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Abstract

In the first component of this thesis, we investigate the physics of ultacold neutrons (UCN).

UCN are neutrons so cold they can be stored inside of material, magnetic and gravitational

bottles. Using this property we use UCN nonimaging optics to design a type of reflector

that directs UCN upward in to vertical paths. Next we examine UCN passing through thin,

multilayered foils. In the remaining sections we investigate the so-called Fierz interference

term of free neutron beta decay, denoted bn. It is theorized that contributions to scalar

and tensor interactions from physics beyond the Standard Model could be detectable in the

spectrum of neutron beta decay, manifest as a nonzero value for bn. We investigate three

techniques for measuring bn. The first is to use the primordial helium abundance fraction

and compare that to predictive Big Bang nucleosynthesis calculations. Second we extract

bn from the spectral shape generated by the 2010 data set of the UCNA experiment. Third,

we discuss progress toward constructing the UCNb experimental prototype. We present

the design of this new experiment that uses the UCN source at LANSCE for measuring bn,

in which UCN are guided into a shielded 4π calorimeter where they are stored and decay.

From Big Bang nucleosynthesis we can place the limit 0.021 < bn < 0.277 (90% C.L.) on

the neutron Fierz term and from the UCNA 2010 data we set −0.044 < bn < 0.218 (90%

C.L.).
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Preface

This thesis is, at its core, about searching for new physics. In particular, it is about looking

for Fierz interference by observing the decay of ultracold neutrons (UCN). Along the way

toward that goal, I have performed many other experiments dealing with ultracold neutron

physics that I also discuss.

Ultracold neutrons, an exotic state of free neutrons, are so cold, just 1/1000th of a

degree above absolute zero, that they can be trapped in bottles and guides. Ultracold

neutrons reflect off some smooth surfaces just like photons. There is one catch: photons

move in straight lines, but neutrons have mass and move slowly enough that they are

affected by Earths gravity. Ultracold neutrons bounce about as high a basketball hoop, so

their parabolic paths cannot be ignored.

I have divided the body of work into three major parts.

The first part covers the physics of neutrons in the Standard Model. In particular, we

begin by developing the Standard Model, as generally as possible, and then move toward

a more specific derivation of the components needed to discuss the known physics of the

neutron. I then discuss several experiments involving ultracold neutrons (UCN). One such

proposed experiment uses UCN nonimaging optics. Another experiment measured UCN

transmission through zirconium foils of various thicknesses, resulting in an increase in UCN

density past the foil at the Los Alamos Neutron Science Center in Los Alamos, New Mexico.

The second part of my thesis focuses on Fierz interference and the physics beyond the

Standard Model that may manifest itself though a measurable quantity called the Fierz

interference term, denoted b or “little b,” of neutron beta decay. This term is essentially

zero in the Standard model. Any nonzero value would be an indication of some type of

scalar or tensor interaction, previously undiscovered. Obviously, this is a motivating place

to look for discovery.

The third part of this work will focus on experimental efforts, both underway and
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proposed, that will set new and improved limits on b. I begin by discussing an important

experimental limit from Big Bang nucleosynthesis in the earliest moments of the universe. I

spent a considerable amount of my graduate years working on the UCNA experiment. The

aim of this experiment is to measure the neutron beta asymmetry. While working on this

project, my primary focus during this time was to imporve and measure the linearity of the

photometrtric components of the experimental apparatus. While working on this, it became

apparent that the UCNA experiment had a high quality beta decay spectrum. I became

intriged by the possibility of extracting the Fierz interference term from this spectrum. This

effort paid off as we are able to place limits of < 0.13 (90% C.L.) on b. Also of tremendous

interest to me was the possiblity of contructing a new, dedicated experiment to measure b

in an apparatus optimized for high precision measurement of an UCN beta decay spectrum.

This experiment would be called UCNb.

During these studies we discovered two interesting facts. First, that UCNA had surpris-

ing systematic sensitivity to b and second, measuring b requires large statistics that could be

achieved, not in UCNA, but in this new experiment dedicated to measuring b. I am happy

to have been given the opportunity to work at the ultracold neutron source at LANSCE

that makes collecting such large statistics possible. It is an excellent location for situating

an experiment like UCNb. The UCN source there is able to provide a large density of UCN,

of about 60 UCN/cc. This large density is ideal for placing a simple calorimeter as close to

the source as allowed by the concrete shield package.

I designed and constructed a significant fraction of the new UCNb experiment. I am

hopeful that my efforts have begun a sequence of experiments towards the goal of measuring

b to 10−4. As I will discuss, this limit is believed to be a range of significant scientific value

for searching for new TeV-scale physics beyond the Standard Model.

Kevin Peter Hickerson
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Chapter 1

The Standard Model

The more you see how strangely

Nature behaves, the harder it is to

make a model that explains how even

the simplest phenomena actually work.

So theoretical physics has given up on

that.

Richard Feynman

In this chapter, we introduce the Standard Model in as simple a way as we can with

the aim of explaining the physics of neutrons. That being said, the neutron requires almost

all of the Standard Model to be understood. We start by introducing the Model by using

the metric independent language of n-forms. From there, we move into a more explicit

component form.

To introduce the Standard Model in the most geometrically abstract way possible, using

the simplest and shortest description, we make use of n-forms, the exterior product, and

the dual [5]. To begin, we look at the Lagrangian with unity coupling for QCD and QED

LQCD = −1
4 trF 2 + ψ 6Dψ −mψψ. (1.1)

Now given that A is a connection for the Lie group G, the covariant derivative along the

connection is the operator given by

D = ∂ +A. (1.2)

Since this is the general theory without renormilization of A by a coupling constant, the
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field curvature F is

F = D ∧A = dA+A ∧A, (1.3)

where dA is the exterior derivative of the connection A. Since the exterior derivative

operator is nilpotent d2A = 0, the exterior derivative of F ,

dF = dA ∧A−A ∧ dA, (1.4)

which is already a derivative, vanishes. Along with the conserved current, J , we get the

generalized non-abelian Maxwell’s equations,

∂F = J,

dF = 0.
(1.5)

1.0.1 Yang-Mills Theory

We consider a non-abelian compact Lie group G generated from the Lie algebra G. In

Yang-Mills Theory, the gauge field is scaled with a coupling constant A→ igA, so that now

the covariant derivative operator becomes

D = ∂ + igA. (1.6)

We now introduce a new gauge field curvature F = D∧A that in terms of the new coupling

F = dA+ igA ∧A. (1.7)

The Lagrangian now becomes

LYM = − 1

4g2
trF 2. (1.8)

If we have more than one gauge group G = G1 × G2 × · · · , each with its own coupling

constant g1, g2, . . ., the covariant derivative becomes

D = ∂ − igiAGi . (1.9)
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The Lie group in the Standard Model is a direct product of specific gauge groups

GSM = U(1)× SU(2)× SU(3) (1.10)

Each of these gauge groups corresponds to named gauge fields that have observable bosonic

fields associated with them.

1.1 Particles, forces, and interactions

1.1.1 Fermions

For all fermions ψ, there exist antifermion partners, ψ with equal mass and opposite charge

as shown in the Dirac term,

LD = ψ(6∂ −m)ψ. (1.11)

A fermion is spin degenerate with each fermion state possessing half-integer spin. Funda-

mental fermions in the Standard Model are spin-1
2 spinors. They have left- and right-hand

components forming doublets

ψ →

 ψL

ψR

 . (1.12)

1.1.2 Leptons and Quarks

The mass eigenstates of the fermions of the standard model are labeled into two groups,

leptons and quarks. The leptons form three generation doublets of different mass scales,

 νe

e

 νµ

µ

 ντ

τ

 . (1.13)

The quarks are  u

d

 c

s

 t

b

 . (1.14)

The antiquarks are  u

d

 c

s

 t

b

 , (1.15)

which are degenerate in mass and have opposite charge just like any Dirac fermion eigen-
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state. The left-handed leptons can be written as the doublets

eLi =

 νi

`−i

 , (1.16)

and the left-handed quarks are written as the doublets

uLi =

 ui

d′i

 . (1.17)

1.2 CKM matrix

For quarks, weak eigenstates are not the same as the mass eigenstates. Instead there is a

projection,

d′i = Vijdj , (1.18)

where Vij is the Cabibbo-Kobayashi-Maskawa matrix given by

VCKM =


Vud Vcd Vtd

Vus Vcs Vts

Vub Vcb Vtb

 . (1.19)

VCKM measures the transition probability from qu → qd due to the rotation of states of the

down quark 
d′

s′

b′

 =


Vud Vcd Vtd

Vus Vcs Vts

Vub Vcb Vtb




d

s

b

 . (1.20)

The CKM matrix is unitary, so precision tests of this unitary property can look at the sum

|Vud|2 + |Vus|2 + |Vub|2 = 1−∆, (1.21)

where a nonzero ∆ would indicate deviation from unitarity. As we will show in the following

chapter, neutron β decay gives important insight into unitarity as it can be used to measure

the |Vud| component [6].
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1.3 The θ-term

While it has not been observed experimentally, there is nothing to stop us from writing a

θ-term that has F ∧ F dependence,

Lθ =
θg2

8π2
trF ∧ F, (1.22)

where in component form,

F ∧ F = 1
2εµναβFµνF

αβ. (1.23)

Experimentally, the parameter θ is observed to be small. Note that we can also write

F 2 = F ∧ F̃ . For the θ-term, we will have dependence on the dual term,

F ∧ F = dA ∧ dA+ 2A ∧A ∧ dA. (1.24)

The θ-term differs from the gauge field term in that it can be written as a total exterior

derivative,

F ∧ F = dK, (1.25)

where K is the Chern-Simons 3-form,

K = A ∧ dA+ 2
3A ∧A ∧A. (1.26)

A useful property of the total exterior derivative is that we can use Stokes’ Theorem to

integrate dK on a 4-manifold M with boundary ∂M by integrating K on ∂M ,

∫
M

trF ∧ F =

∫
∂M

trK. (1.27)

Let ∂M be a 3-cylinder with future time-slice three-disk, D3(t+), and past time-slice, D3(t−),

as end-caps for times t± → ±∞ and S2 as the side. We can take the limit of r →∞ of the

2-sphere,

∂M = D3 ∪ D3 ∪ S2 × R. (1.28)
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In pictorial form this looks like

∂M = . (1.29)

The Chern-Simons action for level k can be written

SkCS(M) =
k

4π

∫
Υ

trK. (1.30)

K̃ is the Adler-Bell-Jackiw anomalous current [7–9]

∂K̃ = F ∧ F. (1.31)

1.4 Neutron electric dipole moment

The neutron has a very small electric dipole moment (edm). In the Standard Model, it is

estimated to be as small as dn ≈ 2× 10−32 e cm by Khriplovich and Zhitnitsky [10].

A neutron edm can can be generated by the QCD theta term [11] and is estimated by

Pospelov to be [12]

dn = (2.4× 10−16) θ̄ e cm. (1.32)

An experimental limit has most recently been set by the ILL at [13,14]

|dn| < 2.9× 10−26 e cm (90% C.L.). (1.33)

This puts a limit on θ̄ at ∣∣θ̄∣∣ < 1.2× 10−10 (90% C.L.). (1.34)
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Chapter 2

The Neutron

It is no good to try to stop knowledge

from going forward. Ignorance is never

better than knowledge.

Enrico Fermi

2.1 Why Study the Neutron?

The neutron serves as a way of studying all four forces, the electroweak (the unification

of electromagnetism and the weak force), strong and gravity. The neutron gives us a peek

into the early universe as the free neutron made up half of all baryonic matter for the first

three minutes. As we show, the neutron allows for searching for new forces and interactions

beyond the Standard Model with relatively clean tests compared to complex nuclei. We

will also show that the neutron has advantages even compared to high energy searches for

new physics such as the Large Hadron Collider (LHC).

