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Abstract

After the discovery of the Higgs particle, which filled the last gap in the Standard
Model (SM) of particle physics, and first measurements of its properties, further mea-
surements and especially the search for Physics Beyond the Standard Model (BSM)
have been intensified. Both require precise theoretical predictions at next-to-leading
order in Quantum Chromodynamics (QCD) perturbation theory and beyond.

In this thesis, several developments on GoSam, a framework for the automated calcu-
lation of QCD and electroweak corrections at next-to-leading order, are presented. In
particular, its updated interface to Monte Carlo event generators defined in the sec-
ond version of the Binoth Les Houches Accord (BLHA2) is presented and discussed.

Furthermore, an extension of the tensor integral library Golem95C to higher ranks in
the pentagon and hexagon cases is worked out.

These various developments extend the usability and applicability of GoSam, espe-
cially for BSM calculations.

The process pp (→W +W −)→ e+νe µ− ν̄µ is calculated at NLO QCD with Herwig and
GoSam. The analysis is focused on anomalous g gW +W − couplings, which stem from
higher-dimensional effective field operators that modify the gluon-gluon-channel,
which is loop-induced in the Standard Model. In addition, parton shower effects and
dependencies on massive quarks are analyzed. The calculation is performed at LHC
energies and at 100 TeV for a future proton-proton collider.
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Zusammenfassung

Nach der Entdeckung des Higgs-Teilchens, mit dem die letzte Lücke im Standardmo-
dell der Elementarteilchenphysik gefüllt werden konnte, schreitet die Messung seiner
Eigenschaften voran. Auch die Suche nach möglicher Physik jenseits des Standard-
modells wird verstärkt fortgesetzt. Beides erfordert präzise theoretische Vorhersagen
in nächst-führender Ordnung (NLO) in der Störungstheorie der Quantenchromody-
namik (QCD) und darüber hinaus.

In dieser Arbeit werden mehrere Entwicklungen am Programm-Paket GoSam darge-
legt, die in dessen Version 2.0 aufgenommen worden sind. GoSam ermöglicht die
automatisierte Berechnung von Ein-Schleifen-Korrekturen in starker und elektro-
schwacher Wechselwirkung. Insbesondere wird in dieser Arbeit eine Erweiterung
der Schnittstelle von GoSam zu Monte-Carlo-Eventgeneratoren vorgestellt, die der
zweiten Version des Binoth-Les-Houches-Accords (BLHA2) folgt.

Zudem wird eine Erweiterung der Golem95C-Tensorbibliothek zu höheren Tensor-
rängen bei Pentagon- und Hexagon-Schleifen-Integralen ausgearbeitet.

All diese Erweiterungen steigern die Benutzbarkeit und Anwendungsmöglichkeiten
von GoSam, gerade auch für Physik jenseits des Standard-Modells.

Die Arbeit beinhaltet die NLO-QCD-Berechnung von pp (→W +W −)→ e+νe µ− ν̄µ .
Im Mittelpunkt stehen anormale g gW +W − Kopplungen, die effektiven, höher-di-
mensionalen Operatoren entsprechen und den Gluon-Gluon-Kanal beeinflussen, der
im Standardmodell schleifen-unterdrückt ist. Darüber hinaus werden der Einfluss
von Partonschauern und schweren Quarks analysiert. Der untersuchte Prozess wird
sowohl bei LHC-Energien, als auch bei einer Schwerpunktsenergie von 100 TeV für
ein zukünftigen Proton-Proton-Collider berechnet.
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1 Introduction

Currently, the second run of the Large Hadron Collider (LHC) [13] at CERN1 is ongoing.
Its aim is to consolidate the measurement results of the first run and to extend the
search for Physics Beyond the Standard Model (BSM).

With the discovery of the Higgs boson by the LHC-experiments ATLAS [14] and
CMS [15] published in Refs. [16–18], one of the main LHC goals had been achieved.
Whilst some of the properties of the Higgs boson could be determined, e.g. its mass
[19, 20], spin and parity [21, 22], others, like the Higgs boson self-coupling seems
to be beyond the reach of the current luminosity. With the found Higgs boson, the
Standard Model (SM) seems to be now completed.

The SM describes all interaction known between fundamental particles, except gravity.
One part of the SM is Quantum Chromodynamics (QCD) [23–27] that describes the
strong interaction between quarks and gluons. The electroweak sector of the SM
is described by the model of Glashow, Weinberg and Salam (GWS) [28–30] and by
the Glashow–Iliopoulos–Maiani mechanism (GIM) [31]. The Brout-Englert-Higgs
mechanism [32–37] breaks the electroweak symmetry spontaneously, such that weak
bosons become massive. Yukawa interactions to the Higgs boson enable also mass
terms for quarks and leptons.

The SM was validated very successfully by a great number of measurements and
experiments in the last decades, mainly at particle colliders. These experiments
yielded the discovery of theW-bosons [38, 39], the Z-boson [40, 41] and the top quark
[42, 43], which have been also predicted by the SM.

Still, there are hints that there must be BSM physics. Phenomena such as dark matter
[e.g. 44–46] or the matter/anti-matter asymmetry in the universe are not explained
by the SM. Few measurements are also deviating from theoretical predictions, such
as the anomalous magnetic dipole moment of the muon (cf. [47, 48]).
1Conseil Européen pour la Recherche Nucléaire or European Organization for Nuclear Research – an
international particle physics laboratory near Geneva, Switzerland.
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1 Introduction

Chapter 2 gives a brief overview of the Standard Model and its field content, laying
the theoretical framework for further chapters. Reasons why it might need to be
extended are also discussed.

Chapter 3 concerns effective (quantum-)field theories and describes possible means
of calculating effects of known or unknown theories at lower scales. Contact interac-
tions between (light) particles that are described by higher-dimensional operators
emulate and simplify effects, which occur by interactions with (virtual) heavy par-
ticles in the possibly unknown full theory. Therefore, an effective field theory can
be valid only up to a certain energy scale, where the effects of heavy particles of an
associated full theory can be resolved.

For the BSM search, precise predictions for the measured observables within the SM
are needed as well as calculations how they are modified by BSM effects, especially
since no real signal for BSM physics was found yet, beside some later mentioned
possible deviations or fluctuations, which still need to be confirmed by further mea-
surements.

In Chapter 4, a short overview of the involved collider physics is given, together with
a description, how precise predictions can be calculated at next-to-leading-order
(NLO), which is the first order that describes many processes in sufficient accuracy
and therefore allows direct comparison with measured data.

After introducing the theoretical framework, the following parts of this thesis focus
on improvements to the automation of next-to-leading-order (NLO) calculations and
one application.

In Chapter 5, GoSam [2, 49, 50] will be introduced, a framework for the automated
calculation of one-loop amplitudes, which are needed in NLO calculations. Several
developments and improvements, partially developed by the author of this thesis
and published in the GoSam 2.0 release [2], are described in Chapter 5 and, especially,
an improved interface for Monte Carlo event generators in Chapter 6 following the
Binoth Les Houches Accord 2 (BLHA2) [8] standard.

The scattering amplitudes, which GoSam can provide at tree- and one-loop virtual
level are only one ingredient in the prediction of collider experiments. The outcome
of these experiments is measured in the total scattering cross section of an analyzed
process, corresponding differential distributions, such as angular dependencies, and
other observables (e.g. the number of jets in the final state). To determine these
observables, the squared scattering amplitudes need to be integrated over the phase-
space volume of momenta of final state particles (i.e. basically all allowed kinematic
possibilities). This is performed by Monte Carlo event generators, which sample over
the phase space by generating individual events, whose probability are determined by
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the corresponding scattering amplitude. For NLO calculations, these programs pro-
vide usually also the real-radiation part. The usedMonte Carlo integration techniques
allows to apply cuts to the phase space, which are needed to model experimentally
directly measurable observables and help to enhance signal-to-background ratios.
In the case of composite particles in the initial state, such as in proton-proton colli-
sions, all possible partonic sub-processes (channels) need to be calculated and the
corresponding parton distributions need to be taken into account.

GoSam depends on reduction programs that calculate loop integrals. Examples for
such integral libraries are Golem95C [3, 51, 52] and Samurai [53, 54]. In GoSam 2.0,
Ninja [55, 56] is also supported.

Chapter 7 and Chapter 8 of this thesis will present further developments of the author
on the integral library Golem95C, mainly its extension to higher-rank numerators for
the pentagon and hexagon case. These are needed in loop-calculations with effective
field theories, such as calculations with an effective gluon-gluon-Higgs vertex (cf.
Section 3.3.2). These are applied, for example, in [5]. Higher-rank numerators also
occur in calculations with spin-2 particles (gravitons/Kaluza-Klein-modes), such as
NLO corrections to diphoton plus jet production through graviton exchange [4] in
the ADD model [57].

In Chapter 9, the previously discussed tools are employed in a calculation ofW +W −

production including leptonic decays at NLO with anomalous couplings for the
LHC.

This process is especially interesting in Higgs physics, as it is a background to the
H →WW decay, as well as in BSM search due to the missing energy, which results
from the neutrinos in the final state.

The main focus of the calculation is on anomalous couplings that modify the gluon-
gluon channel, which is loop-induced in the SM. The anomalous couplings analyzed
stem from dimension-eight operators and mediate directly between two gluons and
two W-bosons at tree-level.

Previous calculations of higher-order corrections to diboson production were mostly
focused on the SM [e.g. 58–81]. Effective dimension-six operators, which are not
included here, have been studied in vector-boson-fusion calculations and are highly
restricted by measurements [82–88]. Section 9.1.2 of this thesis will give a closer
overview of the existing calculations.

The calculation includes a discussion of top-mass and parton-shower effects. Thereby,
several differential observables are examined. Subsequently, the calculation is ex-
tended for a future hadron collider with center-of-mass energy of 100 TeV.
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1 Introduction

Finally, Chapter 10 summarizes the collected results and developments and provides
an outlook to the future.
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2 The Standard Model and its challenges

The Standard Model (SM) is described by a renormalizable relativistic quantum
field theory which is a gauge theory, invariant under local SUC (3) × SUL(2) × UY (1)
transformations.

Globally, the Standard Model is symmetric under proper Poincaré transformations
such as translations, rotations and Lorentz boosts in the Minkowski space and has
further accidental U(1) symmetries conserving baryon family numbers.1 Because of
the Poincaré invariance, each irreducible representation, i.e. particle type, can be de-
scribed by an arbitrary mass m and the spin s . For m = 0, there exists two eigenstates.
For massive ones, there are (2s + 1) eigenstates in the irreducible representation.

The SM is commonly described in the Lagrangian formalism, where the action of
the theory can be calculated by integrating over a Langrangian LSM which contains
all physical information about the theory, i.e. all fields, their masses, kinematic and
interactions. It can be split up into different terms:

LSM = Lgauge + Lfermion + LHiggs + LYukawa + Lgauge fix. + Lghost (2.1)

The gauge term is described by the Yang-Mills theories of the strong and electroweak
interaction, whose properties are described in the following sections.

To keep local gauge invariance, for each gauge group a corresponding gauge field
needs to be introduced:

Lgauge = −
1
4G a

µνG
µν
a −

1
4W i

µνW
µν

i −
1
4BµνB µν (2.2)

where G a
µν,W i

µν and Bµν are the field strength tensors belonging to the gauge fields

1The leptonic family numbers are slightly violated due to neutrino masses, which are not included
in the SM by default.
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2 The Standard Model and its challenges

G a
µ of SUC (3),W i

µ of SU(2)L , and Bµ of U(1)Y :

G a
µν = ∂µG a

ν − ∂νG
a
µ − gs f abcG b

µG c
ν (2.3)

W i
µν = ∂µW i

ν − ∂νW
i

µ − gw ε
i jkW j

µW k
ν (2.4)

Bµν = ∂µBν − ∂νBµ (2.5)

with i, j, k = 1, 2, 3 and a, b, c = 1, . . . , 8, the strong coupling gs , the electroweak
coupling gw , and the structure constants f abc of SUC (3) and εi jk of SU(2)L .

The fermion term Lfermion contains the interaction between the fermion fields and
gauge bosons.

Lfermion =
3∑

f =1

�
Ψ̄

Q (f )
L i /DΨQ (f )

L + Ψ̄
l (f )
L i /DΨ l (f )

L + ψ̄
u(f )
R i /Dψu(f )

R

+ ψ̄
d(f )
R i /Dψd(f )

R + ψ̄
e (f )
R i /Dψe (f )

R

�
(2.6)

with /D = γµDµ , Dµ the covariant derivative, γµ the gamma matrices. The fermion
and scalar content of the SM are summarized in Table 2.1 with the corresponding
quantum numbers and charges.

The covariant derivative Dµ is defined as

Dµ = ∂µ − igs TaG a
µ − igw IiwW i

µ − ig1qY Bµ (2.7)

with the generators Ta and Iiw of SUC (3) and SUL(2), respectively. qY denotes the
hypercharge of the field to which the covariant derivative is applied. g1 is the UY (1)
coupling constant. In Table 2.1, the hypercharge is the index in the ‘representation’
column.

The fermions occur under SU (2)L as left-handed doubletsΨL and right-handed sin-
glets ψR . The left-handed doublets are in the fundamental representation of SU(2)L

and the corresponding generator Iiw =
σi

2 , where σi are the Pauli matrices. For the
right-handed singlets, which carry no weak iso-spin, Iiw = 0.

The electric charge Q , the third component of the weak iso-spin I3 and the weak
hypercharge qY are connected with Q = I3 + qY .2

The scalar Higgs boson field is described in Section 2.2, p. 22.
2The weak hypercharge can also be defined asY B 2qY and, accordingly, Q = I3 +

1
2Y . See Ref. [89]

for a list of different notations and signs.
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2.1 Quantum Chromodynamics

fields f = 1 f = 2 f = 3 representation Q

Ψ
l (f )
L

(
νe

e

)
L

(
νµ

µ

)
L

(
ντ
τ

)
L

(1, 2)−1/2 0
−1

ψ
e (f )
R eR µR τR (1, 1)−1 −1

Ψ
Q (f )
L

(
u
d′

)
L

(
c
s ′

)
L

(
t
b′

)
L

(3, 2)1/6
2
3
− 1

3

ψ
u(f )
R uR cR tR (3, 1)2/3 + 2

3

ψ
d(f )
R dR sR bR (3, 1)−1/3 − 1

3

Φ =

(
φ+

φ0

)
(1, 2)1/2 1

0

Table 2.1: Fermion and Higgs field content of the SM. The quark and lepton exists in
three generations (f = 1, 2, 3) where the right-handed part is a singlet under SUL(2)
and the left-handed particles doublets under SUL(2). The quantum numbers under
SUC (3) and SUL(2) are listed in the representation column, the weak hypercharges

qY of UY (1) as indices.

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory which describes the strong interac-
tion between quarks and gluons, i.e. particles which transform non-trivially under
the SUC (3) colour group.

The eight gluon fieldsG a
µ are in the adjoint representation, whereas the fermion fields

transform as triplets in the fundamental representation.

The strong interaction is characterized by the strong coupling constant gs , the struc-
ture constants f abc of SUC (3) and the generators Ta of the fundamental representa-
tion (cf. Eq. (2.3), p. 20). The latter are connected with the identity

[Ta, Tb ] = if abc Tc . (2.8)

In contrast to the later discussed Quantum Electrodynamics (QED), QCD is a non-
abelian gauge theory where both the fermions and the gauge bosons (gluons) carry
the corresponding charge, which is called colour. Therefore, the gauge bosons interact
with each other and the renormalized coupling constant has an inverted behaviour,
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2 The Standard Model and its challenges

i.e. it becomes low at small distances (corresponding to high energies) and high at
high distances (or low energies).

This leads to two effects: asymptotic freedom [26, 27] and confinement.

Asymptotic freedom allows perturbative calculations to be made for high energies as
the interaction becomes weak. Quark and gluons can be considered like free particles.
For low energies, on the other hand, the interaction becomes strong and bound,
colourless states, hadrons, are formed. They can be divided further into mesons
(consisting of one quark and one anti-quark) and baryons, which have three valence
quarks. Typical representatives of baryons are protons and neutrons, which form the
nucleon of atoms and are therefore also called nucleons. Whereas only bound states
of nucleons were known with at least one proton, there are now also first hints for a
tetra-neutron state [90]. Recently, also the long predicted existence of pentaquarks
(five quark states) has been experimentally proven at the LHCb, where an exotic
pentaquark charmonium state was observed [91]. The fact that quarks and gluons
can be observed only in bound states, is called confinement.

2.2 Electroweak sector and Higgs sector

The electromagnetic force described in Quantum Electrodynamics (QED) can be
unified with the weak-force to the electroweak interaction accomplished under the
SUL(2) × UY (1) gauge group in the SM which is broken spontaneously by the Brout-
Englert-Higgs mechanism which allows the underlying electroweak boson fields to
gain mass. The corresponding massless gauge fields are calledW 1,W 2,W 3 for the
SUL(2) and B0 for the UY (1). They are broken spontaneously to U(1)em so that three
massive bosonsW +,W −, Z 0 and the massless photon γ emerge.

The Brout-Englert-Higgs mechanism introduces a new complex scalar doubletΦ =(
φ+ φ0

)T of SUL(2) into the Lagrangian

LHiggs =
�
DµΦ

�† �
D µΦ

�
−V (Φ) (2.9)

with the covariant derivative

DµΦ = *
,
∂µ − i gwW i

µ
σi

2 −
i
2g1Bµ

+
-
Φ (2.10)
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2.2 Electroweak sector and Higgs sector

and the Higgs potentialV (Φ)

V (Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2 (2.11)

containing a mass term with opposite sign and a quartic term.

A corresponding, uncharged vacuum expectation value (VEV) can be chosen as

〈0|Φ |0〉 = 1
√
2

(
0
v

)
(2.12)

where v =
√

µ2

λ , such that the VEV is at the minimum of the Higgs potential. This
breaks the gauge symmetry spontaneously. A positive VEV requires that µ2 ≥ 0. Now,
the Higgs fieldΦ can be developed around its VEV:

Φ = *
,

φ+�
v + h(x) + i χ0

�
/
√
2

+
-
, (2.13)

which introduces the real Higgs field h(x) and two unphysical Goldstone fields φ+
and χ0. These Goldstone fields can be chosen as zero in the unitary gauge.

Reinserting this into the kinetic term of LHiggs, yields the following gauge boson mass
terms:

Lgauge masses =
v 2

8
(

g 2
w (W 1)2 + g 2

w (W 2)2 + (gwW 3 − g1B)2
)
. (2.14)

These terms can be diagonalized into mass eigenstates of four fieldsW ±, Z 0 and A:

W ±
µ =

1
√
2
(W 1

µ ∓ iW 2
µ ) (2.15)

Z 0
µ =

1√
g 2
1 + g 2

w

(gwW 3
µ − g1Bµ) (2.16)

Aµ =
1√

g 2
1 + g 2

w

(g1W 3
µ + gw Bµ) (2.17)
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with masses

mW ± =
gwv

2 (2.18)

mZ 0 =

√
g 2
1 + g 2

w
v

2 . (2.19)

The field A turns out to be massless and can therefore be identified by the electro-
magnetic field from QED.

The diagonalization can be parametrized by the electroweak mixing angle θW :(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)
*
,
W 3

µ

Bµ

+
-
. (2.20)

Additionally, the electroweak mixing angle θW relates the masses of the massive gauge
bosons,

mW

mZ
=

gw√
g 2
1 + g 2

w

= cos θW , (2.21)

and the elementary charge e to the electroweak coupling constants gw and g1:

e = gw sin θW = g1 cos θW . (2.22)

The particle described by the Higgs field h(x) itself has the mass mh =
√
2µ2 =√

2λv .

The Higgs particle was discovered in 2012 [16, 17]. Its mass is currently measured as
mh = 125.09±0.21stat.

±0.11sys. GeV [92].

2.2.1 Yukawa couplings

Mass terms for fermions, i.e. quarks and leptons, of the form −mΨ̄fΨf would break
the SU(2)L gauge invariance. This can be avoided by using Yukawa-interactions to
the Higgs field.
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2.2 Electroweak sector and Higgs sector

The corresponding Lagrangian is

LYukawa = −
3∑

f , g=1
Ψ̄

l (f )
L (Ye )f gψ

e (g )
R Φ +Ψ

Q (f )
L (Yu )f g iσ2Φ∗ψu(g )

R

+ Ψ̄
Q (f )
L (Yd )f gψ

d(g )
R Φ + h.c. (2.23)

with three 3 × 3 matrices Ye , Yu , Yd and iσ2Φ∗ the charge-conjugated Higgs dou-
bletΦ.

