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Abstract: Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and
Tessarotto 2015–2017) are investigated. These refer, first, to the establishment of the four-scalar,
manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity
(CQG) wave equation, which advances the quantum state ψ associated with a prescribed background
space-time. In this paper, the CQG-wave equation is proved to follow at once by means of
a Hamilton–Jacobi quantization of the classical variational tensor field g ≡

{
gµν

}
and its conjugate

momentum, referred to as (canonical) g-quantization. The same equation is also shown to be
variational and to follow from a synchronous variational principle identified here with the quantum
Hamilton variational principle. The corresponding quantum hydrodynamic equations are then
obtained upon introducing the Madelung representation for ψ, which provides an equivalent
statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to
fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum
observables. These are shown to be represented in terms of the standard deviations of the metric
tensor g ≡

{
gµν

}
and its quantum conjugate momentum operator.
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1. Introduction

The principles of general covariance and of manifest covariance with respect to the group of local
point transformations (LPT-group; [1,2]), i.e., coordinate diffeomorphisms mutually mapping in each
other different general relativistic (GR) frames:

r ⇔ r′ = f (r), (1)

with r ≡ {rµ} and r′ ≡ {r′µ} denoting four-positions in the two frames, lie at the foundation of all
relativistic theories and of the related physical laws.

In fact, although the choice of special coordinate systems is always legitimate for all physical
systems, either classical or quantum, the intrinsic objective nature of the physical laws that characterize
them, including possible symmetry transformations, makes them manifestly frame independent.
For the same reason, since LPTs preserve by construction the differential-manifold structure of
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space-time, these principles represent also a cornerstone of the so-called standard formulation
of general relativity (SF-GR), namely the Einstein field equations and the corresponding classical
treatment of the gravitational field [3–5].

The same principles, however, should apply to relativistic statistical mechanics and the very
foundations of quantum field theory. The significance of relativistic statistical mechanics is also of
great importance in the framework of general relativity and cosmology, including both classical and
quantum theories. This paper deals in particular with the problem of the formulation of the theory
of quantum gravity (QG). Despite major theoretical developments achieved in the past, a theory of
this type, i.e., fulfilling the same principles, has remained until very recently [6–9] largely unsolved.
The fundamental reason is that, as displayed in [8], a corresponding manifestly-covariant, and possibly
constraint-free, classical Hamiltonian theory of SF-GR is actually required for the completion of such
a task. On the other hand, in the previous mainstream literature, typically only non-manifestly
covariant Hamiltonian theories of GR were developed. These are based on suitable decompositions or
foliations of space-time, i.e., the adoption of particular subsets of GR-frames or coordinate systems
and non-tensor Lagrangian/Hamiltonian variables, which typically involve the singling out of the
coordinate time to prescribe the dynamical evolution of metric tensor hypersurfaces (exhaustive
developments of the issue can be found in [10–15]).

Nevertheless, the mathematical framework to be adopted for the construction of manifestly-covariant
classical Lagrangian and Hamiltonian theories is well-established both for particle dynamics [16–20],
as well in continuum field theory, where it is known as the DeDonder–Weyl formalism [21–29]. This
type of formulation has been developed and applied consistently to the case of the gravitational field
described by SF-GR only recently in [8,9], providing theories of covariant classical gravity (CCQ) and
covariant quantum gravity (CQG). In both cases, the classical and quantum Hamiltonian structures
are realized in the framework of a so-called background space-time picture, namely requiring that
a prescribed space-time

(
Q4, ĝ

)
exists whose metric tensor ĝ ≡

{
ĝµν(r)

}
is considered a prescribed

classical field, which determines the geometric properties of the background space-time and, either
classical or quantum, variational tensor fields. More precisely, for this purpose,

(
Q4, ĝ

)
is taken as a

differentiable Lorentzian manifold with signature (+,−,−,−) or analogous permutations, with Q4

denoting the four-dimensional Riemann space-time and ĝµν (r) the metric tensor.
Nevertheless, historically basic conceptual problems that lie at the very foundation of QG as

a quantum theory of the gravitational field as described classically by the Einstein equations have
been called into question. As shown in [8], a quantum theory of this type has conceptual implications
also for cosmology in connection with the possible existence of massive gravitons associated with
a non-vanishing cosmological constant Λ. Therefore, CQG-theory is expected to represent, as well,
a candidate quantum theory of the universe, i.e., a basis for quantum cosmology. In view of these
considerations, the issues addressed here are the following ones:

• Issue #1: the canonical g-quantization. The issue concerns the quantization, here referred to as
g-quantization, of the classical canonical state x = {g, π} , with π ≡

{
πµν

}
being the classical

reduced-dimensional canonical momentum conjugate to the continuum field tensor g ≡
{

gµν(r)
}

.
This is realized by means of a correspondence principle between the classical state x = {g, π}
and the corresponding quantum variables x(q) =

{
g(q) ≡ g, π(q)

}
, with π(q) ≡

{
π
(q)
µν

}
being the

corresponding quantum operator. In such a context, the question arises of the unique prescription
of the quantum-wave function and the corresponding quantum wave-equation associated with
g-quantization. These should be understood respectively as quantum wave-function and quantum
wave-equation of the universe and, therefore, to hold for arbitrary realizations of the background
space-time. According to [8], the four-scalar (i.e., obtained by saturation of four-tensors) quantum
state ψ should dynamically evolve with respect to an invariant proper-time parameter s defining
the canonical Hamiltonian flow. Hence, besides g ≡

{
gµν(r)

}
, ψ is parametrized in terms of the

prescribed metric tensor ĝ(r) of the background space-time, as well as the four-position rµ and the
proper time s, whose physical meaning in the context of QG remains nevertheless to be specified.
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• Issue #2: the quantum Hamilton variational principle. This is about the search for a variational
principle for the same quantum wave equation, which may provide an additional “a posteriori”
justification of its physical validity. The form of the same equation, in fact, should be consistent
with the existence of real symmetric functionals, which are bilinear with respect to the quantum
wave function ψ, while satisfying the principle of manifest-covariance for the Hamiltonian
functional. In agreement with the variational setting developed for the classical derivation of the
Einstein equations, also in the quantum regime, we seek the implementation of a synchronous
variational principle characterized by having integral differential four-volume and/or line
elements, which are left invariant during synchronous variations (see the details in [6]).

• Issue #3: the g-quantization Heisenberg inequalities. This concerns the problem of quantum
measurement and, more precisely, the possible validity of a suitable Heisenberg principle, which
may provide inequalities appropriate for the treatment of g-quantization and relate the standard
deviations of the quantum observables x(q).

The goal of this paper is to set these problems in the axiomatic framework of CQG-theory
earlier developed in [8]. Such a theory, realizing a manifestly-covariant canonical quantization of the
classical Hamiltonian state x = {g, π} , is based on the assumption that the corresponding quantum
state represented by a single four-scalar wave-function ψ advances in proper-time by means of
a non-stationary quantum-wave equation (the CQG-wave equation) or equivalently of a corresponding
set of non-stationary quantum hydrodynamic equations.

