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We show, explicitly within perturbation theory, that the quantum master equation and the Wilso-
nian renormalization group flow equation can be combined such that for the continuum effective
action, quantum BRST invariance is not broken by the presence of an effective ultraviolet cutoff
�, despite the fact that the structure demands quantum corrections that naïvely break the gauge
invariance, such as a mass term for a non-Abelian gauge field. Exploiting the derivative expan-
sion, BRST cohomological methods fix the solution up to choice of renormalization conditions,
without inputting the form of the classical, or bare, interactions. Legendre transformation results
in an equivalent description in terms of solving the modified Slavnov–Taylor identities and the
flow of the Legendre effective action under an infrared cutoff � (i.e. effective average action).
The flow generates a canonical transformation that automatically solves the Slavnov–Taylor
identities for the wavefunction renormalization constants. We confirm this structure in detail at
tree level and one loop. Under flow of �, the standard results are obtained for the beta function,
anomalous dimension, and physical amplitudes, up to the choice of the renormalization scheme.
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1. Introduction

Exact renormalization group (RG) equations [1], such as those for a Wilsonian effective action,
which are exact equations for its flow with respect to some effective ultraviolet (UV) cutoff � [1,2]
(see also Refs. [3–19]), or those for the effective average action, which are exact equations for the
flow of the one-particle irreducible (1PI) effective action, equivalently the Legendre effective action
with infrared (IR) cutoff � [5,20,21] (see also Refs. [4,22–25] and Ref. [5, Note Added]), provide
a powerful conceptual and practical approach to developing both exact and approximate continuum
solutions in quantum field theory (for reviews, see, e.g., Refs. [26–34]).

They are formulated using a cutoff function that suppresses the corresponding region in momentum
space of the quantum field. However, for gauge theories, local symmetry transformations, schemat-
ically φ(x) �→ �(x) φ(x), do not respect such a division of the Fourier transform, φ(p), into high-
and low-momentum modes. Then one is faced with either generalizing the cutoff and the flow
equations such that they can respect the local invariance of the quantum field [7–19,24] (for alter-
native approaches see Refs. [35–39]) with, however, an attendant increase in complexity, or only
recovering gauge invariance in the limit that the cutoff is removed. In the former case computations
can be carried out while preserving manifest gauge invariance; however, in the latter case one must
first fix a gauge. Then gauge invariance is replaced by BRST invariance [40–43], and the strategy
would be to recover BRST invariance in the limit as the cutoff is removed.
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Even if gauge invariance is preserved, BRST invariance is deformed by quantum corrections.
Taking this into account, BRST invariance is most effectively expressed on the quantum fields
through the quantum master equation (QME) [44–47], while for the Legendre effective action it is
expressed through the Zinn-Justin equation [48–50], which in fact is most elegantly expressed as the
classical master equation (CME).

When combined with the requirement of locality, the CME can be solved by the elegant and
powerful methods of BRST cohomology [51–54] (for reviews, see Refs. [55–57]). Of course, locality
is an important physical requirement, but it is also crucial to realize the power of BRST cohomology.
Indeed, in the space of non-local functionals, this structure disappears: BRST cohomology is trivial
[53,54], and a non-Abelian BRST algebra can be rewritten as anAbelian one [46] (see also Ref. [58]).
Fortunately, the assumption of locality is justified when analyzing the most general possibilities for
interacting gauge-invariant systems at the classical level and, in sensible frameworks, when analyzing
only the structure of UV divergences in a perturbative expansion in � (thus, e.g., leading to the proof
of renormalizability of Yang–Mills theories [48–50]).

At first sight, then, these methods lose their power when analyzing the full quantum corrections,
which are inherently non-local. Moreover, the Batalin–Vilkovisky measure operator �, part of the
QME, is ill defined without further regularization [47,55], and within the framework of exact RG
equations the BRST invariance is anyway broken until the cutoff is removed (as discussed above).

Actually, as we will see, all these unpleasant features can be avoided in an especially natural
combination of the QME and exact RG [58]. In particular, they can be combined in such a way that
they are mutually compatible [59–68]. Then the QME can be satisfied simultaneously with the flow
equation. By working with off-shell BRST (thus also including auxiliary fields) the quantum BRST
invariance is then not lost in the continuum effective action in the presence of the cutoff, but gets
deformed in a calculable way. This is remarkable given that the cutoff then allows a mass term for
the gauge field to be generated by quantum corrections [69]. Such a term is, of course, forbidden
by the classical BRST algebra (and the CME). However, it not only becomes allowed but in fact
demanded by the now well-defined (regularized) measure operator � in this framework.

Also, locality is not lost but is relaxed to the requirement of quasi-locality, which is anyway a
fundamental requirement of theWilsonian RG in the continuum [8,70], corresponding to the existence
of a sensible Kadanoff blocking [71] (with radius of order 1/�). Quasi-locality implies that vertices
must have a derivative expansion, corresponding to a Taylor expansion in dimensionless momenta
pμ/�. In our formulation, � is regularized such that it is well defined when acting on arbitrary local
functionals, but the rest of the BRST structure remains unmodified to first order [58]. As we will
see, quasi-locality is then sufficient to regain the full potential of BRST cohomological methods.

We can therefore say that BRST invariance is not broken by the cutoff, but remains powerfully
present in this structure. This paper is devoted to exploiting and making manifest this symmetry
structure in (the solution of) continuum non-Abelian gauge theory.

We stress here and throughout the paper that quasi-locality of the effective action at non-vanishing
� is essential. In particular, when solving for either such effective action directly in the continuum
limit, it is this that replaces the requirement that there exists a local bare action, and it is this that
ensures a unique solution for the (non-local) effective action at � = 0. Indeed, the physical vertices
are obtained from the Legendre effective action in the�→ 0 limit. They are non-local and (evidently)
independent of �. Without the constraint that a derivative expansion exists at non-vanishing � one
could add any �-independent (and BRST-invariant) non-local term to the continuum effective action
as a �-integration constant, so that solutions to the flow equations become under-determined. On the
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other hand, the requirement that the effective action has a derivative expansion at non-vanishing �

replaces the need to insist on a local bare action: indeed, it builds one in since, by dimensions, higher
derivatives appear weighted by the appropriate inverse power of �, and thus the effective action for
finitely varying fields (finite momentum) but as �→∞ tends to a local action (with divergent bare
couplings).

The problems that arise from the impossibility of imposing BRST invariance on some local bare
action at an initial UV scale � = �0 (see, e.g., [59,68]) are avoided by working directly in the
continuum limit (�0 →∞) with a finite (and thus renormalized) solution for the effective action at
scale �.

For U (1) gauge theories, such as QED, it is possible to give a closed form expression for the
resulting renormalized BRST transformations in the presence of a cutoff, in terms of manifestly finite
composite operators [64]. In non-Abelian gauge theory it does not appear possible to solve exactly in
closed form for the BRST symmetry in terms of manifestly finite quantities.1 However, such a closed
form can be derived within suitable approximations. We demonstrate this in perturbation theory to
one loop, using Yang–Mills theory with general gauge group, and in a general gauge. As we will
see, the structure allows us to solve directly for the continuum effective action in a particularly clean
way, guided and underpinned at crucial stages by quasi-locality and BRST cohomology. Notably,
one can work in the so-called minimal gauge-invariant basis, where the antighost and auxiliary field
are absent, and the freedom in perturbations is manifestly independent of the choice of gauge fixing.

The functional RG equation for the Wilsonian effective action is related to that for the 1PI effective
action (cutoff Legendre effective action) via a Legendre transform identity [5],2 such that the UV
cutoff in the former is related to the IR cutoff of the latter. Under this transformation one obtains
not only the flow equation for this so-called effective average action, but also the so-called modified
Slavnov–Taylor identities (mST) [69] which take the form of the CME (a.k.a. Zinn-Justin equation)
together with quantum corrections generated by the cutoff. Thus we find that here too one can solve
particularly cleanly for the renormalized 1PI effective action, in the minimal gauge-invariant basis,
exploiting BRST cohomology and quasi-locality.

We show that for both effective actions the form of the classical interacting part is uniquely
determined by classical BRST cohomology. This was shown in Refs. [51–57]. Here we recover this
result in the presence of an effective cutoff. In this way, we derive the solution for either effective
action without a priori input of either a classical action or a bare action.

It is clear that since the Wilsonian action can be reconstructed from the 1PI effective action,
but satisfies the QME, BRST symmetry is still not lost at the quantum level but deformed by the
cutoff in a calculable way. Notably, we show that RG flow generates a particularly simple canonical
transformation in which the fields and the so-called antifields renormalize in opposite directions.
We show that these renormalizations automatically solve for the standard Slavnov–Taylor relations
between the wavefunction renormalization factors. In particular, these relations thus remain unaltered
at the quantum level by the presence of the cutoff. As we will confirm, the coupling parametrizes
the only remaining freedom in the solution of the QME/mST.

We verify that the natural renormalization conditions on the effective action correspond to a finite
renormalization of standard schemes. We then find that at one loop, the coupling evolves with �

1 The problem is that the corresponding composite operators [64] now require renormalization.
2 This powerful relation was also exploited in Refs. [22,72–74]. See also Refs. [23,75–77].
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according to the standard asympotically free β-function (despite the generation of terms that naïvely
break the gauge invariance).

The structure of the paper is as follows. In Sect. 2 we show explicitly that the QME and Wilsonian
flow equation, which can be written as compatible equations for finite renormalized quantities,
can also be solved consistently for the Wilsonian effective action in terms of finite quantities. By
considering a perturbative expansion together with the derivative expansion, we show in Sects. 2.2
and 2.3 that the resulting structure, even at a general abstract level, is already sufficient to recover in
this context much of the standard lore for renormalization of non-Abelian gauge theories. We then
go on to develop in full the simultaneous perturbative solution of the flow equation and QME for
the case of Yang–Mills with general gauge group and in general gauge. In Sect. 3 we equivalently
solve for the 1PI effective action. We derive from the Legendre transform relation both its flow
equation [5,20,21] and its mST equation [69]. Although this latter is more awkward than the QME,
it is more streamlined to solve at higher orders since we then avoid having to compute tree-diagram
corrections at intermediate stages. However, we also see explicitly, via the Legendre transform
relations, how these are the same as found for the Wilsonian effective action. These solutions have
�-integration constants which must themselves have a derivative expansion. They determine the
interactions through solving the classical BRST cohomology, while at the quantum level they play
the rôle of wavefunction renormalization. In Sect. 4 we show that the mST or QME then enforces
that this scaling parametrizes a simple canonical transformation which automatically solves the
corresponding Slavnov–Taylor identities. In Sect. 5 we compute these and the natural renormalization
of coupling, verifying that this yields the standard result for the β function but here as a flow of the IR
cutoff �, and that the resulting vertices satisfy the mST. Finally, in Sect. 6 we summarize and draw
our conclusions. In particular, we emphasize once again that, in terms of the Wilsonian effective
action, the BRST invariance is unbroken despite the appearance of, for example, an effective �2

mass term.

2. The Wilsonian flow equation and the QME

In this section we solve for gauge theory in the presence of a cutoff in terms of a Wilson/Polchinski
effective action S [1,2], by solving the Wilsonian flow equation simultaneously with the QME
[44–47]. The latter will imply all the Slavnov–Taylor identities as well as the Ward–Takahashi
identities. We first consider the issue in general and then specialize to the case of Yang–Mills theory
in four spacetime dimensions.

2.1. BRST invariance and the QME in the presence of a cutoff function

We use the notation of Ref. [67] except for some small changes. In particular, we drop � subscripts
since everything will be evaluated at �. However, we follow the formulation given in Ref. [58]. It
is based on Ref. [67], except that we work with off-shell BRST so that we can use its idempotency,
s2 = 0, which is the crucial property behind BRST cohomology, and we use a change of variables
to a new “basis.” The relation of this basis to earlier work is briefly reviewed in Appendix A.

We write the free Wilsonian effective action as [58]

S0[φ, φ∗] = 1
2φAK−1�−1

AB φB + φ∗AK−1RA
BφB, (2.1)

�−1
AB being the differential operators defining the kinetic terms, which are regularized by a smooth

(thus Taylor expandable) UV cutoff function K(p2/�2), satisfying the standard requirements K(0) =
1 and K(u)→ 0 sufficiently fast as u→∞ to ensure that all momentum integrals that we encounter
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are UV regulated (faster than power fall off is sufficient). In addition, as we explain later, see
Eq. (2.35), in general gauge we need the first derivative to vanish,

K ′(0) = 0, (2.2)

in order to ensure that the effective action has a derivative expansion. The propagator �AB is the
inverse of �−1

AB . In practice we will be interested in IR-regulated propagators,

�̄AB = K̄�AB, (2.3)

where K̄ = 1− K . Indeed, from the above relations we see that K̄ works as an IR cutoff, satisfying
K̄(0) = 0, K̄ ′(0) = 0, and K̄(u)→ 1 as u→∞.

The antifields φ∗A are sources for the BRST transformations. Using these, the free action in Eq. (2.1)
incorporates the free (and unregularized) BRST transformations:

Q0 φA = RA
B φB. (2.4)

The full effective action is written S = S0+SI , where SI [φ, φ∗] contains the interactions. The BRST
transformations in the interacting theory

QφA = (φA, S) = K
∂lS

∂φ∗A
(2.5)

then follow from a regularized version of the Batalin–Vilkovisky antibracket [44–47]. This latter and
the regularized measure operator are given by [58]

(X , Y ) = ∂rX

∂φA K
∂lY

∂φ∗A
− ∂rX

∂φ∗A
K

∂lY

∂φA and �X = (−)A+1 ∂r

∂φA K
∂r

∂φ∗A
X . (2.6)

Here, X and Y are arbitrary bosonic or fermionic functionals, and (−)A = (−)εA , where εA = 1 (0)

if φA is fermionic (bosonic), φ∗A having the opposite Grassmann grading. It is to be understood that
K carries the momentum of the DeWitt-contracted (anti)fields in Eq. (2.6). These constructs lead to
many powerful identities [44–47], which continue to hold in the presence of this regularization since
the identities follow from symmetry and statistics [58]. Notice that the general form in Eq. (2.5)
agrees with the free case in Eq. (2.4), since the cutoff factors cancel between Eqs. (2.6) and (2.1)
in this case. Also notice that the definition in Eq. (2.5) implies that the BRST transformations are
right-acting, as in Refs. [44–47]. (In Ref. [58], left-acting transformations were used, as in Refs. [51–
54,78]. In Appendix B we translate between the two.) We will also need the Kozsul–Tate operator,
Q− [58,79–81]. It acts (from the right) on antifields [51–57]:

Q−φ∗A = (φ∗A, S) = −K
∂lS

∂φA =⇒ Q−0 φ∗A = −�−1
AB φB + (−)Bφ∗BRB

A. (2.7)

The QME is the statement that the quantum master functional (QMF) vanishes, where the QMF
is given by [44]

	 = 1
2(S, S)−�S, (2.8)

regularized as in Eq. (2.6). Of particular importance are perturbations, S + ε O, that preserve the
QME (where ε is infinitesimal, and O a quasi-local operator integrated over spacetime). This deforms
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the BRST algebra, allowing us to explore the space of interacting theories whose gauge invariance is
smoothly connected to that of the original. Substituting the perturbed action into the QME we have
that the operator must be (quantum) BRST invariant,

ŝ O = 0, (2.9)

a.k.a. closed under ŝ, where the full (or total) quantum BRST transformation,3

ŝ O = (O, S)−�O = (Q + Q−−�) O, (2.10)

can be shown to be nilpotent: ŝ2 = 0 [44–47]. An infinitesimal canonical transformation

O = ŝ K = (K, S)−�K (2.11)

is ŝ-exact, and thus trivially a solution to Eq. (2.9) and a symmetry of the QME. However, such an
operator just corresponds to the infinitesimal field and source redefinitions

δφA = −εK
∂rK
∂φ∗A

, δφ∗A = εK
∂rK
∂φA , (2.12)

with−�K corresponding to the Jacobian of the change of variables in the partition function. We are
therefore interested only in operators O that are closed under ŝ but not exact, i.e. we want operators
that lie in the non-trivial part of the (full) quantum BRST cohomology.

