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Abstract

CDS Invenio is the web-based integrated digital library system developed at
CERN. It is a suite of applications which provides the framework and tools for
building and managing an autonomous digital library server. Within this frame-
work, the goal of this project is to implement new ranking methods based on
the bibliographic citation graph extracted from the CDS Invenio database. As
a first step, we implemented the Citation Count as a baseline ranking method.
The major disadvantage of this method is that all citations are treated equally,
disregarding their importance and their publication date. To overcome this
drawback, we consider two different approaches: a link-based approach which
extends the PageRank model to the bibliographic citation graph and a time-
dependent approach which takes into account time in the citation counts. In
addition, we also combined these two approaches in a hybrid model based on a
time-dependent PageRank. In the present document, we describe the concep-
tual background behind our new ranking methods, detail their implementation
and provide a comprehensive analysis of the results obtained with the citation
graph extracted from the CDS Invenio database. Our main contributions are:
(i) a study of the currently available ranking methods based on a citation graph;
(ii) the development of new ranking methods that correct some of the identified
limitations of the current methods, such as considering all citations of equal
importance, not taking time into account, or considering the citation graph
as complete; (iii) a robust and scalable implementation of the aforementioned
ranking methods; (iv) a detailed study of their key parameters. Our study re-
veals why the dumping factor used by the PageRank algorithm is not suited for
ranking bibliographic data and why adding even a week time decay factor still
has a strong impact on the final ordering of the documents.
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Chapter 1

Introduction

CDS Invenio is the integrated digital library system developed and used at
CERN. It is a suite of applications which provides the framework and tools
for building and managing an autonomous digital library server. CDS Invenio
can manage a very large collection of documents. An important part of the
interaction between the end user and the system is the search engine, which
gives access to all the publications. Having in mind that the average length of
a query is 2 words, and that we are dealing with a large amount of data, it is
relatively easy to see that the average recall per query cannot be analyzed by
the users. Thus, in order to facilitate access to the desired documents, we must
offer the user different choices in terms of ranking. Although there has been
some research in the area of ranking based on the citation graph, no relevant
implementations exist. Hence, the objective of this project is to construct and
analyze new ranking methods based on the citation graph. In this chapter we
elaborate further on the context of this project and on its main objectives.

The rest of the report is organized as follows. In Chapter 2 we review some
of the work that has been conducted in the domains of citation analysis and
ranking scientific publications. In Chapter 3 we give a detailed analysis of the
CERN and Inspire bibliographic data sets and the extracted citation graphs. In
Chapter 4 we analyze the Citation Count ranking method in order to have a
baseline algorithm for our future experiments, since this is the only ranking algo-
rithm based on the citation graph that is not influenced by any parametrization.
In Chapter 5 and Chapter 6 we develop several link-based ranking methods by
adapting the PageRank algorithm to the task of ranking scientific publications.
In order to take into account time in the citation graph, we developed a time-
dependent ranking method in Chapter 7. We also develop a hybrid ranking
method based on a time-dependent PageRank in Chapter 8. Finally, we con-
clude in Chapter 9 by analyzing the results of the different algorithms and by
identifying important data characteristics. By this, we try to provide insights
and solutions concerning the task of ranking bibliographic data.
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1.1 Context
1.1.1 CERN

“CERN, the European Organization for Nuclear Research, is one of the worlds
largest and most respected centers for scientific research. Its business is fun-
damental physics, finding out what the Universe is made of and how it works.
At CERN, the worlds largest and most complex scientific instruments are used
to study the basic constituents of matter the fundamental particles. By study-
ing what happens when these particles collide, physicists learn about the laws of
Nature. The instruments used at CERN are particle accelerators and detectors.
Accelerators boost beams of particles to high energies before they are made to col-
lide with each other or with stationary targets. Detectors observe and record the
results of these collisions. Founded in 195/, the CERN Laboratory sits astride
the FrancoSwiss border near Geneva. It was one of Europes first joint ventures
and now has 20 Member States. ” [2]

What would be also important to add to this description is that more than
8000 scientists, half of the world’s particle physicists, collaborate with CERN
for their research. They represent more than 500 Universities and over 60 na-
tionalities.

The World Wide Web (WWW) is one of the important discoveries made at
CERN. The WWW was first thought by Tim Berners-Lee in 1989 as a solu-
tion to the problem of loss of information due to the high turnover of people at
CERN. His original proposal [10] suggested to use Hypertext to link information
systems across network such that anyone could have access to any important
documents produced at CERN. The web has now extended worldwide and has
become a primary component of IT.

1.1.2 CDS Invenio

CDS Invenio is the integrated digital library system developed and used at
CERN [5]. It is a suite of applications which provides the framework and tools
for building and managing an autonomous digital library server. CDS Invenio is
developed and maintained by the CERN Document Server (CDS) section, which
is part of the User and Document Services (UDS) group. Besides CERN, CDS
Invenio is currently installed and in use by over a dozen scientific institutions
worldwide, including EFPL [3].

At CERN, CDS Invenio manages over 500 collections of data, consisting of
over 900,000 bibliographic records, covering preprints, articles, books, journals,
photographs, and more, including 360,000 fulltext documents [1]. CDS Invenio
is OAlI-compliant to support the open dissemination of the documents. CDS
Invenio also uses MARC 21 (and its XML derivative MARCXML) to store and
process bibliographic meta-data. The collections of documents can have cus-
tomizable portals to support community building. Additionally, CDS Invenio
provides collaborative tools such as baskets or alerts for new specific documents.
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CDS Invenio is a free, open source application (under the terms of the GNU
General Public License) and it covers all aspects of digital library management.
Its flexibility and performance make it a comprehensive solution for the man-
agement of document repositories of moderate to large size.

To get a better understanding of the CDS Invenio software, one must look
at its architecture. “The key feature of CDS Invenio’s architecture lies in its
modular logic. Fach module embodies a specific, defined, functionality of the
digital library system. Modules interact with other modules, the database and
the interface layers. A module’s logic, operation and inter-operability are exten-
sible and customizable.” [5] A detail map of the CDS Invenio’s workflow can be
seen in Figure 1.1.

For a better understanding of the Figure 1.1, here is a brief description of
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Figure 1.1: Document workflow in the CDS Invenio system [5]
some of the modules. More details can be found at
http://invenio-demo.cern.ch/help/hacking/modules-overview.

e BibCheck permits administrators and library cataloguers to automate
various kind of tests on the metadata to see whether the metadata comply
with quality standards.

e BibClassify allows automatic extraction of keywords from fulltext doc-
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uments based on the frequency of specific terms, taken from a controlled
vocabulary.

e BibConvert allows metadata conversion from any structured or semi-
structured proprietary format into any other format, typically the MARC
XML that is natively used in CDS Invenio.

e BibEdit permits one to edit the metadata via a Web interface.

e BibFormat is in charge of formatting the bibliographic metadata in nu-
merous ways.

e BibHarvest represents the OAi-PMH compatible harvester allowing the
repository to gather metadata from fellow OAi-compliant repositories and
the OAi-PMH repository management.

e BibIndex does the word and phrase indexation of metadata, references
and full text files.

e BibMatch compares new entries with the already existing ones for avoid-
ing duplication of records.

e BibSched is the central unit of the system and it allows all other modules
to access the bibliographic database in a controlled manner.

e BibUpload enters the new bibliographic data into the database.

e ElmSubmit is an email submission gateway that permits for automatic
document uploads from trusted sources via email.

e MiscUtil is a collection of miscellaneous utilities that other modules are
using.

e WebAccess is responsible for granting access to users for performing
various actions within the system.

e WebAlert announces the user whenever a new document matching his/her
personal criteria is inserted into the database.

¢ WebBasket enables the user of the system to store the documents he/she
is interested in, in a personal basket or a personal shelf.

¢ WebComment provides a community-oriented tool to share information
between the readers.

¢ WebSearch module handles user requests to search for certain words or
phrases in the database.

¢ WebSubmit is a comprehensive submission system allowing authorized
individuals (authors, secretaries and repository maintenance staff) to sub-
mit individual documents into the system.
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1.1.3 BibRank

The BibRank module allows the user to set up various ranking criteria to be
used by the search engine, when returning the query results. The methods
currently implemented in CDS Invenio are the following;:

Single tag rank One example of the use of this method is the journal im-
pact factor ranking method which ranks documents using a configurable
knowledge base.

Word Similarity /Similar Records This ranking method is weighting the
records according to the importance of their content with respect to the

query.

Word Frequency This ranking method assigns weights to the records based
on the frequency and placement of the query terms.

1.2 Mission

1.2.1 Motivation

As described in the previous section, CDS Invenio can manage a very large
collection of documents. A very important aspect of the interaction between
the end user and the system is the search engine, that gives access to all the
publications. Having in mind that the average length of a query is 2 words and
also that we are dealing with a large amount of data, it is straight forward to
conclude that the average recall per query is above the means of the user to
analyze it. We can see a basic example in the Figure 1.2.

It is without any doubt that the user will end up looking at maybe the first
2 or 3 pages (30-40 results) if he/she is patient, if not, maybe just the first page,
searching for the wanted document(s). If the wanted document is not there,
there is the possibility of the user redefining the query, but there is also the
possibility of the user starting to look for the wanted information in some other
repositories. This is why we need to give the user the possibility of choosing the
order in which the results are displayed (the ranking).

Since CDS Invenio has a rather large collection of documents with informa-
tion regarding their citations, this is a perfect opportunity for experimenting
with different ranking methods based on the citation graph. They will provide
the CDS Invenio user with different possibilities of ranking the results of the
search engine; they will add new features to the BibRank module; and, the last
but not the least, they will provide interesting results for the scientific commu-
nity. Although there has been some research conducted in the area of ranking
based on the citation graph, nothing relevant has been implemented so far for
the bibliographic data.

1.2.2 Objectives

This project has two main objectives:
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Figure 1.2: Screenshot of the CDS Invenio search engine

1. Construct and analyze new ranking methods based on the citation graph.

2. Implement and integrate the newly constructed ranking methods in the
CDS Invenio software.

We defined several tasks for each of the aforementioned objectives:

Construct and analyze new ranking methods based on the citation
graph

e analyze what has been done so far in the domain;

e analyze the citation graph;

develop new ranking methods based on the citation graph;

analyze the performance of the newly constructed ranking methods;

construct a small web platform for comparing different ranking methods.

Implement and integrate the newly constructed ranking methods in
the CDS Invenio software

e understand the architecture and implementation of the CDS Invenio soft-
ware;
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e implement the new ranking methods in Python;
e integrate the newly developed methods with the BibRank module;

e write the documentation for the source code.
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Related Work

In this chapter, we review some of the work previously conducted in the areas
of citation analysis and ranking scientific publications. Since there is a high
similarity between the bibliographic citation graph and the WWW graph, we
first look at the current state of raking the results recalled in response to a user
query. Second, we survey the current state of ranking in the other bibliographic
repositories and existing analysis of the bibliographic citation graph. Last, but
not least, we look at the current state of ranking scientific publications based
on the citation graph.

2.1 State of the Art - Link-based ranking

First of all we should mention that the idea of this project started from the work
of H. Wang and M. Rajman [19], on implementing a novel ranking method that
combines the PageRank method with the TFIDF score of a web page with
respect to a query. This work proves that combining linking information with
content based weighting can give better results then each of them taken alone.
Also, it presents insightful information about the theory behind the PageRank
model and the link matrix.

