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Abstract

The so-called Cosmic Censorship Conjecture has drawn widespread attention amongst

astrophysicists and particle physicists. In particular, the end-state of gravitational col-

lapse of a bounded matter distribution is a source of much debate with the discovery

of naked singularities resulting from the continued gravitational collapse of reasonable

matter distributions. One of the first attempts at investigating the final outcome of

gravitational collapse of a stellar object was undertaken by Oppenheimer and Snyder

in 1939. Their model was highly idealised and focussed on a dust sphere contracting

under its own gravity. With the discovery of the Vaidya solution, it became possible

to model stars emitting energy to the exterior spacetime. In this dissipative model,

the exterior spacetime is nonempty and the collapsing stellar body is enveloped by a

zone of null radiation. The smooth matching of the interior spacetime to the Vaidya

exterior was achieved by Santos in 1985. It was then possible to model radiating stars

undergoing gravitational collapse. The energy momentum tensor for the interior stel-

lar fluid was modelled on more realistic physics and was extended to include heat flux,

neutrino transport, shear, pressure anisotropy, bulk viscosity and the electromagnetic

field. It has been shown that the collapse of reasonable matter distributions always lead

to the formation of a black hole in the absence of shear or in the case of homogeneous

densities.

In this study we investigate a radiating stellar model proposed by Banerjee et al
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(BCD model) in which the horizon is never encountered. The interior matter distribu-

tion is that of an imperfect fluid with heat flux and the exterior spacetime is described

by the radiating Vaidya metric. Our approach is more general than the one proposed

by Banerjee et al as they fix the gravitational potentials for the interior line element

by making ad-hoc assumptions. A consequence of their model is that it undergoes

horizon–free collapse. We start off with the fact that the horizon never forms through-

out the collapse process. This restricts the gravitational behaviour of the model. We

utilise the boundary condition to determine the temporal evolution of the model. As

a result, we obtain new collapsing models in which the horizon never forms.

In order to investigate the physical viability of our generalised BCD model we

analyse the luminosity profile and the temperature profiles within the framework of

extended irreversible thermodynamics. We highlight interesting physical features of

our results.
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Chapter 1

Introduction

In the late 1930s, Oppenheimer and Snyder developed a model to study the continued

gravitational collapse of a star (Oppenheimer and Snyder 1939). They were able to

show that for a large star the continued contraction leads to the formation of an

event horizon such that no material particles or photons can escape to an external

observer. The Oppenheimer-Snyder (OS) model was highly idealised in the sense that

they considered a dust sphere collapsing under its own gravity. There was a need to

generalise the OS model to include more realistic matter distributions. Observations

indicate that gravitational collapse is a highly dissipative process, particularly in the

latter stages where energy is carried away from the stellar core via neutrinos and

photons. This would then mean that the exterior spacetime of a radiating collapsing

star would be nonempty.

Vaidya (1951, 1953) derived the solution that describes the exterior spacetime of

a radiating, spherically symmetric mass distribution emitting energy in the form of

null radiation. It then became possible to model dissipative collapse in which the heat
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generated within the stellar core is transported to the exterior spacetime across the

boundary of the star. The Vaidya solution was interpreted as an atmosphere composed

of a null fluid enveloping the collapsing core. In this collapse scenario, the interior

spacetime must be matched to the exterior Vaidya solution to ensure continuity of the

gravitational potentials and the radiation flux.

Santos (1985), derived a set of junction conditions for a spherically symmetric

radiating star which allowed for the smooth matching of a spherically symmetric line

element to the outgoing Vaidya solution across a time-like hypersurface. This paved the

way for researchers to model radiating stars where energy loss was due to a radial heat

flux from the central regions of the star to the exterior spacetime. Since the presentation

of the junction conditions by Santos there has been a proliferation of models of radiative

collapse in which the core included bulk viscosity, shear, electromagnetic field, neutrino

generation, pressure anisotropy and the cosmological constant (Maharaj et al 2013;

Sharma and Das 2013). A number of gravitational collapse models, which assume

different forms of the stress-energy-momentum tensor, have been studied (Bonnor et

al 1989; Herrera and Santos 1997a; Naidu et al 2006). These gravitational collapse

studies have revealed that the presence of the shearing effects delays the formation of

the apparent horizon. This occurs by making the final stages of collapse incoherent

which leads to the formation of the naked singularity (Joshi et al 2002). In the ongoing

study of gravitational collapse of massive stars mathematical support for the existence

of naked singularities has been shown (Harada et al 1998; Kudoh et al 2000; Singh et

al 1996; Dwivedi and Joshi 1997; Herrera et al 1997).
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Ori and Piran (1990) modelled a self-similar gravitationally collapsing object whose

stress-energy-momentum tensor obeyed the principles of perfect fluid motion. Their

work showed that the evolution of such a gravitationally collapsing body leads to the

formation of a curvature singularity. The imposed self-similarity assumption was shown

to have a great effect in reducing the Einstein field equations to a rather simple form of

ordinary differential equations (which are solved numerically) along with the equations

for radial and non-radial null geodesics (Singh et al 1999). Joshi and Dwivedi (1992)

further developed the Ori and Piran model. They derived the Einstein field equations

for the collapsing self-similar perfect fluid object and reduced the geodesic equation

in the neighborhood of the singularity to an algebraic equation. In their calculations

it appeared that even massive stars do form naked singularities during the collapse

process (Singh et al 1999).

With a huge body of literature which continues to grow on a daily basis the Cos-

mic Censorship Conjecture is still not proved or disproved. This has led researchers

to believe that the final outcome of gravitational collapse can only be adequately de-

scribed by quantum gravity or modified gravity theories such as f(R) gravity (f(R)

comes from the modification of general relativity by abandoning the simplicity as-

sumption that the action should be linear in the scalar curvature R. This model uses a

more general assumption which depends on a generic function f(R) (Sotiriou 2006)),

Einstein-Gauss-Bonnet gravity, Lovelock gravity, Brane-world scenarios, etc. Briefly,

the f(R) gravity theory is divided into three parts, viz, metric formalism, Palatini

formalism, and metric-affine formalism. The interesting characteristic about these
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modified gravity theories is that they allow more dimensions. In particular, the field

equations of f(R) gravity theories admit a larger variety of solutions than Einstein’s

theory of gravity (Capozziello et al 2010). These facts make such gravity theories more

appealing in the context of gravitation. Much work has been done in these gravitation

models and in recent years there has been a renewed interest in the study of gravity

theories of higher dimensions (Ghosh and Deshkar (2008)). However, even though sev-

eral models of f(R) gravity in the Palatini formalism have been studied, most interest

was concentrated on those having terms inversely proportional to the scalar curvature

(Sotiriou 2006). Moreover, even though such gravity theories seem to be capable of

giving more gravity explanations they are unfortunately not free of problems. First of

all they lead to fourth-order differential equations which are difficult to solve. Addi-

tionally, it is doubtful whether they can pass the known solar system tests or any other

observational tests and whether they have the correct Newtonian limit (Sotiriou 2006).

Furthermore, the definition of the matter content in higher order gravitational mod-

els gives instabilities which raises doubt about the physical viability of these models

(Sotiriou 2006).

In classical general relativity researchers have attempted to incorporate more gen-

eral matter distributions so that the initial conditions, at the onset of collapse, are

more realistic. In recent gravitational collapse studies different authors have showed

that the Einstein field equations which result from the collapse model whose matter

content only possess tangential pressure are simpler than those obtained in the matter

content which include radial pressure (Magli 1997; Singh and Witten 1997; Barve et
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al 1999). In this regard, only tangential pressure fluid models in the gravitational col-

lapse studies seem to give pathways to studying the stability of dust naked singularities

against the introduction of pressure (Singh et al 1999).

The existence of naked singularities has been shown many times by different au-

thors. Banerjee et al (2002), proposed a new model (BCD model) to study gravitational

collapse of stars. In their study, the interior of the collapsing sphere is uniformly filled

with a heat conducting perfect fluid. The sphere radiates energy in the form of radial

heat flux from the beginning of the collapse. Due to dissipation of energy the exterior

spacetime is represented by the Vaidya metric. The junction conditions are used to

match the interior with the exterior metric throughout the boundary. The most inter-

esting feature of this model is that the rate of mass loss is balanced by the fall of the

boundary radius. Hence the horizon never forms and the collapse results in a naked

singularity. We will analyse this scenario in greater detail later.

This thesis is organised as follows:

• In Chapter 2 we provide a more detailed discussion on the geometry of curved

surfaces which is used as the most important tool in general relativity. We only

cover those aspects of differential geometry which are helpful for the completion

of this research.

• In Chapter 3 the Einstein field equations for the interior of the collapsing star are

presented. The Vaidya solution which describes the exterior gravitational field

of our collapsing star is also presented here. We also state the main junction

conditions required for the smooth matching of the interior spacetime to the
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Vaidya solution.