When we develop solutions as an expansion in �, and also when we consider the 1PI framework
in Sect. 3, the classical (� → 0) equivalents to the above become important. They are the same
equations with S replaced by the classical action, Scl, and with the measure operator switched off.
In particular, the CME is the statement that

(Scl, Scl) = 0. (2.13)

The full classical BRST transformation, scl, on an operator O is given by the sum of the classical
Koszul–Tate operator and the classical BRST operator:

scl O = (Qcl + Q−cl ) O = (O, Scl). (2.14)

Perturbations, Scl + ε O, that preserve the CME are invariant under the full classical BRST
transformation: scl O = 0.

2.2. Compatibility with the Wilsonian flow equation and continuum limit

As shown in Ref. [58], in this formulation the flow equation takes the same form as in Ref. [2]:

ṠI = −1
2∂r

ASI
˙̄�AB∂ l

BSI + 1
2(−)A ˙̄�AB∂ l

B∂r
ASI = 1

2a0[SI , SI ] − a1[SI ], (2.15)

where (a0)a1 is the corresponding (bi)linear functional detailed in the middle equation [7]. Here,
∂A ≡ ∂/∂φA, and the dot means ∂t = −�∂�, where t = ln(μ/�), μ being the usual arbitrary
fixed finite energy scale. With the regularization of Eq. (2.6), the QMF is compatible with the flow
equation in Eq. (2.15) [58]:

	̇ = a0[SI , 	] − a1[	]. (2.16)

3 This was called s in Ref. [58], which we reserve here for s = Q + Q−.
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This means that if 	 = 0, then also 	̇ = 0, and thus that if the QME is satisfied at some generic
scale �, it remains satisfied on further RG evolution. (In fact, Eq. (2.16) coincides with the flow
equation for a (composite) operator [58,67].)

On the other hand, we are interested in forming a continuum limit, which means that in dimen-
sionless variables (and appropriate wavefunction renormalizations) S tends to a fixed-point action
in the limit � → ∞. Close to the fixed point, S is then given by the fixed-point action plus an
expansion to first order over the (marginally) relevant eigenoperators, with conjugate couplings g
which (in dimensionful terms) are constant and of positive or vanishing dimension [1,26,74]. These
cases are not generic points on the flow. It is not sufficient that the QME is satisfied at the fixed
point, or even at first order, to be able to conclude from Eq. (2.16) that the QME is satisfied at all
points on the resulting renormalized trajectory. However, developing the solution as a perturbative
expansion over the eigenoperators beyond first order, we will see that the compatibility of BRST
invariance with the continuum limit is determined only by integration constants associated with the
higher-order solutions.4 This serves to determine how a cutoff effective action that is invariant under
such non-linear BRST transformations must have its (marginally) relevant couplings constrained.

We emphasize that the above procedure can in principle be carried out around a non-perturbative
fixed point (using suitably modified equations to take into account anomalous dimensions). The key
observation that makes this possible is that close to the fixed point a perturbative expansion over the
(marginally) relevant couplings is allowed even in this case, since such couplings must be vanishingly
small there. Then the integration constants will be determined in the way we sketched above.

To carry out such a program explicitly, however, requires explicit solutions for a non-perturbative
fixed point which also satisfies the QME, and explicit solutions for the eigenoperators. No exact
non-perturbative solutions are known. Therefore, we will content ourselves here with demonstrating
the structure within perturbation theory about the Gaussian fixed point.

Thus, consider a renormalized trajectory leaving the Gaussian fixed point at � = ∞. The Gaussian
fixed point corresponds to the solution SI = 0 of Eq. (2.15). The flow is parametrized by the finite
renormalized (marginally) relevant couplings. For simplicity we assume there is only one coupling
g. Since we are studying the flow close to the fixed point, we can expand:

S = S0 + gS1 + g2S2 + · · · . (2.17)

Here, S1 is the eigenoperator conjugate to g. When we consider quantum corrections we will need to
define g more precisely, through some renormalization condition. As we recall later, depending on
our choice of renormalization condition, g can either be a function of � or independent of it. Here
we treat it as � independent. Perturbative expansion of Eq. (2.15) then gives

Ṡn = 1

2

n−1∑
m=1

a0[Sn−m, Sm] − a1[Sn]. (2.18)

Similarly, one can expand the QMF as

	 = 	0 + g	1 + g2	2 + · · · . (2.19)

4 Interestingly, this leaves open the possibility of extra constraints from non-perturbative corrections. We
will not explore this further here.
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Now 	0 = 0 follows from the fact that Eq. (2.4) is an invariance of the kinetic term in Eq. (2.1).
Then one has, from Eq. (2.16), that

	̇n =
n−1∑
m=1

a0[Sn−m, 	m] − a1[	n]. (2.20)

From Eq. (2.8) we have that

	n = ŝ0 Sn + 1

2

n−1∑
m=1

(Sn−m, Sm), (2.21)

where, from Eq. (2.10), ŝ0 = Q0 + Q−0 −� is the free full quantum BRST charge.
Now, from Eq. (2.18), the eigenoperator equation is, in this notation,

Ṡ1 = −a1[S1]. (2.22)

From Eq. (2.20) we see that 	1 also satisfies this equation. From Eq. (2.21), 	1 = ŝ0 S1. Therefore
ŝ0 S1 must also be an expansion over eigenoperators with constant coefficients. Since we require
	1 = 0 for the QME to be satisfied, we thus see that the quantum BRST cohomology is to be
defined within the space spanned by the eigenoperators with constant coefficients [74].

If we have already determined that the QME is solved up to 	m = 0 for m < n, then Eq. (2.20)
reduces to

	̇n = −a1[	n]. (2.23)

Since this is again the eigenoperator equation, it means that the QME has only the possibility to
be violated by a linear combination of eigenoperators with constant coefficients. By Eq. (2.21), this
is to be repaired (if possible) by adding to Sn a linear combination of eigenoperators with constant
coefficients. We thus see that the only freedom to make the QME compatible with a continuum-limit
solution of the flow equation is that contained within the perturbative development of the BRST
cohomology.5

We stress that this is a very powerful conclusion. It is clear that in this way we are already recovering
the crucial steps in the proof of renormalizability of gauge theories [48–50]. We will develop this in
the remainder of the paper. However, we emphasize that this structure is seen here to arise in general,
for the continuum (and thus we mean already renormalized) effective action. And note especially
that this structure is seen to operate even with the momentum cutoff kept in place.

Notice that although the equations above have been derived by expanding perturbatively in g,
they are still exact in �, i.e. non-perturbative in the loop expansion. For example, consider the
eigenoperator equation in Eq. (2.22). On the right-hand side (RHS), a1[S1] attaches a loop to the
S1 vertex. If the result is non-vanishing, solutions S1 will be functions of �. This dependence may
be Taylor expandable in �, or may also be inherently non-perturbative in �. The latter type of
eigenoperator is the crucial starting point in a proposal for a genuinely renormalizable quantization
of gravity [58,74,104,105]. The other equations, Eqs. (2.18)–(2.23), are similarly exact in �. As we

5 In particular, note that from Eqs. (2.18) and (2.20), we are always free to add to Sn an ŝ0-closed linear com-
bination of eigenoperators with constant coefficients. It is this freedom that needs to be fixed by renormalization
conditions.
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have seen they are solved by utilizing ŝ0-cohomology, where ŝ0 has a linear dependence on �, given
exactly by the one-loop measure operator, �.

Starting in the next section, however, we will specialize toYang–Mills theory, whose solution may
be computed perturbatively in the loop expansion. In fact, in this case the S1 we need to use is purely
classical (i.e. carries no � dependence) since a1[S1] turns out to vanish.

2.3. Five consequences for Yang–Mills theory

Let us illustrate the power of the structure above by now specializing to the case of Yang–Mills
theory in four spacetime dimensions, and to the loop expansion (i.e. expansion in �). We will need
at this stage only that all (anti)fields have at least dimension one (see table 1), the coupling g is
dimensionless, 	 (S) has dimension one (zero) overall, and that S1 contains monomials with (at
least) three (anti)fields.

At the classical level, S = Scl, we drop a1. Then, from Eq. (2.23) the only way the QME (now
CME) can be violated is through terms that are independent of �. Since S (	) must have a derivative
expansion and since there are no dimensionful parameters other than � itself, such terms in S (	)
are spacetime integrals of local operators of dimension four (five). We therefore conclude that:

C1 From Eq. (2.22), which is now Ṡ1,cl = 0, and 	1,cl = 0, which is

s0 S1,cl = 0, where s0 := Q0 + Q−0 , (2.24)

S1,cl is a local operator of dimension four, which moreover must be a non-trivial solution of the
classical free BRST cohomology (s0 being the full free classical BRST charge).

C2 S2,cl, being formed of tree-level corrections involving S1, has a derivative expansion to all orders;
however, 	2,cl must already vanish for all the � dependence, leaving at most a dimension-five
local operator that we need to cancel (if possible) with a �-independent dimension-four local
operator addition to S2,cl.

C3 Since the tree expansion, and similarly the antibracket in Eq. (2.21), has the property that Sn,cl

(	n,cl) is made of vertices with at least n+2 (anti)fields, no �-independent local operator
is possible in S3,cl. Thus, any �-independent (and thus dimension-five) part of 	3,cl would
represent an obstruction to the classical solution at O(g3). For all n>3, neither Sn,cl nor 	n,cl

can have a �-independent local term, and therefore the Sn>3,cl must already satisfy the CME.

Now consider the quantum level at some fixed order � of the loop expansion. As we will review, the
solution of the flow equation generates the expected momentum integrals, though with propagators
that contain an IR cutoff. Assuming the lower loop orders have been solved already, since the RHS
generates an extra loop, Eq. (2.23) again reduces to the statement that the only way the QME can be
violated is by terms that are independent of �, which thus in S(�)

n (	(�)
n ) correspond to dimension-

four (-five) local operators. We see that the problem of solving simultaneously the flow equation and
QME is therefore confined to the question of whether such �-integration constants can be chosen
satisfactorily. We have thus shown that, at the quantum level:

C4 The body of the momentum integrals, corresponding to all the non-trivial � dependence, must
already automatically satisfy the QME.

The �-integration constants play the same rôle as counterterms in a more standard treatment.
Indeed, since the measure operator in Eq. (2.21) also generates an extra loop, the �-integration
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constants are parts of S(�)
n that are determined only up to s0-closed pieces. The freedom in the

solution is thus held in pieces that are either proportional to S1,cl itself, i.e. the solution to Eq. (2.24),
or to s0-closed bilinear terms, which are therefore contained in the �-independent (K �→ 1) parts of
Eq. (2.1). The latter thus correspond to the freedom to introduce wavefunction renormalizations Zi

such that the CME remains satisfied. In other words, the Zi must in fact parametrize a particularly
simple form of canonical transformation. As we will show fully in Sect. 4:

C5 The Zi parametrize a canonical transformation that automatically solves the standard Slavnov–
Taylor identities for the wavefunction renormalization constants.

This freedom in the solution is fixed by choosing suitable renormalization conditions.
Although powerful, as we have seen these conclusions are achieved while remaining at an abstract

level. In the rest of the paper, we will solve for the effective actions S and  for Yang–Mills at tree-
level and one-loop level up to O(g3), thus providing the explicit form that confirm the above results,
and allowing the structure to be understood in full in a concrete example. In particular, we will see
explicitly that, despite the apparent explicit breaking of gauge invariance by the cutoff, the QME and
its implied BRST invariance remain satisfied. They in fact now demand quantum corrections that
naïvely break the gauge invariance, such as a mass term for the gauge field, in a way that ensures
a smooth limit to the standard results once the cutoff is removed. They also ensure the standard
β-function, which can even be recovered from a flow of g(�) with respect to cutoff � itself.

2.4. Free action, gauge-fixed and (minimal) gauge-invariant basis

Before introducing gauge fixing, the free action is in the so-called minimal gauge-invariant basis
[44–47]:

S0 = 1
2∂μaνK−1∂μaν − 1

2∂ ·aK−1∂ ·a+ a∗μK−1∂μc. (2.25)

Here, aμ is the Yang–Mills gauge field, c the ghost field, and a∗μ is the source (antifield) for the free
BRST transformation on aμ. Our notation is such that any expression for an action functional should
be understood to appear inside the braces in

2 tr
∫

x
{· · · }. (2.26)

The (anti)fields depend on x, and unless explicitly stated they are contracted into the generators of the
gauge group, e.g. c = caT a. The factor of 2 in Eq. (2.26) compensates for the fact that the generators
are orthonormalized to tr(T aT b) = δab/2, as usual.

We will see shortly that we can in fact work in this minimal gauge-invariant basis, where expressions
are simplest, and it is clear the extent to which calculations are independent of gauge fixing. In this
basis, the only extra field we will need is c∗, the source for BRST transformations of c that appear
at the interacting level.

In order to gauge fix, however, we must first add the auxiliary field b that allows off-shell BRST
invariance, and c̄∗ which sources BRST transformations of the antighost, c̄. This takes us to the
so-called extended (or non-minimal) gauge-invariant basis. The free action is then written as

S0|gi = 1
2∂μaνK−1∂μaν − 1

2∂ ·aK−1∂ ·a+ a∗μK−1∂μc+ ξ

2
bK−1b+ c̄∗K−1b, (2.27)
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where ξ will become the gauge-fixing parameter. Recall that S0 ≡ S0,�, so everything here is at a
physical scale and renormalized; thus ξ is renormalized and not bare, for example.

For the flow equation in Eq. (2.15) we need propagators, which we get by working in a gauge-fixed
basis. This is implemented by a (finite) quantum canonical transformation [47,82–86] that affects
only the antifields:

φ∗A|gf = φ∗A|gi + ∂r
A�. (2.28)

Unlike the above references we do not then set the antifields to zero, since we will need them to
solve for the BRST transformations [58]. We take the gauge fermion to be

� = −ic̄ ∂ ·a. (2.29)

Thus, explicitly,

c̄∗|gf = c̄∗|gi − i∂ ·a,

a∗μ|gf = a∗μ|gi + i∂μc̄. (2.30)

Then the free action in the gauge-fixed basis is

S0|gf = S0|gi − i∂ ·aK−1b− i∂μc̄K−1∂μc. (2.31)

Leaving out the regulator, and inverting the �−1
AB in Eq. (2.31), gives the propagators �AB:

〈ca(p) c̄b(−p)〉 = iδab�(p), where �(p) := 1/p2,

〈aa
μ(p) ab

ν(−p)〉 = δab�μν(p) , where �μν(p) := 1

p2

(
δμν + (ξ − 1)

pμpν

p2

)
,

〈ba(p) ab
μ(−p)〉 = −〈aa

μ(p) bb(−p)〉 = δabpμ�(p),

〈ba(p) bb(−p)〉 = 0. (2.32)

By definition, since Eq. (2.30) is a quantum canonical transformation, the QMF, viz. Eq. (2.8), is
invariant. As we saw in Sect. 2.3, the lowest-order interaction S1 = S1,cl is given by a �-independent
non-trivial solution of the BRST cohomology. We can thus determine S1,cl in the gauge-invariant
minimal basis, which is manifestly independent of choice of gauge and uses the minimum number
of (anti)fields. This means in particular that S1,cl can be chosen to be independent of b and c̄∗. To
find the higher orders in Eq. (2.17), we then need the flow equation. Since the flow equation is
not invariant under the transformation in Eq. (2.30), one strategy would be first to map S1,cl to the
gauge-fixed basis. Once we have the result we need from the flow equation, we can map back to the
gauge-invariant basis, where expressions are simpler, using Eq. (2.30). This was the strategy used in
Ref. [58].