Knowing the high similarity between the bibliographic citation graph and
the WWW graph, when given the task of classifying publications one must
look at the current state of raking the results recalled in response to a user
query. One of the most popular ranking methods, also due to the impressive
results achieved by the search engine that uses it, is PageRank. The method
proposed by S. Brin, L. Page in [22] is based on a random surfer model as a
stationary distribution of a Markov chain. The PageRank solution is a principal
eigenvector of a linear system that can be found via the power method. There
has been a lot of research done on the Google’s ranking model. It is not our
intention to provide a comprehensive study of this work. Still, we would like
to mention the work of P. Berkhin, “A survey on PageRank Computing” [9]
that presents insightful information about the theoretical foundations of the
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PageRank method and different techniques for computing the weights.

There has been a lot of work done in the field of bibliometrics in general.
Here we must recall the pioneer work of E. Garfield in citation analysis and
citation indexing [17], [18], [16]. On a more recent note, there is an article
published in the Journal of Neuroscience 2008 that presents an overview of the
different ranking methods that extend Google’s PageRank, based on the citation
graph. They consider the works of Chen et al. [15] and Walker et al. [12] as
being relevant for the task of ranking scientific publications based on the citation
graph.

P. Chen et al. in [15] apply the Google PageRank algorithm on the citation
graph to assess the relative importance of all publications in the Physical Review
family of journals from 1893-2003. They identify some exceptional papers or
“gems” that are universally familiar to physicists but have a lower number of
citations with respect to other publications. They prove with different examples
that applying PageRank is better at finding important publications then the
simple citation count. They also argue about using a different dumping factor
than the one used in the original PageRank algorithm.

Further analysis on the usefulness of PageRank method in the context of
ranking scientific publications is carried out in Chapter 5.

2.2 State of the Art - Time-dependent ranking

Also in the context of our project is the work of D. Walker et al. [12]. They
introduce a new ranking method called CiteRank to account for strong aging
characteristics of citation networks. They modify Google’s PageRank algorithm
by initially distributing random surfers exponentially with age, in favor of more
recent publications. By this, they try to model the behavior of researchers in
search for new information. They test their model on all American Physical So-
ciety publications and the set of high-energy physics theory (hep-th) preprints.
They find the parameters for their model by trying to maximize the correlation
between the CiteRank output and the download history.

There has been some research activity also in the area of “temporal link
analysis”, mostly done on WWW pages. In [7] the authors present several
aspects and uses of the time dimension in the context of Web IR. K. Berberich et
al. [8] argue that the freshness of web content and link structure is a factor that
needs to be taken into account in link analysis when computing the importance
of a page. They provide a time-aware ranking method and through experiments
they conclude on the improvements broth by it to the quality of ranking web
pages. They test their approach on the DBLP data set but with the scope of
ranking researchers rather than publications.

Further analysis on the usefulness of a time-dependent ranking method in
the context of ranking scientific publications is carried out in Chapter 7 and
Chapter 8.
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2.3 Physics Bibliographic Citation Graph

There has been several analysis of the Physics bibliographic citation graph
mainly done by S. Redner in [21] and [20]. In [21] he examines the distribution
of citations for papers published both in 1981 in journals which are catalogued
by the Institute for Scientific Information (783.339 papers), and also in 20 years
of publications in Physical Review D (24.296 papers). He concludes that the
number of citations to a given paper versus its citation rank is consistent with a
power-law dependence for leading rank papers, with exponent close to -1/2. In
[20], the author presents a detailed study on the Physical Review data, including
the accuracy of data and the distribution and age structure of citations. He also
gives multiple examples of interesting individual citation history, highlighting
the importance of the citations age.

Another important repository of physics publications aside Invenio is the
NASA Astrophysics Data System (ADS). In [14] and [13] they present insightful
information about their system and the different ranking method that they
are using. They combine different information such as citations, and content
with readership logs and they create the Second Order Bibliometric Operators.
They argue that these operators improve substantially the accuracy in literature
queries. Although their objective is different then ours, in the sense that they are
ranking scientists rather than publications, their contribution is quite interesting
and definitely worth mentioning in the context of our work.

Also in the area of ranking authors rather then ranking scientific papers
is the work done by D. Mimno and A. McCallum in [11]. They present a
probabilistic model that ranks authors based on their influence in particular
areas of scientific research. Their model combines several sources of information:
citation information between documents as represented by PageRank scores,
authorship data gathered through automatic information extraction, and the
words in paper abstracts.

2.4 Conclusions

There has been a lot of research conducted in the areas of citation analysis
and ranking scientific publications. We consider that having a new data set
unexplored so far (the citation graph extracted from CDS Invenio), gives as the
opportunity to further investigate the possible advantages and disadvantages
of applying different ranking methods to the bibliographic citation graph. In
this sense, we continue the work done on applying PageRank to rank scientific
publications. We consider that, so far, only the advantages have been truly
emphasize while the possible shortcomings have been neglected. We carry out a
more detailed analysis in Chapter 5 and Chapter 6. We also focus on applying a
time-dependent ranking method to the bibliographic citation graph. We think
that the work done so far on this approach, although very insightful, lacks a
complete analysis of the time factor and its influence on the ranking results.
Further details can be found in Chapter 7 and Chapter 8.

10



Chapter 3

Experimental Framework

3.1 Introduction

For our experiments, we used two large sets of bibliographic data (not completely
disjoint): Inspire (http://inspire.cern.ch) containing 500,000 High Energy
Physics (HEP) documents and CDS WebDev (http://cdswebdev.cern.ch)
containing 200,000 CERN and HEP documents. The main difference between
these two sets of data is that the former is a human edited repository while the
latter is automatically generated.

These sets of data contain Physics publications as well as the citations be-
tween them. In this work, we refer at the citation graph as having the publica-
tions as nodes and the citations as directed links.

The data analysis we emphasized two main aspects: the first is data con-
nectivity, i.e. the number of publications that have no citations, the number
of publications that have no references, and the second is data quality, i.e. the
number of publications missing from the data set. All these characteristics
are very important in our work, because they determine the correctness and
robustness of different ranking methods.

3.2 Data

3.2.1 Inspire data

Inspire is the project name of a new High Energy Physics information system
which will integrate present databases and repositories to host the entire corpus
of the HEP literature and become the reference HEP scientific information plat-
form worldwide. It is a common project between CERN, DESY, FERMILAB
and SLAC. More details can be found at http://inspire.cern.ch.

The Inspire data contains almost half a million publications, with a total

11
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number of eight million citations. Close to 25% of these papers' are not cited
by any other paper in the system. Also, 16% of these papers do not reference
any other paper in the system. Since, in general, we are dealing with a biblio-
graphic subset of data, we are aware of the fact that we can not have a complete
citation graph. So, having only 16% of the papers with no reference could be
considered a fairly complete system.

One thing worth mentioning when talking about Inspire data is that it is
a human edited repository, meaning that the entries are validated by an au-
thorized person. This means that the error rate for the citation extraction is
close to 0 % which makes this data set a real asset and our primary testing
environment.

In terms of how many papers are missing from the data set, we discovered
that on average a paper is missing 9 references. We were able to compute this
information because, even if the system does not have all the references from one
paper, it is still displaying them on the web interface. Comparing this number
(9 missing references/paper) with the average number of references that are in
the system (20 references/paper) we could say that in terms of quality this data
set is fairly good.

Here is a detailed analysis of the Inspire data:

Total number of papers 490.730
Total number of citations 7.976.155
Papers that are not cited 123.550
Papers that have no references 80.653
Average number of received citations per paper 21.70
Average number of references per paper 19.45
Average number of references not in the system per paper 9.12
30000
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g ’
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Figure 3.1: Number of publications in Inspire per year

Hn this report we are using for simplicity also the name of “paper” when referring to a
publication.

12
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Figure 3.2: Number of citations in Inspire per year

3.2.2 CDS WebDev data

CDS is the CERN Document Server that contains documents about CERN
and High Energy Physics. Out of more than 900,000 bibliographic records
indexed by CDS, there is a subset of documents considered for different experi-
ments with ranking methods. Details about different ongoing experiments can
be found here: http://cdswebdev.cern.ch.

This subset of data contains 200,000 documents with 1,4 million citations.
Out of these papers, around 35% of them contain no references and 20% of them
are not cited by any other paper in the system. This percentage is caused by
either very new papers or by very old papers. For measuring the quality of the
data, we calculated the number of references that are missing from the system.
On average, each paper is missing 28 references. Compared with the number of
existing references per paper (9) the number of missing links is quite high. One
reason for this is that currently CDS is using an automated references extractor
and no human editing.

Here is a detailed analysis of the CDS WebDev data:

Total number of papers 204.230
Total number of citations 1.371.568
Papers that are not cited 38.570
Papers that have no references 57.689
Average number of received citations per paper 8.28
Average number of references per paper 9.36
Average number of references not in the system per paper 28.73

13
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3.2.3 Atlantis data

Atlantis Institute of Fictive Science constitutes the data for a small demo
site put in place for the CDS platform users: http://invenio-demo.cern.ch.
This data set contains only 20 papers, connected by 18 citation. Although it
is a rather small sample set of the CDS data, it is perfect for preliminary tests
and theory proofs.

A snapshot of the citation graph generated with the Atlantis set of biblio-

graphic data can be seen in the Figure 3.3.
O
< <

Figure 3.3: Citation graph based on the Atlantis bibliographic records

We tried the same graphical approach also for analyzing the two main data
sets: the Inspire data and the CDS WebDev data. Unfortunately, we could
not find a suited software that was able to compute a comprehensive graphical
image of a such large graph. Just to give you an idea on the difficulty of the
task, a directed graph generated with 500 random links (citations) from CDS
WebDev can be seen in the Figure 3.4.

One of our major concerns when analyzing the data was the correctness of it.
While the intuition is that we are dealing with a directed acyclic graph (DAG),
we discovered that this is not entirely true. Since the system contains preprints
(drafts of scientific papers that have not yet been published in a peer-reviewed
scientific journal) as well as published papers and conference proceedings, it
might happen in some cases that future work is cited. On top of this, there
are also some cases where a paper is citing itself. We try to eliminate these
last types of anomalies as often as possible. Still, the first class of problems is
harder to permanently eliminate, and even though theoretically impossible, the
“future work” citation is sometimes legitime. For these reasons, we build our
algorithms on top of a general directed graph and not on top of DAG.

Since the Inspire set of data is the best available set, and since our work
in ranking methodologies will be integrated in the Inspire project, our further
experiments were intensively tested on this set of bibliographic data, unless
otherwise stated.

14



CHAPTER 3. EXPERIMENTAL FRAMEWORK

Figure 3.4: Citation graph based on 500 random citations from CDS WebDev

3.3 Conclusions

In this section, we analyzed our experimental data sets, Inspire and CDS Web-
Dev.

The Inspire data set contains almost half a million publications, with a total
number of 8 million citations. Approximately 25% of the documents are not
cited by any other document in the system, while approximately 16% of the
documents have no references. Since, in general, we are dealing with a biblio-
graphic subset of data, we are aware of the fact that we can not have a complete
citation graph. In terms of the number of papers missing from the data set, we
discovered that on average a paper is missing 9 out of 30 references. So, with
only 16% of the documents without references and a relatively small number of
missing documents, Inspire can be considered a fairly complete system.

On the other hand, the CDS WebDev data set contains 200,000 documents
with 1.4 million citations. Approximately 20% of these documents are not cited
by any other document in the system while 35% of the documents have no ref-
erences. On average, each document is missing 28 out of 37 references. One
reason for this low number of available references is that currently CDS is us-
ing an automated references extractor and no human editing. Combined, these
results indicate the low quality of this data set. Still, since the future of biblio-
graphic repositories is the automation of the data extraction, one must consider
these drawbacks in the development and analysis of the ranking methods based
on the citation graph.
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Concerning data correctness, we discovered that, while the general intuition
is that the citation graph is a directed acyclic graph, this is not true for the two
data sets in question. For this reason, our ranking algorithms are designed for

general directed graphs.
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Chapter 4

Baseline Ranking: Citation
Count

4.1 Introduction

One of the most frequent measures of a scientist’s reputation was the Citation
Count. It is one of the simplest ways of ranking scientific work, and, at the
same time, it is also a good way of discovering appreciated publications in
the scientific community. In this chapter, we present the concepts behind the
Citation Count method and the results generated by applying this method to
our main data set.