• In Chapter 4 we highlight the main elements of extended irreversible thermody-

namics that will be utilised in studying the temperature profiles of our radiating

stellar models. We also review the energy conditions.

• In Chapter 5 we review horizon-free collapse and give a brief but more clarifying

discussion on the BCD model of the gravitational collapse of stars. We further

attempt to generalise the BCD model by assuming at the very onset of collapse

that the horizon will not be encountered throughout the collapse process. A

detailed physical analysis of our results is provided here. These include the

investigation of luminosity, redshift, and temperature profiles of the collapsing

star.

• In Chapter 6 we give an overall conclusion of our work and highlight the impor-

tance of pursuing this study further.
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Chapter 2

Preliminaries

2.1 Introduction

In 1916, Albert Einstein (1879 – 1955) published a well appreciated theory in physics

referred to as the general theory of relativity (Einstein 1916). This generalised his

special theory of relativity published in 1905 (Einstein 1905). Unlike classical physics,

general relativity recognises time as the fourth relative coordinate. This realization

gave birth to the four dimensional coordinate system. The Einstein field equations

presented in general relativity reveal a strong connection between matter and the ge-

ometry of spacetime. After Euclid’s Geometry, Riemann developed the geometry of

curved surfaces which served as one of the most important bases in the development of

general relativity. With differential geometry, tensor calculus, and physics Einstein de-

veloped a set of equations which give a strong connection between matter (this includes

gravitation) and spacetime. These equations are very important in the study of grav-

itational collapse of stars as they give a full understanding of gravitational strength,

curvature changes, and the rate of energy changes as the star undergoes dissipative
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gravitational collapse. In this chapter we give a clarifying overview on these aspects

which forms a working basis for our study. In §2.2 we provide an overview of the dif-

ferential geometry which forms the basis for describing curved spacetimes. We present

the Christoffel symbols and their link to the Riemannian curvature tensor, Ricci tensor

and finally the construction of the Einstein tensor. We also show how to use these ele-

ments in combination with the stress-energy-momentum tensor to derive the Einstein

field equations.

2.2 Differential Geometry

To understand the geometry of spacetime, either curved or flat, one needs to understand

the distance between any two neighbouring points in that spacetime. In flat space the

distance between neighbouring points is given by the following formula

ds2 = dx2 + dy2.

For any arbitrary coordinate system where the curvature is nonzero, the distance be-

tween these two points is given by

ds2 = gabdx
adxb, (2.2.1)

where gab is the field metric function known as the metric tensor. In general relativity

every vector is accompanied by a basis vector. Therefore the covariant derivative of any

vector includes an additional term which gives the derivative of the corresponding basis

vector. Christoffel derived a single field function referred to as a Christoffel symbol

completely defined in terms of the metric field function and its derivatives (Schutz
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1985). The Christoffel symbols are used instead of directly finding the change of a

basis vector. The general form of the Christoffel symbols are as follows

Γa
bc =

1

2
gda(gbd,c − gbc,d + gcd,b), (2.2.2)

where the indices read as follows: a gives the components of the resulting vector, b gives

the basis vector to be differentiated, and c is the coordinate with respect to which b is

being differentiated. The Christoffel symbols are very useful in the context of general

relativity as they are also used to define many important functions.

General Relativity dwells in curved spacetime. The degree of curvature, given by

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc, (2.2.3)

is called the Riemann curvature tensor. It is defined in terms of the first and second

derivatives of the field metric tensor encapsulated by the Christoffel symbols. The

Riemann tensor vanishes in a flat spacetime (Ra
bcd = 0) and in local frames. The

contraction of the Riemann tensor on the first and third indices gives the Ricci tensor

Rab = Γd
ab,d − Γd

ad,b + Γd
edΓ

e
ab − Γd

ebΓ
e
ad. (2.2.4)

A further contraction yields the Ricci scalar

R = Γd
aa,d − Γd

ad,a + Γd
edΓ

e
aa − Γd

eaΓ
e
ad. (2.2.5)

The Einstein field equations use the stress-energy-momentum tensor

Tab = (µ+ p⊥)uaub + p⊥gab + (pr − p⊥)xaxb + qaub + qbua (2.2.6)

where µ is the energy density, pr and p⊥ are the radial and tangential pressure, re-

spectively, qa is the heat flow vector, xa is a unit spacelike 4-vector along the radial

direction and u is the fluid four-velocity to represent matter.
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The General Theory of Relativity is basically the study of the distribution and

behaviour of physical quantities in the spacetime manifold. This theory actually takes

over from Newtonian physics and tries to explain the physics of intermediate celestial

dimensions.

In Newtonian Physics,

∇2φ = 4πGρ (2.2.7)

is the equation governing the gravitational potential. In (2.2.7), φ gives the gravita-

tional potential, G is the gravitational constant and ρ is the energy density. To find

Einstein’s field equations one can simply perform contractions on the Riemann ten-

sor and Ricci tensor until the twice contracted Bianchi identities are reached. Simple

manipulations of these identities yield the Einstein tensor. Another way to find the

Einstein tensor is by writing

Rab = κTab

prompted by (2.2.7). As we shall show, this prescription does not work, and needs to

be modified. In this equation κ is a scaling constant (established to equal 8π). For this

expression to generate conservation laws, it is required that

Rab;c = κTab;c = 0.

However, it turns out that Rab;c 6= 0 but rather is given by

Rab;c =
1

2
gabR,c.

Given that the covariant derivative of a scalar is the same as its partial derivative and
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the divergence of the metric tensor is zero, we can rewrite this expression as

Rab;c =

(

1

2
gabR

)

;c

. (2.2.8)

Grouping terms on the left hand side and letting

Gab = Rab −
1

2
gabR (2.2.9)

(2.2.8) becomes

(Gab);b = 0. (2.2.10)

Therefore with Gab and Tab conservation laws could be satisfied. This triumph of

discovering Gab marked the birth of the Einstein field equations given as

Gab = κTab, (2.2.11)

where Gab is the Einstein tensor and κ is a coupling constant.

In physics, constants only refine calculations and do not bring about any change in

the behaviour of the physical elements. As a result, for simplicity we set κ = 1 without

any loss of generality.
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Chapter 3

Radiating Stars

3.1 Introduction

In studying the models of gravitational collapse of stars, astrophysicists and general

relativists had difficulties in finding a way to connect the interior and exterior spacetime

of a collapsing sphere. Further, even if there was a way to connect these geometries

they also did not have a good exterior spacetime metric to model the exterior of a ra-

diating gravitational body. The exterior spacetime metric was found by Vaidya (1951)

while Santos (1985) obtained a set of junction conditions which ensures a smooth con-

nection between the interior and exterior spacetime of a gravitationally collapsing dust

body. With these discoveries it became possible for scientists to model gravitationally

collapsing spherical bodies which emit energy in the form of heat and other forms of

radiation. However, even with these solutions the study of collapse models involving

vorticity effects is still underdeveloped. In §3.2 we show how Vaidya derived a mathe-

matical equation which represents the atmosphere of a spherically symmetric collapsing

object using the Schwarzschild exterior solution. We then use the Vaidya solution to
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represent the exterior spacetime of a gravitationally collapsing spherically symmetric

object dissipating energy in the form of a radial heat flux. As we did with the inte-

rior spacetime metric in Chapter 2, we also determine the values of the Ricci scalar,

Einstein tensor, etc. and derive the exterior field equations. In §3.3 we give a general

overview of shear-free junction conditions.

3.2 Spherical Symmetry

The interior spacetime for our collapsing body is described by the spherically symmet-

ric, shear-free line element in comoving isotropic coordinates:

ds2 = −A2dt2 +B2[dr2 + r2(dθ2 + sin2 θdφ2)], (3.2.1)

where A = A(r, t) and B = B(r, t) are the metric functions yet to be determined. The

line element (3.2.1) obeys quadratic function laws and so can be written as

gab =



















−A2 0 0 0

0 B2 0 0

0 0 B2r2 0

0 0 0 B2r2 sin2 θ



















. (3.2.2)

Since this is a diagonal metric, its inverse is simply

gab = diag

(

1

−A2
,

1

B2
,

1

B2r2
,

1

B2r2 sin2 θ

)

. (3.2.3)
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Using (2.2.2) we obtain the following non-zero Christoffel symbols

Γ0
00 =

At

A
Γ0
01 =

Ar

A

Γ0
11 =

BBt

A2
Γ0
22 =

r2BBt

A2

Γ0
33 =

r2BBt sin
2 θ

A2
Γ1
00 =

AAr

B2

Γ1
10 =

Bt

B
Γ1
11 =

Br

B

Γ1
33 = −r sin2 θ

(

rBr

B
+ 1

)

Γ1
22 = −r

(

rBr

B
+ 1

)

Γ2
33 = − sin θ cos θ Γ2

20 =
Bt

B

Γ2
21 =

Br

B
+

1

r
Γ3
30 =

Bt

B

Γ3
31 =

Br

B
+

1

r
Γ3
32 = cot θ

for the line element (3.2.1).