More precisely, for this purpose, first, in reference to Issue #1, the problem is set in the context of
the Hamilton–Jacobi (HJ) g-quantization formulated for the classical canonical state x = {g, π}.
As we intend to show, in such a context, the CQG-wave equation emerges uniquely from the
classical Hamilton–Jacobi equation by invoking quantization rules relating Poisson brackets to
quantum commutators and the definition of conjugate quantum operators of field observables.
The resulting quantum wave equation does not require any independent postulation, but rather
is found to be naturally associated with the classical Hamiltonian and Hamilton–Jacobi theories of
GR. Second, in reference to Issue #2, a suitable quantum Hamilton variational principle is established,
which recovers the characteristic variational property of quantum field theory. More precisely,
the same quantum wave-equation, as well as the related quantum hydrodynamic equations are
shown to be variational both with respect to the quantum wave-function and the corresponding
quantum fluid fields. Finally, in reference to Issue #3, a crucial property of quantum measurements
performed in the context of g-quantization is displayed, lying in the validity of suitable Heisenberg
inequalities. In particular, we intend to show that, for arbitrary quantum wave-functions, which
are solutions of the same CQG-wave equation, the standard deviations associated with quantum
measurements of gµν and π

(q)
µν satisfy two different inequalities, referred to respectively as first and

second Heisenberg inequalities.
In this connection, it is important to remark that one of the objectives of CQG-theory is the

search for solutions for the quantum-gravity wave-function ψ in contexts of physical and astrophysical
interest, for example those characterized by the occurrence of strong-gravity effects and where quantum
phenomena may play a relevant role. In particular, this generally involves the determination of both
proper-time-dependent and stationary solutions. In the second case, the issue concerns the eigenvalue
problems associated with the stationary CQG-wave equation arising both in the case of vacuum, as well
as in the presence of external sources. Thus, in particular, the goal concerns the determination of the
corresponding energy spectrum of the quantum Hamiltonian operator and the conditions warranting
its discrete or continuous structure. Ultimately, a theory of this type should yield information about
the phenomenological properties of gravitons and related observational features, like mass, energy and
quantum dynamics. An application of this type of CQG-theory was first proposed in [9], where the
case of the stationary vacuum CQG-wave equation was studied in a cosmological regime characterized
by a non-vanishing cosmological constant Λ. A stationary equation for the CQG-state in terms of the
four-scalar invariant-energy eigenvalue was constructed for the corresponding quantum Hamiltonian
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operator holding in the harmonic approximation, i.e., assuming to have oscillation of the quantum
field gµν suitably close to the classical background tensor ĝµν. The conditions for the existence of a
discrete invariant-energy spectrum were determined, providing a possible estimate for the graviton
mass in the cosmological framework considered, together with the interpretation about the quantum
origin of the cosmological constant in terms of the graviton Compton wavelength. The achievements
of the present research are intended to provide a theoretical framework that can be applied to further
investigate the phenomenology of such physical solutions. In particular, noting that the predicted
existence of gravitons by CQG-theory is directly related to the quantum behavior of the field gµν, it

follows that the proof of existence of Heisenberg inequalities for gµν and π
(q)
µν is expected to constrain

in turn also the observational challenges of graviton particles themselves. Accordingly, the dynamics
of quantum gravitational fields and quantum gravitons are subject to uncertainty effects, which can be
predicted on the basis of the theory proposed below.

The scheme of presentation is as follows. First, in Section 2, the classical Hamiltonian structure of
GR is recalled, which is determined in the framework of a manifestly-covariant approach. This leads
to the introduction of both Hamilton and Hamilton–Jacobi equations underlying the gravitational
field equations of GR. In Section 3, the Hamilton–Jacobi g-quantization scheme is displayed, yielding
a relationship between classical and quantum Hamilton–Jacobi representations and yielding in this
way a representation of the quantum wave equation in manifestly-covariant form. Section 4 deals
with the formulation of a synchronous quantum Hamilton variational principle for the quantum
gravity wave equation. In Section 5, the quantum hydrodynamic equations corresponding to the
quantum wave equation are derived, upon invoking the Madelung representation for the quantum
wave function. The same equations are then shown to be variational, as well, following from the same
synchronous variational principle leading to the CQG-wave equation. Then, in Section 6, the validity
is proven of suitable Heisenberg inequalities, while concluding remarks are drawn in Section 7.

2. The Classical Hamiltonian Structure of SF-GR

In this section, the Hamiltonian structure of space-time {x = (g, Π), H} introduced in [7] and
the derivation of its corresponding reduced-dimensional representation are recalled. This follows by
identifying the variational canonical variables g and Π respectively with the second-order real tensor
fields g ≡

(
gµν(r)

)
and the third-order canonical momentum Π ≡

(
Πα

µν(r)
)

and H with a suitable
variational Hamiltonian density. As a consequence, the resulting continuum Hamilton equations
(extended Hamilton equations of SF-GR) take the form:{

∇αgµν = ∂H
∂Πα

µν
,

∇αΠα
µν(r) = − ∂H

∂gµν ,
(2)

with ∇α denoting hereon the covariant derivative in which the standard connections (Christoffel
symbols) are evaluated with respect to the prescribed metric tensor ĝ(r) ≡

{
ĝµν(r)

}
of the background

space-time
{

Q4, ĝ(r)
}

(see the related discussion given in [2]). Here, the Hamiltonian density
H ≡ H(x, ĝ(r), r) and the related effective kinetic (T) and potential (V) densities are taken respectively
of the form: 

H ≡ T + V,
T ≡ 1

2κ f (h)Πα
µνΠµν

α ,

V ≡ σVo (g, ĝ) + σVF (g, ĝ, r) ,
(3)

with κ being the dimensional constant κ = c3

16πG and G being the universal gravitational constant.
In addition, here, h denotes the “variational” weight-factor first introduced in [6], which is also crucial
for the establishment of the same canonical Equation (2) and is actually a suitably-prescribed function
of the variational tensor field g(r) ≡

{
gµν(r)

}
, namely:
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h =

(
2− 1

4
gαβgαβ

)
. (4)

It is important to recall here that in the framework of the synchronous classical variational principle,
variational and prescribed metric tensors are allowed to possess different properties and to satisfy
distinctive constraints. In particular, one has that ĝαβ ĝαβ = δα

α , while at the same time, gαβgαβ 6= δα
α .

As a consequence, in general h (g) 6= 1, while it must be h (ĝ) = 1 identically. In addition,
in Equation (3), f (h) and σ are multiplicative gauge functions, which according to the [8] should
be respectively identified with f (h) = 1 and σ = −1. More precisely, according to the notations
reported in [2], the two four-scalars Vo (g, ĝ) and VF (g, ĝ, r) represent respectively the vacuum and
external-field contributions:

Vo (g, ĝ) ≡ hκ
[

gµνR̂µν − 2Λ
]

,

VF (g, x̂, r) ≡ hLF (g, x̂, r) ,
(5)

with R̂µν ≡ Rµν(g(r))
∣∣
g(r)≡ĝ(r) and Λ denoting in Vo the Ricci tensor evaluated with respect to the

prescribed metric tensor ĝ(r) and the cosmological constant. Accordingly, LF (g, x̂, r) denotes a suitable
four-scalar function depending on external sources (for classical sources, see the appropriate variational
prescriptions reported in [6]).

