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Abstract. A recent trend in scientific computing is the increasingly important role of co-processors,
originally built to accelerate graphics rendering, and now used for general high-performance computing.
The INFN Computing On Knights and Kepler Architectures (COKA) project focuses on assessing the
suitability of co-processor boards for scientific computing in a wide range of physics applications, and
on studying the best programming methodologies for these systems. Here we present in a comparative way
our results in porting a Lattice Boltzmann code on two state-of-the-art accelerators: the NVIDIA K20X,
and the Intel Xeon-Phi. We describe our implementations, analyze results and compare with a baseline
architecture adopting Intel Sandy Bridge CPUs.

1. Introduction
Accelerators are quickly becoming key building blocks of HPC processors. Accelerators try to boost
the performance of more traditional CPUs with an architecture based on (some combination of) a large
number of cores, vector-SIMD processing, multi-threading. There is a large spectrum of computing
architectures that one may devise using these building blocks, but – at present – there is a convergence
on GPUs, that use a very large number of slim cores, and on MIC processors, recently introduced by
Intel and integrating a relatively smaller number of largish cores; each core is a streamlined version of
a traditional Intel processor relying on SIMD processing to increase performance. Accelerators today
have peak performances of the order of 1012 FLoating-point Operations Per Second (Tflops); however
for real codes it is not easy to extract a large fraction of the theoretically available performance, even if
the parallelism that one must exploit is easily uncovered in the underlying algorithms. The difficulties
arise for two different reasons. Firstly, there is a potential conflict between the parallelizing strategies
that one must follow: for instance, building large vectors that can be operated on in SIMD mode is often
difficult if one first has to partition the computation on a large number of cores. Secondly there are data
transfer bottlenecks, associated to i) memory access to the accelerator memory in order to fetch the data
items that must be processed and ii) bandwidth and latency issues in the transfer of data between host
and accelerator.
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Table 1. Hardware features of several multi core systems: NVIDIA Tesla K20X is based on the Kepler
processor, Intel Xeon-Phi is based on the MIC architecture, while Xeon E5-2680 is a commodity
processor that we use as a performance baseline.

Intel Xeon E5-2680 NVIDIA Tesla K20X Intel Xeon-Phi 7120P
#physical-cores 8 14 61
#logical-cores 16 2688 244
clock (GHz) 2.7 0.735 1.238
GFLOPS (DP) 172.8 1317 1208
SIMD AVX 64-bit N/A AVX2 512-bit
cache (MB) 20 1.5 30.5
Mem BW (GB/s) 51.2 250 352
Watt 130 235 300

In this paper we offer a comparative assessment of these architectures, by describing the
implementation issues and the performance results for a fluid-dynamics code that solves the Navier-
Stokes equation for a 2D fluid using a recently developed Lattice Boltzmann (LB) method; this analysis
extends results already presented in [1, 2, 3].

LB methods (see e.g. [4] for a detailed introduction) are discrete in both position and momentum
spaces; they are based on the synthetic dynamics of (so called) populations sitting at the sites of a discrete
lattice. At each time step, populations hop from lattice-site to lattice-site and then incoming populations
collide among one another; in this step they mix and their values change accordingly. We consider a 2D
model that uses 37 populations and describes the dynamics of a fluid that follows the equation of state
of a perfect gas (in LB jargon a method in x dimensions with y populations is labeled as DxQy, so we
consider a D2Q37 model). In LB methods the macroscopic variables are functions of the populations fl;
at each time step each fl drifts to a nearby grid site in a fixed direction, identified by its velocity vector
cl . The master evolution equation is

fl(x, t +∆t)− fl(x−cl ∆t, t) =−∆t
τ

(
fl(x−cl ∆t, t)− f (eq)

l

)
(1)

where f (eq)
l is the local equilibrium distribution, depending on the local macroscopic variables. One sees

immediately that each time step evolution can be performed independently on all lattice sites, offering a
huge amount of available parallelism.

This paper is organized as follows: in section 2 we give a short description of the accelerator boards
that we have used; in section 3 we describe the implementation of our code for both the K20X and
Xeon-Phi systems, showing benchmark results that have guided our implementation choices; finally in
section 4 we present performance results for our production codes and our concluding remarks.

2. The Xeon-Phi and K20X accelerator boards
The Xeon-Phi and K20X boards, see Table 1, are co-processors of a traditional host system, connected
to the host via 16 PCIe lanes providing a peak bandwidth of 8 GB/s.