We present this method in order to provide a baseline algorithm for our
future experiments. Note that this is the only ranking algorithm based on the
citation graph that is not influenced by any parametrization.

4.2 Conceptual Background

Having a directed graph G = (V, E), where the vertices,V, represents the pub-
lications and the edges,F, citations between the publications, the question is
what is the weight associated with each v; € V7

i=lV]
W(’Ui) = Z W(eji), Vi = 1, |V|

j=1

W (ej) represents the weight of each edge, and it is defined as follows:

W<ej):{ 1 ifj—i,

0 otherwise
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4.3 Results

After applying this ranking method to our data set, we were able to compute
a Top of Most Cited Publications (see Table 4.2 for Top 10 Most Cited
Publications). If we take a closer look at this table, we can see that the second
and the third publications have similar citation counts. Interestingly, the third
ranked paper is almost 25 years younger than the second ranked paper, thus
it had a much smaller time window to accumulate citations. So, one might
argue, that the third paper should be ranked higher than the second one. But,
when looking at the distribution of the citations for the second paper (http:
//hep-inspire.net/record/37116/citations) we see that, although it was
published over 35 years ago, it continues to be heavily cited. For this reason,
one might argue that this paper is more important for the scientific community
than the third one. Therefor, in order to get a clear picture of the influence of
a publication in its domain, we must also take into consideration not just the
citation counts but also the different characteristics of the citations, like their
publication date or their importance.

The time distribution of the most cited papers reveals that the ranking is
not necessarily biased towards publications from a specific period of time. As
it can be seen in Figure 4.1, the top 100 papers are from a time range of over
50 years.
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Figure 4.1: Time distribution for the top 100 most cited papers

Citation Count ranking revealed that although the top cited papers accu-
mulate thousands of citations, there is a quite high number of papers with a
very low number of citations. In the Table 4.1 you can see the number of papers
from the Inspire data set that have less than 10 citations. This high number
is caused by either really new papers that did not have enough time to acquire
a high number of citations or by really old papers that are forgotten. The to-
tal number of publications with less than 10 citations represents approximately
70% of the data set. These publications will not only remain undiscovered due
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’ Number of Citations \ Number of Publications ‘

0 123550
61630
39188
28939
22737
18304
15649
12893
11454
10147

© 00~ O Uk Wi

Table 4.1: Number of papers with a low number of citations

to the insignificant number of accumulated citations, but also be very hard to
differentiate due to the small difference in the citation count. In order to find
the truly relevant publications, one needs to take also into consideration dif-
ferent characteristics of the citations, like their importance or their publication

date.

Rank Publication Citation
Count

1 | A Model of Leptons: Weinberg, Steven (1967) 6565

2 CP Violation in the Renormalizable Theory of Weak Interaction: 5351
Kobayashi, Makoto (1973)

3 | The Large N limit of superconformal field theories andsupergrav- 5162
ity: Maldacena, Juan Martin (1997)

4 First year Wilkinson Microwave Anisotropy Probe (WMAP) ob- 4752
servations: Determination of cosmological parameters: Spergel,
D.N. (2003)

5 Review of particle physics. Particle Data Group: Eidelman, S. 4033
(2004)

6 Measurements of Omega and Lambda from 42 high redshift su- 3787
pernovae: Perlmutter, S. (1998)

7 A Large mass hierarchy from a small extra dimension: Randall, 3719
Lisa (1999)

8 Review of particle physics. Particle Data Group: Hagiwara, K. 3711
(2002)

9 Weak Interactions with Lepton-Hadron Symmetry: Glashow, S.L. 3671
(1970)

10 Asymptotic Freedom in Parton Language: Altarelli, Guido (1977) 3649

Table 4.2: Top 10 publication by citation count
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4.4 Conclusions

Although the Citation Count ranking is a natural measure of a publication’s
impact, there are many cases where this method fails to reveal a good picture
of the influence of a publication in its domain. We can identify at least two
main shortcomings of using the Citation Count as the main ranking method for
publications:

e It treats all the citations equally ignoring the differences in importance of
the citing papers.

e It does not take into account time, i.e. it underestimates the importance
of newly acquired citations, and overestimates the importance of the older
ones.

These drawbacks motivated us to study alternative metrics. To overcome
the first shortcoming, we designed ranking methods derive from PageRank (see
Chapter 5 and Chapter 6) that, therefor, take into consideration the notion
of citation importance. For correcting the second drawback, we designed var-
ious time dependent ranking methods: a time-dependent Citation Count (see
Chapter 7) and a hybrid method based on a time-dependent PageRank (see
Chapter 8).
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Chapter 5

Link-based Ranking:
PageRank on the Citation
Graph

5.1 Introduction

In order to find a ranking method for scientific publications that takes into
consideration the importance of the citations, one must take a step back and
analyze the nature of the citation graph. The citation graph is a network sim-
ilar to the World Wide Web (WWW). A successful solution to the problem of
ranking the web pages is PageRank, an algorithm introduced in 1998 by Brin
and Page. The PageRank algorithm is based on a random surfer model, and
may be viewed as a stationary distribution of a Markov chain. The solution
is a principal eigenvector of a linear system that can be found via the power
method.

In the previous section, we noted that one of the major shortcomings of
the Citation Count method is the fact that it treats all citations equally. We
consider PageRank as being suited for the task of ranking publications because
it overcomes this drawback by giving higher weight to publications that are cited
by important papers. Because of this, the algorithm identifies a large number
of modestly cited publications that contain important results for the scientific
community.

In this section, we discuss the advantages and disadvantages of applying this
method to the bibliographic data set.

5.2 Theoretical Background

In this section we discuss about the theory behind the PageRank algorithm. We
introduce some general concepts of stochastic processes and Markov chains, and
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we discuss about their application in the PageRank case. We follow the theory
by Allen [6] and by Papoulis/Pillai [4].

5.2.1 Stochastic Processses

Definition 1. (Stochastic process) A family of random variables {X (t),t €
T} is called a stochastic process.

Definition 2. (Index set) For a stochastic process {X (t),t € T} the set T is
called the index set of the process.

Definition 3. (State space) The state space of a stochastic process {X (t),t €
T} is the set of values that any of the random variables X (t) can assume.

The distinct values in the state space are are actually the states of the
stochastic process. The index states and the space states can be discrete or
continuous. This gives birth to four categories of stochastic processes. Further
in our work, we consider stochastic processes with discrete index set and discrete
state space, if not otherwise stated.

5.2.2 Markov Chains and Random Walks

Definition 4. (Markov property) A stochastic process is said to have the
Markov property if for any set of n + 1 values out of the index set t1 < to <
e < tpy1 and any set of n + 1 states {x1,x2,...,Tnt1} out of the state space,
the following holds

P[X(tn+1) = .’L‘n+1|X(t1) = -'1717X(t2) = T2, -~-7X(tn) = ‘T’ﬂ]

P[X(tn+1) = xn+1|X(tn) n]

In other words, having the Markov property means that, given the present
state (t,), future states (t,41) are independent of the past states (¢;,7 = 0,n).
The description of the present state fully captures all the information that could
influence the future evolution of the process. Future states will be reached
through a probabilistic process instead of a deterministic one. At each step the
system may change its state from the current state to another state, or remain in
the same state, according to a certain probability distribution. The changes of
state are called transitions, and the probabilities associated with various state-
changes are called transition probabilities.

A stochastic process having the Markov property is called a Markov pro-
cess. A special kind of Markov process is a Markov chain where the system
can occupy a finite or countably infinite number of states such that the future
evolution of the process, once it is in a given state, depends only on the present
state and not on how it arrived at that state. Both Markov chains and Markov
processes can be discrete-time or continuous-time.

Markov processes are named after A. A. Markov (1856-1922), who intro-
duced this concept for discrete parameter systems with a finite number of states
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(1907).

The transition probability P[X,, 11 = j|X, = i] describes the probability
that the process being in state ¢ at time n transitions to state j at time n + 1.
Thus the transition probability possibly depends on the time n. We only con-
sider stationary transition probabilities that do not depend on time.

Definition 5. (Time homogeneous Markov chain) A Markov chain with
stationary transition probabilities is called time homogeneous.

For a time homogeneous Markov chain, the transition probabilities can be
defined using a square matrix P which is then called transition probability ma-
trix. The entry F;; of the matrix is the probability of making a transition
from state ¢ to state j at any time. Consequently, the matrix P has to be
row-stochastic, meaning that every row must describe a valid probability dis-
tribution. Therefore, all entries of P must be positive, P;; > 0 and each row %

must satisfy:
> Pi=1
§=0

Definition 6. (Irreducible Markov chain) A Markov chain is irreducible
if for every pair of states i and j there exist the integers n and m, such that

P >0 and P > 0.

The recurrence values of a state ¢ is defined as the k-s, for which Pi(ik') >0
holds. In other words, it exists a finite number of states for which the process
returns to the starting state with a positive probability. The period d(i) of a
state i is defined as the greatest common divisor of all recurrence values. If
no recurrence values exist (it is imposable to return to the initial state), then
d(i) = 0. States having a period of 1 are called aperiodic, and states having a
period d(i) ; 1 are called periodic.

Definition 7. (Aperiodic Markov chain) A Markov chain is aperiodic if all
its states are aperiodic. In other words, the greatest common divisor of their
recurrence values is 1.

Theorem 1. (Ergodic Markov chain with finite number of states) A
discrete time Markov chain with a finite number of states that is irreducible and
aperiodic is ergodic.

Ergodicity has useful ramifications on the long-run behavior of a Markov
chain. We call a probability distribution 7 (described as a vector) the station-
ary state probability of the Markov chain defined by the transition probability
matrix P, if # = 7m - P. Thus the vector describing the probability distribu-
tion is an eigenvector of the transition probability matrix, associated with the
eigenvalue 1. Since, according to the largest eigenvalue of a stochastic matrix
is always 1, this eigenvector is the principal eigenvector of the transition prob-
ability matrix. Consequently, if the initial state distribution is chosen to be ,
the state probabilities after n steps do not change while n increases and are all
equal to .
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Theorem 2. For an ergodic Markov chain, unique stationary state probabilities
7 exist and they are independent of the initial state distribution m(©)s.

The unique stationary state probabilities can be obtained as the solution to
the equation system of balance equations,

7Tj :Z’/Ti'Pij
%
Zﬂ'j =1
B

Instead of solving the above equation system, we can solve the eigenvector
problem 7 = 7 - P. The power method is an iterative method for solving the

eigenvector problem.
k) — ) p

The iterates z'¥ are guaranteed to converge to the principal eigenvector of
the matrix P. In practice, the multiplication will be stop when the difference
between two consecutive iterates is below a certain threshold. The previous
equation can be also written as follows:

L) 0) | ph

where (%) is the initial state distribution These states (probabilities) will con-
verge to a unique probability distribution, namely the unique stationary state
probabilities, which is independent of the initial state distribution explaining
the almost arbitrary choice of (%) .

An example of a Markov chain is a simple random walk where the state
space is a set of vertices of a graph and the transition steps involve moving to
any of the neighbors of the current vertex with equal probability (regardless of
the history of the walk).

5.2.3 PageRank

PageRank relies on the uniquely democratic nature of the web by using its vast
link structure as an indicator of an individual page’s value. In essence, Google
interprets a link from page A to page B as a vote, by page A, for page B.
But, Google looks at more than the sheer volume of votes, or links a page re-
ceives; it also analyzes the page that casts the vote. Votes cast by pages that
are themselves “important” weigh more heavily and help to make other pages
“important”. [Google]

Although the PageRank model was introduced much earlier, it was made
famous in 1998 by the founders of Google.com. It assigns weight to pages pro-
portional with the importance of the papers that link to them. In this section
we will look at some theory behind the PageRank method [9].