Using (2.2.4), we obtain the corresponding non-zero components of the Ricci tensor

14



R00 =
AArBr

B3
+

3AtBt

AB
+

2AAr

rB2
−

3Btt

B
+

AArr

B2
(3.2.4a)

R01 =
2ArBt

AB
+

2BrBt

B2
−

2Btr

B
(3.2.4b)

R11 =
BBtt

A2
−

AtBtB

A3
−

Arr

A
−

2Brr

B
+ 2

(

Bt

A

)2

+
ArBr

AB

+ 2

(

Br

B

)2

−
2Br

rB
(3.2.4c)

R22 =
r2BBtt

A2
+ 2r2

(

Bt

A

)2

−
r2Brr

B
−

r2AtBtB

A3
−

3rBr

B

−
r2ArBr

AB
−

rAr

A
(3.2.4d)

Then, (3.2.3) together with (3.2.4), give the Ricci scalar as

R =
−2Arr

AB2
−
6AtBt

A3B
+
6Btt

A2B
−

4Ar

rAB2
+6

(

Bt

AB

)2

−
8Br

rB3
+
2B2

r

B4
−
4Brr

B3
−
2ArBr

AB3
. (3.2.5)

Since the Einstein tensor shares exactly the same indices as the Ricci and metric tensor,

the number of non-vanishing components of the Einstein tensor is equal to the number
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of non-vanishing components of the Ricci tensor. These components are given by

G00 =
3B2

t

B2
+

A2

B2

(

B2
r

B2
−

4Br

rB
−

2Brr

B

)

(3.2.6a)

G01 =
2ArBt

AB
+

2BrBt

B2
−

2Btr

B
(3.2.6b)

G11 = −
B2

t

A2
+

2ArBr

AB
+

2Br

rB
+

2AtBtB

A3
−

2BBtt

A2

+
B2

r

B2
+

2Ar

rA
(3.2.6c)

G22 = −
2r2BBtt

A2
+

2r2AtBtB

A3
−

r2B2
t

A2
+

rAr

A
+

rBr

B

+
r2Brr

B
+

r2Arr

A
−

(

rBr

B

)2

(3.2.6d)

Using (2.2.6), (2.2.11), (3.2.6) and the following conditions

ua =
1

A
δa0 (3.2.7a)

qa = (0, q, 0, 0) (3.2.7b)

qau
a = 0 (3.2.7c)

uaua = −1, (3.2.7d)
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where δa0 is the Kronecker delta, qa is the radial heat flux, and ua is a timelike 4-vector,

the Einstein field equations are easily obtained to be

µ =
3B2

t

A2B2
+

1

B2

(

B2
r

B2
−

4Br

rB
−

2Brr

B

)

(3.2.8a)

pr =
2ArBr

AB3
−

B2
t

A2B2
+

2Br

rB3
+

2AtBt

A3B
−

2Btt

A2B
+

B2
r

B4
+

2Ar

rAB2
(3.2.8b)

p⊥ =
2AtBt

A3B
−

2Btt

A2B
−

B2
t

A2B2
+

Ar

rAB2
+

Br

rB3
+

Brr

B3
+

Arr

AB2
−

B2
r

B4
(3.2.8c)

q =
1

AB3

(

2Btr −
2ArBt

A
−

2BrBt

B

)

(3.2.8d)

By equating the radial and tangential pressure components, one obtain the following

isotropic pressure condition

Arr

A
+

Brr

B
=

2ArBr

AB
+

Br

rB
+

2B2
r

B2
+

Ar

rA
(3.2.9)

It is remarkable that this equation has no explicit temporal dependence. The forms

of the interior field equations which obey the condition of pressure isotropy will be

determined in chapter 5 and further discussions will be undertaken in chapter 5 and

chapter 6.

3.3 The Exterior Vaidya Spacetime

The Vaidya solution is derived from the Schwarzschild static solution

ds2 = −

(

1−
2M

r̄

)

dt2 +

(

1−
2M

r̄

)−1

dr̄2 + r̄2dΩ2, (3.3.1)
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where dΩ2 = dθ2 + sin2 θdφ2, M is a constant, and r̄ is the radial coordinate. In this

thesis we study the gravitational collapse with outgoing radiation. The exterior Vaidya

spacetime for outgoing radiation is derived using the following coordinate transforma-

tion:

t = v + r̄ + 2M ln
( r̄

2M
− 1
)

(3.3.2)

where v denotes the retarded time. Differentiating (3.3.2) with respect to r̄ gives

dt = dv +

(

1−
2M

r̄

)−1

dr̄. (3.3.3)

Substituting (3.3.3) in (3.3.1) with some manipulations one obtains the exterior Vaidya

metric

ds2 = −

(

1−
2m

r̄

)

dv2 − 2dvdr̄ + r̄2dΩ2, (3.3.4)

where m = m(v) is the mass function of the collapsing star. In metric notation (3.3.4)

takes the form

gab =



















−
(

1− 2m
r̄

)

− 1 0 0

− 1 0 0 0

0 0 r̄2 0

0 0 0 r̄2 sin2 θ



















(3.3.5)

with inverse

gab =



















0 − 1 0 0

−1
(

1− 2m
r̄

)

0 0

0 0 1
r̄2

0

0 0 0 1
r̄2 sin2 θ



















(3.3.6)
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The corresponding non-vanishing Christoffel symbols are

Γ0
00 = −

m

r̄2
Γ0
22 = r̄

Γ0
33 = r̄ sin2 θ Γ1

00 = −
1

r̄

dm

dv
+

m

r̄3
(r̄ − 2m)

Γ1
22 = 2m− r̄ Γ1

01 =
m

r̄2

Γ1
33 = (2m− r̄)sin2θ Γ2

33 = − cos θ sin θ

Γ2
12 =

1

r̄
Γ3
23 = cot θ

Γ3
13 =

1

r̄

The corresponding Ricci tensor for this metric has only one non-vanishing component

R00 = −
2

r̄2
dm

dv
(3.3.7)

and due to g00R00 = 0 the Ricci scalar vanishes.

Since there is only one Ricci tensor component with R = 0, there is only one non-zero

component of the Einstein tensor,

G00 = −
2

r̄2
dm

dv
,

where in general this is written as

Gab = −
2

r̄2
dm

dv
δ0aδ

0
b . (3.3.8)
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Since only one component (G00) is non-zero and g00 = 0, the field equations will only

give the energy density of the emitted radiation

E = −
2

r̄2
dm

dv
. (3.3.9)

Due to energy laws (3.3.9) is a valid equation only if dm
dv

≤ 0 throughout the collapse

period. This restriction in the change of mass supports the loss of star’s energy from

the beginning to the end of the collapse. We will discuss this further in chapters five

and six.

3.4 Summary of Junction Conditions

In general relativity matter has a great effect on the geometry of spacetime. When

studying the models of gravitational collapse this geometry-matter connection is always

considered. This is due to the fact that, in every collapse model, the interior distribu-

tion of matter can never be the same as the matter content on the other side of the

star’s surface. As a result the interior and exterior spacetimes are always considered

as two distinct regions separated by a three dimensional hypersurface.

The interior spacetime gives the interior geometry of the collapsing cloud while the

exterior spacetime gives the corresponding geometry for the outer atmospheres. Both

interior and exterior spacetime manifolds vary depending on the physical conditions

assumed in the collapsing cloud model. For the case of the present study, the assumed

spherically symmetric heat conducting dust-ball of uniform distribution of matter is

non-rotating and shear-free. Hence the interior spacetime manifold is given by the
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following vorticity-and-shear-free interior spacetime metric

ds2
−
= −A2dt2 +B2[dr2 + r2(dθ2 + sin2 θdφ2)]. (3.4.1)

The interior distribution of matter is given by the stress-energy-momentum tensor as

follows:

Tab = (µ+ p)uaub + pgab + qaub + qbua. (3.4.2)

Since the exterior spacetime is filled with radiation resulting from the collapse, the

exterior spacetime is represented by the Vaidya metric for outgoing radiation given as

ds2+ = −

(

1−
2m

r̄

)

dv2 − 2dvdr̄ + r̄2dΩ2 (3.4.3)

The interior and exterior spacetimes are generally separated by a time-like hypersurface

which also marks the boundary of the collapsing cloud and is given as

ds2Σ = −dτ 2 + ℜ2(dθ2 + sin2 θdφ2), (3.4.4)

where Σ denotes the boundary. The interior boundary surface is given by

f(r, t) = r − rΣ = 0

while the exterior surface is

f(r, v) = r̄ − rΣ = 0.

