(Σ′)\
Σ′) ∩ (J−(Σ) \ Σ).

The subspace of time-compact smooth rank (a, b) K-valued tensor fields on M is denoted

by C∞TC(T ab (M ; K)).

It will be necessary in section 5.4 to consider how the action of the Green’s operators

can be extended from smooth compactly supported tensor fields to smooth time-compact

tensor fields. We achieve this extension as follows. Given some f ∈ C∞TC(T ab (M ; K)), let

E+f denote the unique solution to

P (Φ) = f (2.4.4)
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with past compact support. To show that such a solution to (2.4.4) exists, select a smooth

spacelike Cauchy surface Σ, with future-pointing unit normal vector n, such that Σ ∩
J+(suppf) = ∅, and let the initial data (Φ|Σ,∇nΦ|Σ) vanish. Then, using the arguments

from Corollary 57 of [10, Ch. 3], there exists a solution, denoted by E+f , whose support

lies within J(suppf). However, E+f vanishes to the past of suppf by the choice of

initial data, meaning that it is supported within J+(suppf). Hence, we have suppE+f ⊂
J+(suppf) ⊂ J+(Σ) and therefore suppE+f∩J−(p) ⊂ J+(Σ)∩J−(p) for all p ∈M . On a

globally hyperbolic spacetime (M, g), it holds [77, Lem. 14.22] that J±(p) are closed for all

p ∈M . Therefore suppE+f ∩J−(p) is a closed subset of the compact [77, Lem. 14.40] set

J+(Σ)∩ J−(p), and so suppE+f ∩ J−(p) is also compact. The uniqueness of the solution

then follows from [11, Thm 3.3.1].

Similarly let E−f be the unique solution to (2.4.4) with future compact support. We

now define the extensions of the Green’s operators to time-compact tensor fields to be the

linear maps E± : C∞TC(T ab (M ; K)) → C∞(T ab (M ; K)) given by f 7→ E±f , where E±f is

the unique solution to (2.4.4) with past/future compact support. The following lemma

establishes that these operators satisfy the relations (2.4.1) and (2.4.2) of the standard

Green’s operators as well as having identical support properties.

Lemma 2.4.5 The extended Green’s operators E± : C∞TC(T ab (M ; K)) → C∞(T ab (M ; K))

satisfy:

1. P (E±f) = f ;

2. E±Pf = f ;

3. suppE±f ⊂ J±(suppf),

for all f ∈ C∞TC(T ab (M ; K)).

Proof. (i) By the definition of the extended Green’s operators, we have P (E±f) = f for

all f ∈ C∞TC(T ab (M ; K)). (ii) From our definition, we know that Φ = E±Pf are the unique

7This corollary shows how the result [11, Thm 3.2.11] may be generalised to include the case that
both the initial data and source have no restrictions placed upon their supports. The result is achieved by
constructing an increasing sequence of relatively compact, globally hyperbolic subsets of the spacetime that
cover the spacetime manifold. One then introduces a sequence of smooth compactly supported functions,
one for each of the globally hyperbolic regions, that are equal to unity on the respective region. Using
these functions to make the initial data and the source compactly supported, one can solve the standard
Cauchy problem [11, Thm 3.2.11]. The main solution to the non-compactly supported Cauchy problem is
then defined to be equal to the solution one obtains on each of the globally hyperbolic regions that were
constructed. It is also shown that this solution will have support contained within J(N), where N is the
union of the supports of the initial data with the support of the source.
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solutions to P (Φ) = P (f) with past/future compact support. Therefore P (E±Pf−f) = 0

and as both E±Pf and f have past/future compact support, then by [11, Thm 3.3.1] we

have E±Pf = f . (iii) The support properties were established in the construction of the

solutions E±f . �

The motivation for constructing these extensions is to generalise the exact sequence of

Theorem 2.4.3, which is achieved by the following theorem.

Theorem 2.4.6 Given a spacetime and a normally hyperbolic operator P with associated

advanced-minus-retarded solution operator E, then the following sequence is exact:

0 C∞TC(T ab (M ; K)) C∞TC(T ab (M ; K)) C∞(T ab (M ; K)) C∞(T ab (M ; K)).
P E P

Proof. We begin by showing that at each stage the image of a map is contained within the

kernel of the subsequent map, that is, the sequence is a complex. The composition of the

first two maps vanishes because P is linear. At the second element we have EPf = 0 for

all f ∈ C∞TC(T ab (M ; K)) by part (ii) of Lemma 2.4.5. Finally, at the third element, we have

by the definition of the extended Green’s operators, PEf = 0 for all f ∈ C∞TC(T ab (M ; K)).

Therefore this sequence forms a complex.

We now need to show the reverse inclusions, that the kernel of a map is contained

within the image of its predecessor. By displaying this we will show that the sequence

is exact. We again consider each stage of the sequence individually. Firstly, the kernel

of P : C∞TC(T ab (M ; K)) → C∞TC(T ab (M ; K)) consists of those f ∈ C∞TC(T ab (M ; K)) such that

P (f) = 0. As suppf does not expand under the action of P and because any time-compact

tensor is both past and future compact, then we have, by [11, Thm 3.3.1], f = 0. The

image of the zero element is again the zero element and so we have exactness at the first

stage.

At the second element, the kernel of E : C∞TC(T ab (M ; K)) → C∞(T ab (M ; K)) consists

of those f ∈ C∞TC(T ab (M ; K)) such that Ef = 0, meaning that E−f = E+f . In this

case, suppE+f ⊂ suppE+f ∩ suppE−f ⊂ J+(suppf) ∩ J−(suppf), which is bounded

between any two Cauchy surfaces that are used to show that f is time-compact, and

therefore E+f = E−f ∈ C∞TC(T ab (M ; K)). By definition, we have P (E+f) = f , and hence

f ∈ P (C∞TC(T ab (M ; K))).

Exactness at the third stage is shown by utilising the methodology of [92, Lem. 3.2.1].

The kernel of P : C∞(T ab (M ; K)) → C∞(T ab (M ; K)) consists of those Φ ∈ C∞(T ab (M ; K))

such that P (Φ) = 0. Select two arbitrary Cauchy surfaces Σ1 and Σ2 such that Σ2 ⊂
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I+(Σ1), now select a further two Cauchy surfaces Σ3 and Σ4 such that Σ1 ⊂ I+(Σ3)

and Σ2 ⊂ I−(Σ4). Let χ ∈ C∞(M ; K) be such that χ = 0 in J−(Σ1) and χ = 1 in

J+(Σ2), since J−(Σ1) and J+(Σ2) are closed and disjoint sets, then the existence of such a

function is guaranteed by [1, Prop. 5.5.8]. Define f := −P (χΦ), it is clear that suppf ⊂
(J+(Σ3) \ Σ3) ∩ (J−(Σ4) \ Σ4) and so f ∈ C∞TC(T ab (M ; C)) by Definition 2.4.4. Now,

ψ = −χΦ solves P (ψ) = f with past-compact support. Hence, by uniqueness, we have

−χΦ = E+f . Also, ψ = (1 − χ)Φ solves P (ψ) = f with future compact support and

therefore, by uniqueness of solutions, (1 − χ)Φ = E−f . Combining these results we see

that Ef = E−f −E+f = (1−χ)Φ− (−χΦ) = Φ, so Φ is in the image of E. Hence, the

sequence is exact. �

2.5 The theory of differential forms

The results of section 4.5.2 will make extensive use of the theory of differential forms.

As such we will now state the various conventions used, which are consistent with those

of [1, 35, 78].

The space of K-valued p-form fields on M is denoted by Ωp(M ; K) with a subscript 0

being added to denote compactly supported p-form fields or a subscript SC being added

to denote spacelike-compact p-form fields.

Given a p-form field α ∈ Ωp(M ; K) and a q-form field β ∈ Ωq(M ; K), it is possible [1,

Prop. 6.3.6] to construct a p + q-form field called the wedge product α ∧ β ∈ Ωp+q(M ; K)

of α and β. In terms of components, the wedge product is given by

(α ∧ β)a1...ap+q =
(p+ q)!

p!q!
α[a1...apβap+1...ap+q ].

This in turn allows for the definition of the Hodge star operator, which is a map ∗ :

Ωp(M ; K)→ Ωn−p(M ; K) uniquely defined [1, Prop. 6.2.12] pointwise by the condition that

for all α,β ∈ Ωp(M ; K),

α ∧ ∗β = (α,β)gdvolg,

where (α,β)g is the contraction of α with β using the spacetime metric g. The volume

element dvolg is an n–form field on the manifold. Explicitly it is [91, eq. B.2.17] given by

(dvolg)a1...an = εa1...an , where

εa1...an =
√
| det g|ε̃a1...an
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is the Levi-Civita tensor and ε̃a1...an is the Levi-Cevita symbol, which takes the value of 1

when the indices are an even permutation of (1 . . . n), the value −1 when they are an odd

permutation and zero otherwise. Given an α ∈ Ωp(M ; K), then the Hodge star of α is [91,

p. 88] given by

(∗α)ap+1...an =
1

p!
αa1...apεa1...apap+1...an ,

which agrees with the pointwise formula given in [1, p. 413].

The square of the Hodge star operator is pointwise [1, Prop. 6.2.13] a multiple of the

identity operator given by

(∗)2 = (−1)p(n−p)+s,

where n is the dimension of the manifold and s is the index of the metric g, that is, the

number of negative entries present in the matrix representation of an orthogonal decom-

position of g. For the case of a four-dimensional manifold with a Lorentzian metric of

either signature, the square of the Hodge star operator acting on a p-form simplifies to

(∗)2 = (−1)p+1, whilst on a spacelike Cauchy surface of the said spacetime, it becomes

just the identity operator, (∗)2 = 1, in the (− + ++) conventions and minus the identity

operator, (∗)2 = −1, in the (+−−−) conventions.

The Hodge star operator is used to construct a pairing [1, p. 538] between p-forms on

a manifold M ; given a α ∈ Ωp(M ; K) and β ∈ Ωp
0(M ; K) then one defines

〈α,β〉M :=

∫
M

α ∧ ∗β,

whereα denotes the complex conjugate ofα. This definition makes sense because the above

will just be the integral over M of the scalar function (α,β)g with respect to the volume

element dvolg. If M were compact then the restriction that β be compactly supported is

trivially satisfied.

The exterior derivative d : Ωp(M ; K) → Ωp+1(M ; K) is the fundamental derivative

operator used in differential forms. Its action, in component form, on a p-form α is given

by

(dα)a1...ap+1 = (p+ 1)∇[a1αa2...ap+1].

One can easily replace the covariant derivative with the partial derivative as the terms

involving the Christoffel symbols vanish by virtue of their symmetry properties. Also the

square of the exterior derivative vanishes identically, due to the equality of mixed partial

derivatives for smooth fields.
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By combining the exterior derivative with the Hodge star operator, it is possible to

construct another derivative operator known as the codifferential δ. It is the map δ :

Ωp(M ; K)→ Ωp−1(M ; K) defined [1, Dfn 6.5.21] by

δ = (−1)n(p−1)+s+1 ∗ d∗ (2.5.1)

and the condition that it always annihilates zero-forms. Using (2.5.1), that d2 ≡ 0 and

that (∗)2 is a multiple of the identity, then it is clear that δ2 ≡ 0. On a four-dimensional

spacetime M with Lorentzian metric g of either signature, δ = ∗d∗; whilst on a spacelike

Cauchy surface of such a spacetime, we have δ = (−1)p ∗ d∗ in the (− + ++) convention

and δ = (−1)p+1 ∗ d∗ in the (+−−−) convention.

Finally, Stokes’ Theorem [1, Thm 7.2.8] states that, given an n-dimensional orientable

compact manifold M with boundary ∂M and given an α ∈ Ωn−1(M ; K) then∫
intM

dα =

∫
∂M

i∗α,

where i : ∂M →M is the inclusion map. Stokes’ Theorem can then be used to show that,

when M is boundaryless, δ is the adjoint of d with respect to the product 〈·, ·〉M , that is,

〈dα,β〉M = 〈α, δβ〉M (2.5.2)

for α ∈ Ωp−1(M ; K) and β ∈ Ωp(M ; K), provided at least one of them is compactly sup-

ported when M is not compact.

2.6 Microlocal analysis

In this section we briefly describe some techniques of microlocal analysis which permit one

to examine the singular (unsmooth) behaviour of distributions. We first state and discuss

these results for the case of scalar distributions on Rn before discussing the generalisation

to distributions on manifolds and to vector bundle distributions.

We begin by considering scalar functions and distributions on Rn. Given an open subset

U ⊆ Rn, we adopt the standard notation of D(U) for C∞0 (U ; C) and D ′(U) for the space

of distributions on D(U), that is, the space of continuous linear functionals, or the dual

space. Given a distribution u ∈ D ′(U), then continuity is expressed, see Theorem 2 in [10,

Sec. 4.2.1], by the requirement that for each compact subset K ⊂ U , there exist constants
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C ∈ R and k ∈ N, such that we have the following estimate:

|u(f)| < C
∑
|α|<k

sup
x∈K
|∂αf |

for all f ∈ D(K), where α is a multi-index. Also, we adopt the standard notation of

E (U) for C∞(U ; C) and E ′(U) for the dual space of distributions. In this instance, by

Theorem 1 of [10, Sec. 4.2.1], continuity is expressed in an exactly analogous manner.

Given a u ∈ E ′(U), then there exists a compact subset K ⊂ U , a C ∈ R and a k ∈ N, such

that we have the following estimate:

|u(f)| < C
∑
|α|<k

sup
x∈K
|∂αf |

for all f ∈ E (U). The elements of E ′(U) are in fact all compactly supported, see, for

example, the argument given around the estimate in [10, eq. (4.3)] for a proof of this.

The operation which allows one to analyse the singular behaviour of a function is the

Fourier transform. Therefore it is natural to implement this operation on distributions to

investigate their behaviour. For a full exposition of these methods, see the famous text of

Hörmander [63] or the more recent introduction to microlocal analysis given by Strohmaier

in [10, Ch. 4].

To define the Fourier transform of a distribution, one begins with the compactly sup-

ported ones. Given a u ∈ E ′(U), its Fourier transform is defined [63, Thm 7.1.14] to be

the function û(k) := u(eik·x). As u ∈ E ′(U) and fk(x) = eik·x is a smooth function, then

u(fk) is well-defined. Even if one is given an arbitrary distribution v, then one can still

Fourier analyse it. To achieve this, one multiplies v by a χ ∈ C∞0 (Rn; C); the resulting

distribution χu is compactly supported and its action is given by (χv)(f) = v(χf) for all

f ∈ C∞0 (Rn; C). One can then Fourier analyse the behaviour of the compactly supported

distribution χv, and vary χ to give further insights into the behaviour of v

To motivate the definition of smoothness used for distributions, we briefly consider

the behaviour of the Fourier transform of a smooth compactly supported function on Rn.

It is a well-known result, see, for example, the beginning of [63, Sec. 8.1], that given a

f ∈ C∞0 (U ; C), its Fourier transform will satisfy the following estimate:

|f̂(k)| ≤ CN
1 + |k|N
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for all N ∈ N, where CN ∈ R is constant for each N . Hence we see that smooth compactly

supported functions have Fourier transforms which as |k| becomes large, decay faster than

any power of |k|. The standard terminology is that smooth compactly supported functions

have ‘rapidly decaying’ Fourier transforms.

With this estimate in mind, and the fact that we can Fourier analyse an arbitrary

distribution in D ′(U), one can give [32, Dfn 3.1] a criterion for smoothness of a distribution.

Given an open subset U ⊆ Rn, one calls a point (x, k) ∈ U × (Rn \ {0}) a regular direction

of a distribution u : C∞0 (U ; C)→ C if there exists a χ ∈ C∞0 (U ; C) such that χ(x) 6= 0 and

an open conic neighbourhood8 Γ ⊂ Rn \ {0} containing k, such that

|(̂χu)(k)| ≤ CN
1 + |k|N

for all k ∈ Γ and for all N ∈ N, where CN ∈ R is constant for each N .

The regular directions describe where and in which directions the distribution is smooth.

The wavefront set of u, denoted WF(u) is [63, Dfn 8.1.2] the complement in U × (Rn \{0})
of the set of regular directions of u, and so the wavefront set describes exactly how the

distribution fails to be smooth. As will be discussed in section 3.3, in quantum field theory

the class of physical states of a free theory are characterised by the singular behaviour of

their two-point function. The wavefront set contains all of this information and so is used

in the definition of the physical states.

Having considered distributions defined on Rn, we now consider the generalisation of

the wavefront set to distributions on manifolds. The local Euclidean nature of manifolds

facilitates an easy transition to this case. The manifolds are assumed to obey all of the

assumptions set out in section 2.2. Now, a manifold M admits local coordinate charts

(Ui, ψi), where Ui ⊂ M is open and ψi : Ui → Rn. Given a distribution u ∈ D ′(M),

then [63, Dfn 6.3.3] it has a representative distribution, denoted by ψ ∗i u, in each coordinate

chart (Ui, ψi). In the chart (Ui, ψi), a point (p, ξ) ∈ T ∗Ui has the chart expression (x, k) =

(ψi(p), ψ
∗
i ξ) ∈ Rn × (Rn \ {0}). This allows for the wavefront set of a distribution on a

manifold to be defined [63, p. 265] by saying that (p, ξ) ∈ WF(u) if and only if (x, k) ∈
WF(ψ ∗i u). The wavefront set is a subset of the cotangent bundle of M (with the zero-

section excised). As described on [63, p. 265], the definition of WF(u) is independent of

the choice of coordinates because under a change of coordinates, one has a diffeomorphism

φ : ψi(Ui) → ψj(Uj), where ψi(Ui), ψj(Uj) ⊂ Rn are open, and it holds that WF(φ∗u) =

8An open conic neighbourhood is an open set which is scale invariant, that is, if p ∈ Γ then λp ∈ Γ for
all positive λ ∈ R.
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φ∗WF(u) for all u ∈ D ′(ψi(Ui)).

For the case of vector bundles [63, p. 265] and [82, Sec. 2.3], one uses local triviali-

sations, so that a smooth compactly supported section of a k-dimensional vector bundle

corresponds locally to a k-tuple (f1, . . . , fk) of smooth compactly supported scalar func-

tions. This correspondence is one-to-one and induces a one-to-one correspondence between

vector bundle distributions and a k-tuple of scalar distributions. Under the correspondence

between distributions, the wavefront set of the vector bundle distribution on an open set

that trivialises the vector bundle, is equal to the union of the wavefront sets of the scalar

distributions that represent it. One then says that the wavefront set of a general vector

bundle distribution is defined as the collection of points such that their coordinate repre-

sentation, in a local trivialisation, lies in the wavefront set of the representative distribution

of that trivialisation.
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Chapter 3

Quantum Field Theory in Curved

Spacetimes

In this chapter we will discuss how one formulates a quantum field theory on a curved

spacetime within the framework of the algebraic approach. The example of the free real

scalar field will serve to fully illustrate this approach, which will be used for the case of

linearized gravity in chapters 5 & 6. Finally, in preparation for their consideration in the

free graviton case, we will give a review of the notion of Hadamard states for the scalar

field.

3.1 Algebraic approach

The standard textbook approach to constructing a quantum field theory is to use mode

expansions, see, for instance, the book of Birrell and Davies [17]. Such a treatment results

in the construction of a Hilbert space, a Fock space, using the creation and annihilation

operators associated to the modes and the selection of a vacuum vector that is annihilated

by all annihilation operators. On this Hilbert space, observable quantities are represented

by self-adjoint operators. However, the construction of the Fock space is dependent upon

the choice of modes. For the case of Minkowski spacetime, when one is working with

special relativity, a particularly special class of modes are picked out, namely the positive

frequency plane waves. In that instance, the resulting Hilbert space is the unique Fock

space whose vacuum state vector is invariant under the action of the Poincaré group [17,

p. 47], which has the physical interpretation that all inertial observers will agree on what is

to be regarded as the vacuum state. The fact that we have a preferred Fock space entails
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that it is meaningful to talk about particles, but for curved spacetimes this is no longer

the case.

A general curved spacetime will possess no symmetries that can be used to pick out a

preferred representation, through invariance of a vacuum state, and so the particle inter-

pretation becomes blurred. Such issues were first pointed out and discussed by Fulling [46].

In fact, he described how the non-uniqueness of the particle description arises even if one

is examining a subset of Minkowski spacetime, in that instance, Rindler spacetime. What

he described became to be known as the Fulling-Unruh effect, where an accelerated ob-

server in Minkowski spacetime sees the inertial vacuum state as containing particles; this

is compared to the lack of particles registered by an inertial observer. For a full discussion,

see [92, Ch. 5].

The algebraic approach is completely different in that one does not need a Hilbert

space to formulate the theory. The focus is entirely on the algebraic relations between

the observable quantities and not on representing them on a Hilbert space. One achieves

this by constructing an abstract algebra that will contain all the observables of the theory.

Once the algebra has been constructed, then one is free to discuss issues pertaining to

states, and with that issues relating to measurements through expectation values.

The algebraic approach was initially championed by several authors throughout the

1950s, notably Araki, Haag and Segal. However, in those treatments, the focus was on

operator algebras on Hilbert spaces. A true abstract treatment, devoid of any reference to

Hilbert spaces, was first laid down by Haag and Kastler [53]. Unfortunately, their approach

still had the caveat that it was restricted to the case of Minkowski spacetime.

The approach of Haag and Kastler is to lay down a collection of axioms which an

algebra that describes the observables of a quantum field theory in Minkowski spacetime

should obey. Since being first laid down, these axioms have undergone modifications. We

now discuss the axioms as they appear in [52, p. 110].

One begins by considering the open subsets of Minkowski spacetime with compact

closure. The reason for considering only the regions with compact closure is to ensure that

one is only ever taking into account those observables that can be measured within a finite

region such as a laboratory. This rules out global observables such as total energy and

charge. For each such subset O, a quantum field theory assigns an algebra A(O), which

will contain all the local observables that can be measured within the region O. Each A(O)

is assumed to be a C∗-algebra with the ∗ operation being interpreted as taking the adjoint.

The smallest C∗-algebra containing the union of all the algebras over all the regions with
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compact closure will be denoted by A and is known as the algebra of observables for the

spacetime. When we discuss the scalar field and linearized gravity we will use ∗-algebras

instead of C∗-algebras. The assignment O 7→ A(O) is frequently referred to as the selection

of a net, but we caution that this differs from the usual usage of net [80, p. 96], which is a

map from a directed system to a topological space, in that the target space is no longer a

topological space.

To ensure that the net describes the observables of a quantum field theory, certain extra

conditions need to be imposed on it. These conditions are the Haag-Kastler axioms and

we now state them in their modern form:

1. Isotony: given two regions O1 and O2 such that O1 ⊂ O2 then A(O1) ⊂ A(O2);

2. Locality: if two regions O1 and O2 are spacelike separated then the algebras A(O1)

and A(O2) commute, in the sense of them being subalgebras of A;

3. Poincaré covariance: the algebra A carries a representation of the Poincaré group P
via automorphisms αg, where g ∈ P , and these automorphisms satisfy αg(A(O)) =

A(g(O)) for all regions O and for all g ∈ P .

4. Causality: given a region O, let Ô denote its causal completion1, then A(O) = A(Ô).

The first condition ensures that if a measurement can be made in a region O1, which

satisfies O1 ⊂ O2, then that measurement can also be performed in the second region

O2. The second condition is the point where relativity enters, it says that measurements

made in causally disconnected regions cannot influence each other. The third condition

expresses the idea that a relativistic theory in Minkowski spacetime should be Poincaré

covariant. The fourth and final condition displays the presence of a hyperbolic dynamical

law. In particular, if one can extend this relation to include certain unbounded regions,

which contain a Cauchy surface for the ambient spacetime, then a time-slice condition will

hold. The time-slice condition was first discussed by Haag & Schroer [54] under the title of

“primitive causality”, and it entails that the algebra of a causally convex2 neighbourhood

of a Cauchy surface (a slice of spacetime) coincides with the algebra of the entire spacetime.

As the fourth relation is only defined for relatively compact subsets of Minkowski spacetime,

1Following [52, p. 143], the causal complement of O is defined as the set O⊥ := M \ J(O). The causal

completion of O is defined to be the set Ô := (O⊥)⊥. We caution that there do exist differing notions of
causal complement, see [36, App. A.3] for a full discussion.

2A subset Ω is said to be causally convex if every smooth causal curve with endpoints in Ω is contained
entirely within Ω [36, p. 8].
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if one can extend it to include non-relatively compact causally convex subsets, then as the

causal completion of a slice of spacetime is the whole spacetime, the algebra of a slice will

equal the algebra of the spacetime. The existence of a time-slice condition is important

for making physical predictions: one can determine the state of system by examining its

expectation values on all elements of the algebra. However, if one had to do this for

elements of the algebra that were localised anywhere within the spacetime, then it would

be totally impractical to obtain the state. Even if the time-slice condition holds, it is

still impractical to know all the expectation values in an entire slice, but the time-slice

condition does show that, in principle, it is sufficient to just know the expectation values

at a fixed time rather than having to know them at all times.

The generalisation of the Haag-Kastler axioms to globally hyperbolic curved spacetimes

was achieved by Dimock [26]. The axioms remain on the whole unaltered except for the

axiom concerning Poincaré covariance, which needs to be suitably modified. In the theory

of general relativity, two spacetimes are physically equivalent if there exists an isometry

between them. Therefore one expects that isometric spacetimes will have algebras that are

isomorphic to one another. Specifically [26, p. 220], for any isometry i : (M, g) → (M̃, g̃)

there is an isomorphism αi : A → Ã such that αi(A(O)) = Ã(i(O)) with αIdM = IdA and

αi1◦i2 = αi1 ◦ αi2 . As a consistency check, this reduces to the usual Poincaré covariance in

Minkowski spacetime, as the isometries there form the Poincaré group.

The preceding formulation has since been superseded by the methods of locally co-

variant quantum field theory due to Brunetti, Fredenhagen and Verch (BFV) [22]. One

can easily recover the earlier approaches of Haag & Kastler and Dimock within this new

formulation, see [22, Sec. 2.4]. One should note that when one recovers the Haag & Kastler

approach, there is an additional and physically well-motivated constraint placed upon the

subregions labelling the local algebras, namely that they must be causally convex. This

means that when considered as regions (spacetimes) by themselves, the causal relationships

are exactly the same as when they are included in the main spacetime, which entails that

one cannot introduce new nor destroy existing causal relationships. The BFV approach

is to construct a theory simultaneously on all physically admissible spacetimes, that is,

globally hyperbolic spacetimes, using methods from category theory. We will now briefly

outline this approach in a non-categorical language. One considers two collections of ob-

jects: the set of all four-dimensional globally hyperbolic spacetimes and the set of unital

C∗-algebras. However each of these sets comes with some additional structure, namely a

collection of maps between the elements of the set. For the set of spacetimes, these maps
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are isometric embeddings that preserve time and spatial orientations as well as ensuring

that their images are causally convex. By composing the maps one can successively embed

a spacetime into another spacetime and then into another one whilst preserving all the

desired properties, and so obtain a map from the first spacetime into the final spacetime.

Also, for each spacetime, there is an identity map. The maps associated with the alge-

bras are injective (faithful) unit-preserving ∗-homomorphisms. These maps can also be

combined using composition of maps to successively embed one algebra within two other

algebras. There also exists an identity map for each algebra.

Just as for Haag & Kastler, where a quantum field theory is thought of as the assignment

of regions to algebras, in this instance, a locally covariant quantum field theory is a map

between the sets and their maps. Specifically it assigns to each spacetime an algebra,

and associates to each isometric embedding an injective unit-preserving ∗-homomorphism

between the algebras of the spacetimes involved in the embeddings. Note that an identity

map of a spacetime corresponds to the identity map of the corresponding algebra, and

compositions of embeddings is respected by the assignment of algebra embeddings. One

then imposes a causality relation, meaning a local commutativity relation, as well as a time-

slice condition on this assignment to complete the theory. This is a very brief description;

for the full details we refer the reader to [22, Sec. 2.1]. Note that our approach to the

case of linearized gravity will not focus on the categorical formulation but instead on the

actual construction of the algebra of observables for a given spacetime, though we will, in

chapter 6, describe briefly how our construction fits into the BFV framework.

Once an algebra containing all of the observables of the particular theory of interest

has been constructed, then one needs to consider the issues of states. This then allows

for a link up with measurements and hence experimental predictions. A state ω on an

algebra A is a linear functional ω : A → C satisfying two conditions. The first condition is

positivity, ω(A∗A) ≥ 0 for all A ∈ A. The second condition is the normalization condition,

ω(1) = 1, where 1 is the unit of A. The physical interpretations and connections to the

standard Hilbert space treatments of quantum theory arise through the Gel’fand, Naimark

and Segal (GNS) construction.

We now outline this construction for the case of a ∗-algebra. For a full description,

including the case of a C∗-algebra, see [52, pp. 122-124]. One begins by choosing a state ω

on the algebra A. From this, the GNS construction yields a quadruple (Hω,Dω, πω,Ωω),

where Hω is a Hilbert space, Dω ⊂ Hω is a dense subspace, πω is a ∗-homomorphism

from the algebra to unbounded operators on Hω, and Ωω ∈ Hω is a cyclic vector, which
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means that the set {πω(A)Ωω | A ∈ A} is dense in Hω, in fact this set is Dω. We

include subscript ω’s to highlight the dependence upon the choice of state used. The GNS

quadruple is unique up to unitary equivalence [5, p.38] and the physical interpretations

come from, as we will see, ω(A) being equal to the expectation value of a representation

of the observable A in the Hilbert space Hω.

The Hilbert space Hω is constructed directly from the algebraA by defining the product

of two elements A,B ∈ A to be 〈A,B〉 := ω(A∗B). Using the properties of states, one can

show that such a pairing satisfies all but one of the requirements of being an inner product.

What prevents it from being an inner product is the possible existence of non-trivial ele-

ments with zero-norm. This can be rectified by quotienting the algebra by the subspace con-

sisting of elements with zero-norm. The resulting space Dω consists of equivalence classes

of elements of the form [A]ω, where [A]ω := {B ∈ A | B = A + C,where ω(C∗C) = 0}.
This space thus has an inner product given by 〈[A]ω, [B]ω〉 = ω(A∗B). The completion of

Dω with respect to the norm induced by the inner product gives the Hilbert space Hω.