The Xeon-Phi board has one Knights Corner (KNC) processor, the first production chip based on the
Many Integrated Core (MIC) architecture, and 8 GB of GDDR5 RAM. The KNC integrates up to 61
CPU-cores interconnected by a high-speed bi-directional ring, and runs at ≈1 GHz. It connects to its
private external with a peak bandwidth of ≈320 GB/s. Each core is based on the Pentium architecture;
it has 32 KB of L1 cache for data and instructions, 512 KB L2 data-cache, and a 512 bit vector Floating
Point Unit (FPU). The FPU engine performs so called fused-multiply-add (FMA) instructions; in this
operation one addition and one multiplication are executed together in one clock cycle. Consequently
the peak performance is ≈32 (16) GFlops in single (double) precision, if all elements of the data vector
are used at all clock cycles. In this case, the KNC delivers a peak performance of ≈2 (1) Tflops in single
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(double) precision. Data on all L2 data-caches are shared among the cores through a coherency protocol
running over the interconnect ring. The KNC runs a lightweight version of the Linux operating system
and each core supports the execution of up-to 4 hardware threads. For more details see [5].

The K20X board has one Kepler processor and 6 GB of GDDR5 memory. The Kepler processor
architecture is massively parallel, with 14 Streaming Multiprocessors (SMXs). Each SMX handles up to
2048 active threads and has 192 scalar cores to process them. Unlike typical CPU threads, Kepler threads
are extremely lightweight: context switches between two threads happen on a cycle-by-cycle basis, so
typically one thread processes just one element of the program data set. At each clock cycle the SMX
schedules and executes warps, groups of 32 threads which are processed in SIMD fashion. The Kepler
processor has a peak performance of ≈ 1 Tflops in double precision and more than 4 Tflops in single
precision. On Kepler each thread addresses 256 32-bit registers and there are 65536 registers for each
SMX. The memory controller has a peak bandwidth of 250 GB/s. For more details see [7].

3. Implementation of the LB code
In this section we describe the optimization of our LB code for single-host systems with either a Xeon-Phi
or a K20X board; we also show benchmark results which have supported our choices.

The Xeon-Phi system is programmed using the accelerator or offloading approach, consisting in
developing a hybrid program which runs on the host and on the KNC processor. The user writes a
standard C or C++ code and uses #pragma offload directives to identify the parts of the code to be
offloaded and executed onto the MIC. The compiler generates code that transparently transfers control
to the MIC processor. The offloaded function is a standard C or C++ program, that can spawn several
threads running on all available cores.

For GPUs, we use CUDA-C [6], the NVIDIA programming language for GPUs. A CUDA-C program
contains one or more functions that run either on the host or on a GPU. Functions with no (or limited)
parallelism run on the host, while those exhibiting a large degree of data parallelism run on the GPU.
A CUDA-C program is a slightly modified C (or C++) program including keyword extensions defining
data-parallel functions, called kernels on the GPU. Kernel functions typically generate a large number
of threads and independent operations, that exploit data parallelism. Threads generated by a kernel are
grouped into blocks which in turn form the execution grid. Blocks are arrays of threads which run on the
same SMX and share data through a fast shared memory.

Although the two architectures use different programming tools, the issues faced by programmers
are similar: in order to exploit parallelism at all possible levels, one must ensure that all cores work in
parallel, data is allocated in such a way that it can be fetched efficiently by the memory controller and
the code structure allows an efficient exploitation of SIMD parallelism.

For both implementations we adopt the offload approach, whereby execution is controlled by the host:
the host first uploads the lattice onto the accelerator memory and then performs a loop over time steps;
at each iteration it offloads the execution of several kernels, described in the following sub-sections.

In our codes, lattice data is stored in column-major order, and we keep two copies in memory. This
choice uses more memory than really necessary, but makes it much simpler to handle many lattice sites
in parallel, as we read input data from one copy and write results onto the other. The physical lattice is
surrounded by Hx halo-columns and Hy halo-rows; for a physical lattice grid of size Lx ×Ly, we allocate
Nx ×Ny lattice points, where Nx = 2Hx +Lx, and Ny = 2Hy +Ly. This makes the computation uniform
for all sites and avoids control-flow divergences that negatively impact performance.

3.1. Optimizing for the Xeon-Phi
For the Xeon-Phi we adopt the Array-of-Structures (AoS) memory scheme, storing the populations of
each site at contiguous memory addresses; in fact, the AoS scheme keeps all population data of each
lattice site at contiguous addresses and better suits the cache structure of the KNC.

At the beginning of each iteration the host first offloads the execution of the propagate_m function,
which performs the pbc and the propagate phases together. pbc enforces periodic boundary conditions
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Figure 1. Move patterns for populations in the
propagate phase of the LB D2Q37 method.