The neutron has a quark content of two valence down quarks and one valence up quark

|n〉 = |udd〉. (2.1)

This quark content is what gives the neutron its neutrality. As the neutron mass is slightly

greater than the proton mass, it can decay via the weak force into a proton, an electron

and an antielectron neutrino,

n→ p+ e+ ν̄e. (2.2)

As this decay is generated by the weak decay of a down quark into an up quark, the neutron



8

serves as a test of this interaction. Also, since the neutron is a complex baryon with internal

QCD structure, the interaction is modified from the pure (V−A)⊗ (V−A) structure of

the leptonic sector of the Standard Model, to reveal structure form factors in the interaction,

Lβ =
√

8GFVud p̄γ
µ
(
gV − gAγ

5
)
n ēγµ

(
1− γ5

)
νe. (2.3)

This gives us a metric by which to test lattice QCD calculations, which will likely be able

predict the values gA and gV [15, 16]. Current experimental world average values for the

vector and axial vector form factors have [17,18]

gV = 1.0000(3), λ ≡ gA/gV = −1.2701(25). (2.4)

2.2 Beta Decay

The β-decay process occurs both with free neutrons, and with neutrons bound inside the

nucleus. In bound nuclear decay,the vector component of free neutron decay can be studied

in Fermi 0+ → 0+ decays. The nuclear structure can be ignored in favor of needing only to

deal with the nucleon structure of the neutron and the final state proton instead. The axial

vector component can be studied by pure Gamow-Teller decays or mixed decays such as the

case with the neutron. As shown in figure 2.1, when a neutron decays, one of its valance

W−

d
u u ν̄

e−

d u
d

Figure 2.1. The Feynman diagram for neutron β-decay. The neutron, consisting of valance
quark content |udd〉, decays into the proton which has valance content |udu〉 by emitting
an electron and an antielectron neutrino via a W− massive vector boson.

down quarks emits a massive W− gauge boson. This then decays again into an electron,

antineutrino pair. The lepton pair are QCD neutral, so they are both not bound inside
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either the parent or daughter nucleon and can escape. However, the W− is so massive and

short-lived, that it never leaves the nucleon surface.

As mentioned in section 1.2, the quark mass eigenstates are not weak eigenstates. As a

result, a u, d quark vertex has the CKM element Vud. The diagram for this vertex is shown

in figure 2.2.

u

d

W−
Vud

Figure 2.2. Weak interaction of the quarks with the mixing element of the CKM matrix, in
this case Vud.

2.2.1 Symmetries of the Four Fermion Interaction

The baryon structure of the neutron requires renormalization of the quark vertex. This

is because the nuclear form factors gA and gV modify the underlying Standard Model

vertex [19], 1
2 uγµ(1 − γ5)d. Space-time symmetries of neutron beta decay only allow for

vector, axial vector, scalar, and tensor (VAST) interactions. Potentially, any of these may

have coupling constants and form factors modifying the associated vertex. The VAST form

factors are defined in terms of the initial n state and final p states along with the Fermi

and Gamow-Teller matrix elements, MF and MGT [20],

〈p|ūγµd+ h.c.|n〉 = gVMF,

〈p|ūγµγ5d+ h.c.|n〉 = gAMGT,

〈p|ūd+ h.c.|n〉 = gSMF,

〈p|ūσµνd+ h.c.|n〉 = gTMGT.

(2.5)
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u e−

d ν̄

Figure 2.3. The Feynman diagram for neutron four-fermion interaction showing the effective
point vertex for any physics. By Lorentz invariance, only the VAST terms are allowed at
the vertex. The psudoscalar term is suppressed.

The conserved vector current hypothesis of the Standard Model implies that gV = 1 up to

O(10−4) isospin breaking corrections [21]. It may seem as if we should have a psudoscalar

interaction,

〈p|ūγ5d+ h.c.|n〉 = gPMGT. (2.6)

However, this is known to be suppressed in the Standard Model from the branching ratio

of π+ decay,

Γ(π+ → e+ + νe)

Γ(π+ → µ+ + µµ)
=

(
me

mµ

)2(1−m2
e/m

2
π

1−m2
µ/m

2
π

)2

≈ 10−4. (2.7)

2.3 Vector and Axial Vector Currents

The Conserved Vector Current (CVC) hypothesis states that gV = 1 exactly. This enforces

conservation of charge. Assuming CVC to be the case, it is only necessary to use one

parameter, λ = gA/gV, to parameterize the effective Lagrangian. As shown in figure 2.5,

the vertex can be potentially renormalized via the strong force with strongly interacting

pions [19]. CVC implies that this renormalization procedure leaves the “weak charge”

unchanged. This is similar to the renormalization procedure in QED where each particle in

the sum of diagrams has the same charge, thus the charge itself remains intact, thus charge

is conserved.



11

p e−

n ν̄

gVAST

Figure 2.4. The Feynman diagram for effective neutron β-decay. The interaction at the
four-fermion vertex contains form factors gVAST from the QCD contributions to the nuclear
structure that modify the pure (V −A)⊗ (V −A).

p

n

W−
= π + π + · · ·

Figure 2.5. Strong renormalization of gV leaving charge current conserved.

This is not the case for axial vector currents. While gA ≈ 1.27 is close to one, it is not

exactly one, as in the case of the CVC hypothesis. Axial vector current is only partially

conserved.

2.3.1 The Neutron β Decay Spectrum

The β decay spectrum has the differential form

d2Γ

dE dΩ
=
G2

F

2π3
|Vud|2 (g2

VM2
F + g2

AM2
GT)W(E). (2.8)

The phase space factor is given by

W(E) = F (Z,E)p2(E0 − E)2(1 + ∆RC + ∆recoil), (2.9)
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where E is the energy of the emitted β±, p is the momentum and E0 is the end point. We

also have QCD and electroweak radiative corrections in ∆RC, and recoil order corrections

due to the finite mass of the proton accounted for in ∆recoil. A plot of W(E) is shown in

figure 2.6. For general β decay of a nucleus with charge Z we have [22]

Figure 2.6. An ideal beta decay spectrum of the neutron.

F (Z,E) =
2(1 + γ)

Γ(1 + 2γ)
(2pρ)2γ−2eπη |Γ(γ + iη)|2 , (2.10)

where

γ =
√

1− α2Z2, (2.11)

and

η = ±αZE, (2.12)

for β∓ decay, and ρ = rN/~ for the final state nuclear radius. For the neutron, with Z = 1

for the final state, this simplifies to

F (Z,E) ≈ x

1− e−x
, (2.13)

where x ≡ ∓2παZc/v [23].
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2.3.2 Alphabet Soup

The full form of the neutron spectrum has been parameterized with an “alphabet soup” of

letters for each correlation coefficient of spin and momenta combinations of the parent and

daughters [24,25],

d2Γ

dEe dΩe dΩν
∝ W(Ee)

[
1 + a

~pe · ~pν
EeEν

+ b
me

Ee
+A

~pe · ~Jn
Ee

+B
~pν · ~Jn
Eν

+D
~pe × ~pν · ~Jn
EeEν

+ · · ·

]
.

(2.14)

Terms in ~Je are not shown. The coefficients in (2.14) can be approximated at leading order

by [15]

a0 =
1− λ2

1 + 3λ2
,

A0 = −2λ(1 + λ)

1 + 3λ2
,

B0 = −2λ(1− λ)

1 + 3λ2
,

b = 0.

(2.15)

Together, these give the dependent relations [26]

a0 −A0 +B0 = 1,

a0B0 = A0(A0 + 1).
(2.16)

Measurements of A have recently been made using the Perkeo and UCNA experiments.

Experiments by Perkeo II, UCNA, and Perkeo III have successfully reduced total corrections

to the raw data down to the percent level [27]. The Perkeo III instrument uses a polarized

cold neutron beam, unlike UCNA which uses ultracold neutrons. UCNA will be discussed

in detail in chapter 7.

2.3.3 The Neutron Lifetime

Integrating equation (2.8) over energy and angle the Standard Model neutron lifetime is

given by

τ−1
n =

G2
F

2π3
(1 + 3λ2) |Vud|2m5

eI0(1 + ∆), (2.17)
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where I0 is the zero moment of the phase space integral for neutron decay [28,29]

Ik =

∫ x0

1
x1−k(x− δ)2

√
x2 − 1 dx (2.18)

integrated up to the reduced relativistic end point x0 = E0/me where E0 is the neutron

beta decay end point. Also here, ∆ encapsulates radiative or recoil order corrections in this

formula. Note that we have 〈
me

Ee

〉
=
I1

I0
≈ 0.652. (2.19)

Experimentally, the current PDG world average value for the neutron lifetime is [17],

τn = 880.1± 1.1 sec. (2.20)

Using this value and λ, we can also extract Vud,

|Vud|2 =
4908.7(1.9) sec

τn(1 + 3λ2)
. (2.21)

The current PDG value for Vud is given by [30]

Vud = 0.97425(22). (2.22)

This value is extracted from superallowed decay ft values, using the half-lives, t, and phase

space integrals, including the Fermi function, recoil, finite nuclear size, all of which give the

nucleus dependent f .

|Vud|2 =
2984.48(5) sec

(1 + ∆RC) 〈Ft〉
, (2.23)

where ∆RC = 0.02361(38) are nucleus-independent radiative corrections [30]. After account-

ing for transition-dependent and transition-independent radiative corrections and averaging

over many superallowed nuclear decays [30]

〈Ft〉 = 3071.81± 0.79stat ± 0.27sys sec, (2.24)

where Ft is the corrected ft value after accounting for radiative effects such as bremsstrahlung

photon emission.
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2.3.3.1 The Lifetime Problem

The neutron lifetime, experimentally, has been a bit of a problem. Over the years since

it was first measured, it has shortened. Of recent concern in particular, a measurement

published in 2005 by Serebrov et al. [31] had a value of

τn = 878.5± 0.7± 0.3 sec. (2.25)

This caused the PDG world average value to change from 885.7± 0.8 sec in 2010 down to

the present value of

τn = 880.1± 1.1 sec (2.26)

as they did not include Serebrov’s measurement in their average until 2012.

As a result of this 6σ discrepancy, the PDG called for the neutron community to make

new measurements of the neutron lifetime. Accordingly, many new experiments have been

planned or are underway. One such experiment uses a Gravito-magnetic trap planned at

LANSCE using permanent magnets [32–35]. This trap is designed to have highly chaotic

orbits by introducing an asymmetry into the trap design [32,33]. The trap is a bowl formed

by two toroids of differing inner radii placed together obliquely.

2.4 Ultracold Neutrons

The neutron was first discovered in 1932 as a neutral particle with roughly the same mass as

the hydrogen atom, but with an unprecedented ability to penetrate deep into matter. First

proposed in 1920 by Ernest Rutherford as a component of the nucleus, before its actual

discovery, no subatomic particle was known to evade entrapment quite like the neutron. It

came as a great surprise then, when Ya. B. Zel’dovich proposed in 1959 [36,37] that neutrons

could, in fact, be totally internally trapped by very thin coatings of materials on storage

bottle walls, orders of magnitude thinner than the shielding thermal neutrons required to

be stopped. The secret sauce was that these neutrons must be ultracold, possessing energies

of only a few hundred nanoelectronvolts.