One now defines a map πω, which allows for the elements of the algebra (observables) to

be represented as operators on Dω ⊂Hω. By denoting an arbitrary element [B]ω ∈ Dω by

ψ, then for any A ∈ A one defines the action of πω(A) to be πω(A)ψ := [AB]ω. The map πω

can easily be shown to be a ∗-homomorphism. By defining Ωω = [1]ω, one sees immediately

from the definition of πω that this vector is cyclic, and that ω(A) = 〈Ωω, πω(A)Ωω〉. This

final point gives the interpretation of ω(A) as the expectation value of the observable A in

the state ω.

As one can see from the preceding discussions, the algebraic formulation cleanly sepa-

rates issues relating to observables, that is, relating to the algebra from issues relating to

states, meaning linear functionals on the algebra. We will now highlight these advantages

even more clearly by discussing the real scalar field.

3.2 Real scalar field

We now describe how one constructs the algebra of observables for the real scalar field on

an arbitrary globally hyperbolic spacetime. This issue was first considered by Dimock [26]

to serve as an example of a system which satisfied his generalisations of the Haag-Kastler

axioms. Our approach differs from his in that his focus is more on dealing with initial data

as opposed to solutions which we focus on. The construction that we now give will set the

scene for our treatment of linearized gravity in later chapters.
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We consider the case of the minimally-coupled3 scalar field φ ∈ C∞(M ; R) obeying the

Klein-Gordon equation,

(�−m2)φ, (3.2.1)

where � := gab∇a∇b. One may also obtain the Klein-Gordon equation from an action

principle. For the real scalar field, such an action is

S(φ) =
1

2

∫
M

(gab∇aφ∇bφ+m2φ2)dvolg. (3.2.2)

The covariant conjugate momentum, πa = δS
δ∇aφ , to this action is

πa = gab∇bφ,

and the Euler-Lagrange equation of (3.2.2) is precisely (3.2.1).

3.2.1 Phase space

The first issue is to construct a suitable phase space and class of observables for the real

scalar field. This then facilitates the attainment of a quantum theory, which will be fully

discussed after the phase space is constructed.

When considering field theories, the phase space is constructed from the space of solu-

tions to the field equation, possibly with the solutions supplemented by certain boundary

conditions as well. Such an approach may be unfamiliar to the student of classical me-

chanics, where one considers pairs of positions and momentums as points in the phase

space, and a system evolves, according to Hamilton’s equations, by following a curve of

such points. However, even in that instance, one could also consider the space of solutions

by identifying initial data with the corresponding solution (provided that the solution is

unique). This is what is done here; we could equally well have considered initial data, just

as was done in [26]. Note that for linear gauge theories, like linearized gravity, things are

not quite so simple, where one has uniqueness of solutions only up to pure gauge solutions.

The key point about a phase space is that it is supposed to describe the state of a system,

and the space of solutions will certainly achieve that goal here.

When it comes to considering the quantum theory, we would like to be able to per-

mit smearings against complex-valued test functions. As such, the phase space that we

3The non minimally-coupled case has a ξR term in the equation of motion, where ξ is a real constant,
and R is the Ricci scalar.
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construct will consist of complex-valued solutions to the Klein-Gordon equation4. This

space is just the complexification of the space of real-valued solutions. Using the space

of complex solutions will also permit the quantization to be achieved by the functorial

methods discussed in [37, Sec. 5]. Of course, the phase space of real solutions is contained

within the complex one, and indeed if one approached the quantum theory using the Weyl

algebra, then one would use the real phase space to do this [11, Sec 4.2].

To construct the complex phase space, we begin by considering the space of smooth

spacelike-compact complex-valued solutions to (3.2.1),

S(M ; C) := {φ ∈ C∞SC(M ; C) | (�−m2)φ = 0}.

The reasons for the additional boundary condition of spacelike-compactness are: (i) to

ensure that certain integrals, such as the yet-to-be-defined symplectic product, are well

defined, and (ii) if one specifies initial data of compact support then the solution to the

Klein Gordon equation will be spacelike-compact [11, Thm 3.2.11].

One should note that a standard assumption prevailing throughout the literature is

to use the boundary condition: compact support on Cauchy surfaces. However, such

a condition is imprecise as it is unclear whether there is a dependence on the foliation

of Cauchy surfaces chosen. An example that highlights this arises on two-dimensional

Minkowski spacetime, where we work with the global inertial coordinates (t, x). Consider

two foliations of spacelike Cauchy surfaces, one given by the surfaces t = x
2

+ c and the

other given by the surfaces t = −x
2

+d, where c, d are real constants that label the surfaces

in each foliation. If one now considers a field whose support lies within the spacetime slab

built from the surfaces in the first foliation for which c ∈ (−ε, ε), where 0 < ε < k and

ε, k ∈ R, then such a field will not necessarily have compact support on the Cauchy surfaces

in the first foliation, but it will always have compact support on the Cauchy surfaces of

the second foliation.

Even if one was able to make the definition of compact support on Cauchy surfaces

precise, there is still the following quandary to resolve: all spacelike-compact fields have

compact intersection with any Cauchy surface [11, Cor. A.5.4], but the converse, namely

that any field with compact support on Cauchy surfaces will be spacelike-compact, is not

true, as the following example from [32, p. 17] shows: consider four-dimensional Minkowski

spacetime and let f ∈ C∞(R4; C) have support of the form: supp f =
⋃
n∈N

{
1
n

}
× Bn,

where Bn is the open ball of unit radius in R3 centred at (4n, 0, 0) ∈ R3. In this case

4We caution that they are not the solutions from the theory describing a complex scalar field.
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supp f 6⊂ J(K) for any compact K ⊂ R4 but does have compact intersection with the

t = 0 hypersurface.

However, for the case that we are considering, both the imprecision of the definition

and the possibility that it would not be spacelike-compact are nullified by the properties

of the field equations and global hyperbolicity. If a solution has compact support on some

foliation of Cauchy surfaces, then its initial data on one of these Cauchy surfaces will also

be compactly supported. Hence, by property (ii) of spacelike-compactness from above,

this solution will be spacelike-compact, and consequently will have compact support on all

foliations by Cauchy surfaces.

All of the preceding discussions just serve to highlight why we prefer to work with the

much cleaner and precise property of spacelike-compactness. Also, the restriction to SC

coupled with the Klein-Gordon differential operator being normally hyperbolic entails that,

by Theorem 2.4.3, any φ ∈ S(M,C) can be written as

φ = Ef, (3.2.3)

where E = E− − E+ is the advanced-minus-retarded solution operator associated with

(�−m2) and f ∈ C∞0 (M ; C).

To make S(M,C) into a phase space, one needs to endow it with a symplectic product.

We have seen that the equation of motion for the real scalar field can arise from an action

principle (3.2.2), where the integrand would be a Lagrangian for the scalar field. The

presence of a Lagrangian means that the machinery of [68] is available for use. In fact,

it entails that we can endow the space of smooth spacelike-compact real-valued solutions

S(M ; R) with a symplectic product; one can then extend this to S(M ; C) by linearity.

Recall, that, just as in the case of classical mechanics [1, Ch. 8.1], one defines a symplectic

product ωφ at each point φ ∈ S(M ; C) by its action on the elements of the tangent space

TφS(M ; C) at that point. However, since in this case S(M ; C) is a vector space, we have the

identification S(M ; C) ∼= TφS(M ; C) for any φ ∈ S(M ; C), which means that ωφ will act on

elements from S(M ; C). By using the scalar field Lagrangian, L = 1
2
(gab∇aφ∇bφ+m2φ2),

in the expression [68, eqs (2.21) & (2.23)] for the symplectic product of a Lagrangian

field theory whose Lagrangian depends only on the field and its first derivatives, and then

extending the result by linearity to complex solutions, the symplectic product of any two
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solutions φ1, φ2 ∈ S(M ; C) is given by the standard expression,

ωΣ(φ1, φ2) :=

∫
Σ

(φ1π2 − φ2π1)dvolh, (3.2.4)

where

π = −naπa = −∇nφ, (3.2.5)

and Σ is a spacelike Cauchy surface with future-pointing unit normal vector n.

As (3.2.4) stands, there is the possibility for dependence on the Cauchy surface Σ where

it is evaluated. Actually, as we will now show, the symplectic product is independent

of choice of Cauchy surface, due to it being defined on the space of solutions. After

proving this we will henceforth drop the subscript Σ from ω. To prove the Cauchy surface

independence of ωΣ, we define, for any φ1, φ2 ∈ S(M ; C), a current

ja(φ1, φ2) := φ2π
a
1 − φ1π

a
2 ,

whose divergence is given by

∇aj
a(φ1, φ2) = φ2�φ1 − φ1�φ2 = φ2(�−m2)φ1 − φ1(�−m2)φ2. (3.2.6)

One can see, using (3.2.5), that

ωΣ(φ1, φ2) :=

∫
Σ

naj
a(φ1, φ2)dvolh.

This now allows us to prove the result.

Lemma 3.2.1 On the space of solutions S(M ; C), the symplectic product is independent

of the choice of spacelike Cauchy surface.

Proof. Let Σ and Σ′ be two arbitrary spacelike Cauchy surfaces. Without loss of generality

let Σ ⊂ I+(Σ′). Denote by V the region bounded by these two Cauchy surfaces. Applying

Gauss’ Theorem to the current ja(φ1, φ2) on this region one obtains∫
V

∇aj
a(φ1, φ2)dvolg = −

∫
Σ

naj
a(φ1, φ2)dvolh +

∫
Σ′
naj

a(φ1, φ2)dvolh.

Assuming that both φ1 and φ2 are solutions to the Klein Gordon equation, then by (3.2.6)

the divergence of the associated current vanishes and hence we have the desired result. �
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We have been referring to (3.2.4) as a symplectic product, even though we have not yet

verified that it is weakly non-degenerate, meaning that there are no non-trivial elements

of S(M ; C) that have vanishing symplectic product with all elements of S(M ; C). Such

elements would be referred to as degeneracies. We now prove that ω is weakly non-

degenerate.

Lemma 3.2.2 On the space S(M ; C), the only element of S(M ; C) that has vanishing

symplectic product with all elements of S(M ; C) is the trivial element.

Proof. Assume that φ ∈ S(M ; C) is a degeneracy, so ω(φ, φ′) = 0 for all φ′ ∈ S(M ; C).

Now select an arbitrary spacelike Cauchy surface Σ with future-pointing unit normal vector

n. Let φ′ be the solution with initial data (φ′|Σ,∇nφ′|Σ) = (0, φ∗|Σ). Calculating the

symplectic product of φ and φ′ at Σ we find that

0 = ω(φ, φ′) = −
∫

Σ

|φ|2dvolh.

Hence, φ|Σ = 0. Now take φ′ to be the solution with initial data (φ′|Σ,∇nφ′|Σ) =

(∇nφ∗|Σ, 0). This gives

0 = ω(φ, φ′) = −
∫

Σ

|∇nφ|2dvolh,

which means that ∇nφ|Σ = 0. Therefore the initial data for φ vanish and so φ = 0

globally [11, Cor. 3.2.4]. �

For the case of linearized gravity the proof of non-degeneracy is not so simple because

one has to take into account constraints on the initial data.

As we know from (3.2.3), any spacelike-compact solution may be written in terms of

the advanced-minus retarded solution operator. If one uses this in the symplectic product,

then one obtains the following standard (see [92, Lem 3.2.1], for example) and useful result.

Lemma 3.2.3 Given any φ ∈ S(M ; C) and any f ∈ C∞0 (M ; C), then

ω(Ef, φ) = −
∫
M

φfdvolg,

where E is the advanced-minus-retarded solution operator associated with the differential

operator (�−m2).

Proof. Expanding out the symplectic product using (3.2.4), one finds that

ω(Ef, φ) = −
∫

Σ

(φ∇nEf − Ef∇nφ)dvolh. (3.2.7)
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Define the covector field va := φ∇aE
+f − E+f∇aφ, whose divergence is

∇ava = φ�E+f − E+f�φ = φ(�−m2)E+f − E+f(�−m2)φ = φf, (3.2.8)

where in the final equality we have used that (�−m2)E+f = f and (�−m2)φ = 0.

Now select two spacelike Cauchy surfaces Σ and Σ′ satisfying Σ ⊂ I+(supp f) and

Σ′ ⊂ I−(supp f). Denote the region bounded by these two Cauchy surfaces by V . Applying

Gauss’ Theorem to the covector v on the region V we have∫
V

∇avadvolg = −
∫

Σ

navadvolh +

∫
Σ′
navadvolh.

Using the definition of v, the result (3.2.8), and that E+f and its derivative vanish at Σ′

by the support properties of the E±f ’s, we have∫
V

φfdvolg =

∫
Σ

(E+f∇nφ− φ∇nE+f)dvolh.

As E−f and its first derivatives vanish at Σ, one may replace E+ by −E to give∫
V

φfdvolg =

∫
Σ

(φ∇nEf − Ef∇nφ)dvolh.

Combining this with (3.2.7) and using that
∫
V
φfdvolg =

∫
M
φfdvolg, gives the result. �

We now shift our focus towards considering the observables of the theory. We are at-

tempting to describe a quantum theory of the scalar field, therefore the basic observables

should be the smeared quantum fields [26]. Hence, we will define classical counterparts

of the smeared quantum fields, and these will constitute a minimal collection of observ-

ables needed to formulate the theory. They are minimal in the sense that there are other

observables, most notably the stress-energy tensor, that will not be elements of this collec-

tion. However, when it comes to considering the quantum theory, it is possible to obtain

a reasonable result for the expectation value of the stress-energy tensor by restricting the

states of the theory to those that are of the Hadamard class. These states will be discussed

further in section 3.3.

The classical observables are defined by associating to each f ∈ C∞0 (M ; C) an observable

Ff : S(M ; C)→ C, whose action is given by

Ff (φ) =

∫
M

φfdvolg. (3.2.9)
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One notes immediately from Lemma 3.2.3 that

Ff (φ) = −ω(Ef, φ). (3.2.10)

This collection of observables satisfy a number of relations. The simplest of these relations

are stated in the next theorem, where the involution map ∗ is just complex conjugation.

When we consider the quantum observables, ∗ will correspond to taking the adjoint.

Theorem 3.2.4 The observables satisfy:

(i) Complex linearity: Fαf+βf ′(φ) = αFf (φ) + βFf ′(φ) for all α, β ∈ C and all f, f ′ ∈
C∞0 (M ; C);

(ii) Hermiticity: Ff (φ)∗ = Ff∗(φ
∗) for all f ∈ C∞0 (M ; C).

Proof. (i) uses linearity of the integrand and linearity of integration, and (ii) uses the

properties of complex-conjugation. �

Note that when one only considers the subspace of real solutions, the hermiticity relation

reduces to Ff (φ)∗ = Ff∗(φ) for all f ∈ C∞0 (M ; C), and it is this form of the relation that

will carry over to the quantum theory of the real scalar field.

The third relation obeyed by these observables is interpreted as stating that the Klein

Gordon equation holds weakly. It arises by considering under what circumstances an

observable Ff will just be the trivial observable Ff (φ) = 0 for all φ ∈ S(M ; C).

Theorem 3.2.5 Given any f ∈ C∞0 (M ; C), then

Ff (φ) = 0

for all φ ∈ S(M ; C) if and only if f = (�−m2)g for some g ∈ C∞0 (M ; C).

Proof. Consider the linear map F , which assigns an observable Ff to each compactly

supported smooth function f . By examining the kernel of this map, we will discover which

f ’s give trivial observables. Using (3.2.10), one can see that Ff (φ) = 0 for all φ ∈ S(M ; C)

if and only if ω(Ef, φ) = 0 for all φ ∈ S(M ; C). The non-degeneracy of ω entails that this

is true if and only if Ef = 0. Using the exact sequence of Theorem 2.4.3, then Ef = 0 if

and only if f = (�−m2)g for some g ∈ C∞0 (M ; C). �

The final aspect of classical theory that will be examined is the one remaining relation,

namely the Poisson bracket of two of the observables. We will follow the definition given

in [1, p. 568]. However, this definition requires one to use the differential of an observable,
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but as it stands, the space S(M ; C) does not come equipped with a smooth structure that

will allow for operations from calculus to be performed. This issue is not discussed in the

existing literature, but there is a very elegant method due to Frölicher that allows one

to endow a smooth structure to an infinite-dimensional manifold. The resulting space is

called a Frölicher space, see [66, Ch. 23] for a full discussion. To make S(M ; C) into a

Frölicher space, we follow the methodology set out in [66, p. 239], where one chooses a set

of scalar functions on S(M ; C) to serve as a generating set and then defines a curve to be

smooth if its composition with each of the generating functions is a smooth map. One then

obtains the space of smooth functions by saying that a function is smooth if its composition

with a smooth curve is a smooth map. For the case of S(M ; C), the symplectic product

ω will be used to construct the functions that will generate the smooth structure: a curve

c : R → S(M ; C) will be said to be smooth if the map t 7→ ω(φ, c(t)) is smooth for all

φ ∈ S(M ; C). A function G : S(M ; C)→ C is then deemed to be smooth if G◦ c : R→ C is

a smooth function for every smooth curve c. Here the functions ω(φ, ·), or equally ω(·, φ),

for some φ ∈ S(M ; C) are the generating set of the Frölicher space. Note that the ω(φ, ·)
are by definition contained within the set of smooth functions, and hence the symplectic

product is smooth in both of its arguments. We know from (3.2.10) that the functions Ff

can be expressed in terms of the symplectic product and so all of the Ff ’s that we consider

here are smooth functions.

The differential of a scalar function on the Frölicher space can therefore be defined in an

exactly analogous manner to the finite-dimensional case, see [83, eq. (1.3.1)], for example.

Given an F ∈ C∞(S(M ; C)), one defines its differential dF pointwise by the condition

dFφ(Vφ) = Vφ(F ) for all Vφ ∈ TφS(M ; C). Recall that tangent vectors are defined to

be equivalence classes of curves, where two smooth curves c1 and c2 are deemed to be

equivalent at φ ∈ S(M ; C) if d
dt

(F ◦ c1)|t=0 = d
dt

(F ◦ c2)|t=0 for all smooth functions F and

the parameterisations are chosen so that c1(0) = c2(0) = φ. As Vφ(F ) = d
dt

(F ◦ c)|t=0, then

we see that the differential of a smooth function can be defined on a Frölicher space.

With the preceding structures defined, we are now able to discuss the Poisson bracket

of two observables. Following [1, pp. 566-568], we take the Poisson bracket of two smooth

functions F,G ∈ C∞(S(M ; C)) to be given in terms of their exterior derivatives by

{F,G}([γ]) = dF ((dG)]ω)|[γ], (3.2.11)

where the Hamiltionian vector field (dG)]ω induced by G (]ω denotes the vector field
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generated using ω) satisfies

ω[γ]((dG)]ω |[γ], φ) = dG|[γ](φ) (3.2.12)

for all φ ∈ T[γ]S(M ; C). We will show in the proof of Theorem 3.2.6 that, for our

case, (dG)]ω |[γ] is uniquely defined by the condition (3.2.12). Here ω[γ] : T[γ]S(M ; C) ×
T[γ]S(M ; C) → C is the symplectic form at [γ] ∈ S(M ; C). Under the identification

T[γ]S(M ; C) ∼= S(M ; C), which was discussed earlier when the symplectic product was de-

fined, we can replace ω[γ] by ω : S(M ; C)×S(M ; C)→ C. This now allows for the Poisson

bracket of our observables to be calculated.

Theorem 3.2.6 The Poisson bracket of two observables Ff , Ff ′, where f, f ′ ∈ C∞0 (M ; C),

is given by

{Ff , Ff ′} = −E(f, f ′),

where the bi-distribution E is defined for all f, f ′ ∈ C∞0 (M ; C) by

E(f, f ′) :=

∫
M

fEf ′dvolg = Ff (Ef
′) = −ω(Ef,Ef ′). (3.2.13)

Proof. Using the definition of the Poisson bracket (3.2.11) & (3.2.12), we see that

{Ff , Ff ′} = dFf ((dFf ′)
]ω), (3.2.14)

and

ω((dFf ′)
]ω , φ) = dFf ′(φ).

As Ff is a linear map, we have dFf = Ff . Hence,

ω((dFf ′)
]ω , φ) = Ff ′(φ) = −ω(Ef ′, φ),

where we have used (3.2.10). By non-degeneracy of ω, we see that (dFf ′)
]ω = −Ef ′.

Substituting this result into (3.2.14) and again using that dFf = Ff , we see that

{Ff , Ff ′} = dFf ((dFf ′)
]ω) = −Ff (Ef ′).

Using the definition of the observables (3.2.9) and the definition of the bi-distribution (3.2.13),

the right-hand side of this equation is minus E(f, f ′). The final equality in (3.2.13) follows

directly from (3.2.10). �
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3.2.2 Quantization

We now move to quantize the classical theory and so obtain a quantum description of the

real-scalar field. This will be achieved using the algebraic approach discussed in section 3.1.

Specifically, for each globally hyperbolic spacetime (M, g) we will seek an associated algebra

of observables A(M, g) made up of quantum analogues of the classical observables (the

Ff ’s). A prescription for obtaining quantum observables from classical ones and with that

the algebraic relations between them was provided by Dirac. His approach is outlined in his

famous text [29, Ch. 22]. The basic premise is that given a collection of classical observables,

then one seeks quantum observables represented by operators on a Hilbert space whose

commutators are equal to i times their corresponding classical Poisson brackets. However,

we will not actually seek a Hilbert space nor any operators acting on that Hilbert space.

Instead we will use Dirac’s commutator identity as one of several relations that will be

enforced on an abstract algebra to give the final algebra of observables A(M, g). The

other relations will be the direct analogous of their classical counterparts. We will denote

the quantum observables by φ(f), where φ is not to be confused with a classical solution,

it merely labels that this object is describing the real scalar quantum field. The complete

list of relations obeyed by our quantum observables are:

(i) Complex-linearity: φ(αf + βf ′) = αφ(f) + βφ(f ′) for all f, f ′ ∈ C∞0 (M ; C) and for

all α, β ∈ C;

(ii) Hermiticity: φ(f)∗ = φ(f ∗) for all f ∈ C∞0 (M ; C);

(iii) Field equation: φ((�−m2)f) = 0 for all f ∈ C∞0 (M ; C);

(iv) Commutator: [φ(f), φ(f ′)] = −iE(f, f ′) for all f, f ′ ∈ C∞0 (M ; C)).

In the second relation, the involution ∗ is interpreted as taking the adjoint.

One might be concerned about the validity of Dirac’s prescription, in particular the

potential of operator ordering ambiguities arising (see [95, p. vi], for example) and also

the possibility of issues pertaining to the domains of unbounded operators and with that

the definition of commutators, see [80, Ch. 8] for a full discussion of issues relating to

unbounded operators. Now, the classical observables that we consider are linear and do

not suffer from ordering ambiguities, so that poses no obstruction, and as we are not

in this instance considering representations of the observables as operators on a Hilbert

space, there are no issues regarding the domain of the unbounded operators representing the

observables, nor issues regarding the definition of the commutator of unbounded operators.

Therefore these two potential obstructions do not cause any issues with our use of Dirac’s

prescription.
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The construction of the algebra of observables proceeds as follows [33, Ch. 5]. We

first construct the free unital ∗-algebra A generated by all the φ(f)’s. This means that A
consists of finite linear combinations of finite products of the φ(f)’s, their adjoints φ(f)∗

and the unit 1. However, as it stands, this algebra is too large, in that it does not take

into account the relations (i)-(iv) obeyed by the quantum fields. Therefore there will

exist elements of A which can be manipulated into the same form using the relations,

meaning that they are actually the same observable. To remove this issue one has to

enforce the relations on the algebra A. This is achieved as follows: consider the subset

P ⊂ A consisting of all finite linear combinations of elements of the form ABC such that

A,C ∈ A and B is one of the following

φ(αf + βf ′)− αφ(f)− βφ(f ′)

φ(f)∗ − φ(f ∗)

φ((�−m2)f)

φ(f)φ(f ′)− φ(f ′)φ(f) + iE(f, f ′)

for all α, β ∈ C and f, f ′ ∈ C∞0 (M ; C). This subset will thus consist of elements that

are to be regarded as zero, meaning that under the enforcement of the relations, they

could be shown to be the same observable. The subset P is a linear subspace of A. It is

also invariant under the adjoint operator as one can see from the definition of P and the

properties of the adjoint, and P is also, by definition, invariant under products from the

left and right by elements of A. All of these properties entail that P is a ∗-ideal.

The algebra of observables A(M, g) for the real scalar field on the globally hyperbolic

spacetime (M, g) is obtained by quotienting the algebra A by this ∗-ideal P , so

A(M, g) := A/P .

For the purpose of aesthetics, we do not include equivalence class parentheses on the

elements φ(f) ∈ A(M, g). It is assumed that they are implicit. The algebraic operation of

taking products carries straight over to the quotient space from A.

We have constructed the algebra of observables for the entire spacetime manifold with

elements being labelled by the test functions. One recovers the local algebras by considering

the subalgebra of elements for which the support of smearing tensors labelling them are

contained within a region O that has compact closure.
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Finally, to show that A(M, g) obeys the time-slice condition, we will prove that any

test function on the spacetime can be decomposed into a test function supported purely

within a connected causally convex neighbourhood of a Cauchy surface and a function that

is in the image of the Klein-Gordon operator acting on smearing functions. Combining this

decomposition with the third relation of the observables, namely that φ((� −m2)f) = 0

for all f ∈ C∞0 (M ; C), it is clear that if one knows the algebra on the neighbourhood, then

one knows it on the entire spacetime, and hence the time-slice property holds. We now

prove the decomposition.

Theorem 3.2.7 Given an arbitrary Cauchy surface Σ and a connected causally convex

neighbourhood N of Σ, then each f ∈ C∞0 (M ; C) may be decomposed as

f = f̃ + (�−m2)h,

for some f̃ ∈ C∞0 (N ; C) and h ∈ C∞0 (M ; C).

Proof. For the first part of this proof, namely the construction of a suitable χ+, we utilise

the ideas of [37, Lem 3.1]. Since N is causally convex, then it will be a globally hyperbolic

subset of M . Therefore one can select two Cauchy surfaces Σ± lying to the future/past of

Σ, which are both still contained within N . Take two scalar functions χ± ∈ C∞(M ; C),

which satisfy χ+ = 1 in J+(Σ+), χ+ = 0 in J−(Σ−), and χ+ + χ− = 1 globally. (Since

J+(Σ+) and J−(Σ−) are closed and disjoint sets, then the existence of χ+ is guaranteed

by [1, Prop. 5.5.8]. One then defines χ− by the condition χ+ + χ− = 1.)

Now, define

f̃ := −P (χ+Ef).

One sees immediately from this that f̃ = P (χ−Ef). As −χ+Ef and χ−Ef solve P (φ) = f̃

with past and future compact support respectively, we conclude, by Theorem 2.4.2, that

−χ+Ef = E+f̃ and χ−Ef = E−f̃ . Combining these results gives Ef̃ = Ef . Now by the

exact sequence of Theorem 2.4.3, we have E(f̃ − f) = 0 if and only if f̃ − f = P (h) for

some h ∈ C∞0 (M ; C). �

3.3 Hadamard states for the scalar field

As discussed earlier, a state on A(M, g) is a linear functional ω : A(M, g)→ C satisfying

ω(A∗A) ≥ 0 for all A ∈ A(M, g) and ω(1) = 1. If one were to take the entire collection
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of states on the algebra A(M, g) as being physically admissible, then one could run into

serious difficulties. Notably, one might not be able to define a suitable expression for the

expectation value of the stress-energy for the quantum field. The possession of such an

object is crucial if one wants to explore issues relating to backreaction, that is, how the

presence of the quantum field influences the background spacetime geometry. To remedy

this particular situation, one can impose a requirement on the states, which ensures that

physically reasonable results can be calculated. The Hadamard condition is the requirement

that proves sufficient to these purposes and it has become the basic property required of a

state (from a free quantum field theory) to be deemed physical.

The Hadamard condition fixes the singular behaviour of the two point function of the

quantum field in a particular class of states. We will henceforth restrict attention to quasi-

free states [21, p. 640], that is, states whose n-point functions vanish if n is odd, and if

n is even, are completely determined by the two-point function, meaning they are made

up of products of the two-point function. This restriction entails that the focus can be

entirely upon the two-point function rather than being concerned about the other n-point

functions.

The Hadamard condition came to prominence through attempts at defining an ex-

pectation value for stress-energy tensor through the point-splitting technique, which was

first proposed by De Witt [25]. Here, instead of considering the ill-defined Wick square

ω(φ(x)φ(x)), one considers the two-point function ω(φ(x)φ(x′)), where x 6= x′. The expres-

sion ω(φ(x)φ(x′)) is a well-defined bi-distribution that is singular in the limit x′ → x. To

resolve this and obtain something smooth, one subtracts off another bi-distribution that

has been locally constructed from the geometry and the Klein-Gordon operator. Such a

construction uses techniques formulated by Hadamard and hence his name is attributed

to these states [92, Sec 4.6]. If one was working in Minkowski spacetime then the bi-

distribution that is subtracted off corresponds to the expression ω(φ(x)φ(x′)) in the vacuum

state and so gives the standard normal ordering prescription available there. However, for

many years this procedure did not have a precise and rigorous formulation. This situation

was rectified by the seminal paper of Kay and Wald [65], where a fully precise and rigorous

definition was supplied. Returning briefly to the discussion of the stress-energy tensor, if

the two point function has this desired Hadamard behaviour then an expectation value of

the stress-energy tensor in this state may be constructed [90, Sec. IV].

Soon after the definition of the Hadamard form was laid down by Kay and Wald, it was

reduced into an elegant form by Radzikowski [79] who brought to fruition the pioneering
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work of Duistermaat and Hörmander [31]. He showed how the Hadamard condition of Kay

and Wald [65, Sec. 3.3] could be characterised in terms of the two-point function’s wavefront

set. Recall that the wavefront set highlights the singular behaviour of a distribution and

so the use of this object is well-motivated in this instance. Radzikowski’s definition is now

the modern and well-established definition of Hadamard states and it is the one that will

be used here. The result states that a bi-distribution W : C∞0 (M ; C) × C∞0 (M ; C) → C,

in this instance the two-point function, which is a bi-solution to (�−m2) modulo smooth

function is said to have Hadamard form if [79, Thm 5.1] its wavefront set is

WF(W ) = {(x,k;x′,−k′) ∈ Ṫ ∗(M ×M) | (x,k) ∼ (x′,k′) and k ∈ V +

x },

and its antisymmetric part is given by

W (f, f̃)−W (f̃ , f) = −iE(f, f̃),

for all f, f̃ ∈ C∞0 (M ; C), where E was defined in (3.2.13). In the wavefront set condition,

V
+

x denotes the closed future lightcone in T ∗xM , and the equivalence relation is defined

by (x,k) ∼ (x′,k′) if and only if k′ is the parallel transport of k along a null geodesic

connecting x and x′. For the special case that x = x′, the condition reduces to k = k′ is

null.