Let G(V, E) be a directed graph with V being the publications, and F the
citations between the publication, in the sense that ¢ — j means i cites . The
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edges E can be associated with a sparse matrix P"*"™, where n =| V | is the
number of publications. An element p;; of the matrix can be defined as follows:
_ L ifi—y
Pii =3 0 otherwise

Note. In this work, the notation ¢ — j means that there is a direct path from
node ¢ to node j, or in terms of bibliographic records, publication ¢ is citing
publication j.

The out-degree of a node i is the number of outgoing links:

n

deg(i) = Z Dij

j=1

To transform the matrix P in a transition matrix all the entries must corre-
spond to probabilities. In this scope, we transform the entries of the matrix P

as follows:
i — { pij/deg(?) if deg(i) >0,
v 0 if deg(i) =0

In other words, this means that from a certain publication, one can follow
with an equal probability any of the references.

For the i-s with deg(i) > 0, the matrix P is row-stochastic, meaning that
the i-row elements sum to one.

Let us consider the following random surfer model. A surfer travels along the
directed graph (for the simplicity of writing we will consider a female surfer).
If at a step k she is located in a node 4, then at the next step k£ + 1 she moves
uniformly at random to any out-neighbor of 7, j. Nodes can be considered as n
states of a Markov chain with a transition matrix P. Given a distribution

(k) (k)

p =D;

of probabilities for a surfer to be at a page i at a step k, the probability for
being at a page j on the next step is proportional to

p§-k+1> = Zp§k>/d€9(i) = Zpijp§k>

i—J
If we look at this globally:

(If all pages would have out-links, p<.k+1>

) would be indeed a probability distri-
bution.) From this equation we see that the more incoming links a page has,
the higher its importance. The importance of a page j is also proportional to
the importance of its in-neighbors and inversely proportional to the neighbors

out-degrees.

Definition 8. (PageRank vector) A PageRank vector is a stationary point
of the transformation (5.1) with nonnegative components (a stationary distribu-
tion for a Markov chain).

p="Pp
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The problem with this definition is that the matrix P has zero rows for
dangling nodes (nodes that have no outgoing links), since for them deg(i) = 0,
while a Markov chain transition matrix has to be row-stochastic. Dangling
nodes serve as sinks: they accumulate weight without distributing it to others.
Different remedies have been explored. One approach suggests getting rid of
dangling nodes, since they do not influence any other node. Unfortunately,
deleting dangling nodes generates new dangling nodes. Another alternative is
to consider adding deleted dangling nodes on final iterations. Another option is
to add a self-link to each dangling node and, after computation, to adjust the
constructed PageRank. Another approach suggests introducing an ideal node
(sink) with a self-link to which each dangling node links. The most widely used
method, also proposed in [22] modifies the matrix P by adding artificial links
that uniformly connect dangling nodes to all the nodes in the graph. This would

mearn:
P =P+t-of (5.2)

with
f 1 if deg(i) =0,
“ 1 0 if deg(i) >0

and v = (1/n)e’, where e is the row vector of all 1s and n is the number of
nodes in the graph.

With this trick, any dangling node is now linked to any other node in the
graph, and the probability for reaching this nodes is equally distributed.

After doing all this, the question is when does the process in 5.1, also known
as power method or power iteration converge to the solution? Or, in other
words, is the Markov chain defined by P ergodic? As a short reminder from
the previous theory, it is sufficient to show that the Markov chain is irreducible,
time homogeneous, aperiodic and finite in the number of states to conclude that
it is ergodic, and so the power method converges to a principal eigenvector that
has positive elements, and the principal eigenvalue A\; = 1.

Time Homogeneous The transition probabilities are stationary by definition,
which implies that the Markov chain is time homogeneous.

Finite The number of states of the Markov chain is equal to the number of
nodes in the graph, which is obviously finite.

Aperiodic Due to the random jump every state has a small looping transition
probability, and this means, the period of each state, which is the greatest
common divisor of all recurrence values, is 1.

Irreducible A Markov chain is irreducible if all its states are mutually reach-
able, or in other words, there exists a directed path from each node to any
other node. Up to now, our transition probabilities do not guarantee this
condition.
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To satisfy the irreducible property, there is another trick that needs to be done,
to have a connection between any two nodes:

P’ =dP' + (1 —d)ev” (5.3)

This transformation conserves the stochastic property (it transforms a prob-
ability distribution into another probability distribution). According to 5.3,
from a non-dangling page a surfer follows one of the local out-links with prob-
ability d and jumps to some j € V with probability (1 —d) .

d is called damping factor and in the literature concerning the web graph
it usually has values in [0.85,1). d is a free parameter that controls the perfor-
mance of the PageRank algorithm. d gives the fraction of random walks that
continue to propagate along the links, while (1 — d) is the fraction of random
walks re-injected into the network. The parameter d prevents all the influence
on concentrating on the oldest papers. As we were mentioning earlier, the most
used value for d is 0.85, value prompted by the observation that an random
surfer will typically follow 6 hyperlinks (1 —d = 1/6 = 0.15) before getting
bored and starting a new search.

Chen et al. [15] demonstrate the use of PageRank in bibliographic networks.
In this sense, PageRank can be seen as modeling a researcher who moves from
paper to paper in the document collection. At each paper the researcher either
follows a randomly chosen reference from the current paper or, with a probabil-
ity of (1 — d) chooses a random paper from the collection. The PageRank of a
given paper can be interpreted as the probability that a researcher will be read-
ing that paper at any given moment. In their work, the authors suggested the
use of a d = 0.5, representing the assumption that readers of scientific papers
walk shorter paths on the citation graph, of average length 2.

To conclude, this is the formula for calculating the PageRank number of a
certain paper i:

1—-d

PR(pi) = —— +d > (5.4)

5.3 Implementation

Problem: Given a graph G(V, E) , where | V' | = 490.730 nodes, and | E | =
7.976.155 links, what are the PageRank weights for each node?

Having discussed about the theory behind PageRank, a solution for the problem
above is to apply the iterative method. The constraints are related to scalability
and robustness. We take advantage of the fact that the transition probability
matrix is a very sparse one, so instead of storing the entire matrix, we are using
dictionaries to keep the information. Here is the algorithm:

The iterative method proposes a multiplication between a matrix and a
vector. This is usually done in O(n?). Since we are deling with a sparse matrix,
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foreach 7,5 in V, j — i do
‘ sparseDictionary((i, j)] = dampingFactor x

deg(])
end

foreach i in V, deg(i) = 0 do
| add ¢ to danglingVector
end
initialize weights
converged = False
while not converged do
newWeights = 0
foreach (i, 7) in sparseDictionary do
| newWeights; + = sparseDictionary((i,j)| x weights;
end
newWeights 4= dampingFactor > Z
(1— dampzngFactor) « Z

jEdanglingV ector wezghtsj +

1 wezghts]
W = newWezghts — wezghts
Wil

n
if € < convergeceT hreshold then
| converged = True

end

end

Algorithm 1: The PageRank algorithm

as mentioned before (16% of the rows and 25% of the columns are zeros), we
were able to reduce the complexity of the problem to O(n).

5.4 Results

For determining the best values for our parameters we experimented with differ-
ent settings. One of the parameters that has the highest impact on the results is
the damping factor. As discussed in the Theoretical Background section, there
are different opinions in the literature for what value the damping factor should
have. While a value of 0.85 (corresponding to 6 links on the link graph) seems
to be preferable for the WWW, a value of 0.5 (corresponding to 2 links on the
citation graph) seems better for the bibliographic citation graph. In this case,
we present the results for three distinct values of the damping factor: 0.85,
0.70, and 0.50. We present the Top 10 publications for each of the values
mentioned before in Tables 5.1, 5.2, and 5.3.

Analyzing these three tables, we can see that there is a serious difference
between the PageRank outcome and the Citation Count outcome, at least in
the top 10 results. The only publication that maintains its rank, no matter the
ranking algorithm, is the first ranked paper. The PageRank method keeps in
the top 10 positions only 2 (or 3, depending on the damping factor) publications
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Rank Publication Citation | Rank by
Count Citation
Count

1 | A Model of Leptons: Weinberg, Steven (1967) 6565 1

2 Ultraviolet Behavior of Nonabelian Gauge Theories: Gross, D.J., 2379 44
(1973)

3 | Weak Interactions with Lepton-Hadron Symmetry: Glashow, S.L., 3671 9
(1970)

4 Reliable Perturbative Results for Strong Interactions?: Politzer, 2390 43
H.David, (1973)

5 Confinement of Quarks: Wilson, Kenneth G., (1974) 3023 26

6 Radiative Corrections as the Origin of Spontaneous Symmetry 2472 40
Breaking: Coleman, Sidney R., (1973)

7 Broken symmetries, massless particles and gauge fields: Higgs, 1454 111
Peter W., (1964)

8 Axial vector vertex in spinor electrodynamics: Adler, Stephen L., 2332 47
(1969)

9 Field Theories with Superconductor Solutions: Goldstone, J., 739 462
(1961)

10 Supergauge Transformations in Four-Dimensions: Wess, J., (1974) 1373 130

Table 5.1: Top 10 publication by PageRank, when damping factor = 0.85

Rank Publication Citation | Rank by
Count Citation
Count

1 | A Model of Leptons: Weinberg, Steven (1967) 6565 1

2 Weak Interactions with Lepton-Hadron Symmetry: Glashow, S.L., 3671 9
(1970)
Confinement of Quarks: Wilson, Kenneth G., (1974) 3023 26

4 | Ultraviolet Behavior of Nonabelian Gauge Theories: Gross, D.J., 2379 44
(1973)

5 Reliable Perturbative Results for Strong Interactions?: Politzer, 2390 43
H.David, (1973)

6 Radiative Corrections as the Origin of Spontaneous Symmetry 2472 40
Breaking: Coleman, Sidney R., (1973)

7 CP Violation in the Renormalizable Theory of Weak Interaction: 5351 2
Kobayashi, Makoto, (1973)

8 Pseudoparticle Solutions of the Yang-Mills Equations: Belavin, 1978 56
AA., (1975)

9 Axial vector vertex in spinor electrodynamics: Adler, Stephen L., 2332 47
(1969)

10 Broken symmetries, massless particles and gauge fields: Higgs, 1454 111

Peter W., (1964)

Table 5.2: Top 10 publication by PageRank, when damping factor = 0.70
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Rank Publication Citation | Rank by
Count Citation
Count

1 | A Model of Leptons: Weinberg, Steven (1967) 6565 1

2 Confinement of Quarks: Wilson, Kenneth G., (1974) 3023 26

3 Weak Interactions with Lepton-Hadron Symmetry: Glashow, S.L., 3671 9
(1970)

4 CP Violation in the Renormalizable Theory of Weak Interaction: 5351 2
Kobayashi, Makoto, (1973)

5 Ultraviolet Behavior of Nonabelian Gauge Theories: Gross, D.J., 2379 44
(1973)

6 Radiative Corrections as the Origin of Spontaneous Symmetry 2472 40
Breaking: Coleman, Sidney R., (1973)

7 | Reliable Perturbative Results for Strong Interactions?: Politzer, 2390 43
H.David, (1973)

8 Pseudoparticle Solutions of the Yang-Mills Equations: Belavin, 1978 56
AA., (1975)

9 Maps of dust IR emission for use in estimation of reddening and 3556 13
CMBR foregrounds: Schlegel, David J., (1997)

10 Axial vector vertex in spinor electrodynamics: Adler, Stephen L., 2332 47
(1969)

Table 5.3: Top 10 publication by PageRank, when damping factor = 0.50

that are also in top 10 by Citation Count while the rest are publications with a
lower number of citations.