To switch from fermionic weak-interaction states to quark mass eigenstates, theYu

andYd matrices can be diagonalized via field transformations:

(U (u)
L )†YuU (u)

R = diag(yu, yc, yt ) (2.24)
(U (d)

L )†YdU (d)
R = diag(yd, ys, yb )

For quarks, this transformation is described by the Cabibbo-Kobayashi-Maskawa
(CKM) matrixVC K M = (U (u)

L )†U (d)
L [93]. Conventionally, the left-handed down-quark

sector is rotated,

Ψ
Q (f ),D
L → VC K MΨ

Q (f ),D
L =

*..
,

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

+//
-

*..
,

d′L
s ′L
b′L

+//
-
. (2.25)

Inserting the VEV from Eq. (2.12), p. 23 into Eq. (2.23) and applying field transforma-
tions, yields the usual mass terms for the fermions due to the Yukawa coupling to
the Higgs field.

2.2.2 Gauge fixing and ghosts

The Lagrangian described in the previous sections is gauge-invariant and has there-
fore physical equivalent field configurations. These additional degrees of freedoms
(d.o.f.) are obstructive in the path-integral formalism. To get well-defined propaga-
tors, it is necessary to remove this degeneracy, which can be done by adding gauge
fixing terms. A possible set of gauge fixing terms can be set by the Rξ gauges:
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Lgauge fix = −
1
2ξ (F

2
G ) −

1
2ξ (F

2
A ) −

1
2ξ (F

2
Z ) −

1
ξ
(F+F−), (2.26)

where ξ ∈ R is an arbitrary gauge parameter3 and

FG = ∂
µG a

µ, FA = ∂
µAµ, FZ = ∂

µZµ − ξMZ χ
0

F+ = ∂
µW +

µ − iξMW φ+, F− = ∂
µW −

µ + iξMW φ−.
(2.27)

Common choices for ξ are the Feynman-’t Hooft gauge choice ξ = 1, the unitary
choice ξ → ∞ and the Landau gauge ξ → 0.

Using the Rξ gauges, time-like and longitudinal polarization states, which are un-
physical, appear in loop calculations with gauge fields that can be compensated by
introducing anti-commuting ghost fields.

For the case of QCD corrections, which is relevant in this thesis, this yields with the
anti-commuting c , c̄ ghost fields:

Lghost,QCD = (∂µ c̄ a )(∂µca ) + gs f a
bdG µ

a (∂µ c̄b )cd . (2.28)

2.3 Hierarchy problem

Gauge and chiral symmetries protect the masses of gauge bosons and fermions from
large loop-contributions. Their masses are therefore naturally small in comparison
to the Planck scale or other high BSM scales.

In contrast, the renormalized mass of the only scalar particle in the SM, the Higgs
boson, is not protected against quadratically divergent loop corrections. Its mass
could therefore be expected to be at the scale of new physics. Keeping its value stable
and near the measured 125GeV is called the hierarchy problem.

One way to solve this, is to assume fine-tuning, which seems to be not very natural:
Large loop-contributions need cancel each other ‘accidentally’ up to the small Higgs
boson mass.

In a more natural way, this cancellation can also be achieved by assuming new par-
ticles that cancel the contributions of the particles from the SM. One method is to
3The gauge parameters could also be chosen independently for each term.
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introduce new symmetries, for example extending the Poincaré-group by Supersym-
metry (SUSY), which propose a super-partner for each particle. The spin of which
differs by a half-integer and therefore it cancels (fully or partially, if the symmetry is
broken) the loop-contributions of its partner.

2.4 Other challenges

Whilst the SM is very successful in describing the measurements in particle physics,
there are at least some areas where it is obvious that BSM physics or at least a slight
extension of the SM are necessary. This section lists some further experimental
measurements and theoretical shortcomings which, hopefully, can be resolved in the
future.

The SM includes only left-handed neutrinos, therefore neutrinos are massless in the
SM. The measured neutrino oscillations [94–97] showed, however, that they must
be regarded as massive, whereas their masses are orders of magnitude smaller than
the other scales and masses in the SM, so that the SM must be extended to explain
this.

There are multiple means of introducing right-handed neutrinos. Usually they are
considered as sterile (i.e. do not interact with the fundamental interactions of the SM,
but only via gravity) and/or very heavy, such that the Seesaw mechanism could natu-
rally explain why the (left-handed) neutrinos are so light. In this case, the neutrinos
would have Majorana characteristics (i.e. they are their own anti-particles).

There are some experimental results which are inconsistent with the theoretical
predictions from the SM, such as the muon’s anomalous magnetic dipole moment
(g − 2)µ with three to four standard deviations (cf. [47, 48]). Top- and bottom-quark
forward-backward asymmetries have been mostly resolved in the last years by more
precise calculations and analyses (cf. [98, 99]).

From the LHC, some results such as the recent local excess in the diphoton final
states at an invariant mass of 750GeV [100, 101] have given rise to speculations with
respect to whether they are a hint for BSM or just a statistical fluctuation.

From a cosmological point of view, the SM is also not satisfactory. For example, a dark
matter [e.g. 44–46] candidate is missing, furthermore the matter/anti-matter asymme-
try in the universe is not explained. Due to the Sakharov criteria [102], CP-violation4
needs to be present to have different reaction rates that create the matter/anti-matter
4CP-symmetry is a symmetry on combined charge conjugation (C) and parity (P) flip.
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asymmetry. However, the CP-violation in the electroweak sector of the SM is too
small. For the QCD sector, experiments indicate no CP-violation, so that possible
CP-violating terms, which are not forbidden as such, need to be (very) small. This is
known as strong CP-problem.5

It would also be appealing to unify the three gauge interactions, i.e. the strong,
weak and electromagnetic interaction, which are described in the SM, in a Grand
Unified Theory (GUT) using one larger gauge symmetry at very high energies (about
1 × 1016 GeV).

The gravitational force is not included in the SM. How it might be included correctly,
is not yet clear.

The SM has several parameters, the values of which are not predicted by the theory
itself, which are unrelated to each other and can therefore only be obtained from
experiments. One example are the fermion masses, which cover a wide range (mt >
105me−). This is seen as non-satisfactory.

5A small CP-violation in the QCD sector can be enforced by introducing a global U(1) symmetry
(Peccei–Quinn symmetry) [103, 104] and, accordingly, new particles called axions. See [105] and
references therein.
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3.1 Introduction

This short introduction to effective field theories (EFTs) is based on [106, 107].

An EFT allows a systematic description of physics at lower scales compared with
known or unknown physics at higher scales. It allows concentration on the relevant
fields and symmetries or, in general, on degrees of freedom at or below a specific
scale, whereas effects of physics at higher energy scales can be decoupled. All possible
interactions between the fields in form of an infinite set of local operators need to
be included, but due to power counting, which can be seen as one of the ordering
principle of EFTs and is described in Section 3.2, only a finite number of interactions
have to be considered.

If the physics at the high energy scale is known and perturbative, an EFT can be con-
structed by eliminating heavy states. In the path integral formulation, these heavier
states are essentially ‘integrated out’. This procedure results in an effective action,
which contain an infinite series of effective local, higher-dimensional operators and
corresponding coefficients, called Wilson coefficients. To adapt the Wilson coefficient
of the EFT to the full theory, amatching procedure needs to be carried out. Again,
power counting can be used to isolate operators that are relevant at lower energy
scales.

Due to the different energy scales involved, the full theory is sometimes called the
ultraviolet (UV) theory, the effective theory the infrared (IR) theory.

Examples for kinds of theories for which the full theory is known, are the four-fermion
theory discussed later, the soft-collinear effective theory (SCET) [108, 109], which is
useful for high order resummation of Sudakov logarithms, theories such as non-
relativistic Quantum Chromodynamics (NRQCD), which is used to describe non-
relativistic quark-antiquark pairs (heavy quarkonia), and Heavy Quark Effective The-
ory (HQET) that is helpful in calculations with B-mesons.
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There are also theories such as the Chiral Pertubation Theory (χPT) where the full
theory (QCD) is known, but the Wilson coefficients cannot be calculated, at least not
in a perturbative manner.

Employing EFT is convenient as it simplifies calculations and can be used to reduce
the order of loop calculations, as in the case of the effective gluon-Higgs coupling
where interactions mediated by top-quark loops are replaced by local interactions.
Instead of a full two-loop calculation, the effect can be approximated by an effective
coupling at one loop.

Furthermore, approximate symmetries (spin or chiral) are often manifest in EFTs
and simplify calculations further.

In the case of unknown physics at higher scales such as in the case of BSM, EFT
can be used for a general study of possible effects of various (still unknown) BSM
scenarios.

Comparing precision measurements with EFT calculations, general limits can be re-
trieved on the coefficients of effective operators, which limits various BSM models.

The introduction of effective operators allows the relative importance of unknown
interactions to be parametrized and predicted in a general, model-independent
manner.

3.1.1 The Standard Model as an effective theory

At very high scales, like the Planck scale, the SM becomes inadequate and quantum
gravity effects cannot be longer ignored.Therefore all theories at lower scales, includ-
ing the SM, could be interpreted as effective theories. However, for better distinction,
fully renormalizable theories, i.e. theories with a finite number of counter-terms and
therefore only terms with dimension ≤ 4 such as the SM, are not regarded as EFT
here.

3.2 Power counting

Power counting is the order principle of EFTs. It allows the operators to be arranged
so as to distinguishmore important from less important and therefore often negligible
operators.
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In weakly coupled EFTs, power-counting is identical to a dimensional analysis of
each operator related to the canonical dimensions of the involved fields. Higher-
dimensional operators need to be suppressed by powers of the cut-off scale Λ. One
gets an expansion in ratios of energy scales.

In the case of fully or partially strongly coupled EFTs, such as χPT, which are non-
renormalizable at leading order, naive dimensional analysis is not sufficient for power
counting in all cases and information based on a study of the loop-structure needs
to be added (see e.g. [110] for details).

3.3 Examples

3.3.1 Four-fermion interaction

A simple example of an effective field theory is the Fermi model, which contains a
four-fermion interaction. Its Lagrangian can be written including the correct tensor
structure (V-A) as:

LFermi = −
GF
√
2

(
ūγµ(1 − γ5)d

) (
ν̄eγµ(1 − γ5)e

)
(3.1)

with γ5 = iγ0γ1γ2γ3 and GF =
√
2
8

g 2
w

m2
W
= 1√

2v 2 .

Historically, Fermi developed it to describe the β-decay [111]. He used neutrons and
protons instead of their constituent quarks. Later the theory was found to be limited
to low energies.

From a modern perspective, this is expected, since the exchange ofW ± or Z bosons
is approximated by an effective four-point interaction with factor iGF√

2 in the Fermi
model.

Going to higher energies, higher-dimensional operators, which are neglected in
Eq. (3.1), since they are suppressed by additional powers of GF , cannot be longer
ignored. At an energy scale of G

− 1
2

F ≈ 300GeV, all of these (infinite number of) terms
become important and perturbation theory cannot be longer applied. This can only
be solved by employing the full theory as a UV-completion, i.e. (re-)introducing the
intermediate bosons.
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3.3.2 Effective Higgs couplings

Calculations with heavy-fermion-loop mediated gluon-Higgs interactions can be
simplified in the heavy top limit (mt → ∞). These mediated interactions can be
replaced by effective gluon-gluon-Higgs vertices (cf. Fig. 3.1) [112–114].

g

g

H
t

t

t
mt → ∞

g

g

H

Figure 3.1: Effective gluon-gluon-Higgs vertex in the heavy-top limit.

The corresponding term in the effective Lagrangian is:

LEffective = −
gEff
4 H trGµνG

µν (3.2)

with an effective coupling constant gEff. Including higher order QCD corrections, its
value is [115]

gEff =
−αs
√
2GF

3π

(
1 + 11

4παs

)
+ O(α3

s ) (3.3)

in the M S-scheme. αs =
g 2

s
4π is the QCD coupling strength parameter.

For energies below the top-pair production threshold, the effective model can be
improved by expanding in 1

mt
to introduce mass effects.

For two Higgs bosons in the final state, effective Higgs couplings and expansions in
1

mt
have also been applied, see e.g. [116], but cannot substitute an NLO calculation

with full top-mass dependence [117].
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4.1 Physics at hadron colliders

At high collision energies, the description of physics at different scales factorizes
according to the factorization theorem [118–120].

The cross section σ of a hadronic collision can be written accordingly as

σ(H1, H2 → X ) =
∑
a,b

∫ 1

0
dxa dxb fa ;H1(xa, µ2

F )fb ;H2(xb, µ2
F )σ̂ab

(
a, b → X ; µ2

F , µ2
R

)
(4.1)

where the collision of two hadrons H1, H2 into the final state configuration X is
assumed. The quarks and gluons, carrying momentum fraction xa,b of the total
hadron momentum, enter the partonic cross section σ̂ab .

The first term of Eq. (4.1) describing long-distance physics is provided by the parton
distribution functions (PDFs) f (xi, µ2

F ) which are process-independent and can be
determined by fitting to experimental data. The second part, the hard scattering
cross section describing the small-distance physics, can be calculated perturbatively.
It depends only on the momentum and identity of the involved partons, not on the
full hadrons.

The hard scattering cross section is connected to the scattering matrix Ŝ that de-
scribes the probability Pa,b→X of measuring the final state |X 〉fin from the initial state
|ab〉in:

Pa,b→X =
���fin〈X | Ŝ |ab〉in���

2
. (4.2)

The scattering matrix Ŝ can be split into a non-interacting part and the scattering
amplitude T̂ ,

Ŝ = 1 + iT̂ . (4.3)
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For a 2 → n scattering process with momenta ka , kb , k1, . . . , kn , the momentum
conservation can be factored out as follows:

fin〈k1 · · · kn | iT̂ |kakb〉in = δ(4)(ka + kb −

n∑
j=1

kj ) iM (4.4)

with the scattering matrix elementM.

Finally, the hard scattering cross section can be computed by integrating the squared
scattering amplitude over the final state phase-space and dividing by the incoming
flux,

σ̂ab =

∫ 1
2Ea Eb |va − vb |

n∏
i=1

d3ki

(2π)32Ei
δ(4)(ka + kb −

n∑
j=1

kj )
∑

��M��2 (4.5)

where Ea , Eb , E1···n is the energy of the incoming and outgoing partons, |va − vb | the
relative velocity of the colliding partons, and ∑ the average over initial state colours
and helicities and sum over final state colour and helicity configurations.

The tools and methods discussed later in this thesis focus on the hard scattering
process. For the full calculation at the end of this thesis, all parts are considered.

The hard scattering matrix elementM can be computed perturbatively by expanding
in powers of the coupling constants. These correspond to extra radiation and loop-
orders that implicate free momenta over which it must be integrated.

Since calculation capabilities and knowledge are limited, it is necessary (except for
very specific cases where all orders can be resummed) to truncate the perturbation
series at the first elements. The results depend therefore on two unphysical scales,
the factorization scale µF , to which scale PDFs need to be evolved, and the renormal-
ization scale µR , which results from UV renormalization that absorbs UV divergences
in the parameters and fields. In practice, this is accomplished by adding counter-
terms to the Lagrangian that cancel the UV divergences. The final result calculated
at infinite orders in the perturbative series does not depend on unphysical scales. A
truncation of the perturbative series results in a remaining dependency on µR and
µF , which gives a hint with respect to the size of missing contributions at higher
orders.

As the remaining dependency appears as logarithms of the ratios between µR,F and
the (unknown) scale of the hard interaction, a scale for µR and µF is selected as an
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educated guess that is typical for the process. To estimate the uncertainty, this central
scale is usually varied by a factor of two in both directions.

The complexity of the calculations of processes rises with the number of involved
scales, external momenta and loops.

For all phenomenologically relevant processes, next-to-leading order calculations
can be made in an automated way, which is an achievement of the last decade.

Beyond one-loop, the picture is different. Only few processes have yet been calculated
manually at next-to-next-to-leading-order (NNLO) or even higher order (N3LO) and
are becoming a main focus of research.

This thesis focuses on improvements to the automation of next-to-leading-order
(NLO) calculations and one application.

4.2 NLO calculation

At NLO, in addition to the Born contribution (leading-order (LO)) three additional
contributions that have the same order in the coupling constant of the perturbative
series have to be taken into account.

The real-emission contribution consists of an additional parton in the final state.
This extra parton may become unresolved and therefore may not be distinguishable
experimentally.

The virtual contribution has the same initial and final state as the Born contribution,
but contains an additional internal particle. This implies that a loop with free loop
momentum arises for which integration is necessary.

The real-emission and virtual parts are usually infrared-divergent from soft and
collinear divergences, but according to the KLN-theorem [121, 122] their divergences
cancel each other in sufficiently inclusive, infrared-save observables and therefore
their sum must be finite (except from initial state collinear singularities, which are
included in the parton distribution functions (PDFs)).

The virtual contribution contains also ultraviolet (UV) divergences. By renormaliza-
tion, these divergences can be absorbed into the coupling constants and fields.

Finally, the divergences can be regularized in terms of 1
ε -poles by going to 4 − 2ε

dimensions, as described in the next section.
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4 Further theoretical preliminaries

With Monte-Carlo-programs, which are especially helpful for integration with cuts,
the phase-space integration can only be performed with integer dimensions and the
real- and virtual contributions must be integrated separately due to their different
final state. To accomplish this, a subtraction term is added or subtracted as appro-
priate from each term, such that both terms become finite. The final result is not
changed by this procedure:

σNLO =

∫
m
dσBorn +

∫
m+1

(
dσreal − dσsubtr) + ∫

m

(
dσvirt +

∫
1
dσsubtr

)
. (4.6)

This implies the introduction of subtraction terms, which are another ingredient of a
common NLO calculation. They need to have a suitable infrared structure, such that
they cancel the corresponding divergences.

The most widely used methods to determine the subtraction terms are the Catani-
Seymour dipole subtraction method [123, 124], the FKS method [125, 126] and the
Antenna subtraction [127–129], all of which are all suitable for automated calculations.
In the calculation presented in Chapter 9, the Catani-Seymour method is used.

Alternatively, phase-space-slicing methods can be used (see [130–136] and references
therein). They approximate the matrix element and the phase space integration
measure in boundary regions and depend on (non-physical) cut-off or resolution
parameters.

The virtual contribution, which is usually the most complicated part to compute,
involves integrals over the free loop momentum in the loop integrals.

4.3 Loop integrals

A one-loop integral can be classified by the number and properties of incoming and
outgoing momenta (called external legs), and the masses of the internal propagators.
By convention, all external momenta are taken as incoming.

Whereas a large loop momentum leads to UV divergences, massless particles can
cause IR and collinear divergences when they propagate in a loop, since the corre-
sponding denominators

(k + ra )2 = −2���~ra
���
���~k

���(1 − cos θ∠(~ra,~k )) (with k 2 = r 2a = 0) (4.7)
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4.3 Loop integrals

with the loop momentum k and the sum of external momentum ra =
∑a

i=1 pi can
become zero if the loop momenta vanishes (k → 0), the (sum of) external momenta
goes to zero (ra → 0) or, in case of collinear divergences, both become parallel. These
divergences are canceled by corresponding real-emission Feynman diagrams with
the same massless particle and the PDFs.

There are different methods to regularize divergences, such that they can be included
in the calculation and the final canceling of divergences be checked.

Beside the basic approach of cut-off-regularization, which uses bounds to isolate UV
and IR divergences (but breaks gauge-invariance and is not suitable for non-abelian
theories) dimensional regularization [137–140] is usually used nowadays, which pre-
serves gauge and Poincaré invariance. The idea is to calculate the loop amplitude (at
least partially) in a D-dimensional space instead of the ordinary 3 + 1-dimensional
Minkowski space.

To be able to perform the limit D → 4 at the end of the calculation, all (temporary)
divergences must cancel each other for all physical quantities.

As the singularities appear in this limit, D = 4 − 2ε or D = 4 − ε is usually used and,
accordingly, the limit ε → 0. UV divergences are regularized by assuming D < 4, i.e.
ε > 0. For IR and collinear divergences, an analytic continuation to D > 4 (ε < 0) is
used (see e.g. [141]).

At the one-loop-level, the Laurent expansion in ε of the result can always be written
in double-pole terms of O

(
1
ε2

)
, single-pole terms of O

(
1
ε

)
and the finite part of O(1).

Terms of O (ε) or higher can be neglected, as they disappear in the limit ε → 0
(described e.g. in [142]).

A matrix element of an N-point one-loop integral can therefore be written in the case
of QCD corrections as follows:

���M1-loop
���
2
= rconvention ·

(c−2
ε2
+

c−1
ε
+ c0 +O (ε)

)
(4.8)

where a factor

rconvention =
αs (µR )
2π

(4π)ε
Γ(1 − ε)g 2b

s (4.9)

can be placed outside the brackets. Γ denotes Euler’s gamma function and 2b the
order in gs of the underlying Born process, and µR the renormalization scale.