With these definitions established, a state ω is said to be a Hadamard state if and only

if its two-point function is a Hadamard form bi-distribution. Though having defined what

a Hadamard state is, one is still left with the question of existence of Hadamard states

on general globally hyperbolic curved spacetimes. A proof of existence on such spacetimes

was achieved by [47] who used a deformation argument to show that the problem reduces

to finding Hadamard states on ultrastatic spacetimes, which they duly established.
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Chapter 4

Linearized Gravity

As its name suggests, linearized gravity is a linear approximation to the classical theory of

gravity described by general relativity. It entails fixing some known background spacetime

(M, g0) and then approximating the behaviour of other spacetimes that are in a certain

sense, to be defined, close to the background. This is achieved by using quantities defined

purely on the background spacetime.

By utilising an approximation to a full theory, one must always bear in mind the

circumstances under which the approximation will be valid. Indeed, the domain of appli-

cability of linearized gravity includes, for example [91, Sec. 4.4], deriving the Newtonian

approximation from full general relativity and the description of gravitational waves.

The full setup of the theory will be now described. Apart from section 4.1, this chapter

constitutes an expansion of chapters two & three and appendix A.2 of the paper [34]

cowritten by the author with Dr C. J. Fewster.

4.1 Perturbations of spacetimes

In this section we review the geometrical setup proposed by Stewart & Walker [84] for

the consideration of perturbations of spacetimes. They were partly motivated by the work

of Sachs [81, pp. 556-557] who considered the issue of formulating perturbation theory

in a coordinate invariant manner. The Stewart & Walker framework utilises the work of

Geroch [50], which concerns how to take limits of spacetimes.

The assumptions that Stewart & Walker make [84, p. 53] are that a spacetime (M, g)

consists of a smooth, real, connected, Hausdorff four-dimensional manifold M together

with a smooth Lorentzian metric g. These assumptions coincide with ours, see section 2.2,
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except that we further impose that our spacetimes be orientable, time-orientable and glob-

ally hyperbolic. Note that Stewart & Walker choose the opposite signature convention to

ours for their spacetime metric, but this difference has no influence on any results.

As mentioned in the preamble of this chapter, one begins with a known background

spacetime (M0, g0), which is where all the comparisons between physical fields will be

made. One then postulates that there exists a (perturbed) spacetime (M1, g1) and that

these two spacetimes are members of a continuous (to be defined) one-parameter family of

spacetimes (Mλ, gλ) labelled by λ. To describe this situation more satisfactorily, [84] utilise

the idea of [50] and introduce a five-dimensional, smooth, Hausdorff manifold N , which

contains the Mλ’s as smooth, properly embedded and non-intersecting, four-dimensional

submanifolds. The parameter λ is a continuous real-valued function on this five manifold,

and its level surfaces are the Mλ’s. Having given meaning to the continuous one-parameter

family of spacetimes, the issue now moves to considering how to compare the physical

quantities on different spacetimes.

Although it would simplify matters greatly, one cannot just freely compare tensors on

different manifolds any more than one cannot freely compare tensors from different points

on the same manifold. Comparisons can only be made at one spacetime point. This is the

reason behind our earlier statement that all comparisons will be made on the background

spacetime. To do this requires the introduction of a suitably smooth map between the

manifolds from which we can then use the pullback map to move the required tensor fields

to the background for comparison. By selecting a map between the manifolds we will thus

be making a decision as to when a point pλ ∈Mλ is to be identified with a point p0 ∈M0.

However, by making such a choice, we should not be prejudicing the physics, meaning that

any results should not depend upon the choice of map used. The freedom in this choice of

map thus constitutes a gauge freedom.

A suitable map may be constructed by using the local flow along the integral curves of a

vector field V ∈ C∞(T 1
0 (N ; R)), which is nowhere tangent to any of the Mλ’s; such a vector

field will be said to be transverse [84]. In order to ensure consistency, V ’s normalisation is

chosen so that the parameter along its integral curves coincides exactly with λ. Therefore

V ’s flow, φλ, would map points in M0 to points in Mλ.

If we are interested in some physical quantity described by a tensor field T λ on each

Mλ, then it can be compared against the background value T 0 as follows. Given a suitably

normalised transverse vector field, using the one-parameter family of pullbacks associated

with the local flow, one can define a tensor field φ∗λT λ on M0. The pullback quantity φ∗λT λ
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depends smoothly on λ and so can be expanded using Taylor’s Theorem as:

φ∗λ(T λ) = T 0 + λ£V T λ|λ=0 +O(λ2),

where V is the vector field on N generating the identification map φλ. The order λ term,

£V T λ|λ=0, is called the linear perturbation of T .

One can highlight the gauge freedom that we mentioned earlier by considering two

choices of transverse vector field V ,U , and examining the difference between the two

associated linear perturbations:

£V T λ|λ=0 −£UT λ|λ=0 = £wT λ|λ=0,

where we have used the properties of the Lie derivative and defined, w := (V −U)|λ=0 ∈
C∞(T 1

0 (M0; R)). This shows that the gauge freedom in the linear perturbations is precisely

characterised by elements of the form £wT λ|λ=0, where w is a smooth vector field on M0.

For the case of perturbations of the spacetime metric, these pure gauge terms become £wg.

The spacetime metric is the dynamical object that describes the gravitational field in

general relativity. By applying the above procedure to it, we can obtain a linear approxi-

mation of the perturbed spacetime metric in terms of the background spacetime metric and

an object, henceforth referred to as the perturbation, defined on the background spacetime.

Specifically,

φ∗λ(gλ) = g0 + λ£V gλ|λ=0 +O(λ2). (4.1.1)

We also henceforth use a shortened notation for the perturbation, γ := £V gλ|λ=0. Coupling

this with a standard abuse of notation, namely using just gλ for the pulled-back spacetime

metric φ∗λ(gλ), yields the well-known expansion of the spacetime metric,

gλ = g0 + λγ +O(λ2). (4.1.2)

The perturbation γ is the primary object of linearized gravity and it will appear throughout

the remainder of this thesis.

For a spacetime to be deemed physically admissible in general relativity it must solve

the Einstein equations. If the background and perturbed spacetime are assumed to solve

the Einstein equation, then we are thus now led to consider what equation the perturbation

γ has to obey if (4.1.2) is going to be said to approximate the metric of the perturbed

spacetime. This question is answered in the next section of this chapter.
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4.2 Linearized Einstein equation

As we have just discussed, it will be assumed that the spacetimes in our one-parameter

family all obey the Einstein equation,

Gab + Λgab = κTab, (4.2.1)

where Gab = Rab − 1
2
Rgab is the Einstein tensor, Λ is the cosmological constant and Tab

is the stress tensor. We now wish to study the behaviour of the perturbed spacetime

metric by using its decomposition (4.1.2) in terms of the background metric and a linear

perturbation.

If one pulls back the Einstein equation from the perturbed spacetime and then expands

it as a Taylor series, one obtains

G0
ab + Λg0

ab + λLab(γ) +O(λ2) = κT 0
ab + λκT linab +O(λ2), (4.2.2)

where a superscript zero refers to the background quantity, Lab(γ), henceforth referred to

as the linearized Einstein tensor with cosmological constant, is the linearization of the term

Gab + Λgab, and T linab is the linearized stress-energy tensor. As the background spacetime

solves the Einstein equation, G0
ab + Λg0

ab = κT 0
ab, then up to order λ2 terms, we are left

with the linearized Einstein equations,

Lab(γ) = κT linab , (4.2.3)

to govern the behaviour of the perturbation γ. We will set T linab ≡ 0.

Therefore we are left with the linearized Einstein equation,

Lab(γ) = 0. (4.2.4)

To calculate the left-hand side of this equation, one follows the standard method of lin-

earizing a differential equation: postulate the existence of a one parameter family of exact

solutions g(λ), and calculate d
dλ

(Gab(λ) + Λgab(λ)) |λ=0, which gives:

Lab(γ) = −1

2
∇a∇bγ −

1

2
�γab + gcd∇c∇(aγb)d

− 1

2
gab
(
∇c∇dγdc −�γ − γcdRcd

)
+

(
Λ− 1

2
R

)
γab, (4.2.5)
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where we have used that γ = d
dλ
g(λ)|λ=0. Note that just as in the previous chapter,

� := gab∇a∇b.

We now need to consider the issue of gauge invariance of L, that is, if a perturbation γ

solves this equation, then so should any other perturbation related to γ by a pure gauge

term, as they would be physically equivalent. Therefore we seek to enforce the condition

Lab(£wg) = 0 for all w ∈ C∞(T 1
0 (M ; R), which will result in L being gauge invariant. One

may calculate, using (4.2.5), that

Lab(£wg) = £w(Gab + Λgab). (4.2.6)

The right-hand side of this vanishes for all w if and only if Gab + Λgab = 0 [84, Lem. 2.2].

Therefore we henceforth restrict attention to cosmological vacuum background spacetimes,

that is, background spacetimes whose metric obeys the cosmological vacuum Einstein equa-

tion, Gab + Λgab = 0. This restriction entails that the linearized Einstein tensor with

cosmological constant (4.2.5) simplifies to

Lab(γ) = −1

2
∇a∇bγ−

1

2
�γab+gcd∇c∇(aγb)d−

1

2
gab
(
∇c∇dγdc −�γ − Λγ

)
−Λγab. (4.2.7)

Later it will be important, when considering the algebraic relations obeyed by the

observables, to consider how L’s action can be extended to include general smooth rank

(0, 2) tensor fields. In fact, since any rank (0, 2) tensor field decomposes into a symmetric

and an antisymmetric part, by extending L’s action to antisymmetric tensors, then its

action will be extended to all rank (0, 2) tensor fields. The extension we choose entails that

when L acts on an antisymmetric tensor field then it vanishes identically and reduces back

to (4.2.7) when acting on symmetric tensor fields. Explicitly, for any f ∈ C∞(T 0
2 (M ; R)),

L is defined to be

Lab(f) = −1

2
gab(∇c∇df(cd)−�f −Λf)−Λf(ab)−�f(ab)−

1

2
∇a∇bf +

3

2
∇c∇(afbc). (4.2.8)

Unfortunately, the linearized Einstein tensor with cosmological constant is a non-

hyperbolic differential operator. This presents difficulties when it comes to dealing with

issues pertaining to the existence of solutions to the linearized Einstein equation (4.2.4).

However, in this case, it is not so troublesome because there exists a decomposition of

Lab(γ) into the action of a hyperbolic differential operator acting on γ and the trace-reversal

(to be defined shortly) of a pure gauge perturbation. As we will see in section 4.6.1, this
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hyperbolic differential operator will be utilised to prove the existence of solutions to the lin-

earized Einstein equation. The decomposition requires the introduction of two operators.

The first is the normally hyperbolic partial differential operator

P cd
ab := �δcaδ

d
b − 2Rc d

ab . (4.2.9)

Note that if one takes the trace of the action of P on some f ∈ C∞(T ab (M ; R)), then one

obtains

gabP cd
ab fcd = �f + 2Rabfab, (4.2.10)

where f = faa is the trace of f .

Differential operators of the form of (4.2.9) were previously considered by Lichnerow-

icz [70], see equation (10.4) of that reference. He considered the construction of propagators

obeying such equations, but his constructions were purely local in nature, unlike the results

that we will present later. In fact the Laplacian he defined, which we denote by �L, is

related to our P via

P cd
ab fcd = −�Lfab +R c

a fcb +R c
b fac.

The second operation that is required is the trace-reversal of a perturbation. Given a

γ ∈ C∞(T 0
2 (M ; R)), the trace-reversal of γ, denoted by γ, is defined as

γab := γab −
1

2
gabγ,

and it satisfies the conditions γab = γab and γ = −γ.

On the background spacetimes that we restrict to, these two operators commute as the

next lemma shows.

Lemma 4.2.1 On a cosmological vacuum background spacetime, P commutes with trace

reversal. In particular, P (γ) = 0 if and only if P (γ) = 0.

Proof. Given a f ∈ C∞(T 0
2 (M ; R)), we now compute what P (f) equals:

P cd
ab fcd = (�δcaδ

d
b − 2Rc d

ab )fcd = (�δcaδ
d
b − 2Rc d

ab )fcd −
1

2
gab(�f + 2Rcdfcd)

= �(fab −
1

2
gabf)− 2Rc d

ab fcd − gabΛf,
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where we have used (4.2.10). Now, gcdR
c d
ab f = −Rabf = −Λgabf and therefore

P cd
ab fcd = �(fab −

1

2
gabf)− 2Rc d

ab fcd + gcdR
c d
ab f

= �fab − 2Rc d
ab (fcd −

1

2
gcdf) = �fab − 2Rc d

ab f cd = P cd
ab f cd.

�

We now move to consider the decomposition of L, which is analogous to the well-

known result from electromagnetism, where the Maxwell equation for the vector potential

is equal to a hyperbolic differential equation plus a pure gauge term. Specifically, using

the differential forms notation of section 2.5, if A is the vector potential then the source-

free Maxwell equation takes the form, −δdA = 0. The Laplace-Beltrami operator �̃A =

−(δd+dδ)A is a normally hyperbolic differential operator and it is immediately clear from

its definition that

−δdA = �̃A+ dδA, (4.2.11)

which shows how the Maxwell equation is equal to the action of a hyperbolic differential

operator on the vector potential, and a pure gauge term. The version for the linearized

Einstein tensor with cosmological constant is now proven. One should note the prominence

of the trace-reversal in this decomposition. In fact, it will have a prevalent role through-

out our discussions. Both the Maxwell and linearized gravity decompositions have been

subsequently discussed by Hack and Schenkel [55].

Theorem 4.2.2 For any γ ∈ C∞(S0
2(M ; R)), on a cosmological vacuum background space-

time,

2Lab(γ) = −P cd
ab γcd + (£(∇·γ)]g)ab (4.2.12)

or equivalently

2Lab(γ) = −P cd
ab γab + (£(∇·γ)]g)ab. (4.2.13)

Proof. The Lie derivative term is

(£(∇·γ)]g)ab = ∇a∇cγcb +∇b∇cγca − gab∇c∇dγdc,
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which upon expanding γ becomes

(£(∇·γ)]g)ab = ∇a∇cγcb −
1

2
∇a∇bγ +∇b∇cγca −

1

2
∇b∇aγ − gab∇c∇dγdc +

1

2
gabgdc∇c∇dγ

= ∇a∇cγcb +∇b∇cγca −∇a∇bγ − gab(∇d∇cγcd −
1

2
�γ), (4.2.14)

where we have used the result for a torsion-free connection that covariant derivatives com-

mute when acting on scalar functions, that is, ∇a∇bγ = ∇b∇aγ. The first and second

terms on the right-hand side of (4.2.14) may be rearranged as follows. (We show this for

the first term only as the second term is identical except for interchange of the indices a

and b.) Utilising the Riemann tensor identity (2.1.1) and that Rab = Λgab we have

∇a∇cγbc = gcd∇a∇dγbc = gcd(∇d∇aγbc +R e
adb γec +R e

adc γbe)

= ∇c∇aγbc +R c e
a b γec −R e

a γbe

= ∇c∇aγbc −Rc e
ab γec − Λγba.

Therefore

(£(∇·γ)]g)ab = ∇c∇aγbc +∇c∇bγac − 2Λγab − 2Rc d
ab γcd −∇a∇bγ − gab(∇d∇cγcd −

1

2
�γ).

(4.2.15)

The P (γ) term is

−P cd
ab γcd = −�γab +

1

2
gab�γ + 2Rc d

ab γcd + Λgabγ. (4.2.16)

The first identity (4.2.12) is obtained by combining (4.2.15) and (4.2.16), and then compar-

ing this with (4.2.7). The second identity (4.2.13) follows from the first by using Lemma 4.2.1

and that trace-reversal is an involution. �

We now discuss two identities that will both be utilised in section 4.7 when we consider

Green’s operators. The first identity shows the result of taking the divergence of P (γ).

Lemma 4.2.3 For any γ ∈ C∞(T 0
2 (M ; R)), on a cosmological vacuum background space-

time,

∇a(P cd
ab γcd) = (� + Λ)∇aγab. (4.2.17)

Proof. Expanding out the left-hand side of (4.2.17) gives

∇a(P cd
ab γcd) = ∇a�γab − 2(∇aRc d

ab )γcd − 2Rc d
ab ∇aγcd. (4.2.18)
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On cosmological vacuum spacetimes we have that Rab = Λgab and so, in this case, the

contracted Bianchi identity, ∇aR
a

bcd +∇bRcd−∇cRbd = 0, reduces to ∇aR
a

bcd = 0. Hence

(4.2.18) becomes

∇a(P cd
ab γcd) = ∇a�γab − 2Rc d

ab ∇aγcd. (4.2.19)

We now re-express the first term on the right-hand side of this equation,

∇a�γab = gacgde∇c∇d∇eγab

= gacgde(∇d∇c∇eγab +R f
cde ∇fγab +R f

cda ∇eγfb +R f
cdb ∇eγaf ), (4.2.20)

where in the second line we have used the Riemann tensor identity (2.1.1). The first term

on the right-hand side of (4.2.20) can again be manipulated using the Riemann tensor to

give

∇d(∇c∇eγab) = ∇d(∇e∇cγab +R h
cea γhb +R h

ceb γah)

= ∇d∇e∇cγab + (∇dR
h

cea )γhb +R h
cea ∇dγhb + (∇dR

h
ceb )γah +R h

ceb ∇dγah.

(4.2.21)

Substituting (4.2.21) back into (4.2.20) and performing the contractions over the indices a

& c and d & e one finds that

∇a�γab = �∇aγab + (∇eR h
e )γhb +Rdh∇dγhb + (∇eRa h

eb )γah

+Rad h
b ∇dγah −Raf∇fγab +Ref∇eγfb +Rae f

b ∇eγaf .

The second and fourth terms on the right-hand side vanish whilst the third and sixth terms

cancel each other. Finally, substituting Rab = Λgab and relabelling indices gives

∇a�γab = �∇aγab + Λ∇aγab + 2Rad c
b ∇dγac. (4.2.22)

Combining (4.2.19) and (4.2.22) yields the desired result. �

The second identity considers the action of P on pure gauge perturbations.

Lemma 4.2.4 Given a w ∈ C∞(T 1
0 (M ; R)) on a cosmological vacuum background space-

time, then

P (£wg) = £(�+Λ)wg. (4.2.23)

62



Proof. Expanding out the right-hand side of (4.2.23) gives

(£(�+Λ)wg)ab = ∇a(� + Λ)wb +∇b(� + Λ)wa = 2∇(a�wb) + 2Λ∇(awb). (4.2.24)

Using the Riemann tensor identity (2.1.1) we have

∇a�wb = gcd∇a∇c∇dwb = gcd(∇c∇a∇dwb +R e
acd ∇ewb +R e

acb ∇dwe)

= gcd(∇c∇d∇awb + (∇cR
f

adb )wf +R f
adb ∇cwf +R e

acd ∇ewb +R e
acb ∇dwe),

whereupon substituting Rab = Λgab gives

∇a�wb = �(∇awb)− Λ∇awb + 2R c d
a b ∇cwd + wd∇cR d

acb .

We know from the proof of Lemma 4.2.3 that ∇aR
a

bcd = 0 on cosmological vacuum back-

ground spacetimes, hence

∇a�wb = �(∇awb)− Λ∇awb + 2R c d
a b ∇cwd.

Substituting this and the interchanged indices version into (4.2.24) gives the result (4.2.23).

�

One may also obtain the linearized Einstein equation (4.2.4) by performing a second

order expansion, in terms of the metric perturbation γ, of the Einstein-Hilbert action

S =

∫
M

(R− 2Λ)dvolg, (4.2.25)

for a cosmological vacuum background spacetime. The first-order terms in such an expan-

sion contribute a total divergence and the zeroth-order terms make up the Lagrangian of

the background spacetime. It is the quadratic part of the Lagrangian that we seek and

this is given by

L = T abcdef∇aγbc∇dγef + Sabcdγabγcd (4.2.26)

with

T abcdef =
1

4
(gadgbcgef + gafgd(bgc)e + gd(bgc)fgae − gadge(bgc)f − ga(egf)dgbc − gd(bgc)agef )
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and

Sabcd =
Λ

4
gacgbd +

Λ

4
gbcgad − Λ

4
gabgcd.

These two tensors possess the following symmetries. T abcdef is symmetric on interchange

of the indices b with c, e with f , and abc with def . Sabcd is symmetric on interchange of

the indices a with b, c with d, and ab with cd.

To obtain the Euler-Lagrange equation, one varies the Lagrangian (the action) with

respect to γab and ∇cγab. The variation with respect to ∇cγab will be called the covariant

conjugate momentum Π and explicitly it is given by

Πcab = −1

2
∇cγab+

1

2
gab∇cγ−1

2
gab∇dγ

cd−1

4
gcb∇aγ−1

4
gca∇bγ+

1

2
∇aγcb+

1

2
∇bγca. (4.2.27)

The Euler-Lagrange equations then give

∇cΠ
cab − 2Sabcdγcd = 0. (4.2.28)

The next lemma establishes that the left-hand side of this equation is always equal to the

linearized Einstein tensor with cosmological constant, and so (4.2.28) is just the linearized

Einstein equation.

Lemma 4.2.5 On a cosmological vacuum background spacetime, for γ ∈ C∞(S0
2(M ; R))

the following equality holds

Lab(γ) = ∇cΠ
cab − 2Sabcdγcd.

Proof. Explicitly, the expressions on the right-hand side of this equation are

∇cΠ
cab = −1

2
�γab+

1

2
gab�γ−

1

2
gab∇c∇dγ

cd− 1

2
∇a∇bγ+

1

2
∇c∇aγcb+

1

2
∇c∇bγca (4.2.29)

and

2Sabcdγcd =
Λ

2
γab +

Λ

2
γba − Λ

2
gabγ

= Λγab − Λ

2
gabγ. (4.2.30)

Combining (4.2.29) and (4.2.30) in ∇cΠ
cab − 2Sabcdγcd, and then comparing this to (4.2.7)

gives the result. �

Henceforth we will restrict attention to perturbations with spacelike-compact support,
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that is, perturbations whose support is contained within J(K) for some compact subset

K ⊂ M . The reasons for doing this are discussed extensively, for the case of the scalar

field, in section 3.2.1. As we discussed there, spacelike-compactness ensures that certain

integrals will be well-defined. Also, as solutions to a homogeneous hyperbolic differential

equation with compactly supported initial data will have spacelike compact support [11,

Thm 3.2.11], then the choice is well-motivated for the scalar field case. Of course, for

linearized gravity, the linearized Einstein equation is not hyperbolic, but we will frequently

exploit its relationship to the hyperbolic differential operator P , and so this adds further

reason to consider spacelike-compact perturbations. Note that the condition of compact

support on Cauchy surfaces is used in the literature, see [9], for example.

We also henceforth make the following notational choices: the space of spacelike-

compact symmetric rank (0, 2) tensors are denoted by

T (M ; R) = C∞SC(S0
2(M ; R)),

whilst the subspace of this space that consists of solutions to the linearized Einstein equa-

tion is denoted by

S (M ; R) = {γ ∈ T (M ; R) | Lab(γ) = 0}.

4.3 Linearization instabilities

The way in which we have set up the linearized Einstein system, one might be led to

believe that once one has solved the linearized Einstein equation then one has a good

approximation to a solution to the full Einstein equation. However, as was first pointed

out by [20] for the case of a spacetime with topology R×T 3, there exist spurious solutions

to the linearized Einstein equation that will not be tangent to a curve of exact solutions

to the Einstein equation. Hence, these spurious solutions should not be deemed physically

admissible. A spacetime is said to be linearization stable if and only if there are no spurious

solutions to the linearized Einstein equations [73, p. 493]. It was shown by Moncrief [73]

that spacetimes admitting a compact Cauchy surface and solving the vacuum Einstein

equation with no cosmological constant are linearization stable if and only if they contain

no global Killing vector fields. He subsequently showed in [74] that in a spacetime solving

the vacuum Einstein equation, possessing a compact Cauchy surface and non-trivial global

Killing vector fields, a necessary condition for a solution to the linearized Einstein equation

to approximate a curve of exact solutions is that the Taub conserved quantity associated
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to each Killing vector field must vanish. The Taub conserved quantities are defined relative

to a spacelike Cauchy hypersurface by [74, eq. (3,19)]:

TX(γ) :=

∫
Σ

(XanbL2
ab(γ,γ))dvolh,

where X is the Killing vector field, n is the future-pointing unit normal vector to Σ and

L2
ab(γ,γ) consists of the terms quadratic in γ from d2

dλ2
(Gab(λ))|λ=0. The Taub quantities

TX(γ) are independent of the choice of Cauchy surface [74, Sec. 3] and are also gauge

invariant [74, Sec. 5].

To prove all of the preceding results, Moncrief used methods from the Arnowitt-

Deser-Misner formulation of general relativity. We discuss this formulation at length in

section 5.2, as related results due to Moncrief are required to establish the weak non-

degeneracy of the symplectic product, which we define in (5.1.1).

The preceding analysis still holds true if one includes a non-zero cosmological constant

in the Einstein equations, that is, if one works, as we do, with cosmological vacuum space-

times. One can prove this by following Moncrief’s arguments from the papers [73, 74], but

using the modified forms (for the Λ 6= 0 case) of the various quantities used there. The

relevant quantities are available in section 5.2. Therefore linearization instability analysis

holds true for all cosmological vacuum spacetimes, which admit a compact Cauchy surface.

Having established the necessary condition for a perturbation to be deemed physical,

it is interesting to discover whether this condition is also sufficient. It turns out, for the

case of a spacetime admitting a compact Cauchy surface and solving the vacuum Einstein

equation with vanishing cosmological constant, that the vanishing of the Taub quantities

is sufficient to ensure that a solution to the linearized Einstein equation approximates a

curve of exact solutions. However, this was proven [6] under the restriction that one of the

compact Cauchy surfaces has constant mean curvature, and at this point we are not aware

of any generalisations of this result.

For the case that the spacetime only admits non-compact Cauchy surfaces then it is not

so clear whether such issues also exist. As is discussed in [74, Sec. 6], non-compactness in-

troduces certain boundary terms which entail that the correspondence between DΦ(h,$)

and its adjoint (see equation (5.2.6)), which is used in [74, Sec. 2], is not available in

this instance. One might think that due to our restriction of spacelike-compactness, any

such boundary terms would be removed, which would thus ensure that the correspon-

dence (5.2.6) holds in the non-compact case too, and hence the issues concerning Killing
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vectors are also relevant for this case too. However, this is debatable and we have not yet

managed to resolve it.

The linearization stability issues for spacetimes admitting a compact Cauchy surface

carry over to the quantum theory [75]. However, they do not manifest themselves in

the algebra of observables but rather in states of the theory. Specifically, they determine

whether or not a state is physically admissible. Our focus for the forthcoming chapters is

the construction of the algebra of observables and so we postpone any further discussion

of these issues until we consider states in section 6.2.

4.4 Pure gauge subspaces

We will now discuss the spaces of pure gauge perturbations. Due to the restriction to

spacelike-compact perturbations we are led to consider two spaces of pure gauge perturba-

tions. Primarily we will be concerned with the space

G (M ; R) := {£wg | w ∈ C∞SC(T 1
0 (M ; R))},

which consists of pure gauge perturbations that are sourced by spacelike-compact vector

fields. However, it will also be necessary, when the background spacetime does not admit

a compact Cauchy surface, to consider the expanded space

Ĝ (M ; R) := {£wg ∈ C∞SC(S0
2(M ; R)) | w ∈ C∞(T 1

0 (M ; R))}.

This consists of spacelike-compact pure gauge perturbations that are sourced by purely

smooth vector fields. It is clear from the definitions that G (M ; R) ⊆ Ĝ (M ; R), and that

the two sets will be equal whenever the background spacetime admits a compact Cauchy

surface. In fact, in this case, all tensor fields will be spacelike-compact as M ⊆ J(Σ),

where Σ is a compact Cauchy surface. The implications of when the two sets are not equal

become most apparent when we consider the observables in section 5.4.

It is important to understand under what circumstances these two spaces are not equal.

From the definitions one can see that for the spaces to differ it is necessary that the

background spacetime admit vector fields which satisfy Killing’s equation in regions of the

form M \ J(K) for some compact subset K. However, whilst this condition is necessary,

it is not sufficient for the spaces to differ. This will be illustrated using the case that the

background spacetime is Minkowski, for which the two pure gauge spaces are equal.
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t

x

J(K)

Figure 4.1: Minkowski spacetime with y, z directions supressed and J(K) highlighted,
where K is an annulus in the t = 0 plane.

To see this, let £wη ∈ Ĝ (R4; R), hence w ∈ C∞(T 1
0 (R4; R)) obeys Killing’s equation

outside of J(K) for some compact K ⊂ R4. We will show that £wη = £vη, where v is

smooth and spacelike-compact.

It will be necessary to assume that M \ J(K) is connected. However, there do exist

examples where this is not true. For example, take K as being a closed annulus in the t = 0

hyperplane with inner radius r1 and outer radius r2. The complement of J(K), illustrated

in figure 4.1, will consist of two disconnected regions, one that is relatively compact and

the other which is not. However, by expanding K to being the closed disc of radius r2

in the t = 0 hyperplane, one eliminates the relatively compact disconnected component

and obtains a connected causal complement. In fact, for any compact K in Minkowski

spacetime, one can find another compact set K̃, a closed ball of some fixed radius, such

that K ⊂ K̃ and M \ J(K̃) is connected. So without loss of generality it can be assumed

that M \ J(K) is connected in Minkowski spacetime.

On a connected n-dimensional Lorentzian manifold, the collection of Killing vector fields

form [77, Lem. 9.28] a finite-dimensional vector space (a Lie algebra) whose dimension is

bounded by n(n+1)
2

. Maximally symmetric spacetimes are those for which the dimension of

the space of Killing vector fields equals the bound. Minkowski spacetime is an example of

such a spacetime and the ‘usual’ Killing vectors (that generate the translations, rotations

and boosts) form a basis of the space of Killing vector fields.

As we can assume that the region M \ J(K) is connected, the space of Killing vector
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fields on it form a vector space that is at most ten-dimensional. The restriction of the global

Minkowski Killing vectors to this region will thus exhaust the bound on the dimension and

so the restricted global Killing vectors form a basis for the space of Killing vector fields

on the region M \ J(K). Now, by assumption, w|M\J(K) is a Killing vector and so can be

expressed as a linear combination of the restricted global Minkowski Killing vectors. In

fact, the same linear combination of global Killing vectors will again be a global Killing

vector field, which will be denoted by ξ, and we therefore have ξ|M\J(K) = w|M\J(K). By

subtracting the Lie-derivative of the spacetime metric with respect to ξ from £wη we still

obtain £wη because ξ is a Killing vector, so

£wη = £wη −£ξη = £w−ξη.