Finally, for completeness, it is worth recalling that, as shown in [7], the extended Hamilton
Equation (2) is variational, i.e., it coincides with the Euler–Lagrange equations of the synchronous
classical Hamilton variational principle:

δS(x, x̂) = 0, (6)

with S(x, x̂) denoting the classical Hamilton variational functional:

S(x, x̂) =
∫

Q4
dΩL(x, ĝ(r), r), (7)

L(x, ĝ(r), r) = Πα
µν∇αgµν − H(x, ĝ(r), r). (8)

2.1. Reduced-Dimensional Hamiltonian Representation

The construction of the reduced dimensional representation for Equation (2) is realized, first, by
means of the splitting representation for the canonical momentum Πα

µν(r), i.e., its representation in
terms of the direct product of two tensors, respectively, first- and second-order tensors, of the form:

Πα
µν(r) = tα(r)πµν(r). (9)

Here, tα(r) denotes a real four-vector constructed to be a unit four-vector, i.e., such that:

ĝαν(r)tα(r)tν(r) ≡ tα(r)tα(r) = 1, (10)

and fulfilling identically the divergence-free condition:

∇αtα(r) = 0. (11)

The second step consists in the introduction of a proper-time parametrization (s-parametrization)
for the tensor fields, i.e., of the form:

{g(s), π(s)} = {g(r(s)), π(r(s))} , (12)

ĝ(s) = ĝ(r(s)), (13)
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in terms of suitable space-time curves {r(s), t(s), s ∈ I ≡ R}. The same curves belong to the
background space-time

{
Q4, ĝ(r)

}
, with s denoting the proper time defined on the same space-time

for subluminal trajectories and t(s) satisfying by construction for all s ∈ I the constraints (10) and (11).
A particular realization of such curves is provided by geodetics of the metric ĝ ≡

{
ĝµν(r)

}
, namely

curves fulfilling the initial-value problem:
drµ(s)

ds = tµ(s),
Dtµ(s)

Ds = 0,
rµ(so) = rµ

o ,
tµ(so) = tµ

o ,

(14)

where
(

rµ
o , tµ

o

)
represent respectively an arbitrary four-position of

{
Q4, ĝ(r)

}
and an arbitrary tangent

vector fulfilling Equation (10). Since at any point of
(
Q4, ĝ

)
, infinite geodetic curves exist, this shows

that the decomposition (9), which fulfills by construction the constraint Equations (10) and (11),
is always possible. Thus, in terms of the parametrization (12) and thanks to Equations (9)–(11),
the extended canonical Equation (2) implies the reduced Hamilton equations of SF-GR, namely:

d
ds gµν(s) = ∂HR

∂πµν(s)
,

d
ds πµν(s) = − ∂HR

∂gµν(s) ,
(15)

subject to the initial conditions: {
gµν(so) = gµν

(o)(r(so)),

πµν(so) = π(o)µν(r(so)),
(16)

with
{

gµν

(o)(r(so)), π(o)µν(r(so))
}

denoting suitable initial tensor fields. Here, d
ds denotes for greater

generality the covariant s-derivative, i.e., the substantial derivative:

d
ds

=
∂

∂s

∣∣∣∣
r
+ tα∇α|s , (17)

with ∂
∂s

∣∣∣
r

denoting the partial s-derivative and tα∇α|s the convective derivative along a space-time

trajectory {r(s), t(s), s ∈ I}. In addition, the partial derivatives ∂HR
∂πµν(s)

and ∂HR
∂gµν(s) are performed with

respect to the explicit dependences only. As a consequence HR takes generally the form:
H = HR ≡ TR + V,

TR(x, ĝ) ≡ 1
2k f (h)πµνπµν,

V(g, ĝ, r, s) ≡ σVo (g, ĝ, r) + σVF (g, ĝ, r, s) ,
(18)

with σVo and σVF corresponding respectively to Equation (5) and where, in particular, for greater
generality, σVF is allowed to depend explicitly on s. As a consequence, in the canonical equations (15):

(a) the s-derivatives of the canonical state x(s) = {g(s), π(s)}must be intended of the type:

d
ds

x(s) ≡
(

∂

∂s

∣∣∣∣
r
+ tα∇α|s

)
x(s), (19)

i.e., to include also a possible explicit s-dependence;
(b) the Hamiltonian density HR by construction is actually taken in the form:

HR = HR(x, ĝ(r(s)), r(s), s; t), (20)
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with t ≡ {tµ} denoting a possible parametric dependence on the tangent four-vector tµ appearing
through r(s). Such a dependence, arising because of Equation (19), is nevertheless implicit and, as
such, is not expected to affect the solutions of the same reduced Hamilton equations.

Nevertheless, in case HR does not depend explicitly on r ≡ r(s), as may occur in the case
of vacuum solutions and in the case Vo = Vo (g, ĝ), then necessarily, HR becomes independent
of tµ, as well. Notice, finally, that in order to apply Hamilton–Jacobi quantization (see below),
the dimensional-normalization:

gµν → gµν = gµν

πµν → πµν = αL
k πµν

HR → HR ≡ TR + V = αL
k HR

V(g, ĝ, r, s; t) ≡ σVo (g, ĝ, r) + σVF (g, ĝ, r, s; t)

, (21)

can be conveniently introduced [2]. Here, (gµν, πµν) identifies the normalized canonical state, with L
and α denoting a four-scalar scale-length and an invariant parameter having the dimension of an action,
both to be suitably defined (see related discussion in [2,8]). As a result, the corresponding normalized
Hamiltonian density and the effective potentials set in dimensionally-normalized form, denoted by
over-bars, are given respectively by:

HR ≡ TR + V
TR(x, ĝ) ≡ 1

2αL f (h)πµνπµν

V(g, ĝ, r, s; t) ≡ σVo (g, ĝ, r) + σVF (g, ĝ, r, s; t)
Vo (g, ĝ, r) ≡ hαL f (h)

[
gµνR̂µν − 2Λ

]
VF (g, ĝ, r, s; t) ≡ αL

k VF (g, ĝ, r, s; t) .

. (22)

In the remainder, the constitutive Equation (22) will be adopted throughout the paper, dropping
for simplicity the over-bar notation.

2.2. Hamilton–Jacobi Equation

As shown in [8], the reduced Hamilton Equation (15) of SF-GR is equivalent to the continuum
Hamilton–Jacobi equation for the Hamilton principal function S ≡ S (g(s), ĝ(s), r(s), s; t) constructed
in such a way that the canonical momentum takes the form:

πµν =
∂S (g(s), ĝ(s), r(s), s; t)

∂gµν(s)
. (23)

This requires more precisely denoting HR ≡ HR

(
g(s), ∂S(g(s),ĝ(s),r(s),s;[t])

∂g , ĝ(s), r(s), s; [t]
)

,
with the consequence that the Hamilton principal function S must be a solution of the classical
Hamilton–Jacobi equation:

∂S
∂s

+ HR = 0, (24)

where ∂
∂s ≡

d
ds identifies the substantial, i.e., total covariant s-derivative defined by Equation (17),

and the same s-derivative is performed keeping constant both g(s) and ĝ(s). In the particular case in
which r(s) and t are ignorable for the Hamiltonian density HR (i.e., as for vacuum solutions), then also
the Hamilton principal function becomes of the form S = S (g(s), ĝ(s), s).