Figure 2. Data packing within AVX vectors of
lattice data for the Xeon-Phi implementation.

along the X dimension; in our case this is simply a copy of fresh data to the halo columns. The
propagate kernel moves populations of each site according to the pattern defined in Eq. 1 and visualized
in Figure 1. This step does not perform any floating-point computation; it is basically a rearrangement
of data in memory, implying memory accesses with sparse address patterns. The propagate_m function
is an OpenMP program which spawns Nt threads. The lattice is split among the threads along the X
dimension, and each thread processes a sub-lattice of size (Lx/Nt)×Ly. Two threads execute first the
pbc phase to update the left and right halo columns; then all Nt threads apply the propagate step,
each onto a different portion of the lattice. Within each thread, K sites are processed in parallel in
order to exploit the data parallelism made available by vector instructions. In our case K = 8 is exactly
the number of double-precision data words that can be packed into a 512-bit AVX vector. Streaming
vector instructions are automatically inserted by the compiler, or explicitly invoked by the programmer,
by coding intrinsic functions(see next paragraph for details). In the first case the program is a scalar
code, compiled enabling auto-vectorization flags (e.g. -O2 or -O3 for the Intel C/C++ compiler). The
compiler automatically exploits data parallelism and uses streaming instructions if specific conditions
are met. This approach is a simple and fast option for the programmer, but efficiency is limited by the
ability of the compiler to identify parts of the code on which vectorization can be applied.

A potentially more efficient approach explicitly introduces vector variables and processes them by
so-called intrinsic functions which are mapped directly onto the corresponding assembly instruction.
For example, a double-precision sum on a vector of 8 elements is started by the code line d =
_mm512_fmadd_pd (a, b,c) where a, b, c, d are vector variables of type __mm512d. In this case
each variable holds 8 double-precision floating-point numbers and the intrinsic is directly mapped onto
the VFMADD132PD assembly instruction. Our codes explicitly uses vector programming and intrinsic
functions, based on our previous experience [8, 9] with Intel processors for which auto-vectorization
yielded sub-optimal performances.

We have divided the lattice in K strips along the Y dimension, and we have packed together
populations of sites at distance Ly/K. In this approach our lattice is an array of vector sites and each
vector site is itself an array of 37 AVX vectors, each holding K populations. In Figure 3 we show the
bandwidth measured in several implementations of the propagate kernel for Nt values as large as four
times the number of cores. We see that the bandwidth obtained via an automatic vectorization is rather
poor (scalar); bandwidth increases significantly (by a factor 2) as one uses AVX vectors through intrinsic
functions (avx+store); a further significant gain is obtained using the STORENRNGO vector streaming
instruction, that does not waste time and bandwidth to load onto the cache full data lines as we know
that the full line will be updated within the loop (avx+storenrgo). In the same picture we also report the
results of the STREAM memory benchmark [10], which attains a maximum bandwidth of ≈ 150 GB/s
corresponding to ≈ 40% of the peak. This is due to the limited bandwidth of the internal ring of the KNC
which connects the cores to the memory controller. Under this constraints our implementation reached
≈ 65% of the effective memory bandwidth.
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After propagate_m completes, the host launches the bc_m kernel that applies the boundary conditions
at the top and bottom of the lattice. This function is also an OpenMP program which runs several threads,
each one operating only on the topmost and lower-most three rows of its slice. Since the computation of
boundary conditions occurs only on a few lattice sites, the execution time of this phase is negligible.

The next step is the execution of collide_m, which performs the collision of populations gathered by
the propagate step. This is the truly floating-point intensive part of the code. It performs approximately
7000 double-precision operations per site, offering in principle a degree of parallelism as large as the
lattice size, as the processing of each site uses its own set of population variables.

The collide_m kernel is yet another OpenMP program which spawns several threads, up to 4 per
core, each thread processing a slice of the lattice. We code collide using intrinsic functions and
enforce SIMD parallelism explicitly processing 8 lattice sites, packed in an AVX vector. In Figure 5
we show the performance of three different implementations, showing the performance gain obtained
as more and more aggressive optimization steps are taken. One sees that automatic vectorization
increases performance by a factor 3.4 over a basic non-vectorized version. A carefully handcrafted AVX-
based optimization offers a further 2× improvement. Our best result is a performance of 360 GFlops,
corresponding to an efficiency of 30% of the (double-precision) peak.

3.2. Optimizing for the K20X
For the GPU code we have adopted the Structure-of-Arrays (SoA) memory scheme, since it helps
exploit the coalescing of global memory accesses, relevant to obtain a high memory bandwidth on these
processors.

In this case each phase is performed by a CUDA kernel. Each block is configured as a unidimensional
array of N_THREAD threads, processing populations allocated at successive locations in memory, in order
to exploit data coalescing. The grid of blocks is a bi-dimensional array of (Ly/N_THREAD × Lx) blocks.
One drawback is that when we compute the bc kernel, many blocks are inactive, but, as underlined
before, the impact of this kernel on performance is negligible.

At the beginning of each time step, the host runs pbc to enforce periodic boundary conditions by
launching two asynchronous memory copies. All following steps, described in the previous subsection,
are offloaded to the K20 device in sequential order.