However, we can streamline this procedure, since we can already deduce the effect of mapping
between the different bases. First, we note that from Eq. (2.30), S1,cl in the gauge-fixed basis will still
not depend on b or c̄∗, and depends on c̄ only through the combination a∗μ− i∂μc̄. By iteration, using
the flow equation in Eq. (2.15), these properties are inherited by all the higher-order interactions.
Mapping back to the gauge-invariant basis using Eq. (2.30), we therefore see that SI will not depend
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on b, c̄∗, or c̄. This means in particular that the full SI remains in the minimal gauge-invariant basis.
However, from Eq. (2.30), we must replace field derivatives in Eq. (2.15) with

∂

∂aμ

∣∣∣∣
gf
= ∂

∂aμ

− i∂μ

∂

∂ c̄∗
,

∂

∂ c̄

∣∣∣∣
gf
= ∂

∂ c̄
+ i∂μ

∂

∂a∗μ
,

∂

∂a∗μ

∣∣∣∣
gf
= ∂

∂a∗μ
,

∂

∂ c̄∗

∣∣∣∣
gf
= ∂

∂ c̄∗
,

(2.33)
where the differentials on the RHS are in gauge-invariant basis. Since SI does not depend on either
c̄∗ or c̄, acting on SI these derivatives are effectively unchanged except for the replacement

∂

∂ c̄

∣∣∣∣
gf
≡ i∂μ

∂

∂a∗μ

∣∣∣∣
gi

. (2.34)

This is equivalent, for the purposes of taking a c̄ derivative, to temporarily replacing a∗μ by a∗μ− i∂μc̄.
Either way, this one replacement ensures that we get the right result from the flow equation when
working in the minimal gauge-invariant basis.

Since it simplifies the results, for our calculations we will therefore work in this basis. Although
S1,cl is then entirely independent of choice of gauge, the higher-order corrections do depend on it.
Indeed, this is clear from the fact that the gauge field propagator in Eq. (2.32) depends on ξ .

As already stated in Eq. (2.3) and is already clear to some extent from Eq. (2.15), the propagators
that appear in vertices will be IR regulated by K̄(p2/�2). As recalled in Sect. 1, the effective actions
must have the property that they have a derivative expansion for � > 0. Non-trivial solutions to
the effective actions will only have a derivative expansion if the propagators also have a derivative
expansion. This means the propagators must have a Taylor expansion in pμ. Since, for the gauge
fields,

�̄μν(p) = K̄(p2/�2)�μν(p) = −K ′(0)

�2

(
δμν + (ξ − 1)

pμpν

p2

)
+ Taylor series, (2.35)

we see that this property is violated for the gauge propagator outside the Feynman gauge unless we
impose the condition in Eq. (2.2), K ′(0) = 0.

2.5. BRST algebra

In Table 1 we list the (anti)fields together with their mass dimension, ghost number, and Grassmann
grading. These are assigned so that S0 conserves these charges (i.e. is bosonic and has zero dimension
and ghost number), as will also be required of SI . They imply that �, Q, and Q− increase the
dimension and ghost number by one. Similarly, the antibracket in Eq. (2.6) adds one to the sum of
the dimensions (sum of ghost charges) of X and Y .

We will see that in practice it is the free BRST cohomology that is central to solving for the
effective action. The free BRST transformations follow from Eqs. (2.5) or (2.4) and Eq. (2.25). The
only non-vanishing action in minimal basis is6

Q0 aμ = ∂μc, (2.36)

while similarly, from Eq. (2.7), the only non-vanishing actions of the free Kozsul–Tate operator are

Q−0 a∗μ = � aμ − ∂μ∂ ·a = �PT
μνaν , Q−0 c∗ = −∂ ·a∗, (2.37)

6 In the extended gauge-invariant basis of Eq. (2.27), we would also have Q0c̄ = b and have a c̄(∗) part of
�−.
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Table 1. The various Abelian charges (a.k.a. gradings) carried by the (anti)fields, namely Grassmann grading,
ghost number, antighost/antifield number, pure gh # = gh # + ag #, and mass dimension. The first two rows are
the minimimal set of fields, the next two make it up to the non-minimal set, then the ensuing two rows are the
minimal set of antifields, and c̄∗ is needed for the non-minimal set.

ε gh # ag # Pure gh # Dimension

aμ 0 0 0 0 1
c 1 1 0 1 1
c̄ 1 −1 1 0 1
b 0 0 1 1 2
a∗μ 1 −1 1 0 2
c∗ 0 −2 2 0 2
c̄∗ 0 0 0 0 2

where � = ∂2
μ, and PT

μν is the transverse projector. Following Henneaux et al. [51–57], we can
simplify finding solutions of the free cohomology by splitting the problem up (a.k.a. grading) by
antighost (or, depending on context, antifield) number. These are also listed in Table 1. They are
chosen so that the free BRST charges have a definite antighost number. We anticipated this with our
labeling: Q0 leaves the antighost number unchanged, while Q−0 lowers it by one. Under this grading,
the measure operator splits into two parts that lower the antighost number by one or two respectively:

� = �− +�=, �− = − ∂

∂aa
μ

K
∂r

∂a∗aμ

, �= = ∂r

∂ca K
∂

∂c∗a
. (2.38)

The point of this extra grading is that the action S does not have a definite anti-field number. We can
therefore split it into parts of definite anti-field number n: S =∑

n=0 Sn. To see why this is helpful,
note that the full free BRST charge in Eq. (2.10) can now be written as

ŝ0 = Q0 + Q−0 −�− −�=. (2.39)

This means that an operator O = ∑n
m=0 Om with some maximum antighost number n that is

annihilated by ŝ0 must satisfy the descent equations:

Q0 On = 0, Q0 On−1 = (�− − Q−0 ) On, Q0 On−2 = (�− − Q−0 ) On−1 +�=On, . . .

(2.40)
Starting with the top (left-most) equation, these are often easier to analyze than trying to work with
ŝ0 O = 0 directly. Grading the square, we also have the useful identities [58]

Q2
0 = 0, (Q−0 )2 = 0, (�−)2 = 0, (�=)2 = 0,

{Q0, Q−0 } = 0, {Q0, �−} = 0, {Q−0 , �=} = 0, {�−, �=} = 0,

{Q−0 , �−}+{Q0, �=} = 0. (2.41)

2.6. First order in coupling

Recall from Eq. (2.24) that we know that S1,cl is a local operator of dimension four which is a non-
trivial solution of the full classical BRST cohomology. At this stage we could just write it down and
verify Eq. (2.24). However, it is more profound to notice, following Refs. [51–57], that the solution
is in fact unique up to normalization and addition of a trivial reparametrization s0 K1.
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In fact, for us even this latter term cannot appear since K1 would have to be an integrated local
operator of ghost number−1, dimension three, and containing at least three (anti)fields. From Table 1,
no such operator exists. For the same reasons we can see that the maximum possible antighost number
of S1,cl is two. We can therefore write S1,cl = S0

1 + S1
1 + S2

1 . If it is non-vanishing, this maximal term
is unique up to normalization (equivalent to normalizing g):

S2
1 = −ic∗c2. (2.42)

(Any other arrangement of the (anti)fields is equivalent under the cyclicity of the trace.) Now,
Eq. (2.24) implies that S2

1 must satisfy

Q0S2
1 = 0, (2.43)

since this part alone has antighost number two. Since from Eq. (2.36) this is clearly true, it is a valid
part of S1 provided we can now find its descendants, S1

1 and S0
1 . From Eq. (2.24) we must have that

Q−0 S2
1 + Q0S1

1 = 0. (2.44)

Now, by Eq. (2.37),

Q−0 S2
1 = i∂ ·a∗c2 = −ia∗μ{∂μc, c} = −ia∗μ{Q0aμ, c} = iQ0

(
a∗μ[aμ, c]) , (2.45)

where the second equality follows by integration by parts, { , } being the anticommutator, and the
third equality uses Eq. (2.36). Thus, since cohomologically trivial parts are ruled out,

S1
1 = −ia∗μ[aμ, c]. (2.46)

Finally, we must have Q0S0
1 = −Q−0 S1

1 . Since

Q0

(
− i

2
(∂μaν − ∂νaμ)[aμ, aν]

)
= −i(∂μaν − ∂νaμ)[aμ, ∂νc]

= i(∂μ∂ ·a−�aμ)[aμ, c] = Q−0
(
ia∗μ[aμ, c]) , (2.47)

where in the second line we have integrated by parts and recognized that the resulting piece containing
[∂νaμ, c] vanishes under the trace, we find that

S0
1 = −i∂μaν[aμ, aν]. (2.48)

Therefore, we have verified conclusion C1 of Sect. 2.3. In fact, the entire solution at first order in
the coupling is:

S1 = S1,cl = −ic∗c2 − ia∗μ[aμ, c] − i∂μaν[aμ, aν], (2.49)

since the quantum parts, being the tadpole quantum correction on the RHS of Eq. (2.22), and the
measure operators in Eqs. (2.10) and (2.38), give vanishing contribution, in particular because they
would leave behind a single field contracted into tr T a = 0.
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2.7. Classical solution at second order in coupling

From Eqs. (2.15), (2.18), and (2.21), we need to solve, at second order at the classical level,

s0 S2,cl = −1
2(S1, S1), (2.50)

Ṡ2,cl = −1
2 ∂r

AS1
˙̄�AB∂ l

BS1 = −1
2 S1
←
∂ A
˙̄�AB →

∂ B S1 (2.51)

(where s0 was given in Eq. (2.24) and we also display a more intuitive notation for left and right
derivatives [66,67]).

At first sight we can solve for S2,cl already by using Eq. (2.50). Indeed, from Eq. (2.6):7

s0 S2,cl =
([c∗, c] + [a∗μ, aμ]

)
K(c2) − {a∗μ, c}K[aμ, c] − �μK[aμ, c], (2.52)

where �μ is shorthand for the result of differentiating Eq. (2.48):

�μ := ∂ρ[aρ , aμ] + [∂μaρ − ∂ρaμ, aρ]. (2.53)

Counting antighost number, and bearing in mind that the s0-closed part has already been solved for,
the highest antighost number that appears is S2

2 ∈ S2,cl. Thus, we know that

Q0 S2
2 = [c∗, c]K(c2). (2.54)

If K were not there, the RHS would vanish on using the cyclicity of the overall trace. Therefore, only
pure derivative pieces survive in its derivative expansion:

K(−∂2/�2) = 1+
∞∑

n=1

Kn(−∂2/�2)n. (2.55)

Since any derivative acting on c2 turns it into a Q0-exact piece, and thus the whole of the RHS
into a Q0-exact piece, we see that Eq. (2.54) has a solution. However, there is no natural canonical
choice. Choosing different ∂μc to convert into Q0 aμ corresponds to the freedom to add a piece that
is trivially annihilated by Q0, i.e. to add an exact term Q0K2

2 ∈ s0K2. We see that now � is involved,
there are infinitely many solutions if we consider only Eq. (2.50).

On the other hand, given that S1 is �-independent, the solution to Eq. (2.51) is uniquely determined
by the requirement that it have a derivative expansion, up to addition of a �-independent dimension-
four local operator O2:

S2,cl = −1
2 S1
←
∂ A �̄AB →

∂ B S1 +O2. (2.56)

We recognize that the first part is the one-particle reducible (1PR) contribution:

S2,red = −1
2 S1
←
∂ A �̄AB →

∂ B S1, (2.57)

whilst O2 should also contain four (anti)fields but provide a 1PI contribution. The flow equation
alone does not determine O2, but we can already see from Eq. (2.50), or Eq. (2.52), that if a solution
exists for O2 it is unique. This is because any change in O2 would have to be s0-closed. But we have

7 It is most straightforward to use 2 tr(XT a) tr(T aY ) = tr(XY ) for traceless X , Y .
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already seen in Sect. 2.6 that S1 is the unique s0-closed dimension-four operator containing at least
three (anti)fields.

Substituting Eq. (2.49) into Eq. (2.57), and using Eqs. (2.53), (2.3), (2.32), and (2.34):

S2,red = 1
2

({a∗μ, c} +�μ

) �̄μν

({a∗ν , c} +�ν

) − ([c∗, c] + [a∗μ, aμ]
) �̄ ∂ν[aν , c]. (2.58)

From this, we see that

Q0 S2
2,red = −Q0 [c∗, c]�̄ ∂ν[aν , c] = [c∗, c]�̄�(c2) = [c∗, c]K(c2), (2.59)

and thus that the 1PR part already satisfies the CME in Eq. (2.52) at the antighost number two level,
namely Eq. (2.54).

We also find that S2,red satisfies Eq. (2.52) at antighost number one. Indeed, recalling Eq. (2.37),
defining PL

μν = pμpν/p2, and noting that

Q0�μ = −�PT
μν[aν , c] + [�PT

μνaν , c], (2.60)

we verify the antighost number one descendent equation:

Q−0
(1

2{a∗μ, c}�̄μν{a∗ν , c} − [c∗, c]�̄∂ν[aν , c])+ Q0
(
�μ�̄μν{a∗ν , c} − [a∗μ, aμ]�̄ ∂ν[aν , c])

= −{a∗μ, c}�̄μρ�PT
ρν[aν , c] + {a∗μ, c}∂μ�̄∂ν[aν , c] − [a∗μ, aμ]�̄�(c2)

= [a∗μ, aμ]Kc2 − {a∗μ, c}K[aμ, c], (2.61)

where the first term on the second line comes from combining the first Q−0 and first Q0 terms, and
the next two terms from combining the second Q−0 and Q0 terms. The final line coincides with the
appropriate terms in Eq. (2.52).

On the other hand, after some similar manipulation one finds the descendent equation at antighost
number zero:

Q−0
(
�μ�̄μν{a∗ν , c} − [a∗μ, aμ]�̄ ∂ν[aν , c])+ Q0

(1
2�μ�̄μν�ν

)
= −�μK[aμ, c] + [aμ, aν][aμ, ∂νc], (2.62)

and thus that S2,red violates the CME in Eq. (2.52) by the last term on the right. At this point we recall
that it is S2,cl that should satisfy the CME. From Eq. (2.56), that is therefore possible by choosing

O2 = −1
4 [aμ, aν]2. (2.63)

By the argument below Eq. (2.57), this is the unique solution. We recognize that it is the expected
g2 interaction in the classical bare action. And we note that we have now verified conclusion C2.

2.8. Classical solution at third order in coupling

From Eqs. (2.15), (2.18), and (2.56), it is straightforward to see that the g3 part of the classical
solution can be integrated exactly. It is then uniquely determined by the requirement that it have a
derivative expansion:

S3,cl = − S1
←
∂ A �̄AB →

∂ B O2 + 1
2 S1
←
∂ A �̄AB

(→
∂ B S1

←
∂ C

)
�̄CD →

∂ D S1, (2.64)
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since from the argument of C3, by dimensions there can be no integration constant. In particular, in
our case the Sn,cl have precisely n+2 (anti)fields. In Sect. 3.1 we will also derive Eq. (2.64) from the
Legendre transform identity [5].