The vector field w− ξ is spacelike-compact and hence £wη ∈ G (R4; R), which shows that

G (M ; R) and Ĝ (M ; R) agree on Minkowski spacetime.

To see how the sets G (M ; R) and Ĝ (M ; R) can differ, consider Minkowski spacetime

with the causal future and past of the origin removed; this is still a globally hyperbolic

spacetime and it inherits all of the Killing vector fields of Minkowski spacetime. Let K be

the set of points in the t = 0 hyperplane whose radial coordinate lies within [R, 2R] for some

R > 0. The spacetime together with K and J(K) are shown in figure 4.2, where spherical

polars are used for the spatial coordinates and the θ, φ directions have been suppressed.

Note that neither of the disconnected regions of M \ J(K) are relatively compact.

Now select an arbitrary Killing vector field ξ and let w = fξ, where f is a real scalar

function that is constant in the region M \ J(K), where f(t, r, θ, φ) = α for r < R,

f(t, r, θ, φ) = β for r > 2R and α 6= β are both constant. This gives £wη = 0 outside

of J(K) but now, due to the differing constants, we cannot subtract off a global Killing

vector field that will kill off w in both regions simultaneously. Therefore £wη /∈ G (M ; R)

and hence G (M ; R) 6= Ĝ (M ; R).

4.5 Gauge choices

Given a perturbation γ, its gauge equivalence class [γ] is defined to be

[γ] := {γ + £wg | £wg ∈ Ĝ (M ; R)},
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J(K)

t

r

Figure 4.2: Minkowski spacetime with the causal future and past of the origin removed.
Here K is again an annulus in the t = 0 plane and spherical polars are used as spatial
coordinates.

that is, it consists of the collection of all perturbations which are physically equivalent to

γ.

By making a choice of gauge one picks out a subset of each equivalence class whose

elements all obey certain desired properties. This will prove useful when considering gauge

invariant objects as particular gauge choices can be used to simplify calculations whilst

maintaining the physics.

The gauge will be said to be totally fixed if within each equivalence class the subset

of elements obeying the desired properties consists of a single element. This means that

further gauge transformations can not be made to move around in the equivalence class

whilst maintaining these conditions. The gauge will be not totally fixed if the subset

consists of more than one element, that is, there exists a residual gauge freedom.

In this subsection we shall be concerned with identifying when particular choices of

gauge can be made, beginning with our primary choice, the de Donder gauge. All results

are proven with respect to the smaller pure gauge subspace G (M ; R) which entails that the

results are the strongest that they can be for spacelike-compact perturbations.

4.5.1 de Donder gauge

A perturbation γ will be said to obey the de Donder condition if ∇aγab = 0. This condition

is the analogue of the Lorenz gauge from electromagnetism.

70



Before proving that the de Donder gauge can be reached we first require the following

result.

Lemma 4.5.1 For any w ∈ C∞(T 1
0 (M ; R)), on a cosmological vacuum background space-

time, we have

∇ ·£wg = (� + Λ)(w)[.

Proof. By the definition of trace-reversal, (£wg)ab = ∇awb +∇bwa − gab∇cw
c. Taking the

divergence of this gives

∇a(£wg)ab = ∇a∇awb +∇a∇bwa −∇b∇awa. (4.5.1)

The second term on the right-hand side may be rearranged as

∇a∇bwa = gac∇c∇bwa = gac(∇b∇cwa +R d
cba wd) = ∇b∇awa +R d

b wd = ∇b∇awa + Λwb,

(4.5.2)

where we have used the Riemann tensor identity (2.1.1) and that Rab = Λgab. Combining

equations (4.5.1) and (4.5.2) gives the desired result. �

We now prove that any spacelike-compact symmetric perturbation is gauge equivalent,

by an element of G (M ; R), to a spacelike-compact de Donder perturbation. Such a result

was proved for the case of a spacetime that admits a compact1 Cauchy surface (and hence

just smooth tensor fields) in [41, Prop. 4.3]. It should also be noted that symmetry of the

perturbation is not actually required in the proof and hence such a result also holds for

general spacelike-compact perturbations.

Theorem 4.5.2 The space T (M ; R) may be decomposed as

T (M ; R) = T dD(M ; R) + G (M ; R),

where T dD(M ; R) = {γ ∈ T (M ; R) | ∇aγab = 0}. The intersection G dD(M ; R) =

T dD(M ; R) ∩ G (M ; R) is given by

G dD(M ; R) = {£wg | w ∈ C∞SC(T 1
0 (M ; R)), (� + Λ)w = 0},

which specifies the residual gauge freedom that the de Donder gauge possesses.

1The assumption of compactness is made at the beginning of [41, Sec. 2].
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Proof. Given γ ∈ T (M ; R), let γ ′ = γ + £wg for an arbitrary w ∈ C∞SC(T 1
0 (M ; R)).

Taking the divergence of the trace-reversal of this gives

∇aγ′ab = ∇aγab +∇a£wgab,

which upon using Lemma 4.5.1 becomes

∇aγ′ab = ∇aγab + (� + Λ)wb.

Therefore γ ′ ∈ T dD(M ; R) if and only if w obeys

(� + Λ)wb = −∇aγ b
a . (4.5.3)

This is a hyperbolic differential equation but the source is not compactly supported on

spacetime and therefore it is not possible to use [11, Thm 3.2.11] to prove that there exists

a unique solution which is spacelike-compact. However, as we discussed when defining

the extensions of the Green’s operators to time-compact tensor fields in section 2.4.2,

Corollary 5 of [10, Ch. 3] shows how the result [11, Thm 3.2.11] may be generalised to the

case that both the initial data and source have no restrictions placed upon their supports.

It is also shown that the solution to such a system will have support contained within

J(N), where N is the union of the supports of the initial data with the support of the

source. For our case, the initial data for w will have compact support on Σ, in fact we

assume that they vanish, and the source has spacelike-compact support within some J(K)

for a compact subset K. Therefore the unique solution will have spacelike-compact support

since J(J(K)) = J(K). Hence γ ′ − γ ∈ G (M ; R) and so the splitting is proved.

The space G dD(M ; R) consists of pure gauge solutions that satisfy the de Donder con-

dition, therefore by Lemma 4.5.1 this consists of spacelike-compact vector fields w which

satisfy (� + Λ)w = 0. That such pure gauge solutions constitute the residual gauge free-

dom in the de Donder gauge follows immediately from (4.5.3) with the assumption that γ

is de Donder, meaning that the source vanishes identically. �

There is a natural corollary to the previous theorem, namely that the space of solutions

to the linearized Eisntein equation splits as above.

Corollary 4.5.3 On a cosmological vacuum background spacetime, the space S (M ; R)

decomposes as

S (M ; R) = S dD(M ; R) + G (M ; R), (4.5.4)
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where S dD(M ; R) = {γ ∈ T dD(M ; R) | Lab(γ) = 0} is the space of de Donder gauge

solutions. Moreover, S dD(M ; R) ∩ G (M ; R) = G dD(M ; R).

Proof. By the splitting of Theorem 4.5.2, linearity of the linearized Einstein equation and

that Lab(£wg) = 0 for all pure gauge solutions, the desired splitting is achieved. �

On inspection of Theorem 4.2.2 it is clear that for linearized gravity solutions obeying

the de Donder condition ∇ · γ = 0, on a cosmological vacuum spacetime, the linearized

Einstein equation reduces to the hyperbolic differential equation

P cd
ab γcd = �γab − 2Rc d

ab γcd = 0, (4.5.5)

or equivalently, by Lemma 4.2.1,

�γab − 2Rc d
ab γcd = 0. (4.5.6)

In addition, we see directly from this equation and (4.2.10) that, on a cosmological vacuum

spacetime, the trace of γ obeys

(� + 2Λ)γ = 0. (4.5.7)

4.5.2 Transverse-traceless gauge

The transverse-traceless gauge is mentioned frequently throughout the literature and it is

defined to be those de Donder perturbations whose trace vanishes, that is, a transverse-

traceless perturbation γ obeys ∇aγab = 0 and γ = 0. Unfortunately, as we will show, it is

not possible to put spacelike-compact perturbations into the transverse-traceless gauge on

an arbitrary cosmological vacuum background spacetime. In fact, for vacuum spacetimes

with a non-vanishing cosmological constant, such as de Sitter spacetime, it turns out that

the transverse-traceless gauge can be achieved for spacelike-compact perturbations, at least

when the perturbation obeys the linearized Einstein equation. The obstruction to attaining

the transverse-traceless gauge arises for vacuum spacetimes with a vanishing cosmological

constant, in which case a de Donder solution γ can be put into the transverse-traceless

gauge if and only if ∫
Σ

(∇nγ)dvolh = 0

on some, and hence any, Cauchy surface Σ, where n is the future-pointing unit normal

vector to Σ.
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Having to place such a further restriction on the collection of background spacetimes

available for use is undesirable and therefore we will not seek to utilise the transverse-

traceless gauge in deriving various results in later chapters. In fact, as it turns out, the

de Donder gauge will prove sufficient for our purposes. However, for completeness we will

include a full treatment of the transverse-traceless gauge.

As we have seen in the previous section, it is always possible to gauge transform an

arbitrary spacelike-compact perturbation to the de Donder gauge. Therefore, to achieve the

transverse-traceless gauge, we are left with the goal of generating a gauge transformation

which keeps us in the de Donder gauge and also eliminates the trace. Respectfully, these

conditions are given by the equations

(� + Λ)w[ = 0 (4.5.8)

and

∇aw
a =

1

2
γ. (4.5.9)

This system involves a yet to be found vector w and an already specified scalar γ. There-

fore, to solve this system, we can utilise the framework of differential forms and appeal to

the methodology of [78, Prop. II.6] who considers solving an almost identical system for

the case of electromagnetism. They prove that the existence of a solution to �A = 0 that

also obeys the Lorenz gauge ∇aAa = 0 globally is equivalent to the existence of Cauchy

data that satisfy certain constraints. For the case of the system (4.5.8) and (4.5.9) we

will prove that similar constraints are required and it is these constraints which cause the

obstruction to achieving the transverse-traceless gauge.

Following [78], we write the Cauchy data for w in the language of differential forms.

Begin with a Cauchy surface Σ and let i : Σ→M be the inclusion map. Then, given any

w ∈ Ω1(M ; R), define the following forms on the Cauchy surface Σ,

w(0) := i∗w ∈ Ω1(Σ; R) (4.5.10)

w(d) := − ∗Σ i
∗ ∗M dw ∈ Ω1(Σ; R) (4.5.11)

w(δ) := i∗δw ∈ Ω0(Σ; R) (4.5.12)

w(n) := − ∗Σ i
∗ ∗M w ∈ Ω0(Σ; R). (4.5.13)

The w(0) and w(n) together constitute the value of w on Σ, whereas w(d) and w(δ) make

up the value of the forward normal derivative on Σ, that is, ∇nw|Σ. Hence the quantities
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(4.5.10), (4.5.11), (4.5.12) and (4.5.13) form the Cauchy data for w.

Similarly, for scalar functions, given any γ ∈ Ω0(M ; R) we define

γ(0) := i∗γ ∈ Ω0(Σ; R) (4.5.14)

γ(d) := − ∗Σ i
∗ ∗M dγ ∈ Ω0(Σ; R). (4.5.15)

Note that there is no γ(δ) nor a γ(n) because γ is a zero form, and so δγ ≡ 0, and as ∗Mγ
is a four-form then its pullback to Σ is a four-form, so it is compelled to vanish because

Σ is three-dimensional. Equation (4.5.14) is just the restriction of the scalar function γ to

the surface Σ and so constitutes the initial value. The initial time-derivative is given by

(4.5.15). Therefore, just as for w, the zero-forms γ(0) and γ(d) constitute the Cauchy data

for γ.

In forms notation, the equation of motion for the vector field sourcing a gauge trans-

formation that keeps one in the de Donder gauge (4.5.8) is written as

−(δd+ dδ)w + 2Λw = 0 (4.5.16)

and the constraint to eliminate the trace (4.5.9) becomes

δw =
1

2
γ. (4.5.17)

It will be necessary to consider Green’s identities for zero-forms and one-forms which

obey a differential equation of the form of (4.5.16). Specifically, if w ∈ Ω1
SC(M ; R) solves

(4.5.16), then

〈w,f〉M = 〈w(0), (Ef)(d)〉Σ + 〈w(δ), (Ef)(n)〉Σ − 〈w(d), (Ef)(0)〉Σ − 〈w(n), (Ef)(δ)〉Σ,
(4.5.18)

where f ∈ Ω1
0(M ; R) and E is the advanced-minus-retarded solution operator for the

differential operator −(δd+dδ) +2Λ acting on 1-forms (see section 2.4.2 for further details

about Green’s operators). The result (4.5.18) follows from the formula obtained in [78,

Sec. 2.4] by a change of sign convention, though there is a sign error in equation (2.21) of

[78]. Alternatively it can be obtained from the similar result in [48, Appx A] by noting

that [48] uses the retarded-minus-advanced propagator, whereas we use the advanced-

minus-retarded. The scalar case identity is stated in (4.5.25) below.

This puts us in a position to state and prove a theorem which shows what conditions on
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the Cauchy data for the vector field (covector field here) sourcing the gauge transformation

are equivalent to being able to reach the transverse-traceless gauge globally on (M, g).

Theorem 4.5.4 Suppose w ∈ Ω1
SC(M ; R) solves (−(δd + dδ) + 2Λ)w = 0 and γ is a de

Donder solution, then δw = 1
2
γ if and only if w(δ) = 1

2
γ(0) and δw(d) + 2Λw(n) = 1

2
γ(d).

Proof. (⇒) The pullback of δw = 1
2
γ to the Cauchy surface Σ gives the first constraint

w(δ) = 1
2
γ(0). The second constraint is found as follows: apply − ∗Σ i

∗ ∗M d to δw = 1
2
γ

and then use (4.5.15) to obtain

− ∗Σ i
∗ ∗M dδw =

1

2
γ(d). (4.5.19)

Utilising the equation of motion (4.5.16) means that (4.5.19) rearranges to

∗Σi
∗ ∗M δdw − 2Λ ∗Σ i

∗ ∗M w =
1

2
γ(d). (4.5.20)

By definition of w(n), see (4.5.13), the second term on the left-hand side is just 2Λw(n).

The first term on the left-hand side of (4.5.20) can be re-expressed as

∗Σi
∗ ∗M δdw = ∗Σi

∗ ∗M ∗Md ∗M dw = ∗Σi
∗d ∗M dw = ∗Σdi

∗ ∗M dw, (4.5.21)

where the first equality uses that δ = ∗d∗ on spacetime, the second equality uses that,

when acting on p-forms, (∗M)2 = (−1)p+1, and the third equality uses that the exterior

derivative d commutes with the pullback i∗. In section 2.5 we found that (∗Σ)2 = 1 and

δ = (−1)p ∗Σ d∗Σ on Σ, therefore (4.5.21) becomes

∗Σi
∗ ∗M δdw = ∗Σd ∗Σ ∗Σi

∗ ∗M dw = −δ ∗Σ i
∗ ∗M dw = δw(d). (4.5.22)

Hence (4.5.20) is δw(d) + 2Λw(n) = 1
2
γ(d).

(⇐) To prove that a w with Cauchy data obeying the restrictions set out will in fact

obey the global constraint δw = 1
2
γ on (M, g), we first take an arbitrary f ∈ Ω0

0(M ; R)

and compute

〈δw, f〉M = 〈w, df〉M = 〈w(0), (Edf)(d)〉Σ + 〈w(δ), (Edf)(n)〉Σ
− 〈w(d), (Edf)(0)〉Σ − 〈w(n), (Edf)(δ)〉Σ, (4.5.23)

where the first equality uses (2.5.2) and the second equality uses the Green’s identity for
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one-forms (4.5.18). The advanced-minus-retarded solution operator E commutes with the

exterior derivative [78, Prop. 2.1], that is, Ed = dE, where E is the advanced-minus-

retarded solution operator associated with the differential operator −(δd+dδ) + 2Λ acting

on scalar functions. It is also true that (du)(d) ≡ 0 for any scalar function u ∈ Ω0(M ; C),

since d2 ≡ 0. Therefore (4.5.23) reduces to

〈δw, f〉M = 〈w(δ), (dEf)(n)〉Σ − 〈w(d), (dEf)(0)〉Σ − 〈w(n), (dEf)(δ)〉Σ.

For the second term on the right-hand side we can use that the pullback and the exterior

derivative commute [1, Thm 6.4.4], and then (2.5.2) to obtain

〈δw, f〉M = 〈w(δ), (dEf)(n)〉Σ − 〈δw(d), (Ef)(0)〉Σ − 〈w(n), (dEf)(δ)〉Σ.

Now substitute the Cauchy data constraints to obtain

〈δw, f〉M =
1

2
〈γ(0), (dEf)(n)〉Σ −

1

2
〈γ(d), (Ef)(0)〉Σ + 2Λ〈w(n), (Ef)(0)〉 − 〈w(n), (dEf)(δ)〉Σ.

The final term on the right-hand side can be re-expressed as follows. First, (dEf)(δ) =

(δdEf)(0), and as the scalar function Ef solves (−δd + 2Λ)Ef = 0 we therefore have

(dEf)(δ) = (δdEf)(0) = 2Λ(Ef)(0). Hence,

〈δw, f〉M =
1

2
〈γ(0), (Ef)(d)〉Σ −

1

2
〈γ(d), (Ef)(0)〉Σ, (4.5.24)

where we have used that, in this case, u(d) = (du)(n) for any scalar function u ∈ Ω0(M ; C).

The trace of a de Donder solution γ satisfies the scalar wave equation (4.5.7), which in

forms notation is (−δd+ 2Λ)γ = 0. The scalar Green’s identity for γ is

〈γ, f〉M = 〈γ(0), (Ef)(d)〉Σ − 〈γ(d), (Ef)(0)〉Σ (4.5.25)

for any f ∈ Ω0
0(M ; R). Comparing this with (4.5.24) gives 〈δw, f〉M = 1

2
〈γ, f〉M for all

f ∈ Ω0
0(M ; R), and hence δw = 1

2
γ. One can prove this last statement by noting that

we have 〈(δw − 1
2
γ), f〉M = 0 for all f ∈ Ω0

0(M ; R). Hence, if one selects an arbitrary

point p ∈ M and works in a local coordinate neighbourhood of that point, then using a

bump function χ centred on p and supported within the chart, one can generate a smooth,
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positive, compactly supported function χ(δw − 1
2
γ). This function will satisfy∫

M

(δw − 1

2
γ)2χdvolg = 0.

Since the integrand is positive, it will vanish globally, and therefore δw− 1
2
γ = 0 wherever

χ 6= 0, in particular at p itself. Since p was arbitrary, one can do this at every point of M ,

and so δw − 1
2
γ = 0 globally on M . �

This puts us in a position to prove the applicability of the transverse-traceless gauge.

Note that this decomposition is proven only for the case of solutions, unlike the de Donder

gauge decomposition in Theorem 4.5.2, due to Theorem 4.5.4 relying on the assumption

that the perturbation be a de Donder linearized gravity solution.

Theorem 4.5.5 For cosmological vacuum spacetimes with Λ 6= 0, one may perform the

following decomposition of the space of spacelike-compact solutions:

S (M ; R) = S TT (M ; R) + G (M ; R).

Proof of Theorem 4.5.5. We know from Corollary 4.5.3 that S (M ; R) = S dD(M ; R) +

G (M ; R), therefore if we can decompose the space of de Donder solutions as S dD(M ; R) =

S TT (M ; R) + G (M ; R) ∩ S dD(M ; R), then we can achieve the splitting. As was shown

in Theorem 4.5.4, this decomposition can be made so long as the Cauchy data for the

gauge vector field satsify certain constraints. Therefore the goal is to obtain such suitable

Cauchy data, which as we will now see, can be done for the Λ 6= 0 background case. Given

a perturbation γ ∈ S dD(M ; R) on a cosmological vacuum spacetime (M, g) with Λ 6= 0,

the constraints of Theorem 4.5.4 are satisfied by the Cauchy data: w(0) = 1
4Λ
dγ(0), w(d) = 0,

w(n) = 1
4Λ
γ(d) and w(δ) = 1

2
γ(0). In fact, the solution with this data is w = 1

4Λ
dγ, which

corresponds to the choice made in [59, eq. (9)] for the case that the background is de Sitter

spacetime. Therefore appropriate Cauchy data exist and one may gauge transform from

the de Donder gauge to the transverse-traceless gauge. �

For the Λ = 0 case, there are topological obstructions. Specifically, the second con-

straint of Theorem 4.5.4 reduces to δw(d) = 1
2
γ(d), and whether such an equation can be

satisfied becomes a cohomological question: the scalar γ(d) is co-closed, δγ(d) = 0, but is

it co-exact? This means that can a suitable one-form, in this case 2w(d), be found whose

codifferential is γ(d). Instead of working with codifferentials we can equally work with the

ordinary exterior derivative operator. If one expands out δw(d) = 1
2
γ(d) and then applies a
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Hodge star operation to both sides, then the result is

d(∗Σw(d)) = −1

2
∗Σ γ(d),

where ∗Σγ(d) is a 3-form on Σ and hence is necessarily closed. In solving this equation there

are two cases to consider, which depend upon whether or not w has compact support on

Cauchy surfaces. As we wish to consider elements of G (M ; R) then we require the case that

w has compact support on Cauchy surfaces. This means that, from [1, Thm 7.5.19(i)],

∗Σγ(d) is exact if and only if ∫
Σ

∗Σγ(d) = 0.

Now, ∗Σγ(d) = i∗ ∗M dγ and expanding this out we have

(∗Mdγ)bcd = εabcd∇aγ = −εabcdnane∇eγ + εabcdh
ae∇eγ, (4.5.26)

where we have used the metric decomposition gab = −nanb+hab with n the future-pointing

unit normal vector to Σ. To pullback (4.5.26) to Σ requires that we project down the free-

indices using h b
a , see [57, Ch. 2.7], which gives

h f
b h

i
c h

j
d (∗Mdγ)fij = −h f

b h
i
c h

j
d εafijn

ane∇eγ + h f
b h

i
c h

j
d εafijh

ae∇eγ. (4.5.27)

The second term on the right-hand side is compelled to vanish as h f
b h

i
c h

j
d εafijh

ae is a four-

form acting at each point purely on vectors in the three-dimensional subspace tangent to Σ.

Hence the pullback is identified with the first-term, −h f
b h

i
c h

j
d εafijn

a∇nγ = −dvolh∇nγ,

where the equality comes from [69, Prop. 13.24].

For the case that w is not restricted to have compact support on Cauchy surfaces and

the Cauchy surface is non-compact, then [1, Thm 7.5.19(iii)] gives H3(Σ) = 0 and so ∗Σγ(d)

will always be exact. Hence the transverse-traceless gauge can always be attained in that

instance.

4.5.3 Synchronous gauge

Given a timelike vector field t, a perturbation γ will be said to be synchronous if taγab = 0.

In some treatments, for example, the case of Minkowski spacetime considered in [91, p. 80],

the definition of the synchronous gauge is made in a coordinate dependent way, that is, γ

is said to be synchronous if γ0µ = 0. One can immediately see that this is included in our
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definition by selecting local coordinates (t, xi) where t =
(
∂
∂t

)
, which thus gives tµ = δµ0

and so tµγµν = δµ0γµν = γ0ν . An example of the use of the definition of synchronous that

we have adopted here is given by [59, p. 4].

In order to be able to gauge transform a perturbation γ to the synchronous gauge, one

must solve

ta∇awb + ta∇bwa = −taγab (4.5.28)

for w. To solve this equation, even locally, will require us to make a specific choice

of timelike vector field t, which is associated with a particular type of neighbourhood

of a Cauchy surface. In fact, we will find that given any Cauchy surface we can reach

the synchronous gauge on such a neighbourhood of that surface. The neighbourhood is

constructed using the exponential map, which [77, pp. 70-71] diffeomorphically maps an

open subset O (including the zero-vector) of the tangent space at a point p ∈M to an open

subset (containing p) of the manifold. It is achieved by mapping a vector v ∈ O ⊆ TpM

to the point a unit-parameter distance along the geodesic with initial data p and v.

If one considers an embedded submanifold S ⊂M of codimension greater than or equal

to one, then this surface will possess a non-trivial normal bundle consisting [77, p. 198] of

vectors which are orthogonal, with respect to the spacetime metric, to all vectors tangent

to the surface. By restricting the exponential map to act only on the normal bundle of S,

one obtains [77, p. 199] a map called the normal exponential map, which is denoted exp⊥.

For this map, all the geodesics meet S orthogonally.

A normal neighbourhood of S is [77, p. 199] a neighbourhood of S that is diffeomorphic

under exp⊥ to a connected neighbourhood of the zero section in the normal bundle of S.

We now restrict attention to the case where S is a smooth spacelike Cauchy surface

for (M, g), and denote this Cauchy surface by Σ. Since Σ is an embedded submanifold

of M , then by [77, Prop. 7.26], it will possess a normal neighbourhood. On this normal

neighbourhood O we can construct a timelike vector field which will allow one to trans-

form to the synchronous gauge. Specifically, as any point in O lies on a normal geodesic

emanating from Σ, we can define a vector field on O by stating that its value at each point

is equal to the tangent vector of the normal geodesic passing through that point. Such

a vector field will be smooth, future-pointing, geodesic, hypersurface-orthogonal and will

have unit-magnitude. We henceforth call this vector field the normal field of Σ in O and

denote it by ñ. Note that ñ|Σ = n, where n is the future-pointing unit normal vector to

Σ.

We are now in a position to state and prove the theorem that allows one to reach
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the synchronous gauge. However, before we do that, we will briefly consider how this

result links up with the findings present in the current literature. Our theorem includes

the result [9, Lem. 1.1], which shows that, given a Cauchy surface Σ with future-pointing

unit normal vector n, then one can make a gauge transformation to achieve the condition

naγab|Σ = 0. Also the proof of our theorem treats in detail the solution of the equations

arising in [9, Lem. 1.1].

Theorem 4.5.6 Let Σ be a smooth spacelike Cauchy surface with future-pointing unit

normal vector n. Let O be any open normal neighbourhood of Σ, whose closure is contained

in another normal neighbourhood of Σ. Then

T (M ; R) = T synch
Σ,O (M ; R) + G (M ; R),

where T synch
Σ,O (M ; R) = {γ ∈ T (M ; R) | ñaγab = 0 on O} and ñ is the normal field of Σ

in O. All elements of T synch
Σ,O (M ; R) satisfy naγab|Σ = 0.

Remark. Given any normal neighbourhood of Σ, we may restrict to a smaller normal

neighbourhood whose closure is contained in the original. Therefore the existence of O in

the hypothesis is not restrictive and is made to ensure that there is sufficient room to let

w decay smoothly to zero outside of O.

Proof of Theorem 4.5.6. Let γ ∈ T (M ; R) be arbitrary and let £wg ∈ G (M ; R). Then

the condition γ + £wg ∈ T synch
Σ,O (M ; R) requires that

ña∇awb + ña∇bwa = −ñaγab (4.5.29)

hold on the normal neighbourhood O. In order to solve (4.5.29) we decompose w using

the vector field ñ, obtaining w = −W0ñ + w‖, where W0 = ñaw
a. Now contract both

sides of (4.5.29) with ñ, which gives

2ñañb∇awb = −ñañbγab. (4.5.30)

By the definition of ñ we have that ña∇añ
b = 0 on O and therefore (4.5.30) simplifies to

∇ñW0 = −1

2
ñañbγab. (4.5.31)

Thus the ‘time’ component, W0, of the gauge vector field must obey the simple first-order

differential equation (4.5.31). The remaining components of w must also satisfy a certain
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first-order differential equation. By utilising that w‖ = w +W0ñ, then (4.5.29) becomes

−(ña∇aW0)ñb + ña∇aw
‖
b +∇bW0 + ña∇bw

‖
a = −ñaγab, (4.5.32)

where we have used that ña∇añ
b = 0, ñaña = −1 and ña∇bña = 0. Upon substituting

(4.5.31) and then rearranging one finds that w obeys

(∇ñw‖)b − w‖a∇bñ
a = −ñaγab −∇bW0 −

1

2
ñañcγacñb, (4.5.33)

which is the first-order differential equation for w‖ alluded to earlier.

Having obtained the appropriate differential equations we must now prove that a so-

lution w exists. In both cases we will choose vanishing initial data. We proceed by first

obtaining a solution W0 to (4.5.31) on O. By definition of the normal neighbourhood O,

through each point p ∈ Σ there is a unit speed geodesic λp : I → O, which is normal to Σ

at p, with 0 ∈ I ⊂ R and λp(0) = p. Along each such geodesic λp equation (4.5.31) is just

a simple first-order differential equation and can therefore be integrated along the geodesic

to give a solution

(W0 ◦ λp)(t) = −1

2

∫ t

0

(ñañbγab ◦ λp)(s)ds. (4.5.34)

We now define the scalar function W0 at any q ∈ O by

W0(q) := (W0 ◦ λpq)(tq), (4.5.35)

where pq is the point on Σ through which the unique unit speed normal geodesic λpq

passing through q intercepts Σ and tq is the parameter distance along λpq that q is from pq.

The scalar function (4.5.35) satisfies (4.5.31) by definition and it is smooth on O because

whenever q is varied the values of tq and pq change smoothly due to the exponential map

being a diffeomorphism, and ñañbγab is smooth.

To obtain the remaining part of w, that is, the component w‖ on O, we solve (4.5.33)

locally within a neighbourhood of each normal geodesic and then patch together the results

using a partition of unity.

The geodesic neighbourhoods used are constructed as follows: for each q ∈ Σ, let Nq ⊂
Σ be an open normal, with respect to the induced Riemannian metric on Σ, neighbourhood

of q. Hence on Nq there are [57, p. 34] well-defined Riemannian normal coordinates xi

(i = 1, 2, 3) based at q, and basis vector fields ei associated with the coordinates xi.