3. Hamilton–Jacobi g-Quantization

The key starting point for the quantization of the Hamiltonian system {x, HR} developed by
CQG-theory [9] concerns the notion of the quantum state itself. This is to be intended as the quantum
state of a particle with spin-two, which in the context of CQG is identified with a massive graviton,
i.e., having rest-mass mo > 0. In particular, this refers to the assumption that such a state can be
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represented by a single complex four-scalar quantum wave-function ψ. That such a prescription is
indeed possible in the context of a first-quantization approach adopted by CQG-theory [9], having
a classical background space-time ĝµν, which is distinguished from the variational/quantum field
gµν, follows from the fact that in such a case, ψ can always be identified with the tensor product of
the form ψ(s) = ĝµνψµν(s). This establishes the relationship between the four-scalar wave function
ψ(s) and the corresponding second-order four-tensor ψµν(s). In particular, one readily obtains that
necessarily ψµν(s) = 1

4 ψ(s)ĝµν, so that in the present description, the four-tensor ψµν(s) has to be
regarded as a derived quantity in terms of the wave-function ψ(s), which is solved by the CQG-wave
equation. Regarding the functional setting, i.e., the prescription of the functional class of admissible
wave-functions {ψ}, it is assumed that ψ are smoothly differentiable complex functions, which are
parametrized in terms of the space-time curves {r(s), t(s), s ∈ I ≡ R} indicated above and fulfilling
suitable boundary conditions for s → ±∞ and on the improper hyper-surface of the configuration
space Ug (see below). In particular, ψ(s) is assumed to be a smooth function of the form ψ(s) =

ψ(g, ĝ(s), r, s; t), with g =
{

gµν

}
, s and t = {tµ} being independent variables that span respectively

the configuration space Ug, the time axis I and the tangent space TUg, while:

ρ(s) ≡ |ψ(s)|2 (25)

identifies the corresponding quantum probability density function (quantum PDF) on the configuration
space. Here, we shall assume for definiteness that the variational tensors gµν spanning Ug are
symmetric, so that Ug is identified with the subset of a linear space R10. In addition, one can always
require gµν to be also non-singular. This means, in other words, that for any unit four-vector tµ fulfilling
Equation (10), it must be that:

Θ(
∣∣gµνtµtν

∣∣2) = 1, (26)

with Θ(x) =

{
1 (x > 0)
0 (x ≤ 0)

denoting the strong Heaviside step function. In the context of

g-quantization, the configuration space is identified with Ug, so that by construction, its quantum
probability is defined as:

P(Ug) = 〈ψ|ψ〉 ≡
∫

Ug

d(g)ρ(s) = 1, (27)

with d(g) ≡ ∏
µ,ν=1,4

dĝµν denoting the canonical measure on Ug. In addition, both r and ĝ(r) are

considered functions of s, i.e., evaluated along the classical space-time curves {r(s), t(s), s ∈ I ≡ R} ,
so that r ≡ r(s) = {rµ(s)} and ĝ(s) ≡ ĝ(r(s)). Finally, the wave-functions ψ(s) span by assumption a
Hilbert space Γψ, which is finite-dimensional in the sense that it is defined on a continuum configuration
space Ug having a finite dimension. This is endowed with the scalar product:

〈ψa|ψb〉 ≡
∫

Ug

d(g)ψ∗a (g, ĝ(r), r(s), s)ψb(g, ĝ(r), r(s), s), (28)

with ψa,b(s) ≡ ψa,b(g, ĝ(r), r(s), s) being arbitrary elements of the Hilbert space Γψ, where as usual, ψ∗a
denotes the complex conjugate of ψa.

Based on these premises, the formal construction of CQG-theory is then based on the adoption of
two distinctive axioms related respectively to the following two prescriptions:

• First, the canonical quantization rule, herein referred to as the g-quantization rule, prescribing the
mapping between the classical and quantum Hamiltonian structures:

(x = {g, π} , HR)⇒
(

x(q) =
{

g(q), π(q)
}

, H(q)
R

)
. (29)
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This mapping is realized by the CQG-correspondence principle, namely:
gµν → g(q)µν ≡ gµν

πµν → π
(q)
µν ≡ −i} ∂

∂gµν

HR → H(q)
R = 1

f (h)T(q)
R (π, ĝ) + V

. (30)

• Second, the quantum-wave equation advancing in proper-time the same quantum state. This is
provided by the CQG-wave equation:

i} ∂

∂s
ψ(s) =

[
H(q)

R , ψ(s)
]
≡ H(q)

R ψ(s), (31)

with ∂
∂s denoting again the total covariant s−derivative defined by Equation (17) and [A, B] being

the quantum commutator [A, B] ≡ AB− BA.

The goal of this section is to set the CQG-theory in the context of a Hamilton–Jacobi quantization
scheme (see, for example, [30]), which permits us to determine immediately the precise form of the
resulting quantum wave equation displayed in Equation (31). The starting point is the prescription
of the relevant classical canonical momenta in the context of the Hamilton–Jacobi approach.
By direct inspection of the Hamilton–Jacobi equation recalled above in Equation (24), it follows
that g-quantization can be achieved in terms of the two classical canonical momenta ∂S(g,ĝ,(r),s;t)

∂gµν
and

∂S(g,ĝ,(r),s;t)
∂s , identifying, respectively, πµν and the canonical momentum conjugate to the proper-time s.

In the context of the Hamilton–Jacobi quantization, the appropriate correspondence principle for
g-quantization, establishing the relationship between the classical and quantum momenta and
Hamiltonian functions, is then provided by the mapping:

πµν ≡
∂S (g, ĝ, (s), r, s; [t])

∂gµν → π
(q)
µν ≡ −ih̄

∂

∂gµν , (32)

p ≡ −∂S (g, ĝ(s), r, s; [t])
∂s

→ p(q) ≡ −ih̄
∂

∂s
, (33)

HR

(
g,

∂S (g, ĝ(s), r, s; [t])
∂g

, ĝ(s), r, s; [t]
)
→ H(q)

R . (34)

with π
(q)
µν , p(q) and H(q)

R identifying the quantum canonical momenta conjugate to gµν and s,
respectively, and the quantum Hamiltonian operator. This will be referred to as Hamilton–Jacobi
g-quantization. Notice that, in the same mapping, the “coordinates” g ≡

{
gµν

}
and s remain

unchanged, i.e., so that they still formally coincide with the classical ones. The mapping realized
by Equations (32)–(34) implies the simultaneous validity of the two fundamental commutator relations:[

π(q)αβ, gµν

]
= −i}δα

µδ
β
ν , (35)

[
p(q), s

]
= −i}, (36)

together with: [
gαβ, gµν

]
=
[
π(q)αβ, π

(q)
µν

]
= 0. (37)

Notice that since both π(q)αβ and g(q)µν are symmetric, Equation (35) holds for arbitrary
permutations of the indexes. As a consequence, based on the classical Hamilton–Jacobi Equation (24),
the additional mapping:

∂S
∂s + HR = 0 ⇒

{
p(q) + H(q)

R

}
ψ (s) = 0 (38)
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follows, which implies the validity of the quantum-wave equation indicated above (see Equation (31)).
We stress that the same CQG-wave equation exhibits a number of distinctive properties:

1. It is manifestly covariant, i.e., it retains its form under the action of arbitrary local
point transformations (1), which preserve by construction the differential manifold of the
space-time

(
Q4, ĝ(r)

)
.

2. It is an evolution equation, which is parametrized in terms of the proper-time s, i.e., the Riemann
distance, which is associated with the background space-time for subluminal trajectories.

3. It advances in proper-time the four-scalar wave-function ψ(s), the associated configuration-space
quantum PDF being prescribed by Equation (25).

4. The same wave equation holds in principle for arbitrary initial conditions, as well as for arbitrary
external sources, as is appropriate for the treatment of problems of QG and quantum cosmology.