Ultracold neutrons were actually first proposed and experimentally shown by Enrico

Fermi in 1946 [38] as a neutron that could be reflected off a thin surface. But it was only

later that the prediction that UCN could be stored was made [37].
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2.4.1 The Fermi Potential

The Fermi potential can be expressed as a sum of delta functions visible to the neutron

wave packet when the wavelength is much larger than the atomic spacing of a material,

VF =
2π~2

mn

∑
i

biδ (r− ri) . (2.27)

Here, the bi are the coherent neutron scattering lengths of the constituent nuclei. The delta

functions sum to give an average scattering length for a material b,

VF =
2π~2

mn
bn (2.28)

where n is the number density of those nuclei. The Fermi potentials, VF, of some common

building materials used in UCN experiments are shown in table 2.1. For H and D, the

density can vary depending on the material so the potential is not typically well defined

but they do have opposite sign.

Table 2.1. Fermi potentials of common building materials

element b(fm) VF(neV)
58Ni 14.4 335

Ni 10.3 252
Be 7.75 252
Fe 9.7 210
Cu 7.6 168
Al 3.45 54
H −3.74 < 0
D +6.67 > 0

2.4.2 Magnetic Fields

For a neutron with spin vector ~σ, there is a potential induced by the magnetic moment of

the neutron, µn, and interaction with an external magnetic field, ~B, given by

VB = µn~σ · ~B. (2.29)
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Since a neutron is a spin-1/2 particle, the spin can only be projected onto an axis where the

spin is either aligned or antialigned with the field along that axis. This gives us a simple

two-valued potential

VB = ±µnB. (2.30)

The magnetic moment can be conveniently expressed in “UCN units,”

µn = −60.307 739(14) neV/T. (2.31)

This tells us that UCN of all energies up to the Fermi potential of 58Ni can be polarized

and even trapped by a 6 T field. The trapping or conversely the repulsion of UCN from

a field gradient is dependent on the spin states. The neutrons with spin antialigned state

with the field are typically called the high-field seekers. Those that are in the aligned state

are typically called the low-field seekers. High-field seekers gain energy by a field and so

they can escape magnetic valleys. Low-field seekers are completely trapped. Many UCN

experiments are designed to use this property.

2.4.3 The Gravitational Potential

Ultracold neutrons move so slowly that gravitational interactions cannot be ignored. Like

the magnetic moment, the mass of the neutron can be represented in UCN units,

mn = −10.454 074 7(2 3) neV s2 m−2, (2.32)

such that at sea level, we have a potential per height [17],

mng = 1.025 19 neV/cm. (2.33)

UCN can be completely trapped by a “bowl” only 3.4 m deep. The LANL neutron lifetime

experiment, UCNτ , uses low-field UCN and gravity to trap UCN in an essentially lossless

bottle where UCN never touch the walls [33–35].
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Chapter 3

The Neutron Beyond the Standard
Model

3.1 Beyond V − A

The electroweak sector of the Standard Model so far has a well explored (V−A)⊗ (V−A)

structure. Only vector and axial vector interactions have been observed and thus any

deviation would be strong evidence for physics beyond the Standard Model. In this chapter,

we explore how new physics would affect the beta decay of the neutron. In particular, we

look at how new scalar and tensor interactions would affect the beta decay effective vertex.

Fermi beta decays allow us to study new S and V interactions, and Gamow-Teller beta

decays allow us to study A and T interactions. The neutron is a mix of both decays, so it

has the ability to give us insight into both.

We showed in chapter 2 that for the neutron, the V−A coupling is complicated by

the form factors gA and gV. The value of gA has been measured to higher precision than

the theoretical value has been derived. This makes it difficult to look for new physics by

measuring V−A couplings alone. While this also is the case for gS and gT inside the

nucleon, the scalar and tensor couplings are zero, so any nonvanishing scalar and tensor

interactions serve as a good indicator of new physics.

In this chapter we will look at the general theory of beta decay beyond the Standard

Model. We will examine a few theories, namely Supersymmetry and the theory of lepto-

quarks, and apply those to beta decay. Most relevant to this thesis, we will see how such

theories would affect the Fierz interference term.
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3.1.1 General Effective Lagrangian

The most general Lorentz invariant effective Lagrangian for beta decay is given by a four

point contact term,

Lβ = −
√

8GµF aIij ēiΓ
IνeūΓIdj , (3.1)

where GµF is GF, the Fermi constant, as extracted from the µ decay vertex [20, 39]. There

are two bilinear terms; one for the quark content and one for the lepton content. The gen-

eralized vertex elements have the four-fermion symmetries imposed by Lorentz invariance.

As discussed in chapter 2, the only interactions possible are the generalized Dirac matrices,

ΓS = 1, ΓV
µ = γµ, and ΓT

µν =
√

1
2σµν . (3.2)

The aIij are the coupling constants for each Dirac matrix type and chirality i, j ∈ L,R. In

the Standard Model, with its pure (V − A) ⊗ (V − A) structure in the weak sector, only

vector LL couplings survive, leaving only the CKM matrix element,

aV
LL = Vud(1 + ∆β −∆µ), (3.3)

where ∆β is the radiative corrections to β-decay extraction of Vud, and ∆µ is the radiative

corrections to the extraction of GF(µ) [20]. All other couplings vanish,

aIij = 0, (3.4)

so that any theory in which these couplings are nonzero will produce the possibility for a

test of that theory in the β-decay of neutrons.

3.2 Fierz Interference

In this section, we discuss the theoretical heart of this thesis, the effect of Fierz interference

on the beta decay energy spectrum of electrons emitted from neutron decay. The Fierz term

is not something that should occur in the Standard Model, at least not in the center-of-mass

energy spectrum. In the electron spectrum, in the lab frame, a nonzero Fierz term shows

up at recoil order due to the finite mass of the proton. The term is small, ≈ 10−3, and the

correction, calculable. When viewed in terms of a multiplier on the standard phase space



20

distribution as given in 2.18, this recoil order correction to b is

brecoil = −me

mn

1 + µV λ+ λ2

1 + 3λ2
. (3.5)

This gives brecoil = −1.35(1)× 10−3 [15]. Any deviation from this nonzero factor in the lab

frame is an indication that there are scalar or tensor interactions from physics beyond the

Standard Model.

Of all the letters in the β-decay alphabet soup given by equation (2.14), only the Fierz

interference term, b, survives integration over all polarization and momenta.

dΓb(Ee) =

(
1 + b

me

Ee

)
dΓSM(Ee) (3.6)

This term modifies the neutron lifetime, as can be seen by integrating over the electron

energy,

τ−1
n =

∫ (
1 + b

me

Ee

)
dΓSM. (3.7)

This gives us a ratio of lifetimes for the Fierz term compared to the predicted lifetime from

the Standard Model,
τn
τSM
n

=
1

1 + b
〈
me
E

〉 . (3.8)

3.2.1 The Standard Model Fierz Interference Term

The Fierz interference term is very small in the Standard Model. This is because there

are no scalar or tensor couplings present and bn is dependent on combinations of these

couplings.

Contribution to the center-of-mass Fierz term in the Standard Model are highly sup-

pressed. In what we believe to be the largest contribution to the Fierz, we can construct a

one-loop effective vertex involving the W and the Higgs boson. The effective vertex involves

both the exchange of flavor changing W− and flavor neutral Standard Model Higgs. The

Higgs contributes to the scalar component that gives nonzero b. This contribution is small

however, primarily due to the Yukawa coupling terms introduced by the Higgs coupling to

the electron and quark content. In figure 3.1(a) we have the t-channel, which has a flavor

changing W and then an exchange of a Higgs. In figure 3.1(b) we have the u-channel, which

has a flavor changing W crossed with the Higgs. These two diagrams give us an effective
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d ν̄e

u

H

e

W−

(a)

d ν̄e

u e

(b)

Figure 3.1. The two Feynman diagrams for the one-loop contributions from the Standard
Model to the effective β decay vertex.

vertex that is roughly on the order of

memu

M2
W

+
memd

M2
W

= O(10−9). (3.9)

Because of the low mass of the neutrino, and therefore suppressed Yukawa coupling, the

two diagrams with the Higgs connecting the ν are neglected.

3.2.2 Spectral Effects of Fierz Interference

The Fierz term has the effect of shifting the neutron beta spectrum. If we have a probability

distribution function,

P (E) = τnΓ(E), (3.10)

then the Fierz term shifts the probability spectrum by

Pb(E) dE =
1 + bx−1

1 + b 〈x−1〉
PSM(E) dE. (3.11)

where x ≡ E/me. This can be approximated, for small b as

Pb(E) dE =
[
1 + b

(me

E
−
〈me

E

〉)
+O(b2)

]
PSM(E) dE. (3.12)

Here
〈
x−1

〉
= 〈me/E〉 is the expected value of me/E over the full energy range of PSM.

A plot of a family of spectral curves for different values of b are shown in figure 3.2. The
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bn =∞

bn = 0

Figure 3.2. The neutron spectrum probability function under the effect of the Fierz inter-
ference term. Here is shown from left to right lim bn →∞, bn = 1, bn = 0.1 and bn = 0. A
realistic Fierz term of bn < 10−3 would not be visible on the plot.

spectral effect of bn is most visible in the Fierz ratio, RF, the ratio of the non-Standard

Model spectrum containing bn, Pb, to the bn = 0 Standard Model spectrum, PSM,

RF =
Pb
PSM

=
1 + bn

me
E

1 + b
〈
me
E

〉 . (3.13)

A plot of example Fierz ratios are shown in figure 3.3.

3.2.3 The Fermi and Gamow-Teller Combination

Using the contact Lagrangian in equation (3.1), we are able to write b in terms of all possible

scalar and tensor couplings [20],

b = ±
2 Re

[
M2

FgVgSa
V
LL(aS

RL + aS
RR)∗ − 2M2

GTgAgTa
V
LLa

T
RL
∗]

M2
F

(
g2

V|aV
LL|2 + g2

S|aS
RL + aS

RR|2
)

+M2
GT

(
g2

A|aV
LL|2 + 4g2

T|aT
RL|2

) . (3.14)
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bn = 0

bn = 0.1

bn = 1

bn =∞

Figure 3.3. The Fierz ratio, RF, shown for different values of b. Here is shown from top to
bottom lim bn →∞ (blue), bn = 1 (red), bn = 0.1 (yellow) and bn = 0 (green).

As the couplings other than aV
LL ≈ Vud are know to be small, the general exact expression

simplifies to

b = ±
2 Re

[
M2

FgVgS(aS
RL + aS

RR)∗ − 2M2
GTgAgTa

T
RL
∗]

Vud
(
M2

Fg
2
V +M2

GTg
2
A

) . (3.15)

From equation (3.15) we can reduce the neutron component into two parts. The first part

is the pure Fermi component,

bF = 2
gS

gV

aS
RL + aS

RR

aV
LL

. (3.16)

The second part is the Gamow-Teller component,

bGT = −4
gT

gA

aT
RL

aV
LL

. (3.17)

Note that if

−aS
RL ≈ aS

RR � 0, (3.18)



24

d ν̄e

e

˜̀
i′

u

ũi
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ũi
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j
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Figure 3.4. The two Feynman diagrams for the one-loop contributions from MSSM to the
effective β decay vertex.

we have a condition whereby bF may be small while bGT is not. The linear combination of

both the Fermi and Gamow-Teller components simplifies to the Fierz term for the neutron,

bn =
bF + 3λ2bGT

1 + 3λ2
. (3.19)

3.3 Supersymmetry

3.3.1 Minimal Supersymmetric Standard Model

One of the most popular models for physics beyond the Standard Model, is Supersymmetry

(SUSY), specifically the Minimal Supersymmetric Standard Model (MSSM). Now that the

Higgs boson has been discovered with a mass of 125 GeV [40, 41], there is likely room for

MSSM, or at least NMSSM. MSSM adds sfermions, superpartners of the fermions that allow

for right–left mixing with the light quarks. MSSM also adds the neutrolinos and charginos,

the lightest superpartners of the gauge boson content of the Standard Model. Together,

these form box diagrams that have an effective beta decay vertex. In Profumo [20], they

arrive at some unusual conditions where MSSM may produce a bn for the neutron as large
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as 10−3. To do so, we must first look at the sfermion mass matrix;

M2
f̃

=

 M2
LL M2

LR

M2
RL M2

RR

 , (3.20)

where each block is a 3× 3 mixing block over the three flavors of fermions of a given chiral

multiplet. After electroweak symmetry breaking, these take the form

M2
LL = m2

Q + m2
q +

(
If3 −Qf sin2 θW

)
cos 2βM2

Z , (3.21)

and

M2
RR = m2

f̃
+ m2

q +Qf sin2 θW cos 2βM2
Z . (3.22)

For ũ, sup type, we have

M2
LR = M2

RL = v (af sinβ − µYf cosβ) , (3.23)

and for d̃, sdown type, we have

M2
LR = M2

RL = v (af cosβ − µYf sinβ) . (3.24)

For the cases that diagonalize M2
LR, we have the mass matrices m2

Q, m2
q , m

2
f̃

for the LH

squarks, the quarks and RH squarks, respectively. The model diverges from the standard

assumptions about the 3×3 Yukawa af and soft triscalar couplings Yf . Traditionally, these

are proportional

af ∝ Yf . (3.25)

This assumption would suppress the Fierz term. Without it however, Fierz terms of order

10−3 are possible.