For a complete model of collapse the geometries need to be connected. Santos (1985),

derived a set of junction conditions. However, here we only give a summary (detailed

elaborations on these conditions can be found in (Israel 1967, Bonnor et al 1989, Santos

1985, Lichnerowicz 1955, O Brien and Synge 1952, Lake 1987)).
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Realizing that the interior and exterior spacetimes are separated, the first funda-

mental form requires the continuity of the exterior and interior regions over the time-like

hypersurface as follows:

ds2
−
= ds2+ = ds2Σ. (3.4.5)

Under this restriction, equating the interior and intrinsic metric gives

A(rΣ, t)ṫ = 1 (3.4.6a)

rΣB(rΣ, t) = ℜ(τ), (3.4.6b)

where dot represent differentiation with respect to time on the surface Σ. For the

exterior metric the following is obtained

r̄Σ(v) = ℜ(τ) (3.4.7a)

(

1−
2m

r̄
+ 2

dr̄

dv

)

Σ

=

(

1

v̇2

)

Σ

(3.4.7b)

Hence the continuity of the metric functions on the boundary (Σ) requires the following

boundary conditions

A(rΣ, t)dt =

(

1−
2m

r̄Σ
+ 2

dr̄Σ
dv

) 1

2

Σ

dv (3.4.8a)

rΣB(rΣ, t) = r̄Σ(v). (3.4.8b)

These conditions are easily obtained by further finding equality between (3.4.6) and

(3.4.7).
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Secondly, the second fundamental form requires the continuity of the extrinsic cur-

vatures on the hypersurface as follows

K+
ij −K−

ij = 0 (3.4.9)

where

K±

ij ≡ −n±

a

∂2Xa
±

∂ξi∂ξj
− n±

a Γ
a
cd

∂Xc
±
∂Xd

±

∂ξi∂ξj
(3.4.10)

The nonvanishing components of K−

ij are

K−

ττ =

(

−
Ar

AB

)

Σ

(3.4.11a)

K−

θθ = (r(rB)r)Σ (3.4.11b)

while for the exterior we have

K+
ττ =

(

v̈

v̇
− v̇

m

r̄2

)

Σ

(3.4.12a)

K+
θθ = (v̇(r̄ − 2m) + r̄ ˙̄r)Σ (3.4.12b)

Hence, the general conditions of the second fundamental form are

(

−
Ar

AB

)

Σ

=

(

v̈

v̇
− v̇

m

r̄2

)

Σ

(3.4.13a)

(r(rB)r)Σ = (v̇(r̄ − 2m) + r̄ ˙̄r)Σ (3.4.13b)

For the interest of the physics of the model, the junction conditions are further de-

veloped and expressed in terms of physical quantities. For instance, using (3.4.6) and
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(3.4.7) in the continuity of spacetime condition and (3.4.13b) in the extrinsic curvature

condition, the total mass of the collapsing cloud as read on the boundary (Σ) is given

as

mΣ =

[

r3BB2
t

2A2
− r2Br −

r3B2
r

2B

]

. (3.4.14)

Since mass is strongly related to the gravity of the object, equation (3.4.14) gives a

strong insight into the gravitational strength associated with the assumed collapsing

dust cloud. For more information the reader is referred to (Cahill and McVittie 1970,

Hernandez and Misner 1966). There are other boundary conditions which may be

obtained from mathematical manipulations of the above mentioned conditions. The

most important boundary condition is the connection between pressure and the heat

flux:

pΣ = (qB)Σ. (3.4.15)

This condition guarantees that, for every collapsing dust cloud radiating energy in the

form of heat flux, the pressure at the surface of such an object is never zero. This

finding by Santos reclaimed correctness in the study of the collapsing objects as other

scientists had previously made some errors in pressure and heat flux assumptions (Glass

1981).

24



Chapter 4

Review of Thermodynamics

4.1 Introduction

In this chapter we review the fundamentals of extended irreversible thermodynamics

and how it governs the temperature profiles of radiating stars. The classic approach

by Eckart (1940), and Landau and Lifschitz (1959) had a few shortcomings especially

from a relativistic point of view. For instance, the Eckart tranport equation suffers var-

ious pathologies such as the prediction of infinite propagation velocities for the thermal

signals and unstable equilibrium states (Govender 2014 and references therein). The

Eckart postulate of the scalar curvature being linear is too simple and as a result re-

moves vital terms that are the key in order to preserve causality and stability. However,

even with such drawbacks these models formed a crucial stage for later work. Mueller

(1967) developed an extended non-relativistic version of irreversible thermodynamics

that obeyed causality. The Mueller version was later developed by Israel and Stewart to

a relativistic form (Israel (1976), Stewart (1977)). The Israel-Stewart theory developed

from the theory of Grad and Mueller (Grad 1949, Mueller 1967) is largely accepted in
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the context of relativistic theories. One of the notable features of their work is that they

impose the requirement of non-negativeness of the divergence of the entropy current.

From this condition Israel and Stewart obtained equations which can be easily derived

from the divergence of the off-equilibrium entropy current satisfying the second law

of thermodynamics (Andersson and Comer 2006, El et al 2010). The Israel–Stewart

equations have been successfully applied in different models. However, the study of

extended irreverible thermodynamics is still under development (Carter 1991, El et al

2010). The recent work of the extended irreversible thermodynamic theory (also by

Israel and Stewart) takes into account causality in thermodynamics by treating dissi-

pative perturbations as being non-instantaneous (Govender and Thirukannesh 2014).

The Einstein field equations in general relativity give a very complex set of equations

to describe spacetime and its matter content. The field equations are very general in a

sense that this one set of equations is easily manipulated to study different models of

gravity. In these equations the left-hand-side gives the structure of spacetime geometry

through the Einstein tensor and the right-hand-side gives the matter content existing in

such a spacetime (through the stress-energy-momentum tensor) therefore representing

the actual strength of gravity. These equations are very general. However, universal-

ity between the left-hand-side and right-hand-side is not balanced. This is clear in a

sense that one spacetime geometry model can be used in different models of matter

content. Briefly, the stress-energy-momentum tensor depends on the particular type

of matter and interactions one chooses to use to represent the matter content of the

model (Visser and Barcelo 2008). Therefore the stress-energy-momentum tensor faces
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a serious challenge that in every model it undergoes a series of tests which evaluates its

reliability. One key generic feature that almost all physically reasonable matter seems

to satisfy is that the energy density is always positive or zero, at least in Minkowski

spacetime. However, energy density is not the only feature of the matter content that

needs to be always validated. Faced with such challenges, scientists developed a set

of mathematical theorems which every matter model should satisfy in order to be a

physically reasonable model of matter. These theorems are known as the energy con-

ditions and give a required test in every gravitationally collapsing model. Beyond just

checking positivity or non-negativity of the energy density, the energy conditions give

a form of affirmation that various linear combinations of the components of the stress-

energy-momentum tensor at any locally specified point in spacetime should be positive,

or at least non-negative (Visser and Barcelo 2008). The energy conditions in essence

can be viewed as a set of powerful mathematical theorems similar to the singularity

theorems which under certain circumstances guarantee gravitational collapse and/or

the existence of a certain type of singularity (Visser and Barcelo 2008). A number

of theoretical studies in physics, cosmology, astrophysics, and general relativity have

used the concept of energy conditions to affirm different forms of theorems (Sharif and

Waheed 2013). The significant theoretical contribution of these conditions can be seen

in the following notions: Hawking–Penrose singularity conjecture, positive mass theo-

rem, derivation of second law of black hole thermodynamics (Sharif and Waheed 2013),

Hawking-Ellis conservation theorem (Hossain 2005), etc. The energy conditions exist

in different forms. In this thesis we only focus on the weak energy condition, strong
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energy condition, and dominant energy condition.

4.2 Extended Irreversible Thermodynamics

We begin our discussion by noting that, unlike the classical models of thermodynamics

which imposed conservation of particle number and the energy momentum tensor

nα
;α = 0, T αβ

;β = 0 (4.2.1)

where n is the number density, the Stewart and Israel irreversible thermodynamic

theory only restricts the negativity of the entropy and allows it to increase with time.

This requirement is nothing more than the second law of thermodynamics:

Sα
;α ≥ 0 (4.2.2)

where S is the entropy. The expression (4.2.2) is known as the covariant form of the

second law of thermodynamics. The entropy itself with the inclusion of the dissipative

term Rα is given as

Sα = Snuα +
Rα

T
(4.2.3)

and T represents the local temperature. If linearity is imposed between the thermo-

dynamical fluxes and the thermodynamical forces the transport equations reduce to
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Π = −3ζH (4.2.4a)

qα = −λ (DαT + T u̇α) (4.2.4b)

παβ = −2ησαβ , (4.2.4c)

where Π is the bulk viscosity, παβ the shear viscosity tensor, ζ , λ, and η respectively

denote the coefficient of viscosity, heat, and shear, H is the expansion and σαβ is the

shear tensor.