There are different schemes for dimensional regularization: A common choice is the
’t Hooft-Veltmann scheme (’t HV) [138] or conventional dimensional regularization
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(CDR) [143] (which are equivalent at one-loop), where internal states or, respectively,
all states are treated as D-dimensional, i.e. their spin andmomenta degree of freedom
(d.o.f.) continued from four to D dimension.

Another possibility is dimensional reduction (DRED) [144, 145], which is especially
useful for SUSY calculations, since the number of bosonic d.o.f. matches the number
of fermionic d.o.f.. The four-dimensional space is compactified to a (smaller) D-
dimensional space. Momenta and integration measures are adapted, but gamma
matrices, for example, are kept in four dimensions (cf. [146]).

In the GoSam framework presented below (Chapter 5, p. 43), DRED is used by de-
fault and if desired, the squared one-loop matrix-element ���M

(DRED)���
2
NLO converted to

’t HV/CDR using the conversion formula (cf. [50])

���M
(’t HV/CDR)���

2
NLO =

���M
(DRED)���

2
NLO −

αs

2π
���M

(DRED)���
2
LO

∑
k

γ̃(DRED)k . (4.10)

∑
k denotes the sum over external massless partons with γ(DRED)k =

CF
2 for massless

quarks and anti-quarks, γ(DRED)k =
CA
6 for gluons, which include the QCD colour

factors CF =
4
3 and CA = 3. ���M

(DRED)���
2
LO is the squared Born-level matrix element

calculated in DRED.

All loop-integrals can be represented by a linear combination of a set of ‘basis’ inte-
grals1 plus rational terms. At the one-loop level, possible sets of these integrals are
known. The usually used ‘basis’ integral set contains scalar integrals with up to four
external legs (see e.g. [141]). Choosing integrals in six- and eight dimensions as ‘ba-
sis’ integrals, which are partially UV/IR finite, helps thereby to separate divergences
[147].

There are multiple ways to obtain coefficients of these ‘basis’ integrals.

More traditional approaches reduce tensor integrals analytically. The tensor integral
library Golem95C [3, 51, 52] follows this approach. In Chapter 7, p. 63, its method is
explained in detail and extended towards higher-rank tensors.

The coefficients can also be reconstructed from scattering amplitudes by exploiting
their analytic structure, especially unitarity (i.e. the conservation of probability)
or infrared singular behaviour. Cutting the loop amplitude, i.e. putting internal
propagators on-shell, helps to deduce the coefficients of the ‘basis’ integrals iteratively
or recursively.
1The integrals are only end-points of the reduction algorithms. In a mathematically sense, they do
not form a basis. Often, they are also called master integrals.
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4.4 Parton shower

It is possible to determine the coefficients already at the integrand level without
performing any integration. This is used in the OPP approach [148–150]. Similar
methods are introduced in [151, 152].

Over the last decade, multiple tools have been developed for performing NLO calcu-
lations using various techniques to calculate loop integrals. One of them is GoSam [2,
49, 50] which is described and used later in this thesis. Other programs that can de-
liver amplitudes for processes at one-loop level in an automated way (or at least offer
them for some categories of processes as a library) are, for example, BlackHat [153],
FeynArts and FormCalc [154–156], GRACE-loop [157], Helac-NLO [158], MadGolem
[159], MadGraph5_aMC@NLO [160], MCFM [72], NJet [161], OpenLoops [162], Recola
[163] and VBFNLO [164]. With a few exceptions, they are available publicly.

4.4 Parton shower

In the calculation presented in Chapter 9, p. 81, parton shower effects are studied,
therefore, a short overview about parton showers and related techniques is given in
this section.

In parton shower calculations, radiation effects such as additional QCD Brems-
strahlung are added to the hard subprocesses that are described by the matrix ele-
ments calculated at fixed order.

Not only the final state particles can radiate, but also the initial state partons. Addi-
tionally, multiple parton interactions can be taken into account, i.e. simultaneously
occurring collisions of spectator partons (beam remnants) that do not belong to the
primary hard process.

The parton shower is calculated in Markov processes, where further particles are
added to the hard subprocess. Thereby, four-momentum and probability (i.e. unitar-
ity) of the described process need to be conserved.

Colour confinement forbids that coloured particles (gluons, quarks) exist individually
for a longer time, therefore coloured particles combine (hadronize) into colourless
hadrons. These hadrons mostly decay further. As hadronization involves mostly
non-perturbative processes, its properties need to be deduced from measurements.
The jet structure, which describes the distribution of energy in the final state by
clustering it in (usually) narrow cones, should be related to the structure of partons
in the hard subprocess. Hadronization needs therefore to be infrared and collinear
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safe, i.e. should not depend on additional, unresolved radiation. See e.g. [165] for
more details.

In the case of combining processes with different parton multiplicities and parton
shower, double-counting must be avoided. There are multiple algorithms for achiev-
ing this merging and matching.

One approach for merging processes calculated at LO matched to parton showers is
the CKKW algorithm [166, 167], which separates the domains of the matrix elements
and the parton shower by jet resolution defined by the k⊥-jet-clustering algorithm
[168] (also known as Durham algorithm). A variant is the CKKW-L algorithm [169].
There is also the MLM approach [170, 171].

For NLO calculations with parton shower, double-counting issues are immanent
due to the real-radiation part. This can be solved by using matching algorithms like
MC@NLO [172–174]. A competitive approach is POWHEG matching [175] that avoids
negative weights.

Both techniques, merging (combining calculations with different jet multiplicities)
and matching (including parton showers, especially to processes calculated at higher
orders) can be combined in NLO merging schemes such as, for example, NL3 [176],
FxFx [177], MEPS@NLO [178] or UNLOPS [176, 179].

Today, parton shower and hadronization are integrated in most Monte-Carlo event
generators, progressively combined with matching and merging procedures. Exam-
ples for Monte Carlo programs (MCs) that implement at least parts of the mentioned
algorithms are Herwig/Herwig++ [180–182], Sherpa [183], Pythia [184, 185] with its
VINCIA plugin [186–189], or Ariadne [190].

Using fully resummed results, higher logarithmic accuracy can be reached. This is
implemented in the Geneva Monte Carlo framework [191].
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Automation: Concepts and Tools
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5 GoSam 2.0

Part II of this thesis introduces further concepts and tools applied in the automation
of NLO calculations.

In this first chapter of this part, the software framework GoSam is presented. Sev-
eral developments, summarized in the 2.0 release and partially implemented by the
author, are discussed.

The improved interface of GoSam to Monte Carlo programs (also partially author’s
work) is discussed in Chapter 6. GoSam and especially this interface are later em-
ployed in the last part of this thesis (Chapter 9).

The two last chapters of this part focus on the integral library Golem95C, which is
used by GoSam.

Chapter 7 discusses an extension to higher tensor-ranks, which is useful for calcula-
tions with e.g. effective field theories or spin-2 particles. It completes the author’s
developments in Golem95C towards higher ranks, introduced in [192]. These earlier
developments were already applied in [4].

Chapter 8 on numerically calculated box integrals presents a possible means of
improving the numerical stability for exceptional kinematics in Golem95C.

5.1 Overview

GoSam [2, 49, 50] is a program package that can provide multi-particle one-loop
amplitudes in a fully automated way. It is especially useful for calculating QCD
corrections to processes in the SM and beyond. Internally, a Feynman-diagram based
approach is applied and projections onto helicity amplitudes are used. GoSam has
been used in various calculations [1, 4, 5, 193–207].

For these calculations, GoSam has to be combined with MCs that provide the real
radiation and subtraction, perform the phase space integration and optional shower-
ing and hadronization. Mainly the software package Sherpa [183] or the combination
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of MadGraph4 [208], MadDipole [209, 210] and MadEvent [211] were used as MC pro-
grams. Recently, GoSam has been combined with Herwig++/Matchbox [6, 180–182,
212], which is used later in this thesis, MadGraph5_aMC@NLO [160, 206] and the
POWHEG BOX [213, 214]. In addition, GoSam can be interfaced now inside WHIZARD
[215] as One-Loop provider (OLP) [216, 217]. It has also been used to calculate elec-
troweak corrections [218, 219].

These combinations of tools allow fully automated NLO calculations to be performed
including matching to parton showers.

5.2 Workflow

GoSam can be controlled via an input file (called input card) or the standard interface
to Monte-Carlo programs, as explained further in Chapter 6, p. 55. These interfaces
allow the user to specify the process requested, i.e. its initial and final state, the order
in coupling constants, and further settings such as which reduction program should
be used by GoSam.1

The workflow of GoSam is shown in Fig. 5.1. After reading the input card, GoSam
calls QGraf [220] to generate Feynman diagrams. Beside the default diagram selection
settings in QGraf, GoSam can filter the diagrams in addition: Via the input card, the
user can provide custom filters using Python expressions to exclude or select specific
diagrams.

To control the finally used diagrams, the user can create a documentation that in-
cludes all Feynman diagrams and further information about the process such as a
list of the helicity configurations.

Using FORM2 [221–223] with the Spinney library [224], GoSam transforms the diagram
expressions which are generated by QGraf into computable code.

This code still needs to be divided into sub-expressions because the optimization
routines in Fortran compiler usually cannot deal well with huge expressions. This
partitioning is performed either by the new FORM [223] features to write optimized
code or Haggies [225].
1Some settings can only be set via an input card that can be provided in all cases to GoSam. In
case of the standard interface to Monte-Carlo programs, also multiple processes can be requested
simultaneously.

2FORM is a computer algebra system especially built to manipulate huge expressions.
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GoSam
user input file process.in

GoSam
gosam.py process.in

diagram drawing and code generation:
QGraf | FORM | Spinney

reduction: Ninja | Golem95C | Samurai | . . .

integral libraries: OneLOop | Golem95C | QCDLoop | . . .

Virtual one-loop amplitude

BLHA1/BLHA2 interface

Monte Carlo event generator
Madgraph/Maddipole, Sherpa, PowhegBox, Herwig++, . . .

direct linking

Figure 5.1: Basic workflow scheme of GoSam 2.0.

The reduction of the loop integrals is done either using the OPP approach [148, 149]
or by means of a more ‘traditional’ approach using Golem95C [3, 51, 52].

For the OPP approach either the integrand reduction via Laurent expansion [226]
implemented in Ninja [55, 56] or Samurai [53, 54] can be used, which implements a
generalized D-dimensional unitary-cut technique and polynomial interpolation with
Discrete Fourier Transformation of the numerator.

For the approach with Golem95C, the coefficients are determined by tensorial re-
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duction [227] using derivatives of the numerator N (q) evaluated at q = 0.3 How
Golem95C calculates tensor integrals is described in Section 7.2, p. 65.

These reduction libraries use internally the integral libraries QCDLoop [228, 229],
OneLOop [230] or LoopTools [155], which depend partially on scalar one-loop func-
tions of the library FF [231], but especially in the case of Golem95C, most integrals
are directly implemented.

In addition to the internal model files for the SM with and without the diagonal
CKM-matrix, the Minimal Supersymmetric Standard Model (MSSM) and SM plus an
effective gluon-Higgs-coupling (cf. Section 3.3.2, p. 32), GoSam has also support for
Universal FeynRules Output (UFO) model files [232]. This allows BSM calculations
since UFO-model files can be generated by FeynRules [233, 234] from (nearly) arbitrary
Lagrangians. SARAH [235], which starts from given symmetries of a model instead of
its Lagrangian, also supports UFO-model files as output format.

Additionally, an experimental support for PJFry [236–238], which is another one-loop
tensor integral library, is currently included in GoSam.

The generated code, which can calculate the virtual one-loop amplitude at arbitrary
phase space points, is finally provided as a library to the user and can then be inter-
faced by Monte-Carlo program and used, for example, in full NLO calculations.

5.3 New features of GoSam 2.0

The GoSam version 2.0 introduces various improvements and new features. Some of
them are described in separate chapters of this thesis:

• The support of the Binoth Les Houches Accord 2 (BLHA2) [8] and various elec-
troweak schemes including their automatic choice is presented in Chapter 6,
p. 55.

• How loop-integrals with higher tensor ranks can be calculated with Golem95C,
is described in Chapter 7, p. 63 .

3With the extension noderive, the numerator is alternatively evaluated at several points which
produces usually less accurate results but reduces slightly the code generation time and can also
be used as an internal check of the derivation method.
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New reduction method and optimized code generation
GoSam 2.0 uses the new integrand reduction method via Laurent expansion imple-
mented in the Ninja library [55, 56] as mentioned before.

The previously mentioned optimized code generation via the corresponding new
FORM feature [223] is also used since GoSam 2.0.

Summing and grouping diagrams with common substructure
In GoSam 2.0, the GoSam 1.0 capabilities of grouping similar diagrams (more exactly
diagrams that share a common set of denominators) is extended further. With the new
option diagsum, diagrams that share at least a common-loop structure (including
different particles in the loop) are combined and evaluated together, which increases
the performance and reduces the code size.

Numerical polarization vectors
For massless gauge bosons (gluons and photons), GoSam 2.0 uses numerical polariza-
tion vectors. This allows code to be shared between different helicity configurations
of these particles and, therefore, decreases not only the code generation time, but
also the memory and disk footprint of the code generated by GoSam. This feature can
be switched off if needed, for example, to verify Ward identities or to allow manual
selection of reference vectors for each helicity configuration.

Improved rescue system
Possible numerical errors influence the reliability of all numerical calculations in
finite precisions. Especially in higher order calculations, where all kinds of (spuri-
ous/cancelling) singularities occur, it is important to estimate the final uncertainty
and to detect and solve (rescue) unstable points as far as possible. If needed, GoSam
re-calculates the result for a phase space point by using another reduction method.
By default, Golem95C is used as rescue system.

GoSam uses a combination of different checks to determine the quality of its result
and returns an estimated precision. The first method is to compare calculated infrared
pole coefficients with their analytic values, which result from the universal structure
of IR singularities in QCD. Within certain limits [56], the precision of the finite term
is correlated with the pole precision, which can therefore be used to estimate the
precision of the finite part.
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The number of valid digits (precision) can be calculated as

pIR-check = − log10
�����
c−1 − c−1, IR

c−1, IR

�����
(5.1)

with c−1 the calculated single pole coefficient (cf. Eq. (4.8), p. 37) and c−1, IR the analytic
infrared pole coefficient.

The finite part can be tested directly by exploiting symmetry properties of amplitudes,
which requires re-evaluation of the phase space point with a changed kinematic point
that should lead to the same result by symmetry, and comparing the result with the
original one.

GoSam uses a rotation test (cf. [56]), in which all momenta are azimuthally rotated
around the beam axis. As this should leave the result invariant, but triggers possible
numerical instabilities in a different way, it is a good method for determining the
precision of the result. The disadvantage is that the amplitude must be evaluated
twice, which is time consuming as it doubles the evaluation time per phase space
point.

The estimated precision obtained by the rotation test is obtained by

protation = − log10 *
,
2

�����
c0 − c0,r ot

c0 + c0,r ot

�����
+
-
. (5.2)

Another similar possibility would be a scaling test [239], in which all involved phys-
ical scales are multiplied with a factor. Due to the known scaling behaviour of the
amplitude, the result can be compared with the original one and its precision deter-
mined.

If phase space point checks are not completely disabled, GoSam first performs the
pole check and, if the estimated precision is neither good enough to accept the result
nor low enough to trigger directly the rescue system, GoSam performs additionally a
rotation test. If the estimated precision of the result is below a limit (settable by the
user), the rescue system is triggered, i.e. Golem95C used to evaluate the phase space
point. Its result is also checked and the final estimated precision returned.

Tensorial reconstruction
GoSam 2.0 also now uses the previously mentioned tensorial reconstruction via
derivation by default. This increases the precision of the rescue system compared
with the previously used numerical reconstruction of the integrand.
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New installation
The install process of GoSam itself has been simplified by a new user-friendly install
script. It helps to download, build and install GoSam and all the necessary com-
ponents, such as the various integral and reduction libraries, QGraf and FORM in
an automated and portable way. In addition, it allows automatic updates (and also
uninstallation) of GoSam itself and its components.

Improved user-interface
The input card of GoSam has been simplified: New parameters have been introduced
and existing ones given useful default parameters. Numerous features, which in
GoSam 1.0 were accessible only by the extensions parameter, have their own con-
figuration field (new fields are e.g. regularisation_scheme, reduction_programs,
polvec_method).

Compiler flags, such as paths to installed libraries, are determined in standard instal-
lations in an automated way and therefore do not need to be set by the user in the
input card.

Numerous other small improvements have also been made; for example, output
directories are now created automatically and do not need to be created by the user
by hand.

5.4 Precision check for loop-induced processes

The pole check mentioned previously cannot be applied directly to loop-induced
processes, as their single and double pole coefficients vanish. It is, however, still
possible to use the calculated pole values to detect points that cause numerical
instabilities.

This section explains how this can be performed and demonstrates its effectiveness
by examining an example. At the second part of this section, another precision check
is introduced and applied to test the validity of the rescued points. Both checks were
implemented by the author of this thesis.

As a measurement of the single pole quality, the following value is introduced:

qpole = − log10 *
,

�����
c−1
c0

�����
+
-

(5.3)
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where c−1 is the result of the single pole coefficients (the 1
ε -part of the amplitude) and

c0 the finite part (cf. Eq. (4.8), p. 37).

This value indicates how many orders of magnitude the single pole coefficient is
smaller than the finite part.
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Figure 5.2: Result of a simulation with 1 × 106 points (generated by GoSam’s RAMBO)
for the loop-induced g g →WW → lνl ′ν′ with only Ninja enabled (rescue system
disabled). The pole quality check can be used to distinguish most stable points from

(maybe) unstable points that need further testing.

As shown in Fig. 5.2 for the loop-induced process g g →WW → lνl ′ν′ (corresponding
Feynman diagrams are listed in Appendix C.1, p. 127) including massive bottom-
and top-loops calculated with GoSam/Ninja (without rescue system), qpole often
correlates with the precision obtained by the rotation test4. For this plot, 1 × 106
events are generated by GoSam’s RAMBO event generator, evaluated with Ninja and
tested with the pole and rotation test. The colour in the plot shows the density of
these events in each region in a logarithmic scale.

For the selected process, a pole quality limit of 16 digits has been chosen (qpole > 16)
and a gainable precision of 7 digits.
4The result of the rotation test itself correlates strongly with the precision obtained by comparing
with the rescue system (Golem95C) and can therefore be taken as an approximation of the true
precision.
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Figure 5.3: Same plot as in Fig. 5.2, but with rescue system (Golem95C) enabled.
Nearly all unstable points could be rescued to sufficient precision, whereas the

precision of few points is still below the limit.

The horizontal and vertical lines separate different regions: All events below the
horizontal line have low pole quality and are therefore tested by the rotation test and
rescued as required (i.e. if they are in the left-lower quarter). The vertical line splits
the points with precision below and above the wanted precision (here 7 digits). The
events resulting in dots in the right-lower quarter (‘false positives’) are (unnecessarily)
re-tested which nearly doubles their evaluation time.

The problematic points are in the upper-left quarter (‘false negatives’): Their pole
quality is above the limit and are therefore missed by the test, but they do not satisfy
the precision that should be gained. Still, their fraction is low and as it can be seen,
their precision is still quite good (mostly only a few digits below the precision limit),
whereas the precision of the true-positives is in part very low, which could have
a non-negligible impact on the precision of the end result after the phase space
integration.

By raising the limit on qpole, the fraction of false negatives can be further reduced, but
also the fraction of true-negatives increases, so that the runtime trade-off is high.

For simpler processes (especially without internal masses), the limit on qpole can be
increased to increase the discrimination power of the pole quality check.
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In Fig. 5.3, p. 51, the same plot as in Fig. 5.2 is shown with the rescue system, i.e.
Golem95C, enabled. This results in the events in the bottom left corner being re-
evaluated by the rescue system and therefore shifted horizontally in the plot, as on
the x-axis, the estimated final precision is plotted. It is apparent, whilst the rescue
system improved the precision, it did not reach the desired precision in all cases (this
might be related to the precision test used, see below).

The rotation test cannot be used to estimate the precision of the rescued results, be-
cause the internal representation of the kinematics in Golem95C is rotation-invariant
and therefore the computation is not really changed by rotation of the kinematics.

