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Abstract
We study an extension of Killing-Yano symmetry in the presence of totally skew-
symmetric torsion, which is called generalized hidden symmetry. Such a symmetry
gives rank-2 irreducible Killing tensors which don’t in general commute. We further
study Kerr-Sen black hole spacetime and its generalizations in hetelotic supergravity
theory. It is shown that these spacetimes possess generalized Killing-Yano symmetry
and the torsion is identified with 3-form flux naturally.

1 Introduction

Killing–Yano symmetry has been studied as a fundamental hidden symmetry which plays a crucial role
in black hole spacetimes. It is known that in the four-dimensional Kerr spacetime [1], all the symmetries
necessary for separability of the geodesic, Klein-Gordon and Dirac equations, are described by a Killing–
Yano tensor [2]. Higher-dimensional solutions describing rotating black holes have attention in the recent
developments of superstring and supergravity theories. It was demonstrated that the vacuum rotating
black hole solutions (with spherical horizon topology) [3–5] have Killing–Yano symmetry and generalize
separability of Hamilton-Jacobi equation [6–9], Klein-Gordon equation [10, 11] and Dirac equation [12].
In this presentation we discuss a Killing–Yano symmetry in the presence of skew-symmetric torsion. The
spacetimes with skew-symmetric torsion occur naturally in supergravity theories, where the torsion may
be identified with a 3-form field strength. Black hole spacetimes of such theories are natural candidates
to admit the Killing–Yano symmetry with torsion. This generalized symmetry was first introduced by
Bochner and Yano [13] from the mathematical point of view and recently rediscovered [14–16] as a hidden
symmetry of the Chong–Cvetic–Lü–Pope rotating black hole of D = 5 minimal gauged supergravity [17].
Furthermore, this was found in the Kerr–Sen black hole solution [18, 19] of effective string theory and
its higher-dimensional generalizations [20]. The discovered generalized symmetry shears almost identical
properties with its vacuum cousin; it gives rise symmetries that imply separability of the Hamilton–Jacobi,
Klein-Gordon, and Dirac equations in this background [21].

2 Generalized Killing-Yano symmetries

We first recall some notations concerning a connection with totally skew-symmetric torsion. Let Tabc be
a 3-form and ∇T

a be a connection defined by

∇T
a Y

b = ∇aY
b +

1
2
TcabY

c , (1)

where ∇a is the Levi-Civita connection. The connection ∇T
a satisfies a metricity condition ∇T

a gbc = 0,
and preserves the geodesics. For a p-form ψa1···ap the covariant derivative is calculated as

∇T
a ψb1···bp = ∇aψba···bp +

1
2
Tca[b1ψ

c
b2···bp] . (2)

We further define an exterior derivative dT and a co-exterior derivative δT by

(dTψ)a1···ap+1 =
1
p!
∇T

[a1
ψa2···ap+1] , (δTψ)a1···ap−1 = −∇T

c ψ
c
a1···ap−1 . (3)

1Email address: houri@sci.osaka-cu.ac.jp



T. Houri 173

A generalized conformal Killing-Yano (GCKY) tensor k was introduced as a p-form satisfying for any
vector field X

∇T
Xk =

1
p+ 1

X−| dT k − 1
D − p+ 1

X∗ ∧ δT k , (4)

where −| and ∧ stand for an inner and a wedge product, respectively. A GCKY p-form f obeying δT f = 0
is called a generalized Killing-Yano (GKY) tensor, and a GCKY p-form h obeying dTh = 0 is called a
generalized closed conformal Killing-Yano (GCCKY) tensor.

Proposition 2.1 GCKY tensors possess the following basic properties:

1. A GCKY 1-form is equal to a conformal Killing 1-form.

2. The Hodge star ∗ maps GCKY p-forms into GCKY (D − p)-forms. In particular, the Hodge star
of a GCCKY p-form is a GKY (D − p)-form and vice versa.

3. When h1 and h2 is a GCCKY p-form and q-form, then h3 = h1 ∧ h2 is a GCCKY (p+ q)-form.

4. Let k be a GCKY p-form for a metric g and a torsion 3-form T . Then, k̃ = Ωp+1k is a GCKY
p-form for the metric g̃ = Ω2g and the torsion T̃ = Ω2T .

5. Let k be a GCKY p-form. Then

Qab ≡ kac1···cp−1kb
c1···cp−1 (5)

is a rank-2 conformal Killing tensor. In particular, Q is a rank-2 Killing tensor if k is a GKY
tensor.

We define a 2j-form h(j) as h(j) = h ∧ h ∧ · · · ∧ h where the wedge products are taken j − 1 times
such as h(0) = 1, h(1) = h, h(2) = h ∧ h, · · · . If we put the dimension D = 2n+ ε, where ε = 0 for even
dimensions and ε = 1 for odd dimensions, h(j) are non-trivial only for j = 0, · · · , n− 1 + ε, i.e., h(j) = 0
for j > n − 1 + ε. Since the wedge product of two GCCKY tensors is again a GCCKY tensor, h(j) are
GCCKY tensors for all j. Moreover the Hodge dual of the GCCKY tensors h(j) gives rise to the GKY
tensors f (j) = ∗h(j). For odd dimensions, since h(n) is a rank-2n GCCKY tensor, f (n) is a Killing vector.
Given these GKY tensors f (j) (j = 0, . . . , n− 1), one can construct the rank-2 Killing tensors

K
(j)
ab =

1
(D − 2j − 1)!(j!)2

f
(j)
ac1···cD−2j−1f

(j)c1···cD−2j−1
b , (6)

obeying the equation ∇(aK
(j)
bc) = 0, and

[K(j),K(`)]Tabc ≡ K
(j)
e(a∇

TeK
(`)
bc) −K(`)

ea ∇TeK
(j)
bc) = 0 . (7)

This means that the integrals of motion generated from Killing tensors don’t commute with respect to
Poisson bracket.