In Figure 4 we show the effective bandwidth (with and without error correction, ECC) of our
implementation as a function of the number of threads per block. The performance of this obviously
memory-bound kernel depends strongly on the available memory bandwidth, which on the Kepler
architecture is substantially constant for a number of threads-per-block larger than 64. With ECC enabled
we measure a bandwidth of ≈ 160 GB/s. Disabling ECC, the bandwidth increases approximately by a

Figure 3. Performance of the propagate
kernel on the Xeon-Phi. We include for
comparison results of the STREAM memory
benchmark.

Figure 4. Performance of the propagate
kernel on the K20X, with and without Error
Correction (ECC).
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Figure 5. Performance of the collide kernel
on the Xeon-Phi board.

Figure 6. Performance of the collide kernel
on the K20X board.

factor 1.25×, but we have not used this operation mode in order to make simulations robust against
memory failures.

As in the previous case, collide executes after enforcing boundary conditions to the top and bottom
of the lattice. We have profiled the code using the nvprof tool of NVIDIA. After compilation and
optimization the collide kernel executes 6472 double-precision additions and multiplications for each
lattice site; the processor executes this mix of operations as FMA instructions in ≈ 70% of the cases,
while the remaining 30% is executed as ADD (10%) and MUL (20%) instructions, slightly reducing the
overall performance. Moreover, the kernel needs several constants which must be stored in the constant
memory of the device. We implemented data prefetch to hide memory accesses and all loops accessing
the thread-private prefetch array have been unrolled via #pragma unroll. This allows the compiler to
keep the elements of the prefetch array in registers belonging to the very large register file on Kepler.
We have experimentally tuned for best performance, which is a tradeoff between effective occupancy of
the pipeline and register spilling, by varying the minimum number of blocks per SMX (MINBLK). This
is easily done using launch_bounds [6]. Figure 6 shows the performance measured by our CUDA
implementation as a function of the number of threads. We have benchmarked the kernel using several
values of the MINBLK parameter. We find that MINBLK=2 gives the best performance for a wide range of
threads per block. Performance improves up to 256 threads per block reaching a value of ≈ 560 GFlops
corresponding to ≈ 43% of the peak; as we try to use a larger number of threads the performance drops
again because the number of needed registers is larger than the available resources of the SMXs.

4. Results and conclusions
In Table 2 we compare the performance figures for the two presented implementations. We also include
the performance of the same code developed and optimized for a dual-processor commodity system (dual

Table 2. Performance comparison of the propagate and collide kernels on accelerators and on a
dual eight-core E5-2680 (Intel Sandy Bridge) processor running at 2.7 GHz. ε is the efficiency w.r.t.
the available peak. For collide we also measure performance in Mega Lattice Update per Second
(MLUPS), a user-friendly metric. Finally we list the energy needed to update one lattice cell.

Intel dual E5-2680 Intel Xeon-Phi 7120X NVIDIA K20X
propagate GB/s 60 98 155
ε 70% 28% 62%
collide GF/s 220 362 565
ε 63% 30% 43%
MLUPS 29 54 64
µJ / site 8.96 5.55 3.67
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E5-2680), based on the Sandy Bridge architecture, see [8].
The propagate kernel is a memory-bound step which behaves like a memory-copy with very sparse

memory addressing. On the Kepler architecture we reach ≈ 62% of the available peak bandwidth,
roughly the same as on the Sandy Bridge system; however the effective bandwidth – made possible
by the GDDDR5 memories – is much higher. The Xeon-Phi, that uses the same memories, reaches a
lower bandwidth, ≈ 100 GB/s, that is ≈ 30% of peak. This is mainly due to the limited bandwidth
(≈ 220 GB/s) of the internal ring, connecting cores and memory controllers.

The collide kernel is a strongly compute-bound step, requiring approximately 20 double-precision
floating-point operations per byte. On the Kepler processor this kernel exploits more than 70% of the
available FMA instructions and attains a maximum performance of ≈ 40% of the available peak. The
Xeon-Phi performance is lower, reaching approximately 30% of the available peak. All in all, the Xeon-
Phi is faster by roughly 1.6× with respect to the more traditional Sandy Bridge system; this speed-up
figure grows to 2.6× for the K20X.

Table 2 reports also the respective power consumptions, measured as energy required to update one
lattice site. Accelerators have a better value than the dual Sandy Bridge system, with a significant
improvement made possible by the latest generation of NVIDIA GPUs.

In conclusion, our application enjoys a 2×−3× performance increase using accelerators; accelerators
also help reduce the power budget. While these are valuable results, they were obtained with very careful
handcrafted optimization work, tailored for the specific target architectures. This leads us to think that
there is still a lot of architectural and software work ahead before accelerators become widely used in
HPC architectures. From the software point of view, programming methodologies that can be shared
across different accelerator technologies are necessary.
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