To be able to have a global vision of the differences between these ranking
methods, we used the Spearman’s rank correlation coefficient to calculate
the correlation between PageRank and Citation Count as well as the correlation
between PageRank with different damping factors:

where

6 d?

:]_—
r n(n? —1)

d; = x; — y; = the difference between the ranks of corresponding values X;

and Y;,

n = the number of values in each data set (same for both sets).
You can find the correlation coefficients in the Tables 5.4 and 5.5.

’ Ranking Methods

\ Spearman Coefficient ‘

Citation Count vs. PageRank(d=0.85) 0.93
Citation Count vs. PageRank(d=0.70) 0.93
Citation Count vs. PageRank(d=0.50) 0.94

Table 5.4: The Spearman correlation coefficients between Citation Count and
PageRank
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] Ranking Methods \ Spearman Coefficient ‘
PageRank(d=0.50) vs. PageRank(d=0.85) 0.99601
PageRank(d=0.50) vs. PageRank(d=0.70) 0.99759
PageRank(d=0.70) vs. PageRank(d=0.85) 0.99701

Table 5.5: The Spearman correlation coefficients between PageRank with dif-
ferent dumping factor

Studying the Spearman correlation coefficients between the different rank-
ings generated with the three chosen values for the dumping factor, we can
conclude that at the global scale, the difference is almost undetectable. A
Spearman coefficient so close to the value of 1 signifies almost identical rank-
ings. This conclusion is also sustained by the Top 10 results identified with each
of the rankings (Tables 5.3, 5.2, 5.1). As it can be observed, there is a bit of
reordering among the Top 10 papers, but the difference is not impressive. What
strikes, is the difference between the PageRank results and the Citation Count
results. Here we can really see some interesting movements of publications in
the Top 10 lists. Still, as we can see from Table 5.4, the overall rankings are not
really that different.

Another interesting thing to analyze is the distribution of the ranks over the
time. Since we know that a higher damping factor is boosting old papers rather
than new ones, we are interested to see if we can detect this kind of behavior also
in our data. For this, we plotted the distribution in time for the Top 100 papers
ranked with PageRank. The results are displayed in Figure 5.1. Indeed, we can
see that for a damping factor corresponding to two links on the citation graph,
the age of the top 100 papers decreases. If for a damping factor corresponding
to six links on the citation graph we have a large concentration of top papers
in the 1970-1980 period, when decreasing the number of the likes followed by
the random surfer in the citation graph, we see a shifting of the top papers
towards the 1990-2000 period, which is indeed what we wore hoping to see. For
this reason, we consider that a dumping factor of 0.5 is more appropriate for
ranking scientific publications than a factor of 0.85.

In terms of performance, the PageRank weight converge faster for a lower
value of the damping factor. In the Table 5.6 you can see the number of steps
needed for each of the settings to converge. Still, for any of the configurations,
the weights vector converges in an impressively low amount of time: 3min30s
on an average computer.

’ d \ iterations \ € ‘
0.50 4 8.28e-05
0.70 6 5.85e-05
0.85 7 8.30e-05

Table 5.6: The number of iterations needed for reaching a stable state
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Figure 5.1: Time distribution for the top 100 publication, ranked with PageRank
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5.5 Conclusions

PageRank is one of the most popular link-based ranking methods. In order to
make it better suited for the bibliographic citation graph, we first modified the
setting of the dumping factor. Indeed, when ranking web pages, it is usually
considered that a random surfer follows on average 6 links in the link before
getting “bored” and restarting the search. Such a setting does not really apply
for the scientific community. It is rather believed that a scientist follows on
average 2 links in the citation graph before restarting the search. Although our
experiments show that the general ranking results remain quite similar when
using different dumping factors, a dumping factor corresponding to 2 links in
the citation graph should still be preferred for scientific publications, due to the
fact that it is not entirely biased towards older publications.

One of the main advantages of this method is the fact that it weighs the
publications accordingly to the importance of their citations, bringing to light
some very insightful publications that would not have been discovered with the
Citation Count method. Thus, it associates each publication with an “all-time
achievement” rank. On the other hand, we can also identify two shortcomings
of this ranking method:

e Because we are dealing with an incomplete citation graph, some anomalies
occur. For example, a paper that only has one reference in the citation
graph, will propagate all its weight to the lucky reference. If this paper
is also a very highly regarded paper (it has a high PageRank weight),
then the only reference will accumulate a lot of artificial weight. For this
reason, one must think of some corrections for the algorithm that remove
this artificial boost in terms of weight. We propose a fix of this drawback
by extending the actual method to account for the missing citations (see
Chapter 6).

e Because it calculates an all-time achievement weight, the method tends
to give older papers more popularity, to the detriment of highly regarded
new papers. In order to achieve a ranking where new publications can be
ranked as high as older ones, one must design an algorithm that accounts
also for the age of each publication/citaton. For this, we designed time
dependent ranking methods (see Chapter 7 and Chapter 8).
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Chapter 6

Link-based Ranking with
External Citations

6.1 Introduction

As discussed previously, the PageRank algorithm was initially designed for the
WWW. Several distinctions between the WWW and the citation graph must
be made starting with the fact that while WWW is a closed graph (contains
all the existing links, or at least a very large part of them), the citation graph
is quite incomplete. As we sow in Chapter 3, the Inspire data set is missing
on average 9 out of 30 references per paper while the CDS WebDev data set is
missing on average 28 out of 37 references per paper. While for the Inspire data,
these missing links represent just a small percentage, for the CDS WebDev data
they represent almost 75%. In the context of applying the PageRank algorithm,
this means that instead of distributing the weight to 37 references, a node is
distributing its weight only to 9. This further means that these 9 papers receive
much more weight then expected. So, we end up with a phenomena of “artificial
inflation of weights”.

For fixing this error we developed a new ranking method that accounts for
the external citations. This new method assumes the existence of an “external
authority” that accumulates weight from all the nodes in our graph, proportion-
ally with the missing citations, and also feeds back into the network a certain
percentage of its weight. With this method, we assure the correct propagation
of the weight through the network.

6.2 Theoretical Background

Before discussing the theory behind our model, let us prove its usefulness with
an example. First, let us look at a graphical demonstration of the PageRank

34



CHAPTER 6. LINK-BASED RANKING WITH EXTERNAL CITATIONS

model, taken from http://en.wikipedia.org/wiki/PageRank (Figure 6.1)
The example in the Figure 6.1 illustrates the benefic effect of PageRank:

Figure 6.1: PageRank model for a simple network

you do not need to be cited a lot, you just need to be cited by important nodes.
Still, the problem is a bit more complicated when applying this method on the
citation graph: we want to give high weights to papers cited by authorities but in
the same time, we do not want the “artificial inflations” of the weights generated
by the fact that a really powerful publication has only a small percentage of its
references in the database, and sow, it ends up distributing its weight just to
them. In our illustrated example, a case of artificial inflation is node C.

As discussed previously, for fixing this error we assume the existence of an
“external authority” that accumulates weight from all the nodes in our graph,
proportionally with the missing citations, and also feeds back into the network
a certain percentage of its weight. With this method, the node C from our
illustrated example will disappear.

Figure 6.2: Correction of the PageRank model for a simple network

More formally, let us consider a graph G = (V, E) and a matrix M™ "™ = m,;
non-negative, where n =| V' |. M is defined as quasi-stochastic, meaning that

for each line i, either >37_ m;; = 1 or 337 mi; = 0. The last possibility,
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combined with the fact that the matrix is positive, implies that all the elements

from the line are 0s. We define a stochastic vector A" = a;, Z?Zl a; = 1.

Let us also consider a variable a € (0,1) and a vector B"*! = b; such that,

Vi{ b =1, ifZ?:lmij =1

b; =0, otherwise

We define a matrix 7m+)>(+) = ¢, as follows:

tll AIXTL
T= Bnxl Mnxn
tll =1—-a
tlj =aXaj—i, VJ >1
tin =bi_1, Vi>1

tij = (1 =bi—1) X m_1)(j—1) Vi,j>1

We can demonstrate that matrix T is stochastic.

n+1 n+1 n

i=1:>Ztij:(l—a)—l—Zaxaj,l:1—a+a><Zaj:1—a+a:1
j=1 =2 j=1
n+1 n n
j=1 j=1 j=1

This proves that each row of the matrix T" sums up to 1, which implies that
T is stochastic. More, T' can be considered a transition probability matrix. If
we can prove that the Markov chain defined by T is ergodic, we prove that the
power method converges to a principal eigenvector that has positive elements,
and the principal eigenvalue A\; = 1. Just as a reminder, to prove that the
Markov chain defined by T is ergotic, we have to prove that the it is: time
homogeneous, finite, aperiodic and irreducible.

Time Homogeneous The transition probabilities are stationary by definition,
which implies that the Markov chain is time homogeneous.

Finite The number of states of the Markov chain is equal to the number of
nodes in the graph plus one, which is obviously finite.

Aperiodic By construction, t1; = 1 —a,a € (0,1), so we have at least one
tii > 0.
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Irreducible A Markov chain is irreducible if all its states are mutually reach-
able, or in other words, there exists a directed path from each node to
any other node. If we can assure that the vectors A and B are strictly
positive, then this will be enough for the Markov chain to be irreducible
(all the nodes will reach node 1, and node 1 will be connected with all the
nodes).

Going back to our ranking method, and to the Figure 6.2, we can explain the
matrix 1" as follows:

e Matrix M"™*™ = m;; represents the adjacency matrix for our graph G.

L, ifi—y
mi; =< 0, ifi-»j, but deg(i) >0
1, if deg(i) =0

e The first entry in the matrix, ¢;; represents the “External Authority”
node.
ti1=1—a,a€(0,1)

e Vector A'™ = a; represents the weights given by the “External Author-
ity” to the nodes in the graph. We consider that each node should receive
an equal amount of weight, a, = ay,Vr,y =1,n.

1
aj = ﬁ,Vj: 1,n

e Vector B™*! = b; represents the weights received by the “External Au-
thority” from the graph’s nodes. Let us consider e; being the number of
external references for the publication 4.

b; = B x max{l,e;}

Note: There has been a slight change in the original formula of matrix B in
order to guarantee the irreducibility, in the sense that we will still guarantee T’
to be stochastic, but the terms of B will have to be strictly positive.

Now we can construct the final 7" such that it is stochastic:

t1h, =1—«

ty =1, Vi>1
e = matled > 1
ty = ﬁxmaz{l,:ﬁﬂrzﬁl mij’ Vi,j > 1

Intuitively, o quantifies how much of the external weight is re-injected into
the network and 3 represents the fraction between an external citation and an
internal one. We consider that, if a publication is not in the data set, it means
that it values less then the ones already inserted in the database. We know that
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this is not the case for all the missing citations, and we apologize if we hurt
someone’s feelings. But since we know nothing about the missing citations,
except their number, it is fair give them lower weight in comparison with the
existing ones.

In the further sections, we will present the implementation of this method
and its results.

6.3 Implementation

In the “Theoretical Background” section above we proved that T can be con-
sidered a transition probability matrix and that the Markov chain defined by
T is ergodic. Having proven this, we implicitly demonstrated that the power
method converges to a principal eigenvector that has positive elements, and the
principal eigenvalue Ay = 1. The eigenvector values are nothing else than the
weight corresponding to each of the nodes in the graph.

The constraints of the implementation are related to scalability and robust-
ness. We take advantage of the fact that the transition probability matrix is a
very sparse one, so instead of storing the entire matrix, we are using dictionaries
to keep the information.

The iterative method proposes a multiplication between a matrix and a vec-
tor. This is usually done in O(n?). Since we are deling with a sparse matrix, as
mentioned before (16% of the rows and 25% of the columns are zeros), we were
able to reduce the complexity of the problem to O(n).