The entropy production rate becomes

Sα
;α =

Π2

ζT
+

qαq
α

λT 2
+

παβπ
αβ

2ηT
. (4.2.5)

From (4.2.5), (4.2.2) is satisfied only if

ζ ≥ 0, λ ≥ 0, η ≥ 0

The increase in entropy is meaningful in the sense that the rise in temperature (which

may be always associated with the kinetic energy) gives rise to the drift velocities of

particles within the fluid, resulting in more chaos or disorder in the physical structures

of the modelled object. The relationship between the temperature and entropy is given

by

TdS = d
(ρ

n

)

+ pd

(

1

n

)

(4.2.6)
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which is known as the Gibbs equation. The extended irreversible thermodynamic

theory uses a more general version of the scalar curvature giving rise to a more general

expression of the entropy four-current, which in the context of the Mueller–Israel–

Stewart theory reads as

Sµ = Snuµ +
qµ

T
−
(

γ0Π
2 + γ1qυq

υ + γ2πυκπ
υκ
) uµ

2T
+

α0Πq
µ

T
+

α1π
µυqυ
T

. (4.2.7)

Note that γA(ρ, n) are thermodynamic coefficients for different contributions to the

entropy density, and αA(ρ, n) are thermodynamic viscous/heat coupling coefficients

(Herrera et al 2009). If the thermodynamic viscous/heat coupling coefficients are set

to zero, (4.2.7) becomes

Sµ = Snuµ +
qµ

T
−
(

γ0Π
2 + γ1qυq

υ + γ2πυκπ
υκ
) uµ

2T
(4.2.8)

Multipying throughout by −uµ gives

−uµS
µ = Sn−

(

γ0Π
2 + γ1qυq

υ + γ2πυκπ
υκ
) 1

2T
(4.2.9)

which yields the entropy density as measured by a comoving observer. From the Bianchi

identities and the Gibbs equation, the divergence of (4.2.8) is given as

TSα
;α = −Π

[

3H + γ0Π̇ +
1

2
T
(γ1
T
uα
)

;α
Π

]

− qα
[

Dα lnT + u̇α + γ1q̇α +
1

2

(γ1
T
uµ
)

;µ
qα

]

− παµ

[

σαµ + γ2π̇αµ +
1

2
T
(γ2
T
uν
)

;ν
παµ

]

(4.2.10)
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Guided by the second law of thermodynamics (4.2.2) and following the same assump-

tions as in (4.2.4) the transport equations in the extended theory are obtained as

follows:

τ0Π̇ + Π = −3ζH −

[

ζT

(

τ0
1
2
ζT

uα

)

;α

Π

]

(4.2.11a)

τ1h
β
αq̇β + qα = −λ(DαT + T u̇α)−

[

1

2
λT 2

( τ1
λT

uβ
)

;β
qα

]

(4.2.11b)

τ2h
µ
αh

ν
βπ̇µν + παβ = −2ησαβ −

[

ηT

(

τ2
2ηT

uν

)

;ν

παβ

]

. (4.2.11c)

Ignoring the terms in the square brackets yields the Israel–Stewart truncated versions

of the transport equations:

τ0Π̇ + Π = −3ζH (4.2.12a)

τ1h
β
αq̇β + qα = −λ(DαT + T u̇α) (4.2.12b)

τ2h
µ
αh

ν
β π̇µν + παβ = −2ησαβ, (4.2.12c)
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where the relaxation times τA(ρ, n) are given by

τ0 = ζγ0 (4.2.13a)

τ1 = λTγ1 (4.2.13b)

τ2 = 2ηγ2. (4.2.13c)

Now that we have obtained the truncated versions of the transport equation, we de-

termine the actual equation that will model the temperature profiles of a radiating

collapsing stellar model. For our case we seek to determine a causal heat transport

equation of a spherically symmetric collapsing cloud whose interior matter is that of

imperfect fluid. This spherical cloud dissipates energy in the form of radial heat flux

during the collapse. Hence, for further discussions on the temperature profiles of this

collapse model we utilise the transport equation developed in the extended thermody-

namic theory, viz. (4.2.12b). For this thesis we can write (4.2.12b) as

τhβ
αq̇

β + qα = −λ
(

hβαT,β + Tuα
;βu

β
)

, (4.2.14)

where (3.2.1) has been used to raise the indices in (4.2.14).

In (4.2.14), hβ
α is the projection tensor, τ and λ are the relaxation time and thermal

conductivity, respectively. The heat flux is given as

qα = q
1

B
δα1 . (4.2.15)

The projection tensor is given as

hβ
α = gβα + uβuα. (4.2.16)
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The four-acceleration, in component form, is given as aα = (a0, a1, a2, a3) and the only

non-zero component of this vector is the radial component given, in a general form, as

aα =
Ar

AB2
δα1 . (4.2.17)

Since

q̇β = qβ;µV
µ

and only β = 1 and µ = 0 give a non-zero component of q, this implies

q̇ =
(qB),t
AB

(4.2.18)

is the only form of q used in (4.2.14).

Using (4.2.15), (4.2.16), (4.2.17), and (4.2.18), (4.2.14) becomes

τ(qB),t + AqB = −λ
(AT ),r
B

. (4.2.19)

Now, adopting the following values and assumptions (Naidu and Govender 2007):

λ = γT 3τc

τc =

(

α

γ

)

T−ω

and

τ =

(

βγ

α

)

τc,

where τc is the mean collision time, (4.2.19) becomes

βT−ω(qB),t + AqB = −αT 3−ω (AT ),r
B

. (4.2.20)

Equation (4.2.20) is a very important equation in the study of temperature profiles of

radiating stars. This is proved by its versatility to give a number of different expressions
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governing the temperature of a collapsing sphere in different physical conditions. For

instance, for a simple case of constant collision time ω = 0 (which may be the case for

perfect fluids with uniform flow of fluid particles), (4.2.20) after some manipulations

gives

(AT )4 = −
4

α

[

β

∫

A3B(qB),tdr +

∫

A4qB2dr

]

+ F (t) (4.2.21)

as the equation modelling the temperature. On the other hand if the interior matter

is exposed to random changes of particle drift velocities resulting in arbitrary random

collisions (ω = 4), the same equation yields

(AT )4 = −
4β

α
exp

(

−

∫

4qB2

α
dr

)
∫

A3B(qB),t exp

(
∫

4qB2

α
dr

)

dr

+ F (t) exp

(

−

∫

4qB2

α
dr

)

(4.2.22)

as the equation representing the temperature of such a general case (Govinder and

Govender 2001). In (4.2.20) β gives the strength of the relaxational effects. By setting

β = 0, equation (4.2.20) is able to yield all the noncausal temperature profiles

(AT )4−ω =
ω − 4

α

∫

A4−ωqB2dr + F (t), ω 6= 4

ln(AT ) = −
1

α

∫

qB2dr + F (t), ω = 4 (4.2.23)

for all collision time models. In the above equations F (t) is an arbitary function of

integration fixed by the expression of the surface temperature of the star given as

(T 4)Σ =
L∞

4πr2δB2
, (4.2.24)

where L∞ gives the star’s luminosity as measured by a distant observer.
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The luminosity we discuss in this thesis gives the total energy of radiation on the

surface of the collapsing star as measured by a distant observer. The luminosity, as seen

in (4.2.24) is directly affected by the star’s surface temperature. However, temperature

is not the only factor that affects the magnitude of the luminosity. The redshift and

the total surface area of the star has a tremendous effect on the star’s luminosity. The

luminosity is given as

L = −
dm

dv
, (4.2.25)

where

dm

dv
=

dm

dt

dt

dτ

dτ

dv
. (4.2.26)

Luminosity and redshift are connected by the following equation

(1 + zΣ)
2 =

LΣ

L∞

, (4.2.27)

where zΣ, and LΣ are the surface redshift and surface luminosity, respectively.

4.3 Energy Conditions

In this section we review the energy conditions. The energy conditions have the fol-

lowing structure:

• Weak energy condition

The weak energy condition is simply the requirement that the classical energy density

should always be non-negative. In mathematical form this condition is stated as

Tabξ
aξb ≥ 0 (4.3.1)
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for all time-like 4-velocity vectors ξb. Basically, the weak energy condition can be inter-

preted as the condition which asserts that the energy density of the fluid as measured

by any observer travelling at ξb in spacetime is non-negative. Therefore this condition

requires µ ≥ 0 and µ+ pi ≥ 0, where i = 1, 2, 3 because the i = 0 term is always taken

by the energy density, and pi is the principal pressure (Hossain 2005).

• Strong energy condition

The strong energy condition is a condition that requires the stress-energy-momentum

tensor to satisfy

Tabξ
aξb ≥ −

1

2
T (4.3.2)

for all unit time-like 4-velocity vectors ξb. In (4.3.2) T is the trace of Tab . In a simpler

sense, the strong energy condition requires µ + Σ3
j=1pj ≥ 0 and µ + pi ≥ 0 for all

i = 1, 2, 3 components (Hossain 2005). This energy condition can be violated only if

the total energy density Tabξ
aξb is negative or if, for Tabξ

aξb > 0, there exists a large

negative pressure of Tab.