For each q ∈ Σ, let Mq be the open set of points in O connected to Σ by geodesics
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emanating normally from Nq. As the Nq’s cover Σ, then by the definition of O as a

normal neighbourhood of Σ, the Mq’s form an open cover for O. Within each Mq we can

introduce Gaussian normal coordinates given by: the proper time t along the geodesics,

with t = 0 on Σ, and the Riemannian normal coordinates xi mentioned previously. In such

coordinates, (4.5.33) becomes

d(w‖)i(t, x)

dt
− 2Γji0(t, x)(w‖)j(t, x) = −γ0i −

∂W0(t, x)

∂xi
. (4.5.36)

This system is just a matrix differential equation on some open subset of R4 and so can

be solved using techniques from [88, Sec. 1.6]. As (w‖)0 = 0 in these coordinates, we have

thus found w‖ on Mq. This process is repeated on each Mq for all q ∈ Σ. Wherever two

of these neighbourhoods intersect one can compare the solution from each neighbourhood

with each other. Since on the intersection of the neighbourhoods they will both solve the

same inhomogeneous differential equation with vanishing initial data, their difference will

solve the homogeneous version with vanishing data and so will vanish. Therefore their

difference will vanish on the intersection and so they are the same solution. This ensures

consistency between patches.

We now need to stitch together these results to obtain a smooth solution w‖ on O.

However, just any partition of unity will not suffice, it needs to be specially constructed

so that the resulting w‖ obeys (4.5.33). As Σ is an embedded submanifold of M , it

inherits the topological properties of M ; in particular, it will be second-countable and

Hausdorff. This means that, by [93, Thm 1.11], the open cover {Nq | q ∈ Σ} of Σ by

normal neighbourhoods will admit a countable partition of unity {χλ | λ ∈ I} subordinate

to the cover with suppχλ compact for each λ ∈ I. Hence, for each λ ∈ I there exists a

q ∈ Σ such that suppχλ ⊂ Nq. To obtain a suitable partition of unity {χ̃λ | λ ∈ I} on the

Mq’s, we propagate the partition of unity {χλ | λ ∈ I} off Σ and onto O. This is achieved

by solving ∇ñχ̃λ = 0 with χ̃λ|Σ = χλ, for each λ. As we have already seen for the case of

W0, this can be done by integrating the equation along the integral curves of ñ.

The desired w‖ on O is obtained by stitching together, using the partition of unity

{χ̃λ | λ ∈ I}, the various solutions wλ
‖ to (4.5.36) from each set Mq containing χ̃λ. Explic-

itly, w‖ is given by

w‖ =
∑
λ

χ̃λw
λ
‖ . (4.5.37)

This obeys (4.5.33) on O as ∇ñχ̃λ = 0 there. Together with W0 this yields the appropriate

w to transform to the synchronous gauge on O. Outside of O we let w smoothly decay to
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zero.

To verify that w has spacelike-compact support, first consider the support of W0. On

the region exterior to suppγ, which is spacelike compact, (4.5.31) reduces to ∇nW0 = 0

and so W0 = constant along each normal geodesic emanating from Σ, as long as the

geodesic does not enter suppγ. Choosing W0|Σ = 0 yields W0 = 0 along every geodesic

that does not intersect suppγ; hence W0|O is spacelike-compact. Using this means that

outside suppγ equation (4.5.33) reduces to (∇ñw‖)b − w‖a∇bñ
a = 0; in Gaussian normal

coordinates, the right-hand side of (4.5.36) vanishes. Thus with w‖|Σ = 0, the solution w‖i

vanishes in every Mq that does not intersect suppγ, so w|O is spacelike-compact. Outside

O we let w smoothly decay to zero. Hence w may be chosen to be compactly supported

and therefore £wg ∈ G (M ; R). �

For the case of Minkowski spacetime, the exponential map is globally defined [77,

Ex. 3.34]. Therefore we can obtain a global normal neighbourhood for an ordinary t =

constant Cauchy surface and hence obtain the synchronous gauge globally.

4.6 Existence and uniqueness of solutions to the lin-

earized Einstein equation

We will now explicitly prove the existence and uniqueness, up to gauge, of spacelike-

compact solutions to the linearized Einstein equation. Until the appearance of the author’s

joint paper [34], which is the primary work on which this thesis is based, such a treatment

of the existence and uniqueness of solutions had proved to be elusive within the existing

literature.

4.6.1 Existence

We begin by selecting an initial surface, which will be a smooth spacelike Cauchy sur-

face Σ with future-pointing unit normal vector n. This surface is where the initial data

will be specified. The data consists of two pieces, the initial value of the perturba-

tion γ|Σ and the forward normal derivative ∇nγ|Σ. In order to simplify notation and

improve the aesthetics, we introduce the initial data map, DataΣ : C∞(T 0
2 (M ; R)) →

C∞((T 0
2 (M ; R)|Σ)⊕ C∞((T 0

2 (M ; R)|Σ) defined by

DataΣ(γ) := (γ|Σ,∇nγ|Σ). (4.6.1)
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Note that the notation C∞((T 0
2 (M ; R)|Σ) means the restriction to points in Σ of tensor

fields in C∞(T 0
2 (M ; R)).

The initial data for the linearized Einstein equation cannot however be freely specified.

The data must satisfy certain constraints, which come from particular components of

the linearized Einstein tensor with cosmological constant. Specifically, the components

Lab(γ)nb, as they do not include any second order time-derivatives and so will be completely

fixed once the initial data has been selected. For identical reasons as for the case of the

initial data map DataΣ(·), we now introduce the constraint map, CΣ : C∞((T 0
2 (M ; R)|Σ)⊕

C∞((T 0
2 (M ; R)|Σ)→ C∞(T 0

1 (M ; R)|Σ), which satisfies

CΣ(DataΣ(γ)) = CΣ(γ|Σ,∇nγ|Σ) := naLab(γ)|Σ. (4.6.2)

Note that the gauge invariance of Lab(γ) (on cosmological vacuum spacetimes) entails that

CΣ ◦ DataΣ(γ) is also gauge invariant. Also, the precise form of CΣ in terms of γ|Σ and

∇nγ|Σ is not required here and is therefore not included. We now see that for initial data

to be admissible, then they must lie in the kernel of CΣ.

Theorem 4.6.1 Let Σ be a smooth spacelike Cauchy surface with future-pointing unit

normal vector n. For any initial data ζ, ξ ∈ C∞0 (S0
2(M ; R)|Σ) satisfying the initial value

constraint CΣ(ζ, ξ) = 0 there exists a solution γ ∈ T (M ; R) to Lab(γ) = 0 such that

DataΣ(γ) = (ζ, ξ).

Proof. It will be necessary to extend the specified initial data (ζ, ξ) off the surface Σ to

obtain smooth tensor fields on M whose restriction to Σ is the data. The extension will be

made in a completely arbitrary way and the reason for doing it is to obtain objects which

can then be manipulated in a smooth manner. Firstly we extend ζ. This is achieved by

considering a normal neighbourhood of Σ, see section 4.5.3 for details on such neighbour-

hoods, on which we use parallel transport along the normal geodesics to obtain a tensor

field ζ̃. Specifically, we solve ∇ñζ̃ = 0 with ζ̃|Σ = ζ, where ñ is the normal vector field.

The explicit form of the solution to this particular system would be given by (4.5.35). By

our choice of initial data, the solution ζ̃ satisfies DataΣ(ζ̃) = (ζ, 0). Now take an arbitrary

extension of ξ, calling the result ξ̃, such that ξ̃|Σ = ξ and define χ = ζ̃+ sξ̃, where for any

point p in the normal neighbourhood, s is the parameter distance along the unique normal

geodesic connnecting p to Σ. As s = 0 on Σ, we have

χ|Σ = ζ̃|Σ = ζ.
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Also,

∇ñχ|Σ = ∇ñζ̃|Σ + (∇ñs)|Σξ̃|Σ + s|Σ∇ñξ̃|Σ,

so again as s = 0 on Σ, and ∇ñζ̃|Σ = 0, the above simplifies to

∇ñχ|Σ = (∇ñs)|Σξ̃|Σ = ξ̃|Σ = ξ,

where the second equality comes from ñ being unit-parameterised. Finally, as ñ|Σ = n we

have ∇ñχ|Σ = ∇nχ|Σ and so DataΣ(χ) = (ζ, ξ).

We thus have a suitably smooth object on which we can perform a de Donder gauge

transformation. By Theorem 4.5.2 there exists a w ∈ C∞SC(T 1
0 (M ; R)) such that γ̃ =

χ+ £wg obeys the de Donder condition ∇aγ̃ab = 0 and

(γ̃ab − 2∇(awb))|Σ = χab|Σ = ζab

nc∇c(γ̃ab − 2∇(awb))|Σ = nc∇cχab|Σ = ξab. (4.6.3)

We now use γ̃’s initial data to obtain a unique solution to the hyperbolic differential

equation P (γ) = 0, see (4.2.9) for the definition of P and Theorem 4.2.2 for its relationship

to the linearized Einstein tensor with cosmological constant. Specifically, let γ̂ be the

unique solution to P cd
ab γ̂cd = 0 whose initial data satisfies DataΣ(γ̂) = DataΣ(γ̃). The

existence and uniqueness of γ̂ is guaranteed by [11, Thm 3.2.11]. The aim now is to show

that γ̂ obeys the de Donder condition. By Lemma 4.2.3, ∇aγ̂ab obeys the hyperbolic

equation (� + Λ)(∇aγ̂ab) = 0; it also vanishes on Σ because ∇aγ̂ab|Σ = ∇aγ̃ab|Σ = 0.

Therefore if it can be shown that ∇n∇aγ̂ab|Σ = 0, then γ̂ will be de Donder. To prove this

requires the following.

Lemma 4.6.2 On a cosmological vacuum background spacetime, for any solution γ̂ to

P (γ̂) = 0, it holds that nc∇c(∇aγ̂ab)|Σ = 2Lab(γ̂)na|Σ.

Proof. Combining the hypothesis Lemma 4.2.1 and Theorem 4.2.2 gives

2Lab(γ̂) = (£(∇·γ̂)]g)ab.

Contracting both sides of this equation with n and then expanding out the right-hand side

explicitly gives

2Lab(γ̂)na|Σ = na∇a∇cγ̂cb|Σ + na∇b∇cγ̂ca|Σ − nb∇d∇cγ̂cd|Σ. (4.6.4)
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The spacetime metric g can be decomposed, see [57, Ch. 2.7], in terms of the normal

vector n and a projection operator q b
a so that gab = −nanb + qab. This allows for tensors

to be split into their components normal and tangential to Σ. Applying such a procedure

to (4.6.4) gives

2Lab(γ̂)na|Σ = na∇a∇cγ̂cb|Σ − nanbnd∇d∇cγ̂ca|Σ + naq d
b ∇d∇cγ̂ca|Σ

+ nbn
dne∇e∇cγ̂cd|Σ − nbqde∇e∇cγ̂ca|Σ. (4.6.5)

The second and fourth terms on the right-hand side of this equation cancel each other.

Finally, as ∇aγ̂ab|Σ = 0 the third and fifth terms on the right-hand side of (4.6.5) vanish

because they take the derivative of ∇aγ̂ab tangential to Σ. Hence we obtain

2Lab(γ̂)na|Σ = nc∇c(∇aγ̂ab)|Σ.

�

As the constraints are gauge invariant, the following chain of equalities holds,

Lab(γ̂)na|Σ = CΣ(DataΣ(γ̂)) = CΣ(DataΣ(γ̃)) = CΣ(DataΣ(χ)) = 0

and thus upon using Lemma 4.6.2 we see that nc∇c(∇aγ̂ab)|Σ = 0. Therefore we have

shown that DataΣ(∇ · γ̂) = 0 and so ∇ · γ̂ = 0 by [11, Cor. 3.2.4]. Hence, γ̂ satisfies

P (γ̂) = 0 and ∇ · γ̂ = 0 and is therefore a solution to the linearized Einstein equation,

L(γ̂) = 0.

Finally, by undoing the original gauge transformation, used to put χ into the de Donder

gauge, we obtain a solution γ = γ̂ −£wg to L(γ) = 0, which satisfies DataΣ(γ) = (ζ, ξ).

To see that this final statement is true, use DataΣ(γ̂) = DataΣ(γ̃) and the expression for

DataΣ(γ̃) given in (4.6.3). �

4.6.2 Uniqueness

Having addressed, in Theorem 4.6.1, the issue of the existence of a solution to the linearized

Einstein equation with initial data satisfying the constraints, we now move to find out

whether the solution will be uniquely specified by its initial data. It turns out that it will

be unique up to gauge equivalence.
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Theorem 4.6.3 Suppose γ,γ ′ ∈ S (M ; R) with DataΣ(γ) = DataΣ(γ ′) on some spacelike

Cauchy surface Σ. Then γ = γ ′ + £wg, also written as γ ∼ γ ′, where £wg ∈ G (M ; R).

If, additionally, γ,γ ′ ∈ S dD(M ; R) then gauge equivalence is replaced by equality.

Proof. Let ξ = γ − γ ′, which satisfies DataΣ(ξ) = 0 by definition. Now gauge transform ξ

to the de Donder gauge. Theorem 4.5.2 entails that this de Donder gauge transformation

can be made with a spacelike-compact vector field w whose initial data vanishes. Therefore

we have a de Donder perturbation γ̃ = ξ + £wg whose initial data is

γ̃ab|Σ = (∇awb +∇bwa)|Σ = 0

nc∇cγ̃ab|Σ = nc∇c(∇awb +∇bwa)|Σ. (4.6.6)

We now prove that the time-derivative (4.6.6) is compelled to vanish. This is achieved

by considering how the first term on the right-hand side of (4.6.6) may be re-expressed.

Note that the second term is just the first term with indices reversed and so we need only

consider the first term. Upon utilising the Riemann tensor identity (2.1.1) we have

nc∇c∇awb|Σ = nc∇a∇cwb|Σ + ncR d
cab wd|Σ,

which can then be rearranged, using the Leibniz rule, to

nc∇c∇awb|Σ = ∇a(n
c∇cwb)|Σ − (∇an

c)∇cwb|Σ + ncR d
cab wd|Σ.

Now, by the choice of data for w we know that wb|Σ = 0 and ∇awb|Σ = 0. Hence,

nc∇c∇awb|Σ = ∇a(n
c∇cwb)|Σ.

Using the decomposed metric tensor this can be re-expressed as

nc∇c∇awb|Σ = −nand∇d(n
c∇cwb)|Σ + q d

a ∇d(n
c∇cwb)|Σ.

The second term on the right-hand side vanishes because (nc∇cwb)|Σ = 0. We will now

show that the first term on the right-hand side also vanishes. By evaluating the de Donder

equation of motion for w on the Cauchy surface and using that DataΣ(ξ) = 0, then it

holds that (� + Λ)w|Σ = −∇ · ξ|Σ = 0. Expanding out the left-hand side of this equation
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gives

(� + Λ)wc|Σ = −nanb∇a∇bwc|Σ + qab∇a∇bwc|Σ + Λwc|Σ
= −na∇an

b∇bwc|Σ + (na∇an
b)∇bwc|Σ + qab∇a∇bwc|Σ + Λwc|Σ. (4.6.7)

As the initial data for w vanish, the final three terms on the right-hand side will vanish

and therefore 0 = (� + Λ)wc|Σ = −na∇an
b∇bwc|Σ = nc∇c∇awb|Σ. Therefore by (4.6.6),

nc∇cγ̃ab|Σ = 0. This entails that γ̃ satisfies DataΣ(γ̃) = 0 and we know, by assumption,

that it is a solution to the linearized Einstein equation obeying the de Donder condition

and so it satisfies P (γ̃) = 0. This equation in conjunction with the vanishing initial data

entails [11, Cor. 3.2.4] that γ̃ = 0. Therefore ξ is gauge equivalent to the trivial solution

and so γ is gauge equivalent to γ ′.

If both the solutions γ and γ ′ obey the de Donder equation, then they will both solve

the hyperbolic equation P (γ) = P (γ ′) = 0 with identical initial data and will therefore be

the same solution [11, Cor. 3.2.4]. �

4.7 Green’s operators and their intertwinings

The general theory of Green’s operators was discussed at length in section 2.4.2. Here

we wish to apply that theory to the specific case of the differential operators arising in

linearized gravity. We will show how each gauge equivalence class of linearized gravity

solutions admits elements that may be written in terms of the advanced-minus-retarded

solution operator E and we will show how the actions of the various Green’s operators

intertwine with the action of other operations, such as the trace, the trace-reversal and

the Lie-derivative. These results will be important in later chapters, where, for example,

the advanced-minus-retarded solution operator appears in the Poisson bracket of the basic

classical observables and consequently in the commutator of their quantum counterparts.

To begin, in section 4.2 it was noted that P is a normally hyperbolic operator and so

we have the following lemma.

Lemma 4.7.1 Any γ ∈ T (M ; R) solving P (γ) = 0 may be written as γ = Ef with

f ∈ C∞0 (S0
2(M ; R)), where E is the advanced-minus-retarded solution operator associated

with P .

Proof. By the exact sequence of Theorem 2.4.3, any spacelike-compact element of the

kernel of P is equal to an element in the image of E. �
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This shows that any solution to P (γ) = 0 may be written as Ef . However, for it to

be a linearized gravity solution then it must also satisfy the de Donder condition. In order

to obtain the circumstances under which this occurs, we first need to show that the trace

and the trace-reversal operations commute with the Green’s operators.

Lemma 4.7.2 Given any f ∈ C∞0 (T 0
2 (M ; R)) then gab(Ef)ab = Ef , where f = faa is the

trace of f , and E is the scalar advanced-minus-retarded solution operator associated with

the differential operator � + 2Λ.

Proof. E±f are the unique solutions to P (γ) = f with past/future compact support and

E±f are the unique solutions to (� + 2Λ)γ = f with past/future compact support. By

taking the trace of P (γ) = f and using (4.2.10), we see that gab(E±f)ab solve (�+2Λ)γ = f

with past/future compact support. Therefore by the uniqueness of solutions with such

support properties we have gab(E±f)ab = E±f . Since taking the trace is a linear operation,

this yields gab(Ef)ab = Ef . �

Lemma 4.7.3 For all f ∈ C∞(T 0
2 (M ; R)), we have Ef = Ef .

Proof. By Theorem 2.4.2, γ̃± = E±f are the unique solutions to P (γ̃±) = f with

past/future compact support and likewise γ± = E±f are the unique solutions to P (γ±) =

f with past/future compact support. Since, by Lemma 4.2.1, trace-reversal commutes

with P we have

P (E±f) = f = P (E±f) = P (E±f).

Therefore by uniqueness (from the support properties) E±f = E±f and so Ef = E−f −
E+f = E−f −E+f = Ef , as trace-reversal is a linear operator. �

Now we are in a position to show under what circumstances a solution γ = Ef to

P (γ) = 0 will obey the de Donder condition.

Theorem 4.7.4 For any f ∈ C∞0 (S0
2(M ; R)), we have Ef ∈ S dD(M ; R) if and only if

∇ · f ∈ (� + Λ)C∞0 (T 0
1 (M ; R)).

Proof. By the definition of the de Donder gauge, Ef ∈ S dD(M ; R) if and only if∇·Ef ≡ 0

or equivalently, using Lemma 4.7.3, ∇ ·Ef = 0.

Taking the divergence of P (E±f) = f and utilising Lemma 4.2.3, we find that

(� + Λ)(∇ ·E±f) = ∇ · f .
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Now, by Theorem 2.4.2, w± = Ê
±
∇·f are the unique solutions to (�+Λ)w± = ∇·f with

past/future compact support, where Ê
±

are the retarded/advanced Green’s operators for

(�+ Λ) on covector fields. However, v± = ∇·E±f also solve (�+ Λ)v± = ∇·f and have

past/future compact support. Therefore we deduce, by uniqueness of the solutions, that

∇ ·E±f = Ê
±
∇ · f and hence

Ê∇ · f = Ê
−
∇ · f − Ê

+
∇ · f = ∇ ·E−f −∇ ·E+f = ∇ · (E− −E+)f = ∇ ·Ef .

By assumption the right-hand side vanishes meaning that Ê∇ · f = 0, which occurs, by

the exact sequence of Theorem 2.4.3, if and only if ∇ · f ∈ (� + Λ)C∞0 (T 0
1 (M ; R)). �

In fact, as we will show, one is able to select an f ∈ C∞0 (S0
2(M ; R)) such that ∇·f = 0

by exploiting the residual gauge freedom in the de Donder gauge. To do this we will need

to know how the action of the Green’s operators intertwines with the action of the Lie

derivative and this is what the next lemma shows.

Lemma 4.7.5 Given a v ∈ C∞0 (T 1
0 (M ; R)) on a cosmological vacuum background space-

time, then

£Ẽvg = E(£vg), (4.7.1)

where Ẽ is the advanced-minus-retarded solution operator for (�+ Λ) on vector fields and

E is the advanced-minus-retarded solution operator for P .

Proof. We know that (� + Λ)Ẽ
±
v = v, so using this and Lemma 4.2.4 gives

P (£
Ẽ
±
v
g) = £

(�+Λ)Ẽ
±
v
g = £vg.

The unique solutions to this equation with past/future compact support are, by The-

orem 2.4.2, E±£vg and therefore £
Ẽ
±
v
g = E±£vg by uniqueness. Combining these

results as follows

E£vg = E−£vg −E+£vg = £
Ẽ
−
v
g −£

Ẽ
+
v
g = £

Ẽ
−
v−Ẽ+

v
g = £Ẽvg

achieves the result (4.7.1). �

This now allows us to prove that in each gauge equivalence class there is a de Donder

solution that is equal to Ef with f obeying ∇·f = 0. This will be important in section 5.4

when we consider the fundamental observables of the theory, the smeared fields, which will

have the restriction ∇ · f = 0 placed upon the smearing tensors.
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Theorem 4.7.6 Any γ ∈ S (M ; R) is gauge equivalent to an Ef for some f ∈ C∞0 (S0
2(M ; R))

satisfying ∇ · f = 0.

Proof. By Corollary 4.5.3 we have γ ∼ γdD for some de Donder representative γdD.

Lemma 4.7.1 and Theorem 4.7.4 entail that γdD = Ef̃ with ∇ · f̃ = (� + Λ)v[ for some

v ∈ C∞0 (T 1
0 (M ; R)). We now perform a further de Donder gauge transformation on Ef̃ ,

meaning that the result is just a different de Donder representative of [γ]. The gauge

transformation is selected to be £Ẽvg ∈ G dD(M ; R). Thus we have

γ ∼ Ef̃ −£Ẽvg = E(f̃ −£vg), (4.7.2)

where the equality uses Lemma 4.7.5. Now define f := f̃ − £vg, which is smooth and

compactly supported on M . Calculating the divergence of the trace-reversal of f gives

∇ · f = ∇ · f̃ −∇ · (£vg) = (� + Λ)v[ − (� + Λ)v[ = 0,

where Lemma 4.5.1 has been used. Finally, noting from (4.7.2) that γ ∼ Ef completes

the proof. �

The remaining two lemmas of this subsection will be required later to prove that the

time-slice condition holds for the algebra of observables that we construct. First we show

that in the gauge equivalence class of a solution to the inhomogeneous (non-hyperbolic)

linearized Einstein equation having past/future compact support, there exists a repre-

sentative with the same support properties and this representative is, in fact, just the

retarded/advanced solution to the inhomogeneous hyperbolic equation associated with the

inhomogeneous linearized Einstein equation.

Lemma 4.7.7 On a cosmological vacuum background spacetime, given f ∈ C∞0 (S0
2(M ; R)),

if γ± ∈ T (M ; R) solves Lab(γ
±) = fab with supp γ± compact to the past/future then

γ± ∼ −2E±f .

Proof. Theorem 4.5.2 shows that one may gauge transform a perturbation to the de

Donder gauge. However, here we wish to preserve the additional support properties of γ±

too. Therefore it is necessary that the vector field generating the gauge transformation also

have past/future compact support. We know that this vector field obeys the hyperbolic

differential equation (4.5.3) and that the unique solutions to this equation with past/future

compact support are, by Theorem 2.4.2, w± = −Ê
±
∇ · γ. Therefore γ ′ = γ± + £w±g

obeys ∇ · γ ′ = 0 with past/future compact support.
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On a cosmological vacuum background spacetime, Lab(£wg) = 0 and so Lab(γ
′) =

Lab(γ
±) = fab, which simplifies, on account of the de Donder condition, see Theorem 4.2.2,

to

P (γ ′) = −2f .

The solutions to this inhomogeneous equation with past/future compact support are γ ′ =

−2E±f , see Theorem 2.4.2. Lemma 4.7.3 entails that γ ′ = −2E±f and hence the result.

�

As we have shown in Theorem 4.7.6, if we have a solution Ef with ∇ · f = 0, then

it is a de Donder solution. However, there exist pure gauge de Donder solutions, which

are elements of the space G dD(M ; R) defined in Theorem 4.5.22. Therefore we need to also

consider under what circumstances such a solution is just pure gauge, meaning that it is

only moving us about within the de Donder gauge of some fixed gauge equivalence class.

This situation is what the next lemma considers.

Lemma 4.7.8 Given a f ∈ C∞0 (S0
2(M ; R)) satisfying ∇·f = 0, suppose that Ef = E£vg

for some v ∈ C∞0 (T 1
0 (M ; R)). Then there exists a h ∈ C∞0 (S0

2(M ; R)) such that

f = −2L(h). (4.7.3)

Proof. E(f −£vg) = 0 and so by the exact sequence of Theorem 2.4.3,

f = £vg + P (h) (4.7.4)

for some h ∈ C∞0 (S0
2(M ; R)). Taking the trace-reversal and then the divergence of (4.7.4)

gives ∇ · f = ∇ · £vg + ∇ · P (h). Lemmas 4.2.1 and 4.5.1 entail that this simplifies to

∇ · f = (� + Λ)v[ +∇ · P (h) and then Lemma 4.2.3 means that it reduces to

∇ · f = (� + Λ)(v[ +∇ · h).

By assumption, ∇ · f = 0 and so as v and h are compactly supported, in particular, they

have past/future compact support, then by [11, Thm 3.1.1], v[ = −∇ · h. Inserting this

into (4.7.4), trace-reversing and then applying Theorem 4.2.2 gives the result. �

2On cosmological vacuum spacetimes, all pure gauge perturbations are linearized Einstein solutions.
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Chapter 5

Phase space

Having thoroughly discussed all of the preliminary material dealing with the classical solu-

tions of linearized gravity, we are now in a position to construct the phase space and define

the observables of the theory. This will allow us, in the subsequent chapter, to quantize

the theory using Dirac’s prescription.

As highlighted in section 3.2.1, the phase space for linear field theories consists of the

vector space of smooth solutions to the equation of motion, with, if required, certain sup-

port restrictions imposed. This space is also endowed with a symplectic product. However,

matters are complicated here, as they are for the case of electromagnetism, by the presence

of gauge symmetries.

This chapter is based upon section four and appendices B & C of the paper [34] cowritten

by the author with Dr C. J. Fewster.

5.1 Pre-symplectic space

For exactly the same reasons as those given in section 3.2.1, we begin by considering

the vector space of smooth spacelike-compact complex-valued perturbations that solve the

linearized Einstein equation, that is, the space S (M ; C). This space is the complexification

of S (M ; R). All of the results from chapter 4 in no way required the tensor fields to be

real-valued and so they all continue to hold in the complex case too.

Following the arguments given for the case of the real scalar field in section 3.2.1, which

concern how to equip the complexified space of solutions with a symplectic product, we

again use the techniques of [68] and now the Lagrangian (4.2.26), to endow S (M ; C) with

a pre-symplectic product. Given a smooth spacelike Cauchy surface Σ with future-pointing
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unit normal vector n, then the pre-symplectic product of solutions is defined to be

ωΣ(γ1,γ2) :=

∫
Σ

(γ1
abπ

ab
2 − γ2

abπ
ab
1 )dvolh, (5.1.1)

where π is defined in terms of Π, see (4.2.27), by

πab := −ncΠcab. (5.1.2)

The presence of the minus sign reflects our choice of sign convention for the spacetime

metric.

Just as for the scalar field, this product acts on elements of the underlying solution

space rather than on elements of the tangent space; this is due to S (M ; C) being a vector

space and so one may identify S (M ; C) with the tangent space TγS (M ; C) at any point

γ ∈ S (M ; C). However, unlike for the scalar field there exist degeneracies here. Recall

that a degeneracy is a non-trivial element whose product with every other element vanishes.

The space of degeneracies is called the radical of ωΣ. We will now be concerned with finding

out exactly what the radical of ωΣ is made up of. However, before doing that, we briefly

consider whether the pre-symplectic product ωΣ is independent of the choice of Cauchy

surface. This is in fact the case when it acts on solutions, as the next lemma shows, and so

henceforth, after proving this lemma, the subscript Σ will be dropped from ω when only

solutions are considered.

Lemma 5.1.1 Given γ1,γ2 ∈ S (M ; C) and two spacelike Cauchy surfaces Σ and Σ′, then

ωΣ(γ1,γ2) = ωΣ′(γ
1,γ2).

Proof. By defining the current jc(γ1,γ2) := γ2
abΠ

cab
1 − γ1

abΠ
cab
2 , one immediately sees from

(5.1.1) and (5.1.2) that

ωΣ(γ1,γ2) =

∫
Σ

ncj
c(γ1,γ2)dvolh. (5.1.3)

The divergence of the current jc(γ1,γ2) is given by

∇cj
c(γ1,γ2) = (∇cγ

2
ab)Π

cab
1 + γ2

ab∇cΠ
cab
1 − (∇cγ

1
ab)Π

cab
2 − γ1

ab∇cΠ
cab
2 ,
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whereupon using the identity from Lemma 4.2.5 and (4.2.27) this becomes

∇cj
c(γ1,γ2) = ∇cγ

2
abT

cabdef∇dγ
1
ef + γ2

ab(L
ab(γ1)− 2Sabdeγ1

de)

−∇cγ
1
abT

cabdef∇dγ
2
ef − γ1

ab(L
ab(γ2)− 2Sabdeγ2

de).

Using the symmetry properties of T abcdef and Sabcd, all terms containing them cancel one

another and so we are left with

∇cj
c(γ1,γ2) = γ2

abL
ab(γ1)− γ1

abL
ab(γ2),

which will vanish if γ1 and γ2 are solutions to the linearized Einstein equation, as we have

assumed.

Now, without loss of generality we assume that Σ ⊂ I+(Σ′), and denote by U the region

bounded between these two Cauchy surfaces. The future-pointing unit normal vector on

Σ is denoted by n and on Σ′ is denoted by n′. Applying Gauss’ Theorem to the vector

field ja on the region U , it is clear that∫
Σ′
n′aj

advolh −
∫

Σ

naj
advolh =

∫
U

∇aj
c(γ1,γ2)dvolg.