Recall from Sect. 2.3 that similarly, thanks to compatibility with the flow equation, the g3 part of
the CME has only the potential to be violated by a �-independent local term. Since such a term must
have ghost number one and dimension five, it must contain precisely four a fields and one c. Then,
given also that it must be single trace and valued in the Lie algebra (be composed of the product of
commutators), one can show that such terms vanish identically. We will see this explicitly at the end
of this section.

Therefore we must already find:

	3,cl = s0 S3,cl + (S1, S2,cl) = 0. (2.65)

Now, substituting for O2 and S1 in Eq. (2.64) and using Eqs. (2.63) and (2.49), we find that

S3,cl =− i ({a∗μ, c} +�μ) �̄μν

[[aν , aσ ], aσ

]

− i
([c∗, c] + [a∗κ , aκ ]

)(−[
(∂�̄)·a �̄, ∂ ·[a, c]]+ [(

∂μ�̄
)
c �̄μν , {a∗ν , c} +�ν

])

− i
({a∗μ, c} +�μ

){�̄μν a∗ν �̄, ∂ ·[a, c]}

+ i
2

({a∗μ, c} +�μ

)[(
∂ρ�̄μν

)
aν �̄ρσ −

(
∂�̄μν

)·a �̄νσ

+ �̄μν

(
aρ

(
∂ν�̄ρσ

)− (
∂νaρ

)�̄ρσ − a·(∂�̄νσ

)+ (
∂ρaν

)�̄ρσ

)
, {a∗σ , c} +�σ

]

− i
2∂ ·[a, c][�̄ c∗�̄, ∂ ·[a, c]], (2.66)

where in the above equation it should be understood that the kernels (�̄ and ∂�̄) do not take part
in the (anti)commutators (see Appendix C for more explanation). We see that all terms in 	3,cl

except (S1, O2) are 1PR. Even (S1, O2) is non-local, however, since it contains the regulator K .
From Eq. (2.58), the antibracket (S1, S2,red) consists of terms with a factor K and one (ghost or
gauge) propagator. These terms collect together with parts of s0 S3,cl in such a way as to eliminate
one propagator from s0S3,cl. Splitting by antighost number, we thus find:

	2
3,cl = i[c∗, c]

({
c ∂μ�̄, [aμ, c]}− {(

∂μ�̄
)
c, [aμ, c]}+ [(

∂μ�̄
)
aμ,

1

2
{c, c}])

+ i[aμ, c][(∂μ�̄)c∗, 1

2
{c, c}]+ i{a∗μ, c}

([
c �̄μν , {a∗ν , c}]− [�̄μν a∗ν ,

1

2
{c, c}]), (2.67)

	1
3,cl = i[a∗κ , aκ ]

{
c �̄, ∂ ·[a, c]}

− i{a∗μ, c}
(
�̄μν

([[∂νc, aσ ], aσ

]+ [[aν , ∂σ c], aσ

]+ [[aν , aσ ], ∂σ c
])

− [
∂σ �̄μνaν − ∂�̄μσ ·a+ �̄μν(∂σ aν − ∂νaσ ), [aσ , c]]

− [(�̄μν aσ − �̄μσ aν

)
, ∂ν[aσ , c]]+ [

aμ�̄, ∂ ·[a, c]]
− [

c�̄μν , �ν

]+ �̄μν

[
c, �ν

])

+ ic2[a∗μ�̄μν , �ν

]− i[aμ, c]{a∗μ�̄, ∂ ·[a, c]}.
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Using trace properties such as the Jacobi identity, we can then show that 	2
3,cl = 	1

3,cl = 0. Finally,
for antighost number 0,

	0
3,cl = −i[aμ, c]K[

aν , [aν , aμ]
]− i�μ

[
aμ�̄, ∂ ·[a, c]]− i

(−�PT
μρ([aρ , c]))�̄μν

[[aν , aσ ], aσ

]

= −i[aμ, c]
(

K
[
aν , [aν , aμ]

]+ (δμν(1− K)+ ∂μ∂ν�̄)
[
aσ , [aσ , aν]

]

+ ∂μ�̄
[
aρ , ∂κ [aκ , aρ] + [∂ρaκ , aκ ] + [aκ , ∂κaρ]

])

= −i[aμ, c][aν , [aν , aμ]
] = 0. (2.68)

Note that the first term in the first line of Eq. (2.68) is (S1, O2). Its K part gets eliminated by a
similar 1−K piece, leaving behind the local term in the last line which is of the form that we flagged
at the beginning of this section, and thus vanishes.8 It corresponds to the unregularized version of
(S1, O2) (and also coincides with the term that appears in the 1PI formulation in Sect. 3.4), and thus
its vanishing is the statement that the bare classical Yang–Mills action has no g3 interaction.

We have thus, for this example, verified conclusion C3.

2.9. One-loop solution at second order in coupling

We now turn to the one-loop corrections. We have already seen at the end of Sect. 2.6 that S1 is
purely classical. On the other hand, S2 has a one-loop part, S2,q. From Eqs. (2.18) and (2.21) and the
definition of s0 in Eq. (2.24), it satisfies

Ṡ2,q = −a1[S2,cl] and s0S2,q = �S2,cl. (2.69)

From Eq. (2.15) and the explicit formulae for S2,cl, viz. Eqs. (2.58) and (2.63), and recalling the rule
in Eq. (2.34) for computing in the gauge-invariant basis, we see that S2,q is made of the two-point
vertices:9

S2,q = 1
2 CA aμ Aμν(∂) aν + CA a∗μ B(−∂2) ∂μc, (2.70)

where CA Aμν(p) and CA B(p2) pμ are the �-integrals of one-loop Feynman diagrams formed from

attaching ˙̄� for the ghosts, and also for the gauge-field. For later convenience we have pulled out a
factor of CA, where CA δab = f acd f bcd defines the Casimir of the adjoint representation, and for B
we have used Lorentz invariance to pull out a factor of the external momentum pμ. The �-integrals
can in fact be done exactly, as will become especially clear when we consider just the flow of the
1PI part. We therefore reserve their derivation until Sects. 3.5 and 5.1.

From Eq. (2.38) we see that �S2,cl results in one-loop diagrams formed by the action of �− and
�= on the antighost-number one and two parts respectively of Eq. (2.58), and thus we find that

�S2,cl = CA aμ F(−∂2) ∂μc, (2.71)

8 For example, under the trace it is the same as

i
[
aν , [aμ, c]][aν , aμ] = i

2

[[aν , aμ], c
][aν , aμ] = i

4

[[aν , aμ]2, c
] = 0.

9 Strictly, we should write Aμν(i∂) if we regard it as defined by its momentum representation, as we do for
B.
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where

F(p2) = pμ

p2

∫
q
�̄(q)K(p+q)

[
(3+ ξ)qμ + (2+ ξ)pμ + (1− ξ)

qμ

q2 (p+ q)·q
]

=
∫

q
�̄(q)K(p+q)

{
4

p·q
p2 + 2+ ξ + (1− ξ)

(p·q)2

p2q2

}
. (2.72)

In the first line we exploit the fact that the Feynman integral is proportional to pμ. Our notation is:

aμ(x) =
∫

p
aμ(p) e−ip·x,

∫
p
≡

∫
d4p

(2π)4 . (2.73)

Now, from Eq. (2.70), since s0 = Q0 + Q−0 where the latter are given in Eqs. (2.36) and (2.37), we
see that the second equation in Eq. (2.69) implies no constraint on B but

pμ Aμν(p) = F(p2) pν . (2.74)

From C4, this should be already satisfied, up to a possible �-independent piece in Aμν(p). In Sect. 5.1
we show that, for the natural form of Aμν(p), Eq. (2.74) is in fact automatically satisfied.

3. The Legendre flow equation and the mST

The 1PI parts of the Wilsonian effective action S are in fact the vertices of the Legendre effective
action (tot) regulated by the infrared cutoff K̄ [5,22,23,75–77]:

tot[�, �∗] = 1
2 �A�̄−1

AB�B +�∗ARA
B�B + I [�, �∗]. (3.1)

In other words, S can be computed through a tree-level expansion, using vertices from I [5,22]. It
is therefore most efficient to solve first for these 1PI parts. In Sects. 3.3–3.5, we recover the previous
results this way, and then in Sect. 5 we evaluate the one-loop contribution and also take it further, to
O(g3).

First, we demonstrate by means of the Legendre transformation [5,22,75,76] that I is governed by
the flow of the effective average action [4,5,20–25,75] and the mST identities [69]. In Sects. 3.3–3.5
we also see how the two formulations match together. In Sect. 4 we demonstrate that the freedom in
the continuum solution is parametrized by wavefunction renormalization constants that generate a
simple canonical transformation and solve the standard Slavnov–Taylor identities.

3.1. Legendre transform of the Wilsonian flow equation and QME

In Eq. (3.1), �∗ = φ∗ are the same antifield sources, renamed for aesthetics, �̄−1
AB is the inverse of

the IR-regulated propagator in Eq. (2.3), and �A = {A, B, C, C̄} are the so-called classical fields. The
interaction parts of each effective action are related via the Legendre transform relation [5,22,75,76]:

I [�, �∗] = SI [φ, φ∗] − 1
2 (φ −�)A �̄−1

AB (φ −�)B. (3.2)

This means in particular that

∂r

∂φB SI [φ, φ∗] = (φ −�)A�̄−1
AB =

∂r

∂�B I [�, �∗], (3.3)
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and similarly for left derivatives; thus, substituting back, we can write [5,22]

SI [φ, φ∗] = I [φ − �̄∂ lSI , φ∗] + 1
2 ∂r

ASI �̄AB∂ l
BSI . (3.4)

Taylor-expanding the I term, and iteratively substituting for SI [φ, φ∗], then gives the desired tree
(1PR) expansion:

SI = I [φ, φ∗] − I
←
∂ A �̄AB→

∂ BSI

+ 1
2 SI
←
∂ A �̄AB→

∂ BI
←
∂ C �̄CD→

∂ DSI + · · · + 1
2 SI
←
∂ A �̄AB→

∂ BSI

= I [φ, φ∗] − 1
2 I

←
∂ A �̄AB→

∂ BI + 1
2 I

←
∂ A �̄AB( →

∂ BI
←
∂ C

)�̄CD→
∂ DI + O

(
 4

I

)
. (3.5)

For example, specializing to the purely classical part reproduces the general form of the solutions in
Eqs. (2.56) and (2.64), on identifying I ,cl with the 1PI part of SI ,cl.

We now use the Legendre transformation to confirm the form of the flow equation and mST
identities for I . Indeed, from Eqs. (3.2) and (3.3),

∂t|�I = ∂t|φSI + 1
2 (φ −�)A(�̄−1 ˙̄��̄−1)

AB(φ −�)B = ṠI + 1

2

∂rSI

∂φA
˙̄�AB ∂lSI

∂φB . (3.6)

Using Eq. (2.15), and differentiating Eq. (3.3) once more with respect to the fields, one has

∂r�
A

∂φB =
([

1+ �̄
(2)
I

]−1
)A

B
, (3.7)

and thus we derive the flow equation for I [5]:

̇I = −1
2 Str

(
˙̄��̄−1

[
1+ �̄

(2)
I

]−1
)

(3.8)

(see also Refs. [4,20,22–25]), where Str M = (−)A MA
A, and we have introduced


(2)
I AB =

→
∂

∂�A I

←
∂

∂�B . (3.9)

It is a short step to recast this as the flow for the effective average action [21,75], , but it is
Eq. (3.8) that will be useful here. On the other hand, the mST is best expressed in terms of . This
1PI effective action is just the IR-cutoff Legendre effective action after subtracting the infrared cutoff
term, where the latter is expressed in additive form:

tot =  + 1
2�ARAB�B, �̄−1

AB = �−1
AB +RAB. (3.10)

As implied by Eq. (3.1),  is thus expressed in terms of a free part, 0, that carries no regularization:

 = 0 + I , 0 = 1
2 �A�−1

AB�B +�∗ARA
B�B. (3.11)

Consistent with this, the antibracket is most naturally expressed without regularization. Thus, for
arbitrary functionals of the classical (anti)fields, �[�, �∗] and ϒ[�, �∗], we define

(�, ϒ) = ∂r�

∂�A

∂lϒ

∂�∗A
− ∂r�

∂�∗A
∂lϒ

∂�A . (3.12)
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To arrive at the mST, we also need from Eq. (3.2) that (and similarly for left derivatives)

∂r

∂φ∗A

∣∣∣∣
φ

SI [φ, φ∗] = ∂r

∂�∗A

∣∣∣∣
�

I [�, �∗]. (3.13)

Recalling the K regularization in the antibracket of Eq. (2.6), and using Eq. (2.1), we have

1
2(S, S) = (SI , S0)+ 1

2(SI , SI )

= ∂rSI

∂φA RA
BφB − ∂rSI

∂φ∗A

(
�−1

ABφB + (−)ARB
Aφ∗B

)
+ ∂rSI

∂φ∗A
K̄

∂lSI

∂φA −
∂rSI

∂φ∗A
∂lSI

∂φA

= ∂rI

∂�A RA
B

(
�B + ∂rI

∂�C �̄CB
)
− ∂rI

∂�∗A

(
�−1

AB�B + (−)ARB
A�∗B

)
+ 1

2(I , I )

= (I , 0)+ 1
2(I , I ) = 1

2(, ), (3.14)

where in the third line we used Eqs. (3.3) and (3.13), in particular converting K̄∂ l
ASI to�−1

AB(φ−�)B,
and the antibracket in Eq. (3.12). Then we note that the second term in the first bracket vanishes
because

�CBRA
B +�ABRC

B = 0, (3.15)

by linearized BRST invariance (see Appendix B), after which we are left with the expanded version
of (I , 0), as one can see by comparing to the analogous terms in the second line. Finally,

�SI = ∂r

∂φA K
∂lSI

∂φ∗A
= ∂r

∂�B

(
K

∂lI

∂�∗A

)
∂r�

B

∂φA = Tr
(

K
(2)
I∗

[
1+ �̄

(2)
I

]−1
)

, (3.16)

where we used Eq. (2.6) and the fact that SI is bosonic, followed by Eq. (3.13) then Eq. (3.7), set

(


(2)
I∗

)A

B
=

→
∂

∂�∗A
I

←
∂

∂�B , (3.17)

and write Tr M =MA
A. Thus we have shown that the QMF in Eq. (2.8) can be written as

	 = 1
2(, )− Tr

(
K

(2)
I∗

[
1+ �̄

(2)
I

]−1
)

. (3.18)

Its vanishing is the QME. We see that it coincides with the mST identities first derived in Ref. [69].

3.2. Discussion

In the limit � → 0 (holding (anti)fields fixed), we have that  → tot, the standard Legendre
effective action without cutoff, as is clear from Eq. (3.1). The correction terms in Eq. (3.18) are UV
regularized by K (and IR regularized by K̄). They therefore vanish in this limit. The antibracket in
Eq. (3.12) is not regularized and thus the mST tends to the Zinn-Justin equation [48–50,69], a.k.a.
CME,

0 = 	→ 1
2(, ) as �→ 0, (3.19)

as desired. As we will see in Sect. 3.3, the mST and this CME lead to analogous definitions for the
BRST charges and Koszul–Tate operator.
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Although the antibracket is not regularized, it only introduces trees. Then, as we will see, UV
regularization provided in the correction terms in Eq. (3.18), and through Eq. (3.8), is enough to
ensure that expressions are well defined. Introducing an overall UV regularization K0 = K(p2/�2

0),
by writing 1 − K �→ K0 − K in Eq. (3.2) [5,22], does not change the form of the flow equation in
Eq. (3.8). However, the regularized propagator becomes �̄ = �(K0 − K). Following through the
derivations, it indeed makes its appearance this way in Eq. (3.18), while the antibracket in Eq. (3.12)
is then regularized by K0.