• Dominant energy condition

The dominant energy condition is a requirement that the local energy density must

always be non-negative for all time-like observers and the local energy-momentum

4-current, i.e. Tabξ
b, to be future directed, non-spacelike for all future directed, time-

like 4-velocity vectors ξb. Therefore, the mathematical form of the dominant energy

condition is stated as

Tabξ
aξb ≥ 0; Tabξ

bT a
c ξ

c ≤ 0. (4.3.3)

Furthermore, the dominant energy condition restricts the definition of the stress-
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energy-momentum tensor to be of the form in which the speed of energy-flow does

not exceed the speed of light. This energy condition also requires the dominance of the

energy density over pressure, µ ≥ |pi| for all i = 1, 2, 3. Naturally, the dominant en-

ergy condition implies the weak energy condition and violation of this energy condition

raises concern about the causality and the stability of the system (Hossain 2005).

In a spacetime with metric gab the stress-energy-momentum tensor can be given as

Tab = (µ+ p⊥)uaub + p⊥gab + (pr − p⊥)xaxb + qaub + qbua (4.3.4)

where µ is the rest energy density, pr is the radial pressure, p⊥ is the tangential pressure,

and qa is the heat flux. An investigation of the energy conditions is closely related to

the eigenvalue problem of Tab and therefore, on a four-dimensional spacetime manifold,

it leads to the search for the roots of a polynomial of degree four (Kolassis et al

1988). Therefore, the easiest way to write down the energy conditions is to calculate

the eigenvalues of the stress-energy-momentum tensor which, for the tensor type in

(4.3.4), must be real. The eigenvalues of the stress-energy-momentum tensor (4.3.4)

are the roots of the equation

|Tab − λgab| = 0, (4.3.5)

where λ is a scalar giving the desired eigenvalues. For (4.3.4) and the line element

(3.2.1), equation (4.3.5) can be rewritten as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(µ+ λ)A2 − qAB 0 0

− qAB (pr − λ)B2 0 0

0 0 (p⊥ − λ)B2r2 0

0 0 0 (p⊥ − λ)B2r2 sin2 θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (4.3.6)
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After lengthy calculations, the determinant of equation (4.3.6) gives a long and com-

plicated characteristic equation which reduces to the following expression

[

(pr − λ)(µ+ λ)− q2
]

×
[

(p⊥ − λ)2A2B2r2 sin2 θ
]

= 0. (4.3.7)

After some manipulations, (4.3.7) give the following possible roots:

λ0 =
1

2
(µ− pr +∆) (4.3.8a)

λ1 =
1

2
(µ− pr −∆) (4.3.8b)

λ2 = p⊥ (4.3.8c)

λ3 = p⊥ (4.3.8d)

where

∆ =

√

(pr + µ)2 − (2q)2 (4.3.9)

Requiring these roots to fall into the category of real numbers requires

(pr + µ)2 ≥ (2q)2

in equation (4.3.9) for every pr, µ, and q in the stress-energy-momentum tensor (4.3.4).

The energy conditions associated with the stress-energy-momentum tensor (4.3.4) are

equivalent to the following eigenvalue relations (Kolassis et al 1988):

•Weak energy condition:

−λ0 ≥ 0, − λ0 + λi ≥ 0
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•Strong energy condition:

−λ0 + Σiλi ≥ 0, − λ0 + λi ≥ 0

•Dominant energy condition:

−λ0 ≥ 0, λ0 ≤ λi ≤ −λ0

where λ0 denotes the eigenvalue corresponding to the timelike eigenvector, and λi

(i = 1, 2, 3) denotes the eigenvalues corresponding to the spacelike eigenvectors. Since

these eigenvalues are given in terms of pr, p⊥, µ, and q, the above energy conditions

can be rewritten and take the following more compact form:

•Weak energy condition:

µ− pr +

√

(pr + µ)2 − (2q)2 ≥ 0 (4.3.10)

µ+ pr +
√

(pr + µ)2 − (2q)2 ≥ 0 (4.3.11)

•Strong energy condition:

2p⊥ +

√

(pr + µ)2 − (2q)2 ≥ 0 (4.3.12)

•Dominant energy condition:

µ− pr ≥ 0 (4.3.13)

µ− pr − 2p⊥ +

√

(pr + µ)2 − (2q)2 ≥ 0. (4.3.14)

It should be noted that this discussion of the energy conditions tries to give a corollary

of the energy condition theorem as noted in (Kolassis et al 1988).
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Chapter 5

Review of Horizon-free Collapse

5.1 Introduction

The end-state of gravitational collapse of massive stars within the framework of Ein-

stein’s theory of general relativity is a much debated topic amongst astrophysicists and

relativists. While the singularity theorems predict that the gravitational collapse of

physically reasonable matter fields may lead to the formation of closed trapped sur-

faces, it is the nature of these surfaces (black holes or naked singularities) which is

called into question. Various counter-examples to the Cosmic Censorship Hypothesis

have been presented in the literature in which the initial conditions before the onset

of collapse were physically reasonable. In the case of dissipative gravitational collapse,

the so-called horizon-free collapse first proposed by Banerjee et al (2002) addressed the

scenario in which the energy radiated by a shear-free collapsing fluid is balanced by

the rate of collapse of the gravitating sphere. In such a model the horizon never forms

and the collapse may proceed until the body evaporates leaving behind Minkowski

spacetime. In §4.2 we revisit the BCD model and highlight its importance within the
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context of gravitational collapse. In §4.3 we generalise the BCD model by simulta-

neously invoking the horizon-free condition and the boundary condition for a general

spherically symmetric, shear-free star undergoing dissipative collapse. We show for the

first time that the horizon-free condition provides a definition for one of the metric

functions which, when substituted into the boundary condition, leads to an algebraic

equation yielding the radius of the collapsing sphere. We further investigate the physi-

cal viability of a particular model by analysing the behaviour of the density, radial and

tangential stresses, mass profile, luminosity and the temperature in both the causal

and noncausal theories.

5.2 Overview of the BCD Model

In this section we briefly review the horizon-free collapse model first proposed by Baner-

jee et al (2002). This will set the scene for our investigation into a more general for-

mulation of horizon-free collapse. The interior of the spacetime for the BCD model is

described by a spherically symmetric, shear free line element given by

ds2 = −A2dt2 +B2
[

dr2 + r2
(

dθ2 + sin2 θdφ2
)]

, (5.2.1)

where the metric functions A and B are determined by making assumptions that

constrain the physics of the model. Since the star is undergoing radiative collapse

its exterior spacetime is nonempty and is described by the Vaidya solution which we

repeat here for easy reference:

ds2 = −

(

1−
2m

r̄

)

dv2 − 2dvdr̄ + r̄2dΩ2. (5.2.2)
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The stellar fluid for the interior of the BCD model is assumed to be a perfect fluid with

heat conduction. The stress-energy-momentum tensor takes the form

Tab = (µ+ p)uaub + pgab + qaub + qbua, (5.2.3)

where µ is the energy density and p the isotropic pressure of the stellar fluid. It is

assumed that the collapsing body dissipates energy in the form of a radial heat flux

so that qa = (0, q1, 0, 0) is the heat flux vector. The Einstein field equations for the

interior spacetime are

µ =
3B2

t

A2B2
+

1

B2

(

B2
r

B2
−

4Br

rB
−

2Brr

B

)

(5.2.4a)

pr =
2ArBr

AB3
−

B2
t

A2B2
+

2Br

rB3
+

2AtBt

A3B
−

2Btt

A2B
+

B2
r

B4
+

2Ar

rAB2
(5.2.4b)

p⊥ =
2AtBt

A3B
−

2Btt

A2B
−

B2
t

A2B2
+

Ar

rAB2
+

Br

rB3
+

Brr

B3
+

Arr

AB2
−

B2
r

B4
(5.2.4c)

q =
1

AB3

(

2Btr −
2ArBt

A
−

2BrBt

B

)

, (5.2.4d)

where the radial and tangential stresses are assumed to be equal. The pressure isotropy

condition is obtained by equating (5.2.4b) and (5.2.4c) to yield

Arr

A
+

Brr

B
=

2ArBr

AB
+

Br

rB
+

2B2
r

B2
+

Ar

rA
. (5.2.5)

The BCD model is based on an ad-hoc assumption on the behaviour of the metric

functions. Assuming separability of the metric functions A and B into the radial

and time coordinates such that A(r, t) = a(r), B(r, t) = b(r)R(t), the Einstein field
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equations (5.2.4) and isotropy condition (5.2.5) respectively become

µ =
1

R2

[

3Ṙ2

a2
+

1

b2

(

b′2

b2
−

4b′

rb
−

2b′′

b

)

]

(5.2.6a)

pr =
1

R2

[

1

b2

(

2a′b′

ab
+

2

r

(

b′

b
+

a′

a

)

+
b′2

b2

)

−
1

a2
(2RR̈ + Ṙ2)

]