As γ1 and γ2 are solutions, the right-hand side vanishes and so by using (5.1.3) we have

ωΣ′(γ
1,γ2)− ωΣ(γ1,γ2) = 0

and hence the result. �

We will now discuss the degeneracies of the product (5.1.1). Firstly, we will show that

pure gauge perturbations are degeneracies. This entails that the product ω is a gauge

invariant object. Here we work with the larger pure gauge subspace Ĝ (M ; C). In order to

prove that the elements of Ĝ (M ; C) are degeneracies, we require the following identity that

connects the initial value constraint (4.6.2) to the symplectic product. In this instance, we

consider the symplectic product to be defined on all elements of T (M ; C) and not just the

subspace of solutions S (M ; C). As such, for this theorem only and the lemmas contained

within the proof of it, we have to include a subscript Σ to indicate the dependence of the

pre-symplectic product on the choice of spacelike Cauchy surface Σ.

Theorem 5.1.2 For any γ ∈ T (M ; C), w ∈ C∞(T 1
0 (M ; C)) and given any smooth space-
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like Cauchy surface Σ with future-pointing unit normal vector n, then we have

ωΣ(γ,£wg) = 2

∫
Σ

waLab(γ)nbdvolh = 2

∫
Σ

wbCΣ
b (DataΣ(γ))dvolh. (5.1.4)

Proof. The second equality follows directly from the definition of CΣ. To prove that the

first equality holds, we will prove two further identities as lemmas within the main proof

of the theorem. The proofs of these identities will utilise a vector field v ∈ C∞(T 1
0 (M ; C)),

which has the properties that it agrees with the vector field w in a neighbourhood of Σ

and vanishes to the far past of Σ. As far as we know, the origin of the use of such a vector

field is [45], see the paragraph preceding equation (79) in that reference. The first identity

is as follows.

Lemma 5.1.3 With γ, w and v as above, then∫
Σ

waLab(γ)nbdvolh = −
∫
M−
∇(avb)L

ab(γ)dvolg, (5.1.5)

where M− = I−(Σ) is the region to the past of the Cauchy surface Σ.

Proof. As w = v on a neighbourhood of Σ, then∫
Σ

waLab(γ)nbdvolh =

∫
Σ

vaLab(γ)nbdvolh.

Using the Gauss Theorem on the region M− with the covector field vaLab(γ) then we have∫
Σ

vaLab(γ)nbdvolh = −
∫
M−
∇b(vaLab(γ))dvolg,

where we have used that v vanishes to the far past of Σ. The right-hand side can be

expanded using the Leibniz rule, and then using the linearized Bianchi identity,∇aLab(γ) =

0, this becomes ∫
Σ

vaLab(γ)nbdvolh = −
∫
M−

(∇bva)Lab(γ)dvolg. (5.1.6)

Finally, since L is symmetric then Lab(γ) = L(ab)(γ), and so because ∇bvaL(ab)(γ) =

∇(bva)Lab(γ), (5.1.6) becomes∫
Σ

vaLab(γ)nbdvolh = −
∫
M−
∇(avb)Lab(γ)dvolg,

where we have relabelled indices and again used symmetry of L. �
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Now we use the pre-symplectic product (5.1.1) to re-express the right-hand side of

(5.1.5).

Lemma 5.1.4 With γ, w and v as above,

ωΣ(γ,£wg) = −
∫
M−

2∇(avb)L
ab(γ)dvolg.

Proof. Expanding the left-hand side using (5.1.1) gives

ωΣ(γ,£wg) =

∫
Σ

na[2∇(bwc)Π
abc(γ)− γbcΠabc(£wg)]dvolh.

As w = v on a neighbourhood of Σ, then it is clear that∫
Σ

na[2∇(bwc)Π
abc(γ)− γbcΠabc(£wg)]dvolh =

∫
Σ

na[2∇(bvc)Π
abc(γ)− γbcΠabc(£vg)]dvolh.

Now applying the Gauss Theorem on the region M− with the vector field 2∇(bvc)Π
abc(γ)−

γbcΠ
abc(£vg) gives∫

Σ

na[2∇(bvc)Π
abc(γ)− γbcΠabc(£vg)]dvolh

= −
∫
M−
∇a[2∇(bvc)Π

abc(γ)− γbcΠabc(£vg)]dvolg, (5.1.7)

where we have again used that v vanishes to the far past of Σ. The integrand on the

right-hand side of (5.1.7) is

∇a(2∇(bvc)Π
abc(γ)− γbcΠabc(£vg)) = 2∇a∇(bvc)Π

abc(γ)

+ 2∇(bvc)∇aΠ
abc(γ)−∇aγbcΠ

abc(£vg)− γbc∇aΠ
abc(£vg).

Using (4.2.27) and the symmetries of T abcdef , the first and third terms of this cancel. The

remaining two terms are

2∇(bvc)∇aΠ
abc(γ)− γbc∇aΠ

abc(£vg)

= 2∇(bvc)(L
bc(γ)− 2Sbcdeγde)− γbc(Lbc(£vg)− 2Sbcde(£vg)de,

where we have used the identity from Lemma 4.2.5. Finally, as Lbc(£vg) = 0 and using
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the symmetries of Sbcde, then

2∇(bvc)∇aΠ
abc(γ)− γbc∇aΠ

abc(£vg) = 2∇(bvc)L
bc(γ).

The combination of these results proves the lemma. �

The proof of Theorem 5.1.2 is completed by combining Lemma 5.1.3 and Lemma 5.1.4.

�

This result puts us in a position to prove that pure gauge perturbations are degeneracies

of the product (5.1.1) on the space of solutions to the linearized Einstein equation.

Lemma 5.1.5 Ĝ (M ; C) is contained in the radical of ω.

Proof. Suppose w ∈ C∞(T 1
0 (M ; C)) and γ ∈ S (M ; C), and let Σ be a smooth spacelike

Cauchy surface. From Theorem 5.1.2 we have the identity

ω(γ,£wg) = 2

∫
Σ

wbCΣ
b (DataΣ(γ))dvolh

and the right-hand side vanishes because CΣ(DataΣ(γ)) = 0. �

The problem which now arises is to prove that Ĝ (M ; C) exhausts the space of degen-

eracies. For the case that (M, g) admits a compact Cauchy surface we will show how this

can be achieved, but for the case that (M, g) does not admit a compact Cauchy surface, a

proof that Ĝ (M ; C) exhausts the radical of ω has yet to be obtained. It is claimed in the

footnote of [9, p. 59] that weak non-degeneracy holds provided the background spacetime

does not admit Killing fields supported near spatial infinity, but no justification nor any

references are ever given.

The proof, for the case that (M, g) admits a compact Cauchy surface, that Ĝ (M ; C)

exhausts the radical of ω is directly analogous to the case of electromagentism [28]. For

that theory, one proves that all degeneracies are pure gauge by working with the Cauchy

data for the vector potential A, which are differential forms on the Cauchy surface. As the

Cauchy surface is assumed compact, one can apply the Hodge decomposition to split the

initial data into various pieces to prove [28, Prop. 5] that the degeneracies are only pure

gauge.

However, recently, a new method [67] has been proposed which makes use of cohomology

theory to prove that the degeneracies of the symplectic product of electromagnetism are

still just pure gauge for the case of non-compact Cauchy surfaces, but with the initial data

on the Cauchy surfaces still being compactly supported. Unfortunately, since there does
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not currently exist an analogue of cohomology theory for symmetric tensor fields, we will

not be able to utilise this approach, and as such we will not discuss it any further here.

Therefore we are left with the same issues as [28], namely the existence of a suitable

decomposition theorem. In fact, such a decomposition has been obtained by Moncrief [72],

but it is computed within the Arnowitt-Deser-Misner (ADM) formalism [7] and is only

valid for background spacetimes that solve the vacuum Einstein equation with vanishing

cosmological constant. Therefore the task is to both reconcile the ADM approach with

ours and generalise Moncrief’s decomposition to the non-vanishing cosmological constant

case.

We will show how both of these points can be achieved. In particular, the reconciliation

of the ADM approach with ours will use the synchronous condition that was established

earlier in section 4.5.3. The upshot of these results is that any degeneracy from our product

induces a degeneracy in the corresponding ADM product, from which it can then be

determined that the degeneracy is pure gauge. We now state the main theorem. However,

its proof is postponed until after we have given a full description of the ADM formalism

and our generalisation of the Moncrief decomposition.

Theorem 5.1.6 If (M, g) admits compact Cauchy surfaces then the radical of ω is pre-

cisely the subspace of pure gauge solutions G (M ; C). That is, given γ ′ ∈ S (M ; C) such

that ω(γ ′,γ) = 0 for all γ ∈ S (M ; C), then γ ′ ∈ Ĝ (M ; C).

5.2 Results from the Arnowitt-Deser-Misner formal-

ism

To prove, for the case that the background spacetime admits a compact Cauchy surface,

that the space of degeneracies of the pre-symplectic product are pure gauge, we need to use

results from the Arnowitt-Deser-Misner (ADM) formalism, which will now be introduced.

5.2.1 The Arnowitt-Deser-Misner formalism

The goal of the ADM formalism is to cast the general theory of relativity into a Hamil-

tonian form. This then facilitates the attainment of a quantum theory through canonical

quantization; this quantum theory is known as canonical quantum gravity. We will not

consider this theory here, though we shall just note that this approach has not proved
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fully successful as a quantum theory of gravity, yet it has spawned numerous other ap-

proaches. Most notably it led Ashtekar [8] to consider new variables for gravity, now

known as Ashtekar variables, which subsequently led to the development of the theory of

loop quantum gravity that currently has a large research community.

Although the ADM method was not the first approach to placing general relativity into

a Hamiltonian form, see for instance Dirac’s approach [30] and other references therein, it

is the most widely recognised and used. We will now give a brief exposition of the ADM

formalism based on the approach of Fischer and Marsden [41, Ch. 2] who use techniques

from geometrical analysis to re-write the evolution equations in a more compact form,

which uses the adjoint of the linearized constraint operator. These techniques are further

utilised, as we will show, in the decomposition theorems of Moncrief. For the original ADM

formulation and references, see the review article of Arnowitt, Deser and Misner [7].

Following [41, Sec. 2], let Σ be a three-dimensional smooth manifold without boundary

that is assumed to be compact, connected, Hausdorff and orientable. One assumes that

Σ can be embedded within a spacetime (M, g) such that its image in M is spacelike with

respect to g. Now assume that on an open subset U ⊂M there exists a timelike vector field

t ∈ C∞(T 1
0 (U ; R)) such that the level surfaces of the congruence of integral curves of this

vector field are spacelike embeddings of Σ. Therefore we have a flow of time in spacetime

and this parameterises the dynamics. Using the future-pointing unit normal vector n to the

embedded hypersurface, one may decompose a vector field into its normal and tangential

parts. The normal and tangential components of t are called [7], respectively, the lapse

function and the shift vector field, and they characterise the slicing.

In this dynamical approach, the state of the spacetime metric will be specified by two

quantities associated with the hypersurface. The first is the induced Riemannian metric

h ∈ C∞(S0
2(Σ; R)), also known as the first fundamental form; it will act as a ‘position’

variable. The spacetime metric g can be written purely in terms of the lapse function,

shift vector field and the induced Riemannian metric. Note that the lapse function and

shift vector field are non-dynamical entities, in that they merely specify the slicing used to

describe the evolution, and are freely specifiable.

The other variable is h’s canonically conjugate momentum $ ∈ C∞(S̃2
0(Σ; R)), where

S̃2
0(Σ; R) denotes the space of symmetric, second rank contravariant tensor densities on

Σ. We will now describe what this momentum is and how it arises. The hypersurface will

possess a second fundamental form or extrinsic curvature k, which is a symmetric covariant

two-tensor. It characterises how the surface has been embedded within the ambient space
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by measuring the difference between the actions of the connection associated with the

ambient spacetime metric and the connection associated with the induced Riemannian

metric of the surface, see [24, pp. 312-315] for further details. In our case, we choose

kab = qcaq
d
b∇(cnd), where n is as above and qca projects tensors onto the hypersurface; this

convention agrees with [91, eq. (10.2.13)] but is opposite to the convention selected in [41,

p. 328]. One may expand the Einstein-Hilbert action (4.2.25) in terms of the quantities of

the hypersurface. From this one finds that the canonically conjugate momentum to h is

given by the tensor density

$ab =
√
h

(
kab − 1

2
habk

)
.

This corresponds to minus the momentum of Fischer and Marsden [41], but recall that

their extrinsic curvature convention is minus ours, so in fact the two momentums agree.

The two quantities (h,$) evolve according to the ADM equations, which will be stated

later, see (5.2.7), in a form first noted by Fischer and Marsden [39, p. 917]. The initial data

for this system is a pair (h,$) ∈ C∞(S0
2(Σ; R)) × C∞(S̃2

0(Σ; R)), but one cannot freely

choose arbitrary data. If the data are to determine a solution of the Einstein equation,

then the data must satisfy certain initial value constraints. These constraints are given by

the map Φ : C∞(S0
2(Σ; R))× C∞(S̃2

0(Σ; R))→ C∞(Σ; R)× C∞(T 1
0 (Σ; R)), where

Φ(h,$) = (H (h,$), δ(h,$)) (5.2.1)

and the Hamiltonian and momentum constraints are

H (h,$) = −R(3)(h) +
$ab$ab

h
− $2

2h
+ 2Λ

and

δa(h,$) = Db

(
$ab

√
h

)
respectively. Here R(3)(h) is the Ricci scalar for the metric h and Da is the covariant

derivative associated with h. Together, the ADM equations (5.2.7) and the constraint Φ

are equivalent [41, Thm 2.1], if Σ is compact, to the Einstein equation Gab + Λgab = 0

holding on the region covered by the slicing.

We now discuss how the linearized theory is treated in the ADM formalism. One

linearizes the system using standard techniques (discussed in section 4.2), and obtains
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quantities that are analogous to the background ADM ones. A linear perturbation γ can be

split up into a linearized lapse function, linearized shift vector field and a three-perturbation

γ(3) ∈ C∞(S0
2(Σ; R)). The Cauchy data for γ consists of (γ(3),p) =

(
∂h(λ)
∂λ

, ∂$(λ)
∂λ

)
λ=0

,

where (h(λ),$(λ)) are a one parameter family of data for the non-linear equations. One

also has linearized constraints and a system of linearized ADM equations, which together

are equivalent [41, Thm 4.5] (for the case that Σ is compact) to the linearized Einstein

equation (4.2.4) holding. One should note that to solve the linearized ADM equations

one needs to specify a linearized lapse function and linearized shift vector field; as in the

background case, they are non-dynamical and freely specifiable.

From now on we assume that the background is a solution to the vacuum Einstein

equation with cosmological constant, so Φ(h,$) = 0, where (h,$) are the Cauchy data

for the background spacetime. The linearized constraints are the derivative, evaluated at

(h,$), of the constraint map (5.2.1),

DΦ(h,$) : C∞(S0
2(Σ; R))× C∞(S̃2

0(Σ; R))→ C∞(Σ; R)× C∞(T 1
0 (Σ; R)),

where

DΦ(h,$)(γ(3),p) =
(
DH (h,$)(γ(3),p), Dδ(h,$)(γ(3),p)

)
(5.2.2)

and these components are

DH (h,$)(γ(3),p) =
1

h

[
−
(
$ab$ab −

1

2
$2

)
γ(3) + 2

(
$abp

ab − 1

2
$p

)
+2

(
$ac$cb −

1

2
$$ab

)
γ

(3)
ab

]
−
(
DaDbγ

(3)
ab −D

aDaγ
(3) −R(3)abγ

(3)
ab

)
(5.2.3)

and

Dδ(h,$)(γ(3),p) =
1√
h

[
2Dbp

ab +$bc
(
Dcγ

(3)a
b +Dbγ

(3)a
c −Daγ

(3)
bc

)]
,

where γ(3) = habγ
(3)
ab , $ = hab$

ab and p = habp
ab. To get the components of (5.2.2) into

the form of those in [41, 72], we evaluate (5.2.3) on the constraint surface Φ(h,$) = 0,
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which gives

DH (h,$)

(
γ(3)

p

)
=

1

h

[
−1

2

(
$ab$ab −

1

2
$2

)
γ(3) + 2

(
$abp

ab − 1

2
$p

)
+2

(
$ac$ b

c −
1

2
$$ab

)
γ

(3)
ab

]
−
[
DaDbγ

(3)
ab −D

aDaγ
(3)

−
(
R(3)ab − 1

2
habR(3) + Λhab

)
γ

(3)
ab

]
.

Note that the difference between this and the Λ = 0 case considered in equation (2.8) of

[72] is just the cosmological constant term.

Following [72], see equations (2.4) and (2.6) of that reference, we now introduce two

inner products, which will allow one to calculate an adjoint to DΦ(h,$). The first product

acts on the vector space C∞(S0
2(Σ; R))×C∞(S̃2

0(Σ; R)), whereby, given (γ(3),p), (γ̃(3), p̃) ∈
C∞(S0

2(Σ; R))× C∞(S̃2
0(Σ; R)), one defines their inner product by

〈(γ(3),p); (γ̃(3), p̃)〉 :=

∫
Σ

(√
hγ

(3)
ab γ̃

(3)
cd h

achbd +
1√
h
hachbdp

abpcd
)
d3x. (5.2.4)

The second product acts on elements in C∞(Σ; R)×C∞(T 1
0 (Σ; R)); given f, f̃ ∈ C∞(Σ; R)

and V , Ṽ ∈ C∞(T 1
0 (Σ; R)), then

〈〈(f,V ); (f̃ , Ṽ )〉〉 :=

∫
Σ

(f · f̃ + habV
aV b)dvolh. (5.2.5)

One may now calculate the adjoint DΦ∗(h,$) of the differential operator DΦ(h,$)

with respect to these inner products (5.2.4) and (5.2.5). Specifically we have

〈〈(f,V ), DΦ(h,$)(γ(3),p)〉〉 = 〈DΦ∗(h,$)(f,V ), (γ(3),p)〉. (5.2.6)

Using integration by parts, one finds that

DΦ∗(h,$)(f,V ) = (DH ∗(h,$)(f), Dδ∗(h,$)(V )),
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where DH (h,$)∗(f) = (α,β) with

αab =
1

h

[
−1

2

(
$cd$cd −

1

2
$2

)
habf +2

(
$ac$

c
b −

1

2
$ab$

)
f

]
−
[
DaDbf − habDcDcf −

(
R

(3)
ab −

1

2
habR

(3) + Λhab

)
f

]
and

βab = 2f

(
$ab − 1

2
$hab

)
.

The final component of DΦ∗(h,$) is calculated to be

Dδ∗(h,$)(V ) =

(
1√
h

(
Dc(V

c$ab)− 2$c
(aD|c|Vb)

)
,−
√
h(DaV b +DbV a)

)
.

Again, the difference between this and the Λ = 0 case, see equation (2.10) of [72], is the

cosmological constant term present in α.

We introduce a unitary operator U : C∞(S0
2(Σ; R))×C∞(S̃2

0(Σ; R))→ C∞(S0
2(Σ; R))×

C∞(S̃2
0(Σ; R)), defined by

U(γ(3),p) :=

(
−1√
h
p[[,
√
h(γ(3))]]

)
.

This operator is unitary with respect to the inner product 〈·, ·〉. The reason for introducing

this operator is so that U ◦DΦ∗(h,$) corresponds to the operator γ(h,$) ≡

(
0 −1

1 0

)
◦

DΦ(h,$)† from [72, p. 1558], where DΦ(h,$)† is the ‘new form of the adjoint’ defined in

equation (4.2) of that reference. The inverse map U−1 : C∞(S0
2(Σ; R))× C∞(S̃2

0(Σ; R))→
C∞(S0

2(Σ; R))× C∞(S̃2
0(Σ; R)) is given by

U−1(γ(3),p) =

(
1√
h
p[[,−

√
h(γ(3))]]

)
.

The ADM evolution equations, which govern how the background data (h,$) evolve

according to the slicing parameter, may be written as

∂

∂λ
(h(λ),$(λ)) = U−1 ◦DΦ∗(h,$)(N,−N ), (5.2.7)

where the lapse function N and the shift vector field N of the chosen slicing are arbitrary.
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The space C∞(S0
2(Σ; R)) × C∞(S̃2

0(Σ; R)) carries a natural symplectic product, which

will be known as the ADM symplectic product. On the background (h,$) it is, see [41,

p. 333], given by

ωADM(h,$)((γ
(3),p); (γ̃(3), p̃)) =

∫
Σ

(γ
(3)
ab p̃

ab − γ̃(3)
ab p

ab)d3x.

Observe that

ωADM(h,$)((γ
(3),p); (γ̃(3), p̃)) = 〈(γ(3),p);U−1(γ̃(3), p̃))〉. (5.2.8)

Note that the form of the linearized ADM equations is not required here and so we do not

include them, but refer the reader to [41, p. 357].

5.2.2 A generalisation of Moncrief’s splitting theorems

We now consider a result due to Moncrief, which shows how the space of initial data,

C∞(S0
2(Σ; R))×C∞(S̃2

0(Σ; R)), for the linearized ADM equations may be decomposed into

three distinct subspaces. The upshot of this is that it allows one to show that on the

space of initial data satisfying the linearized constraints, the subspace of degeneracies of

the ADM symplectic product consists entirely of pure gauge initial data. This result will

be adapted to show that the same is true for our symplectic product.

In [72] it is shown that, if the background spacetime obeys the vacuum Einstein equa-

tion with vanishing cosmological constant and if it admits a compact Cauchy surface Σ,

then the space of initial data to the linearized ADM equations can be decomposed, with

respect to the inner product (5.2.4), into three orthogonal subspaces. The key point of

this decomposition is that it preserves smoothness, that is, each subspace consists entirely

of smooth fields. The preservation of smoothness is achieved by the properties of ellip-

tic operators, which is why the compactness criterion arises. We will now describe the

splitting and its generalisation to include the case of a vacuum spacetime with a non-zero

cosmological constant. This will mean that the decomposition will be valid for the entire

class of spacetimes that we consider.

The first splitting is

C∞(S0
2(Σ; R))× C∞(S̃2

0(Σ; R)) = kerDΦ(h,$)⊕ rangeDΦ∗(h,$), (5.2.9)

where kerDΦ(h,$) is the subspace of data satisfying the linearized constraints and

rangeDΦ∗(h,$) is the unphysical data. Both subspaces consist entirely of elements which
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are smooth. We now briefly elaborate on how this is achieved. Orthogonality of the sub-

spaces follows directly from (5.2.6). Therefore one is left with showing that an arbitrary

(γ(3),p) ∈ C∞(S0
2(Σ; R))× C∞(S̃2

0(Σ; R)) may be uniquely decomposed into

(γ(3),p) = (γ̃(3), p̃) +DΦ∗(h,$)(C,X), (5.2.10)

where ( ˜γ(3), p̃) ∈ kerDΦ(h,$) and (C,X) ∈ C∞(Σ; R) × C∞(T 1
0 (Σ; R)). By applying

DΦ(h,$) to both sides of this equation, one obtains a partial differential equation for

(C,X),

DΦ(h,$)(γ(3),p) = DΦ(h,$) ◦DΦ∗(h,$)(C,X). (5.2.11)

If a unique solution (C,X) exists, then the splitting will be proved. To obtain a solu-

tion, the theory of elliptic operators will be used, in particular, the results of [12] who

discuss the properties of differential operators on compact Riemannian manifolds. For

the case of Λ = 0, see [72, Sec. 3], the operator DΦ(h,$) ◦ DΦ∗(h,$) : C∞(Σ; R) ×
C∞(T 1

0 (Σ; R)) → C∞(Σ; R) × C∞(T 1
0 (Σ; R)) is elliptic [12, Lem. 4.4] because DΦ∗(h,$)

has injective principal symbol1. In the Λ 6= 0 case, our modifications to the linearized

constraint map DΦ(h,$) and its adjoint DΦ∗(h,$) only results in the addition of a Λh

term in both cases. Hence, this does not introduce any further second-order derivative

terms and so the principal symbol of DΦ∗(h,$) will be unaffected. Therefore the opera-

tor DΦ(h,$) ◦DΦ∗(h,$) is still elliptic, and so by [12, Thm 4.3] one has the following

decomposition,

C∞(Σ; R)× C∞(T 1
0 (Σ; R)) = range(DΦ(h,$) ◦DΦ∗(h,$))⊕ ker(DΦ(h,$) ◦DΦ∗(h,$))

= range(DΦ(h,$) ◦DΦ∗(h,$))⊕ kerDΦ∗(h,$). (5.2.12)

The remainder of Moncrief’s argument [72, Sec. 3] shows that the source term (the left-

hand side of (5.2.11)) lies in range(DΦ(h,$) ◦DΦ∗(h,$)), which is because the source

is evidently an element of rangeDΦ(h,$), but this space is orthogonal to kerDΦ∗(h,$),

and so by (5.2.12) it lies in range(DΦ(h,$)◦DΦ∗(h,$)). Hence a solution (C,X) exists

and is unique up to an element of kerDΦ∗(h,$). Since any element of kerDΦ∗(h,$)

does not affect the split (5.2.10), the splitting itself will be unique even though the solution

to (5.2.11) might not be. Therefore the first Moncrief decomposition (5.2.9) also holds for

cosmological vacuum spacetimes too.

1The principal symbol of a second-order differential operator, such as DΦ∗(h,$), is discussed in sec-
tion 2.4.1 of this thesis.
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The second splitting decomposes the constraint subspace, kerDΦ(h,$), into a pure

gauge subspace, meaning data for pure gauge solutions, and a physical subspace. In [73,

Sec. IV] it is shown that the initial data for a pure gauge solution £wg to the linearized

equations, on a vacuum spacetime with Λ = 0, is given by

(γ(3),p)gauge = U ◦DΦ∗(h,$)(C,X), (5.2.13)

where C = naw
a and Xa = qabw

b are respectively the normal (with respect to the future-

pointing unit normal vector n) and tangential projections, relative to Σ (using the associ-

ated projection tensor qab), of the gauge vector field. This result was initially proved via a

lengthy calculation, and later by more geometrical methods [41, Thm 4.7] using the adjoint

form of the ADM equations (5.2.7). By following the methodology given in [41, Thm 4.7]

except that one uses the ADM equations (5.2.7), which include the Λ 6= 0 case, then the

result continues to hold for cosmological vacuum spacetimes as well.

Before performing the final split, one also needs to check that the pure gauge subspace

actually lies in the constraint subspace. Again, one could check this by the means of a

lengthy calculation, as was done in [72, Thm 4.1] for the Λ = 0 case; instead, we appeal

to the geometrical method of [41, Prop. 3.2], which again, just like the expression for the

pure gauge initial data, utilises the adjoint form of the ADM evolution equations. By

using the ADM equations (5.2.7) that include the Λ 6= 0 case and the methodology of [41,

Prop. 3.2], then it remains true for all cosmological vacuum spacetimes that the subspace

of pure gauge data is contained within the subspace of data which satisfy the linearized

constraints.

With the two preceding results and, as argued earlier, ellipticity ofDΦ(h,$)◦DΦ∗(h,$)

unaffected by the addition of a cosmological constant, the subspace kerDΦ(h,$) can be

decomposed into

kerDΦ(h,$) = range(U ◦DΦ∗(h,$))⊕ ker((U ◦DΦ∗(h,$))∗ ∩ kerDΦ(h,$),

where the first space is pure gauge and the second space is the physical space. To prove

this, one first needs to obtain the orthogonal complement, within kerDΦ(h,$), to the

pure gauge space, range(U ◦DΦ∗(h,$)). Let (γ(3),p) ∈ kerDΦ(h,$) be orthogonal to
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all pure gauge data, therefore, for all (C,X) ∈ C∞(Σ; R)× C∞(T 1
0 (Σ; R)),

0 = 〈(γ(3),p), U ◦DΦ∗(h,$)(C,X)〉

= 〈U−1(γ(3),p), DΦ∗(h,$)(C,X)〉

= 〈〈DΦ(h,$)(U−1(γ(3),p)), (C,X)〉〉.

By non-degeneracy of 〈〈·, ·〉〉, this entails that DΦ(h,$)(U−1(γ(3),p)) = 0. Hence, one

seeks to split a (γ(3),p) ∈ kerDΦ(h,$) as

(γ(3),p) = (γ̃(3), p̃) + U ◦DΦ∗(h,$)(C,X)

such that DΦ(h,$)(U−1(γ̃(3), p̃)) = 0. Applying the operator DΦ(h,$) ◦ U to this

decomposition, one obtains

DΦ(h,$)(U−1(γ(3),p)) = DΦ(h,$) ◦DΦ∗(h,$)(C,X). (5.2.14)

Using exactly the same argument as for the first split and noting that range(DΦ(h,$) ◦
U−1) is always orthogonal to kerDΦ∗(h,$), then the unique splitting exists for the Λ 6= 0

case as well.

Therefore the final decomposition of the initial data is

C∞(S0
2(Σ; R))× C∞(S̃2

0(Σ; R)) = rangeDΦ∗(h,$)⊕ range(U ◦DΦ∗(h,$))

⊕ ker((U ◦DΦ∗(h,$))∗ ∩ kerDΦ(h,$),

which takes the same form as the Λ = 0 case from [72, Thm 4.2]. This decomposition

allows one to prove that on the space of initial data obeying the constraints, the only

degeneracies of the ADM symplectic product are pure gauge. We will now show this by

giving the analogue, for our Λ 6= 0 case, of [40, Prop. 4.38].

Theorem 5.2.1 The ADM symplectic orthogonal complement to the subspace kerDΦ(h,$)

is the pure gauge space range(U ◦DΦ∗(h,$)) ⊂ kerDΦ(h,$).

Proof. Let (γ̃(3), p̃) ∈ C∞(S0
2(Σ; R) × C∞(S̃2

0(Σ; R)) satisfy ωADM(h,$)((γ
(3),p); (γ̃(3), p̃)) = 0

for all (γ(3),p) ∈ kerDΦ(h,$). Then by (5.2.8),

〈(γ(3),p);U−1(γ̃(3), p̃))〉 = 0 (5.2.15)
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and so U−1(γ̃(3), p̃) is orthogonal to kerDΦ(h,$). By the first Moncrief split (5.2.9) this

means that U−1(γ̃(3), p̃) ∈ rangeDΦ∗(h,$). Hence,

(γ̃(3), p̃) ∈ range(U ◦DΦ∗(h,$)) (5.2.16)

and is therefore pure gauge. �

5.3 Symplectic space

We are now in a position to prove Theorem 5.1.6.

5.3.1 Proof of Theorem 5.1.6

The main issue is to translate Theorem 5.2.1 into the setting studied in the main body of

the paper. Begin by taking an arbitrary smooth spacelike Cauchy surface Σ and denote

by N a normal neighbourhood of Σ. (For details about normal neighbourhoods, see

section 4.5.3.)