Let Zf diagonalize M2
f̃
. The sfermion mass eigenstates, F̃j , are given by

F̃j = ZjIf f̃I , (3.26)

where f̃1,2,3 are the LH flavor states and f̃4,5,6 are the RH flavor states.
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In MSSM, the neutrolinos mix to give

χ0
i = Nijψ

0
j . (3.27)

Finally, the charginos are the mixes of the Winos and Higginos

 χ+
1

χ+
1

 = V

 W̃+

H̃+
u

 , (3.28)

and  χ−1

χ−1

 = U

 W̃−

H̃−d

 . (3.29)

The diagrams compute to give Fierz terms of

bF =
2α

3π

gS

gV
M2
Z(δ1 − δ2), (3.30)

and

bGT =
2α

3π

gT

gA
M2
Zδ2, (3.31)

where

δ1 = |Uk1|2Z1i∗
D Z4i

DZ
1m
L Z4m∗

L |Nj1|2F1

(
Mχ0

j
,Mχ+

k
,Md̃i

,M˜̀
m

)
, (3.32)

and

δ2 = Uj1V
∗
j1Z

1i∗
U Z4i

U Z
1m
L Z4m∗

L |Nk1|2Mχ+
j
Mχ0

k
F1

(
Mχ+

j
,Mχ0

k
,Mũi ,M˜̀

m

)
. (3.33)

Here we are using the Profumo defined loop integral [20],

Fn(ma,mb,mc,md)

≡
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz
[
xm2

a + ym2
b + zm2

c + (1− x− y − z)m2
d

]−n
.

(3.34)
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3.3.2 Next-to-Minimal Supersymmetric Standard Model

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) introduces a chiral su-

perfield, S, by modifying the super potential with

∆W = λSHuHd + 1
3κS

3, (3.35)

which mixes with the MSSM Higginos and gauginos [42],

χ̃0
1,2,3,4,5 =

(
iB̃,−iW̃ 0, H̃0

u, H̃
0
d , S̃

)
. (3.36)

This alters the phenomenology of the Higgs and neutrolino sector. However, since this has

minimal effect on the mass of neutrolinos, this mixing should not significantly alter the

order of magnitude of the SUSY contribution to the Fierz interference term either [43].

3.4 Leptoquarks

While possible SUSY contributions to the neutron decay vertex are motivating, the extreme

assumptions needed pose a likelihood problem. Further, even if these conditions are met,

the SUSY sector only enters at the one-loop level. Instead, we should consider theories that

contribute at tree level. Models that involve leptoquarks are good candidates for generating

scalar interaction in the low energy sector.

3.4.1 Leptoquark Contributions to Fierz Interference

As described in [44–46], we have the following general Lagrangian for the scalar component

LS
LQ = λRS0

· ūceR · SR†0 + λR
S̃0
· d̄ceR · S̃†0

+ λRS1/2
· ū`L · SR†1/2 + λR

S̃1/2
· d̄`L · S̃†1/2

+ λLS0
· q̄ciτ2`L · SL†0 + λLS1/2

· q̄iτ2eR · SL†1/2

+ λLS1
· q̄ciτ2`LŜ

†
1 + h.c.

(3.37)
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For the vector LQs, we have the Lagrangian

LV
LQ = λRV0

· d̄γµeR · V R†
0µ + λR

Ṽ0
· ūγµeR · Ṽ †0µ

+ λRV1/2
· d̄cγµ`L · V R†

1/2µ + λR
Ṽ1/2
· ūcγµ`L · Ṽ †1/2µ

+ λLV0
· q̄γµ`L · V L†

0µ + λLV1/2
· q̄cγµeR · V L†

1/2µ

+ λLV1
· q̄γµ`LV̂ †1µ + h.c.

(3.38)

We can use the Lagrangian to determine what will contribute to a neutron Fierz term.

We can used table B.1 and table B.2 in appendix B, courtesy Dr. Vincenzo Cirigliano and

Dr. Emilie Passemar [4], to calculate the scalar and tensor terms. The tables show the

interaction term from the leptoquark Lagrangian, an effective four fermion vertex, and the

Fierz-transformed vertex after Fierz rearrangement. First, from table B.1 equation I.3 we

have a scalar term. Second, from table B.1 equation I.4, we have a tensor contribution.

From table B.1 equation IV.3 and equation I.3, and from table B.2 equation I.4, we have a

tensor term. Also from table B.2 in equation III.3, we have final scalar term. We can plug

these into the form for the BSM bn

bn =
2gSεS − 24λgTεT

1 + 3λ2
. (3.39)

The Fermi Fierz term is

bF = 2gSεS, (3.40)

where

εS =
1

2

λLS0
λR∗S0

M2
S0

− 2
λLV1/2

λR∗V1/2

M2
V1/2

− 1

2

λLS1/2
λR∗S1/2

M2
S̃1/2

− 2
λLV1

λR∗V1

M2
V0

. (3.41)

We also have the Gamow-Teller component of the Fierz term,

bGT =
gT

2λ
.

λLS0
λR∗S0

M2
S0

+ 4
λLS1/2

λR∗S1/2

M2
S̃1/2

 . (3.42)

3.4.2 Leptoquark Mixing

Quark-lepton mixing and mixing among the lepotquark states has been investigated by

Hirsch et al. [44]. Hirsch has derived an effective leptoquark mixing Lagrangian at low-
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energy for an effective leptoquark mixing four-point interaction of u, d, ν̄e, and e [44].

Leff
LQ-mix = ν̄ecR

[
εS
M2
S

ūdR +
εV
M2
V

ūdL

]
+ ν̄cecL

[
ωS
M2
S

ūdL +
ωV
M2
V

ūdR

]
− ν̄γµecL

[(
α

(R)
S

M2
S

+
α

(R)
V

M2
V

)
ūγµdR −

√
2

(
α

(L)
S

M2
S

+
α

(L)
V

M2
V

)
ūγµdL

]
,

(3.43)

where the scalar parameters are

εI = 2−ηI
[
λ

(L)
I1
λ

(R)

Ĩ1/2

(
θI43(Q

(1)
I ) + ηI

√
2θI41(Q

(2)
I )
)
− λ(L)

I0
λ

(R)

Ĩ1/2
θI13(Q

(1)
I )

]
,

ωI = 2−ηI
[
λ

(L)
I0
λ

(R)
I0
θI12(Q

(1)
I ) + λ

(R)
I0
λ

(L)
I1
θI42(Q

(1)
I ) + λ

(L)
I1/2

λ
(R)
I1/2

θI32(Q
(2)
I )
]
,

(3.44)

and the vector coupling constants are

α
(L)
I =

2

3 + ηI
λ

(L)
I1/2

λ
(L)
I1
θI24(Q

(2)
I ),

α
(R)
I =

2

3 + ηI
λ

(R)
I0
λ

(R)

Ĩ1/2
θI23(Q

(1)
I ),

(3.45)

with a mixing angle

θIkn(Q) =
∑
l

N (I)
kl (Q)N (I)

nl (Q)

(
MI

MIl(Q)

)2

, (3.46)

and where Q = −1/3,−2/3 and I = S, V . We also define the mass scale for the scalar LQ

to be MS and the vector LQ, MV .

Using this result we can extract the RR scalar coupling term

aS
RR =

εS
M2
S

, (3.47)

and the RL scalar term,

aS
RL =

εV
M2
V

. (3.48)

Also we have the LL psudoscalar term

aS
LL =

ωS
M2
S

, (3.49)

and the LR psudoscalar term, both of which are highly suppressed from π− → e−+ ν̄e and
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Figure 3.5. The Feynman diagrams for LQ quark-lepton mixing. The leptoquark in the
diagram is a mixed L,R scalar, and vector mediator.

π− → µ− + ν̄µ decay,

aS
RL =

ωV
M2
V

. (3.50)

On the vector side, we have only LR and LL couplings. The LR side is

aVLR =

(
α

(R)
S

M2
S

+
α

(R)
V

M2
V

)
. (3.51)

The aVLL modifies the Standard Model contribution to Vud,

aVLL = Ṽud +
√

2

(
α

(L)
S

M2
S

+
α

(L)
V

M2
V

)
, (3.52)

where ∆r are radiative correction.

Using equation (3.47), (3.48), and (3.16), we can compute the contribution to bF from

the LQ sector,

bF = 2
gS

gT

(
εS
M2
S

+
εV
M2
V

)[
Ṽud +

√
2

(
α

(L)
S

M2
S

+
α

(L)
V

M2
V

)]−1

. (3.53)

Together, these give us two effective diagrams for the β-decay interaction.
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3.5 Experimental Limits

The best limits for bF are from a global fit to multiple superallowed Jπ = 0+ → 0+ β-decay

ft values. Hardy and Towner [30] place this limit at

bF = −0.0022± 0.0026, (3.54)

or |bF | < 0.0043 at 90% C.L. Several experiments have also measured bGT using 19Ne, 60Co,

114In and 107In (β+). These are shown in table 3.1. We also can compare current limits on

bF with proposed future limits from experiments such as UCNB or UCNb. In figure 3.6 we

plot possible limits for εS and εT assuming gS = gT = 1. However, this does not reflect the

current uncertainties in the nucleon form factors. In figure 3.7 we plot possible limits for

εS and εT with realistic limits expanded to account for the uncertainty in 0.25 < gS < 1.0

and 0.6 < gT < 2.3 at 90% confidence interval [15]. These limits assume one could measure

b and B down to the 10−3 level. For bn this would require at least 5× 107 events.

Table 3.1. Experimental limits on gTεT from β-decay

isotope gTεT (90% C.L) γ bGT (90% C.L.) ref.

60Co +1.5×10−2

−2.9×10−3 0.980 +0.018
−0.092 Wauters [47]

114In +1.3×10−2

−2.2×10−2 0.934 +0.139
−0.082 Wauters [48]

107In < 3.1× 10−3 0.94 < 1.9× 10−2 Severijns [49]
19Ne - 0.99 0.010± 0.018 Holstein [50]
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Figure 3.6. Possible experimental limits on εS and εT with the fixed values gS = 1 and
gT = 1 assuming the accuracy on B and bn of 10−3 can be reached. For bn this is achievable
with 5× 107 events. The limit from superallowed beta decay is also shown.
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Figure 3.7. Plot of possible experimental limits on εS and εT showing possible values for
gS and gT, 0.25 < gS < 1.0 and 0.6 < gT < 2.3 90% confidence interval. The limit from
superallowed beta decay is also shown.
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Chapter 4

Ultracold Neutron Nonimaging
Optics

Music is the arithmetic of sounds as

optics is the geometry of light.