In particular, an interesting comparison can be made with the Wheeler–DeWitt wave equation [31,32].
Indeed, it is well-known that the Wheeler–DeWitt wave equation realizes a Schrödinger-like evolution
equation advancing in time the dynamics of the so-called “wave function of the universe” [33]. Despite its
formal analogy, however, basic differences emerge, the most important one being that the Wheeler–DeWitt
wave equation is not manifestly covariant. The reason, as earlier discussed (see [9]), is that its time
evolution is parametrized with respect to the coordinate-time t, which is not an invariant four-scalar.

4. The Quantum Hamilton Variational Principle

The goal of this section is to prove that the CQG-wave Equation (31) admits also a variational
formulation in terms of a suitably-prescribed synchronous variational principle. In this regard, a basic
prerequisite is that the variational principle yielding this equation should be manifestly covariant.
In other words, the corresponding variational functional, the appropriate class of variations, as well
as the resulting Euler–Lagrange equations should all be covariant with respect to the LPT-group.
As we intend to show here, such a requirement is non-trivial and restricts the class of admissible
quantum-wave equations for quantum gravity.

A key feature of the CQG-wave equation is that it is a hyperbolic evolution equation, which
prescribes the dependence of the quantum state ψ = ψ(s) in terms of the proper-time s, which is
associated with the background curved space-time

(
Q4, ĝµν(r)

)
and parametrizes the space-time

curves {r(s), t(s), s ∈ I ≡ R}. Such an equation is a first-order partial differential equation with respect
to s, to be supplemented by suitable initial conditions, namely prescribing for all r(so) = ro ∈

(
Q4, ĝ(r)

)
the condition ψ(so) = ψo(g, ĝ(ro), ro; t), as well as boundary conditions at infinity on the improper
boundary of configuration space Ug, i.e., letting limg→∞ ψ(g, ĝ(s), r(s), s; t) = 0.

Let us now show that the form of Equation (31) indicated above warrants that it is also
variational, i.e., that in analogy with quantum-wave equations known in quantum mechanics, it admits
a manifestly-covariant variational formulation. For the construction of the variational principle, one
can indeed adopt a method analogous to that followed in [30] in the case of relativistic quantum
mechanics. The prerequisites are set by the following prescriptions:

Prescription 1. A scalar product is defined on a suitable extended configuration space, identified with the
direct product Ug × I(so,s1)

, Ug being the configuration space defined above and I(so,s1)
the subset of the real axis

I ≡ R, namely the interval I(so,s1)
= [so, s1].

Prescription 2. A real functional Q (ψ, ψ∗) of the variational wave function ψ ≡ ψ(s) is defined, which is
symmetric with respect to the same scalar product on the set Ug. The same function ψ is required to belong to
the functional class {ψ(s)} of the C(2) (continuous twice-differentiable) complex functions prescribed so that the
associated quantum PDF ρ(s) (see Equation (25)) fulfills on Ug the normalization condition (27).

Prescription 3. The same real functional and the corresponding Lagrangian density (LQ) are all four-scalars
with respect to generic background space-time

(
Q4, ĝ(r)

)
.



Entropy 2017, 19, 339 11 of 20

Prescription 4. The Lagrangian density can be represented in terms of the first-order differential operators
associated with the quantum canonical momenta, respectively π

(q)
µν and p(q) (see Equations (32) and (33)) or

their complex conjugates π
(q)∗
µν and p(q)∗, acting respectively on ψ and its complex conjugate wave-function ψ∗.

In the present framework, the variational functional corresponding to these prescriptions is
provided by a real symmetric four-scalar Hamilton functional of the form:

Q (ψ, ψ∗) =
∫ s1

so
ds
∫

Ug
d(g)LQ (w, w∗) , (39)

where so, s1 ∈ I are arbitrary proper times, such that so < s1 (so that in particular, a possible choice
is realized by setting so = −∞, s1 = +∞), while d(g) represents the four-scalar volume element of
configuration space Ug. Furthermore, denoting ψ∗ ≡ ψ∗(s) the complex conjugate of ψ ≡ ψ(s) and

w ≡
(

ψ, ∂ψ
∂gµν

, ∂ψ
∂s

)
, then w∗ is its complex conjugate. In particular, for consistency with Prescriptions

2–4, LQ (w, w∗) must be identified with the four-scalar real Lagrangian density:

LQ (w, w∗) = ih̄
1
2

[
ψ

∂

∂s
ψ∗ − ψ∗

∂

∂s
ψ

]
+

1
2αL

(
ih̄

∂

∂gµν

)
ψ∗
(
−ih̄

∂

∂gµν

)
ψ + Vψ∗ψ. (40)

In addition, consistent with Prescription 1, the integral occurring in the Hamilton functional
Q (ψ, ψ∗) is performed respectively: (a) with respect to s, with integration carried out both with
respect to the explicit and implicit dependences contained in ψ(g, ĝ(s), r(s), s; t); and (b) with respect
to the explicit dependence in terms of g ≡

{
gµν

}
. This means that Q (ψ, ψ∗) can be equivalently

represented as:

Q (ψ, ψ∗) =
∫ s1

so
ds
〈

ψ|KQψ
〉

, (41)

with
〈

ψ|KQψ
〉

representing the quantum expectation value (see [8]) and KQ being here the quantum
operator:

KQ = K(1)
Q +

1
2αL

ih̄

⇐=
∂

∂gµν

−ih̄

=⇒
∂

∂gµν

+ V, (42)

K(1)
Q = ih̄

1
2

⇐=∂
∂s
−

=⇒
∂

∂s

 , (43)

and where
(⇐=

∂
∂s ,

⇐=
∂

∂gµν

)
and

(=⇒
∂
∂s ,

=⇒
∂

∂gµν

)
identify the “bra” and “ket” operators acting on 〈ψ| ≡ ψ∗

and ψ ≡ |ψ〉, respectively. Hence, Q (ψ, ψ∗) can be equivalently represented in terms of the quantum
Hamiltonian operator H(q)

R and the scalar product defined for the waves functions belonging to {ψ};
namely, it takes the form:

Q (ψ, ψ∗) =
∫ s1

so
ds
〈

ψ|
[
−ih̄

∂

∂s
+ H(q)

R

]
ψ

〉
, (44)

with these operators −ih̄ ∂
∂s and H(q)

R to be intended as ket operators acting on ψ ≡ |ψ〉.
As a basic consequence, the same operators, and hence also KQ, are all symmetric, while all of the

involved quantum operators have a four-tensor nature. This means that the Hamilton functional (39)
(or equivalently, Equation (44)) is such that: (1) Q (ψ, ψ∗) is a real four-scalar functional, with all of
the quantum operators and variables being represented by four-tensor quantities; (2) the quantum
operators ih̄ ∂

∂s and H(q)
R , and hence, also KQ, are all symmetric with respect to the same scalar product.
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Thus, introducing the functional class of variations {ψ1 ≡ ψ + δψ}, it is assumed that all functions
ψ1 belong to the class of admissible wave-functions {ψ} indicated above, while the variation
δψ ≡ δψ(g, ĝ(s), r(s), s; t) is considered as a four-scalar complex function. In other words, the same
quantum wave Equation (31) must be uniquely determined by means of the quantum Hamilton
variational principle:

δQ (ψ, ψ∗) = 0, (45)

to hold in a suitable class of variations in which the variations δψ (and similarly δψ∗) are considered
as independent four-scalar functions, with δQ (ψ, ψ∗) denoting the Frechet derivative evaluated with
respect to the same variations, namely letting:

δQ (ψ, ψ∗) = lim
α→0

Q (ψ + αδψ, ψ∗ + αδψ∗)−Q (ψ, ψ∗)

α
. (46)

The same equation is required to realize a so-called synchronous variational principle,
i.e., performed again in terms of a synchronous variation operator δ [6], which in this case leaves
unchanged the line element ds. This implies that the equation:

δ (ds) = 0 (47)

must hold identically. Such a differential constraint can be fulfilled by suitable prescription of the
variations δψ and δψ∗ and in particular requiring that the parameter α in the Frechet derivative (46) is
independent of s. Moreover, we shall assume that the same variations (δψ and δψ∗) are considered
independent and vanish on the boundary of Q4 and at infinity for s → ±∞. Then, by elementary
algebra, it follows that the wave function ψ, which is extremal for the functional Q (ψ, ψ∗), must fulfill
the Euler–Lagrange equations:

δQ (ψ, ψ∗)

δψ∗
= 0, (48)

δQ (ψ, ψ∗)

δψ
= 0. (49)

This proves at the same time the variational and manifest-covariant properties of the
quantum-wave equation (31). In fact, thanks to the symmetry property of the Hamilton functional
Q (ψ, ψ∗), Equations (48) and (49) coincide respectively with Equation (31) and its complex conjugate,
so that the variational character of Equation (31) is established. Furthermore, thanks to the four-tensor
property of the same functional Q (ψ, ψ∗) and of the quantum variables and operators, the same
Euler–Lagrange Equations (48) and (49) are all manifestly covariant.

These properties are distinctive of CQG-theory and depart from previous QG literature.
For example, let us consider again the comparison with the Wheeler–DeWitt wave equation [31,32].
The latter equation is indeed variational. Nevertheless, despite that fact that the same variational
principle is in some sense analogous to (45), it is also not manifestly-covariant. This arises, again,
because the Wheeler–DeWitt wave equation itself is based on the so-called 3 + 1 foliation of
space-time, so that the variational principle occurring for the same equation is not manifestly covariant.
This problem however does not arise in the framework of the CQG-theory considered here.

5. The Variational Quantum Hydrodynamic Equations

A pre-requisite for establishing Heisenberg inequalities in the framework of CQG-theory is
the introduction of the concept of a quantum probability density function and the derivation
of the corresponding set of quantum hydrodynamic equations (CQG-QHE) implied by the
CQG-wave equation, to be prescribed in conservative form in order to warrant the conservation
of quantum probability.
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In the present setting, the quantum probability density function (PDF) associated with the
CQG-state is identified with the real function ρ(s) ≡ ρ(g, ĝ(r), r(s), s) and is prescribed as:

ρ(s) ≡ |ψ(s)|2 , (50)

in formal analogy with the customary definition of quantum PDF holding in non-relativistic quantum
mechanics. Here, ρ(s) is a four-scalar and represents the probability density of the Lagrangian
field variable g ≡

{
gµν

}
in the volume element d(g) belonging to the configuration space Ug. By

assumption, the probability P(A) of an arbitrary subset A ⊆ Ug is normalized, in the sense that for
arbitrary (ĝ(r), r(s), s), it must be:

P(A) ≡ 〈ψ|δA(g)ψ〉 ≡
∫

Ug

d(g)ρ(s)δA(g), (51)

with δA(g) being the characteristic function of the set A. In a similar way, given the validity of
Equation (50), one can define the real function S(q)(s) ≡ S(q)(g, ĝ(r), r(s), s) as:

S(q)(s) ≡ } arcsin h

{
ψ(s)− ψ∗(s)

2
√

ρ(s)

}
, (52)

which represents, on the configuration space Ug, the quantum phase-function associated with the
same CQG-state ψ(s). Hence, in terms of the real four-scalar field functions ρ(s) and S(q)(s) prescribed
respectively by Equations (50) and (52), the CQG-state defined by the complex function ψ(s) can be
cast in the equivalent form of the Madelung exponential representation:

ψ(s) =
√

ρ(s) exp
{

i
}S(q)(s)

}
, (53)

i.e., the quantum fluid fields
{

ρ(s), S(q)(s)
}

identifying respectively the quantum PDF and the
quantum phase-function. Once the Madelung representation is invoked, it is possible to replace
the single CQG-wave Equation (31) for the complex wave-function ψ(s) with the equivalent set of
CQG-QHE realized respectively by a continuity equation for the real quantum PDF ρ(s) and a quantum
Hamilton–Jacobi equation for the real quantum phase-function S(q)(s).

In particular, invoking the Madelung representation for ψ(s), given the definition of the
Hamiltonian operator H(q)

R according to Equation (30) and imposing the constraint condition f (h) = 1,
the following set of real PDEs is obtained from the CQG-wave equation:

∂ρ(s)
∂s

+
∂

∂gµν

(
ρ(s)Vµν(s)

)
= 0, (54)

∂S(q)(s)
∂s

+ H(q)
c = 0. (55)

These are referred to as the CQG-quantum continuity equation and the CQG-quantum
Hamilton–Jacobi equation advancing in proper-time, respectively ρ(s) and S(q)(s). Here, the quantum
hydrodynamics fields ρ(s) ≡ ρ(g, ĝ, s) and S(q)(s) ≡ S(q)(g, ĝ, s) are assumed to depend smoothly
on the tensor field g ≡

{
gµν

}
spanning the configuration space Ug and in addition to admitting a

Lagrangian path-parametrization in terms of the geodetics r(s) ≡ {rµ(s)} associated locally with the
prescribed field ĝ(r) ≡

{
ĝµν(r)

}
. The four-tensor Vµν(s) is prescribed instead as:

Vµν(s) =
1

αL
∂S(q)

∂gµν . (56)
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Finally, H(q)
c identifies the effective quantum Hamiltonian density:

H(q)
c =

1
2αL

∂S(q)

∂gµν

∂S(q)

∂gµν
+ VQM + V, (57)

with V ≡ V(g, ĝ(r), r, s) being the effective potential density and VQM a potential density denoted as
Bohm-like effective quantum potential, which is prescribed as:

VQM(g, ĝ(r), r, s) =
}2

8αL
∂ ln ρ

∂gµν

∂ ln ρ

∂gµν
− }2

4αL
∂2ρ

ρ∂gµν∂gµν . (58)

The effective potential VQM is analogous to the well-known Bohm potential met in non-relativistic
quantum mechanics (see, for example, [34,35]), its physical origin arising due to the non-uniformity of
the quantum PDF ρ, namely such that generally it must be ∂

∂gµν
ρ(s) 6= 0. Finally, it must be stressed

that, as discussed in [9], the constraint condition f (h) = 1 is required in order to warrant the quantum
unitarity principle, namely the conservation of quantum probability, thus resolving at the quantum
level the indeterminacy on the prescription of the function f (h) arising in the classical Hamilton–Jacobi
theory of GR (see also [8]).