Any element of S (M ; C) can be split into its real and imaginary parts, in particular,

the degeneracy can be split. As a degeneracy has vanishing pre-symplectic product with

every element of S (M ; C), then if we examine its behaviour against purely real or purely

imaginary solutions, the form of both the real and imaginary parts of the degeneracy can

be found by discovering the form of a degeneracy on just the space of real solutions. We

will show, using the ADM results, that a degeneracy for the case of real solutions has to

be pure gauge and so our complex degeneracy is pure gauge too.

Therefore without loss of generality, assume that the solution γ ′ ∈ S (M ; R) is a degen-

eracy of the symplectic form ω, that is, ω(γ ′,γ) = 0 for all γ ∈ S (M ; R). Also, without

loss of generality, γ ′ may be chosen synchronous near Σ; Theorem 4.5.6 entails that we may

gauge transform any solution to the synchronous gauge near Σ, and since, by Lemma 5.1.5,

pure gauge is a degeneracy, then γ ′ will still be a degeneracy of ω. It will also be sufficient

to restrict attention to synchronous γ as well.

We now restrict attention to the normal neighbourhood N , where we can introduce

Gaussian normal coordinates. In such coordinates the spacetime metric takes the form

g = −dt ⊗ dt + h̃ijdx
i ⊗ dxj and the synchronous gauge condition is precisely γ0µ = 0.

The solutions γ ′,γ correspond to solutions to the linearized ADM equations about the

background (N , g|N ) in the slicing given by the Gaussian normal coordinates: thus we
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have unit lapse, vanishing shift (and vanishing linearizations thereof). The corresponding

ADM Cauchy data are (γ ′(3),p′), (γ(3),p) ∈ C∞(S0
2(Σ; R)) × C∞(S̃2

0(Σ; R)) respectively,

where in these coordinates

γ
(3)
ij = γij|Σ, (5.3.1)

pij =
√
h

(
γ(3)

4

(
himhjn − hijhmn

)
− 1

2

(
γim(3)h

jn + himγjn(3) − γ
ij
(3)h

mn − hijγmn(3)

))
∂0hmn

+

√
h

2

(
himhjn − hijhmn

)
∂0γ

(3)
mn, (5.3.2)

and

πij|Σ =
1

2

(
himhjn − hijhmn

)
∂0γ

(3)
mn +

1

4
hijhmnhkl(∂0hnl)γ

(3)
mk. (5.3.3)

We see that the expressions for p√
h

and π|Σ do not coincide and there is no obvious con-

nection between them. (However, on Minkowski spacetime, in global inertial coordinates,

the two expressions do coincide.)

Using these results we have

ω(γ ′,γ) =

∫
Σ

(γ′ijπ
ij − γijπ′ij)

√
hd3x.

If one expands the out the integrand using (5.3.3) and compares this, using (5.3.2), to the

expansion of the integrand, with the
√
h removed, of

ωADM(h,$)((γ
′(3),p′); (γ(3)p)) =

∫
Σ

(γ′ijp
ij − γijp′ij)d3x,

then one finds that they are equal. Hence, we have

ω(γ ′,γ) = ωADM(h,$)((γ
′(3),p′); (γ(3)p)). (5.3.4)

The result of this is that if a solution γ ′ is a degeneracy for ω, then its ADM Cauchy

data (γ ′(3),p′) will be a degeneracy for ωADM on the subspace of initial data obeying the

constraints. Hence, by Theorem 5.2.1, (γ ′(3),p′) is data for a pure gauge solution, and so

on the region N , γ ′ = £wg for some w ∈ C∞(T 1
0 (N ; R)). Now perform a global gauge

transformation on γ ′ using a vector field v ∈ C∞(T 1
0 (M ; R)), which satisfies v = −w

on an open neighbourhood of Σ within N . The result will still be both a solution and

a degeneracy in S (M ; R), but it satisfies DataΣ(γ ′ − £vg) = (0, 0) and therefore by
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Theorem 4.6.3, γ ′ = £ug for some u ∈ C∞(T 1
0 (M ; R)). Note that due to the compactness

of Σ, all three vector fields w, v and u will be spacelike-compact and hence so will their

associated pure gauge perturbation. Therefore γ ′ ∈ G (M ; R) = Ĝ (M ; R). �

5.3.2 Phase space for linearized gravity

It has just been proven that for the case that the background spacetime admits a compact

Cauchy surface, the space of degeneracies consists only of the pure gauge perturbations.

Unfortunately, we do not, as yet, possess a proof for the non-compact case, and so we

conjecture that this result also holds for the non-compact case as well.

If the space of pure gauge perturbations Ĝ (M ; C) is the space of degeneracies, then

the phase space of the theory is obtained by quotienting the space of solutions by this

subspace. This entails that the phase space is the quotient vector space

PC(M) := S (M ; C)/Ĝ (M ; C), (5.3.5)

consisting of gauge equivalence classes [γ] of solutions to the linearized Einstein equation.

On PC(M), we have a weakly non-degenerate2 symplectic product,

ω([γ1], [γ2]) =

∫
Σ

(γ1
abπ

ab
2 − γ2

abπ
ab
1 )dvolh. (5.3.6)

Note that under complex conjugation, this satisfies

ω([γ1], [γ2])∗ = ω([γ1∗], [γ2∗]),

and the real phase space PR(M) is obtained by restricting attention to real-valued solutions

and real-valued gauge transformations.

The right-hand side of (5.3.6) is independent of the choice of representative from the

equivalence class, therefore we may freely select a de Donder representative in each case.

In fact, the ability to select de Donder representatives will be exploited to establish The-

orem 5.3.3. We begin by introducing the differential operator D : C∞(T 0
2 (M ; C)) →

C∞(T 3
0 (M ; C)) whose action on an arbitrary β ∈ C∞(T 0

2 (M ; C)) is given by

D cab(β) :=
1

2
∇cβab − 1

2
∇bβca − 1

2
∇aβcb. (5.3.7)

2Weak non-degeneracy entails that if ω([γ], [γ′]) = 0 for all [γ′] ∈PC(M), then [γ] = [0].

112



For the case of de Donder perturbations, the divergence of this differential operator reduces

to a rather elegant result.

Lemma 5.3.1 If γ ∈ C∞(S0
2(M ; C)) satisfies the de Donder condition, ∇aγab = 0, and

the background spacetime is a cosmological vacuum solution, then we have

∇cD
cab(γ) =

1

2
P abcdγcd − Λγab. (5.3.8)

Proof. Expanding out the left-hand side gives

∇cD
cab(γ) =

1

2
∇c∇cγab − 1

2
∇c∇bγca − 1

2
∇c∇aγcb. (5.3.9)

The order of the derivatives in the final two terms may be exchanged using the Riemann

tensor as follows:

∇c∇bγca = gbeδdc∇d∇eγ
ca = gbeδdc(∇e∇dγ

ca −R c
def γ

fa −R a
def γ

cf )

= ∇b∇cγ
ca +Rb

fγ
fa −R b a

c f γ
cf

= ∇b∇cγ
ca + Λγba +R ba

c fγ
cf .

As γ obeys the de Donder condition, then the above simplifies to

∇c∇bγca = Λγba +R ba
c fγ

cf .

Substituting this result back into (5.3.9) and using the symmetry of γ yields

∇cD
cab(γ) =

1

2
�γab − Λγab −R ba

c fγ
cf

=
1

2
P abcdγcd − Λγab,

where in the final line we have used the definition of P from (4.2.9). �

Now we establish an expression for the momentum, π, of a de Donder perturbation.

Lemma 5.3.2 If γ ∈ C∞(S0
2(M ; C)) is de Donder, then its associated momentum is given

by

πab(γ) = ncD
cab(γ). (5.3.10)

Proof. Using the definition of π from (5.1.2) and the expression for Π from (4.2.27), we
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have

πab =
1

2
nc∇cγab− 1

2
gabnc∇cγ+

1

2
gabnc∇dγ

cd +
1

4
nb∇aγ+

1

4
na∇bγ− 1

2
nc∇aγcb− 1

2
nc∇bγca.

(5.3.11)

As γ obeys the de Donder condition, meaning that ∇aγab = 1
2
∇bγ, the third term on the

right-hand side can be re-expressed to give

πab =
1

2
nc∇cγab − 1

4
gabnc∇cγ +

1

4
nb∇aγ +

1

4
na∇bγ − 1

2
nc∇aγcb − 1

2
nc∇bγca, (5.3.12)

which is equal to ncD cab(γ). �

These results will now be used to prove the result alluded to earlier. This result will

be important when we consider the observables of the theory.

Theorem 5.3.3 Given a γ ∈ S (M ; C) and an f ∈ C∞0 (S0
2(M ; C)) satisfying ∇ · f = 0,

then

ω([Ef ], [γ]) = −1

2

∫
M

γdDab f
abdvolg, (5.3.13)

where γdD denotes a de Donder representative of [γ].

Proof. Given the above assumption regarding f , then by Theorem 4.7.4, Ef is a de

Donder solution and the proof of that theorem also shows that E±f will obey the de

Donder condition. By selecting a de Donder representative γdD of [γ] we can use the

result of Lemma 5.3.2 to expand out the left-hand side of (5.3.13) as

ω([Ef ], [γ]) =

∫
Σ

(
(Ef)abD

cab(γdD)− γdDab D cab(Ef)
)
ncdvolh, (5.3.14)

where we have used that Ef = Ef = Ef from Lemma 4.7.3.

Given that suppf is compact, we may choose Cauchy surfaces Σ and Σ′ such that

Σ ⊂ I+(Σ′) and suppf ⊂ I+(Σ′) ∩ I−(Σ). The region bounded between these Cauchy

surfaces will henceforth be denoted by V , and the future-pointing unit normals to these

Cauchy surfaces will be denoted by n and n′ respectively. To prove the result, we will

apply Gauss’ Theorem to the region V and the vector field

vc = γdDab D cab(E+f)− (E+f)abD
cab(γdD). (5.3.15)
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The divergence of this vector field is given by

∇cv
c = (∇cγ

dD
ab )D cab(E+f) + γdDab ∇cD

cab(E+f)

− (∇c(E
+f)ab)D

cab(γdD)− (E+f)ab∇cD
cab(γdD).

As both E+f and γdD obey the de Donder condition, then we may apply Lemma 5.3.1

and obtain

∇cv
c = (∇cγ

dD
ab )D cab(E+f) +

1

2
γdDab P

abcd(E+f)cd − ΛγdDab (E+f)ab

− (∇c(E
+f)ab)D

cab(γdD)− 1

2
(E+f)abP

abcdγdDcd + Λ(E+f)abγdD
ab
.

The third and sixth terms on the right-hand side cancel each other. Now, as γdD is a

linearized gravity solution, then P abcdγdDcd = 0, and we know that P abcd(E+f)cd = fab, so

therefore

∇cv
c = (∇cγ

dD
ab )D cab(E+f) +

1

2
γdDab f

ab − (∇c(E
+f)ab)D

cab(γdD). (5.3.16)

We now examine the first and third terms on the right-hand side. The first term is simply

(∇cγ
dD
ab )D cab(E+f) =

1

2
∇cγ

dD
ab ∇c(E+f)ab − 1

2
∇cγ

dD
ab ∇b(E+f)ca − 1

2
∇cγ

dD
ab ∇a(E+f)cb,

and the third term is

(∇c(E
+f)ab)D

cab(γdD) =
1

2
∇c(E

+f)ab∇cγdD
ab

− 1

2
∇c(E

+f)ab∇bγdD
ca − 1

2
∇c(E

+f)ab∇aγdD
cb. (5.3.17)

The terms from the right-hand side of (5.3.16) can be re-expressed using the following two

lemmas.

Lemma 5.3.4 Given u,v ∈ C∞(S0
2(M ; C)) then

∇cuab∇cvab = ∇cuab∇cvab.
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Proof. Using the definition of trace-reversal, we have

∇cuab∇cvab = ∇cuab∇cvab − 1

2
∇cuabg

ab∇cv = ∇cuab∇cvab − 1

2
∇cu∇cv

= ∇cuab∇cvab − 1

2
gab∇cu∇cvab = ∇cuab∇cvab.

�

Lemma 5.3.5 Given u,v ∈ C∞(S0
2(M ; C)), both obeying the de Donder condition, then

∇cuab∇avcb = ∇cuab∇avcb. (5.3.18)

Proof. Expanding out the left-hand side of (5.3.18) using the definition of trace-reversal

and then the de Donder condition yields

∇cuab∇avcb = ∇cuab∇avcb − 1

2
∇cuabg

cb∇cv = ∇cuab∇avcb − 1

4
∇cu∇cv.

Again, using first the de Donder condition and then the definition of trace-reversal gives

∇cuab∇avcb = ∇cuab∇avcb − 1

2
∇cu∇bv

cb = ∇cuab∇avcb − 1

2
gab∇cu∇avcb = ∇cuab∇avcb.

�

Applying Lemmas 5.3.4 and 5.3.5 to (5.3.17) and using Ef = Ef = Ef gives

(∇c(E
+f)ab)D

cab(γdD) =
1

2
∇c(E

+f)ab∇cγabdD −
1

2
∇c(E

+f)ab∇bγcadD −
1

2
∇c(E

+f)ab∇aγcbdD

= (∇cγ
dD
ab )D cab(E+f).

Hence, (5.3.16) reduces to

∇av
a =

1

2
γdDab f

ab.

Applying Gauss’ Theorem to the region V and the vector field v gives

1

2

∫
V

γdDab f
abdvolg =

∫
V

∇av
advolg = −

∫
Σ

nav
advolh +

∫
Σ′
n′av

advolh. (5.3.19)

By the support properties of E+f and the way that the Cauchy surfaces were chosen, both

E+f and its derivative vanish on Σ′ and so v vanishes on Σ′. Therefore, upon substituting
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the expression for v, we are left with

1

2

∫
V

γdDab f
abdvolg = −

∫
Σ

nc

(
γdDab D cab(E+f)− (E+f)abD

cab(γdD)
)
dvolh. (5.3.20)

Now, by the support properties of E−f , both it and its derivative vanish at Σ and so we

may replace E+ by −E. As 1
2

∫
M
γdDab f

abdvolg = 1
2

∫
V
γdDab f

abdvolg, then upon using the

expression (5.3.14) the result is obtained. �

5.4 Observables

As discussed in section 3.2.1, the basic observables of a linear quantum field theory are

the smeared quantum fields. Classically, we are led to consider scalar-valued functions on

the phase space. Initially, as our prototype observable, we consider integrals of the form∫
M
γabf

abdvolg, where γ ∈ S (M ; C) and f ∈ C∞0 (T 0
2 (M ; C)). One immediately notices

a problem with this. If to each equivalence class [γ] ∈ PC(M), we were to assign the

quantity
∫
M
γabf

abdvolg as the value of a function on the phase space, then that function

would not be well-defined. Specifically, just making a gauge transformation to move around

within the equivalence class would generally change the value of the integral. Therefore to

ensure that such objects are well-defined and to ensure that they are physical, in the sense

of being gauge invariant, we will have to place a restriction upon the choice of smearing

tensors used. The next lemma shows what this restriction is.

Lemma 5.4.1 For f ∈ C∞0 (T 0
2 (M ; C)), we have

∫
M
γabf

abdvolg = 0 for all γ ∈ Ĝ (M ; C)

if and only if ∇af(ab) = 0.

Proof. If γ = £wg ∈ Ĝ (M ; C), then
∫
M

(£wg)abf
abdvolg = 2

∫
M

(∇(awb))f
abdvolg, where-

upon if one moves the symmetrization onto f and uses the Leibniz rule, then

2

∫
M

(∇(awb))f
abdvolg = 2

∫
M

∇a(wbf
(ab))dvolg − 2

∫
M

wb(∇af
(ab))dvolg.

As f has compact support, the first integral on the right-hand side vanishes by Gauss’

Theorem. Hence, we are left with∫
M

(£wg)abf
abdvolg = −2

∫
M

wb(∇af
(ab))dvolg. (5.4.1)
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For (5.4.1) to vanish it is clearly sufficient that ∇af(ab) = 0; as w may, in particular, be

any element of C∞0 (T 1
0 (M ; C)), necessity holds as well. This last statement follows from a

similar argument to that used at the end of the proof of Theorem 4.5.4. Select an arbitrary

point p and a local coordinate neighbourhood of this point, so one has a bump function χ

at p. Now choose an orthonormal frame (with associated dual frame) at p. Construct four

covector fields, one in each of the frame directions, which at p are equal to the component

of ∇af(ab) in the dual direction, multiplied by χ. Now follow the same argument described

at the end of Theorem 4.5.4 for each of the four directions. The result is that at p the

components of ∇af(ab) in the frame vanish and so ∇af(ab)|p = 0. Since p was arbitrary, we

conclude that ∇af(ab) = 0 globally. �

Definition 5.4.2 For each f ∈ C∞0 (T 0
2 (M ; C)) satisfying ∇af(ab) = 0 there is an associ-

ated gauge invariant observable Ff : PC(M)→ C whose action is given by

Ff ([γ]) =

∫
γabf

abdvolg. (5.4.2)

Having defined our observables, we now consider a generalization of Theorem 5.3.3 that

displays a link between the observables and the sympletic product.

Theorem 5.4.3 Given a [γ] ∈ PC(M) and an f ∈ C∞0 (S0
2(M ; C)) satisfying ∇afab = 0,

then

Ff ([γ]) =

∫
M

γabf
abdvolg = −2ω([Ef ], [γ]). (5.4.3)

Proof. As ∇afab = 0 we can use Theorem 5.3.3 to give

ω([Ef ], [γ]) = −1

2

∫
M

γdDab f
abdvolg. (5.4.4)

As f satisfies the requirements of Lemma 5.4.1 we may replace γdD in the integral by any

representative of [γ], in particular, γ. �

We now move on to consider the various relations satisfied by the observables, beginning

with the simplest ones first.

Theorem 5.4.4 Given any [γ] ∈PC(M), the Ff ’s satisfy:

(i) Complex linearity: Fαf+βf ′([γ]) = αFf ([γ]) + βFf ′([γ]) for all α, β ∈ C and all

f ,f ′ ∈ C∞0 (T 0
2 (M ; C)) satisfying ∇af(ab) = 0 = ∇af ′(ab);

(ii) Hermiticity: Ff ([γ])∗ = Ff∗([γ
∗]) for all f ∈ C∞0 (T 0

2 (M ; C)) satisfying ∇af(ab) =

0;
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(iii) Symmetry: Ff ([γ]) = 0 for all antisymmetric f ∈ C∞0 (T 0
2 (M ; C)).

Proof. (i) holds because the integrand is linear in f and because integration is a linear

operation, (ii) holds by the properties of complex-conjugation, and (iii) is true because all

elements of [γ] are symmetric. �

Another important relation obeyed by the observables will now be discussed. In the

simplest possible terms it shows that the equation of motion holds, which in our case is the

linearized Einstein equation. However, the result is subtly different from what one might

have expected, which, as we will establish, is a direct consequence of having to consider

the expanded pure gauge space Ĝ (M ; C).

One would normally expect, see section 3.2.1 for the scalar field case, that as L is

formally self-adjoint, then we should have FL(f) ≡ 0 for all f ∈ C∞0 (T 0
2 (M ; C)); recall that

L is defined for non-symmetric f by (4.2.8). We will prove that the more general relation

FL(f) ≡ 0 holds for all f ∈ C∞TC(T 0
2 (M ; C)) satisfying L(f) ∈ C∞0 (S0

2(M ; C)). To establish

this, the following sets will be required. Let

L (M ; C) :={L(k) : k ∈ C∞0 (S0
2(M ; C))};

L̂ (M ; C) :={L(k) : k ∈ C∞TC(S0
2(M ; C))} ∩ C∞0 (S0

2(M ; C));

F (M ; C) :={f ∈ C∞0 (S0
2(M ; C)) | ∇ · f = 0}.

A consequence of the upcoming result is that Ĝ (M ; C) = G (M ; C) if and only if L̂ (M ; C) =

L (M ; C).

We consider the kernel of the linear map F , which assigns an observable Ff to each

f ∈ F (M ; C). Without loss of generality, we can restrict attention to the space F (M ; C)

due to relation (iii) of Theorem 5.4.4. Given any such f ∈ C∞0 (S0
2(M ; C)) satisfying

∇ · f = 0 then, by Theorem 5.4.3, Ff ([γ]) = 0 for all [γ] ∈ PC(M) if and only if

[Ef ] = [0], which means that Ef is pure gauge. We will now find what form f must take

for this to hold.

Lemma 5.4.5 Suppose f ∈ F (M ; C). Then Ef ∈ Ĝ (M ; C) if and only if f ∈ L̂ (M ; C);

similarly, Ef ∈ G (M ; C) if and only if f ∈ L (M ; C).

Proof. (⇒) Suppose Ef = £wg ∈ Ĝ (M ; C). As ∇ · f = 0, £wg is a de Donder solution.

In consequence, w ∈ C∞(T 1
0 (M ; C)) satisfies (�+ Λ)w = 0, and so, by the exact sequence

of Theorem 2.4.6, it may be written as w = Ẽv for some v ∈ C∞TC(T 1
0 (M ; C)). Therefore

we have £wg = £Ẽvg = E£vg, where we have used the analogue of Lemma 4.7.5 for the
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extended Green’s operators. Thus Ef = E£vg and so, again using Theorem 2.4.6, we

have

£vg = f + P (k) (5.4.5)

for some k ∈ C∞TC(S0
2(M ; C)). Taking the trace-reversal and then the divergence of this

equation gives

(� + Λ)v[ = (� + Λ)∇ · k,

where we have used the properties of f and Lemmas 4.2.1, 4.2.3 & 4.5.1. As both v[

and ∇ · k are time-compact, and their difference solves the homogeneous equation (� +

Λ)(v[−∇·k) = 0, then by [11, Thm 3.3.1] their difference will vanish, meaning v[ = ∇·k.

Substituting this result back into (5.4.5) and using Theorem 4.2.2 gives f = £(∇·k)]g −
P (k) = 2L(k). Therefore f = L(2k) ∈ L̂ (M ; C) as required.

(⇐) Conversely, given an f ∈ L̂ (M ; C), then f = L(2k) for some k ∈ C∞TC(S0
2(M ; C)).

Now, let w = Ẽ(∇ · k)] ∈ C∞(T 1
0 (M ; C)), which gives £wg = £Ẽ(∇·k)]g = E£(∇·k)]g,

where we have used the analogue of Lemma 4.7.5 for the extended Green’s operators in the

final equality. By Theorem 4.2.2 this becomes £wg = E(2L(k) + P (k)) = Ef , because

EP (k) = 0. As f is compactly supported by assumption, we deduce, from the exact

sequence of Theorem 2.4.3, that £wg ∈ C∞SC(S0
2(M ; C)) and hence Ef ∈ Ĝ (M ; C).

The second statement has an exactly analogous proof, replacing C∞TC by C∞0 and C∞

by C∞SC , and hatted spaces by their unhatted counterparts throughout. �

With this result in mind, we have established that the following fourth relation holds.

Theorem 5.4.6 Given any [γ] ∈PC(M), then we have

FL(f)([γ]) = 0 (5.4.6)

for all f ∈ C∞TC(T 0
2 (M ; C)) such that L(f) ∈ C∞0 (T 0

2 (M ; C)).

The fifth and final relation is the Poisson bracket of two of these observables. As was

discussed at length for the scalar field case in section 3.2.1, in order to be able to define

the Poisson bracket we will need to ensure the presence of a smooth structure on our

infinite-dimensional symplectic manifold PC(M). Just as for the scalar field case, one

can make use of the concept of a Frölicher space [66, Ch. 23]. Following the methodology

we utilised in section 3.2.1, we take a curve c : R → PC(M) to be smooth if the map

t 7→ ω(v, c(t)) is smooth for all v ∈PC(M). A function F : PC(M) → C is then deemed

to be smooth if F ◦ c : R→ C is a smooth function for any smooth curve. The generating
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set of functions, that is, the functions ω(v, ·) (or equally ω(·, v)) for some v ∈PC(M) are

contained within the set of smooth functions by definition and hence the symplectic product

is smooth in both of its arguments. We know from Theorem 5.4.3 that the functions Ff

can be expressed in terms of the symplectic product and so all of the Ff ’s that we consider

here are smooth functions. One can define the differential of a smooth function using the

standard methods from finite dimensions, see [84, eq. (1.3.1)] for the finite-dimensional

case and see section 3.2.1 of this thesis for the Frölicher space definition.

To define the Poisson bracket, we follow the methodology of [1, p. 568], but keep new

concepts and notation to a minimum. As such, we take the Poisson bracket of two smooth

functions F,G ∈ C∞(PC(M)) to be given in terms of their exterior derivatives by

{F,G}([γ]) = dF (dG]ω)|[γ], (5.4.7)

where the Hamiltionian vector field dG]ω induced by G satisfies

ω[γ](dG
]ω |[γ], v) = dG|[γ](v) (5.4.8)

for all v ∈ T[γ]PC(M). We will show in the proof of Theorem 5.4.7 that, for our case,

dG]ω |[γ] is uniquely defined by the condition (5.4.8). Here ω[γ] : T[γ]PC(M)×T[γ]PC(M)→
C is the symplectic form at [γ] ∈PC(M). Under the identification T[γ]PC(M) ∼= PC(M),

we can replace ω[γ] by ω : PC(M)×PC(M)→ C.

Theorem 5.4.7 Assuming weak non-degeneracy holds, in particular, if (M, g) has com-

pact Cauchy surfaces, then the Poisson bracket of two observables satisfying Definition 5.4.2

is given by

{Ff , Ff ′} = −2E(f s,f ′s) = 4ω([Ef s], [Ef ′s]), (5.4.9)

where f s denotes the symmetric part of f , that is, f sab = f(ab), and the bi-distribution E is

defined by

E(f s,f ′s) :=

∫
M

f (ab)(E cd
ab f

′
(cd))dvolg. (5.4.10)

Proof. We note that dFf |[γ]([γ
′]) = Ff ([γ ′]) by linearity of Ff . Thus, upon using (5.4.8),

then relation (iii) of Theorem 5.4.4, and finally Theorem 5.4.3, we have

ω((dFf )]ω |[γ], [γ
′]) = dFf |[γ]([γ

′]) = Ff ([γ ′]) = Ffs([γ
′]) = −2ω([Ef s], [γ ′]), (5.4.11)
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for all [γ ′] ∈PC(M). By the weak non-degeneracy of ω, this gives (dFf )]ω |[γ] = −2[Ef s].

Inserting this into the definition of the Poisson bracket (5.4.7), results in

{Ff , Ff ′}([γ]) = −dFf |[γ](2[Ef ′s]) = −2Ff ([Ef ′s]) = −2Ffs([Ef
′s]), (5.4.12)

where we have used that dFf |[γ]([γ
′]) = Ff ([γ ′]) and relation (iii) of Theorem 5.4.4. By

using the definition of Ff , we have

{Ff , Ff ′}([γ]) = −2E(f s,f ′s), (5.4.13)

and using Theorem 5.4.3 gives the final equality of (5.4.9). �

The bi-distribution E will be referred to as the propagator (in an integral represen-

tation, its integral kernel would be known as the Pauli-Jordan or Schwinger function [17,

p. 20]). This bi-distribution appears in the Poisson bracket, however, one of its argu-

ments contains a trace-reversal. By expanding this out explicitly, we can discover what

the Poisson bracket is equal to. We have

E(f s,f ′s) =

∫
M

f (ab)E c′d′

ab f ′(c′d′)dvolg =

∫
M

f (ab)E c′d′
ab f ′(c′d′)dvolg

=

∫
M

f (ab)E c′d′

ab f ′(c′d′)dvolg −
1

2

∫
M

f (ab)gabEf
′dvolg

=

∫
M

f (ab)E c′d′

ab f ′(c′d′)dvolg −
1

2

∫
M

fEf ′dvolg,

where in the second equality we have used Lemma 4.7.3 and the third equality uses the

definition of trace-reversal and that the trace commutes with the Green’s operators, see

Lemma 4.7.2. Note that E is the scalar propagator for (� + 2Λ). Therefore the Poisson

bracket is

{Ff , Ff ′} = −
(

2

∫
M

f (ab)E c′d′

ab f ′(c′d′)dvolg −
∫
M

fEf ′dvolg

)
. (5.4.14)

An expression for the commutator of two free graviton fields was previously conjectured

by Lichnerowicz [70]. To motivate his definition he used what he had earlier found from

treating the case of Minkowski spacetime, analogy with electromagnetism and the results

of Fierz and Pauli [38].

To obtain our commutator we will simply apply Dirac quantization in the next chapter,

which essentially just means the commutator is i times the Poisson bracket for suitable
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observables. Comparing what we would get, i times the right-hand side of (5.4.14), with

Lichnerowicz’s formula [70, eq. (21.3)], it is clear that they are identical. Note that his

definition of the symmetrised propagator [70, eqs (13.2) & (13.3)] explains why we have

a factor of two and he does not. Therefore his conjectured commutator has actually be

found to be what one obtains by applying Dirac’s quantization prescription to the classical

observables Ff .

One final aspect to consider is whether the collection of observables that we have defined

is in fact ‘large enough’. What we mean by this is whether they are sufficient to the task of

distinguishing points of the phase space PC(M). The following theorem shows that they

are.

Theorem 5.4.8 Assuming that ω is weakly non-degenerate, in particular, for any (M, g)

with compact Cauchy surfaces, then, for any distinct [γ1], [γ2] ∈ PC(M), there exists an

f ∈ C∞0 (S0
2(M ; C)) with ∇afab = 0 such that Ff ([γ1]) 6= Ff ([γ2]).

Proof. As [γ1] 6= [γ2], then, by the weak non-degeneracy of ω, there exists a [γ] ∈PC(M)

such that

ω([γ], [γ1]) 6= ω([γ], [γ2]). (5.4.15)

By Theorem 4.7.6, [γ] = [Ef ] for some f ∈ C∞0 (S0
2(M ; C)) satisfying ∇ · f = 0. Using

Theorem 5.4.3 together with (5.4.15) gives

Ff ([γ1]) = −2ω([Ef ], [γ1]) 6= −2ω([Ef ], [γ2]) = Ff ([γ2]). (5.4.16)

�
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Chapter 6

Quantization

The first part of this chapter, which considers the algebra of observables, is based upon

section 4.4 of the paper [34] cowritten by the author with Dr C. J. Fewster. The remainder

of the chapter is presently unpublished work.

6.1 Algebra of observables

As was shown in section 3.2.2 for the case of the scalar field, a quantum theory can be

obtained in the algebraic framework by applying Dirac’s prescription for quantization to

the minimal collection of classical observables. However, before the algebra is actually

constructed, the various relations between the quantum observables need to be addressed.