(5.2.6b)

q = −
2a′Ṙ

a2b2R3
(5.2.6c)

and

a′′

a
+

b′′

b
− 2

a′b′

ab
−

a′

ra
− 2

b′2

b2
−

b′

rb
= 0, (5.2.7)

where primes denote differentiation with respect to r and dots represent differentiation

with respect to t. The isotropy condition does not contain time explicitly and so

for this condition to hold throughout the collapse one only needs to specify the radial

dependence of the metric functions which will satisfy (5.2.7). The temporal dependence

follows via the“constants”of integration. In the BCD model it was assumed that b(r) =

1 and a(r) = 1 + ξ0r
2. Therefore the isotropy condition is always satisfied if A(r, t) =

1+ ξ0r
2 and B(r, t) = R(t). The explicit time dependence of the model is obtained by

solving the junction conditions valid on Σ. (The junction conditions required for the

smooth matching of the line element (5.2.1) and the Vaidya exterior were discussed in
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Chapter 3.) For the BCD model these become

pΣ = (qB)Σ (5.2.8a)

rΣ = (rB)Σ (5.2.8b)

mΣ =

[

r3BB2
t

2A2
− r2Br −

r3B2
r

2B

]

, (5.2.8c)

where m is the total mass enclosed within a sphere of radius r. Substituting (5.2.6b)

and (5.2.6c) into (5.2.8a)we obtain the temporal evolution equation for the BCD model

2RR̈ + Ṙ2 +mṘ = n, (5.2.9)

where at the boundary both m(r) and n(r) are constants respectively given as

m =
−2a′

b
(5.2.10a)

n =
a2

b2

[

2a′b′

ab
+

2

r

(

a′

a
+

b′

b

)

+
b′2

b2

]

(5.2.10b)

A simple solution of (5.2.9) is R = −Ct, where C is an integration constant. With this

solution the Einstein field equations become

µ =
3

t2(1 + ξ0r2)2
(5.2.11a)

p =
1

t2(1 + ξ0r2)2

[

4ξ0
C2

(1 + ξ0r
2)− 1

]

(5.2.11b)

q = −
4ξ0r

C2t3(1 + ξ0r2)2
(5.2.11c)
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and

m = −4ξ0r0, n = 4ξ0(1 + ξ0r
2
0), C =

1

2

[

−|m|+ (m2 + 4n)
1

2

]

.

With the m, n values and (5.2.9), the following was obtained

C2 < 4ξ0(1 + ξ0r
2
0).

Since the fluid is collapsing, the volume expansion rate is required to be negative, this

is fulfilled if C > 0. For the BCD model to be physically true it requires the following

conditions which give some restrictions on the value of C:

2ξ0 > C2 > ξ(1 + ξ0r
2) (5.2.12a)

[

1−
2ξ0r

C

]2

> −
2ξ0
C2

(1− ξ0r
2). (5.2.12b)

In order to avoid the horizon during the collapse history of the star we require

1−
2mΣ

rΣ
> 0.

Using the above metric functions this condition can be rewritten as follows:

1−
C2r20

(1 + ξ0r
2
0)

> 0. (5.2.13)

The horizon-free condition for a collapsing star can be dynamically achieved if the rate

of energy loss is balanced by the collapse rate of the shrinking core. This balance in

the rate changes of the two components further ensures the loss of mass which prevents

the consequence of trapped surfaces due to strong gravitation. Another noted feature

in this model is that the occurence or non-occurence of the horizon is independent of

time. From the horizon-free condition it is possible to set ξ0 = 0, with the condition
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still holding. However, setting ξ0 = 0 results in the vanishing of the heat flux at the

boundary.

5.3 General Horizon-free Collapse

In this section we study horizon-free collapse by imposing the horizon-free condition and

invoking the matching condition for a shear-free, spherically symmetric star undergoing

dissipative collapse. The interior spacetime for the collapsing body is given by

ds2 = −A2dt2 +B2[dr2 + r2(dθ2 + sin2 θdφ2)], (5.3.1)

where the metric functions A(r, t) and B(r, t) are undetermined. The stellar fluid is

described by the stress-energy-momentum tensor of the form

Tab = (µ+ p⊥)uaub + p⊥gab + (pr − p⊥)xaxb + qaub + qbua, (5.3.2)

where xa is a unit spacelike 4-vector along the radial direction. The corresponding field

equations of this collapse model are as follows:

µ =
3B2

t

A2B2
+

1

B2

(

B2
r

B2
−

4Br

rB
−

2Brr

B

)

(5.3.3a)

pr =
2ArBr

AB3
−

B2
t

A2B2
+

2Br

rB3
+

2AtBt

A3B
−

2Btt

A2B
+

B2
r

B4
+

2Ar

rAB2
(5.3.3b)

p⊥ =
2AtBt

A3B
−

2Btt

A2B
−

B2
t

A2B2
+

Ar

rAB2
+

Br

rB3
+

Brr

B3
+

Arr

AB2
−

B2
r

B4
(5.3.3c)

q =
1

AB3

(

2Btr −
2ArBt

A
−

2BrBt

B

)

(5.3.3d)
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From (3.4.15), (5.3.3b), and (5.3.3d) we obtained the following boundary condition

B2

[

−2
Btt

B
−

(

Bt

B

)2

+ 2
At

A

Bt

B

]

+ 2AB

[

−
Brt

B
+

BrBt

B2
+

Ar

A

Bt

B

]

+ A2

[

(

Br

B

)2

+ 2
Ar

A

Br

B
+

2

r

(

Ar

A
+

Br

B

)

]

= 0 (5.3.4)

valid on Σ. The horizon-free condition is given as

[

(

rBt

2A

)2

− r
Br

2B
−

(

rBr

2B

)2
]

Σ

= α, (5.3.5)

where α is a constant.

In order to ensure that (5.3.4) and (5.3.5) are simultaneously satisfied, we have the

following constraint equation

1

2

(

rBr

B

)2

+ rB

(

Br

B2
+

1

rB

)

[

α +
rBr

2B
+

(

rBr

2B

)2
]

1

2

− α +
rBr

B
+

1

2

−
r

2

[

α +
rBr

2B
+

(

rBr

2B

)2
]−

1

2
[

Br

2B
+

rBrr

2B
+

r2BrBrr

2B2
−

r2B3
r

2B3

]

−

[

α+
rBr

2B
+

(

rBr

2B

)2
]−1

[

rBr

8B
+

r2Brr

8B
+

r3BrBrr

4B2
−

r3B3
r

8B3
+

r2B2
r

8B2

+
r4B2

rBrr

8B3
−

r4B4
r

8B4

]

= 0 (5.3.6)

which is an algebraic equation on Σ. If we now demand that the metric function B(r, t)

is separable in r and t, i.e. B(r, t) = f(t)g(r), (5.3.6) will be independent of time. This

47



means that we have total freedom in choosing the temporal dependence of our model.

The form of g(r) will restrict the value of α or the radius of the star.

We will now consider a specific model in which

B = (1 + at2)× (β + b/r3) (5.3.7)

which, when substituted into (5.3.5), yields

A =
art
(

b
r3

+ β
)

√

α + 9b2

4r6( b

r3
+β)

2 −
3b

2r3( b

r3
+β)

. (5.3.8)

The Einstein field equations (5.3.3) for the metric functions (5.3.7) and (5.3.8) become

ρ =
6r4 (b2(1 + 2α) + br3(−5 + 4α)β + 2r6αβ2)

(1 + at2)2 (b+ r3β)4
(5.3.9a)

pr = −
2r4 (2b4 (−6− 5α + 4α2) + 8b3r3 (9− 2α+ 4α2)

(1 + at2)2 (b+ r3β)4 (b2(3 + 4α) + 2br3(−3 + 4α)β + 4r6αβ2)

× β + 3b2r6
(

−21− 2α + 16α2
)

β2 + br9
(

15− 4α + 32α2
)

× β3 + 4r12α(−1 + 2α)β4
)

(5.3.9b)

p⊥ =
r4 (−b5(−1 + 4α)(3 + 4α)2 +N)

(1 + at2)2 (b+ r3β)3 (b2(3 + 4α) + 2br3(−3 + 4α)β + 4r6αβ2)2
(5.3.9c)

q =
2r7 (2b− r3β) (b2(3 + 4α) + br3(−15 + 8α)β + 4r6αβ2)

(1 + at2)3 (b+ r3β)6
√

b2(3+4α)+2br3(−3+4α)β+4r6αβ2

(b+r3β)2

, (5.3.9d)
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where

N = b4r3
(

81 + 4α
(

123 + 68α− 80α2
))

β + 2b3r6(27− 4α(117 + 4α(−41 + 20α)))β2

+ b2r9(225− 4α(363 + 8α(−47 + 20α)))β3

− 4br12α(3 + 20α(−7 + 4α))β4 + 16r15(1− 4α)α2β5.