Claude Debussy

4.1 Introduction

Compound parabolic and elliptical concentrators, designed using the edge ray principle

familiar from nonimaging optics [51] [52], have been used with success to collimate, focus

and concentrate cold neutrons onto a distant target [53] [54]. In the ultra cold limit of

the neutron, around a few hundred neV, these reflectors suffer from chromatic aberration

as the kinetic energy and gravitational potential approach equal magnitude. Gravitational

spectrometers and crank and storage “monochromators” have achieved energy resolutions of

1–10 neV [55], and UCN microscopes designed to compensate for chromatic aberration due

to gravity using imaging optics techniques have achieved spatial resolutions of 0.1 mm [54].

But these techniques come at the cost of low UCN number efficiency by removing unused

phase space volume. We show that the principles familiar from nonimaging optics can be

applied to UCN optics to design an efficient vertical spectrometer. As a prime example,

we investigate a vertical compound parabolic concentrator (CPC) which can isolate UCN

in bands as narrow as 1
3mga FWHM for a guide radius a. For 6 cm diameter guides, this

gives 1 neV resolution, achievable after one pass through the optical system in the apogee

time of the UCN, v0/g.
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This CPC spectrometer can can be used for a number of new experiments such as

measuring the neutron lifetime.

4.2 Nonimaging UCN Optics

In imaging neutron optics, each imaged neutron path is determined by Fermat’s principle

which also coincides with the classical action principle

δ

∫ b

a

mv2

~
dt = δ

∫ tb

ta

L dt = 0, (4.1)

so that the advancing wavefronts and the classical paths also coincide [56] [57]. We may

consider all potentials, gravitational, magnetic and the Fermi potential, as affecting UCN

via an effective index of refraction,

n2(~r) = 1− λ2

2m~2
V (~r). (4.2)

For a rotationally symmetric system with angular momentum `, we have

V (r, z) = mgz ± µnB(r, z) +
`2

2mr2
+ VF(r, z). (4.3)

For an imaging system, the integral from Fermat’s principle is stationary for all neutron

paths from object aperture to the image so we can solve for imaging optical surfaces using

δ

∫ b

a
n2 dt = 0. (4.4)

To design a nonimaging optical system, we relax the requirement that this is satisfied for all

paths emanating from the input aperture. Not every point in the input aperture must have

a conjugate point in the target space. Instead we rely on the edge ray principle familiar from

nonimaging photon optics [51] that states that imaged paths serve only as the boundary for

the phase space volume of all other enclosed paths. We use Fermat’s principle only to solve

for the classical edge paths and pick a reflector surface or potential geometry parameters

that map the input aperture extrema to the extrema of the output region. All paths within

that imaged path boundary will be guaranteed to arrive at the target region, regardless of

the path taken, the number of reflections, or the path complexity.
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4.3 Compound Parabolic Concentrators

An interesting property that has been exploited in neutron optics is that a gravitational

parabolic path originating at the focus of a parabolic surface will reflect to a conjugate

parabolic path that also intersects the focus. A. Steyerl [58] called this property the “neutron

fountain.” As a consequence, points in the neighborhood of the focus of a paraboloid are

self-conjugate so the focal plane is imaged back on to itself. A. Steyerl and Frank used this

property to design imaging systems and microscopes [59]. We use this property to show that

a compound parabola can efficiently redirect UCN upward as with UCN microscopes but

rather than rotate the parabola about its own axis as is done with UCN imaging optics, we

place the focus of one parabola coincident with a reflected parabola, forming a compound

parabola, and then rotate about the axis of symmetry.

For massive particles, it is not generally true that all imaged paths take equal time

[56] [57], but for the case of the “neutron fountain”, the orbit time from the focus to the

parabola wall and reflecting back, is given by

∮
dt =

2va
g
, (4.5)

where v2
a ≡ v2

0 + 2ag, where v0 is the initial velocity. This time depends only on the

parabola’s focal length a and the UCN initial velocity magnitude v0, and is independent of

the initial angle to the vertical axis.

For the flight path from the focus (z = 0) with an initial velocity (vr, vz) = (v0 sin θ, v0 cos θ),

the time to reach the parabolic reflector from the focus is

2a

va − vz
. (4.6)

For each initial vertical velocity, vz = v0 cos θ, for a path starting at focus z = 0 and angle

θ from the vertical axis, there is a reflected path with initial conditions v′z = v0 cos θ′ that

intersects the same point on the parabola. As we learned from the “neutron fountain”

property, the path starting at the focus will reflect back onto the focus, so the orbit time

in equation (4.5) is given by the sum of the two paths,

2va
g

=
2a

va − vz
+

2a

va − v′z
. (4.7)
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Figure 4.1. A CPC with a slice cut out.
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Figure 4.2. The construction of a CPC using the “neutron fountain” property. Each
originating from the focus, these edge orbits are stationary to variations from Fermat’s
principle and to orbital period. Examples shown are (1) a vertical orbit, (2) a focus to
focus reflection orbit, (3) the self-conjugate orbit, and (4) an orbit with initial velocity with
vr = vz = v0/

√
2. In region I, with z > v2

0/g, UCN are classically forbidden. All UCN from
z = 0, r ∈ [0, a] will reach region II. And region III is bounded by the extrema of the edge
orbits below 6, the ballistic umbrella of the point f . The compound parabola is formed by
7 and the reflection 8.
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An extremum occurs at vz = v′z = v2
0/va. These self-conjugate paths intersect the parabola

at a height of v2
0/2g − a. This reveals the interesting fact that the kinetic energy spread of

the UCN orbits at their apogee is ∆E < mga and is independent of v0. Further, by the

edge ray principle, all UCN emanating from the aperture between the focus to the parabola

necessarily will be directed to enter region II, the region bounded below by the the ‘ballistic

umbrella’, the extrema of all monochromatic UCN paths originating at the parabola focus

given by

z(r) =
1

4h
(r + a)2 + h, h ≡ v2

0

g
, (4.8)

and bounded above by the classically forbidden height, z ≤ v2
0/2g.

From nonimaging optics for noncurvilinear rays, the general CPC family has reflective

walls of a parabola that are tilted by the acceptance angle θA to the axis of rotation. The

traditional CPC design [51] with an aperture at z = 0 radius a, has the parametric form

r(ϕ) =
2a′ sin(ϕ− θA)

1− cosϕ
− a,

z(ϕ) =
2a(1 + sin θA) cos(ϕ− θA)

1− cosϕ
,

(4.9)

where a′ is the focal length of the parabola. For nonzero θA, we truncate the CPC to a

height of (a′ + a) cot θA. When we take the limit θA → 0 we find the CPC height as defined

in [51] diverges and all UCN paths are contained inside the CPC. In this limit, a′ → a and

the equation for a vertical CPC becomes

z(r) =
1

4a
(r + a)2 − a. (4.10)

The normal to the wall at the point (r, z) is

n̂ =
(−r − a, 2a)√
r2 + 2ar + 5a2

. (4.11)

In this limit, all orbits originating from the input aperture are bound between extrema of

the “neutron fountain” caustic, independent of their initial conditions.

We are interested in directing UCN vertically and the general solution of the intersection

of the CPC wall with the UCN path can be solved in three dimensions with radial sym-

metry. This allows us to model the optical system in only two dimensions using cylindrical
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coordinates. Without magnetic fields, the radially symmetric Euler-Lagrange equations are

separable with vertical and radial solutions:

z(t) = 1
2gt

2 + v0t+ z0,

r(t) =
√
v2
φt

2 + (vrt+ r0)2.
(4.12)

We need only solve for the intersection with the reflecting surface

−1
2g
′t2 + v′zt+ z′0 = 1

2r(t), (4.13)

where we have defined

g′ ≡ v2
a − v2

z

2a
, v′z ≡ vz − vrχ, (4.14)

and

z′0 ≡ z0 + a(χ2 + 3
4), (4.15)

where χ = r0/2a is a dimensionless parameter. Squaring equation (4.13) gives the quartic

equation with coefficients

A = g′2, B = −4g′v′z, C = 4v′2z − 4g′z′0 − v2
r − v2

φ,

D = 8v′zz
′
0 − 2vrr0, E = 4z′20 − r2

0. (4.16)

Generally, we set the initial conditions so that (r0, z0) is at the entrance aperture at

z0 = 0 and r0 ∈ [0, a), but the full solution is inappropriate if we have already solved for

one intersection and are solving for another on the CPC surface. We need to remove the

t = 0 solution from the quartic for all intersections (rn, zn) for later times t > 0. This

reduces computation time and numerical errors. When (rn, zn) lay on the wall they are

dependent through equation (4.10) when z′n → 1
2r0 and E = 0. The reflections also allow

an iterative procedure to compute rn+1, zn+1 from (rn, zn). However, the computation is

nonlinear, as the root of a cubic, and n can be any integer depending on initial conditions.

There is no easy method to describe the state of an ensemble of UCN after an elapsed

time without the use of a Monte Carlo simulation that recursively solves the cubic form of

equation (4.16).
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4.4 Monte Carlo Simulation

We use a Monte Carlo simulation in cylindrical coordinates with rotational symmetry of the

CPC to analyze corrections to the 2D limits. The simulation first solves the quartic with

coefficients in equation (4.16) and then iteratively solves the cubic form, which removes the

t = 0 solution, iteratively and propagates the path with specular reflections off the CPC

wall. This simulation demonstrates that all UCN incident on the input aperture located on

the interval r ∈ [0, a) and z = 0 are redirected to the vertical region z ∈ [v2/2g − a, v2/2g]

and each UCN path passes through region II, bound by z ≤ v2
0/2g and equation (4.8) as

predicted.

We validated the simulation algorithm with a calculation of the simple case of a cylin-

drical wall with radius a instead of the CPC and compared to the analytic result of the

probability distribution for a monochromatic random gas with initial velocity v0, which has

the distribution

P (z) =

√
g

v2
0z

; 0 ≤ z ≤ v2
0

2g
. (4.17)

4.5 Results

In figure 4.3 we show the results of a small sample of UCN paths projected onto the (r, z)

plane. The free part of the orbits are hyperbolic along the r axis due to conserved angu-

lar momentum, and parabolic in the vertical axis due to gravity. The multiple specular

reflections off the CPC walls redirect all UCN into region II as predicted.

We ran batches of one million UCN in 5 neV increments with energies ranging from 5 to

40 neV. In figure 4.4, each probability distribution shows UCN are restricted to a horizontal

band as wide as the focal length of the parabola and the diameter of the input aperture,

which for this simulation was set to a = 4 cm. However the probability curves still do not

integrate to unity as there are some paths that fall back out of the input aperture at z = 0.

While theoretically, these also should reach region II, in practice the CPC would require

an input guide so these unphysical orbits are removed. The effect is most dramatic for the

lowest energies, E0 ≈ mga.

While our predicted limits for the width of region II are ∆E < mga the practical limits

in three dimensions are much tighter and can be determined using our simulation to have

a FWHM of ∆E < 1
3mga ≈ 1.3 neV for each initial energy and a guide width of a = 4 cm.
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Figure 4.3. A 3D Monte Carlo simulation in the (r, z) plane of 1000 neutrons each with
energy E = 25 neV for one half orbit, 0 < t < va/g. The solid circles indicate the end
points at t = va/g. Each path passes into region II during the first orbit 0 ≤ t < 2va/g.
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Figure 4.4. Results from 106 monochromatic UCN simulations for different energy levels.
(a) The probability distribution of UCN at time t = va/g for energy levels 5–40 neV in a
CPC. (b) The probability distributions of the apogees of UCN orbits during the first orbit
t < 2v0/g in a CPC. (c) The apogees of 40 neV UCN in a cylindrical guide.