The precision of the rescued points is therefore measured here using a newly devel-
oped computation-variant test inside Golem95C, published in its recent 1.3.3 release.
It is similar to a scaling test, but more user-friendly as most of its parts are hidden
inside the library: The computation-variant test changes the way how the S-matrix
(defined in Eq. (7.5), p. 64) is normalized inside Golem95C: To improve the numerical
stability, the S-matrix is normally divided by its biggest element. This scaling is
then undone in the results returned. Instead, with the computation variant (No. 1)
enabled, the second largest element of the S-matrix is used.5, 6 This changes the
internal computation in such a way that the numerical precision can be estimated
by comparing the final result with the default behaviour.

This computation-variant test has not yet been studied fully. It probably underesti-
mates the real precision by a few digits, as it compares with results that are in most
cases non-optimally computed, such that the number of really rescued points might
be much higher (as most rescued points are near the more or less arbitrary limit).

For Golem95C, the pole quality is in general quite high and correlates only weakly
with the precision of the finite part, such that a pole-quality test would have only low
discriminatory power and is therefore not really useful.

In summary, a precision test for loop-induced processes has been presented. In the
example used, nearly all events could be rescued to high precision. Further studies
are needed to determine whether the precision measure used for the rescued points
estimates their precision correctly. One possible way would be to compare with
results calculated in quadruple precision.

The described precision test, based on the pole quality and the rotation test has been
implemented in GoSam, such that GoSam can also return the estimated precision of
5The divisor is automatically down-scaled if the second largest element is too close to the largest
element (in absolute values) which would otherwise lead to too little or no effect.

6Computation variant No. 2 disables the normalization of the S-matrix completely, which reduces
usually the stability of the results further.
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5.4 Precision check for loop-induced processes

its result for loop-induced processes and if needed, call its rescue system. This allows
reliable calculations for loop-induced processes.

The new computation-variant inside Golem95C, which was employed to determine
the precision of the rescue system, is not yet used inside GoSam, but can easily
be integrated as soon as further analysis determine how its results map to the true
precision.
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6 Implementation of the Binoth Les
Houches Accord 2 in GoSam

6.1 Introduction

The Binoth Les Houches Accord (BLHA) provides a standardized interface between
Monte Carlo programs (MCs) and One-Loop providers (OLPs) such as the program
package GoSam. Whereas GoSam 1.0 supports only the first version of the standard,
the original version of the Binoth Les Houches Accord (BLHA1) [240], GoSam 2.0 also
implements BLHA2 [8].

In the past, OLP-specific interfaces needed to be implemented separately for every
used OLP. The BLHA reduces or, ideally, nearly abolishes the effort to support differ-
ent OLPs in a MC. In theory, the interface needs to be implemented only once on
both sides, and any combination of MCs and OLPs can be combined.

In practice, all MCs and OLPs are, at least in a certain sense, specialized or focused
(e.g. regarding high multiplicities in the final state, BSM-capabilities, electroweak
corrections) and therefore not all combinations make sense. Moreover, still OLP-
specific code is needed.1

Additionally, the BLHA2 cannot, of course, cover all implementation choices and
possible extensions. Some parts of the BLHA2 are marked as optional and, therefore,
do not need to be supported by every OLP.

The first part of this chapter explains the features of the BLHA2. In the second part,
some of the implementation choices that were made for the current implementation
of BLHA2 in GoSam 2.0, are described. The author of this thesis was involved in the
formulation of the BLHA2 and implemented most of its new features in GoSam.

Using the BLHA2 implementation in Herwig++/Matchbox, the BLHA2 interface of
GoSam has been tested and verified in pp → Z/γ ∗ +jet → e+e− + jet and various
1 For example, OLP-specific code is needed to let the OLP read in the order card initially and is often
useful to set various OLP-specific options, like Feynman diagrams that should be excluded.
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6 Implementation of the Binoth Les Houches Accord 2 in GoSam

other processes [6, 182]. The calculations shown in Chapter 9 use also the BLHA2
interface.

Beside Herwig++/Matchbox, WHIZARD is also interfacing GoSam via the BLHA2.

On the other hand, the interfaces of MadGraph5_aMC@NLO, POWHEG BOX and
Sherpa still rely on the BLHA1 interface of GoSam 2.0.

An alternative runtime interface between MC and OLP programs has been suggested
in [241], but did not become an accepted standard.

Beside the BLHA, the Les Houches Accord (LHA) for user-defined processes [242–245]
is also available. It defines how events from parton level generators can be transferred
to showering and hadronization event generators, which are, however, nowadays
often already combined into one program such that an extra interface is not needed
anymore. Nevertheless, its Les Houches Event File (LHEF) file format is still used
widely to store or buffer already showered events for later or parallel analyses with
third-party tools such as Rivet [246].

6.2 BLHA2

6.2.1 Workflow

The communication between the MC and OLP can be divided into three phases (cf.
Fig. 6.1):

The pre-runtime/preparation phase
In the first step, the MC ‘orders’ all needed subprocesses from the OLP. It creates an
input file, the order file, and calls the OLP, which answers with a contract file that
labels each subprocess with an unambiguous number2.

In this step, the OLP usually creates code that needs to be compiled or processed
further before it can be linked by the MC.
2Caveat: With GoSam, the number in the label does not necessarily coincide with the order in which
the processes are specified in the order file.
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6.2 BLHA2

Monte Carlo OLP

write order file

read contract file

read order file

write contract file

 runtime  phase

call OLP_Start

 call OLP_Info

call OLP_PrintParameter

call OLP_SetParameter (static parameters)

give phase space point, scale

return result, accuracy

compute Born,  real 
radiation, IR subtraction full NLO result

  run initialisation  phase

call OLP_SetParameter (dynamic parameters)

pre-runtime  phase

call OLP_EvalSubProcess2 compute virtual part

Figure 6.1:Workflow of the BLHA2 interface [8].

The initialisation phase
Here, the MC asks the OLP to initialise its runtime code via the function OLP_Start.
Additionally, (static) parameters such as particle masses or couplings can be set
(using OLP_SetParameter).

The runtime phase
For each part of the calculation, phase space points are generated by the MC.
The corresponding amplitudes are either calculated internally (for tree-level pro-
cesses such as the Born or real-radiation contribution including infrared subtrac-
tion) or via the OLP (mainly the virtual amplitude) using the interface function
OLP_EvalSubProcess2 and the subprocess label from the contract file. Runtime
parameters (e.g. running couplings) can be changed via OLP_SetParameter.

With the BLHA2 interface, the Born or real-radiation amplitudes can also be calculated
by the OLP.3

3For completeness: Some MCs (such as e.g. Herwig++/Matchbox) have also code for specific virtual
amplitudes built-in which can substitute or complement the OLP.
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6 Implementation of the Binoth Les Houches Accord 2 in GoSam

The MC uses this information to perform the full NLO result. In particular, it builds
the subtraction terms, integrates over the phase space and combines the different
contributions of the NLO calculation, optionally with attached parton shower and
hadronic decays.

6.2.2 New features

In comparison to BLHA1, the interface has been extended in several ways.

One of the main new features is that BLHA2 allows subprocesses with different prop-
erties/settings to be placed in one order card. This is especially helpful for merging
procedures with different jet multiplicities or mixed QCD-electroweak calculations.

As different kinds of matrix elements (tree-level, loop, loop-induced, spin-/colour-
correlated) can be mixed, the MC can now use the OLP (as far as it supports it) for
different parts of the NLO calculation.

Even parts of a NNLO prediction like the real-virtual, virtual squared4 or double-real
contribution can be retrieved via the BLHA2 interface.

The adaption of parameters such as masses or coupling constants, diverging from the
used model file, has been standardized with the new function OLP_SetParameter
and is now also supported during runtime. The new function OLP_PrintParameter
can likewise be used to write the value of all currently used parameters to a file, which
is helpful for verifying the parameter set.

Another new function OLP_Info returns the currently used version of the OLP pro-
gram and the literature which should be cited if the OLP is used.

6.3 Implementation details

GoSam can provide colour- and spin-correlated matrix elements that are helpful for
building Catani-Seymour subtraction terms [123] (cf. Section 4.2, p. 35). According to
BLHA2, entries for non-coloured legs should be ‘ignored’. The interpretation of this
in GoSam is that in the colour and spin matrices, the corresponding rows/columns
are not present (i.e. skipped) and therefore maximally dense matrices are returned.
4At least with GoSam, the virtual squared term can be calculated by declaring the process to be
loop-induced.
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6.3 Implementation details

input variables derived variables No. of GoSam ew-scheme
GF, mW, mZ e, sin θW 1
αEW, mW, mZ e, sin θW 2
αEW, sin θW, mZ e, mW 3
αEW, sin θW, GF e, mW 4
αEW, GF, mZ e, mW, sin θW 5
e, mW, mZ sin θW 6
e, sin θW, mZ mW 7
e, sin θW, GF mW, mZ 8

Table 6.1: Supported electroweak schemes by GoSam. GF and αEW are not used
internally, therefore not calculated as derived variables.

Depending on the chosen model, GoSam’s implementation of OLP_SetParameter
supports names such as mZ or wZ for mass and width of the Z boson etc., in addition to
the standardized mass(PDG-code) and width(PDG-code) parameter names, where
PDG particle numbers (‘codes’) [247] are used. Furthermore, alpha or alphaEW (for
the electroweak coupling constant αEW = e2/4π) and alphaS or aS (for the QCD
coupling constant αs = g2s/4π) are supported.

6.3.1 Electroweak scheme choice

In the SM, the various electroweak parameters are related (cf. Eqs. (6.1) and (6.2)).
Therefore it is useful to specify only few of them as input parameters and calculate
the others as derived parameters.

As there is no common standard, GoSam supports various electroweak schemes for
the built-in models, i.e. offers the possibility of selecting which parameters are input
parameters and which are derived (cf. Table 6.1 and [2, Sec. 3.3]).

The final scheme is chosen automatically5 as soon as three electroweak parameters

5For automatic setting of the electroweak scheme, the setting model.options in GoSam input card
needs to contain the ewchoose option (set by default).
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are set via OLP_SetParameter. Using the (leading-order) relations

GF
√
2
=

αEWπ

2m2
W sin2 θW

=
e2

8m2
W sin2 θW

(6.1)

sin2 θW = 1 −
m2

W
m2

Z
, (6.2)

GoSam calculates the missing ones.6

Only the internal GoSam model files support different electroweak schemes. If not
otherwise specified in the model.options parameter in the input card or if the
automatic choice is disabled, GoSam assumes the set (αEW, mW, mZ) by default.

For UFO-models, the electroweak scheme is fixed and depends on the input files
used to generate the UFO-models.

6.3.2 Other implementation choices

The following implementation choices and derivations from the BLHA2 can be found
in GoSam 2.0:

• The keyword CouplingPower, which allows to specify the coupling powers of
the process requested, is only supported for SM couplings, not BSM couplings7.
Currently, it needs to be set to the order of the (possibly fictional) Born-level
process.

• In contrast to BLHA2, if only CouplingPower QCD or CouplingPower QED is
provided in the input card, the omitted coupling order is not forced to be
zero, but ignored, i.e. all diagrams at the specified QCD or QED order are used.
Diagrams beyond one-loop are not generated.

• The keyword WidthScheme defines the treatment of unstable particles. By
default, the FixedWidth scheme is used in GoSam. The ComplexMass scheme
is also supported. Not (yet) supported are the RunningWidth and PoleApprox
scheme, see e.g. [245].

6For the built-in sm_complex and smdiag_complex model, the widths of the vector bosons are
also included in the conversion formulae. In all cases, widths are input parameters and not
re-calculated.

7BSM coupling order can be set only via the QGraf verbatim options in a separate GoSam input card.
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6.3.3 Extensions to BLHA2

For interference between Born and loop-induced processes (e.g. for processes that
are loop-induced in the SM, but for which a BSM Born-level process exists), a
new AmplitudeType LoopInterference (alias LIEffInterference) has been in-
troduced. In contrast to AmplitudeType Loop, the phase-point check for loop-
induced processes is used.

This extension for interference terms was developed by the author and is used for
the calculations presented in Chapter 9, p. 81.
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7 Higher rank integral reduction

7.1 Introduction

GoSam 2.0 includes the support of higher rank tensor integrals (explained in this chap-
ter) which can occur in loop-calculations with spin-2 particles (gravitons / Kaluza-
Klein modes), in EFT models, and calculations with other gauges than the Feynman
gauge. In SM calculations within the Feynman gauge, this case does not occur, since
the tensor rank of one-loop integrals is here always smaller or equal to the number
of propagators.

In this chapter, the extension to higher ranks of the reduction and integral library
Golem95C is discussed. After a short introduction to the reduction method in Sec-
tion 7.2, p. 65, the formulae for pentagons and hexagons are presented in Section 7.3,
p. 70 and finally the implementation details are discussed in Section 7.4, p. 71.

Higher rank support has been also implemented for the case of one additional rank
in Ninja [55, 56] and in the XSamurai extension [54] of Samurai [53].

The method described in this section and the used conventions follow the work in
Refs. [51, 147]. Detailed descriptions can also be found in Refs. [49, 192, 248].

A general one-loop integral in dimension D with N external legs of momenta pi

(considered here as incoming) and rank r can be written as

I D,µ1, ...,µr

N (a1, . . . , ar ;S) =
∫ dDk

iπD/2
q µ1

a1 · · · q
µr
ar

(q2
1 −m2

1 + iδ) · · · (q2
N −m2

N + iδ)
(7.1)

with the internal momenta qa = k + ra , the loop momentum k , the sum over the
external loop momenta ra =

∑a
i=1 pi , and, for later use, the set of labels of internal

parameters S = {1, . . . , N }.

For the analytical calculation of one-loop integrals, it is useful to use their Lorentz
structure and divide them into Lorentz tensors and (scalar) Feynman parameter
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7 Higher rank integral reduction

integrals [249, 250],

I D,µ1, ...,µr

N (a1, . . . , ar ;S) = (−1)r

b r
2 c∑

m=0

(
−
1
2

)m N∑
j1···jr−2m

[
(g ··)⊗m∆·j1· · · ·∆

·
jr−2m ·

] {µ1···µr }
{a1···ar }

· I D+2m,r−2m
N (j1, . . . , jr−2m ;S), (7.2)

with the shorthand notation [(g ··)⊗m∆·j1· · · ·∆
·
jr−2m ·

]{µ1···µr }
{a1···ar } for the sum over all ways1

to distribute the Lorentz indices and momentum labels to the translation-invariant
quantities

∆
µ
i j = r µ

i − r µ
j = q µ

i − q µ
j (7.3)

and m metric tensors g ··. The translation invariance of ∆µ
i j avoids additional terms

during reduction when the loop momentum would otherwise need to be shifted to
restore the original loop-integral form. b r

2c stands for the rounded down integer r
2 .

The Feynman parameter integrals used in Eq. (7.2) have their origin in the Feynman
parametrization in which the product of the denominators Di = (q2

i − m2
i + iδ)

(cf. Eq. (7.1), p. 63) is combined into a single denominator by introducing Feynman
parameters zi ,

1
D1 · · ·DN

= (N − 1)!
∫ ∞

0
dz1 · · · dzN

δ(1 −∑N
i=1 zi )

(z1D1 + z2D2 + · · · + zN DN )N
. (7.4)

Combining all kinematic variables in the modified Cayley matrix S(S)

Si j (S) = (ri − r j )2 −m2
i −m2

j , (7.5)

and

R2 = −
1
2

�
~zS~z − iδ

�
= −

1
2

N∑
i,k=1

ziSik zk − iδ, (7.6)

the Feynman parameter integrals can be rewritten as integrals over Feynman para-

1For terms with metric tensors (higher-dimensional integrals), the distribution is not exhaustive, i. e.
in each term of the sum only a subset of the momentum labels can be used.
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meters z1 · · · zN :

I D,r
N (j1, . . . , jr ;S)

= (−1)N Γ

(
N −

D

2

) ∫ N∏
i=1

dzi δ
*.
,
1 −

N∑
k=1

zk
+/
-

z j1 · · · z jr (R2)D
2 −N . (7.7)

The various integral libraries usually implement form factors AN,r
j1···jr

(S), BN,r
j1···jr−2

(S), etc.,
which combine both the Feynman parameter integrals and their scalar pre-factors of
Eq. (7.2), p. 64. Using these form factors, a general one-loop integral can be written
as follows:

I D,µ1, ...,µr

N (a1, . . . , ar ;S) =
∑

j1···jr ∈S

[
∆·j1· · · ·∆

·
jr ·

] {µ1···µr }
{a1···ar }

AN,r
j1···jr

(S)

+
∑

j1···jr−2∈S

[
g ··∆·j1· · · ·∆

·
jr−2·

] {µ1···µr }
{a1···ar }

BN,r
j1···jr−2

(S)

+
∑

j1···jr−4∈S

[
g ··g ··∆·j1· · · ·∆

·
jr−4·

] {µ1···µr }
{a1···ar }

C N,r
j1···jr−4

(S)

+
∑

j1···jr−6∈S

[
g ··g ··g ··∆·j1· · · ·∆

·
jr−6·

]{µ1···µr }
{a1···ar }

DN,r
j1···jr−6

(S)

+ · · · .

(7.8)

7.2 Reduction method

The traditional reduction method of Passarino and Veltmann [251] reduces all tensor
integrals to scalar integrals. Thereby, the inverse and determinant of the Gram matrix
are needed. The GrammatrixG (N−1) is defined as product of the external momenta:

G (N−1)
i j = 2ri · r j, i, j = 1 . . . (N − 1). (7.9)

The traditional method is numerically unstable in case of small Gram determinants
without any further steps (cf. [147, 252–259] for possible solutions, such as expansions
in small Gram determinants, which are implemented e.g. in the integral library Collier
[260]).

Numerical problems of small Gram determinants can be avoided by using higher-
dimensional basis integrals or different reduction techniques (cf. [250, 261–267]).
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7 Higher rank integral reduction

The method presented here is the subtraction method [147], implemented in the
tensor integral library Golem95C [3, 51, 52, 268]. The method is based on modified
Cayley matrices rather than Gram matrices. In case of small inverse determinants,
Golem95C switches automatically to numerical integration, which is based on a
one-dimensional integrand representation that allows fast numerical integration.2

7.2.1 The scalar case

In the scalar case [249], the subtraction method functions as follows: The numerator
is extended by adding and subtracting ∑

i∈S bi (S)(q2
i −m2

i ):

I D
N (S) =

∫
dk̄

1∏
j∈S (q2

j −m2
j + iδ)

=

∫
dk̄

1 −∑
i ∈ Sbi (S)(q2

i −m2
i )∏

j∈S (q2
j −m2

j + iδ)
+

∑
i∈S

∫
dk̄

bi (S)(q2
i −m2

i )∏
j∈S (q2

j −m2
j + iδ)

=

∫
dk̄

1 −∑
i∈S bi (S)(q2

i −m2
i )∏

j∈S (q2
j −m2

j + iδ)
+

∑
i∈S

bi (S)I D
N−1(S \{i })

C I D
N,fin + I D

N,div (7.10)

where the integral measure dD k
iπD/2 is abbreviated with dk̄ and S \{i } is the set of internal

parameters S without element i .

By choosing bi (S) as

bi (S) =
∑
k∈S

S−1ki , (7.11)

with S defined in Eq. (7.5), p. 64, the first term of Eq. (7.10) becomes infrared-finite
and can be written as3:

I D
N,fin = −B(S)(N −D − 1)I D+2

N (S) (7.12)

2The case of non-scalar massive four-point functions, where the numerical integration is not yet
implemented, is discussed in Chapter 8, p. 75.

3Power counting shows that I D+2
N is infrared-finite for D = 4 − 2ε
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with

B(S) =
∑
i∈S

bi (S) =
∑

i,k∈S

S−1ki . (7.13)

The remaining term I D
N,div is still infrared divergent, but its integrals have one less leg.

S−1 is the (pseudo-)inverse4 of S which exists for N ≤ 6.

B(S) is related with the Gram matrix by the relation [147]

B(S) det�S(S)	 = (−1)N+1 detG (N−1). (7.14)

Combining Eq. (7.10) and Eq. (7.12), p. 66, a reduction formula for higher-dimensional
scalar integrals can be derived:

I D+2
N (S) = 1

B(S)
1

D − N + 1
*.
,

I D
N (S) −

∑
k∈S

bk (S) I D
N−1(S \{k })+/

-
. (7.15)

Since the 1
B(S) factor in Eq. (7.15) re-introduces numerical problems if B(S) tends

towards zero, this reduction step should be avoided as far as possible by including
higher-dimensional integrals into the set of master integrals [147].

