
im-
ross-
Plot

draw-
le user
w he

d.

ndow
. The

SLAC-PUB-9178
March 2002

Presented 
The HippoDraw Application and the HippoPlot C++ Toolkit upon
which it is built

Paul F. Kunz
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

1. Introduction
HippoDraw is a highly interactive, document centric data visualization application. It was first

plemented on NeXTStep where it was highly acclaimed by its limited user base[1]. It is now a c
platform application with GUI components written in Java and the underlying core using the Hippo
C++ class library.

The HippoDraw application is based on a document paradigm much like a word processor or
ing program. This idea is simple but has been used in a number of unexpected ways. The princip
interface isGUI-based. The interface is easy to use and makes it quicker for the user to display ho
wants things. Its highly interactive nature gives its users a better feel for the data being displaye

2. Overview of the Application
Figure1 shows a screen dump of a running HippoDraw application. In the center is the large wi

containing the drawing canvas. This is the document window. it is the focus of the user’s attention

Fig.1. Screen dump of running HippoDraw application
1
Work supported by the Department of Energy contract DE-AC03-76SF00515.

at the International Conference on Computing in High-Energy and Nuclear Physics (CHEP'01), 9/3/2001 - 9/7/2001, Beijing, China



t may

hang-
tter at-
rols in
graphic

ging
e,

l. Thus,
access
ls be-

ed, with
at not
p of

reate
f this

tance
ations,

typed
idth
ast. In
by the

e today.
s and

of all
he is

on any
played
or text
hange

ata.
e list

ction
s can
um of

is the
er of
f a func-
es, the
user
size of this window is such that it prints as standard U.S. letter or international A4 size. A documen
contain any number of pages and multiple documents can be opened at one time.

To the right of the main canvas window is the inspector panel. It is via this panel that one can c
es the attributes of the graphic objects, except for resizing or moving them on the canvas. The la
tributes are changed by selecting and direct manipulation with the mouse. User input on the cont
the inspector window are applied to the selected graphic. One also uses the inspector to view the
object’s properties.

In the menu bar on the canvas window the user will find further controls for opening files, chan
fonts, grouping and alignment of graphics,etc. These are controls that either have only a on-off choic
or need to bring up additional panels, such as file dialog, for the user to make a choice.

The inspector panel has six sub-panels which are selected by the tabs at the top of the pane
the inspector panel is usually on the screen all the time, but its contents change to allow the user
different controls. We found this design to be better than separate panels for different set of contro
cause when using applications that have separate panels, we find the screen gets rapidly clutter
some of the panels even hiding parts of the document window. One should note from figure 1, th
only did we decide on only one control panel, but it is also small enough so it is unlikely to sit on to
the document window or exceed the size of a laptop computer’s screen.

One of the tabbed panels is the “Data” panel from which one can select the kind of display to c
and its binding to the n-tuple data. Nine kinds of displays have been implemented so far. The GUI o
panel is not hard wired to the kinds of displays. Rather, the GUI asks the C++ display factory ins
for the list of displays and their potential bindings. The next tabbed panel selects the represent
point sizes, and color.

The “Axis” panel sets the range of the data displayed can be set by sliders or by exactly values
in by the user. Unique to HippoDraw is a slider which controls the bin width. Changing the bin w
requires that a histogram be re-accumulated. But with today’s computers, . this operation is very f
fact, except for very large data sets, the time needed to re-accumulate and display is dominated
time to re-draw. One can see many new displays per second even on the slowest computers in us
Allowing one to continuously change the bin width gives a better feel of the significant of the peak
valleys that might appear in a histogram. There is also an offset control, which moves the edges
the bins by a fraction of the bin width. It also helps the user understand the significance of what
seeing.

The next tabbed panel controls the adding, removing, and setting of cuts that can be applied
display. As seen in Figure 1 when a cut is added, a histogram of the column used by the cut is dis
with a shared region showing the accepted values. The cut range is controlled by sliders and/
fields. For each change in a cut range, the display being cut is instantly redraw. Thus, one can c
the cut range smoothly and watch the effect on the target display.

The “Fits” tabbed panel allows for overlaying functions on displays and fitting them to the d
Here again, the GUI does not have hard wired into it a fixed set of functions. Rather it receives th
of available functions from a function factory C++ object. Also, the number and names of the fun
parameters is obtained by asking the function C++ object for it. In this way, the available function
be extended by adding C++ function instances to the function factory.One can also do a linear s
functions.

The final tabbed panel provides a way of adding numbers to the canvas. One such number
total number of entries in a display. The displayed number is “live” in the sense that if the numb
entries changes, say because of changes in a cut range, it updates itself. Also the Chi-squared o
tion on a display and/or the function parameters can be displayed. Again, if the display data chang
Chi squared in automatically updated. All these number “float” on top of their display so that the
can move them to a more appropriate place then the default.
2



bility
econd is
e de-

raphs
nds is
s,
steps
sees
ippo-
some
create

length.
erate
g and
he ap-
object
ession
he GUI
graph-

om the

e same
. The
ta sets.
itself.

he con-
uples
ctor.
read.
olumn.
are the

t pack-
data,

of
ways.
. For ex-
roject-
omplex

ntation
s them
3. Document paradigm
Two additional capabilities are needed to complete the document paradigm. The first is the a

to save the canvas and the state of all objects into a file that can be opened at a later date. The s
to be able to print the document. With these features, there are additional benefits, which will b
scribed in the following sections

In applications that have commands, a script written in some language is used to re-display g
at a later time. With HippoDraw, this need for a scripting language and its corresponding comma
eliminated. Instead, the document is stored with all the attributes of the graphs including cuts, fitetc.