38



CHAPTER 6. LINK-BASED RANKING WITH EXTERNAL CITATIONS

sparseDictionary[(0,0)] =1 — «
foreach j in V do
sparseDictionary[(j +1,0)] =
if j » ExtAuthority then
B

‘ sparseDictionary[(0,j +1)] = ;75

end
if j — ExtAuthority then

if deg(j) > 0 then sparseDictionary[(0,j+ 1)] = #Jf«itég(j)
if deg(j) = 0 then sparseDictionary[(0,7 +1)] = %
end
end

foreach i,j inV, j — i do

‘ sparseDictionary[(i + 1,5+ 1)] = 1_SP“’"SGD:;;??)‘IW[(OJJF1)]

end
foreach i in V, deg(i) = 0 do

1—sparseDictionary[(0,i+1)]
n

‘ danglingV ector[i] =
end
initialize weights
converged = False
while not converged do
newWeights = 0
foreach (i,7) in sparseDictionary do

| newWeights; + = sparseDictionary((i,j)| x weights;
end
newWeights[l:n+ 1] + =
> icdanglingVector danglingVector[j] x weights;
W = newWeights — weights

VI

n
if € < convergeceT hreshold then
| converged = True
end

end
Algorithm 2: The Link-based Ranking with External Citations algorithm

6.4 Results

As discussed in the “Theoretical Background” section, this algorithm is tailored
for data sets that have an incomplete citation graph. Although the Inspire data
set is not really a candidate, for consistency reasons we present here the Top 10
results when ranking with this method in Table 6.1.

Comparing these results with the ones in Table 5.1 we see that they are
actually quite similar, which is somehow normal. A data set that is almost
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Rank Publication Citation | Rank by
Count Citation
Count

1 | A Model of Leptons: Weinberg, Steven (1967) 6565 1

2 Ultraviolet Behavior of Nonabelian Gauge Theories: Gross, D.J., 2379 44
(1973)

3 Weak Interactions with Lepton-Hadron Symmetry: Glashow, S.L., 3671 9
(1970)

4 | Reliable Perturbative Results for Strong Interactions?: Politzer, 2390 43
H.David, (1973)

5 Radiative Corrections as the Origin of Spontaneous Symmetry 2472 40
Breaking: Coleman, Sidney R., (1973)

6 Broken symmetries, massless particles and gauge fields: Higgs, 1454 111
Peter W., (1964)

7 | Confinement of Quarks: Wilson, Kenneth G., (1974) 3023 26
Axial vector vertex in spinor electrodynamics: Adler, Stephen L., 2332 47
(1969)

9 Field Theories with Superconductor Solutions: Goldstone, J., 739 462
(1961)

10 Supergauge Transformations in Four-Dimensions: Wess, J., (1974) 1373 130

Table 6.1: Top 10 publication by Link-based Ranking with External Citations

complete is very little influenced by the external citation, and so, the weight of
the publications is influenced mainly by the citation graph. We want to remind
you that this method is basically designed for data sets that lack a high number
of citations in order to correct “artificial inflations” of the weight.

A really important step in defining a final version of our algorithm is finding
the right values for the tow parameters a and 3. In order to analyze how
they influence the final outcome of the ranking we calculated the Spearman
Correlation Coefficient (SCC) between our new ranking method with different
settings of o and 8 (between 0 and 1 with 0.1 step), and the PageRank, for
the CDS WebDev data set. Note: The SCC between the PageRank and the
Citation Count is 0.81 for the CDS WebDev data set.

Table 6.2 presents the aggregated results after 200 experiments (for each
a,B € (0,1), with a step of 0.1). As we can see, the « parameter can be
chosen arbitrary, because it does not seem to have much influence in the ranking
order. One thing to consider when choosing this parameter is the convergence
speed. While for a = 0.1 the algorithm converges in approximately 15 steps (15
iterations), for a = 0.5 it converges in approximately 5 steps. Also, looking at
the exact number for SCC, when a = 0.5 the correlation is either the highest
(for B = 0.1) or the lowest (for 8 = 1.0), both with respect to the PageRank
method.
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] o \ 16} \ SCC with PageRank \ SCC with Citation Count ‘
a€e(0,1) | p=0.1 0.97 0.89
ae(0,1) | =02 0.94 0.91
a€e(0,1) | =03 0.92 0.92
a€e(0,1) | =04 0.91 0.92
ae(0,1) | =05 0.89 0.93
ae(0,1) | 6=0.6 0.88 0.93
a€e(0,1) | =07 0.87 0.93
a€e(0,1) | =08 0.87 0.93
ae(0,1) | =09 0.86 0.93
ae(0,1) | =10 0.85 0.93

Table 6.2: Spearman Correlation Coefficient between PageRank/Citation Count
and Ranking with External Citations

6.5 Conclusions

In this chapter we describe our extension of the PageRank algorithm. The
novelty of this new ranking method is that is specifically tailored for the citation
graphs that are missing a significant number of citations. Since most of the
bibliographic databases are incomplete, we believe that this method is better
suited for ranking scientific publications.

In order to correct one of PageRank’s shortcomings, namely the artificial
inflation of some of the nodes weight we introduce a new node called “external
authority” that is the place holder for all the missing citations. The addition
of this node introduces two new parameters: «, the weight that the external
node redirects into the network and (3, the fraction between an external citation
and an internal one. We consider that, if a publication is not in the data set, it
means that it values less then the ones already inserted in the database. Our
experimental analysis showed that « only influences the rate of convergence of
the iterative algorithm and has little impact on the general reordering while 3 is
the one that truly makes a difference in the outcome of the ranking method. For
(3 € [0.1,0.5) the outcome of the new ranking method is highly correlated with
the PageRank results, and less correlated with the Citation Count results. On
the other hand, for 8 € [0.5, 1] the correlation with the PageRank method drops,
while the correlation with the Citation Count remains approximately constant.
We advise for the use of a 3 lower than 0.5 since in this case the results will be less
correlated with the citation counts and enough correlated with the PageRank
as to assume that the artificial inflation problems are resolved.

We believe Link-based Ranking with External Citations to be a better can-
didate than Citation Count or PageRank for the task of ranking scientific pub-
lications because: (i) it inherits from PageRank its ability to take into account
the citations with weights representing their importance, and thus, fixing one
of the main shortcomings of the Citation Count method; (ii) it further corrects
one of PageRank’s shortcomings, namely the artificial inflation of some of the
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weights. In the end, our new ranking method is enough correlated with the
PageRank method as to assume that it inherits its usefulness and in the same

time it corrects its shortcomings.
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Chapter 7

Time-dependent Citation
Counts

7.1 Introduction

One of the two main drawbacks of the Citation Count method is that it does not
take into account the time dynamics of the citation graph, i.e. it underestimates
the importance of newly acquired citations. To overcome this shortcoming, we
introduce the notion of time-dependent citation counts. In this context, the
weight of a publication i is defined as: weight; =37, , e~ Wtpresent=ti) wwhere
t,resent is the present time and ¢; is the publication date for document jth.
Furthermore, this introduces the time decay parameter (w € (0, 1]), which
quantifies the notions of “new” and “old” citations (i.e. publications with ages
less than the time decay parameter would be considered “new”; publications
with ages larger than the time decay parameter would be considered “old”).
The larger the time decay parameter is, the faster we “forget” old citations.

7.2 Theoretical Background

The new formula for calculating the weigh of each node depends on the present
time, so when a new publication is added to the database, the weights of the
publications that are cited by it will have to by recalculated from scratch. Since
this adds a lot of computational overhead, we would like to be able to calculate
these weights iteratively.

Let us consider F,(t) to be the weight of document D at the moment when
it has n citations:
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n
e—wt § ewt,;
1=1

e_w(t_tn) Z e_w(tn_ti)
=1

= ewl=t)G(n) (7.1)

where n is the current moment in time, i are the past moments when citations
occurred and G(n) = Y"1 | e~*(tn—%) is what we call the “citation function”.

n+1
Fuaalt) = evlt-tni) 3° multna=to)
i=1

n
— e*w(t*tm—l)(z e~ Wtnt1—t:) + 1)
=1
= e_w(t—twrl)(z e_w((tnﬂ_t")-i_(t"_ti)) + 1)
i=1
_ e—w(t—tnﬂ)(e_w(tn+1_t”) Z e~ wln=t) 4 1)
=1
_ e—w(t—tn+1)(e_w(t”'+1_t")G(n> + 1)
ettt G(n + 1) (7.2)

In short, combining Equations 7.1 and 7.2 we obtain:
F,(t) = Ze‘w(t_“) = e =) G(n)
i=1

where:

G(1)=1
Gn+1) =1+ e 1=t G(n) VYo > 1

For a document D, in order to iteratively calculate its weight we have to
store: t;,s¢ = time of the last citation for the document D, and Gy, 4, the citation
function used for calculating the current weight of the document Fj,q(¢). If
a new citation arrives at t,., we have two possibilities (considering the fact
that in a digital library a paper might be added after a long time after it is
published,and because of this, the citations that he creates might be older than
the citations that are already in the system):

3 G «— 1 efw(tnewftlast)G
Zf tnew > tlast = last + last
tlast — tnew

Z.f tnew < tlast = Glast — Glast + e_w(tlaSt_tnew)
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This demonstrates that there is an iterative way of calculating the weight of
a document when a new citation arrives, without having to recalculate it from
scratch.

7.3 Results

An important aspect that needs to be carefully considered when using a time-
dependent ranking method is the time decay parameter, w. It is the only quan-
tifier for the “freshness” of the results. In this section we try to analyze the
impact of the decay factor on the stability of the final rankings and also on the
stability of certain ranges of ranks.

Let us first take a look at the Spearman Correlation Coefficient (SCC) be-
tween Citation Count with and without time decay (Table 7.1).

’ Methods \ SCC ‘

Citation Count vs. Citation Count with time decay = 1 year | 0.792
Citation Count vs. Citation Count with time decay = 2 year | 0.821
Citation Count vs. Citation Count with time decay = 5 year | 0.887

Table 7.1: Spearman Correlation Coefficient between different settings of Cita-
tion Count

In this case the Spearman Correlation Coefficient is not really helpful, in
the sense that, it just tells us that the Citation Count with a high time decay
is converging to the Citation Count without any time decay. This is already
ensured by the definition of the time decay factor: the higher the time decay is,
the less we “forget” old citations. A more powerful measure in this case would
be the “locality of changes”. This should tell us if adding a time decay has a
global impact on the ranking (i.e. the tail is promoted to the head and the other
way around) or if it is rather local (i.e. there are certain windows in the ranking
where there is some reshuffling).

Let us consider s as being the stability factor:

s | {d | rankq(t), ranky € window} |
N windowSize

where rank,4(t),ranky are the ranks of publication d, the first when using a
time-dependent ranking method and the last when using the non-decayed rank-
ing method.