The antibracket ( , )φ for quantum fields introduced in Eq. (2.6) implies the canonical structure
(φA, φ∗B)φ = KδA

B . However, for this antibracket � is not canonically conjugate to �∗:

(�A, �∗B)φ = (�A, φ∗B)φ = K
∂r

∂φB �A �= KδA
B . (3.20)

Indeed, the antibracket ( , )� introduced in Eq. (3.12) is not canonically related to ( , )φ . Although
	 is invariant under quantum canonical transformations S �→ S+ εŝK, cf. Eq. (2.11), the correction
term in the mST of Eq. (3.18) provides an obstruction to canonical transformations of  that respect
( , )�. In particular, the analogous canonical transformation to Eq. (2.30), namely

C̄∗|gf = C̄∗|gi − i∂ ·A,

A∗μ|gf = A∗μ|gi + i∂μC̄, (3.21)

does not leave Eq. (3.18) invariant. However, since Eq. (2.30) does leave 	 invariant, the Legendre
transformation in Eq. (3.2) implies that the mST must be invariant under a non-linear transformation,
as we show in Appendix D.

On the other hand, as we will confirm in Sect. 3.3, we can still use the arguments at the end of
Sect. 2.4 to see that I does not depend on C̄∗ or B, and depends on C̄ only through the combination
A∗μ − i∂μC̄. Then we can work, as we will do from now on, in the minimal gauge-invariant basis,
provided we make the replacement (or equivalently temporarily replace A∗μ with A∗μ − i∂μC̄)

∂

∂C̄

∣∣∣∣
gf
≡ i∂μ

∂

∂A∗μ

∣∣∣∣
gi

(3.22)

in both the flow equation, Eq. (3.8), and the mST, Eq. (3.18).
For example, in this basis we can write the free action 0 explicitly as

0 = 1
2

(
∂μAν

)2 − 1
2 (∂ ·A)2 + A∗μ∂μC, (3.23)

as can be seen by comparing Eqs. (3.11), (2.1), and (2.25). In the next sections, we show how
perturbative expansion of the flow in Eq. (3.8) and mST in Eq. (3.18) via

 = 0 + g1 + g22 + g33 + · · · (3.24)

rephrases the properties and results for the Wilsonian action in Sects. 2.6–2.9.

3.3. Perturbations: First order in coupling

Expanding Eq. (3.18) to first order, we get the same expression for the free full BRST charge in
terms of the classical fields:

ŝ0 1 = (Q0 + Q−0 −�− −�=) 1 = 0. (3.25)
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Analogous to Eqs. (2.5) and (2.7), we have defined the right-acting

Q �A = (�A, ) = ∂l

∂�∗A
and Q−�∗A = (�∗A, ) = − ∂l

∂�A , (3.26)

the full quantum BRST charge, and full classical BRST charge:

ŝ O = (Q + Q− −�)O, scl O = (Qcl + Q−cl ) O = (O, cl). (3.27)

This leads to the same free algebra as Eqs. (2.36) and (2.37), which in particular are again unregulated:

Q0 Aμ = ∂μC, Q−0 A∗μ = � Aμ − ∂μ∂ ·A, Q−0 C∗ = −∂ ·A∗, (3.28)

but this time because neither 0 nor the antibracket is regulated. On the other hand, the measure
operator appears from the first-order part of Eq. (3.18) as

� = Tr
(
K(2)∗

)
, (3.29)

and thus � = �− +�= also continues to take the same form:

�− = ∂

∂Aa
μ

K
∂l

∂A∗aμ

, �= = − ∂l

∂Ca K
∂

∂C∗a
; (3.30)

in particular, it continues to be regulated by K .
Since Eq. (3.25) is thus identical in form to the analogous equation for S1, and since at the classical

level Eq. (3.8) just says that the operator must be � independent, we have the same unique (up to
normalization) non-trivial solution:

1 = 1,cl = −iC∗C2 − iA∗μ[Aμ, C] − i∂μAν[Aμ, Aν]. (3.31)

This is trivially a first-order solution at the quantum level also, for the same reasons as before. Indeed,
Eq. (3.30) takes the same form, as does Eq. (3.8) to this order,

̇1 = 1
2 Str

( ˙̄�
(2)
1

) = −a1[1], (3.32)

by Eq. (2.15). Thus we have constructed the cohomologically unique first-order simultaneous solution
of the mST and flow equation for the 1PI effective action.

3.4. Higher orders in coupling at the classical level

At the classical level, the flow equation in Eq. (3.8) just determines �-integration constants, since
it says that cl must be � independent. Meanwhile, the mST, Eq. (3.18), reduces to the CME. Thus
the simultaneous solution is just the same as obtained in classical BRST cohomology for a local
dimension-four operator.

At O(g2),

s0 2,cl = (Q0 + Q−0 ) 2,cl = −1
2(1, 1) = Q0

(−1
4 [Aμ, Aν]2

)
, (3.33)

where we substituted Eq. (3.31). This provides us directly with the unique classical integration
constant:

2,cl = −1
4 [Aμ, Aν]2. (3.34)
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We note that although this coincides with the (1PI) integration constant in Eq. (2.63) found in the
Wilsonian formulation, it arises in a very different (and much simpler) way. In particular, although
the starting point looks the same, Eq. (2.50) contains K regularization in the antibracket.

At O(g3), we would need to solve s0 3,cl = −(1, 2,cl) for some local classical five-point vertex
3,cl. Since that is not possible by dimensions, it better be that (1, 2,cl) already vanishes. This is
straightforward to confirm using Eqs. (3.31) and (3.34). In fact, this is nothing but the final term in
Eq. (2.68).

We note that we have now confirmed the identification of I ,cl with the 1PI part of SI ,cl as used
below Eq. (3.5).

For n > 3, n,cl must also vanish by dimensions, and this is consistent with the classical master
functional

s0 n + 1
2

n−1∑
m=1

(n−m, m), (3.35)

which now must also vanish by dimensions (cf. C3), as is also true directly by iteration.

3.5. One-loop equations

To second order and one loop, the flow equation, Eq. (3.8), and mST, Eq. (3.18), now read

̇2,q = 1
2 Str

(− ˙̄�
(2)
1 �̄

(2)
1 + ˙̄�

(2)
2,cl

)
, (3.36)

s0 2,q = �2,cl − Tr
(
K

(2)
1∗ �̄

(2)
1

)
. (3.37)

We recognize that these equations coincide with Eq. (2.69) since the term in brackets in Eq. (3.36)
contains the second functional derivative of Eq. (2.56):

S(2)
2,cl = −S(2)

1 �̄S(2)
1 +O(2)

2 + · · · , (3.38)

where the ellipses refer to terms where S1 is differentiated three times and which vanish (by tr T a = 0)
on contraction with the differentiated propagator ˙̄� to form a1 as defined in Eq. (2.15). Similarly,
the second term in Eq. (3.37) coincides with the action of � on Eq. (2.57). The solution is therefore
just a renaming of S2,q in Eq. (2.70), i.e.

2,q = 1
2 CA Aμ Aμν(∂) Aν + CA A∗μ B(−∂2) ∂μC, (3.39)

where Aμν obeys Eq. (2.74).
Due to the cyclicity of the supertrace, Eq. (3.36) is immediately integrable:

2,q = Str
(− 1

4�̄
(2)
1 �̄

(2)
1 + 1

2�̄
(2)
2,cl

)
, (3.40)

which of course just comes from the expansion of the closed-form one-loop solution to Eq. (3.8):

q = 1
2 Str ln

(�̄−1 + 
(2)
cl

)
. (3.41)

Expanding further, we can therefore also write down the solution to the flow equation at third
order, and thus we have, together with expanding the mST in Eq. (3.18) to third order and
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one loop:

3,q = Str
(− 1

2�̄
(2)
1 �̄

(2)
2,cl + 1

6�̄
(2)
1 �̄

(2)
1 �̄

(2)
1

)
, (3.42)

s0 3,q = −(1, 2,q)+ Tr
(− K

(2)
1∗ �̄

(2)
2,cl + K

(2)
1∗ �̄

(2)
1 �̄

(2)
1

)
. (3.43)

The expressions in Eqs. (3.40)–(3.42) for the one-loop 1PI effective action are IR regulated as they
must be since they must have derivative expansions. They should be understood to be supplied with
integration constants, which are thus also derivative expansions but independent of �. However,
since the only scale is �, by dimensions all but a small number of integration constants must actually
vanish.

The non-trivial functional dependence on �, as specified by the body of the momentum integrals
that make up the one-loop vertices, is thus unambiguous. For such momentum integrals the mST
identities in Eqs. (3.18), (3.37), and (3.43) must therefore already be satisfied, as we claimed in C4.
We will confirm this in Sect. 5.2.

The �-integration constants that do not necessarily vanish multiply marginal and relevant operators
whose coefficient integrals are typically UV divergent. In these cases the integration constants must
be chosen to cancel the divergence so that we get finite solutions as required. Nevertheless, in the
resulting finite solution, since by dimensions the relevant operators necessarily have �-dependent
coefficients, their integration constants are determined uniquely. (We will see examples in Sect. 5.)
Only for the marginal operators is there some arbitrariness, where the integration constants must
also be adjusted so as to respect the mST identities. This is the subject of the next section.

4. BRST structure and renormalization in the presence of the effective cutoff

Now we note that we are dealing with a theory that is well defined at non-exceptional momenta (i.e.
external momenta such that none of their partial sums vanish or are null). Consider, for example, a
two-point vertex that depends only on one external momentum p. The theory thus has the property
that, properly renormalized, no IR divergences appear as �→ 0, provided that we keep the Euclidean
momentum p �= 0. Then we see that the UV subtractions provided by the integration constants to
render the vertices finite at � �= 0 can be chosen to render the vertices finite at non-exceptional
momenta in the limit �→ 0. We will confirm this in detail in Sect. 5.

For the marginal operators, we will furthermore be forced by dimensions to include ln μdependence
from canceling off logarithmic UV divergences. It is this ln μ dependence that introduces arbitrariness
into the �-integration constants and that we need to keep track of by renormalization conditions.

As can be seen from Eqs. (3.37) and (3.43), the parts that have this arbitrariness must be s0–invariant.
For the two-point vertices we have two solutions,

1
2Aμ(−�δμν + ∂μ∂ν)Aν and A∗μ∂μC, (4.1)

while for three-point vertices there is only one solution, namely a multiple of Eq. (3.31). The higher-
point vertices have no freedom in the solution (as we already noted in Sects. 2.7, 2.8, and 3.4).

Let us spell out how this implies, despite the presence of a cutoff K , the same key steps that one
obtains in the proof of renormalizability of gauge theories using the Zinn-Justin equation, a.k.a.
CME: (, ) = 0. Altering the coefficients in front of Eqs. (4.1) and (3.31) induces changes in
the rest of the solution. Indeed, from inspection of Eq. (3.43) we see that addition of an s0-closed
perturbation δ2,q requires a change δ3,q such that

s0 δ3,q := (δ3,q, 0) = −(1, δ2,q). (4.2)
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Since the classical solutions for 0 and 1 are unchanged at the quantum level, the above is just the
g3 part of the demand that any change to the one-loop �-integration constants results in an operator
δ(�=1) ≡ δq that is invariant under the full classical BRST transformation, Eq. (3.27), i.e.

scl δ
(�) := (δ(�), cl) = 0. (4.3)

For � = 1, this is clearly true because at one loop the rest of the mST in Eq. (3.18) depends only
on the classical effective action. Summing the contributions of Eqs. (3.23), (3.31), and (3.34) (there
being no more, cf. Sect. 3.4), the classical effective average action in Eq. (3.11) is given in total by

cl = 0 + g1 + g22,cl = −igC∗C2 + A∗μDμC + 1
4F2

μν , (4.4)

i.e. just the usual expression for the classical action complete with antifield sources for the classical
BRST transformations10 QclC and QclAμ, cf. Eq. (3.27), where the covariant derivative and field
strength are defined as:

DμC = ∂μC − ig[Aμ, C] and Fμν = i
g [Dμ, Dν]. (4.5)

In general, δ(�) contains all the (changes in) �-integration constants at the �-loop level. As we
already noted in Sect. 2.3, these integration constants play the rôle of counterterms in the standard
treatment. Indeed, it is clearly true that at � loops, they must also satisfy Eq. (4.3), just as one would
deduce from the Zinn-Justin equation [48–50], since the rest of the mST depends only on lower loop
orders, either through 1

2

∑�−1
j=1(

(�−j), (j)), or because the correction term in Eq. (3.18) contributes
one extra loop (equivalently, one extra factor of �).

Although we have derived this for , closely similar arguments apply to the Wilsonian action S, as
we have already intimated in Sect. 2.3. Indeed, the part δS(�) containing the �-integration constants
must, by the QME in Eq. (2.8), satisfy the analogous equation at �-loop order,

scl δS(�) := (δS(�), Scl) = 0, (4.6)

since the measure operator � also supplies an extra loop. Furthermore, Eq. (3.14) implies that any
violations of 	 = 0 would be equal under the Legendre transform relation:

scl δS(�) := (δS(�), Scl) = (δ(�), cl) =: scl δ
(�). (4.7)

A major difference, however, is that Scl is not a closed expression, but rather contains contributions
to all orders in g (this being consistent with the fact that its antibracket in Eq. (2.6) carries K
regularization).

To bring the kinetic terms back to normalized form, as defined by some renormalization condition,
we need to apply wavefunction renormalization, i.e. a rescaling of the (anti)fields. Order by order in
the coupling, or loop expansion, the rescaling will then provide us with the corresponding choices
for the �-integration constants. We have seen that these perturbative contributions must be closed

10 Qcl preserves antighost number, but this is somewhat accidental. To exploit antighost number with interact-
ing charges generally requires regrading since antighost number is not conserved. For example, from Eq. (3.27),
Q−cl C

∗ now has a part that does not lower antighost number, while from Eq. (2.58), we see that Q2,claμ has a
part that raises it by one.
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under the classical BRST transformations. This implies that the wavefunction rescaling must in fact
be a (classical) canonical transformation, and thus of the particularly simple form

K = Z
1
2

E �∗E�E
(r), (4.8)

where summation over the repeated indices should still be understood as determined by the
(anti)fields, while Z , however, also depends on (anti)field flavor, and where we use the general
recipe for a finite classical canonical transformation (see, e.g., [47]):

�E = ∂l

∂�∗E
K[�(r), �

∗], �∗(r)E =
∂r

∂�E
(r)

K[�(r), �
∗], (4.9)

the subscript (r) labeling the renormalized (anti)fields. Thus the fields and antifields renormalize in
opposite directions:

Aμ = Z
1
2

A A(r)μ, A∗μ = Z
−1

2
A A∗(r)μ, C = Z

1
2

C C(r), C∗ = Z
−1

2
C C∗(r). (4.10)

The freedom in the �-independent part of the solution has therefore been parametrized as

1

2
Z−1

A Aμ(−�δμν + ∂μ∂ν)Aν + Z
1
2

A Z
−1

2
C A∗μ∂μC − igZ−1

g Z
−1

2
C

(
C∗C2 + A∗μ[Aμ, C])

− igZ−1
g Z

−3
2

A ∂μAν[Aμ, Aν] − 1

4
g2Z−2

g Z−2
A [Aμ, Aν]2. (4.11)

Here we have also introduced Zg for renormalizing the coupling, which thus takes care of the
separate freedom that appears at the three-point level. The above equation appears with the inverse
transformation so that on applying Eq. (4.10) and g = Zg g(r) the result appears in normalized form
in terms of the renormalized fields and coupling.