A theoretical implication of the validity of the variational principle (45) can be obtained if in the
functional (44), the wave functions ψ and ψ∗ are represented in terms of the Madelung representation (53).
In fact, in terms of the same fields, the Hamilton functional (44) then becomes:

Q (ψ, ψ∗) =
∫ s1

so
ds
∫

Ug
d(g)

{
ih̄
2

[
∂ρ(s)

∂s
+

∂

∂gµν

(
ρ(s)Vµν(s)

)]
+ ρ(s)

[
∂S(q)(s)

∂s
+ H(q)

c

]}
, (59)

with Vµν(s) and H(q)
c being respectively the second-order four-tensor and the effective quantum

Hamiltonian defined by Equations (56) and (57). For definiteness, let us require, consistent with
Prescription 2, that the normalization (27) applies. As a consequence, the functional class {ψ(s)}must
be prescribed so that the boundary condition ρ(s) ≡ 0 on the improper hypersurface of Ug is fulfilled.
As a consequence, in Equation (59), it follows identically that:

∫ s1

so
ds
∫

Ug
d(g)

∂ρ(s)
∂s
≡ 0, (60)

and similarly: ∫ s1

so
ds
∫

Ug
d(g)

∂

∂gµν

(
ρ(s)Vµν(s)

)
≡ 0, (61)

the two equations, thus yielding that:

Q (ψ, ψ∗) =
∫ +∞

−∞
ds
∫

Ug
d(g)ρ(s)

[
∂S(q)(s)

∂s
+ H(q)

c

]
. (62)

Then, one can show that the Euler–Lagrange equations implied by the quantum Hamilton
variational principle (45), written for the two real fields ρ(s) and S(q)(s), namely:

δQ (ψ, ψ∗)

δS(q)
= 0, (63)

δQ (ψ, ψ∗)

δρ
= 0, (64)

necessarily recover the quantum hydrodynamic equations, i.e., respectively Equations (54) and (55).
In fact, the first Equation (63) manifestly requires:
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− ∂

∂s
ρ(s)− ∂

∂gµν

(
ρ(s)

1
αL

∂S(q)

∂gµν

)
= 0, (65)

which coincides with the quantum continuity Equation (54). Second, noting that the variation of
the Bohm-like potential vanishes identically, the second Equation (64) recovers exactly Equation (55).
Therefore, also in terms of the fluid fields

{
ρ(s), S(q)(s)

}
the functional Q (ψ, ψ∗) is variational.

Concerning the CQG-quantum Hamilton–Jacobi equation determined here, one notices that
the same equation generalizes the classical GR-Hamilton–Jacobi equation determined in [8] in the
framework of the manifestly-covariant Hamiltonian theory of GR. As a consequence, Equation (55)
must imply the validity of corresponding Hamilton equations to be expressed in terms of the
effective quantum Hamiltonian density H(q)

c . Nevertheless, due to the presence of the Bohm-like
effective quantum potential VQM(g, ĝ(r), r, s), the latter now generally must depend explicitly on
the proper time s. This contribution is expected to give rise to proper-time-dependent solutions
of the non-stationary CQG-wave equation, while the Bohm-like quantum potential vanishes in the
semiclassical limit prescribed letting }→ 0. This theoretical feature establishes a logical consistency
of the CQG-theory with the classical Hamilton–Jacobi equation recalled above (see Equation (24))
and earlier determined in [9], while at the same time, the connection between CQG-QHE and the
corresponding CQG-wave equation marks a strong analogy of the present quantum theory with
the Schrödinger equation and the generalized Klein–Gordon equation reported in [30] holding
for relativistic quantum mechanics. Finally, an important issue must be mentioned, related to
the fluid description underlying the CQG-wave equation. This concerns a generalization of the
background space-time picture adopted in this work, toward realization of second-quantization
theory, i.e., in which quantum sources are taken into account. Specifically, this includes quantization
and quantum modifications of the background space-time, as well as the inclusion of specific
possible quantum particle sources (such as the Hawking radiation, graviton sources, etc.). The fluid
description obtained here can be adopted for investigating such a route, providing the basis for a
statistical description of quantum gravity theory characterized by second-quantization effects and the
independence of the geometrical background.

6. Generalized Heisenberg Inequalities for g-Quantization

In this section, we present proofs of Heisenberg inequalities from first principles holding for the
CQG-wave equation in the framework of g-quantization. More precisely, the problem is addressed
whether, as a consequence of the strict positivity and smoothness of the quantum PDF ρ(s) and in
analogy with standard quantum mechanics, the quantum state ψ(s) might/should satisfy suitable
Heisenberg inequalities, which are related to the fluctuations (and corresponding standard deviations)
of the Lagrangian variable gµν and of the conjugate quantum canonical momentum π

(q)
µν and if the

same inequalities might place a constraint on the proper-time evolution of the quantum state.
For this purpose, we determine preliminarily the expectation values and corresponding

fluctuations (i.e., the squared of the standard deviations), which are associated with the generalized
Lagrangian coordinates gµν. These are respectively prescribed in terms of the expectation values:

g̃µν ≡
〈

gµν

〉
≡
〈
ψ|gµνψ

〉
, (66)

and: 〈(
∆gµν

)2
〉
≡
〈

ψ
∣∣∣(gµν − g̃µν

) (
g(µ)(ν) − g̃(µ)(ν)

)
ψ
〉

. (67)
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The corresponding weighted configuration-space integrals are then given by the following
expressions:

g̃µν =
∫

Ug
d(g)ρgµν, (68)〈(

∆gµν

)2
〉

=
∫

Ug
d(g)ρ

(
gµν − g̃µν

) (
g(µ)(ν) − g̃(µ)(ν)

)
. (69)

Similar calculations can be performed for the conjugate quantum momenta, namely for the
expectation values:

π̃µν ≡
〈

π
(q)
µν

〉
≡
〈

ψ|π(q)
µν ψ

〉
, (70)

and: 〈(
∆π

(q)
µν

)2
〉
≡
〈

ψ
∣∣∣(π

(q)
µν − π̃µν

) (
π
(q)
(µ)(ν)

− π̃(µ)(ν)

)
ψ
〉

. (71)

Straightforward calculations yield in this case:

π̃µν =
∫

Ug
d(g)ψ∗

(
−ih̄ ∂

∂gµν

)
ψ

=
∫

Ug
d(g)ρ

(
∂S(q)

∂gµν − ih̄
2

∂ ln ρ
∂gµν

)
=
∫

Ug
d(g)ρ ∂S(q)

∂gµν ,
(72)

and respectively:〈(
∆π

(q)
µν

)2
〉

=
∫

Ug
d(g)ψ∗

(
−ih̄ ∂

∂gµν − π̃µν

) (
−ih̄ ∂

∂g(µ)(ν)
− π̃(µ)(ν)

)
ψ

=
∫

Ug
d(g)ρ

(
−ih̄ ∂ ln ρ

∂gµν + ∂S(q)

∂gµν − π̃µν

) (
−ih̄ ∂ ln ρ

∂g(µ)(ν)
+ ∂S(q)

∂g(µ)(ν)
− π̃(µ)(ν)

)
+
∫

Ug
d(g)ρ

(
− h̄2

2
∂2 ln ρ

∂g(µ)(ν)∂gµν − ih̄ ∂2S(q)

∂g(µ)(ν)∂gµν

)
.