We will let [γ](f) denote the smeared quantum field describing the graviton, where [γ] is

not an equivalence class of classical solutions.

Applying Dirac’s prescription [29] to the classical observables Ff , the quantum observ-

ables [γ](f), labelled by test tensors f ∈ C∞0 (T 0
2 (M ; C)) with divergence-free symmetric

part, will have a commutator given by

[[γ](f 1), [γ](f 2)] = i{Ff1
, Ff2
} = −2iE(f s1,f

s
2).

Recall that f s denotes the symmetric part of the tensor field f ∈ C∞0 (T 0
2 (M ; C)). The clas-

sical relations from Theorems 5.4.4 & 5.4.6 carry straight over to their quantum analogues

and as such, the following relations should hold:

(i) Complex-linearity: [γ](αf 1 + βf 2) = α[γ](f 1) + β[γ](f 2) for all α, β ∈ C and all

f i ∈ C∞0 (T 0
2 (M ; C)) such that ∇a(fi)(ab) = 0;
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(ii) Hermiticity: [γ](f)∗ = [γ](f ∗) for all f ∈ C∞0 (T 0
2 (M ; C)) such that ∇af(ab) = 0;

(iii) Symmetry: [γ](f) = 0 for all antisymmetric f ∈ C∞0 (T 0
2 (M ; C));

(iv) Field equation: [γ](L(f)) = 0 for all f ∈ C∞TC(T 0
2 (M ; C)) such that L(f) ∈ C∞0 (S0

2(M ; C));

(v) Commutation relation: [[γ](f 1), [γ](f 2)] = −2iE(f s1,f
s
2)1 for all f i ∈ C∞0 (T 0

2 (M ; C))

such that ∇a(fi)(ab) = 0.

One should note that the hermiticity relation is different from its classical counterpart. Here

it is expressing the property that the observable should be self-adjoint. This corresponds

to the classical field being real-valued. Also, if the f ’s are spacelike separated then the

commutator vanishes, which reflects the Bose statistics of this field.

The algebra of observables is constructed exactly along the same lines as for the scalar

field in section 3.2.2. One generates the free unital ∗-algebra using the [γ](f)’s as the

generators. The relations (i)-(v) are imposed on this algebra by constructing a ∗-ideal

and then quotienting the algebra by this ideal to give the algebra of observables for the

spacetime (M, g). Also, as was noted in constructing the algebra for the scalar field, one

retrieves the local algebras by restricting to those elements of A(M, g) for which the test

tensors labelling them have support contained within a chosen open set O ⊂ M that has

compact closure.

We now verify that the time-slice condition holds for this algebra. This is achieved by

proving that a symmetric, divergence-free, smooth, compactly supported test tensor field

on the spacetime can be decomposed into a smooth, symmetric, divergence-free test tensor

field, which is compactly supported within a connected causally convex neighbourhood

of an arbitrary spacelike Cauchy surface, and a term that is the action of the linearized

Einstein tensor with cosmological constant on an arbitrary smooth, compactly supported

test tensor field. If one combines this decomposition with the fourth relation, then one

sees that the algebra of a connected causally convex neighbourhood of a Cauchy surface

coincides with the full spacetime algebra. We can restrict to considering purely symmetric

smearing tensors due to the third relation of the observables. The decomposition is as

follows.

Theorem 6.1.1 Given a connected causally convex neighbourhood N of any spacelike

Cauchy surface Σ and a f ∈ C∞0 (S0
2(M ; C)) with ∇ · f = 0 then there exists a f̃ ∈

C∞0 (S0
2(N ; C)) with ∇ · f̃ = 0 and a h ∈ C∞0 (S0

2(M ; C)) such that

f = f̃ + 2L(h). (6.1.1)
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This entails that [γ](f̃) = [γ](f) in A(M, g).

Proof. Just as for the scalar case, described in Theorem 3.2.7, since N is a causally

convex subset, then it will be a globally hyperbolic subset of M . Therefore [37, Lem 3.1]

one can choose two Cauchy surfaces Σ±, which lie to the future/past of Σ and that are both

contained within N . Now, take two scalar functions χ± ∈ C∞(M ; C) satisfying χ+ = 1 in

J+(Σ+), χ+ = 0 in J−(Σ−), and χ+ + χ− = 1. (Since J+(Σ+) and J−(Σ−) are closed and

disjoint sets, then the existence of χ+ is guaranteed by [1, Prop. 5.5.8]. One then defines

χ− by the condition χ+ + χ− = 1.)

We now follow the method used in the electromagnetic case from [35, Prop. A.3(b)].

Define

f̃ := 2L(χ+Ef), (6.1.2)

which satisfies ∇ · f̃ = 0 by the linearized Bianchi identity and is compactly supported

within N (it evidently vanishes to the past of N and coincides with a de Donder solution

to the linearized Einstein equation to the future of N by the hypothesis placed on f). Note

that (6.1.2) implies that 2L(χ−Ef) = −f̃ . By Lemma 4.7.7 we have −E+f̃ ∼ χ+Ef ,

E−f̃ ∼ χ−Ef and hence

Ef̃ = Ef + £wg (6.1.3)

for some £wg ∈ G (M ; C). As ∇ · f̃ = ∇ · f = 0, then by Theorem 4.7.4, both Ef̃

and Ef are de Donder solutions, so w solves (� + Λ)w = 0 (see the remarks following

Theorem 4.5.2); hence by Theorem 2.4.3, w = Ẽv for some v ∈ C∞0 (T 1
0 (M ; C)). Substi-

tuting this result into (6.1.3) and using Lemma 4.7.5 gives E(f̃ − f − £vg) = 0. Using

Lemma 4.7.8 gives the desired result. �

We will now consider how the quantum field theory that we have constructed circum-

vents the problems arising when one attempts to construct a Wightman quantum field the-

ory for the free graviton in Minkowski spacetime. It was pointed out by Strocchi [86] that

the quantized linear spacetime perturbation cannot exist as a Lorentz covariant operator-

valued distribution. Soon after, another paper [18] showed how the perturbation does not

generally satisfy commutativity for spacelike-separations as an operator-valued distribu-

tion. The implications of these two results are that one must either abandon two standard

requirements, which is in fact what happens when one works in a totally fixed gauge that

isolates the true degrees of freedom, or if one insists on their retention, then, as shown

in [19], one is forced to use the methodology of the Gupta-Bleuler formalism. This formal-

ism entails the use of a Hilbert space with an indefinite inner product, which thus leads to
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the introduction of unphysical particles. One then isolates the subspace of physical states

by using a global condition, namely that the physical states be annihilated by the positive

frequency part of a gauge condition. Note that the requirement of such a condition had

already been noted by other authors, see, for instance, the end of [70, Sec. 21]. However,

the imposition of a global condition like this raises serious issues when we move away from

the convenient setting of Minkowski spacetime and to a general curved spacetime, where

it is unclear how to define positive frequency due to the lack of a global Fourier transform.

However, in our case, the restriction placed on our class of smearing tensors, namely that

they have divergence-free symmetric part, ensures that our smeared quantum fields will

only be defined on the subspace of physical states in the Gupta-Bleuler Hilbert space and

that their action leaves the subspace invariant, see [19, Sec. 10]. Therefore our approach

of restricting the smearing tensors is much more generally applicable and also immediately

picks out the physical subspace.

There exist exactly analogous issues for electromagnetism [85, 87], which again can be

circumvented, as above, by Dimock’s treatment [28] of restricting the class of smearing

tensors. In both Dimock’s approach to electromagnetism and the approach to linearized

gravity taken here, the serious issues that arise when one allows arbitrary smearings is

removed by restricting the smearing tensors to ensure that one only deals with gauge

invariant objects.

One should note that, although we have only discussed the Gupta-Bleuler formalism,

there do exist other approaches to quantizing gauge theories such as: BRST and Batalin-

Vilkovisky, but these methods also involve the introduction of negative-norm states and/or

ghost fields.

We now briefly comment on how our approach fits into the framework of locally co-

variant quantum field theory [22]. As we illustrated in section 3.1, in this framework one

deals with two distinct categories: the set of globally hyperbolic spacetimes with a col-

lection of suitable embeddings between them, and the category of unital ∗-algebras with

suitable embeddings between them. For the case of linearized gravity, we are forced to

place further restrictions upon the category of spacetimes. One has to restrict attention

to the subcategory, for which the spacetimes obey the vacuum Einstein equation with cos-

mological constant, and for which embeddings satisfy the restriction that: if ψ : M → N

is an embedding, then ψ∗L̂ (M ; C) ⊂ L̂ (N ; C) (recall that L̂ (M ; C) was defined in sec-

tion 5.4). This extra condition on the embeddings is due to the consideration of the

enlarged pure gauge subspace Ĝ (M ; C) and with it the consideration of time-compact ten-
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sor fields, see [34, Sec. 4.5] for further details. However, even with these restrictions, one

still obtains a (covariant) functor from the restricted category of spacetimes to the cate-

gory of unital ∗-algebras, and so the theory is locally covariant in this sense. Note that the

restriction that our spacetimes be cosmological vacuum solutions entails that one cannot

formulate the relative Cauchy evolution, where [22, Sec. 4] one would seek to perturb a

spacetime using an arbitrary compactly supported perturbation to obtain an expression

for the smeared stress-energy tensor of the quantum field. Being unable to formulate the

relative Cauchy evolution is therefore linked to the lack of a local stress-energy tensor for

gravity. For further details on the local covariance of the graviton field, see [34, Sec. 4.5].

6.2 States

As discussed in section 3.1, a state is a linear functional ω : A(M, g) → C on the algebra

satisfying: (i) the positivity condition, ω(A∗A) ≥ 0 for all A ∈ A(M, g), and (ii) the

normalization condition, ω(1) = 1.

6.2.1 Quantum linearization instabilities

We now briefly discuss how the classical issues related to linearization instability pass over

to the quantum case. As discussed in section 4.3, issues arise concerning the physical

admissibility of solutions to the linearized Einstein equation if the background spacetime

admits a compact Cauchy surface and global Killing vector fields. In which case, a per-

turbation is deemed physically admissible if certain conserved quantities associated with

it vanish.

It was Moncrief [75] who first considered how linearization instabilities would manifest

themselves in the quantum case. He utilised Dirac’s methodology and imposed the con-

straints as operator equations on the class of physical states. Due to the quadratic nature

of these constraints, a suitable renormalisation prescription will in general be required to

define them, although for the case of de Sitter spacetime it has been shown [58, Sec. 4]

that such a prescription is unnecessary. With the potential issue of renormalisation in

mind we shall postpone considering the linearization instability issue until after we have

fully addressed the issue of Hadamard states. However, the punch line of Moncrief’s result

is that because the classical conserved quantities form a Poisson algebra that is isomorphic

to the Lie algebra of the Killing vector fields [75], the annihilation of the physical states by

the operator versions of the conserved quantities is equivalent to the physical states being
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invariant under a unitary representation of the background isometry group of Killing vec-

tors, which generate the conserved quantities. This result is much stronger than the usual

requirement of invariance of only the vacuum in Minkowski spacetime, and it is related to

the issue of having to consider an observer as part of the system, see [75, 76] for further

discussions.

6.2.2 Hadamard condition

In section 3.3, for the case of the scalar field, we gave a discussion and motivation of the

Hadamard condition, which places a restriction on the physical states by demanding that

the singular behaviour of their two-point function be of a specified form.

The scalar field case had considerable advantages, namely that the equation of motion

has hyperbolic form. As we have found out throughout our consideration of linearized grav-

ity, issues are complicated by the linearized Einstein equation being non-hyperbolic. How-

ever, we have consistently exploited the close relationship, established in Theorem 4.2.2,

between the linearized Einstein tensor with cosmological constant and the hyperbolic dif-

ferential operator P , defined in (4.2.9). To define the Hadamard condition we shall exploit

this relationship again.

To begin with we discuss Hadamard form bi-distributions, W : C∞0 (T 0
2 (M ; C)) ×

C∞0 (T 0
2 (M ; C)) → C, which will also be assumed to be bi-solutions to P . As P is a

wave-operator, the results of Sahlmann and Verch [82], who studied the Hadamard con-

dition for vector bundle distributions obeying wave equations, are immediately available

to us. Just as in the scalar case, the equivalence relation in the wavefront set is defined

by: (x,k) ∼ (x′,k′) if and only if there exists a null geodesic connecting x to x′ and k′ is

the parallel propagation of k along this null geodesic; if x = x′, then this reduces to the

requirement that k = k′. On a spacetime (M, g), we will say that a P bi-solution W has

Hadamard form if [82, Thm 5.8] its wavefront set takes the prescribed form

WF(W ) =
{

((x,k); (x′,−k′)) ∈ Ṫ ∗(M ×M) | (x,k) ∼ (x′,k′) with k ∈ V +

x

}
,

where V
+

x denotes the set of future-pointing covectors at x, and the antisymmetric part

of W is, modulo1 smooth terms that vanish on symmetric divergence-free smearing tensor

1This condition is necessary to deal with the problems that arise from zero-modes, see chapter 7 for
further details, and it has no influence on the wavefront set.
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fields, given by

W (f , f̃)−W (f̃ ,f)
.
= −2iE(f , f̃),

where E is the advanced-minus-retarded solution operator associated with P , and ‘
.
=’ de-

notes equality up to smooth terms that vanish when smeared against symmetric divergence-

free tensor fields.

In order to give our definition of Hadamard states, we need to define two new con-

cepts, namely the trace and trace-reversal of a bi-distribution that acts on rank (0, 2)

test-tensor fields. On a spacetime (M, g), given a bi-distribution W : C∞0 (T 0
2 (M ; C)) ×

C∞0 (T 0
2 (M ; C))→ C, one defines its trace to be the scalar bi-distribution TrW : C∞0 (M ; C)×

C∞0 (M ; C)→ C given by

TrW (f1, f2) := W (f1g, f2g), (6.2.1)

where f1, f2 ∈ C∞0 (M ; C). This notion of trace allows us to define the trace-reversal of W

to be the bi-distribution W : C∞0 (T 0
2 (M ; C))× C∞0 (T 0

2 (M ; C))→ C given by

W (f 1,f 2) := W (f 1,f 2)− 1

8
TrW (Trf 1, T rf 2), (6.2.2)

where Trf := gabfab. The choice of coefficient of the TrW term in W comes from the

requirement that W = W . To see that W = W , we show that TrW = −TrW , from

which the result W = W is then immediate. Using the definition of Tr from (6.2.1), we

see that, given any f1, f2 ∈ C∞0 (M ; C),

TrW (f1, f2) = W (f1g, f2g) = W (f1g, f2g)− 2TrW (f1, f2)

= TrW (f1, f2)− 2TrW (f1, f2) = −TrW (f1, f2),

where in the second equality we have used the definition of W from (6.2.2) and that

gabg
ab = 4. The third equality just uses the definition of Tr from (6.2.1).

One also needs to consider: if W is a P bi-solution, then will TrW be a bisolution to

(� + 2Λ) [the trace of P ], and will W be a P bi-solution too? The answer in both cases

is yes and we now prove this. Let W be a P bi-solution, therefore W (P (f), f̃) = 0 for all

f , f̃ ∈ C∞0 (T 0
2 (M ; C)). Using the properties of the trace of P , from (4.2.10), one can show

that

TrW ((� + 2Λ)f, f̃) = W ((� + 2Λ)fg, f̃g) = W (P (fg), f̃g) = 0,
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for all f, f̃ ∈ C∞0 (M ; C). Hence, TrW is a (� + 2Λ) bi-solution. For the trace-reversal,

W (P (f), f̃) = W (P (f), f̃)−1

8
TrW (Tr(P (f)), T r(f̃) = −1

8
TrW ((�+2Λ)Tr(f), T r(f̃) = 0

for all f , f̃ ∈ C∞0 (T 0
2 (M ; C)). Therefore W is a P bi-solution too.

These definitions allow one to understand more clearly what is happening in the com-

mutator, where one of the arguments in the bi-distribution E has a trace-reversal. Relation

(v) in section 6.1 states that the commutator is equal to the bi-distribution −2iE(f s1,f
s
2) =

−2iE(f s1,f
s
2)+iE(Trf s1, T rf

s
2), for the details of this expansion see equation (5.4.14). We

will now show how this is in fact just the trace-reversal of the bi-distribution E. First we

calculate TrE. Using the definition of E, given any f 1,f 2 ∈ C∞0 (T 0
2 (M ; C)), one sees that

TrE(Trf 1, T rf 2) = E((Trf 1)g, (Trf 2)g) =

∫
M

(Trf 1)gabE c′d′

ab (Trf 1)gc′d′dvolg

= 4

∫
M

(Trf 1)E(Trf 2)dvolg

= 4E(Trf 1, T rf 2),

where we have used Lemma 4.7.2 in the third equality, and the fourth equality defines the

scalar bi-distribution E. Combining this result with the definition (6.2.2) of the trace-

reversal of a bi-distribution, we see that

E(f 1,f 2) = E(f 1,f 2)− 1

2
E(Trf 1, T rf 2) = E(f 1,f 2).

Hence, the commutator, from relation (v) of our list of algebraic relations, is in fact given

by

[[γ](f 1), [γ](f 2)] = −2iE(f s1,f
s
2).

We are now in a position to define the Hadamard states for the free graviton quantum

field. We will restrict attention to quasi-free states, that is, states whose n-point functions

vanish if n is odd, and are completely specified by the two-point function if n is even.

Definition 6.2.1 A quasi-free state ω : A(M, g)→ C will be said to be a Hadamard state

if there exists a Hadamard form P bi-solution W : C∞0 (T 0
2 (M ; C)) × C∞0 (T 0

2 (M ; C)) → C

such that

ω([γ](f 1)[γ](f 2)) = W (f s1,f
s
2)

for all f 1,f 2 ∈ C∞0 (T 0
2 (M ; C)) satisfying ∇ · f s1 = ∇ · f s2 = 0.
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Having given a definition of Hadamard states, the focus now shifts to finding whether there

exist any states that satisfy the definition. Unfortunately, unlike for the cases of the scalar

field [47] and the electromagnetic field [35, Sec. IV.E], the deformation arguments of Fulling,

Narcowich, Wald [47, App. C] are not available here due to the restriction to cosmological

vacuum spacetimes. This entails that we cannot just prove existence of Hadamard states

on ultrastatic globally hyperbolic spacetimes to obtain existence of Hadamard states on

general globally hyperbolic spacetimes. With the lack of availability of an alternative

method, we are forced to consider existence on a case by case basis. We will show, using

methods from Fourier analysis, that the standard Fock vacuum state (this is a quasi-free

state) from Minkowski spacetime is a Hadamard state.

In Minkowski spacetime, the Riemann tensor vanishes and so P reduces to �. We

will work in global inertial coordinates (t, x, y, z). To construct a tensor Hadamard �

bi-solution, we will use the standard scalar �-Hadamard bi-solution, which is just the

massless-scalar field two-point function:

W scalar(x, x′) =

∫
R3

d3k

(2π)32ω
e−ik·(x−x

′), (6.2.3)

where ω := |~k|. We define our tensor Hadamard � bi-solution to be

W (f , f̃) := 2ηµµ
′
ηνν

′
W scalar(fµν , f̃µ′ν′),

where f , f̃ ∈ C∞0 (T 0
2 (M ; C)), and W scalar acts on the individual components fµν , which

are scalar functions. The wavefront set of W is the same as the wavefront set for W scalar

and therefore has the prescribed form for a Hadamard bi-solution, but we must check that

it has the correct antisymmetric part.

The antisymmetric part of W is

W (f , f̃)−W (f̃ ,f) = 2ηµµ
′
ηνν

′
[
W scalar(fµν , f̃µ′ν′)−W scalar(f̃µν , fµ′ν′)

]
= 2ηµµ

′
ηνν

′
∫

R4×R4

d4xd4x′
∫

R3

d3k

(2π)32ω
e−ik·(x−x

′)
[
fµν(x)f̃µ′ν′(x

′)− f̃µν(x)fµ′ν′(x
′)
]
.

On the second collection of terms, one can interchange the integration variables x and x′,
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relabel the indices µ↔ µ′ and ν ↔ ν ′, and use symmetry of the metric η to obtain

W (f , f̃)−W (f̃ ,f) = 2ηµµ
′
ηνν

′
∫

R4×R4

d4xd4x′
∫

R3

d3k

(2π)32ω

[
e−ik·(x−x

′) − eik·(x−x′)
]
fµν(x)f̃µ′ν′(x

′).

(6.2.4)

Using the form of the scalar two-point function from (6.2.3) and the scalar commutation

relation (relation (iv) from section 3.2.2), it is clear that:

−iEscalar(f, f̃) =

∫
R4×R4

d4xd4x′
∫

R3

d3k

(2π)32ω

[
e−ik·(x−x

′) − eik·(x−x′)
]
f(x)f̃(x′),

where f, f̃ ∈ C∞0 (M ; C). Substituting this expression into (6.2.4) yields

W (f , f̃)−W (f̃ ,f) = −2iηµµ
′
ηνν

′
Escalar(fµν , f̃µ′ν′).

In this instance, it holds that2 E(f , f̃) = ηµµ
′
ηνν

′
Escalar(fµν , f̃µ′ν′) and so W has the

correct antisymmetric part, namely:

W (f , f̃)−W (f̃ ,f) = −2iE(f , f̃)

for all f , f̃ ∈ C∞0 (T 0
2 (M ; C)), as there is no zero-mode problem in this instance.

Having established that our W has the correct antisymmetric part, we now need to

compute its trace-reversal to see if it agrees with the two-point function. Given any f, f̃ ∈
C∞0 (M ; C), the trace of W is

TrW (f, f̃) = W (fη, f̃η) = 8W scalar(f, f̃),

and therefore, using the definition (6.2.2) of the trace-reversal, we have

W (f , f̃) = (2ηµµ
′
ηνν

′ − ηµνηµ′ν′)W scalar(fµν , f̃µ′ν′).

Note that when the f ’s are symmetric, one can write the expression of η’s as three terms,

by moving the symmetrisation from the f ’s to the η’s. This ensures that it takes a form

just like the two-point function, which is stated below in (6.2.5).

The graviton two-point function in the Fock vacuum state in Minkowski spacetime

2This equality holds by uniqueness of Green’s operators. The right-hand side of this expression is an
advanced-minus-retarded solution operator on elements of C∞0 (T 0

2 (M ; C)).
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is [62, eq. (A1)] given by

ωµνµ′ν′(x, x
′) =

∫
R3

d3k

(2π)32ω
e−ik·(x−x

′)(hµµ′hνν′ + hµν′hνµ′ − hµνhµ′ν′), (6.2.5)

where

hµν =

ηµν −
kµkν
ω2 if µ 6= 0 6= ν,

0 otherwise.

For f such that ∇ · f s = 0, or equally, k · f̂
s

= 0, one can easily show that∫
R4×R4

ωµνµ′ν′(x, x
′)fµν(x)f̃µ

′ν′d4xd4x′ = W (f s, f̃
s
)

for all f , f̃ ∈ C∞0 (T 0
2 (M ; C)) such that ∇ · f s = 0 = ∇ · f̃ s. Therefore we have shown that

the two-point function in the Fock vacuum state agrees with our Hadamard bi-solution as

per Definition 6.2.1. What remains to be verified is that the Fock vacuum is a state on our

algebra of observables.

We now verify that this two-point function does define a state on our algebra A(M, g).

We choose an element [γ](f) ∈ A(M, g), where f ∈ C∞0 (T 0
2 (M ; C)) satisfies ∇ · f s = 0,

to be represented by the smearing of the standard Fock space construction of the field

operator in the transverse-traceless and synchronous gauge,

γ̂(f) =

∫
R4

d4x

∫
R3

d3k

(2π)32ω

∑
j

(
εjµν(k)aj(k)e−ik.x + εj∗µν(k)a†j(k)eik.x

)
fµν(x), (6.2.6)

where the polarisation tensors εjµν are symmetric on their µ, ν indices, and they satisfy

εiµν(k)kµ = 0, ηµνεiµν(k) = 0 and εiµν(k)nµ = 0, which respectively represent the gauge

conditions: transverse, traceless and synchronous. Note that n is the future-pointing unit

normal to the t = constant Cauchy surfaces. To verify that the field operators (6.2.6)

provide a representation of the algebra A(M, g), one needs [35, Sec. IV.C] to confirm that

they obey all five relations from section 6.1 on a dense domain of the Fock space. This is

easily done, and so upon using the standard GNS construction, the Fock vacuum |0〉 will

define a state on A(M, g), and its two-point function satisfies

〈0|[γ](f 1)[γ](f 2)|0〉 = W (f s1,f
s
2)

for all f 1,f 2 ∈ C∞0 (T 0
2 (M ; C)) obeying ∇ · f s1 = 0 = ∇ · f s2. Hence by Definition 6.2.1, |0〉
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is a Hadamard state.
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Chapter 7

Conclusion

In this thesis we have achieved all but one of the goals set out in the introduction. We

constructed a quantum field theory of the free graviton within the rigorous mathematical

framework of algebraic quantum field theory. This required us to fully consider the classical

theory of linearized gravity in chapter 4. In particular, we considered when various choices

of gauge can be made. We found that there exists a topological obstruction to achiev-

ing the well-known transverse-traceless gauge whenever one works with spacelike-compact

perturbations on vacuum spacetimes with vanishing cosmological constant. We also found

that within a normal neighbourhood of any Cauchy surface, one can gauge transform a

perturbation to the synchronous gauge with the synchronous condition set by the normal

field on that neighbourhood.

In chapter 5, we initially formulated the classical phase space for linearized gravity as

the complexified space of solutions to the linearized Einstein equation with a pre-symplectic

product. When it came to examining the form of the degeneracies of this product, we found,

by generalising Moncrief’s splitting results [72], that if a spacetime admits a compact

Cauchy surface, then the degeneracies are just the pure gauge solutions. Therefore for

the case of a spacetime that admits a compact Cauchy surface, the phase space is just

the collection of gauge equivalence classes of solutions. Unfortunately, for the case of

a spacetime only admitting non-compact Cauchy surfaces, a proof was not forthcoming.

This is due to the Moncrief splitting using results from elliptic theory, namely Sobolev

spaces, that rely on compactness of the underlying manifold. However, it may be possible

to establish such a splitting for certain types of non-compact Cauchy surface, such as

asymptotically flat ones, where it is possible to introduce weighted Sobolev spaces and

certain decomposition theorems exist [23]. However, for a general Cauchy surface this is
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probably not possible, but the author hopes to consider these issues further in the future.

We were thus led to conjecture that the degeneracies were pure gauge in the non-

compact case too, and consequently that our symplectic product was weakly non-degenerate

on the space of gauge equivalence classes of solutions to the linearized Einstein equation.

Having established a phase space, our attention moved to the observables of the theory.

We defined the standard smeared fields and found that for them to be gauge invariant,

the class of smearing tensors needed to be restricted to those whose symmetric part has

vanishing divergence. The Poisson bracket of the observables was explicitly calculated and

found to agree with a result previously posited by Lichnerowicz [70].

Dirac’s quantization prescription was then used to obtain the algebraic relations obeyed

by our quantum observables and we constructed an algebra of observables for arbitrary

globally hyperbolic cosmological vacuum spacetimes. We described how this circumvents

the problems described by Strocchi [18, 86], and how it fits into the framework of locally

covariant quantum field theory established by Brunetti, Fredenhagen and Verch [22].

This setup allowed for a precise definition of Hadamard states to be given using tech-

niques from microlocal analysis. We then showed how the vacuum state in the standard

Fock space construction in Minkowski spacetime is, by our definition, a Hadamard state

on our algebra. Unfortunately, we were not able to show here whether or not the de Sitter

invariant vacuum state is a Hadamard state on our algebra. There have been numerous

papers written about the graviton two-point function in de Sitter spacetime [2, 4, 59, 60],

and our goal is construct a suitable Hadamard P bi-solution W , which agrees with the

two-point function on our restricted class of smearing tensor fields. The idea would be

to proceed along the lines set out in [35, App. B] for the case of electromagnetism and

construct the bi-solution as a mode expansion. One might be concerned about potential

issues with the mode expansion if there are zero modes present. However, even if they are

present, one can still obtain a well-defined Hadamard form P bi-solution by cutting out

these troublesome zero-modes. These modes are smooth, so their removal will not affect

the wavefront set and hence not affect whether the bi-solution is Hadamard. In a mode

expansion of the propagator the zero-modes will still be present, and so the antisymmetric

part of the Hadamard bi-solution without zero-modes will not agree with the propagator

expansion, as they will differ by the zero-mode terms. This is rectified by noticing that

when we restrict to using tensors with divergence-free symmetric part in the propagator,

the terms with a zero-mode smeared against such tensors vanish and so the two expres-

sions will in fact agree on the class of smearing tensors that we use. This explains our
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definition of Hadamard bi-solutions given earlier. Note that there is an analogous situa-

tion concerning zero-modes in electromagnetism, see [35]. Therefore if one can construct

the Hadamard bi-solution W and show that it agrees with the graviton two-point function

for the de Sitter invariant vacuum state for our class of smearing tensors, and show that

the associated state does define a state on our algebra, then the de Sitter invariant vacuum

state will be a Hadamard state on our algebra. The author hopes to finally resolve this in

the very near future.

We have seen throughout our discussion of linearized gravity that there is a close rela-

tionship between it and the case of electromagnetism. The point where the two systems

seem to diverge is when it comes to proving non-degeneracy of their symplectic products.

As we briefly discussed, recently a new method [67] has been proposed that claims to

prove non-degeneracy, for the case of compactly supported initial data on a non-compact

Cauchy surface, by using methods from cohomology theory. It would be interesting to

find out whether a similar theory exists for the case of the symmetric tensor fields used in

linearized gravity. One can see the beginnings of such a theory if, for instance, one defines

for any γ ∈ C∞0 (S0
2(M ; C)), a ‘codifferential’ δ to be

δγ := −∇ · γ.

Similarly, one can define an ‘exterior derivative’ d on vector fields to be

dw := £wg.

Combining these two, one finds that

dδγ = −£∇·γg.

Now using our decomposition of the linearized Einstein tensor with cosmological constant

from Theorem 4.2.2, one sees that

2L(γ) = −P (γ)− dδγ.

Using analogy with electromagentism, see (4.2.11), one is led to define

δdγ := 2L(γ),
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and attempt to obtain δ and d for higher rank tensors. However, as yet we do not have

any explicit formulas for these objects. A concern here is that symmetry will prevent

the standard result from differential forms that d2 = 0, and so any possible link with

cohomology theory would be broken. Therefore it remains to be seen whether there is

something in this, and it is something which the author would like to return to in the

future.
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