We note that at one loop we will find that all these factors take the form

Zn = 1+ g2zn, (4.12)

where n = A, C, g, and in fact the

zn = γn ln(μ/�)+ z0
n , (4.13)

where the γn are computable (as we will see) and the freedom is here overparametrized in the choice
of μ and the z0

n . We also note that it is straightforward to verify that perturbative contributions to
Eq. (4.11) do satisfy Eq. (4.3). For example, from Eq. (4.12) the one-loop O(g2) part of Eq. (4.11)
parametrizes the change in the two-point vertices (kinetic terms) as δq,2 = s0 (g2K2), where

K2 = 1
2 zA A∗μAμ + 1

2 zC C∗C. (4.14)

Again, closely similar arguments apply to the Wilsonian action.Apart from the freedom Zg to adjust
the coefficient of S1, we only have the freedom to alter the analogous kinetic terms to Eq. (4.1). Thus
these latter �-integration constants must also be parametrized by a canonical transformation:

φE = ∂l

∂φ∗E
K̃[φ(r), φ

∗], φ∗(r)E =
∂r

∂φE
(r)

K̃[φ(r), φ
∗] (4.15)
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(the antibracket is invariant under this by statistics and thus also with the regularization in Eq. (2.6)
[58]), where now

K̃ = Z
1
2

E φ∗E φE
(r), (4.16)

and thus

aμ = Z
1
2

A a(r)μ, a∗μ = Z
−1

2
A a∗(r)μ, c = Z

1
2

C c(r), c∗ = Z
−1

2
C c∗(r). (4.17)

Note that these Z factors are indeed the same as the ones in the 1PI effective action, as might be
expected given that I provides the 1PI part of S. See Appendix E for a proof.

The changes of variables in Eqs. (4.10) and (4.17) do not leave the cutoffs, and thus neither the
flow equations in Eqs. (3.8) and (2.15) nor the Legendre transform identity in Eq. (3.2), invariant.
However, as we have been emphasizing (and will see particularly in the remainder of the paper), the
flow equations can be solved for directly in terms of finite, and thus already renormalized, quantities.
What this lack of invariance means, however, is that we can only enforce renormalization conditions
at some fixed (finite) scale, for example at � = μ. The simplest choice then is to set

Zn = 1 at � = μ, (4.18)

so that in Eq. (4.13) we have just

zn = γn ln(μ/�). (4.19)

For finite values of � �= μ, the effective action is still finite but the kinetic terms appear as in
Eq. (4.11) and are not in normalized form. Equations (4.10) then provide us with the further finite
renormalization that would be required to bring the kinetic terms back to normalized form.

We acknowledge that one can start instead with altered flow equations, both for the Wil-
son/Polchinski effective action and for the 1PI effective action, such that they depend on running
anomalous dimensions γn(�) that are determined by setting renormalization conditions that hold
at all values of �. However, in this case the map between the two effective actions is no longer as
simple as Eq. (3.2) [76,87].

For completeness we also consider the extended gauge-invariant basis and gauge-fixed basis.
Although we display only the 1PI formulation, again the analogous equations hold for the Wilsonian
action. From Sect. 2.4, we see that in the extended gauge-invariant basis we also include in 

ξ

2
B2 + C̄∗B; (4.20)

however, these terms are not generated by quantum corrections so do not need renormalization. In
the gauge-fixed basis we make the analogous canonical transformation, �∗A|gf = �∗A|gi + ∂r

A�, to
Eq. (2.28), where the gauge fermion is the classical field equivalent of Eq. (2.29), namely � =
−i C̄∂ ·A , implying the transformations in Eq. (3.21). Recall that the dependence on C̄ is only
through the combination A∗μ − i∂μC̄. In order that this is also renormalized, we therefore need C̄ to
renormalize like A∗μ. By Eq. (4.8), this implies that C̄∗ must renormalize like Aμ. We see that these
choices then also leave the gauge fermion invariant and preserve the form of the transformations in
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Eq. (3.21). Since Eq. (4.20) receives no corrections, this also determines the renormalization of B
and ξ . In summary, we must supplement Eq. (4.10) with

C̄ = Z
−1

2
A C̄(r), C̄∗ = Z

1
2

A C̄∗(r), B = Z
−1

2
A B(r), ξ = ZA ξ(r). (4.21)

Since integrating out B gives the gauge-fixing term (∂ ·A)2/ξ , we see that the ξ renormalization is
consistent with standard methods where one finds that the gauge-fixing term does not renormalize.

These wavefunction renormalization factors in Eqs (4.10) and (4.21) (similarly in Eq. (4.17),
etc.) are not the standard ones, because Eq. (4.11) already solves the Slavnov–Taylor wavefunction
renormalization identities. Although ZA is Z3 in standard notation, both ZC and ZA renormalize the
(anti)ghost fields. In a standard parametrization (e.g. [88]) we would identify

Z3 = ZA, Z̃3 = Z
1
2

C Z
−1

2
A , Z1 = ZgZ

3
2

A , Z̃1 = ZgZ
1
2

C , Z4 = Z2
g Z2

A, (4.22)

where Z̃3 is the wavefunction renormalization factor for both C and C̄, and Z1, Z̃1, and Z4 are the
factors for the A3, C̄AC, and A4 vertices, respectively. Then the following fractions are all equal to

ZgZ
1
2

A :

Z1

Z3
= Z̃1

Z̃3
= Z4

Z1
. (4.23)

These are indeed the Slavnov–Taylor identities guaranteeing the universality of the gauge coupling.
Thus we have verified C5.

5. One-loop 1PI solutions

In the previous section we explained how a restricted set of wavefunction renormalization factors
Zn appear naturally in the finite-continuum solution of the flow equations in such a way as to satisfy
the QME of Eq. (2.8) in the presence of a cutoff, or equivalently the mST of Eq. (3.18), and thus
satisfy the corresponding Slavnov–Taylor identities. In Sect. 3.5 we used the compact form of the 1PI
effective action (a.k.a. IR-cutoff Legendre effective action or effective average action), to list up to
O(g3) expressions for the 1PI vertices and the mST identities they must satisfy. In this section we now
compute these vertices as momentum integrals, show how the requirement of a derivative expansion
ensures a smooth limit to the standard expressions in the limit in which the IR cutoff � → 0, and
extract the Zn factors. We use them to verify the standard form of the one-loopYang–Mills β function,
here computed as the flow with respect to �.

5.1. Second order in coupling and wavefunction renormalization

From Eqs. (3.39) and (3.40) one obtains11

Aμν(p) =
∫

q

{
�̄(q)�̄(q+p) qμ(q+p)ν

− 1
2 �̄αβ(q)�̄ρσ (q+p) �ραμ�σβν + �̄αα(q) δμν − �̄μν(q)

}
, (5.1)

11 We find that the calculations here and later are facilitated by using the vertices constructed in Appendix G.
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where, using Eqs. (3.31), (3.22), and (2.32), the first two terms come from the ghost propagator and
gauge field propagator contributions to the first term in Eq. (3.40), and from Eq. (2.53) we have
written

�ραμ = (p−q)σ δβν − (2p+q)βδνσ + δβσ (p+2q)ν . (5.2)

The last two terms in Eq. (5.1) come from the second term in Eq. (3.40). As explained at the end
of Sect. 3.5, we should understand Eq. (5.1) as supplied with �-integration constants which in
particular ensure that the result is UV finite. Thanks to the IR regularization, cf. also Eq. (2.35), the
propagators have a Taylor expansion in pμ for any q and thus we confirm that Eq. (5.1) also has a
Taylor expansion in pμ. Decomposing Aμν(p) into its longitudinal and transverse parts,

Aμν(p) = AL(p2) PL
μν +AT (p2) PT

μν , where PL
μν = pμpν/p2 and PT

μν = δμν − PL
μν , (5.3)

by dimensions and the Taylor expansion property we have that

AI (p2) = �2
∞∑

n=0

αI
n

(
p2

�2

)n

, I = L, T , (5.4)

where the coefficients αI
n = αI

n(ξ) are dimensionless and well defined, and αL
0 = αT

0 = α0 are equal.
In particular, this zeroth order provides a �-dependent “mass” term in Eq. (3.39):

CA Aμν(0) = α0 CA �2δμν . (5.5)

As advertised at the end of Sect. 3.5, we see that except for the marginal αI
1 coefficients, the �-

integration constants are already determined uniquely, as they must be by dimensions. Indeed, from
Eq. (5.1) the irrelevant pieces (aI

n>1) are given by well-defined momentum integrals since these
integrals are also UV finite, while α0 can be defined by subtracting from Aμν(0) as defined in
Eq. (5.1), the same expression evaluated at � = 0. On the other hand, the form of the marginal
transverse part has been fixed by the renormalization condition in Eq. (4.18) to

CA αT
1 = −γA ln(μ/�), (5.6)

as follows from Eqs. (4.11), (4.12), and (4.19).
Concentrating now on the longitudinal part, we use the symmetry of the first two terms in Eq. (5.1)

under q �→ −q−p. (For more details see Appendix H.) Eliminating propagators when the same
factor appears in the numerator, including eliminating the dot product in p·q/(p+q)2 by expressing
p·q = 1

2(p+q)2 − 1
2(p2 + q2), and converting terms with single propagators of form 1/(p+q)2 to

ones with 1/q2 by using q �→ −q−p, the end result is thus uniquely expressed as

AL(p2) = 3

4
(ξ + 3)

∫
q

K̄(q)

q2 −
∫

q

K̄(q) K̄(p+q)

q2

(
(1− ξ)

(p·q)2

p2q2 + 4
p·q
p2 + ξ + 2

)
. (5.7)

This expression is still IR regulated, but at first sight it appears to include unregulated UV divergences.
However, the K-independent part vanishes (this and similar later manipulations need some care; see
Appendix F):

{
3

4
(ξ + 3)− 1

4
(1− ξ)− ξ − 2

} ∫
q

1

q2 = 0. (5.8)
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This means that Eq. (5.7) is equal to

AL(p2) = −3

4
(ξ +3)

∫
q

K(q)

q2 +
∫

q

(
�̄(q)K(p+q)+ K(q)

q2

)(
(1− ξ)

(p·q)2

p2q2 +4
p·q
p2 + ξ +2

)
.

(5.9)
Collecting the K(q)/q2 pieces, they cancel exactly as in Eq. (5.8), and thus we are left only with an
expression identical to Eq. (2.72). Since the modified Ward–Takahashi identity in Eq. (2.74) tells us
that AL = F , we see that it holds identically as a statement about momentum integrals, confirming
point C4 in this example.

Since Eq. (2.72) is both IR and UV regulated, AL has now been cast in a form which has a Taylor
expansion in p2 with well-defined coefficients. As examples, we find, for the mass term in Eq. (5.5)
and the marginal pμpν term in Aμν(p), i.e. the O(p2) longitudinal part:

α0 = 1

4(4π)2

∫ ∞
0

du
{
(1+ 3ξ) K(u)− (5+ 3ξ) K2(u)

}
,

αL
1 =

1

(4π)2

{
−1

6
− 1

4
ξ + 5+ ξ

4

∫ ∞
0

du u
[
K ′(u)

]2
}

, (5.10)

where prime is differentiation with respect to u, and we recall that K(q) is really K(u = q2/�2). We
note that the K-dependent pieces give integrals that are finite but non-universal.

We also note that, due to the finiteness of Eq. (2.72), αL
1 has no logarithmic running, consistent

with the general arguments that led to Eq. (4.11). In principle, having shown that the momentum
integral in Eq. (5.9) is equal to F(p2), we might expect to write AL(p2) = F(p2) + AL

0, where
AL

0 is the �-integration constant. Then the modified Ward–Takahashi identity of Eq. (2.74) would
just tell us that AL

0 vanishes. However, since C4 tells us that the identity holds as a statement about
momentum integrals, and the momentum integrals in this case can be cast in a form in which they
are well defined, there is clearly no reason to introduce such a �-integration constant in this case.

Finally, we note that from Eq. (2.72), if we stay at p �= 0 we can safely take the limit �→ 0, thus
defining the longitudinal part of the one-loop two-point vertex of the standard physical Legendre
effective action. For non-zero p, however, the K(p+q) factor in Eq. (2.72) forces the result to vanish in
this limit. Thus we find that the physical one-loop two-point vertex is purely transverse, in agreement
with standard results.

To evaluate AT and B in Eq. (3.39), it is helpful to provide UV regularization. We will demonstrate
this for B. For AT we work instead with its RG time derivative, which we could also directly extract
from Eq. (3.36). This is well defined in both the UV and the IR since ˙̄K = −K̇ provides UV
regularization. The ȦT (0) piece confirms the mass term α0 in Eq. (5.10), while the O(p2) part yields

(
2ξ − 26

3

) ∫ ∞
0
du K̄ ′(u) K̄(u) (5.11)

(up to vanishing surface terms that depend on momentum routing) and thus, from Eq. (5.6) and the
normalization conditions below Eq. (2.3), we get

γA =
(

13

3
− ξ

)
CA

(4π)2 . (5.12)
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For B, again using Eqs. (3.31), (3.22), and (2.32), we get, from Eqs. (3.39) and (3.40),

p2B(p2) = −
∫

q
�̄μν(q)�̄(q+p)pμ(q+p)ν =

∫
q
�̄(q)�̄(q+p)

[
p2+ ξ(p ·q)+ (ξ −1)

(p · q)2

q2

]
.

(5.13)
We note that B(p2) has a derivative (a.k.a. Taylor) expansion. However, B(0) has a logarithmic UV
divergence, which will thus be canceled by the dimensionless �-integration constant B0. Making
this explicit, and converting the integrand in the same way as above Eq. (5.7), we get

B(p2) =
∫

q

K̄(q) K̄(p+q)

q2

(
− 1

2(p+q)2 +
1− ξ

4

p2

q2(p+q)2 +
1− ξ

2

q·p
p2q2 +

ξ − 1

4 q2

)
+ B0.