From their first physics laboratory course, every physicist keeps a log book that records the
taken to reach a result. With a typical histogram viewing application, one needs to print what one
on the screen and paste the plots into the logbook at pertinent points in the analysis chain. With H
Draw, users have used the document file as their logbook. That is, when they were satisfied with
point along the analysis chain, but need to proceed further, they leave that plot on the canvas and
a new plot for the next step. The result is the sequence of important plots and their cuts, fits,etc., is re-
corded in the document. We have found that users have typically saved documents of 3-7 pages in

Another use of commands and scripting language is to do something very repetitive, like gen
50 histograms on 50 different channels of something. A scripting language that supports loopin
some rudimentary math makes such tasks much easier. This is done with HippoDraw by running t
plication as module in an interactive and/or scripted Python session. Python[2] is an interpreted
oriented language that is getting increasingly popular in the science community. From a Python s
and/or Python script, one has the same capability to create, manipulate, and inspect displays that t
has. For example, one can fit functions to a histogram and read back the parameters of the fit. The
ic objects on the canvas make no distinction on whether messages are coming from Python or fr
GUI. To make this possible, the Java implementation of Python, Jython[3], is used.

One of the uses of commands and scripting languages in other applications is to generate th
set of plots, cuts,etc. on n-tuples that have the same format but correspond to different data sets
way this need is resolved in HippoDraw was to use a saved document as a template for many da
When the document is saved, by default only a reference to the n-tuple file is saved, not the data
Thus, if the document is opened at later date and the contents of the n-tuple has changed, then t
tents of all the plots will change automatically. Likewise, a user can open one or more additional n-t
of the same format, select all the plots, then replace the n-tuple used by them via the data inspe

Another use of running Hippodraw under Python is when data in different formats need to be
From a Python session and/or script, an ntuple can be created and then filled either by row or by c
Any Java package capable producing row-wise or column-wise data can be used. Two examples
JavaFits[4] package for reading astrophysics standard FITS formatted files, and the hep.io.roo
age[5] for reading the data in ROOT files. Another possibility, is to read data files, massage the
create vectors of data that can be added by row or by column to an n-tuple.

4. The HippoPlot C++ class library
The HippoDraw C++ library is a toolkit for building data visualization applications. The design

this tool kit is an attempt to decompose into abstractions the process of displaying data in various
Thus, there are a number of class hierarchies, each representing an aspect of the decomposition
ample, the projector hierarchy is responsible for reading data and creating the x-y points, called p
ed values, that are to be plotted. The simplest one is used to create a scatter plot, while a more c
one is used for a histogram.

Since projected values can be represented on a plot in many ways, there is a point represe
hierarchy. A member of the plotter hierarchy requests projected values from a projector, and hand
3



class
g, but

f each
th the

dif-

Mac
1.1.2
ing of

small
oft in-

dom-
rface.
uickly
s that
based

tions.
f the
an,
one by one to a point representation, which then draws the point to an abstract view class. The view
has a handful of methods. A concrete implementation of a view class interfaces to Java for drawin
other interfaces, such as Qt, could be easily implemented.

Ten kinds of displays have been implemented so far by putting together different members o
class hierarchy. It should be relatively easy to create new kinds of displays that can be useful to bo
particle physics and astronomy communities.

The toolkit is independent of the Java based GUI of the application. It could be used with a
ferent GUI toolkit, for example with Trolltech’s Qt. It may also be used for different applications.

5. Some Details
HippoDraw, and thus the HippoPlot class library, has been ported to Microsoft Windows and to

OS X, as well as to various versions of Linux. It compiles with stable releases of gcc from egcs-
through gcc-3.0, Visual C++ 6.0, and Sun’s CC 5.1. The standard GNU build environment consist
autoconf, automake, and libtool has been used. The class library consists of about 100 relatively
classes. Sources are available from ftp://ftp.slac.stanford.edu/users/pfkeb/hippodraw/. A Micros
staller file of built application is also available in the same directory.

6. Conclusions
HippoDraw has demonstrated interesting features which are unique to this application. It is pre

inatelyGUI based, but can be used within a Python session for scripting and a command-like inte
TheGUI based control environment allows one to visualize and understand the data much more q
and with far greater ease. The document-centric paradigm also proved to be very useful in way
were not foreseen. The Python interface makes up for what can not be done solely by the GUI
controls.

Acknowledgments
The users of HippoDraw have contributed many ideas via constructive criticisms and sugges

Amongst the most vocal were Bill Atwood and Tom Pavel. The author was aided in development o
original application by Mike Gravina, Paul Rensing, and more recently by Jeff Gould, Gilead Wurm
Oded Wurman, Stefan Bonneaud, and Matan Shacham.

References
 1 Michael F. Gravina, Paul F. Kunz, T. Pavel, P. Rensing Proc. Workshop on Software

Engineering, Artificial Intelligence and Expert Systems for High-Energy and Nuclear
Physics, La Londe-Les-Maures, France, Jan 13-18, 1992. World Scientific.

 2 http://www.python.org.
 3 http//www.jython.org.
 4 http://heasarc.gsfc.nasa.gov/docs/heasarc/fits/java/v0.9/.
 5 http://java.freehep.org/lib/freehep/doc/root/index.shtml.
4