When the torsion is absent, it is shown that δh is a Killing vector. On the other hand, when the
torsion is present, neither δTh nor δh are in general Killing vectors. Such a torsion anomaly appears
everywhere in considering geometry with the GCCKY 2-form. For instance, it is seen in separability
of field equations. Separation of variables in differential equations is deeply related to the existence of
symmetry operators, which commute between themselves and whose number is that of dimensions. It is
known that such symmetry operators can be generated by a CCKY 2-form in the absence of torsion. In
the presence of torsion, however, the commutator between a symmetry operator generated by a Killing
tensor and the laplacian don’t vanish in general. This means that a GCCKY 2-form no longer generates
symmetry operators for Klein-Gordon equation. Similarly, it is known that the GCCKY 2-form doesn’t
in general generates symmetry operators for Dirac equation, while it is possible for CCKY tensor.
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2.1 Kerr–Sen Black Hole

Let us see an example of spacetimes admitting a GCCKY 2-form. Actually, it can be shown that (2n+ε)-
dimensional metric

g =
n∑

µ=1

Uµ

Xµ
dx2

µ +
n∑

µ=1

Xµ

Uµ

(
n−1∑
k=0

A(k)
µ dψk −

n∑
ν=1

Nν

HUν

n−1∑
k=0

A(k)
ν dψk

)2

+ ε
c

A(n)

(
n∑

k=0

A(k)dψk −
n∑

ν=1

Nν

HUν

n−1∑
k=0

A(k)
ν dψk

)2

, (8)

where c is a constant, admits a GCCKY 2-form h. It is convenient to introduce an orthonormal basis
{eµ, eµ̂, e0},

eµ =

√
Uµ

Xµ
dxµ , eµ̂ =

√
Xµ

Uµ

(
n−1∑
k=0

A(k)
µ dψk −

n∑
ν=1

Nν

HUν

n−1∑
k=0

A(k)
ν dψk

)
,

e0 =
c

A(n)

(
n∑

k=0

A(k)dψk −
n∑

ν=1

Nν

HUν

n−1∑
k=0

A(k)
ν dψk

)
, (9)

in which g, h and the torsion T are written as

g =
n∑

µ=1

(
eµeµ + eµ̂eµ̂

)
+ εe0e0 ,

h =
n∑

µ=1

xµ e
µ ∧ eµ̂ , T = −

(
n∑

µ=1

∂µH

H
eµ ∧ eµ̂

)
∧

n∑
ν=1

√
Xν

Uν
eν̂ . (10)

Here the metric functions are given as

Uµ =
∏
ν 6=µ

(x2
µ − x2

ν) , H = 1 +
n∑

µ=1

Nµ

Uµ
,

A(k)
µ =

∑
1≤ν1<···<νk≤n

νi 6=µ

x2
ν1

· · ·x2
νk
, A(k) =

∑
1≤ν1<···<νk≤n

x2
ν1

· · ·x2
νk
, A(0)

µ = A(0) = 1 , (11)

and the functions Xµ and Nµ depend on the single variable xµ: Xµ(xµ), Nµ(xµ).
In considering an effective theory of hetelotic supergravity,

S =
∫
eφ
(
∗R+ ∗dφ ∧ dφ− ∗F ∧ F − 1

2
∗H ∧H

)
, (12)

where F = dA and H = dB − A ∧ dA, the metric g and the 3-form field strength H identified with the
torsion T are required to satisfy the equations of motion

Rab −∇a∇bφ− F c
a Fbc −

1
4
H cd

a Hbcd = 0 ,

d
(
eφ ∗ F

)
= eφ ∗H ∧ F , d

(
eφ ∗H

)
= 0 ,

(∇φ)2 + 2∇2φ+
1
2
FabF

ab +
1
12
HabcH

abc −R = 0 . (13)

These equations determine the unknown functions Xµ and Nµ as

Xµ =
n−1∑
k=0

ckx
2k
µ + 2mµx

1−ε
µ + ε

(−1)nc̃

x2
µ

, Nµ = 2mµx
1−ε
µ s2 , (14)
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where s = sinh δ, c = cosh δ, cn−1 = −1, and mµ (µ = 1, · · · , n), ck (k = 0, · · · , n − 2), c̃ and δ are
arbitrary constants. In addition, the Maxwell potential A and the dilaton field φ become

A =
c

s

n∑
µ=1

Nµ

HUµ

n−1∑
k=0

A(k)
µ dψk , φ = logH . (15)

When we take the special choices of the constants, the solutions represent charged rotating black hole
solutions including the Kerr-Sen black hole [18, 19] and its higher-dimensional generalizations [20]. The
torsion anomalies vanish on these black hole spacetimes, and hence one can expect that integrable struc-
tures [22–25] are subject to a generalized Killing-Yano symmetry.

3 Conclusion

We have studied an extension of Killing-Yano symmetry in the presence of 3-form torsion. We have
demonstrated that, when the torsion is an arbitrary 3-form, one obtains various torsion anomalies and
the implications of the existence of the generalized Killing-Yano symmetry are relatively weak compared
with ordinary Killing-Yano symmetry. However, in the spacetimes where there is a natural 3-form obeying
the appropriate field equations, these anomalies disappear and the concept of generalized Killing-Yano
symmetry may become very powerful.
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