(5.14)
Thus we find that (see Appendix F)

B(0) = ξ − 3

4

∫
q

K̄2(q)

q4 + B0 = γA − γC

2CA
ln

μ

�
, (5.15)

where the last equality follows from Eq. (4.11) and the renormalization conditions in Eqs. (4.12)
and (4.19). From the RG time derivative it is almost immediate to compute γA − γC :

Ḃ(0) = 3− ξ

2

∫
q

K̄(q)K̇(q)

q4 = ξ − 3

(4π)2

∫ ∞
0

du K̄(u)K̄ ′(u) = ξ − 3

2(4π)2 (5.16)

(evidently the result is effectively the same as in dimensional regularization), and thus

γA − γC = ξ − 3

(4π)2 CA. (5.17)

Keeping p �= 0 and letting �→ 0 we get the physical vertex. We see that the momentum integral
in Eq. (5.14) then coincides with its K-independent part:12

Bphys(p
2) =

∫
q

(
ξ − 3

4

1

q2(q+p)2 +
ξ − 1

2

q·p
q4(q+p)2

)
+ B0. (5.18)

To evaluate this completely it is helpful to provide some UV regularization. It does not matter what
regularization we choose: different regularizations will give a different finite part to the integral,
which, however, then implies a different B0 such that Eq. (5.15) remains satisfied. We use dimensional
regularization, setting spacetime dimension d = 4 − 2ε with ε > 0. Computing the integral in
Eq. (5.15),

∫
q

K̄2(q)

q4 = 1

(2− ε)�2ε(4π)2−ε

∫ ∞
0

du
K̄2(u)

u1+ε
. (5.19)

Splitting the last integral at u = 1 we have

∫ ∞
0

du
K̄2(u)

u1+ε
=

∫ 1

0
du

K̄2(u)

u1+ε
+

∫ ∞
1

du
K̄2(u)− 1

u1+ε
+

∫ ∞
1

du

u1+ε
. (5.20)

12 Here we recognize that the third term in brackets in Eq. (5.14) vanishes, and that the second and fourth
terms can be combined to eliminate their respective IR divergences.
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In the first and second integrals on the RHS, the ε → 0 limit can now be safely taken. The final
integral can be done exactly. Substituting into Eq. (5.15) we thus find

B0 = 3− ξ

4(4π)2 CA

{
1

ε
+1+ln(4π)−γE−ln(μ2)+

∫ 1

0

du

u
K̄2(u)+

∫ ∞
1

du

u
(K2(u)−2K(u))

}
, (5.21)

where γE is Euler’s constant, and terms that vanish as ε → 0 are discarded.
Computing the momentum integrals in Eq. (5.18) by dimensional regularization using standard

methods, we confirm that Eq. (5.21) cancels the UV divergence, and thus arrive at the final expression
for the physical vertex:

Bphys(p
2) = 3− ξ

4(4π)2 CA

{
ln

p2

μ2 − 1+
∫ 1

0

du

u
K̄2(u)+

∫ ∞
1

du

u
(K2(u)− 2K(u))

}
+ 1− ξ

2(4π)2 CA.

(5.22)
We note that all but the ln(p2/μ2) part amounts to a finite (non-universal) wavefunction renormaliza-
tion. It is the price to pay for the simple expression in Eq. (5.15), following from the renormalization
condition in Eq. (4.18). In particular, it is through such a renormalization condition that B0 becomes
K-dependent, despite the fact that the momentum integral defining the physical vertex in Eq. (5.18)
is K-independent. We could have chosen a renormalization condition such that Bphys would be given
only by the ln(p2/μ2) part or such that it agrees with the MS result,

BMS
phys(p

2) = CA

(4π)2

{
3− ξ

4
ln

p2

μ2 − 1
}

, (5.23)

for examples. Then the z0
n in Eq. (4.13) would have had finite corrections.

Let us note that, when expressed in the standard form of Eq. (4.22), Eqs. (5.12) and (5.17) give
the same anomalous dimensions γ3 and γ̃3 that one obtains by standard techniques. Indeed, this is
guaranteed since the � dependence determines the μ dependence in Eq. (4.13) by dimensions, and
the μ dependence in turn determines the p dependence by dimensions as, e.g., in Eq. (5.23). This p
dependence better come out the same since it is physical (being related, for example, to the splitting
functions by unitarity).

5.2. Third order in coupling, the beta function, and mST

The solution in Eq. (3.42) corresponds to the Feynman diagrams shown in Fig. 1. One can see by
inspection that they are all at worst logarithmically UV divergent, and that each UV divergence is
proportional to one of the three-point vertices in Eq. (4.11).As discussed in Sect. 4, these divergences
and the corresponding freedom in the choice of integration constants are constrained to satisfy the
parametrization in Eq. (4.11).

The one-loop vertices as a whole have to satisfy the mST identities in Eq. (3.43). Apart from the
freedom to choose the integration constants according to Eq. (4.11), there is no further flexibility,
and thus the body of a solution such as in Eq. (3.42), as defined by the momentum integrals, must
already satisfy these mST identities as we noted in C4 and at the end of Sect. 3.5, and will confirm
shortly. We can write the vertices as

3 = −i
∫

p,q,r
Aμ(p)[Aν(q), Aλ(r)]AAA

μνλ (p, q, r)− i
∫

p,q,r
A∗μ(p)[Aν(q), C(r)]A∗AC

μν (p, q, r)

− i
∫

p,q,r
C∗(p)C(q)C(r) C∗CC(p, q, r), (5.24)
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Fig. 1. One-loop vertices in 3. In the gauge-invariant basis, A∗ also plays the rôle of the antighost.

where (2π)4δ(p+q+r) is understood to be included in the measure. The correction terms in the
mST can similarly be written as

Tr
(− K

(2)
1∗ �̄

(2)
2,cl + K

(2)
1∗ �̄

(2)
1 �̄

(2)
1

) =∫
p,q,r

C(p)[Aμ(q), Aν(r)]�CAA
μν(p, q, r)+

∫
p,q,r

A∗μ(p)C(q)C(r) �A∗CC
μ (p, q, r). (5.25)

We compute that

−(1, 2) = −iCA
{({A∗μ, C} + [∂μAν−∂νAμ, Aν]

)
B ∂μC + ∂μA∗μ B C2 − Aμ Aμν[Aν , C]},

(5.26)
and thus, for example from the A∗CC part of Eq. (3.43), we find one must have

pμC∗CC(p, q, r)+ 2qν
A∗AC
μν (p, q, r) = −CA

[
pμB(p)+ rμB(r)

]+�A∗CC
μ (p, q, r). (5.27)

The �-integration constants satisfy the left-hand side (LHS) alone and correspond to the freedom
to change the normalization of the bracketed pair in Eq. (4.11). The rest of the above equation can
be viewed as defining the longitudinal part, A∗AC

μα (p, q, r)PL
αν(q) of the A∗AC vertex. Similarly, other

mST relations define either longitudinal or transverse parts via Q0Aν or Q−0 A∗μ, respectively.
Inspecting Fig. 1, we see that there is only one diagram that contributes to the C∗C2 piece in

Eq. (4.11). This is therefore the easiest way to extract γg , which in turn will give us the one-loop
β-function. We find:

−
(
γg + γC

2

)
= ̇C∗CC(0, 0, 0) = CA

2

∂

∂t

∫
q
�̄2(q)qμqν�̄μν(q) = ξCA

(4π)2

∫ ∞
0
du

∂

∂u
K̄3(u) = ξCA

(4π)2 .

(5.28)
To extract the β-function, we absorb the Z−1

g in Eq. (4.11) into the coupling

g(�)≡ g(r) = Z−1
g g, (5.29)

which thus runs. To one loop, the β-function is then

β(g) = �∂�g(�) = −ġ(�) = γg g3(�), (5.30)

34/45



PTEP 2019, 103B01 Y. Igarashi et al.

where from Eqs. (5.28), (5.17), and (5.12) we recover the famous result, here as a flow in �,13

γg =
(
γg + 1

2γC
)+ 1

2 (γA − γC)− 1
2γA = −11

3

CA

(4π)2 . (5.31)

There are two diagrams that contribute to the A∗AC vertex in Eq. (4.11), but otherwise the
computation offers almost as straightforward a route to the β-function:

−
(
γg + γC

2

)
δμν = ̇A∗AC

μν (0, 0, 0)

= CA

2

∂

∂t

∫
q
�̄ [�̄qρqν�̄μρ + qρqσ �̄ρσ �̄μν + qρqσ �̄μρ�̄νσ − 2qνqσ �̄μρ�̄ρσ

]

= δμν

(
ξ + ξ(ξ + 3)+ ξ2 − 2ξ2) CA

4(4π)2

∫ ∞
0
du

∂

∂u
K̄3(u) = ξCA

(4π)2 δμν ,

(5.32)

where the propagators are all evaluated at q. The end result agrees with Eq. (5.28) and thus again
we get the famous one-loop β-function coefficient of Eq. (5.31). Verification of the wavefunction
renormalization dependence of the other vertices in Eq. (4.11) proceeds in a similar, if somewhat
longer, fashion. We note that through such relations, cf. Eqs. (5.12), (5.17), (5.28), and (5.32), we
can confirm that the Slavnov–Taylor identities in Eq. (4.23) are indeed satisfied.

We finish by confirming explicitly that the bodies of the momentum integrals do automatically
satisfy Eq. (5.27). The A∗C vertex in Eq. (3.39), cf. Eq. (5.13), can be written as

−CA�̄μνA∗ν∂μ�̄C. (5.33)

As we have seen, care is needed in defining the integration constant B0∂ν in this vertex, but here we
will be interested in putting this to one side and demonstrating that the bulk of the integral already
satisfies Eq. (5.27). For this we can proceed more formally. Using the notation in Appendix G, the
C∗CC and A∗AC vertices in Eq. (5.24) can similarly be written respectively as

i

4
∂ν�̄C∗{∂μ�̄C�̄μν , C}, i

2
CA�̄μνA∗ν[∂ρ�̄Aρ∂μ�̄, C] + i

2
CA∂μ�̄A∗ν[Tνμ(A), C]. (5.34)

The correction vertex �A∗CC
μ in Eqs. (5.25) and (5.27) takes the form

+ i

2
CAK

(
C{�̄μρA∗ρ∂μ�̄, C}+C{�̄μρC∂ρ�̄, A∗μ}−C{∂μ�̄C�̄μν , A∗ν}

)
. (5.35)

Using Eqs. (5.33) and (3.31), the antibracket part of Eq. (5.27) can be written as

− i

2
CAC{�̄μνA∗μ∂ν�̄, C} +iCAC{∂νC�̄μν�̄, A∗μ}. (5.36)

Finally, operating on Eq. (5.34), the LHS of Eq. (5.27), namely s0 3,q = (Q0+Q−0 )3,q in Eq. (3.43),
can be written as

− i

4
CA∂ν�̄∂ · A∗{∂μ�̄C�̄μν , C} − i

2
CA�̄μνA∗ν{∂ρ�̄∂ρC∂μ�̄, C}

− i

2
CA∂ν�̄A∗μ{Tμν(∂C), C}. (5.37)

13 The β-function under flow in �, specialized to SU(2) and Feynman gauge, was computed in Ref. [89].
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Using integration by parts, we find that

Tμν(∂C) = (1− K)C�̄μν − �̄μνC(1− K)+ ∂μ∂σ �̄C�̄σν − �̄μσ C∂σ ∂ν�̄, (5.38)

and thus we find that Eq. (5.37) becomes

i

2
CA(1− K)

(
C{∂μ�̄C�̄μν , A∗ν} − C{�̄μνC∂ν�̄, A∗μ} − C{�̄μνA∗μ∂ν�̄, C}), (5.39)

where use has been made of properties of the trace. Finally, substituting this, Eq. (5.35), and Eq. (5.36)
into Eq. (5.27), we find that this mST identity is indeed satisfied by the body of the momentum
integrals. We remark that we have also confirmed the more complicated AAC mST identity this way,
but do not report the details.

6. Summary and conclusions

We reiterate the main points. The Wilsonian RG flow equation for the effective action S can be
combined with the QME of Eq. (2.8) in such a way that they are mutually compatible [59–68]. A
particularly natural formulation is given by the flow equation in Eq. (2.15) (which takes the same
form as Polchinski’s [2,5]), with the QME regularized as in Eq. (2.6) and the free action incorporating
the free BRST transformations as in Eq. (2.1) [58]. We have shown in general, and in detail for the
example of perturbative Yang–Mills theory with general gauge group and in general gauge, how for
the continuum effective action solution, BRST invariance is then not broken by the presence of an
effective ultraviolet cutoff but remains powerfully present in this structure, despite the fact that it
demands quantum corrections that naïvely break the gauge invariance, such as a mass term for the
non-Abelian gauge field.

In particular, we have demonstrated that, combined with the derivative expansion property, BRST
cohomological methods retain their potency. Key to this is the fact that the regularization in Eq. (2.6)
preserves the algebraic identities satisfied by the QME and its components, the antibracket and
measure operator, and in such a way that the charges are then well defined when acting on arbitrary
local functionals. Thus, in particular the full quantum BRST charge ŝ = Q + Q− −�− −�=, cf.
Eqs. (2.10) and (2.39), is well defined acting on arbitrary local functionals, and nilpotent off shell.

The reason why terms which naïvely should break the gauge invariance are nevertheless allowed,
in fact demanded, is precisely because the action of the Batalin–Vilkovisky measure operator is
now non-trivial and well defined (in contrast to the usual treatment [47,55]). Thus, for example the
one-loop two-point vertex S2,q satisfies

Q0 S2,q = (�− +�=) S2,cl, (6.1)

as follows from Eq. (2.69) and Q−0 S2,q = 0, cf. Eqs. (2.70) and (2.37). This means that as well as any
contribution that does satisfy linearized gauge invariance as in Eq. (2.36), a part that is not Q0-closed
is required, which descends via the measure operator from the classical solution Scl.

In practice it is the free full classical BRST charge s0 = Q0+Q−0 and its non-trivial cohomology in
the space of local functionals (on which it closes) that is key to developing the perturbative solution.
Given K , such a solution is then unique up to the choice of renormalization conditions, and thus is
found without introducing a priori either a classical action or a bare action. Indeed, thanks to the
derivative expansion property, the �-integration constants we get from solving the flow equation
for a finite effective action are guaranteed by dimensions to be local functionals. Under very few
assumptions, we can then recover crucial steps in classical BRST cohomology [51–57] and in the

36/45



PTEP 2019, 103B01 Y. Igarashi et al.

proof of renormalizability of gauge theories [48–50]. This led to the four central conclusions C1–C4
in Sect. 2.3, which state that the classical solution is determined by the non-trivial s0-cohomology,
with additional constraints arising from dimensional analysis. In particular, C3 shows that if the CME
is satisfied by such a solution to O(g3), then the CME is automatically satisfied at higher orders,
while C4 concludes that the body of momentum integrals in the quantum corrections must already
satisfy the QME. As fully developed in Sect. 4, we also listed the central conclusion C5, namely that
the RG flow under change of cutoff � then generates a canonical transformation, Eqs. (4.15)–(4.17),
which automatically solves the standard Slavnov–Taylor identities in Eq. (4.23) for the wavefunction
renormalization constants (despite the presence of the cutoff). The remainder of the paper was devoted
to developing and verifying these in detail for Yang–Mills theory with general gauge group and in
general gauge. And as we saw in Sect. 5, one then retrieves both the standard anomalous dimensions
and the standard one-loop β-function, Eqs. (5.30) and (5.31), even though these are expressed in
terms of this cutoff.

Using the Legendre transformation identity of Eq. (3.2) results in an equivalent 1PI description in
terms of the simultaneous solution of the mST identities in Eq. (3.18) [69] and the flow in Eq. (3.8) of
the 1PI effective action , the Legendre effective action with infrared cutoff K̄ = 1−K (a.k.a. effective
average action) [5,20,21]. These are written in terms of classical (anti)fields, whose antibracket in
Eq. (3.12) is the original one without the UV regularization [44–46]. Despite this, from Eq. (3.25) the
free full BRST charge ŝ0 operates in the same way, with the measure operator in Eq. (3.30) still UV
regularized by K . However, the presence of the quantum correction terms in the mST of Eq. (3.18)
means that for �>0, the analogous interacting full BRST charge is not nilpotent. In fact, as noted
in Sect. 3.2, the classical (anti)fields and their antibracket are not canonically related to the quantum
fields and respectively Eq. (2.6) (although this implies that Eq. (3.18) must however be subject to
the non-linear symmetry relations, cf. Appendix D).