Using the stability factor we want to determine what windows of the rank-
ing are suffering the most from different time decay parameters. For this we
are building dynamic windows as follows: we are splitting the rank range by
consecutive powers of 2, until we either reach a rank window of size less than
100 or the stability factor goes below a certain minimum threshold (0.3 in our
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experiments). We should mention that we remove the publications with 0 cita-
tions, since their weight and rank will not be influenced by any ranking method.
We constructed a chart for each value of the time decay factor(1 year, 2 years,
5 years, 10 years, 20 years, 40 years) (Figure 7.1). The interpretation of these
charts is that whenever we have a zone with a lot of activity (a lot of points),
that zone is quite stable at a high level and needs to be broken into small inter-
vals to reach the instability threshold. On the other hand, when we have a zone
with low activity, that means that the stability of the corresponding window is
low also at a high level, so if we would split it in smaller windows, the stability
will drop even lower then the threshold.
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Figure 7.1: Stability of Time-dependent Citation Count

An interesting thing to observe in the Figure 7.1 is that the head of the ranks
is usually more stable than the rest. Also, when looking at the ranks obtained
with a time decay of 40 years, we see that the new ranks are quite stable at the
high level. But, interestingly, even with such a large time decay the ranks are
still reshuffled, but in small windows.
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Up to now we sow that the stability between a non-decayed ranking and
a decayed one is really low, meaning that the order of the documents is se-
riously modified. Taking the non-decayed citation count as reference, we are
further trying to see how much are the documents promoted/demoted when us-
ing time decayed methods. For this we analyze the cumulative curves generated
by the difference between rankings of the same papers (Figure 7.2). A value
in these charts represents the number of nodes in the graph that have been
promoted/demoted with less then a certain value. The numbers have been nor-
malized to the dimension of the graph (in our case they are actually normalized
with the number of nodes 4, for which deg(i) > 0).

The first thing that we observe in the Figure 7.2 is that the time-dependent
ranking methods are promoting more publications than demoting. Secondly, and
as a consequence of the first observation, the time-dependent ranking methods
are demoting strongly than promoting. Also, we can easily observe that, when
increasing the time decay parameter the amount by which the papers are de-
moted/promoted is decreasing. Further, we observe that even with a high time
decay parameter we still see promotions and demotions, meaning that we will
have to go even further with the time decay parameter to see the ranks con-
verging. We generated Tables 7.2 and 7.3 to get a clearer view on the actual
numbers concerning the demotion/promotion.

Table 7.2 contains information about the percentage of publications pro-

’ Time decay ‘ Promotion ‘ Demotion ‘ Stable ‘

1 year 54.1% 45.8% 0.1%
2 years 55.8% 44.1% 0.1%
5 years 60.6% 39.3% 0.1%
10 years 62.7% 37.2% 0.1%
20 years 63.4% 36.5% 0.1%
40 years 60.0% 39.9% 0.1%

Table 7.2: Promotion vs. Demotion [%)]

Time decay ‘ 90% Promotion ‘ 90% Demotion | Avg. Promotion ‘ Avg. demotion

1 year 155440 -195265 74888 -88568
2 years 131642 -179833 63961 -81019
5 years 84801 -154946 43342 -66846
10 years 50917 -112646 27317 -45919
20 years 26744 -64231 14293 -24783
40 years 12743 -29728 7039 -10584

Table 7.3: Promotion vs. Demotion [values]
moted or demoted. As you can see, the stable percentage (publications that

have the same position in both time decayed and non-decayed rankings) is al-
most the same regardless the time decay parameter. This means that even a
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slight time decay will probably reshuffle the results.

Table 7.3 shows exact values for the average promotion/demotion, 90% pro-
motion/demotion (the value with which 90% of the documents are promoted /
demoted). The maximum promotion / demotion is +/-367179.
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Figure 7.2: Cumulative differences between ranking with and without time de-
cay

7.4 Conclusions

The Time-dependent Citation Count method is a tentative solution to one of
the main drawbacks of the Citation Count method, namely that it does not
take into account the time dynamics of the citation graph. The new time-based
ranking method has one important parameter that controls the freshness of the
top results: the time decay parameter. A close analysis of this parameter revels
several interesting properties:

e Adding a week time decay factor (in our experiments, as week as 40 years)
to a ranking method will still have an impact on the final ordering of the
documents.
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e Adding a strong time decay factor to a ranking method reveals the most
popular publications at the current moment in time.

e Adding any time decay factor to a ranking method results in having more
publications increasing their rank than decreasing it. At the same time,
the gain in rank for the promoted publications is less strong than the
decrease in rank for the demoted ones.

We consider the Time-dependent Citation Count to be a better candidate
for the task of ranking scientific publications than Citation Count, because it
takes into consideration the age of the citations. Thus, adding even a weak
time decay factor, the time-dependent ranking can still differentiate between an
important old publication that acquired a large number of citations over a long
period of time, and a new publication, that, although important for the scientific
community, did not have enough time to acquire as many citations as the old
one, in the favor of the latter. Still, this method inherits one major shortcoming
from the Citation Count method, i.e. it does not take into consideration the
different importance of each citation. To overcome this, we developed the Time-
dependent Link-based Ranking as a combination of Time-dependent Citation
Counts and Link-based Ranking (Chapter 8).
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Chapter 8

Time-dependent Link-based
Ranking

8.1 Introduction

Until now, we focused on developing new ranking methods for the bibliographic
data set that overcome one of the two main disadvantages of the Citation Count
method, either that all the citation are treated equally disregarding their im-
portance (Link-based Ranking: Chapter 5, Chapter 6), either that it does not
account for the time dynamics of the citation graph (Time-dependent Rank-
ing: Chapter 7). In this section, we concentrate on combining the Link-based
Ranking methods with the Time-dependent Citation Count in order to develop
a ranking method capable of correcting both these drawbacks.

The idea of the Time-dependent Link-based Ranking method is to distribute
the random surfers exponentially with age, in favor of more recent publications.
Every researcher, independently, is assumed to start his/her search from a recent
paper or review and to subsequently follow a chain of citations until satisfied.
In this way the effect of a recent citation to a paper is greater than that of an
older citation to the same paper.

We consider the weight of each publication as being inversely proportional
with its age: the younger the publication is, the more its citations will value.
In this case, the initial probability of selecting the i*" paper in a citation graph
will be given by:

p; = e—w(t—ti)
where ¢ is the present time, ¢; is the publication date for document i** and w is
what we call the time decay parameter.
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8.2 Implementation

As a reminder, this is the PageRank number of a certain document i:

P = a3

Js]—

Adding the time decay, this formula becomes:

zt:i(l_ X palt >+dz<degj j(t)>

=1 7,J—1

where p,(t) is the initial probability of selecting the z** node in the citation

graph.

As seen in the Chapter 5, a solution for the problem above is to apply the it-
erative method. The constraints are again related to scalability and robustness.
We take advantage of the fact that the transition probability matrix is a very
sparse one, so instead of storing the entire matrix, we are using dictionaries to

keep the information.

foreach i in V do
‘ P = e_w(tpresent_ti)
end
foreach 7,5 inV, j — i do
‘ sparseDictionary|(i, j)] = dampingFactor x deZ](j)

end
foreach i in V, deg(i) = 0 do
| add i to danglingVector
end
initialize weights
converged = False
while not converged do
newWeights = 0
foreach (i,j) in sparseDictionary do
| newWeights; + = sparseDictionary((i,j)| x weights;
end
newWeights + = w X Y icdanglingVector WEIGhts; X pj +
(1— dampzngFactor) % Z

- weights; X p;
W = newWezghts — wezghts
Wi

n
if € < convergeceT hreshold then
| converged = True
end

end

Algorithm 3: The Time-dependent PageRank algorithm

o1



CHAPTER 8. TIME-DEPENDENT LINK-BASED RANKING

The iterative method proposes a multiplication between a matrix and a
vector. This is usually done in O(n?). Since we are deling with a sparse matrix,
as mentioned before (16% of the rows and 25% of the columns are zeros), we
were able to reduce the complexity of the problem to O(n). Having a time-
dependent method increases the computations done in the PageRank method
because, while in PageRank all the initial probabilities nonzero were 1, now they
are inverse proportional with the age of the citations.

The idea of distributing the random surfers exponentially with age, in fa-
vor of more recent publications was also presented in the work of Walker et
al. [12]. Their motivation is that researchers typically start “surfing” scientific
publication from a rather recent publication that caught their attention on a
daily update of a preprint archive or a recent volume of a journal. This algo-
rithm simulates the dynamics of a large number of researchers looking for new
information. Every researcher, independent of one another, is assumed to start
his/her search from a recent paper or review and to subsequently follow a chain
of citations until satisfied. In this way the effect of a recent citation to a paper
is grater than of an older citation to the same paper.

8.3 Results

Since we already did a comprehensive analysis of the time decay parameter in
Chapter 7, in this section we will focus on identifying the advantages and disad-
vantages of applying the time-dependent PageRank. First of all, let us take
a look at the Top 10 results generated by the Time-dependent PageRank with
a time-decay of 5 years (Table 8.1).

One might find it a bit strange that the 1%! publication is older than the rest
(which are mainly published in 2006 - 2007). For finding the explanation for
this fact we should look at the evolution of the citations for this particular pub-
lication (Figure 8.1) (http://hep-inspire.net/record/268027/citations).

Although this publication is rather old, with respect to the other publica-
tions in the Top 10 results, it acquired a large part of its citations recently. This
is the reason for being highly ranked by the time-dependent ranking method.
The identification of this kind of behavior can definitely be consider an advan-
tage for this new ranking method. This is a good example of what a user looking
for “hot trends” might want to see.

Looking further down in the top 100 best ranked publications when using
the time-dependent link-based ranking method, we notice something strange
(Table 8.2).

The two publications presented in Table 8.2 have less than 20 citations,
and thus, are ranked really low with the Citation Count ranking method. How
is it possible to be so highly ranked with our new ranking method? Further
investigations showed that the problem comes from the fact that these two pa-
pers are citing each other, and thus, are part of a cycle. Because of this and
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Rank Publication Citation | Rank by
Count Citation
Count
1 On the Phase Structure of Vector-Like Gauge Theories with Mass- 314 2316
less Fermions: Banks, Tom (1981)
2 | Review of Particle Physics: Yao, W.-M. (2006) 2480 39
New Tests for Quark and Lepton Substructure: Eichten, E. (1983) | 691 541
Another odd thing about unparticle physics: Georgi, Howard 130 9990
(2007)
5 Collider signals of unparticle physics: Cheung, Kingman (2007) 108 13251
6 | Unparticle physics: Georgi, Howard (2007) 149 8016
7 | Wilkinson Microwave Anisotropy Probe (WMAP) three year re- 2652 34
sults: implications for cosmology: Spergel, D.N. (2006)
8 Some phenomenologies of unparticle physics: Luo, Mingxing 94 15874
(2007)
9 The Large N limit of superconformal field theories andsupergrav- 5162 3
ity: Maldacena, Juan Martin (1997)
10 Unparticle physics on direct CP violation: Chen, Chuan-Hung | 82 18889
(2007)

Table 8.1: Top 10 publication by Time-dependent PageRank
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Figure 8.1: Citations history for 1! ranked publication with

time-dependent

PageRank
Rank Publication Citation | Rank by
Count Citation
Count
31 Gauge symmetry and supersymmetry of multiple M2-branes: Bag- 19 90786
ger, Jonathan (2007)
32 Comments on multiple M2-branes: Bagger, Jonathan (2007) 18 94900

Table 8.2: Snapshot from Top 100 publications by Time-dependent PageRank
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of the link-based ranking which iteratively propagates the weight in the graph,
when a strong time decay factor is used (in our case, a 5 year time decay), the
newly published documents that are part of a cycle accumulate artificial weight.
Unfortunately, this makes the time-dependent link-based ranking method un-
suitable for data sets that allow cycles.

8.4 Conclusions

In order to overcome the two main deficiencies of the Citation Count algorithm,
we combined the Link-based Ranking methods with the Time-dependent Cita-
tion Count creating a new method, the Time-dependent Link-based Ranking.
Unfortunately, this algorithm has one major disadvantage due to the fact that
it is time-dependent: it overestimates the weight of the younger publications
that are part of a cycle. As discussed in Chapter 3, even the bibliographic data
sets can allow cycles due to certain inconsistencies in the publication dates or
in the listing of references. Since some of the publications are not dated, the
identification/removal of the cycles is almost impossible due to the computa-
tional overhead. Because of this and of the link-based ranking which iteratively
propagates the weight in the graph, when a strong time decay factor is used,
the newly published documents that are part of a cycle accumulate artificial
weight. Thus, this method is not suited for data sets that allow cycles.
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Conclusions

The Citation Count is a very popular measure of the impact of a scientific
publication. Unfortunately, it has two main disadvantages: it gives all the ci-
tations the same importance and it does not take into account time. These
drawbacks motivated our study of alternative approaches: Link-based Rank-
ing methods(Chapter 5 and Chapter 6) and Time-dependent Ranking methods
(Chapter 7 and Chapter 8).