The mass of this star as measured at the boundary for solutions (5.3.7) and (5.3.8) is

mΣ =
2 (1 + at2)α (b+ r3β)

r2
. (5.3.10)

On checking the physical viability of this model we considered the luminosity, redshift,

and temperature profile. The star’s luminosity is given as

L = −
(2(α− 2)(4α + 3)b4 + 8 (4α2 − 2α + 9) b3βr3 +W1)×W2

(b+ βr3)4 ((4α+ 3)b2 + 2(4α− 3)bβr3 + 4αβ2r6)
, (5.3.11)

where

W1 = 3(2α(8α− 1)− 21)b2β2r6 + (4α(8α− 1) + 15)bβ3r9 + 4α(2α− 1)β4r12

and

W2 =

(

βr3

(√

4α +
3b (b− 2βr3)

(b+ βr3)2
+ 1

)

+ b

(√

4α+
3b (b− 2βr3)

(b+ βr3)2
− 2

))2

.

The surface redshift is calculated as follows

Z =
1

1− 3b
b+r3β

+ 2
√

α + 3b(b−2r3β)

4(b+r3β)2

. (5.3.12)

The temperature profiles are obtained using the following expression

T 4 =

(

α +
3b(b−2βr3)
4(b+βr3)2

)2(

F (t)−
128a4t4(b+βr3)

4

×Ψ

3r6(at2+1)2((4α+3)b2+2(4α−3)bβr3+4αβ2r6)2

)

a4r4t4
(

b
r3

+ β
)4 , (5.3.13)
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where Ψ is given by

Ψ = 3γr2
(

(4α + 3)b2 + 2(4α− 3)bβr3 + 4αβ2r6
)

−
(

at2 + 1
) (

b+ βr3
)3

×

√

(4α+ 3)b2 + 2(4α− 3)bβr3 + 4αβ2r6

(b+ βr3)2

For validation of these results we carry out a graphical analysis of the thermodynamical

variables, luminosity, redshift, and temperature profiles. For all the graphical analysis

below we used the following parameter values

b → 1, α →
1

6
, a → 1, C → 1, t → −10, β → 1
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Figure 5.1: Energy density vs radial coordinate
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Figure 5.2: Radial pressure vs radial coordinate

Figure 5.3: Tangential pressure vs radial coordinate
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Figure 5.4: Heat flux vs radial coordinate

Figure 5.5: Star’s mass vs radial coordinate
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Figure 5.6: Redshift vs time coordinate

Figure 5.7: Luminosity vs time coordinate
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Figure 5.8: X =
√

(µ+ pr)2 − 4q2 + (µ− pr) > 0 as a function of r and t.

Figure 5.9: Z =
√

(µ+ pr)2 − 4q2 + 2p⊥ > 0 as a function of r and t.
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Figure 5.10: Y = µ− pr − 2p⊥ +
√

(µ+ pr)2 − 4q2 > 0 as a function of r and t.

Figure 5.11: Eckart temperature as a function of the radial coordinate
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Figure 5.12: Causal temperature as a function of the radial coordinate

5.4 Discussion of Results

Figure 5.1 shows that the energy density is a monotonically decreasing function of the

radial coordinate. This is expected for a collapsing sphere where the density is highest

at the center of the core and decreases towards the surface of the star. We observe

similar behaviour in the radial pressure within the stellar interior. The high central

pressure results from a dense core as well as the high generation of heat energy in this

region. The radial pressure drops off as one moves away from the hotter core region

towards the cooler surface layers of the star. The radial pressure is exhibited in Figure

5.2 which shows a monotonically decreasing function of the radial coordinate. The hot-

ter regions of the core (centre) has a higher radial pressure associated with it compared

to the cooler surface layers. The tangential pressure (Figure 5.3) is positive at each

interior point of the star, diverging at the centre and decreasing as one moves towards

the stellar boundary. The heat flux diverges as we approach the centre and decreases

towards the surface of the star as illustrated in Figure 5.4. Figure 5.5 illustrates the
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behaviour of the mass as a function of the radial coordinate. We note that the mass

increases linearly with r and vanishes at the centre as expected. Redshift and lumi-

nosity being exterior elements of the collapsing system appear on the second quadrant

of their graphs. On average, the total redshift (Figure 5.6) in emitted radiation is a

constant. This may be due to low redshift (measured per unit square meter) of the

larger surface area summing up to balance the higher redshift of the smaller surface

area as the star shrinks during collapse. This constant difference in emitted radiation

is also a good indication of a horizon-free collapse with the final fate of collapse be-

ing a naked singularity. The total luminosity (Figure 5.7) is also a constant. This

is no surprise because the redshift has a direct influence on the luminosity. Figures

5.8–5.10 illustrate the weak, strong and dominant energy conditions as functions of the

radial and temporal coordinates. Observations of these figures indicate that all energy

conditions are satisfied throughout the stellar interior during the course of collapse.

Figure 5.11 displays the Eckart temperature profile for the interior matter distri-

bution. We note that the temperature is a maximum at the centre of the star and

drops off smoothly towards the boundary. The behaviour of the temperature gradient

is associated with the production of heat energy within the stellar core. Relaxational

effects are clearly illustrated in Figure 5.12 in which the causal temperature profile is

plotted as a function of the radial coordinate. A comparison of Figures 5.11 and 5.12

indicates that the causal temperature is everywhere greater than its noncausal coun-

terpart. Our results confirm earlier findings in both perturbative and non-perturbative

models (Govender et al 1999, Reddy et al 2014, Thirukkanesh and Govender 2014,

58



Thirukkanesh et al 2012). We note that from figure 5.11, the temperature at the

surface is non-zero and is proportional to the surface luminosity.

The horizon-free condition has been displayed in many other models of dissipative

gravitational collapse, ranging from collapse with an equation of state (Wagh et al

1999), Euclidean stars (Herrera et al 2006, Govender et al 2010, Govinder and Govender

2012) through to higher dimensional collapse. We note that in the BCD model, a

singularity is encountered as t → 0. Our model does not suffer from this pathology.

However, the class of models found by our approach all possess a singularity at r = 0.

A pleasing feature of our model is that the temporal dependence of the metric functions

and thermodynamical variables is completely arbitrary. This means that our model of

a radiating star can be treated as a core-envelope model which is valid in the region

r1 ≤ r ≤ r0 where r1 is some finite radius from the center of the star and r0 is the

boundary of the collapsing star at some snapshot in time. In order to obtain a complete

model of a radiating star whose interior is matched to the exterior Vaidya solution we

need to match a core solution valid in the region 0 ≤ r ≤ r1 which matches to our

solution at r1. This is possible because of the freedom we have in the temporal evolution

of our model.
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Chapter 6

Conclusion

In this investigation we considered a spherically symmetric star executing shear-free

motion and dissipating energy in the form of a radial heat flux to the exterior spacetime.

At the onset of collapse we demanded that the stellar fluid obeys the horizon-free

condition. The horizon-free condition together with the boundary condition leads to

an algebraic equation valid at the boundary of the collapsing star. A remarkable feature

of our approach is that the temporal evolution of our models is completely free. We

now provide an overview of our investigation.

• In chapter one we reviewed the available literature on dissipative gravitational

collapse. In particular, we highlighted the research conducted into the end-states

of collapse. We also reviewed the work done in higher-order theories of gravity

and their connection to the outcome of the collapse process.

• In chapter two we provided the fundamental tools of differential geometry and

tensor calculus required for the completion of our study. The reader is introduced

to the notion of curved spacetime and its link to the matter content via the
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Einstein field equations.

• The framework for studying radiating stars undergoing dissipative collapse is

established in chapter three. The interior spacetime described by a shear-free

spherically symmetric line element is introduced. A discussion of the matter

content of the interior stellar fluid is provided and its connection to the geometry

is established via the Einstein field equations. We introduce the Vaidya solution

which describes the atmosphere of the radiating collapsing body. We present the

junction conditions for the smooth matching of the interior of the stellar fluid to

Vaidya outgoing solution. A general discussion on irreversible thermodynamics

in curved spacetime is also presented.

• In chapter four we review the shortcomings of the Eckart theory of thermody-

namics and motivated for the need to employ causal thermodynamics to study

the heat transport in relativistic collapse models. We also derived the energy con-

ditions in the presence of dissipation for spherically symmetric, radiating stars in

which the radial and transverse pressures are unequal.

• In section five we provide a review of horizon-free collapse from the point of view

of the BCD model. We generalise the BCD ansatz to a more general collapse sce-

nario. We showed for the first that the boundary condition leads to an algebraic

constraint thus allowing for complete freedom in the temporal behavior of the

model. This is a new result in horizon-free collapse. We show that the model

we obtained via our algorithm is physically reasonable and provides reasonably

behaved temperature profiles in both the noncausal and causal regimes.
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Looking to the future we wish to extend our algorithm to include shear as well as

to higher dimensional spacetimes. To date the causal temperature profiles for radia-

tive collapse have been obtained via a truncated causal transport equation. We want

to investigate the temperature profiles by employing the full causal heat transport

equation.
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