However, due to the four-dimensional Minkowski space, there can be only four
independent momenta. Therefore, the Gram matrix vanishes for N ≥ 6, and hence
B(S) = 0 and I D

N ≥6,fin = 0.5

For N = 5 and D = 4−2ε, B(S) generally does not vanish. However, since D − N + 1 =
−2ε = O(ε) and I D+2

5 is UV and IR finite and has therefore no 1
ε -pole, the coefficients

of I D+2
5 are also of O(ε); hence the finite contribution of Eq. (7.10), p. 66 does not

need to be calculated.

In these cases, the reduction formula simplifies to

I D
N (S) =

∑
i∈S

bi (S)I D
N−1(S \{i }) + O(ε) for N ≥ 5. (7.16)

4The Moore-Penrose pseudo inverse needs to be used for exceptional kinematics. Alternatively, the
inverse can be calculated from a pinched S matrix.

5The Grammatrix containsN−1 momenta. Due tomomentum conservation, the omittedmomentum
is in all cases linear dependent.
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7.2.2 The tensor case

By replacing bi (S) by tensors C µ1
j a1
, the splitting in infrared-finite and simpler infrared-

divergent integrals can be extended to tensor integrals,

I D,µ1, ...,µr

N (a1, . . . , ar ;S) =
∫

dk̄

(
q µ1

a1 +
∑

j∈S C
µ1
j a1
(q2

j −m2
j )
)

q µ2
a2 · · · q

µr
ar∏N

j=1(q2
j −m2

j + iδ)

−
∑
j∈S

∫
dk̄
C

µ1
j a1
(q2

j −m2
j )q

µ2
a2 · · · q

µr
ar∏N

j=1(q2
j −m2

j + iδ)
C I D,µ1, ...,µr

N,fin + I D,µ1, ...,µr

N,div .

(7.17)

By choosing Cµ
i j to solve the equation∑

j∈S

Sk jC
µ
jl = ∆

µ
kl, (7.18)

i. e.

C
µ
i j =

∑
k∈S

(S−1)ik∆k j (7.19)

with the (pseudo-)inverse S−1, one gets an infrared-finite expression I D,µ1, ...,µr

N,fin .

For later use, we also define

V
µ

a =
∑
j∈S

C
µ
j a =

∑
k∈S

bk∆
µ
k a . (7.20)

The infrared finite term IN,fin can be expressed in terms of higher-dimensional inte-
grals [49, 147]:

I D
N,fin(j1, . . . , jr ) = −

r∑
k=2
S−1j1 jk

I D+2
N (j2 . . . ĵk . . . jr ;S)

−
∑
k=1
S−1k, j1

(N −D − r )I D+2
N (j2, . . . , jr ;S) (7.21)

with j2 . . . ĵk . . . jr = j2 . . . jk−1jk+1 . . . jr . This can be combined into a general reduc-
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tion formula for tensor integrals:

I D
N (j1, . . . , jr ;S) = −

r∑
k=2
S−1j1 jk

I D+2
N (j2 . . . ĵk . . . jr ;S)

− b(j1, S) · (N −D − r )I D+2
N (j2, . . . , jr ;S)

+
∑
k∈S

S−1j1k
I D

N−1(j2 . . . jr ;S \{k }).

(7.22)

For five-point integrals, called pentagons, this formula can also be used, but indeed
their reduction formula can be written without higher dimensional pentagon integrals
and inverse Gram determinants (up to rank 5) [c.f. appendix C of 147]. Pentagons
can be calculated as [147]:

I D,µ1···µr

5 (a1, . . . , ar ;S) =
∑
j∈S

(
Ξr−1



(
1
2b jT[4]

µr−1µr
ar−1ar

−V
µr

ar
C

µr−1
j ar−1

)
Q µ1···µr−2

2j



−C
µr

j ar
I D,µ1···µr−1
4 (a1, . . . , ar−1;S \{j })

)
+ O(ε)

(7.23)

where

T[4]
µν
a1a2 = g µν + 2

∑
j∈S

C
µ
j a1
∆ν

j a2
(7.24)

and the relation

T[4]
µν
a1a2 =

2
B
V

µ
a1V

ν
a2 (7.25)

were used. V is defined in Eq. (7.20), p. 68. The values of the Q µ1···µr−2
2j are listed in the

appendix of [147]. They are zero for r < 3. For r = 3 and r = 4, they can be calculated
as:

Q µ1
2j = (2 −D)

∑
i∈S \{j }

∆
µ1
a1i

I n+2
4 (i ;S \{j }) (7.26)

Q µ1µ2
2j = (1 −D) *..

,
g µ1µ2I n+4

4 (S \{j }) +
∑

i,k∈S \{j }
∆

µ1
a1i
∆

µ2
a2k I n+2

4 (i, k ;S \{j })+//
-
. (7.27)

Ξr−1 is a necessary symmetrization operator that averages all cyclic permutations
of the pairs (a1, µ1) . . . (ar−1, µr−1) of an already in r − 2 first arguments identically
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symmetrized tensor function. It can be defined recursively:

Ξr−1T
µ1···µr−1(a1, . . . , ar−1) B

1
r − 1

�
Ξr−2T

µ1···µr−1(a1, . . . , ar−1)
+ Ξr−2T

µ2···µr−1µ1(a2, . . . , ar−1, a1)
+ · · ·

+ Ξr−2T
µr−1µ1···µr−2(ar−1, a1, . . . , ar−2)

�

(7.28)

Ξ1 Bid. (7.29)

The O(ε) contributions can be neglected in phenomenological NLO calculations.

Similar to the scalar case, the reduction for integrals with N ≥ 6 is trivial [147],

I D,µ1, ...,µr

N (a1, . . . , ar ;S) = −
∑
j∈S

C
µ1
j a1

I D,µ2···µr

N−1 (a2, . . . , ar ;S \{j }). (7.30)

7.3 Higher rank pentagons and hexagons

Whereas for six-point integrals (hexagons) and above, i.e. for cases N ≥ 6, the
reduction formula can easily be extended to higher ranks (i.e. tensor integrals with
rank r higher than the number of external legs N ), special care has to be taken
in the case of pentagons. The reason is that the rank-6 pentagon is UV divergent,
in contrast to the lower rank pentagons as mentioned in the updated version of
[147]. From the reduction point, therefore the higher-rank pentagons are the most
complicated ones.

In the derivation of formula Eq. (7.23), p. 69 otherwise negligible O(ε)-terms need
to be considered. This leads to the extended reduction formula with an additional
rational part:

I D,µ1···µ6
5 (a1, . . . , a6;S) =

∑
j∈S

�
Ξ5



(
1
2b jT[4]

µ5µ6
a5a6 −V

µ6
a6 C

µ5
j a5

)
Q µ1···µ4

2j


−C µ6

j a6
I D,µ1···µ5
4 (a1, . . . , a5;S \{j })�

+
D − 4
960

1
ε

∑
j∈S

∑
i∈S \{j }

[
V ··

B
D ··j ··

�
g ··∆·i · + g ··∆·i · + g ··∆·i ·

�] µ1···µ6

a1···a6

(7.31)
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with

D
µ1µ2
j a1a2

=

(
b jT

µ1µ2
j a1a2

− C
µ1
j a1
V

µ2
a2 − C

µ2
j a2
V

µ1
a1

)
(7.32)

and

Q µ1···µ4
2j = (−1 −D)

(
1
4

�
g µ1µ2g µ3µ4 + g µ1µ3g µ1µ4 + g µ1µ4g µ2µ3

�
I D+6
4 (S \{j })

−
1
2

∑
i1, i2∈S \{j }

(
g µ1µ2∆

µ3
a3i1

∆
µ4
a4i2
+ g µ1µ3∆

µ2
a2i1

∆
µ4
a4i2
+

g µ2µ3∆
µ1
a1i1

∆
µ4
a4i2
+ g µ1µ4∆

µ2
a2i1

∆
µ3
a3i2
+ g µ2µ4∆

µ1
a1i1

∆
µ3
a3i2

+g µ3µ4∆
µ1
a1i1

∆
µ2
a2i2

)
I D+4
4 (i1, i2;S \{j })

+
∑

i1···i4∈S \{j }
∆

µ1
a1i1

∆
µ2
a2i2

∆
µ3
a3i3

∆
µ4
a4i4

I D+2
4 (i1, . . . , i4;S \{j })

)
.

(7.33)

The corresponding form factors (cf. Eq. (7.8), p. 65) to Eq. (7.31) are listed in Ap-
pendix A, p. 121.

The reduction of higher rank hexagons can be performed using Eq. (7.30), p. 70.

7.4 Implementation in Golem95C

The form factor for the higher rank pentagons Eqs. (A.1) to (A.9) (pp. 121–123) and
hexagons has been implemented in Golem95C in a generic way6 [3]. The imple-
mented method can thus, in principle, be extended easily to higher ranks (rank-7
pentagons etc.).

The general formula has been checked by consistency checks. These use contracted
integrals that can be simplified by hand or FORM programs to known integrals, but
can also be evaluated directly with the form factors that should be tested.

For illustration, a simple example of a consistency check is presented. In the following,
testing the triangle form factors of a massless triangle (N = 3, m1,2,3 = 0, four-
dimensional external legs and without loss of generality (w.l.o.g.) r3 = 0) with scalar
bubble form factors (N = 2) is shown. For simplicity, it is also assumed that the first
6Except the symmetry factors for the pentagons that are listed in Appendix A, p. 121 for rank-6 and
need to be explicitly implemented for higher ranks (e.g. rank-7 pentagons).
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7 Higher rank integral reduction

incoming momentum is on-shell (r 21 = 0). By contracting the integral with r1µ , one
gets:

r1µ

∫
dk̄

q µ
1

((k + r1)2 + iδ)((k + r2)2 + iδ)((k + r3)2 + iδ)
= r1µ

(
∆

µ
12A3, 1

2 (S) + ∆µ
13A3, 1

3 (S)
)

= (r1 · r2)A31
2 (S) (7.34)

On the other hand, the following formulas can be applied to reduce the integral:

r µ
1 = (q1 − q3)µ, (7.35)

qi · q3 =
1
2

(
q2
1 + q2

i − r 2i
)
. (7.36)

Abbreviating
�(k + ri )2 + iδ

�
= Di , yields:

r1µ

∫
dk̄

q µ
1

((k + r1)2 + iδ)((k + r2)2 + iδ)((k + r3)2 + iδ)
=

∫
dk̄

r1 · q1
D1D2D3

=

∫
dk̄

(q1 − q3) · q1
D1D2D3

=

∫
dk̄

q2
1 −

1
2
(
q2
1 + q2

3 − r 21
)

D1D2D3
=

∫
dk̄

1
2D1 −

1
2D2

D1D2D3

=

∫
dk̄

(
1
2

1
D2D3

−
1
2

1
D1D3

)
=

1
2I2(S \{1}) −

1
2I2(S \{2}) (7.37)

Both reductions should yield the same result. Special attention has to be taken in the
(D , 4)-dimensional kinematic.

Beside internal consistency checks, the results were also cross-checked with the
implementation of rank N + 1 integrals in the XSamurai extension [54] of Samurai
[53].

For the usage with GoSam, the tensorial reconstruction interface [227] of Golem95C
was extended to rank N + 1. Both consider now the additional rational terms of
Eq. (7.31), p. 70.

At the matrix-element level, the implementation was also successfully compared with
Ninja [55] in several processes, e.g. Higgs + multiple jet calculations. In Ref. [269], the
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high (or at least sufficient) accuracy of Golem95C results is shown compared to other
reduction programs even in the case of more complicated processes with higher-rank
pentagons.
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8 Numerical box diagrams in Golem95C

For special kinematics, especially for small determinants of the modified Cayley
matrix (Eq. (7.5), p. 64), the reduction method introduced in Section 7.2 could fail for
reason of numerical instability. Such special cases are either directly implemented
in Golem95C, calculated at runtime by numerical integration methods or by calls of
third-party libraries.

For up to three-point functions, the stability has been studied and confirmed in [248],
especially for vanishing determinants of the Gram and/or S matrix.

Still, for non-scalar massive four-point functions (boxes), all limits have not yet been
implemented, so that the result of Golem95C can become unstable in certain limits.
This special box kinematic scenarios appear especially in the reduction of pentagons
and hexagons with internal masses.

A one-dimensional integrand representation is still an unsolved problem in the case
of general massive boxes (for three-point integrals they are listed in Ref. [268]), but
would allow easy and fast numerical integration. Instead, another approach to solve
this issue is discussed in this chapter.

The concept is to change completely to numerical integration of these boxes. As
these integrals include infrared and collinear singularities, this is not trivial, but need
special treatment.

This treatment has been implemented in SecDec [270–273], a program which isolates
these singularities by sector decomposition and allows therefore to integrate them
by Monte-Carlo techniques.

For the (at least in the scalar case) divergent box integrals, listed as No. 6–16 in [228]
and on the QCDLoop homepage1 and, in addition, for seven generic, non-divergent
boxes2 with at least one massive leg, SecDec was called. In each case, all possible
(sorted) Feynman-parameter combinations in the numerator were generated from
1http://qcdloop.fnal.gov.
2The cases are 4 masses; 3 masses; 2 masses adjacent with one on-shell, 2 masses adjacent; 2 masses
opposite with one on-shell; 2 masses opposite, one massive internal leg.
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8 Numerical box diagrams in Golem95C

rank-1 to rank-4. To date, only the case of real masses has been considered, although
an extension to complex masses would function similarly.

As required by the implemented form factors for boxes, pentagons and hexagons in
Golem95C, rank-1 to rank-3 six-dimensional boxes, and rank-1 eight-dimensional
boxes were also generated.

In total, SecDec was called for 2115 different cases. Since some of the resulting integrals
have single and double poles, 2330 expressions were finally handled.

The output of SecDec (C++ code) for the various cases was transformed into an
internal library for Golem95C. In the case of small B(S) values (cf. Eq. (7.14), p. 67),
which corresponds to the exceptional kinematic cases, the SecDec-generated integrals
are called automatically.

For multi-dimensional numerical integration, the Divonne algorithm from the CUBA
library [274] is used. This library implements also other numerical integral algorithms.
Beside the CUBA library, which could be integrated seamlessly in the Golem95C build
system, no further dependency has been introduced. In particular, no extra call of
the SecDec program itself is needed.

Two scenarios are used for testing the introduced integrals, described in Ref. [275]. The
scenarios contain box integrals in exceptional phase-space regions that result from
the reduction of hexagons and pentagons respectively (i.e. 6/5-point loop integrals).
For the first case with detG → 0, form factors of the box integral with following
properties are calculated:

m1 = m3 = m4 = 0 m2 = 91.1876GeV
s = 2 × 104 GeV2 t = −4 × 104 GeV2

p2
1 = 1 × 104 GeV2 p2

2 = p2
3 = 0

p2
4 =

(
−6 × 104 GeV2) (1 + x)

The result is shown in Fig. 8.1. Here, the critical limit x → 0 is plotted of the form
factors A41 (= A4, 1

1 of Eq. (7.8), p. 65), A42 (= A4,2
11 ) and A44 (= A4,4

1111) for the current
version of Golem95C and the SecDec-improved version. It can be seen that for the
A42 form factor, the current version of Golem95C is unstable in this limit, whereas
the SecDec-improved version remains stable. For A41, the call of the SecDec-integrals
would not be needed.

In the second case, the behaviour in the limit of a vanishing modified Cayley matrix
determinant (detS → 0) and simultaneous vanishing Gram determinant (detG → 0)
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Figure 8.1: Stability test (I) for massive boxes in Golem95C. Whereas in the critical
limit of a vanishing Gram determinant (here parametrized by x → 0), the rank-1

form factor A41 is stable, the rank-2 form factor A42 and rank-4 A44 form-factor grow
uncontrolled due to numerical instabilities. The integrals from SecDec remain both

stable and give the same results (up to numerical errors from the integration).

are analyzed. The box integral used is defined as follows

m1 = m3 = 0 m2 = 0.066GeV m4 = 91.1876GeV
s = 6.4 × 103 GeV2(1 + x) t = 4 × 104 GeV2(1 + x)

p2
1 = 4 × 104 GeV2 p2

2 = (0.066GeV)2 p2
3 = 6.4 × 103 GeV2 p2

4 = 0.

As in the first example, the exceptional kinematic appears at the limit x → 0. The
result is shown in Fig. 8.2. Here, the form factors from the existing Golem95C ver-
sion show again unstable behaviour at the exceptional limit, whereas in the SecDec-
improved versions, they remain stable. The numerical integration for the form factor
A43 (= A4,3

111 ) shows some minor fluctuations.

In both examples, the SecDec-improved code yielded reasonable results, i.e. the
numerical integrals yielded the same (or due to numerical integrations very sim-
ilar) results as the already implemented integrals near the exceptional cases, but
showed no numerical instabilities at the limits. However, the runtime in both exam-
ples increased by about a factor of 1000–2000 if the SecDec-improved integrals were
used (the exact factor depends very much on the precision settings of the numerical
integration with CUBA and the involved kinematic and form-factors).
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Figure 8.2: Stability test (II) for massive boxes in Golem95C. The critical limit of a
vanishing modified Cayley and Gram determinant (here parametrized by x → 0) is
analyzed for the rank-3 form factor A43 and rank-4 A44 form-factor. In opposite to
the existing Golem95C implementation, the form factors from the SecDec-improved

Golem95C version remain both stable.

In combination with GoSam, which calls large numbers of form factors for one
phase space point through the tensor-reconstruction interface [227], the runtime is
unfortunately no longer practical (seconds to minute range), especially when the
requested precision from the numerical integrations is set to appropriate values.

Due to the very slow runtime and the big code size, the change could not yet included
in the official Golem95C version.

As SecDec can only generate integrals for a fixed kinematic, and the generated inte-
grals are finally used for all similar configuration cases, it remains uncertain whether
the chosen configurations cover all needed cases. As the generated integrals fail, if
they are called with invalid kinematic, this issue can, however, be easily detected and
fixed by adding further special configurations.

In general, there is a trade-off between time spent on calculating unstable points and
calculating (large numbers) of other stable points nearby. For the one-loop parts of
NNLO calculations, however, exceptional kinematic cases are more important and
cannot be avoided, so that the extension might still find application in the future.
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Part III

Phenomenological applications
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9 p p/g g (→W +W −)→ e+νe µ−ν̄µ with
anomalous couplings

In this chapter, the previously discussed tools, especially GoSam 2.0 and Herwig 7,
linked by BLHA2, are applied to calculate the process pp (→W +W −)→ e+νe µ− ν̄µ

at NLO in the QCD coupling, including and focusing on the loop-induced produc-
tion process from the gluon-gluon (gg ) channel enhanced by anomalous g gWW
couplings stemming from the general EFT operators that contribute at the lowest
possible dimension eight.

The calculation performed does not involve higher-rank tensor integrals1, but cal-
culating for example QCD-corrections to the dimension-8 operators contributions
would require rank-4 two-point integrals (bubbles) and rank-6 three-point integrals
(triangles).

Most results shown in this chapter at LHC energies were recently published in Ref. [1].
The author of this thesis was mainly involved in the preparing, testing and extending
GoSam including its interface to the Monte-Carlo event generator Herwig and the
model file used for this calculation, testing the developments and modifications
applied to Herwig, re-writing and improving the analysis code used, performing the
actual runs and, finally, compiling the results into the plots shown.

9.1 Motivation

Due to an excess in the diboson measurements of the ATLAS [276, 277] and CMS [278,
279] experiments, the diboson channel was paid extra attention. The excess was
especially visible in the hadronic decay channel. In the first 13 TeV data presented in
December 2015, the excess was no longer visible, but could not yet statistically fully
excluded. Various theories have been considered to explain the excess, for example
1An application of higher rank integrals can be found in Ref. [4], where NLO QCD corrections to
diphoton plus jet production through graviton exchange in a large extra dimensional model are
calculated.
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9 pp/g g (→W +W −)→ e+νe µ− ν̄µ with anomalous couplings

by introducing new particles, s-channel resonances, strongly coupled dynamics,
such as composite Higgs models, extended gauge groups like Z ′ orW ′ and multiple
ways to extended Higgs sector. A summary with references to the various theoretical
explanations can be found in [280].

In addition to this excess, the diboson process is also an important background to
the Higgs boson decay H → WW as well as in the search of unknown reasons of
missing energy, which could be a hint for several BSM models. It allows precision
measurements and predictions of the electroweak symmetry breaking.

Furthermore, there were differences between phenomenological calculations and
experiments observed at the total cross section level, but also in differential observ-
ables. This matter requires for further precision calculations, also involving BSM
effects.

In the following sections, the current experimental and phenomenological aspects are
summarized before a new calculation for pp (→W +W −)→ e+νe µ− ν̄µ is presented
including anomalous couplings that enlarge the gg channel. The effects of parton
showering and top mass effects are also examined. In the second step, the calculation
is extended to the center-of-mass energy of 100 TeV for future proton-proton colliders
beyond the LHC.