4.6 Applications

4.6.1 Measuring the Neutron Lifetime

The lifetime of the neutron is an important component of refining the free parameters of

the standard electroweak model particularly Vud in the CKM matrix. Previous UCN trap

designs relied on either walls [60] or magnetic multipoles [61]. Recently, interest has risen

in high multipolarity Halbach array traps using permanent magnets to create a repulsive

wall for low field seeking UCN [33]. The advantage of such a trap is that UCN of one

polarization state can be repelled from the trap walls, thus minimizing neutron capture

which quenches the storage lifetime. The radius of curvature is very large compared to
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a standard reflection, on the order of the spacing of the multipole magnets, λ, which can

be in the range λ ≈ 1 mm – 10 cm. The difficulty of designing such a trap is that UCN

with energy above EH = 0.6µnBH ≈ 50 neV [33] will have enough energy to penetrate the

magnetic barrier of the Halbach array, and the UCN may make contact with the surface

exposing it to possible absorption by the magnet materials leading to an excess loss of UCN

and resulting in a shorter measured lifetime. We must filter out UCN with an energy of

less than EH before the lifetime experiment begins.

UCN with energies of 40 neV and lower are desirable because they can be trapped

inside a permanent magnetic bottle. We believe such a trap has the best possibility of

holding UCN with the smallest possible systematic errors usually associated with walled

traps. Walled traps have two main problems. Because the UCN scatter off of the nuclei

of the walls themselves, even the lowest cross section materials still have a nonnegligible

absorptive loss during the trapping time. The other problem is that with each collision, the

UCN have a spin depolarization probability that introduces a loss from transitions into the

high field seekers. A CPC can be used as a possible design of a lifetime experiment as it

can redirect UCN to an absorber in 0.3 s to quickly and efficiently remove overly energetic

and marginally trapped neutrons from a permanent magnetic trap that can only hold UCN

with energies under µnB ≈ 50neV using NdFeB magnets [33].

4.6.2 Pulsed UCN Source Using a CPC

The CPC creates an effective spectrometer with resolution of better than E = mga. This

remarkable property leads us to propose a system for reducing the energy of UCN provided

they start with a small phase space volume. For UCN created with a pulsed source such as

SD2, the creation and expulsion time is typically less than 100 ms and the energy distribution

is boosted to the Fermi potential of deuterium. This gives a relatively short pulse (τSD2 �√
2a/g ≈ 0.1 s) of narrow band (∆E ≈ 1

3mga) UCN which can be directed through a CPC

to a trapping region. A mechanical shutter, if carefully timed with the pulse, closing va/g

after the pulse, can select out a band of UCN that will remain trapped at a lower energy.

Typically, these sources are only a few centimeters across so the minimum energy band that

may be trapped is as small as 1–5 neV.

Experiments such as GRANIT [62] have detected quantization of gravitationally bound

states by lowering an absorbing detector onto UCN passing over a reflective horizontal plate.
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Currently, these experiments are limited by the poor statistics due to the low occupancy

of the lowest ground states. A pulsed source coupled to a CPC with a trapping region

could generate large numbers of UCN in these states as well as increase the experiment

time due to the low lateral velocity of the trapped UCN. If combined with a pulsed UCN

source and a mechanical shutter, the CPC can be used to collect high densities of UCN

with reduced energy at a higher gravitational potential above the source. These can be

guided to an experimental chamber to make large statistics quantized gravitational states

measurements. UCN with such low lateral velocity can also be dropped into unperturbed

vertical paths for efficient and compact nn̄ oscillation searches.

4.7 Conclusion

We have applied the design principles of nonimaging optics to UCN transport optics. We

use these principles to a design an apparatus, the CPC with zero acceptance angle, that

redirects monochromatic UCN (with velocity v0) from a Lambertian horizontal disk source,

upward into a bound region. The region is strictly bound below the classically forbidden

upper half-plane, and above the ballistic umbrella of the focus, h − (r + a)2/4a ≥ z ≥ h

where h = v2
0/g. We have showed, using Monte Carlo simulation, that this bound holds

empirically in three dimensions for a range of initial velocities and analyzed the resultant

probability distribution of the UCN both after one-half average orbit time va/g and at

the apogee of each individual orbit. We discussed the possibility of using these data to

construct an apparatus that can have a shutter to trap UCN in the lower energy phase

of the orbit. Such a device could trap UCN in the target region with energies E < mga.

Such a device could be used to preserve the phase space of a spallation UCN source to

more efficiently gravitationally cool UCN for use in experiments that require population of

the lowest energy UCN such as gravitational states experiments and nn̄ searches. We also

discussed how to construct an efficient spectrometer with effective resolution of E ≈ mga/3.

Such a spectrometer could be used to remove marginally trapped UCN from a magnetic

trap for a precision neutron lifetime experiment.

We present the CPC as an interesting use of UCN nonimaging optics, but there are

many new experimental designs that can also use the same design principles. We hope that

this will motivate many novel and efficient geometries in future experiments that require
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efficient UCN transport.
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Chapter 5

Transmission of Ultracold
Neutrons Through Thin Foils

UCN produced in the spallation source at LANSCE are required to pass through a pres-

sure retaining foil that isolates the solid duterium (SD2) source [63] from the experiment

downstream. A simple foil placed anywhere in the UCN beam line would pose a barrier

to the transport of many UCN due to the Fermi potential that would reject a section of

the available phase space. This potential can be positive, as is the case with aluminum, or

negative, as is the case with titanium. In either case, some UCN will reflect off the foil.

In addition there is neutron capture. As this cross section increases with 1/v, there is an

advantage to having greater velocity while passing through the foil.

One solution to both the potential barrier and the scattering problems, is to place the

foil in the center region of a Prepolarizing Magnet (PPM) which operates at 6T. The field

is large enough to provide a longitudinal boost that allows punch through of the high-field

seeking UCN through large potential materials. This gives more options from which to

choose materials to use as an isolation window.

As part of the UCNA experiment, UCN move from the source, out of the shield blocks,

to the PPM, to the main polarizing magnet, to a spin flipper, and then to a beta decay

detection volume. In this volume, the β decay asymmetry, A, is measured by counting the

directionality of the resultant beta decay electrons. As mentioned, safety requirements for

UCNA maintain that in order to contain the SD2 in case of a rapid warm-up event, windows

are required at the exit of the beam line, just outside the shield packaging. The windows

must pass a pressure test using water in order to prove they can withstand a certain blowout

pressure from the source.
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We do not place the window right above the SD2 source [64], due to concern of freeze-out

of contaminants onto the window surface, which could absorb UCN, decreasing the UCN

production density. This was the motivator to place the window in the center of the PPM

instead.

We also had a need for windows for 3He gas detectors [65]. These detectors are very

sensitive to UCN and we have used them with great success using aluminum. There is still

a need to make the loss through the detector windows even better.

We decided to try different types of foils to see which worked best: aluminum, Mylar, and

zirconium, each of different thicknesses. What we found was that surface properties matter

as much as bulk properties. While much work was done on neutron transport through foils

for cold and thermal neutrons [66–70], as well as using polarizing magnets of foils inside

magnets to measure the UCN spectrum, [31] we found little work on the transport of UCN

through thin foils with absorbing or reflective surface coatings as well as simultaneous bulk

loss.

The center region of the PPM has a profile approximately given by the axial field of a

solenoid along x:

B(x) = 1
2µ0NI (cos θ1 + cos θ2) , (5.1)

where r is the radius of the coil and

θ1 =
b− x√

(b− x)2 + r2
, and θ2 = − b+ x√

(b+ x)2 + r2
. (5.2)

5.1 1D Quantum Model

In this section, we will examine the theory behind transport of UCN through a thin foil.

We can set up a simplified quantum mechanical model of neutrons traveling through a

foil in one dimension immersed in a magnetic field. The simple model may include a thin

surface layer with a thickness that is much smaller than the wavelength of neutrons passing

through the foil. This thin layer can be approximated as a infinitesimally thin complex

delta function potential with the real and imaginary parts given in terms of bulk potential

and loss per distance.
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Figure 5.1. The potential of a thin coated foil. Low field-seeking UCN in (a) with insufficient
classical energy are not able to penetrate the magnetic potential summed with the foil Fermi
potential. The high-field seekers see a potential as shown in (b), which allows them to
penetrate the foil with a sufficiently large magnetic field.

Consider a step and delta potential, shown in figure 5.1 given by

V (x) =



0; approximately |x| & b,

±µB; in the region |x| . b,

V + iU ± µB; where |x| < a,

(α+ iβ)δ(x∓ a); x = ±a.

(5.3)

We want to find the transmission and reflection coefficients for an unbound particle with

energy, E, so we consider a wave incident on the left, in the region x � b. The general,

time-independent solution for such a free particle at constant step potentials V (x), is

ψ(x) = aL(x)eik(x)x + aR(x)e−ik(x)x, where
~2k2

2m
= E − V (x). (5.4)

In the region near |x| ≈ b, the neutrons enter the magnetic field and become polarized such

that their spins are either aligned or antialigned with the field. If they are aligned, they are

low-field seekers, and are repulsed by the center magnetic field inside the PPM. If they are

antialigned, they are high-field seekers, and are accelerated by the field inside the PPM.

The wavefunctions for the three regions that are parameterized by left-moving and
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right-moving coefficients A,B and C are

ψ(x) =


ARe

ikx +ALe
−ikx, x < −a,

BRe
ik′x +BLe

−ik′x, |x| < a,

CRe
ikx, x > a.

(5.5)

We must enforce zeroth-order continuity on the wavefunction. The boundary conditions

are

ψ(−a) = ARe
−ika +ALe

ika,

ψ(±a) = BRe
±ik′a +BLe

∓ik′a,

ψ(a) = CRe
ika.

(5.6)

We have a special boundary equation for the continuity of the wave function at the complex

delta potential at x = ±a, which integrates out to

[
ψ′−(±a)− ψ′+(±a)

]
+ gψ(±a) = 0. (5.7)

These boundary conditions require the first order derivatives which are

ψ′(−a) = ikARe
−ika − ikALeika,

ψ′(±a) = ik′BRe
±ik′a − ik′BLe∓ik

′a,

ψ′(a) = ikCRe
ika.

(5.8)

By defining the normalization R = AL/AR, T = CR/AR, bL = BL/AR, and bR = BR/AR,

we have the system of equations,

1−Re2ika − k′

k
bRe

i(k−k′)a +
k′

k
bLe

i(k+k′)a +
g

ik

(
1 +Re2ika

)
= 0,

k′

k
bRe
−i(k−k′)a − k′

k
bLe
−i(k+k′)a − T

(
1− g

ik

)
= 0,

1 +Re2ika − bRei(k−k
′)a − bLei(k+k′)a = 0,

bRe
−i(k−k′)a + bLe

−i(k+k′)a − T = 0.