The link-based ranking methods were developed to take into account the
importance of the citing papers. We started with the PageRank algorithm
originally designed for ranking web pages. In order to make it better suited for
the bibliographic citation graph, we first modified the setting of the dumping
factor. Indeed, when ranking web pages, it is usually considered that a random
surfer follows on average 6 links in the link before getting “bored” and restarting
the search. Such a setting does not really apply for the scientific community. It
is rather believed that a scientist follows on average 2 links in the citation graph
before restarting the search. Although our experiments show that the general
ranking results remain quite similar when using different dumping factors, a
dumping factor corresponding to 2 links in the citation graph should still be
preferred for scientific publications, due to the fact that it is not entirely biased
towards older publications.

Furthermore, we adjusted the PageRank model by adding an “external au-
thority” node that represents a place holder for all the missing citations. In
particular, this additional node prevents some publications from getting artifi-
cially boosted simply because of the incompleteness of the citation graph. We
believe Link-based Ranking with External Citations to be a better candidate
than Citation Count or PageRank for the task of ranking scientific publications
because: (i) it inherits from PageRank its ability to take into account the ci-
tations with weights representing their importance, and thus, fixing one of the
main shortcomings of the Citation Count method; (ii) it further corrects one of
PageRank’s shortcomings, namely the artificial inflation of some of the weights.
In the end, our new ranking method is enough correlated with the PageRank
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method as to assume that it inherits its usefulness and in the same time it cor-
rects its shortcomings.

The time-dependent ranking methods were developed to take into account
time dynamics of the citation graph. More precisely, we first introduced time-
dependent citation counts, taking into consideration the lifetime of the citations.
This method introduces the time decay parameter (w € (0,1]). The larger the
time decay parameter, the faster we “forget” old citations.

Finally, we combined the two previous ranking methods, creating the Time-
dependent Link-based Ranking. Unfortunately, this algorithm is not well suited
for the citation graphs that are not DAG, due to the fact that it tends to over-
weight the young publications that are part of a cycle.

In terms of future work, there are several directions that can be explored.
One of them would be to continue experimenting with the different parameters
for a better tuning of the rankings. Another interesting direction might be to
conduct more types of evaluation of the results including query evaluation.
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Appendix A

Integration, Testing and
Performance Evaluation

One of the major objectives of this project was the implementation and the
integration of the newly crated ranking models in CDS Invenio. As described
in the introduction, “the key feature of CDS Invenio’s architecture lies in its
modular logic. Each module embodies a specific, defined, functionality of the
digital library system. Modules interact with other modules, the database and
the interface layers. A module’s logic, operation and inter-operability are ex-
tensible and customizable.” [5] In this framework, our ranking methods must
be added to the BibRank module and the interaction with the other modules,
the data base and the interface needs to be assured.

Since we already discussed about the implementation of each model in the
related chapters, we will only describe here details about the integration, the
testing procedures and the performance evaluation. The implementation was
entirely done in Python.

A.1 Integration and Testing Procedures

In order to have a fully running ranking method, we first need the input data.
There are two possibilities for extracting the data (citations, external citations,
and dates): one is reading it from a file (in case someone wants to heavily test
with one of the ranking methods) and the second one is querying the database.

Citations can be retrieved by querying the rnkCITATIONDATA table. This
table stores the citations in a form a dictionary recid:citedBy list.

External Citations can be retrieved by querying the tables associated with
the MARC tag for references. In out case this tag is 999C5 and the tables
are bibrec_bib99x and bib99x. There is also the possibility of querying the
rnkCITATIONEXT table in order to obtain the external citations, but
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after doing some testing, it seems that the accuracy is better when using
the MARC tables.

Dates can be retrieved by querying the tables associated with the MARC tag
for the date of the publication, in our case either 260_c (for the year of
the publication) or 269_c¢ (for the complete date). Since we are only using
the year of the publication in our computations, we went for the first
tag. In the cases where the date of the publication is not available we
consider the date of insertion in the data base (961_x tag). If neither
of the information is available for a certain publication, we assign it an
average date (computed with the available dates).

After retrieving the necessary data from various sources and running the chosen
ranking procedure we store the newly calculated weights in the database, in the
rnkMETHOD table, as a dictionary of type recid:weight. Since there exists the
possibility of having different publications with the same weight we set up also
a second ordering, based on the date of the publication. So, in the case of equal
weight, a newer paper will be ranked higher than an older one. There is also
the possibility of exporting the ranks in a file, for the testing purpose.

Since the running of the module requires setting several parameters, we cre-
ated a configuration file for each ranking method, available in the Appendix.
We propose the user three different ranking methods: time-dependent citation
count, link-based ranking (PageRank) with or without the external citations
and time-dependent link-based ranking.

CDS Invenio has a uniform testing technique, for which Python unittest
module is used. Tasting has been a continues activity while implementing the
new ranking methods. Every part of the code was intensively tested, first for
monitoring the correctness of the algorithms with respect to the data sets and
secondly for catching implementation errors. Still, several test cases have been
designed to assure proper behavior of the core functionality of the new ranking
methods. Among them, one tests for the correct extraction and manipulation
of the citation data, and one tests the behavior of the PageRank method.

A.2 Performance Evaluation

As described in the previous chapters, different ranking methods require the use
of the iterative method (successive multiplications between a matrix and a vec-
tor until the vector’s values become stable). The constraints when developing
this kind of algorithms are related to scalability and robustness. The scalability
is an important requirement because we are dealing with an increasing data set,
and while today we have close to half million papers, in a few years the number
might double.

The iterative method has usually a complexity of O(n?). Since we are deling
with a sparse matrix, 16% of the rows and 25% of the columns are zeros, we

58



APPENDIX A. INTEGRATION, TESTING AND PERFORMANCE
EVALUATION

were able to reduce the complexity of the problem to O(n). Having a time-
dependent method increases the computations done in the PageRank method
because, while in PageRank all the initial probabilities nonzero were 1, now they
are inverse proportional with the age of the citations. This is mainly the reason
why the time-dependent PageRank algorithm runs more slowly than the clas-
sical PageRank. Still, the running speed is less then expected. The PageRank
algorithm runs in approximately 4 minutes on an average equipped machine and
the time-dependent PageRank runs on average in 8 minutes. At this running
speed we also need to add the time for querying the data base, which does not
necessary depend on our module, but still is an overhead that needs to be con-
sider.
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Configuration Files

citerank_citation_t.cfqg

[rank_method]
function = citerank

[citerank]
#+citerank_method - defines the method to use for ranking
citerank_method = citation_time

#+#time_decay - measures how fast we 'forget’ old citations:
##0.0(never); 0.2(after 5 years); 0.1(after 10 years)
time_decay = 0.2

#+#tfile_with_citations - defines if the citations are to be read

##from an external file. (Default is to use the Invenio database.)

##The external file format must be: x[tab]y where x cites y; x,y are recids
#file_with_citations = /path/to/file/containing/citations

#F#output_ranks_to_filename - defines whether to also output the results to
#7tan external file. (Default is to only write them to the Invenio database.)
#output_ranks_to_filename = /path/to/where/to/write/citations

#+#toutput_rank_limit - defines the number of ranks to be written to the external
#+#file denoted by ’output_ranks_to_filename’ argument.

#7#£1t can be either a number or ’all’. (Default is ’all’ - output all the ranks.)
#output_rank_limit = all

#+#file_with_dates - defines if the publication years are to be read from an
#7#texternal file. (Default is to use the Invenio database.) The external file format
#+# must b:e x[tab]y, where x is a recid and y is the publication year
#file_with_dates = /path/to/file/containing/dates

relevance_number_output_prologue = (
relevance_number_output_epilogue = )
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citerank_pagerank_c.cfqg

[rank_method]
function = citerank

[citerank]
#+#tciterank_method - defines the method to use for ranking: pagerank.
citerank_method = pagerank_classic

#+#tcheck_point - defines the frequency for calculating the stability of the
##weight vector
check_point = 1

F##conv_threshold - defines the stability threshold for the weight vector.
conv_threshold = 0.0001

##damping_factor - measures in what depth the citation graph is
##influencing the ranking: 0.85(6 links), 0.7(3 links), 0.5(2 links)
damping_factor = 0.50

F##file_with_citations - defines if the citations are to be read

#7#tfrom an external file. (Default is to use the Invenio database.)

## The external file format must be: x[tably where x cites y; x,y are recids
#file_with_citations = /path/to/file/containing/citations

##output_ranks_to_filename - defines whether to also output the results to
##an external file. (Default is to only write them to the Invenio database.)
#output_ranks_to_filename = /path/to/where/to/write/citations

#+#output_rank_limit - defines the number of ranks to be written to the external
#+#file denoted by ’output_ranks_to_filename’ argument.

#71t can be either a number or ’all’. (Default is ’all’ - output all the ranks.)
#output_rank_limit = all

#+#tfile_with_dates - defines if the publication years are to be read from an
#7#+external file. (Default is to use the Invenio database.) The external file format
#7 must be: x[tab]y, where x is a recid and y is the publication year
#file_with_dates = /path/to/file/containing/dates

##use_external_citations - defines weather the ranking method should use the exter-
nal

#+#link information. (Default is 'no’.)

#use_external_citations = yes

#+#ext_citation_file - defines if the external citation are to be read from an
##external file. (Default is to use the Invenio database.) The external file format
##must be: x[tably, x is a recid, y is the corresponding number of ext citations
#ext_citation file = /path/to/file/containing/external/citations

##ext_reference_tag - defines the MARC tag corresponding to references
ext_reference_tag = 999C5

#+#ext_alpha - defines the fraction of the external node’s weigh that goes back
##into the network.
ext_alpha = 0.1
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##ext_beta - defines the proportion between the weight of an external link and
#+#the weight of an internal link.
ext_beta = 0.1

relevance_number_output_prologue = (
relevance_number_output_epilogue = )

citerank_pagerank_t.cfg

[rank_method]
function = citerank

[citerank]
#+#citerank_method - defines the method to use for ranking: time decayed pagerank.
citerank_method = pagerank_time

#+#check_point - defines the frequency for calculating the stability of the
#+#weight vector
check_point = 1

#+#conv_threshold - defines the stability threshold for the weight vector.
conv_threshold = 0.000001

##damping_factor - measures in what depth the citation graph is
##influencing the ranking: 0.85(6 links), 0.7(3 links), 0.5(2 links)
damping_factor = 0.50

##file_with_citations - defines if the citations are to be read

##from an external file. (Default is to use the Invenio database.)

## The external file format must be: x[tably where x cites y; x,y are recids
#file_with_citations = /path/to/file/containing/citations

##output_ranks_to_filename - defines whether to also output the results to
#+#an external file. (Default is to only write them to the Invenio database.)
#output_ranks_to_filename = /path/to/where/to/write/citations

#+#output_rank_limit - defines the number of ranks to be written to the external
#+#file denoted by ’output_ranks_to_filename’ argument.

##It can be either a number or ’all’. (Default is ’all’ - output all the ranks.)
#output_rank_limit = all

F##file_with_dates - defines if the publication years are to be read from an
##texternal file. (Default is to use the Invenio database.) The external file format
#4 must be: x[tably, where x is a recid and y is the publication year
#file_with_dates = /path/to/file/containing/dates

relevance_number_output_prologue = (
relevance_number_output_epilogue = )
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