9.1.1 Experimental measurements

Several measurements at the LHC and previous colliders have determined the dibo-
son rate.

The results at a center-of-mass energy of 7 TeV at the LHC were published in [86, 281,
282], later the 8 TeV results were added [283–285]. These measured total inclusive
cross sections showed some tensions to theoretical predictions at NLO as mentioned
in the next sections. Experimental results for the here analyzed final state at 13 TeV
are not yet published. First searches for diboson resonances in the lνqq and llqq
final state can be found in [286–288]. Results for ZZ production at 13 TeV, which would
also be affected by the anomalous couplings analyzed, can be found in Refs. [289,
290].

As mentioned before, the WW → e+νe µ− ν̄µ channel is also important for Higgs
physics. In Ref. [291], it was used to determine the spin and parity of the Higgs
boson.

Earlier searches for anomalous couplings have been performed by the DØ collabora-
tion [292, 293].
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9.1 Motivation

9.1.2 Existing calculations

Since the first qq̄ → W +W − NLO calculations in the 1990s [58–60] with on-shell
W-bosons, there have been multiple efforts to improve the calculation. Helicity
amplitudes including decay to leptons have been provided in [61] and were later used
in [62] to study anomalous couplings. A matching procedure to parton shower was
applied in MC@NLO [172] and in MadGraph5_aMC@NLO [63, 294].

From the beginning, the calculations were driven by the Higgs boson search which
needed a precise possible background estimation to the H →W +W − → lνl l

(′)νl (′)

decay. After the Higgs boson was found, this process is still of interest as it allows to
measure the Higgs boson width. This can be performed by examining the off-shell
production and decay as proposed and studied in [295–302]. From the Z Z final state,
the Higgs boson width could already be constrained [303].

The first estimations to the loop-induced, g g →W +W − cross section with on-shell
W-bosons come from g g → Z Z calculations [64–66]. Ref. [67] included the leptonic
decays of the W-bosons for massless fermions. In Ref. [68], this calculation was
extended by considering also massive top- and bottom-quarks.

Recent results of the full SM process including shower, contributions from the gg -
channel and up to one merged additional jet can be found in [69].

The outcome of MCFM NLO-calculations, including the gluon-gluon-initial channel
[70–72] were up to 20% lower in the leptonic decay than the LHC measurements.
NNLO calculations [73] lowered this gap.

Two-loop calculations showed a K-Factor of 1.2 – 1.6 depending on the scale choice
from the loop-induced gg initial channel (gg LO) to the two-loop result (gg NLO)
at 13 TeV. As the gg -channel is still loop-suppressed, the total cross section (pp)
increases by only 2%. [74]

Two-loop code for the qq and gg initial state and four-lepton final state has been
published in the VVamp project [304, 305].

Further studies [75–79] have shown that large logarithms from jet veto conditions
cannot be ignored and that including these, discrepancies to experimental data
appear only at the 1σ level if the fiducial cross section is analyzed, i.e. the region
where the detectors are most sensitive. The extrapolation method to the final cross
section thus need to be reconsidered [78].

A discussion about the a-priori underestimated uncertainty from scale variation in
diboson production at LO can be found in [306].
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The pT distribution ofW +W − has been calculated at NNLL+NNLO (next-to-next-to-
leading-log combined with next-to-next-to-leading order fixed order calculation) in
[307].

Electroweak-corrections were calculated in [80, 81, 308]; subleading processes to
W +W − production like γγ →W +W − are studied in [309]

The case of an additional jet state, i.e. the process pp → W +W −+ jet, has been
calculated in [310–312] at NLO in QCD. In Ref. [313], electroweak corrections were
added. The loop-induced process g g →W +W −+ jet, which was neglected in those
studies, is studied in [314].

The effects of large extra-dimensions in the ADD model [57] onW +W − have been
analysed in [315]. The extra-dimensions enhance the invariant mass distribution tail
of the diboson system similar to the dimension-8 operators discussed here.

For the process pp → l+l−, the effect of dimension-eight operators introducing
g g l+l− couplings was analyzed in [316]. For the final state analyzed in this thesis
with different lepton flavours, these operators do not contribute at the perturba-
tion order considered. WW Z andWW γ dimension-six operators that contribute to
the e+νe µ− ν̄µ final state were analyzed in [134] in a narrow-width approximation.
Possible operators of dimension six and higher are classified and enumerated in
[317–322]. Ref. [323] notes that dimension-eight operators could be more important
than dimension-six operators in certain circumstances, in particular, for example, if
dimension-six operators are loop-suppressed in the full theory, but dimension-eight
operators are created at tree-level.

9.2 Effective model: dimension-8 operators

The speciality of the gluon-gluon channel is that the first possible operators, medi-
ating directly between the four bosons, occur at dimension eight and are therefore
suppressed by four powers of the effective scale Λ. There are multiple other oper-
ators already at dimension six, which would also contribute to this channel, such
as effective Higgs boson couplings to vector boson pair or two gluons, or triple and
quartic gauge couplings [317, 318, 324]. They have been discussed already exten-
sively in the literature, mainly in vector-boson-fusion, and are constrained by several
measurements (cf. e.g. [82–88]) and are, therefore, not considered here.

Furthermore, interference effects and cancellations can hide these operators partially,
so that BSM effects, which can be described by them, are more difficult to find.
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9.2 Effective model: dimension-8 operators

There are three different types of the dim-8 operators, one CP-even and two CP-
odd,

O1 =
c1
Λ4G a

µνG
a,µνW I

ρσW I , ρσ (9.1)

O2 =
c2
Λ4G̃ a

µνG
a,µνW I

ρσW I , ρσ (9.2)

O3 =
c3
Λ4G a

µνG
a,µνW̃ I

ρσW I , ρσ (9.3)

where

G a
µν = ∂µG a

ν −G∂νG
a
µ − gs fabcG b

µG c
ν (9.4)

G̃ a
µν =

1
2ε

µνρσG a
ρσ (9.5)

is the gluonic field strength tensor, respectively its dual tensor, and

W I
µν = ∂µW I

ν − ∂νW
I

µ − g εI J KW J
µ W K

ν (9.6)

W̃ I
µν =

1
2ε

µνρσW I
ρσ (9.7)

with the SU(2) fieldsW I . These fields can be written in the physical field basis:

W 1
µ =

1
√
2
(W +

µ +W −
µ ) (9.8)

W 2
µ =

i
√
2
(W +

µ +W −
µ ) (9.9)

W 3
µ = Zµ cos θw + Aµ sin θw (9.10)

The resulting Feynman-rules for new g gWW vertices that are introduced by the oper-
ators Eqs. (9.1) to (9.3) are listed in Appendix B, p. 125. The operators are orthogonal,
i.e. they do not interfere with each other.

In the following, the coefficients c1, c2 and c3 are often set to the same value and
therefore they are abbreviated with ci (i = 1 . . . 3).

For the gg cross section analyzed, interference terms between the loop-induced SM
calculation and the dimension-8 operators are included as follows:

σg gWW,gg_All ∼
����M

1-loop
SM

����
2
+ 2 Re

(
M

1-loop
SM M∗

dim-8 op

)
+

���Mdim-8 op
���
2 (9.11)
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(a) (b) (c)

Figure 9.1: This diagram visualizes the contributions included in gg_All (cf.
Eq. (9.11)) [1]. (a): The squared loop-induced SM contribution. (b): The interference

term. (c): The squared dim-8 operator.

9.3 Setup and input parameters

Only the purely leptonic decays of the W-bosons in two different lepton flavours
are considered, i.e. the process pp → e+νe µ− ν̄µ . It is calculated at a center-of-mass
energy of 8 TeV and 13 TeV.

The same flavour final state pp →W +W − → l+νl l− ν̄l would need to be combined
with non-resonant contributions such as Z Z → l+νl l− ν̄l and is therefore not consid-
ered here.

The quarks and leptons of the first two generations are considered as massless, the
third generation as massive. Accordingly, a diagonal CKM matrix is assumed.

The loop-induced SM contribution (gg initial state) contains only triangle diagrams
with internal Higgs boson exchange and box diagrams. The other possible single-
and double-resonant triangle diagrams, which are important for gauge invariance,
cancel each other; photon exchange diagrams also vanishes due to Furry’s theorem
[325]. The Feynman diagrams are listed in Appendix C.1, p. 127. [66]

For the SM background (qq and q g initial state), all possible diagrams are considered
with the e+νe µ− ν̄µ final state at the NLO in the QCD coupling constant including
single- and double-resonant diagrams. The Born and virtual diagrams are listed in
Appendix C.2, p. 128 for the uū channel.

For the parton distribution functions, MMHT2014nlo68cl_nf4 [326] is used. Accord-
ingly, four (massless) quark flavours are assumed in the initial state (i.e. a four-flavour
scheme). The parton distribution function is accessed using the library LHAPDF 6.1.5
[327].

The default renormalization and factorization scale are set to the same value. Two
choices are made. Either a fixed scale µR = µF = mW is chosen or a dynamic scale at
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the invariant mass of the WW-pair

µR = µF = mWW =

√(
pe+ + pνe + pµ− + p ν̄µ

)2
. (9.12)

All QCD renormalization procedures needed are automatically applied by GoSam.
GoSam uses the M S-scheme to renormalize the strong coupling. For massive quarks,
subtraction at zero momentum is employed (cf. [50]). For the SM background calcu-
lated at NLO QCD, only αs renormalization is required. The massive quark loops of
the loop-induced gluon-gluon channel are UV-finite.

The dimension-8 operators (cf. Eqs. (9.1) to (9.3), p. 85) depend linearly on the ci=1,2,3
Λ4

ratios. Where not otherwise noted, ci

Λ4 =
0.1

(1 TeV)4 is chosen. This choice prevents
unphysical results already at lower energies (cf. the discussion in Section 9.8, p. 107).

If the choice ci = 1 appears more natural, identical results can be obtained by the
corresponding scale Λ ≈ 1.778 TeV.

Further settings of parameters are listed in Table 9.1. The non-listed electroweak
parameters are derived from the set (αEW, GF , MZ ) of input parameters according to
Eqs. (6.1) and (6.2), p. 60.

Several cuts were applied (cf. Table 9.2) at generator level (mainly to exclude unstable
and divergent phase space regions) and at analysis level (to model experimental
W -identification cuts).

This splitting allows further analysis of the cut effects, as a second analysis was
also carried out without any additional cuts (in the following named generator-level
analysis).

9.4 Computational setup: Herwig and GoSam

The computation is performed by using the Monte-Carlo event generator Herwig 7
(also known as Herwig++ 3) [182] and GoSam, which provides the tree- and one-loop
amplitudes.2

The workflow is controlled by Herwig, which requests the amplitudes needed from
GoSam, combines them properly and finally provides weighted events than can
2For the gg sub-process, the BLHA2 order file generated by Herwig 7 and the GoSam input card are
listed in Appendix D, p. 133.
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Fermi coupling constant GF 1.166 37 × 10−5 GeV−2
fine-structure constant αEW

1
128.91

b mass mb 4.2GeV
top mass mt 174.2GeV
top width Γt 1.4GeV

Higgs boson mass mh 125.7GeV
Higgs boson width Γh 4.11MeV

W width ΓW 2.085GeV
Z mass mZ 91.1876GeV
Z width ΓZ 2.4952GeV

dim-8 operator strengths ci=1,2,3 0.1
effective scale Λ 1 TeV
CKM-Matrix VU D diag(1, 1, 1)

Table 9.1: Input parameters for the calculation (where not otherwise noted).

Generator cutsa
invariant mass of same-flavour lepton-neutrino pair 50GeV ≤ mlνl ≤ 150GeV
transverse momentum of same-flavour

lepton-neutrino pair pT,lνl ≥ 10 GeV

rapidityb of charged leptons ��yl
�� ≤ 3.5

lepton transverse momentum pT,l ≥ 15 GeV
missing transverse momentum (vector-summed) /pT ≥ 15 GeV
Analysis cuts
invariant mass of same-flavour lepton-neutrino pair 60GeV ≤ mlνl ≤ 100GeV
pseudo-rapidityb of charged leptons ��ηl

�� ≤ 3
transverse energy of charged leptons pT,l ≥ 25GeV
missing transverse momentum (vector-summed) /pT ≥ 25GeV

a The cuts are slightly smeared-out in the Herwig default setup. Also
here, the default values FuzzyTheta:EnergyWidth 4.0*GeV and
FuzzyTheta:RapidityWidth 0.4 are used.

b Since leptons are considered as massless, there is no difference
between rapidity and pseudo-rapidity.

Table 9.2: Applied cuts at generator and analysis level.
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be further analyzed. For the NLO setup used for the SM background, Herwig 7
composes automatically Catani-Seymour subtraction terms [123] from the color-
correlated matrix elements provided by GoSam.

The generator cuts are applied in Herwig at generator level, i.e. at the Monte-Carlo
event generation. The analysis cuts are later added by the analysis code.

The complex mass scheme [328] is used and, therefore, a non-zero top-width (cf.
Table 9.1, p. 88).

For this application, Herwig 7 is extended by custom patches to support the combi-
nation of loop-induced SM diagrams and corresponding tree-level BSM diagrams
including interference effects.

The matrix elements of all diagrams are calculated by GoSam, including real radiation
diagrams, colour-correlated diagrams and the diagrams of the dimension-8 operators
which have a different power in αs in comparison to the loop-induced diagrams.

In contrast to normal calculations, in which Herwig knows all diagrams including
their exact coupling constant powers and can therefore pass a fixed value of the QCD
coupling constant αs to the tree/loop-provider and re-normalizes afterwards with
the correct value of αs , the αs handling is changed. An option was developed and
is used, which passes immediately the correct value of αs to GoSam and avoids any
later adjustment that would require the knowledge of the correct power.

For the interference term, the normal NLO-setup is used in GoSam as the matrix
element corresponds to a Born amplitude (in our case the tree-like BSM term with
the effective operator) multiplied by a virtual 1-loop-amplitude (in this case the loop-
induced gluon-gluon SM part). Only the precision checks of loop-induced processes
(cf. Section 5.4, p. 49) must be switched on.

Finally, the generated events are directly forwarded by Herwig to the program pack-
age Rivet 2.4 [246] and analysed, i.e. the distributions of various observables, which
are shown below in the result sections, are deduced from the properties of the gener-
ated events (such as their probability and kinematic). Thereby, the analysis cuts (cf.
Table 9.1, p. 88) are applied. The W-bosons are reconstructed from the momenta of
their decay products (muon/positron and corresponding (anti-)neutrino). This cir-
cumvents problems with current version of Rivet’s WFinder implementation, which,
even if more realistic, is not able to reconstruct both W-bosons properly from the
considered final state.
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9.5 Validation

The matrix element of the loop-induced process g g →W +(→ e+νe )W −(→ µ− ν̄µ)
was validated against MCFM [72] and MadGraph5_aMC@NLO.

The SM background was checked by switching to MadGraph5_aMC@NLO (including
MadLoop) as LO/NLO provider in Herwig instead of using GoSam. Additionally, the
total cross section was successfully compared with the values in Ref. [71] at LO and
NLO after adapting the setup to the ‘basic’ cut scenario described there.

9.6 Results

9.6.1 Gluon-induced contributions and BSM effects from the
dimension-eight operators

To address all effects of the eight-dimensional EFT operators in detail, it is useful to
restrict the study initially to the gluon-gluon channel, which is loop-induced in the
SM.

In Fig. 9.2, p. 92 and in the following, the different contributions to the gg -channel,
listed in Fig. 9.1, p. 86 or Eq. (9.11), p. 85, are separated and, in addition, analyzed
after being combined differently: The contribution of the dimension-eight operators
squared is named gg_Eff2, the loop-induced SM contribution gg_SM, the interfer-
ence terms between both gg_Interf. As the interference is destructive in most parts,
it is shown with the opposite sign (gg_NegInterf).

The combination of gg_SM and gg_Interf is designated as gg_SM+Interf. Likewise,
gg_Eff2+Interf is the combination of gg_Eff2 and gg_Interf.

Finally, gg_All denotes the combination of all SM and BSM gg contributions includ-
ing interference effects.

Where no scale-variation bands are shown in the plot (e.g. Fig. 9.9, p. 97), yellow
bands in the ratio plots denote MC errors on the first plotted curve in each case, on
which the ratio plots are always based. Except for tail regions with low statistics, MC
errors can usually be neglected as they are much smaller than the scale variation
effects.
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The invariant mass of the W-boson pair is defined via the momentum of the decay
products

mWW =

√(
pe+ + pνe + pµ− + p ν̄µ

)2
. (9.13)

Its distribution is shown in Fig. 9.2a.

For low energies, the (negative) interference terms, which are linear contributions
from the dimension-eight operators, dominate over the quadratic contributions of
the dimension-eight operators (gg_Eff2).

At around 400GeV, both cancel each other and the quadratic contributions begin
to dominate. This is also the point at which the sum of both (gg_Eff2+Interf)
becomes positive. As expected, the quadratic contributions grow with the center-of-
mass energy

√
ŝ (here identical to mWW ). The exact values depend on the chosen

ratio ci

Λ4 , and are therefore valid only for the chosen set of BSM parameters, but by
virtue of their linear or quadratic dependency can be easily rescaled to other values
of this ratio and therefore give at least a qualitative picture.

The loop-induced SM contributions (gg_SM) reveal nearly the opposite behaviour,
such that the BSM contributions, which are largely suppressed by ci/Λ

4 or even�
ci/Λ

4�2, dominate clearly beyond 500–600GeV (including scale variation effects).
Beforehand, they reduce slightly the SM cross section.

A low-energy effective theory can only describe physics properly at a scale sufficiently
smaller than the scale of (possibly unknown) New Physics. It should therefore be
noted that the point at which linear and quadratic contributions become equal can
also be considered as the point at which the EFT approach begins to become invalid,
since the suppression by powers of Λ is repealed by the growth proportional to s 2 and
therefore also dimensional-10 and even higher operators would start to contribute
considerably. In other words, the principle of power-counting (cf. Section 3.2, p. 30)
will reach its limits.

In the high energy region, the dimension-eight operators violate also unitarity as
discussed in Section 9.8, p. 107.

The∆RWW =
√
(φW + − φW −))2 + (yW + − yW −)2 observable is shown in Fig. 9.2b. ∆RWW

measures the azimuthal angle difference (i.e. the angle in the transverse plane) and
rapidity distance between the two W-bosons. In contrast to the mWW observable,
the BSM effects are seen here in every bin. As part of the BSM contributions comes
from the high-energy region, where the EFT approach breaks down, the values need
to be interpreted carefully.
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The results in this section are without showering and at LO. Therefore, the W-bosons
are always back-to-back (∆φ = π), which simplifies∆RWW to

√
(π)2 + (∆yWW )2, hence

the region∆RWW < π is not (yet) populated. The LO calculation is also responsible for
the high scale-variation uncertainty visualised by the shaded bands from a variation
of µR = µF by a factor 2 around their central value.
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Figure 9.2: (a) Invariant mass distribution of the W-boson pair and (b) ∆RWW

distribution of gg -initiated SM/BSM contributions at
√

s = 13 TeV. For gg_All and
gg_SM, scale-variation bands are shown.

The same observables are shown in Fig. 9.3 at the center-of-mass energy of
√

s = 8 TeV
and the fixed scale µR = µF = mW . At this lower energy, the BSM effects are less
pronounced, but still beyond about 550GeV clearly visible, where the dimension-8
operator starts to contribute considerably. This behaviour difference is not due to
the choice of fixed vs. dynamic scale (cf. the fixed scale plot at

√
s = 13 TeV shown in

Fig. E.1, p. 135).

With respect to the directly measurable observables, the effects of the higher dimen-
sional operators are seen already at lower scales. Figure 9.4 shows the transverse
momentum of the positron from theW + decay and the invariantmass of both charged
leptons in the interesting lower energy region (me+µ−). More than 20% BSM effects
are visible already above p⊥,e+ = 50GeV (or 80GeV, taking scale variation effects
into account). In the me+µ− distribution (Fig. 9.4b), the BSM effects are visible above
150–190GeV.

Clear separation of SM and BSM contributions can be also seen in Fig. 9.5, p. 94, in
which the relative azimuthal angles between the charged leptons (∆φe+µ−) and their
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Figure 9.3: (a) Invariant mass distribution of the W-boson pair and (b) ∆RWW

distribution of gg -initiated SM/BSM contributions at
√

s = 8 TeV. For gg_All and
gg_SM, scale-variation bands are shown.
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Figure 9.4: Transverse momentum of the positron (a) and invariant mass of the
charged leptons (b), for the gg -initiated contributions. Scale-variation bands are

shown for gg_All and gg_SM.
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Figure 9.5: Distributions of (a) relative azimuthal angle ∆φe+µ− and (b) ∆Re+µ− , for
the gg -initiated contributions. Scale-variation bands are shown for gg_All and

gg_SM.