(5.9)

We can transform these equations into four more

(
1 +

k′

k

)
bRe

i(k−k′)a +

(
1− k′

k

)
bLe

i(k+k′)a = 2 +
g

ik

(
1 +Re2ika

)
. (5.10)
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Similarly we have

(
1 +

k′

k

)
bRe
−i(k−k′)a +

(
1− k′

k

)
bLe
−i(k+k′)a = T

(
2− g

ik

)
. (5.11)

This has solutions

R =
e−2ika

Λ

[
e2ik′a

(
k2 + (g − ik′)2

)
− e−2ik′a

(
k2 + (g + ik′)2

)]
,

T = −4e−2ikakk′

Λ
,

(5.12)

where

Λ = e2ik′a(ig − k + k′)2 + e−2ik′a(ig − k − k′)2, (5.13)

where we have split k′ into real and imaginary parts,

k′ → κ+ iλ, (5.14)

and defined

−~2g

2m
= α+ iβ. (5.15)

The total transmission through the foil is given by the magnitude of the wavefunction on

the right hand side of the foil,

|T |2 =
16k2(κ2 + λ2)

|Λ|2
. (5.16)

Since the magnetic field has smooth edges compared to the wavenumber of the neutron

wavefunction, we may treat the wave packet as completely classical. Reflection will occur

if and only if the neutron has energy below the magnetic potential, E < ±µnBx. Thus

we need only consider the QM components when dealing with the foil which has spacial

components near the wave number of neutron. The energy and wave number inside the

region |x| . b are given by
~2k2

2m
= E ± µnBx. (5.17)

Inside the bulk of the foil the relation is

~2(κ+ iλ)2

2m
= E ± µnBx − V − iU. (5.18)
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Solving for k, κ, and λ gives

k =

√
2m

~2
(E ± µB), (5.19)

and

κ =

√
m

~2

√
E ± µB − V −

√
−4U2 + (E ± µB − V )2, (5.20)

and

λ =

√
8mU

~2κ2
. (5.21)

5.2 Foil Measurements

5.2.1 Depth Profilometry

Depth profile measurements were made by Russell Mammei at Virginia Polytechnic Institute

using Auger electron profilometry and SIMS [71]. The results of the scans are shown in

figure 5.2 and reveal a thin layer of about 60 nm of carbon and about 16 nm of oxide. The

carbon layer is actually a hydrocarbon layer, but the H:C ratio cannot be determined using

the Auger technique used, but the ratio is constant over the first tens of nanometers. It is

likely to be in the alkane family, so the ratio is likely to be ≈ 2:1.

5.2.2 Experimental Setup

The experimental setup is shown in figure 5.3. To measure the transmission through several

foils, we inserted several foil thicknesses of different materials in the highest field region of

the PPM just outside of the gate valve exiting the shield block that encases the LANSCE

UCN source. After the foil, another stainless steel tube guided neutrons through a round

elbow, called the “elephant trunk,” to a 1 meter long guide straight down to a UCN 3He

detector.The windows, are mounted and sealed with o-rings in the center of the magnet.

The guides are stainless steel tubes with an inside diameter of 60 mm. The guides are

electropolished to increase the specularity of the inner surface. After the UCN pass through

the PPM, the guide system bends down to boost the UCN using gravity so that they fall 1.3

meters onto our 3He proportional detector. The gravitational boost gives them ≈ 130 neV

kinetic energy in the longitudinal direction of the guide and perpendicular to the detector

window (which is needed to contain the 3He gas). For these experiments, we still used

aluminum windows for detector windows, that are still transparent enough to allow most
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Figure 5.2. Depth profile of Zr foils cleaned with Citranox for both 5 Å and 50 Å resolution.
Courtesy: Russell Mammei.

UCN to enter.

5.2.3 Results

We measured the transmission through zirconium foils, as well as no foils, and fit an inter-

polating function to the results. We can analyze the longitudinal spectrum by fixing the

transmission at zero magnetic field to 100% transmission. Next an interpolating function

was fit to the no-foil curve. In theory, this curve could be used to fit the reflection function

of the various curves, but we believe that in practice this would require a Monte Carlo of

the source-generated spectrum in order to separate the longitudinal spectrum from the full

omnidirectional spectrum [72]. The initial raw data collected is shown in figure 5.4 as a

function of longitudinal energy across the foil. For the case when there is no foil present in

the PPM, the transmission decreases as the PPM magnetic field is increased. This is due

to the splitting between polarization states. Low-field seekers are unable to penetrate the

magnetic barrier, so only half of the UCN are able to pass through the field. When there is

a foil, the transmission actually increases with the field. This is because the Fermi potential
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Figure 5.3. Experimental setup for the foil transmission measurements; (1) UCN; (2) Gate
valve monitor port; (3) UCN guide; (4) 3He UCN detector; (5) Gate valve; (6) Valve door;
(7) Foil; (8) PPM; (9) PPM current coils; (10) PPM yoke; (11) Elephant trunk.

of the foil (90 neV) is enough to prevent a large fraction of UCN from penetrating. As the

field is increased, half the neutrons (the high-field seekers) are boosted past this potential,

but the fraction of the spectrum that is able to penetrate the foil barrier is still greater

than that at zero magnetic field. By dividing the transmission through each foil thickness

by the transmission with no foil, we obtain the relative transmission fraction as a function

of longitudinal energy as shown in figure 5.5 The foil transmission, |T |2, can be be used to

d (µm) 0 T 1 T 2 T 3 T 4 T 5 T 6 T
0 neV 60 neV 120 neV 180 neV 240 neV 300 neV 360 neV

25.4 0.155 0.318 0.593 0.788 0.859 0.877 0.882
50.8 0.153 0.332 0.605 0.781 0.841 0.857 0.861
101.6 0.109 0.265 0.522 0.702 0.767 0.784 0.788

Table 5.1. Foil transmission as a function of Zr foil thickness and magnetic field strength
and longitudinal energy. Longitudinal energy is listed below the magnetic field values.

extract the surface and bulk effects via

|T |2 (x,E`) = c(E`) + ξ(E`)x, (5.22)

by fitting the constants c(E`), the surface term, and ξ(E`), the bulk term, where x is the

foil thickness. The results are presented in table 5.2. Some of this surface and bulk loss
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Figure 5.4. A family of plots of absolute transmission of UCN through Zr foils as a function
of thickness.

B 0 T 1 T 2 T 3 T 4 T 5 T 6 T
E` 0 neV 60 neV 120 neV 180 neV 240 neV 300 neV 360 neV

c(E`) 0.177 0.352 0.635 0.828 0.896 0.914 0.918
ξ(E`) 0.000635 0.000794 0.00103 0.00118 0.00123 0.00125 0.00125

Table 5.2. Foil transmission coefficients as a function of magnetic field strength.

is likely surface dependent [73–75]. We find that the constant component of the relative

transmission, c(E`), increases dramatically with longitudinal energy. This is to be expected

as the quantum mechanical reflection off the surface will decrease with increased energy.

The bulk transmission per distance, ξ(E`), also increases, as we would expect from the 1/v

dependence of the cross section of the bulk material.

5.2.4 Summary

We measured the transmission of UCN through a zirconium foil compared to the transmis-

sion with no foil. This foils were place inside of a polarizing magnet and the field was varied

so as to alter the longitudinal spectrum of UCN passing through the foils. Bulk loss was

measured separately from surface loss by measuring varying thicknesses of foils. We derived

the surface loss from a thin layer, represented by a delta function, on the surface of a foil.

What this told us is that there is inherent loss on the surface of the Zr foil that is not in the
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Figure 5.5. A family of plots of relative transmission of UCN through Zr foils as a function
of thickness. The lines are arc tangent extrapolations to the data.

bulk. We may be able to use this knowledge to design better foils with a treated surface

that is designed to scatter and reflect less. Using the QM model and a good understanding

of the real and complex components of the Fermi potential of the surface materials, we may

be able to design foils with near zero surface loss. Since this is the dominant loss factor,

we might expect foils with very high transmission factors well over 90%. This measurement

allowed us to find a replacement for the aluminum foils which had less than 80% transmis-

sion [76]. This improvement increased the UCN density available to the UCNA and other

experiments downstream of the LANL UCN source.
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Chapter 6

Cosmological Limits on Fierz
Interference

Images of broken light, which dance

before me like a million eyes, they call

me on and on across the universe.

John Lennon

One important limit on the Fierz term in neutron beta decay can come from Big Bang

nucleosynthesis (BBN). The Fierz term, bn, modifies the Standard Model neutron decay

rate, ΓSM,

Γ(n→ p+ e− + ν̄) =

(
1 + bn

me

Ee

)
ΓSM(n→ p+ e− + ν̄). (6.1)

In the primordial universe during the nucleosynthesis era, up to about 3 minutes after

the Big Bang, neutrons and protons were in equilibrium. As the universe cooled, this

equilibrium began to freeze out, and the n/p ratio began to rapidly lower as neutrons

decayed or were bound up in light nuclei. Prior to and during this transition, when a

positron is absorbed by a neutron, (instead of an electron being emitted as with decay) the

bn term in the reaction rate will have an opposite sign from the decay rate equation [77],

Γ(n+ e+ → p+ ν̄) =

(
1− bn

me

Ee

)
ΓSM(n+ e+ → p+ ν̄). (6.2)

These rate altering effects can modify the n/p ratio which then completely determines the

4He primordial abundance. [78] Thus we can turn this argument around and can deduce a

limit on bn from the 4He primordial mass fraction, Yp familiar from observational cosmology

[29]. Yp can be determined today from observation of nebulae where less stellar formation
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has occurred since the dawn of the universe, leaving the primordial gas fractions relatively

pure. In these regions, the mass fraction of hydrogen, X, and helium, Y , are expected to be

in ratios largely untouched by contaminants generated by supernova remnant gases. These

regions of gas can tell us how the final state of the BBN nuclear reaction network ended a

few minutes after the Big Bang.

The neutron lifetime also strongly affects the n/p ratio. The recent lower values for the

neutron lifetime τn [79], will also alter the predicted primordial helium abundance [28, 80].

We will use the most recent value from [17].

6.1 Big Bang Nucleosynthesis

Big Bang nucleosynthesis provides tight constraints on searches for new physics [81]. To see

why, we must look at how the helium abundance is strongly affected by the n/p ratio set

by the BBN epoch. After the baryogenesis epoch when neutrons and protons were created,

they were essentially in thermal equilibrium with a n/p ratio set by the neutron-proton

mass difference mn−mp = ∆ = 1.293 MeV. This equilibrium is given by n/p = e−∆/T [29].

Weak equilibrium came to end once the weak reaction rate

Γn↔p =
7π

60
(1 + 3λ2)G2

FT
5 (6.3)

was less than the Hubble expansion rate

H ≈
√

8πG

3
ργ , (6.4)

where the relativistic particle density is

ργ =
π2

30
g∗T

4, (6.5)

with g∗ the massless degrees of freedom [28] and in the Standard Model, g∗ = 5.5+ 7
4Nν = 43

4

[82]. This end of equilibrium occurs when the baryon temperature T ≈ 1 MeV. This epoch

is referred to as the “freeze out” because neutrons and protons cease to be in equilibrium

past this point and neutrons begin to freely beta decay [28].
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There are three reactions involved before the freeze out,

n� p+ e− + ν̄,

e− + p� n+ ν,

ν̄ + p� n+ e+.

(6.6)

For the early universe, these reactions are temperature dependent and we require a new

phase space integral to calculate the reaction rates that reduces to equation (2.18) from

Chapter 2 at low energy. The new phase space integral has the fermion state occupancy

terms 1/(1 + exz) for the electron occupancy factor and 1/[1 + e(x0−x)zν ] for the neutrino

occupancy factor, where x is the reduced energy E/me and x0 = E0/me ≈ 2.53 is the

neutron endpoint. Here z and zν are the reduced temperatures of the final states where

z = T/me and zν = Tν/me are the baryon and neutrino temperatures, respectively.

There are six components to the reactions in (6.6). The first is just the standard neutron

decay familiar from low energy,

Γn→peν̄ =
1

τnI0

∫ x0

0

(x+ b)(x− x0)2 (x2 − 1)1/2

(1 + e−xz)
(
1 + e(x0−x)zν

) dx, (6.7)

where I0 is the standard phase space integral,

I0 =

∫ x0

0
x1−k(x− x0)2 (x2 − 1)1/2 dx. (6.8)

We then have the rates for the absorption of a positron or an electron neutrino

Γne→pν =
1

τnI0

∫ −x0

−∞

(x− b)(x− x0)2 (x2 − 1)1/2

(1 + exz)
(
1 + e(x0−x)zν

) dx, (6.9)

and

Γnν→pe =
1

τnI0

∫ −x0

−∞

(x− b)(x− x0)2 (x2 − 1)1/2

(1 + e−xz)
(
1 + e−(x0−x)zν

) dx. (6.10)

We also have the reverse reaction p+ e→ n+ ν which is [29]

Γpe→nν =
1

τnI0

∫ ∞
x0

(x+ b)(x− x0)2 (x2 − 1)1/2

(1 + exz)
(
1 + e(x0−x)zν

) dx. (6.11)

The other two reverse reactions proceed in a similar manner.