Nevertheless, the Legendre transformation identity guarantees that the perturbative development of
the solution for  mirrors that for S, as we verified explicitly in Sects. 3.3–3.5. Indeed, the freedom
in the solution is again expressed through the �-integration constants which are guaranteed by
dimensions to be local functionals. Then the key rôle is again played by the non-trivial cohomology
of s0 = Q0 +Q−0 in the space of local functionals, where the free charges in Eq. (3.28) generate the
same algebra, Eqs. (2.36) and (2.37), as for the quantum fields. This means that the same conclusions
C1–C5 hold for this 1PI formalism. In fact, since the antibracket in Eq. (3.12) is not regularized,
the classical �-integration constants are much more straightforward to determine, and the resulting
classical solution in Eq. (4.4) for cl is a closed expression (unlike for Scl) which coincides with the
standard form of the classical action and its BRST transformations, although it is derived rather than
taken a priori as input. For the same reason, the canonical transformation in Eqs. (4.8)–(4.10) that
provides the wavefunction renormalization factors parametrizing the remaining freedom in Eq. (4.11)
in the choice of �-integration constants is much easier to determine in this formalism. Finally, and
crucially, the � → 0 limit in Eq. (3.19) recovers the standard Legendre effective action satisfying
the Zinn-Justin equation [48–50,69]. As we confirmed in Sect. 5, we thus recover the physical 1PI
amplitudes, i.e. the same ones that can be computed by other methods modulo changes induced by
differing renormalization schemes.

In the early stage of the development of the subject, Yang–Mills theory was studied with the exact
RG method with antifields introduced as sources for the BRST transformation [59]. The perturbative
compatibility of the flow equation and QME is discussed in Ref. [67] by studying the asymptotic
behaviors of the Wilsonian action and the QME. In the present paper we have derived an explicit
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simultaneous solution to the flow equation and QME for a finite cutoff at the one-loop level in
perturbation.

While there is already a large literature on finding exact and approximate simultaneous solutions of
the Legendre flow equation and mST for non-Abelian gauge theories, see, e.g., Refs. [31,59–69,89–
101], typically these approaches either lack control or become rapidly highly involved, depending
especially on the extent to which the extra constraint from the mST is respected. We have shown
how, through the derivative expansion property, s0-cohomology (in the space of local functionals)
facilitated by working in the minimal gauge-invariant basis of Eqs. (2.34) and (3.22) and exploiting
antighost grading and the descent equations in Eq. (2.40), both ensures the symmetry and allows
elegant streamlined derivations of renormalized perturbative solutions directly in the continuum, that
simultaneously solve the flow equations and the mST. Moreover, we have seen that the formulation
in terms of the Wilsonian effective action S is equivalent, and in this latter formulation the quantum
BRST symmetry even at the interacting level is exact and well defined in the presence of the cutoff.

On the other hand, the focus of part of the literature is in developing effective non-perturbative
approximations [31,92,93,95–102]. In this paper we have only applied these results explicitly to
the development of exact perturbative solutions. It would be most interesting to investigate whether
the structure allows a general framework for non-perturbative truncations that continue to yield
compatible flow equations and mST/QME identities, and thus to allow approximations that yield
non-perturbative simultaneous solutions. Even for a simple shift form of modified Ward–Takahashi
identity, compatibility can be difficult to achieve in non-perturbative approximations [103]; however,
we take heart from the considerable freedom in derivative expansion solutions of the QME alone
(see the discussion at the beginning of Sect. 2.7) and in the fact, noted below Eq. (5.27), that the mST
may be viewed as a means to eliminate longitudinal and transverse parts of certain vertices [102].

We saw in Sect. 2.2 how the simultaneous solution of the flow equation and QME holds non-
perturbatively in �, defining the continuum limit in terms of expansion over the eigenoperators and
the quantum ŝ0-cohomology within this space. This framework is important to progress to higher
orders the quantization of gravity proposed by one of us [58,74,104,105], which realizes quantum
gravity as a genuine continuum quantum field theory using interactions that are perturbative in
Newton’s constant but non-perturbative in �. The equivalence under Legendre transformation will
also allow the 1PI formalism to be developed in this new quantization scheme, so that the mST
identities become satisfied at finite �, and the physical amplitudes are recovered in the �→ 0 limit.
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Appendix A. Relation to earlier formulations of QME and exact RG

The basis introduced in Ref. [58] is related to the fields φA|unshifted used in Ref. [67] by a change
of variables to the shifted fields φA discovered in Refs. [63,64]. These latter fields appear naturally
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in the solution of the flow equation. The change of variables is in fact a (finite) quantum canonical
transformation [58] (thus leaving the QMF invariant):

φA = φA|unshifted + �̄ABRC
B φ∗C . (A.1)

This basis leads to the advantage mentioned in Sect. 1, namely that it provides us with a free quantum
BRST algebra that closes on local functionals (since � in Eq. (2.6) is well defined when acting on
arbitrary local operators, while the free BRST transformations in Eq. (2.4) are unmodified). In fact,
the change of variables to shifted variables is forced on us at first order. See Ref. [58, Sect. 2.5] for
more details.

Appendix B. Translating between left- and right-acting differentials

Right-acting free BRST and free Kozsul–Tate differentials are encoded into the free action od
Eq. (2.1) by its last term. This should be compared to the case where they are left-acting [58],
e.g.

QφA = (S, φA), (B.1)

where we still require Eq. (2.36) and thus, thanks to the antibracket in Eq. (2.6), we must have [58]

S0 = 1
2φAK−1�−1

AB φB − RA
BφBK−1φ∗A. (B.2)

Comparing this with Eq. (2.1), we see that the translation corresponds simply to the replacement

RA
B

∣∣
left = (−)ARA

B

∣∣
right. (B.3)

For example, the relation in Eq. (3.15) then follows from translating Ref. [58, Eq. A.9].

Appendix C. Third order in coupling at classical level: Notation

As an example, suppose that parts of the action have the following form:

S1 = [B, C]A ≡ if abc
∫

x
Bb(x) Cc(x) Aa(x),

S2 = D[E, F],
S3 = G[H , J ], (C.1)

where A = AaT a etc. are fields in the adjoint representation which for simplicity we will assume to
be Grassmann even. We use the notation in Eq. (2.26), and f abc are the group structure constants.
Then at classical level, third order in the coupling, we encounter terms of the following form, where
the notation is explained in full on the second line:

(
S1
←
∂ A

)�̄( →
∂ D S2

←
∂ F

)�̄′( →∂ G S4
) = [B, C][ �̄E �̄′ , [H , J ]]

≡ i3
∫

x,y,z
f abcBb(x)Cc(x)�̄(x − y)f aef Ee(y)�̄′(y − z)f fhjH h(z)J j(z). (C.2)
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Appendix D. Non-linear invariance of the mST

The invariance of the QMF in Eq. (2.8) under Eq. (2.30) induces a transformation on the classical
(anti)fields {�, �∗} that must leave Eq. (3.18) invariant since it is also 	. Let us write Eq. (2.30)
more generally in the form

φ∗A = φ̌∗A +�ABφB. (D.1)

This is a finite quantum canonical transformation (see Ref. [58, Appendix A]) generated by some
generic bilinear “gauge fermion” � = 1

2φA�ABφB (�AB being field independent, with εA = εB + 1
and �AB = �BA). Using the Legendre transformation identity of Eq. (3.3), Eq. (D.1) can be recast
as

�̌∗A = �∗A −�AB�B −�AB�̄BC ∂l

∂�C I [�, �∗]. (D.2)

Although this is a symmetry of Eq. (3.18), which, by choosing � to be Eq. (2.29), would take us to
a gauge-invariant basis �̌∗, to apply it we would need to solve Eq. (D.2) for �∗, yielding an infinite
series in the form of a tree expansion.

Appendix E. Equality of wavefunction renormalizations in the two effective actions

Expanding

I [�, �∗] = 1
2�AσAB�B + · · · , (E.1)

where the ellipses stand for �∗ terms and higher-point vertices, one gets, either by solving Eq. (3.4)
for the SI two-point vertex, or from the tree expansion, cf. Eq. (3.5), that

SI [φ, φ∗] = 1
2 φA(

σ
[
1+ �̄σ

]−1 )
ABφ

B + · · · . (E.2)

(Here one must recall Eq. (3.22) or work directly in a gauge-fixed basis.) Adding to this the free part
in Eq. (2.1) gives the modified kinetic term

S[φ, φ∗] = 1
2 φAK−1�̃−1

ABφB + · · · , (E.3)

where

�̃−1 = (�−1 + σ)[1+ �̄σ ]−1. (E.4)

On adding Eq. (E.1) to 0, cf. Eq. (3.11), we set

σ = (Z−1 − 1)�−1 + σ ′, (E.5)

with σ ′(p) being O(p4), so as to pull out the part parametrized by the field wavefunction
renormalization constants of Eq. (4.10) (or rather as parametrized in Eq. (4.22)). We thus have

�̃−1 = (Z−1�−1 + σ ′)
[
1+ (Z−1 − 1)K̄ + �̄σ ′

]−1 = Z−1�−1 + O(p4), (E.6)
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where the last equality follows since K̄ is O(p2). (In fact, recalling Eq. (2.2), it is even O(p4).) This
establishes that the wavefunction renormalization constants for  work in S and take the same value.
A similar analysis can be carried through to verify this property also for the φ∗ terms.

Appendix F. Defining the conditionally convergent parts

The demonstration that the K-independent part in Eq. (5.8) vanishes, and similar manipulations, need
care because Eq. (5.7) is only conditionally convergent, the convergence arising from cancelation
of divergent terms. Consider, for example, the following integral that arises from extracting the
K-independent part:

4
∫

q

p·q
p2q2 . (F.1)

This integral vanishes by Lorentz invariance. However, since it appeared multiplied by K̄(q)K̄(p+q)

in Eq. (5.7), we could equally have written it as

2
∫

q

(
p·q
p2q2 −

p·(q+ p)

p2(q+p)2

)
= 2

∫
q

p·q(2p·q+ p2)− q2p2

p2q2(q+p)2 . (F.2)

This latter integral now has a non-vanishing quadratic divergence (which one can readily extract
by taking the p → 0 limit). The problem is that Eq. (F.1) is superficially cubically divergent. The
non-vanishing contribution in Eq. (F.2) is in fact a surface term, which cannot be dropped since it is
not only non-vanishing but quadratically divergent.

However, the final version, which coincides with Eq. (2.72), is well defined. If the intermediate
expressions are treated in the same way, the result is also unambiguous. Thus, for example, if we
start with the expression in Eq. (5.7) but with the p·q/p2q2 replaced by the integrand in Eq. (F.2),
then we would now need a divergent integration constant chosen to cancel the quadratic divergence.
However, when we finish, we would again get Eq. (2.72). Alternatively, we could also supply a UV
regularization, as we have to do anyway for B, for example, in Sect. 5.1, after which the divergent
part, and thus the corresponding integration constant, is unambiguous.

Likewise, the third term in brackets in Eq. (5.14) requires a little care in taking the p→ 0 limit.
Using q �→ −q− p symmetry we have that

q·p
p2q4 ≡

1

2

(
q·p
p2q4 −

q·p+ p2

p2(q+p)4

)
. (F.3)

Combining over a common denominator, and expanding the numerator, we can neglect all terms that
evidently vanish as p→ 0. We are then left with

(q·p)2

p2q6 −
1

4 q4 , (F.4)

which clearly provides a vanishing contribution to Eq. (5.15).

Appendix G. Vertices for one-loop contributions

Using the alternative to Eq. (3.22), we write Eq. (3.31) as

1 = f abc
∫ [

∂μAa
νAb

μAc
ν +

1

2
C∗aCbCc + (

A∗μ − i∂μC̄
)aAb

μCc
]
. (G.1)
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Defining τC
AB =

→
∂ A 1

←
∂ B, and writing

(
τA∗
μc

)ab
(x, y) ≡ ∂

∂Aa
μ(x)

∂r

∂Cb(y)
1 = −f acbA∗cμ (x)δ(x − y) = (

τA∗
cμ

)ab
(x, y),

(
τC∗

cc

)ab
(x, y) = ∂ l

∂Ca(x)

∂r

∂Cb(y)
1 = −f acbC∗c(x)δ(x − y), (G.2)

(
τA
μν

)ab
(x, y) = ∂

∂Aa
μ(x)

∂

∂Ab
ν(y)

1 = f acbτAc

μν(x, y),
(
τA

c̄c

)ab
(x, y) = ∂ l

∂C̄a(x)

∂r

∂Cb(y)
1,

for derivative couplings connected to propagators on either side, we have

�(
τA

c̄c

)ab� = +if acb∂μ�Ac
μ�, �(

τA
cc̄

)ab� = −if acb�Ac
μ∂μ�,

�(
τC

c̄μ

)ab� = −if acb∂μ�Cc�, �(
τC
μc̄

)ab� = if acb�Cc∂μ�, (G.3)

with similar expressions for the 
(2)
1∗ vertices. Defining Tρσ (Ac) = �ρμ

(
τAc

μν

)�νσ , we find that

Tρσ (Ac) = [
2∂ν�ρμAc

μ + 2�ρμAc
ν∂μ −�ρμAc

μ∂ν

−�μν

(
∂�ρμ · Ac +�ρμAc · ∂)− ξ∂ρ�Ac

ν

]�νσ .

Appendix H. Gauge field double propagator terms in the AA vertex

Applying the projectors Eq. (5.3), we have

AL = AμνPL
μν and AT = 1

3AμνPT
μν = 1

3

(
Aμμ −AL)

. (H.1)

The most involved part, the gauge field double propagator piece, of Eq. (5.1),

−1
2 �̄αβ(q)�̄ρσ (q+p) �ραμ�σβν , (H.2)

gives, for I = L, T contribution,

−1
2 �̄(q)�̄(q+p)

(
X I + ξY I + ξ2ZI ), (H.3)

where the expressions X I , Y I , and ZI are q �→ −q−p symmetric:

X T = 3
[
(p− q)2 − (p2 − q2)2

(p+ q)2

]
+ 3

[
(2p+ q)2 − (2p · q+ q2)2

q2

]

+ (p+ 2q)2
[

2+ (p · q+ q2)2

q2(p+ q)2

]
,

Y T = (p− q)2 + 2(p+ 2q)2 − 3q2 + 3p · q+ (2p+ q)2 − 3(p+ q)2 − 3(p2 + p · q)

+ 2
(2p · q+ q2)2

q2 + 2
(p2 − q2)2

(p+ q)2 + 3
[
(p · q+ q2)2

q2 + (p · q)(p · q+ q2)

q2

]

+ 3
[
(p · q+ q2)2

(p+ q)2 − (p · q+ q2)(p2 + p · q)

(p+ q)2

]
− 2(p+ 2q)2 (p · q+ q2)2

q2(p+ q)2 ,
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ZT = (p2 − q2)2

(p+ q)2 +
(2p · q+ q2)2

q2 + (p+ 2q)2 (p · q+ q2)2

q2(p+ q)2

− 3
[
(p · q)(p · q+ q2)

q2 + (p · q+ q2)2
{

1

q2 +
1

(p+ q)2

}
− (p · q+ q2)(p2 + p · q)

(p+ q)2

]
,

X L = (p2 + 2p · q)2
[

2+ (p · q+ q2)2

(p+ q)2q2

]
,

Y L = (p+ q)2
{

p2 − (p · q)2

q2

}
+ q2

{
p2 − (p2 + p · q)2

(p+ q)2

}
,

ZL = 0.
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