∆Re+µ− separation are plotted. In both observables, the higher dimensional operators
contribute mostly in the upper bins, where the leptons are nearly back-to-back and
probably originate from highly boosted W-bosons.

9.6.2 Scale choice

Most existing SM studies of the examined process have been performed at a fixed
scale µF = µR = mW . At higher energies, this choice is, however, at least question-
able.

Figure 9.6 shows the difference between the dynamic and fixed scale for the full BSM
contributions at

√
s = 13 TeV. It can be seen that the scale variation bands do not

overlap, therefore varying the scale by factor 2 around the central scale does not fully
estimate the uncertainty from the scale choice for this process. This is especially
true, if only the SM part is analyzed as in Fig. 9.7, p. 96. At least for the part in which
the SM contributions dominate, the higher cross section of the fixed scale can be
explained by the fact that nearly everywhere the fixed scale is much smaller than the
dynamic scale and therefore leads to larger αs values.

As in Fig. 9.2a, p. 92, the region around 600GeV in which the BSM contributions begin
to dominate shows a reduced dependency on the chosen scale. This is due to the fact

94



9.6 Results

that the pure BSM contributions do not depend on the renormalization scale3 and
therefore only effects from the simultaneous factorization scale variation are seen.

The bands for the dynamic scale are slightly smaller than the fixed scale, which might
suggest that the dynamic scale choice is more appropriate.

This topic is taken up again in Section 9.6.7, p. 101 where the results from the gg
initial channel are combined with the full SM background.

Herwig7+GoSam gg All (dyn. scale)
gg All (fixed scale)

10−5

10−4

Invariant mass of the WW pair (13 TeV)

d
σ

/
d

m
W

W
[p

b/
G

eV
]

10 3

1

1.5

2

2.5

3

mWW [GeV]

R
at

io

(a)

Herwig7+GoSam

gg All (dyn. scale)
gg All (fixed scale)

10−5

10−4

10−3

10−2

10−1

1

Separation of the two W bosons (13 TeV)

d
σ

/
d

∆
R

W
W

[p
b]

0 1 2 3 4 5 6 7

1

1.5

2

2.5

3

∆RWW

R
at

io

(b)

Figure 9.6: Comparison of the scale variations plots between the dynamic and fixed
scale of the gg -initiated contributions, for (a) invariant mass distribution of the

W-boson pair and for (b) the ∆RWW distribution of gg -initiated SM/BSM
contributions at

√
s = 13 TeV.

9.6.3 Comparison between the three dimension-eight operators

Whereas in the previous and following sections, the three dimension-eight operators
are always shown combined, they are now analyzed separately by setting one ci = 0.3
and the two others to zero in each case. The coefficient of the operator which should
be analyzed is set to 0.3 instead of 0.1 to keep the same total magnitude of the BSM
effects. This also helps to differentiate more easily between the operators.
3 The leptonic decay of the W-bosons has still a scale dependency, but due to the slow running, it is
neglected in this calculation.
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Figure 9.7: Comparison of the scale variations plots between the dynamic and fixed
scale of the gg -initiated contributions, for (a) invariant mass distribution of the

W-boson pair and for (b) the ∆RWW distribution of gg -initiated SM contributions at
√

s = 13 TeV.

For better comparison, only plots at the fixed scale mW are shown in this section.4

In Fig. 9.8, the distribution of the angle between theW -decay planes cos(Ψ) is plotted
at
√

s = 13 TeV and 8 TeV, respectively. Since O1 and O2 has the same angular de-
pendency if squared, gg_Eff2_c2_0.3 masks gg_Eff2_c1_0.3 perfectly. This is no
longer true for the interference terms, so that gg_All_c1_0.3 and gg_All_c2_0.3
differ slightly.5 At

√
s = 13 TeV, the total cross section is more dominated by the

high-energy part of the higher dimensional operators than at
√

s = 8 TeV, such that
the differences between the gg_Eff2 and gg_All curves are much smaller.

It should be noted that O3 has no angular dependency on its own. The remaining
angle dependency—especially at the border of the plot (i.e. when the decay planes
are almost perpendicular)— is due to the chosen cuts and is therefore removable.

Whereas O3 can be distinguished easily from O1 and O2 in the cos(Ψ) observable, O1
can be distinguished from O2 and O3 in the invariant mass distribution shown in
Fig. 9.9 for

√
s = 13 TeV. Here, O1 causes a larger decrease of the distribution around

mWW ∼ 500GeV.
4For the dynamic scale at 13 TeV, plots are listed in Fig. E.2, p. 136.
5In this section, all calculations were started with the same MC seeds, so that differences between
curves are real and not statistical fluctuations.
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Figure 9.8: For the operators O1, O2, O3, the distribution of the angle between the
W-boson decay planes are shown for the fixed scale µR = µF = mW at
(a)
√

s = 13 TeV and (b)
√

s = 8 TeV. The ratio plots are with respect to
gg_All_c1_0.3 (c1 = 0.3, c2 = c3 = 0).

Herwig7+GoSam

gg All c1 0.3
gg All c2 0.3
gg All c3 0.3

10−5

10−4

Invariant mass of the WW pair (13 TeV, fixed scale)

d
σ

/
d

m
W

W
[p

b/
G

eV
]

10 3

0.6

0.8

1

1.2

1.4

mWW [GeV]

R
at

io

(a)

Herwig7+GoSam

gg All c1 0.3
gg All c2 0.3
gg All c3 0.3
gg Eff2 c1 0.3
gg Eff2 c2 0.3
gg Eff2 c3 0.3

10−6

10−5

10−4

Invariant mass of the WW pair (13 TeV, fixed scale)

d
σ

/
d

m
W

W
[p

b/
G

eV
]

10 3

0.6

0.8

1

1.2

1.4

mWW [GeV]

R
at

io

(b)

Figure 9.9: Invariant mass distribution of the W-boson pair for each dimension-8
operator at

√
s = 13 TeV and fixed scale mW . In (b), the pure effects of each operator

squared is added. It can be seen that O1 and O2 are identical in this observable (up
to MC-errors). The ratio plots are with respect to gg_All_c1_0.3

(c1 = 0.3, c2 = c3 = 0).
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Combining these two observables cos(Ψ) and mWW , all three operators can be dis-
tinguished from each other, at least in principal, since in practice, the overall BSM
effect in the relevant areas of the combined analysis (discussed in Section 9.6.7, p. 101)
might be too small to allow significant conclusions.

By using the different contributions as shown in Section 9.6.1, p. 90, and, additionally,
splitting between the three operators, morphing techniques (cf. [329]) can be applied
to fit the BSM parameters (i.e. the ci parameters) to experimental data.

9.6.4 Enhancement of the interference effects
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Figure 9.10: Comparison of the
BSM effects between ci = −0.1 and
ci = 0.1 (gg_All). The differences
are only due to the different sign of
the interference terms. The pure
SM contributions (gg_SM) are also

shown.

By choosing a negative value for the coefficients
ci in Eqs. (9.1) to (9.3), the BSM effects can
be further enlarged as the interference terms
are inversely proportional to the ci and, there-
fore, increases the cross section. This is shown
in Fig. 9.10 where the effect of ci=1,2,3 = −0.1
is compared with the ci = 0.1 case that is
used where not otherwise noted. The (nega-
tive) value of the interference terms can also be
seen in Figs. 9.2 to 9.5 (pp. 92–94), designated
gg_NegInterf. They are identical to the (pos-
itive) interferences in the ci = −0.1 case.

Using different signs for ci , the interference ef-
fects of the different operators cancel at least
partly depending on the chosen observable.

The BSM-only terms (from the dimension-8 op-
erators squared) depend on c 2i and are therefore
not sensitive with respect to the sign of ci .

9.6.5 Top mass effects in the Standard Model

Top-quarks are only contributing in the loop-induced g g →W +W − SM process, but
not in the quark channels at NLO discussed later.6 In contrast to the bottom quarks,
whose mass effects are hardly visible (in the order of the Monte-Carlo uncertainties),
6This can be assumed for the LHC, where top-quarks in the initial state can be neglected and,
moreover, a four-flavour scheme be used, but not necessarily at higher energies in future colliders.
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σg g ,SM (generator cuts) σg g ,SM (analysis cuts)
with top mass (SM) (34.3 ± 0.1) fb (18.65 ± 0.01) fb

without top (33.00 ± 0.02) fb (18.03 ± 0.01) fb
⇒ top contribution 4% 3.3%

with massless top and bottom (74.31 ± 0.02) fb (40.39 ± 0.01) fb

Table 9.3: Effect of the top mass mt to the total σg g ,SM cross section.

the top-mass cannot be neglected.

In Ref. [72], the effect of the whole third quark generation was analyzed as the para-
meter of the top mass for the SM. In the following, the effect of including or excluding
massive top quark loop is examined similarly. Two special cases are analyzed.

In the first case, designated notop, all top quark loops are excluded from the Feynman
diagram used. This eliminates also all contributions from diagrams including bottom
quarks, except one diagram in which a bottom triangle couples to the boson pair via
Higgs boson. As the contribution of this diagram is suppressed by the small Yukawa
bottom-Higgs coupling, the notop case is nearly identical to the two quark generation
case.

In the second case, the otherwise massive quarks (tops and bottoms) are considered
as massless (denoted by massless). This also switches off their Yukawa-couplings.

Neglecting the top quarks (notop case) has a minor effect on the total SM section of
the loop-induced gluon-gluon channel. They contribute about 3–4% (cf. Table 9.3).

In the invariant mass of the final-state leptons and their R-separation shown in
Fig. 9.11, also no major effects are visible.7

Setting the masses of the third generation to zero (massless case), the effects are, as
expected, much larger. The additional massless generation in the loops leads to a
factor 9

4 = 2.25 (cf. [72]), here slightly reduced to about 2.16 in the total cross section
due to the chosen cuts. The effect can also be seen in Fig. 9.12, in which the invariant
mass and the R-separation of the charged leptons in the final state are plotted.

With respect to the whole BSM process, the influence of the contributions of top
quark loops is less distinct. With the massless third-generation, the effects are up
to about 10% (cf. Fig. 9.13, p. 101), whereas in the notop case, the contribution to
7The invariant mass distribution of the W-bosons plotted in Fig. E.4, p. 137 shows similar behaviour.
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Figure 9.11: Distribution of the invariant mass (a) and ∆R-separation (b) of the
charged leptons. In the _notop curves, diagrams with top-quarks have been omitted.
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Figure 9.12: Distribution of the invariant mass (a) and ∆R-separation (b) of the
charged leptons. For the curves labeled _massless, the top and bottom quarks were
assumed to be massless. For better visibility, only the area is plotted in the me+µ−

distribution, where the BSM effects begin to dominate.
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the total SM or BSM cross section is less than 1% and therefore, also in the various
differential distributions, within the scale variation and MC uncertainties.8
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Figure 9.13: For the full pp initial state, impact of massive vs. massless top-quark
loops on (a) the invariant mass of the charged leptons and (b) ∆Re+µ− distribution

In summary, the analysis shows that the top mass effects are small, but can partly
obscure BSM effects. It could be verified that the error introduced by omitting the top
entirely is substantially smaller than considering it (or the whole third generation) as
massless.

9.6.6 Quark-initiated Standard-Model part

In the SM, the e+νe µ− ν̄µ final state can also be produced from quarks and anti-quarks
in the initial states. This is therefore a background to the previously discussed BSM
effects. In the real radiation processes at QCD NLO, also q g and q̄ g initial states
need to be considered.

9.6.7 Combined results

The full result is shown in Fig. 9.14 in which the invariant mass and the ∆RWW separa-
tion of the reconstructed W-bosons are plotted in the combined quark-quark/quark-
gluon SM NLO calculation with the analyzed gluon-gluon-channel including the
8Further plots of the mass effects are shown in Fig. E.3 and Fig. E.4, p. 137.
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anomalous couplings isolated in the previous sections.

In the combined results, the BSM effects impinge at the mWW distribution at about
700GeV, whereas in the gluon-gluon-channel, they are already distinguishable from
500–600GeV and onwards. In the ∆RWW distribution (Fig. 9.14b), now also the left
side ∆RWW < π is filled by the real radiation of the qq/q g NLO calculation.

Herwig7+GoSam

pp+gg SM
pp+gg BSM
gg All
gg SM

10−7

10−6

10−5

10−4

10−3

Invariant mass of the WW pair (13 TeV, dynamic scale)

d
σ

/
d

m
W

W
[p

b/
G

eV
]

10 3

0.6

0.8

1

1.2

1.4

mWW [GeV]

R
at

io

(a)

Herwig7+GoSam

pp+gg SM
pp+gg BSM
gg All
gg SM

10−4

10−3

10−2

10−1

1
Separation of the two W bosons (13 TeV, dynamic scale)

d
σ

/
d

∆
R

W
W

[p
b]

0 1 2 3 4 5 6 7

0.6

0.8

1

1.2

1.4

∆RWW

R
at

io

(b)

Figure 9.14: Invariant mass distribution mWW and ∆RWW separation of the
W-boson pair. All calculated SM/SM+BSM contributions from the partonic channels
are included, i.e. the quark-initiated channels at NLO in QCD are combined with the
loop-induced SM gg -contributions, and for the BSM curves (_All), also with all
effects of the dimension-8 operator. In addition, the gg -contributions are shown

separately.

The difference between the dynamic scale (µF,R = mWW ) and fixed scale (µF,R = mW )
choices are shown in Fig. 9.15. The conclusions are similar to the previous analyzed
gluon-channel. The relatively low fix scale leads again to a higher cross section and
larger scale variation bands as the dynamic scale.

It should be noted that the gluon-gluon and the quark-initiated channels have in-
verted behaviour with respect to scale variation, which reduces the scale dependency
on the combined results, but may also lead to an underestimation of the total scale
uncertainty. Hence, an uncertainty estimation from the scale variation of the com-
bined results must be approached carefully. Independent variation of µR and µF
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could yield a better estimation of the actual scale uncertainty.9
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Figure 9.15: Comparison of the scale variations plots between the dynamic
(µF,R = mWW ) and fixed scale (µF,R = mW ) of the gg -initiated contributions, for (a)
invariant mass distribution of the W-boson pair and for (b) the ∆RWW distribution

of gg -initiated SM contributions at
√

s = 13 TeV.

9cf. the scale variations performed in Ref. [71], which compares the default scale variation method
(using µR,F → ξµR,F ; ξ = {2 , 12 }) to an opposite variation (µR → ξµR ∧ µF →

1
ξ µF ).
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9.7 Shower effects

The measured observables at hadron colliders contain parton shower effects, there-
fore the fixed-order result from the previous sections are supplemented by parton
shower effects in this section.

The Herwig angular ordered parton shower [330] based on [331, 332] is used as shower
algorithm with the subtractive matching algorithm (MC@NLO-like) [172, 333]. Only
pure QCD-showering is enabled, as the effect of hadronization or full showering is
negligible for the studied observables. Therefore, the decay products of theW-boson
do not shower or hadronize and are affected only by the changed kinematic of the
shower. This allows retentions of the direct and unique reconstruction of the W-
bosons from their decay products in the analysis code without using advanced recon-
struction techniques. This procedure, which accelerates the calculation considerably,
was confirmed by initial studies with fully showered and hadronized events using
the WFinder implementation of prior Rivet versions, which were able to reconstruct
the W-bosons correctly from those final states.

For the reconstruction of jets from the parton shower and the real radiation, the
library FastJet [334, 335] is used with the anti-kT jet clustering algorithm [336]. The
radius is set to R = 0.4.
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Figure 9.16: Shower effects in the (a) ∆R and (b) p⊥ distributions of the
reconstructed W-boson pair for the sum of all partonic channels (pp+gg_) and only
in the gluon-gluon-channel (gg_) including µQ variations and optionally BSM effects

from the dimension-8 operators.
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Figure 9.17: Shower effects in the ∆Re+µ− (a) and (b) ∆φe+µ− distributions.
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Figure 9.18: Shower effects in the (a) ∆Re+ j and (b) pe
⊥ distributions.
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For the leading order calculations (these are the loop-induced ones) the built-in
MC@LO algorithm is used (instead of the DefaultLO-Shower which includes some
matrix-element corrections). This allows a fair comparison between the showered
LO and NLO results and does not disturb the chosen order.

Instead of varying the factorization and renormalization scale to quantify the uncer-
tainties, as for the fixed-order results, the hard shower scale µQ is altered by factor 2
in either direction. This estimates the effect of non-optimally modelled emissions at
large angles and missing logarithmic contributions. Alternatively, another shower
algorithm could have been chosen.

Parton shower effects are only visible in infrared-sensitive observables. Other observ-
ables, as for example the invariant mass of the W-pair mWW , are—as expected—
not affected by the shower, which gives some evidence for the correctness of the
showering procedure employed.

In Fig. 9.16, p. 104, the ∆R and p⊥ distributions of the reconstructedW-boson pair
are plotted. It can be seen that in the R-difference plot, the left side (∆R < π) of
the gg -contribution is now also filled by the additional radiation from the parton
shower and is therefore very sensitive to µQ -variation. In the combination of all
channels, the shower uncertainty is reduced, since in the mostly prevailing qq/qg
channels, real radiation contributes and therefore a NLO matching procedure is
applied, which is less sensitive to µQ -variation. In the p⊥ plot (Fig. 9.16b), it can be
seen that at large momentum, where the BSM dominates, the shower uncertainties
are large since the shower is responsible for all radiation. LO multi-jet merging or,
preferably, calculating QCD corrections to the existing gg -channel contributions
should reduce this uncertainty. Another method is to use other observables, like the
R- and φ-separation of the charged leptons shown in Fig. 9.17, p. 105. They are hardly
effected by the parton shower, but distinguish well between SM and BSM effects.

For the experimental reconstruction of the W-bosons from the final state, additional
observables are interesting. In Fig. 9.18a, p. 105, theR-separation between the positron
and the leading jet is displayed. Jets are produced by the parton shower and real-
radiation. At low separation values, the BSM effects do not change the shape, but
only increase the cross section, so that experimentally needed cuts in this region for
a lepton-jet isolation should not introduce any large bias. The R-separation is partly
affected up to 10% by variations of the parton shower scale by factor two (neglecting
effects from large MC uncertainties at low statistic), but is, in most regions, quite
stable.

In the transverse momenta distribution of charged leptons, shown in Fig. 9.18b, p. 105
for the positron, BSM effects are clearly recognizable for transverse momenta be-
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yond about 100 TeV. Here, shower effects are only secondary. The missing transverse
momentum distribution, which is also important for the reconstruction, shows com-
parable behaviour10.

9.8 Unitarity bound

At higher energies EFT breaks down, as the effect of higher dimensional operators
rises with increasing center-of-mass energy, so that unitarity may be violated. This is
especially true for the dimension-8 operators discussed here.

Using the related 2 → 2 process with stable W-bosons in the final state, a unitary
bound can be calculated and, similarly, a limit to the operator strengths ci .

As discussed in [1] (a similar calculation was performed in [337]), from the unitarity
property of the scattering matrix (i.e. ŜŜ† = 1), a limit on the partial wave expansions
of the integrated inelastic scattering amplitude T̂ (defined by Ŝ = 1 + iT̂ ) can be
derived. For the gluon initial state and the total angular momentum J = 0, this yields
for the inelastic 2 → 2 scattering amplitude T in integrated over the corresponding
phase space P S2 (similar to Eq. (B.12) in [337]):∑

λ3,λ4

∫
dP S2

���T
in���

2
≤ 8π (9.14)

with the final state helicities λ3,4.

Inserting this limit into the total cross section, which is averaged over the colours in
the initial state, summed over the helicity and colour configurations in the final state
and contains the flux factor 1

2ŝ with the partonic center-of-mass energy ŝ ,

σg gWW =
1
2ŝ

1
4

1
(N 2

c − 1)2
∑

colours

∑
λ1,λ2

∑
λ3,λ4

∫
dP S2

���T
in���

2
, (9.15)

yields the limit (with Nc = 3 and four helicity configurations in the initial state):

σg gWW ≤
π

2ŝ
(9.16)

10cf. Fig. E.5, p. 137.
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which unfortunately cannot be translated directly into a limit on the full 2 → 4
cross section that is used in this chapter, especially as it includes cuts on the decay-
products.

By projecting the full amplitude to single partial waves (usually the lowest are used, as
they contribute most), limits on the absolute values of the ci values can be obtained,
giving the strength of the dimension-8 operators.