(73)

From the last expression, it follows in particular that the fluctuation
〈(

∆π
(q)
µν

)2
〉

can be

represented as: 〈(
∆π

(q)
µν

)2
〉

=

〈(
∆πµν

)2
〉

1
+

〈(
∆πµν

)2
〉

2
, (74)

with
〈(

∆πµν

)2
〉

1
and

〈(
∆πµν

)2
〉

2
denoting respectively the two weighted integrals:

〈(
∆πµν

)2
〉

1
=

h̄2

4

∫
Ug

d(g)ρ
∂ ln ρ

∂gµν

∂ ln ρ

∂g(µ)(ν)
, (75)〈(

∆πµν

)2
〉

2
=

∫
Ug

d(g)ρ

(
∂S(q)

∂gµν − π̃µν

)(
∂S(q)

∂g(µ)(ν)
− π̃(µ)(ν)

)
. (76)

We intend to prove that the following fundamental inequality holds:〈(
∆g

(µ)(ν)

)2
〉〈(

∆πµν

)2
〉

1
≥ h̄2

4
, (77)

which implies in turn also that: 〈(
∆g

(µ)(ν)

)2
〉〈(

∆π
(q)
µν

)2
〉
≥ h̄2

4
. (78)
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The two inequalities (77) and (78) will be referred to respectively as first and second Heisenberg
inequalities for g-quantization. The last inequality can also be represented in terms of the corresponding
standard deviations σgµν

and σπµν , namely:
σgµν
≡
√〈(

∆g
(µ)(ν)

)2
〉

σπµν ≡
√〈(

∆πµν

)2
〉 , (79)

thus yielding the equivalent Heisenberg inequality for the standard deviations in the customary
formal representation:

σg
(µ)(ν)

σπµν ≥
h̄
2

. (80)

The proof of the two inequalities (77) and (78) is analogous to that given in [36]. For this
purpose, one notices, first, that by construction, the conservation of ρ(s) is warranted by the validity
of the quantum continuity Equation (54). Hence, thanks to the normalization of ρ(s) according to
Equation (51) which holds for all s ∈ I ≡ R, for arbitrary proper-time s, integration by parts in the
previous configuration-space integral delivers equivalently also the identity:

−
∫

Ug
d(g)ρ

(
gµν − g̃µν

) ∂ ln ρ

∂g(µ)(ν)
= 1. (81)

Hence, the inequality:

∫
Ug

d(g)ρ
√(

gµν − g̃µν

) (
g(µ)(ν) − g̃(µ)(ν)

)√ ∂ ln ρ

∂g(µ)(ν)

∂ ln ρ

∂g(µ)(ν)
≥ 1 (82)

manifestly must hold identically for arbitrary s, as well. Next, Schwartz’s inequality delivers:∫
Ug

d(g)ρ
(

gµν − g̃µν

) (
g(µ)(ν) − g̃(µ)(ν)

) ∫
Ug

d(g)ρ
∂ ln ρ

∂gµν

∂ ln ρ

∂g
(µ)(ν)

≥ 1. (83)

Upon multiplying term by term the LHS of the previous equation with respect to h̄2

4 ,
an inequality follows, which exactly coincides for arbitrary s with Equation (77). Since by construction〈(

∆πµν

)2
〉

2
≥ 0, the second Heisenberg inequality (78) necessarily holds, as well. Such inequalities

hold for arbitrary s ∈ I ≡ R. Hence, no possible constraint can arise on the dynamical proper-time
evolution wave-function ψ(s) as a consequence of the validity of the same inequalities.

The physical interpretation, and consequent implications, implied by the validity of the
Heisenberg inequalities (77) and (78) (or equivalently (80)) is of crucial importance for the prescription
of quantum measurements in the context of CQG g-quantization. This occurs if, in analogy
with the original Heisenberg interpretation (see [36]), the standard deviations σgµν

and σπµν

defined above are interpreted as quantum measurement errors. Then, the inequality (80) states
the impossibility of realizing simultaneous quantum measurements for the mutually-conjugated
Lagrangian coordinate and corresponding momentum, so that both the canonical variables cannot be
measured exactly simultaneously, i.e., with vanishing standard deviations. In other words, the product
of the corresponding fluctuations/standard deviations is necessarily non-zero since they must satisfy
respectively the fundamental inequalities (78) and (80).

7. Conclusions

In this paper, a number of issues have been posed, which are intimately related to quantum
gravity and the statistical interpretation of the corresponding relativistic quantum wave equation.
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The goal has been to set them in the framework of the recently-developed axiomatic approach to the
quantization of the metric field tensor (referred to here as g-quantization) achieved in the context of
covariant quantum gravity (CQG-theory). Such a theory relies on the adoption of the principle of
manifest covariance for the formulation of relativistic statistical mechanics and in particular for the
prescription of a quantum field theory, which is appropriate in the case of the gravitational field.

For this purpose, first, we have shown that the CQG-quantum wave equation laying at the basis of
CQG-theory can be obtained in the framework of a Hamilton–Jacobi quantization scheme, i.e., based on
the construction of the classical Hamilton–Jacobi equation and the corresponding manifestly-covariant
Hamiltonian structure associated with the Einstein field equations. This feature is crucial since it
permits the identification of a specific quantum wave equation, i.e., the evolution equation, which
advances the quantum state. In the framework of the background space-time (first-quantization)
manifestly-covariant approach adopted here, the latter has been identified with a single four-scalar
wave function ψ.

The second step has concerned a crucial aspect of CQG-theory and quantum field theory alike,
namely the establishment of a variational formulation for the related quantum-wave equation. In this
paper, we have shown that such an approach can be achieved by means of a suitable variational
principle denoted as quantum Hamilton variational principle. Such a principle, as the analog of
the classical Hamilton equations associated with the same Einstein equations, is a synchronous one,
i.e., it is prescribed so that the variation operator leaves invariant the relevant volume element in the
Hamilton variational functional. In addition, by construction, it exhibits also the property of manifest
covariance. As such, it is frame-independent, i.e., it holds for arbitrary coordinate systems. Finally,
the same variational principle is of general validity in the sense that it is valid for arbitrary choices of the
background space-time, namely arbitrary classical solutions of the Einstein field equations. As a result,
by means of suitable variations of the Hamilton variational functional, the quantum wave equation,
as well as the corresponding set of quantum hydrodynamic equations, obtained after introducing
the Madelung representation for the wave function, are shown to coincide with the corresponding
Euler–Lagrange equations.

Finally, in reference to the problem of quantum measurements for CQG-theory, the validity of
two Heisenberg inequalities, referred to here respectively as first and second Heisenberg inequalities,
has been proven to hold for arbitrary quantum wave-functions, which are solutions of the same
CQG-wave equation. More precisely, in the context of the g-quantization considered here, the same
inequalities refer to quantum measurements of the tensor field g ≡

{
gµν

}
and its conjugate

quantum operator π
(q)
µν , the statistical measurement error estimates being achieved by means of

the corresponding standard deviations.
These conclusions are believed to provide theoretical insight to the axiomatic foundations

of CQG-theory. It must be stressed that, in the current formulation, CQG-theory is built
upon a first-quantization approach assuming the existence of a generic background metric that
characterizes the geometrical properties of space-time. This is shown to realize a g-quantization
of the canonical state (g, π), which fulfills by construction the quantum unitarity principle and,
consequently, the conservation of quantum probability associated with the wave function ψ.
As a consequence, no trans-Planckian effects, nor possible information losses arising at event horizons
in black-hole space-times are yet included either. Nevertheless, as pointed out above, the inclusion
of second-quantization effects, with particular reference to quantum modifications of the background
space-time at the Planck length and quantum particle sources, such as Hawking radiation, is in principle
possible. In view of these considerations, the features highlighted here suggest that CQG theory may
provide fertile theoretical grounds for a variety of applications in quantum gravity and quantum
cosmology to be envisaged in future works.
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