From the 0th-partial wave, the limit for the first two operators from longitudinally
polarized W-bosons (the third operator is not contributing) is:

����
c1,2
Λ4

���� ≤
2π

m2
W ŝ

(9.17)

and from transversally polarized W-bosons (here the third operator contributes), the
even stronger limits are

����
c1,2
Λ4

���� ≤
30π

ŝ (26ŝ − 11m2
W ),

����
c3
Λ4

���� ≤
π

ŝ
3
2

√
ŝ −m2

W

. (9.18)

These can be simplified and estimated by
����

ci

Λ4
���� /
π

ŝ 2
(9.19)

for ŝ � m2
W . The value of ci = 0.1 and Λ = 1 TeV (cf. Table 9.1, p. 88) corresponds

therefore to a unitarity bound of ŝ ≈ (2.3 TeV)2.
As can be seen, the unitarity bounds found here raise doubts about effects near or
beyond few TeVs, which have been already described as probably less valid.

To avoid possible problems introduced by unitarity violation at higher energies, form
factors are used in the calculations in the next section.

9.9 Effects at 100TeV

9.9.1 Motivation

The Future Circular Collider (FCC) at CERN is planned as successor of the LHC. It is
designed for

√
s = 100 TeV which provides the collision energy used in this chapter.

The FCC opens a wide window for BSM searches and SM precision tests [338].
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Going to higher collision energies, not only the available phase space increases,
but also effects from the gluon-gluon initial channel are further enhanced at low
Bjorken-x values.

Experimental difficulties arise such as increased pile-up, higher probability of addi-
tional jets, or, especially important for this analysis, decayingW-bosons that are hard
to distinguish from other jets.

As the production rate of multiple-gauge-bosons events is high enough, the analysis
can also be extended to e.g.W +W −W +W − production (with a SM cross section of
σNLO ≈ 41 fb at 100 TeV [339]).

A full study at 100 TeV would need to include further effects like the radiation of
electroweak bosons that can be neglected at lower energies.

9.9.2 Setup

In this calculation, the setup is, however, extended to
√

s = 100 TeV only in a simple
manner. For more stable and faster calculation, the analysis cuts are directly applied
at generation level. Other adaptions to future colliders are not included. For example,
four (massless) quark flavours in the initial state are still assumed instead of switching
to a six-flavour scheme.

9.9.3 Form Factor
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Figure 9.19: The form
factor F with ΛF F = 1 TeV

and nF F = 4.

To tame the dimension-8 operators at high energies,
at which they would generate unphysical results and
dominate most observables, and to preserve unitarity,
the following dipole form factor11 is applied:

F = *
,

Λ2
F F

Λ2
F F +m2

WW

+
-

nF F

=
1(

1 + m2
WW

Λ2
F F

)nF F
(9.20)

with mWW from Eq. (9.12), p. 87, ΛF F = 1 TeV and
nF F = 4. This is plotted in Fig. 9.19. The form factor is

11In this context, the term form factor is used differently than in the context of one-loop reduction
formulae like in Chapter 7, p. 63.
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comparable to a soft cut-off of the influence of the higher-dimensional operators at
higher energy scales.

A similar form factor is used in VBFNLO [164], where it is suggested for anomalous
quartic gauge couplings. It is also applied in the case of extra dimensions [340].

Whilst using a form factor bypasses the unitarity problem, its definition introduces
some arbitrariness. This is avoided in the calculation of the previous sections per-
formed at LHC energies. Since at the higher collision energy used in this section,
most observables would be clearly dominated by the high-energy tail of the eight-
dimensional operators, the arbitrariness is accepted in favour of at least qualitatively
interpretable results.

9.9.4 Results

The results are shown in Fig. 9.20 for the gluon-gluon channel. In comparison to
the previous plots at 13 TeV, it can be seen that the form factor reduces the BSM
contributions drastically at high energies, such that other differential observables
would no longer be dominated by the high energy tail of the anomalous couplings.

Due to the form factor, the invariant mass of 650GeV, where the contributions of the
higher-dimension squared contributions (gg_Eff2) have the same magnitude as the
loop-induced SM contributions (gg_SM), is slightly shifted by about 150GeV towards
higher energies compared with the plots at 13 TeV.

Another interesting feature is that scale-variation uncertainties appear only at the
O(15%) level at low energies (in comparison to O(30%) at 13 TeV). At higher en-
ergies, uncertainties from the scale-variation are practically irrelevant (neglecting
fluctuations at very high energies due to low statistic).

The combined analysis is shown in Fig. 9.21. Similarly, the part in which BSM contribu-
tions dominate is shifted slightly towards higher energies. Compared with the results
at 13 TeV, the 100 TeV results show again a reduced dependency on the factorization
and renormalization scale.

Showered results are shown in Figs. 9.22 to 9.23, p. 112. The shower effects are similar
as at 13 TeV. Comparing the ∆RWW plots (Fig. 9.21b and Fig. 9.22a, p. 112), it can be
seen that the shower reduces the BSM effects in the ∆R ≥ π since the additional
radiation allows ∆R < π kinematic.
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9.9 Effects at 100 TeV

Herwig7+GoSam

Preliminary
gg All
gg SM
gg Eff2
gg SM+Interf
gg Eff2+Interf
gg NegInterf

10−6

10−5

10−4

10−3

Invariant mass of the WW pair (100 TeV, dynamic scale)

d
σ

/
d

m
W

W
[p

b/
G

eV
]

10 3 10 40.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

mWW [GeV]

R
at

io

(a)

Herwig7+GoSam

Preliminary

gg All
gg SM
gg Eff2
gg SM+Interf
gg Eff2+Interf
gg NegInterf

10−4

10−3

10−2

10−1

1

Separation of the two W bosons (100 TeV, dynamic scale)

d
σ

/
d

∆
R

W
W

[p
b]

0 1 2 3 4 5 6 7
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

∆RWW

R
at

io

(b)

Figure 9.20: Different contributions to the gluon-gluon channel in the (a) invariant
mass and (b) ∆R-separation of the reconstructed W-boson pair at

√
s = 100 TeV.
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Figure 9.21: (a) Invariant mass and (b) ∆R-separation of the reconstructed W-boson
pair at

√
s = 100 TeV. All contributing channels are shown.
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9 pp/g g (→W +W −)→ e+νe µ− ν̄µ with anomalous couplings
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Figure 9.22: (a) ∆R and (b) p⊥ distributions of the reconstructed W-boson pair with
parton shower effects for the sum of all partonic channels (pp+gg_) and only in the
gluon-gluon-channel (gg_) including µQ variations and optionally BSM effects from

the dimension-8 operators at
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Figure 9.23: (a) ∆Re+µ− and (b) pe
⊥ distributions with parton shower effects for
√

s = 100 TeV.
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10 Summary and Outlook

The calculation of high energy amplitudes for multi-particle processes at the LHC
with (at least) one-loop precision is of basic importance for the current and future
research in particle physics.

In this thesis, recent developments in GoSam, a framework for calculating one-loop
amplitudes in an automated way, and the tensor integral library Golem95C have been
presented.

The developments in GoSam have been used to calculate the process of W-pair
production in proton-proton collisions including the subsequent decays of theW-
bosons (pp/g g (→W +W −)→ e+νe µ− ν̄µ) at NLO QCD. Effects from the gluon-gluon
channel have been considered, which are technically NNLO contributions, since
they are loop-induced, but greatly enhanced due to the large gluon luminosity at
LHC and future proton-proton colliders. In particular, anomalous couplings from
dimension-eight operators have been studied, which introduce a tree-level coupling
between gluons and electroweak bosons.

As this process is an important background for Higgs boson measurements and al-
lows to study the electroweak sector, precise predictions are needed. The anomalous
couplings employed describe contributions from unknown Physics Beyond the Stan-
dard Model (BSM) in a generic way. Effects, such as destructive interferences, are
analyzed, which make it more difficult to give strong limits on the strength of the
applied BSM operators. The setup used can be easily extended to other decay chan-
nels, and similar processes, such as Z Z /Z γ production that would also be affected
by dimension-eight operators, which result from the same effective Lagrangian.

The extensions developed and the new features in GoSam, which were released in its
2.0 version and subsequent point releases, allow multiple future applications within
the Standard Model (SM) and, especially, beyond. With all the various improve-
ments discussed, a faster and more reliable calculation with GoSam is possible. The
improved and simplified user interface broadens its application possibilities.

One of the main new features of GoSam 2.0 is the support of the Binoth Les Houches
Accord 2 (BLHA2) [8], which has been integrated and helps to bundle or integrate
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10 Summary and Outlook

GoSam in other programs, especially Monte-Carlo event generators. Via the BLHA2
interface, GoSam can now provide matrix elements for all parts of an NLO calcula-
tion and even in extended applications like multi-jet merging calculations or mixed
QCD-electroweak-calculations in an automated way. The interface allows various
parameters to be set at runtime. A simplification is the automatic choice of the
electroweak scheme if the built-in SM model files are used.

The extension of the tensor integral library Golem95C to higher ranks, mainly rank-6
five-point integrals (pentagons) and rank-7 six-point integrals (hexagons), broadens
its applicability to loop calculations with effective field theories or spin-2 particles.

These developments discussed in this thesis can help to calculate theoretical predic-
tions in the future of high energy physics. With the upgrade of the LHC to higher
luminosity, called HL-LHC, in the coming years (cf. Fig. 10.1), the goal will be to
reach 3000 fb−1 integrated luminosity. With this high luminosity, processes, which
are currently inaccessible due to large statistical uncertainties, will become accessi-
ble. In addition, it provides multiple opportunities for achieving signatures of new
physics.

Figure 10.1: Plans for the higher luminosity upgrade plans of the LHC towards
HL-LHC [341].

Beside the HL-LHC upgrade, there are several other plans and ideas for future collid-
ers:

The Future Circular Collider (FCC) at CERN is a study for a new circular hadron
collider and is destinated for a center-of-mass energy of

√
s = 100 TeV. In this thesis,

the calculation of pp/g g (→W +W −)→ e+νe µ− ν̄µ has been extended to this high
center-of-mass energy. A form factor has been applied that reduces the growth of the
dimension-8 operators at high energies, which circumvents unitarity problems.
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China’s Circular Electron-Positron Collider (CEPC) is planned to be a circular lepton-
collider and will, if it could be realized, therefore be a successor of the Large Electron-
Positron Collider (LEP). Due to synchrotron radiation and the associated energy
loss on circular colliders, the maximum achievable collision energy is limited for
such circular lepton-colliders. The CEPC is, however, intended to be retrofitted
subsequently to a hadron collider.

The future International Linear Collider (ILC) or Compact Linear Collider (CLIC)
for electron-positron collisions avoid the synchrotron radiation problem. These
colliders would be especially helpful for precision studies due to their clean signal
and possibility for threshold scans of, e.g., top quark pair production to measure the
top mass.

For hadron-lepton colliders, there are also plans to combine the circular and linear
approach as in e p/µp-FCC studies.

These possible further colliders will allow further precision measurements on the
Higgs boson discovered recently and possibly even on new, as yet unknown, physics
Beyond the Standard Model. In all cases, they will either find new physics or push
further the exclusion limits for various possible BSM models.

Regarding the automation of higher order corrections, a continuous development
effort will be needed to keep up with precision measurements by the experiments.
Whereas computing power will increase further, this in itself will not be sufficient to
satisfy all needs. Already tested approaches, such as massive parallelization, GPU-
computing, etc., might play a more important role.

In particular, future hadron colliders will be accompanied by an increased demand
for prediction with higher multiplicity, i.e. more jets in the final state. Electro-weak
corrections and corrections beyond NLO will also be more important, in particular if
higher precision is needed. These requirements for future calculations imply not only
a large rise in combinatorial effects, for example in the involved Feynman diagrams,
which result in bigger code sizes and longer runtimes, but bring also conceptual
challenges, for example how the different contributions can be combined correctly.

The request for general, fully automated, user-friendly tools, which can be used
by non-experts, is in tension with the further specialization required to solve the
different up-coming challenges.

These problemsmay be solved by creating even larger collaborations and networks, or
by defining and improving interfaces between the various libraries and tools involved,
such as the BLHA2 interface discussed in this thesis that results in modular design
concepts.
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A Analytic reduction formulae for rank-6
pentagons

The reduction formula for rank-6 pentagon (Eq. (7.31), p. 70) can be transformed into
form factors (cf. Eq. (7.8), p. 65). They can be written for D = 4 − 2ε dimensions as
follows:

A5,6
a1, ...,a6(S) = (−1 −D) ·

(
fA56(a3, a4, a5, a6, a1, a2) + fA56(a2, a4, a5, a6, a1, a3) + fA56(a2, a3, a5, a6, a1, a4)
fA56(a2, a3, a4, a6, a1, a5) + fA56(a2, a3, a4, a5, a1, a6) + fA56(a1, a4, a5, a6, a2, a3)
fA56(a1, a3, a5, a6, a2, a4) + fA56(a1, a3, a4, a6, a2, a5) + fA56(a1, a3, a4, a5, a2, a6)
fA56(a1, a2, a5, a6, a3, a4) + fA56(a1, a2, a4, a6, a3, a5) + fA56(a1, a2, a4, a5, a3, a6)
fA56(a1, a2, a3, a6, a4, a5) + fA56(a1, a2, a3, a5, a4, a6) + fA56(a1, a2, a3, a4, a5, a6)

)
+

1
6
(

gA56(a2, a3, a4, a5, a6, a1) + gA56(a1, a3, a4, a5, a6, a2)
+ gA56(a1, a2, a4, a5, a6, a3) + gA56(a1, a2, a3, a5, a6, a4)
+ gA56(a1, a2, a3, a4, a6, a5) + gA56(a1, a2, a3, a4, a5, a6)

)
(A.1)

with

fA56(a1, . . . , a6) =
1
15

∑
j∈S

(
b jS

−1
a5a6 −

1
2ba5S

−1
a6 j −

1
2ba6S

−1
a5 j

)
I D+2,4
4 (a1, . . . , a4;S \{j })

(A.2)
gA56(a1, . . . , a6) =

∑
j∈S

S−1j a6I D,5
4 (a1, . . . , a5;S \{j }). (A.3)

The modified Cayley matrix S is defined in Eq. (7.5), p. 64, bi (S) =
∑

k∈S S
−1
ki . It is as-

sumed here that the four-point integrals I D+2,4
4 and I D,5

4 are already fully symmetrized,
therefore in Eq. (A.1), fA56 needs only be symmetrized over its last two parameters
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and gA56 over its last parameter1.

The form factor B5,4 for the rank-6 pentagon belonging to one power of g µν is

B5,4
a1, ...,a4(S) =(−1 −D) ·

(�∑
j∈S

1
30b j I D,4

4 (a1, . . . , a4;S \{j })�

+ fB54(a3, a4, a1, a2) + fB54(a2, a4, a1, a3) + fB54(a2, a3, a1, a4)
+ fB54(a1, a4, a2, a3) + fB54(a1, a3, a2, a4) + fB54(a1, a2, a3, a4)

)
+

1
6
(

gB54(a2, a3, a4, a1) + gB54(a1, a3, a4, a2)

+ gB54(a1, a2, a4, a3) + gB54(a1, a2, a3, a4)
)

−
1

60B

(
hB54(a3, a4, a1, a2) + hB54(a2, a4, a1, a3) + hB54(a2, a3, a1, a4)

+ hB54(a1, a4, a2, a3) + hB54(a1, a3, a2, a4) + hB54(a1, a2, a3, a4)
)
(A.4)

with

fB54(a1, . . . , a4) =
∑
j∈S

−
1
30

(
b jS

−1
a3a4 + ba3S

−1
a4 j + ba4S

−1
a3 j

)
I D+4
4 (a1, a2;S \{j }) (A.5)

gB54(a1, . . . , a4) = −
1
2
∑
j∈S

S−1a4 j I D+2,3
4 (a1, a2, a3;S \{j }) (A.6)

hB54(a1, . . . , a4) =
∑
j∈S

(
b jS

−1
a1a2ba4 −

1
2ba1S

−1
j a2ba4 −

1
2ba2S

−1
j a1ba4

)
I D+4, 1
4 (a3;S \{j })

+

(
b jS

−1
a1a2ba3 −

1
2ba1S

−1
j a2ba3 −

1
2ba2S

−1
j a1ba3

)
I D+4, 1
4 (a4;S \{j }).

(A.7)

1The order of the first four or five parameters respectively is therefore arbitrary.
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The form factor belonging to two powers of g µν can be written as

C 5,2
a1,a2(S) =(−1 −D)

(∑
j∈S

−
1
30b j I D+4,2

4 (a1, a2;S \{j })

+
1
60

(
b jS

−1
a1a2 −

1
2ba1S

−1
a2 j −

1
2ba2S

−1
a1 j

)
I D+6
4 (S \{j })

)
−

1
24

∑
j∈S

(
S−1j a1I

D+4, 1
4 (a2, S \{j }) + S−1j a2I D+4, 1

4 (a1, S \{j })
)

−
1
120

∑
j∈S

(
b j ba1I

D+4, 1
4 (a2, S \{j }) + b j ba2I D+4, 1

4 (a1, S \{j })
)

(A.8)

and finally for three powers of g µν,

D5,0(S) = (−1 −D)
40

∑
j∈S

b j I D+6
4 (S \{j }). (A.9)
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B Feynman rules for the effective
g gW W vertices

The dimensional-8 operators described in Eqs. (9.1) to (9.3) of Section 9.2, p. 84 intro-
duce new vertices mediating between gluons and electroweak vector bosons. For the
new g gWW vertices, which are analyzed in Chapter 9, p. 81, the Feynman rules are
listed below where all momenta are assumed to be incoming.

pµ1

pν2

pρ3

pσ4

a

b

W+

W−

O1 : 16i c1
Λ4 δ

a,b
(
pν
1 p µ

2 − g µνp1 · p2
) (

pσ
3 p ρ

4 − g ρσp3 · p4
)

O2 : 16i c2
Λ4 δ

a,b εµνp1p2
(
p ρ
4 pσ

3 − g ρσp3 · p4
)

O3 : 16i c3
Λ4 δ

a,b ε ρσp3p4
(
pν
1 p µ

2 − g µνp1 · p2
)
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C Feynman diagrams

The Feynman diagrams for the process pp/g g (→W +W −)→ e+νe µ− ν̄µ , which is
calculated in Chapter 9, p. 81, are listed in this chapter.

C.1 Gluon-gluon loop-induced diagrams
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C Feynman diagrams

g
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C.2 Quark-antiquark channel

For reasons of brevity, only the Feynman diagrams of the uū initial state are listed in
the following. Diagrams for the other considered quark-antiquark initial states (dd̄ ,
s s̄ , cc̄ and crossings) are analogue. Real-emission diagrams are not shown.
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C.2 Quark-antiquark channel

C.2.1 Leading order (Born level) diagrams
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C Feynman diagrams

C.2.2 Next-to-leading order diagrams with virtual contributions
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C.2 Quark-antiquark channel
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D Input files

In this appendix chapter, input files for the process g g → e+νe µ− ν̄µ of the calculation
in Chapter 9, p. 81 are listed.

Listing D.1: BLHA2 order file for the gg calculation including the dim-8 term and
interference terms.

# OLP order file created by Herwig++/Matchbox for GoSam.

InterfaceVersion BLHA2
MatrixElementSquareType CHsummed
CorrectionType QCD
IRregularisation CDR
MassiveParticles 5 6

AlphasPower 0
AmplitudeType LoopInduced
21 21 -> -14 -11 12 13

AlphasPower 0
AmplitudeType LIEffInterference
21 21 -> -14 -11 12 13

AlphasPower 0
AmplitudeType Tree
21 21 -> -14 -11 12 13

Listing D.2: condensed GoSam input file for the gg calculation
model=FeynRules,./SM_Eff8_UFO/
model.options=c1:0.1,c2:0.1,c3:0.1
qgraf.verbatim=true=bridge[anti11,part11,part13,anti13,\n\
part15,anti15,part12,anti12,part14,anti14,part16,anti16,\n\
part22,part23,0,0];

qgraf.verbatim.nlo=true=vsum[NP,0,0];
extensions=autotools
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D Input files

filter.nlo=lambda d: not (d.loopsize()==3 and d.chord([part1,part2,
part3,part4,anti1,anti2,anti3,anti4])==3)

symmetries=family,generation
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E Further plots

In this appendix chapter, complementary distributions of the calculation to pp/g g
(→W +W −)→ e+νe µ− ν̄µ in Chapter 9, p. 81 are shown. The plots are referenced at
the relevant positions in Section 9.6, p. 90 and Section 9.7, p. 104.
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