59

6.2 BBN Simulation Code

To determine a limit for bn in terms of the uncertainty on Yp, we turn to running BBN

code which has been used with success to predict the primordial light element abundance

up to 4He. The code has proved accurate enough to be used previously to test beyond the

Standard Model physics. The BBN code first uses the baryon to γ fraction ηB ≈ 6.05×10−11

to estimate the correct density for integrating forward the Friedmann equations. Next, it

uses this result to establish a nuclear reaction network in terms of the differential rates of

each of the nuclei that are modeled. Finally, it uses this reaction network to predict late

time mass fractions of the light elements available to the network.

Since n/p determines 4He abundance, the most important part of the reaction rate

network is the conversion from p to n and back again. This is all done in a thermal bath of

electroweak constituents, e−, e+ and neutrinos.

The neutron rate integrands are combined, by analytic continuation from six integrals

into four. Swapping of the proton and neutron is just the same integrand by analytic

continuation to the region from the endpoint to infinity, but with x → −x. The integrals

are now

Γ(n→ p) = (τnI0)−1

∫ ∞
1

(x+ b)(x− x0)2(x2 − 1)1/2

(1 + e−xz)
(
1 + e(x−x0)zν

)
+

(x− b)(x+ x0)2(x2 − 1)1/2

(1 + exz)
(
1 + e−(x+x0)zν

) dx.

(6.12)

Similarly we have the two integrals for protons going to neutrons,

Γ(p→ n) = (τnI0)−1

∫ ∞
1

(x− b)(x+ x0)2(x2 − 1)1/2

(1 + e−xz)
(
1 + e(x+x0)zν

)
+

(x+ b)(x− x0)2(x2 − 1)1/2

(1 + exz)
(
1 + e−(x−x0)zν

) dx.

(6.13)

As the baryon and neutrino temperatures are changing over the course of the nucleosynthesis

era, the best way to perform these integrals is to use the Big Bang nucleosynthesis (BBN)

code. We modified code provided by Sarkar et al. [83] written by Wagoner [84] and then

latter modified by Kawano [85,86] to include the Fierz term, accounting for the appropriate

sign in the simulation, as well as the temperatures and phase space densities of the electron,

positron, and neutrino populations.
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6.3 Simulation Results

Figure 6.1 shows a plot of the nuclei, p, 4He, D, 3He, T, and the neutron n mass fractions

as a function of temperature of the early universe, T .
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Figure 6.1. The results of the mass fraction relative to hydrogen (p) as a function of Baryon
temperature.

A fit to the results can be found in figure 6.2. We fit a linear function to the helium

abundance mass fraction Yp = Ybbn + Y0 and found

Yb = 0.0773± 0.0008, and Y0 = 0.24502± 0.00008. (6.14)

Comparing this to the best current estimate for Y0, this gives us a bound on bn. There is

some discrepancy in the estimates of Yp, the primordial helium-4 abundance, but one esti-

mate with the tightest bounds, by Izotov and Thuan (IzTh) [87] has Yp = 0.2448(13). This

value is a combined value from their different analysis methods, each determind from ob-

serving spectra from 45 uniformly distributed, low metallicity HII regions [80]. These region

are selected because they are believed to have the most primordial content, undisturbed by

stellar nucleosynthesis [88]. However, in 2010, Izotov and Thuan presented a new deter-

mination of Yp based on 93 spectra of 86 low-metalicity extragalactic HII regions. Their

analysis took into account new systematic effects such as collisional and fluorescent enhance-
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Figure 6.2. A fit of BBN code runs with different values for bn versus the 4He mass fraction,
Y .

ment of HeI recombination lines, HeI stellar absorption lines, and collisional and fluorescent

excitation of hydrogen lines [89]. They give the best value estimated from a Monte Carlo

combination of these systematic errors to be Yp = 0.2565± 0.0010 (stat.)± 0.0050 (syst.).

This puts an estimate on bn at

bn = 0.149± 0.078. (6.15)

As was shown in chapter 3, we can write the neutron Fierz term in terms of Fermi and

Gamow-Teller subcomponents,

bGT =
(1 + 3λ2)bn − bF

3λ2
≈ 1.2 bn − 0.23 bF (6.16)

Combined with the bounds from Hardy and Towner [30] for bF, which had bF = −2.2(2.6)×
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10−3, this gives

bGT = 0.179± 0.092 (6.17)

The systematic error in equations (6.15) and (6.17) give us limits 0.021 < bn < 0.277 (90%

C.L.) and 0.028 < bGT < 0.330 (90% C.L.).
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Chapter 7

Extracting the Fierz Term from
β-asymmetry Measurements

The universe is asymmetric and I am

persuaded that life, as it is known to

us, is a direct result of the asymmetry

of the universe or of its indirect

consequences.

Louis Pasteur

The Fierz interference term introduced in chapter 3 provides a powerful device for

searching for TeV-scale physics, even compared to high-energy experiments such as the

Large Hadron collider (LHC). This enhanced sensitivity comes from me/E dependence as

E → me. The Fierz term for the neutron, bn, gives us a method for putting limits on bF

and bGT, which in turn put limits on εS and εT. As in chapter 3, the Fierz term modifies

the energy spectrum of the electron emitted from neutron beta decay.

In this chapter we will explore in more detail a few experiments that are designed to

measure other correlation parameters, A and B in particular, that may be able to set some

resonable limits on b compared to the existing status quo [30, 47–49]. Two experiments

stand out due to their low background beta energy spectra, the UCNA and UCNB exper-

iments at LANSCE [90, 91]. UCNA and UCNB both fill UCN into a decay volume and

measure beta-decay correlation coefficients with two 2π detectors on either end of a su-

perconducting confining magnetic field. The UCNA experiment has been up and running

since 2007. UCNB is a planned upgrade to UCNA using high resolution large area silicon

detectors. UCNB’s detectors have better resolution, but also a larger backscatter correction
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due to the higher Z of silicon over the MWPC and scintilator combination of UCNA. These

experiments were not designed to measure bn, but in this chapter, we explore how one goes

about extracting the Fierz term from these asymmetry experiments and present results and

progress on that front.

7.1 The UCNA Experiment

The UCNA experiment at LANSCE is designed to measure the neutron β asymmetry

parameter, A, from (2.14). The UCNA experiment see figure 7.1, is composed of three
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Figure 7.1. Detail of the Area B experimental hall at LANSCE. (1) proton beam; (2) beam
stop; (3) Be, graphite, polyethylene moderators; (4) W and target and SD2 UCN source; (5)
UCN “dog leg” guide; (6) UCNb experiment and UCN gate vavle; (7) PPM; (8) switcher
(UCNA); (9) AFP (UCNA); (10) SCS (see detail in figure 7.2); (11) nEDM test cryostat;
(12) cryogenics mezzanine; (13) He compressors; (14) He liquefiers; (15) LHE dewars; (16)
shielding package.
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major magnet systems; the Prepolarizing Magnet (PPM), the Adiabatic Fast Passage (AFP)

spin-flipper, and the Superconducting Spectrometer (SCS). UCN generated in the solid

deuterium (SD2) source are guided through the PPM and are polarized in a 6 T field.

Once polarized, high-field seeking UCN pass through the magnet while the low-field seeking

UCN are reflected back into the source. Some of these reflected UCN are spin-flipped

and have another chance to enter back into the experiment as high field seekers. Most,

however, are captured on the source guide walls. Some are lost in the SD2 by neutron

capture onto deuterium. However, the source has a flapper that closes after a sequence

of UCN pulses. Some UCN leak back into the source and are absorbed. The polarized

UCN are guided around a 45◦ elbow through a switcher that can redirect UCN heading the

other direction down into a UCN detector. UCN headed through the switcher pass through

another polarizing magnet, inside the AFP package, this time at 7 T. After this second

polarizing stage, UCN pass through the AFP spin-flipping resonance coils where the spins

can be adiabatically flipped. This critical step allows for selection of the desired spin state

for injection into the SCS.

Once in the SCS decay trap, UCN can either decay freely, be absorbed, up-scatter on

the walls of the trap, or escape back through the small rectangular guide through which

they entered. Figure 7.2 shows the detail of the UCNA experiment. Once UCN enter the

SCS and decay, the decay electrons spiral toward one detector on either side, guided by the

1 T holding field. The electrons pass through a MultiWire Proportional Chamber (MWPC)

filled with neopentane, an unsaturated heavy hydrocarbon molecule. Hydrocarbon is pre-

ferred for its low-Z, low-back scattering properties and because it can be pressurized to

100 torr. Backscattering is mostly caused by low energy electrons that take a random

walk inside the material in the detectors (windows, wire chamber gas, wires, or scintillator)

and return back out the direction they entered. The electrons then may travel to the other

detector. This has the effect of diluting the asymmetry. The wire chamber gas is supported

by kevlar backed 6 µm thick mylar windows on the front and 6 µm on the back. The backing

gas behind the MWPC is N2 at 100 torr. Inside the N2 gas the scintillator is connected to

light guides which direct scintillation photons towards four PMTs. The PMTs are inside

bucking coils which are inside soft steel shields, to compensate for the field from the SCS

magnet [92,93]. The position of the impact point of each electron can be determined by the

intersection of the x and y cathode plane wires in the MWPC. This allows for measurement
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Figure 7.2. Detail of the SCS experimental setup. Show on the left are the UCNB silicon
detectors while on the right are the UCNA MWPC/scintillator detectors. (1) UCN guide;
(2) shutter vacuum system; (3) UCN shutter; (4) square UCN guide; (5) UCN decay trap;
(6) decay trap clamps; (7) decay fiducial volume; (8) SCS; (9) SCS magnet; (10) UCNA
MWPC and scintillator; (11) UCNA detector gas system; (12) UCNB Si detector; (13)
UCNB detector electronics; (14) calibration load lock; (15) load lock vacuum system.

of the position dependent gain of the scintillator for improved energy reconstruction. [94].

With 16 wires in each direction, we achieve a resolution of ≈ 2 mm over the 45 mm radius

fiducial volume [93].

7.1.1 UCNA Gain Monitoring System

Extracting correlation parameters such as A and b from the energy spectrum of electrons

in a scintillating system requires good calibration of the overall gain and linearity of the

relationship between the true electron energy and the light output measured. To monitor

linearity and gain in the UCNA apparatus, we employed two systems. One system was a

207Bi source attached to each PMT face. The pulser was a 12 mm diameter scintillator

cylinder with the radioactive material embedded inside the center. The second system

was a custom Caltech-designed light emmiting diode (LED) and photodiode (PD) paired

system. In figure 7.3 we show the optical schematic view of the photodiode, LED gain

and linearity monitoring system for UCNA and UCNb. Light is generated by a CAEN

C529 6 channel LED driver at approximately 100 Hz with a width of about 8 ns. These

rates were best set to match the real pulse shape from beta decay. One of two LEDs fire
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Figure 7.3. Optical schematic of the LED/PD pair gain and linearity monitoring system.
(1) 405 nm LED; (2) 465 nm LED; (3) edge rays; (4) achromatic objective lenses; (5) beam
splitter; (6) first stage imaging lens; (7) second imaging lens; (8) photodiode; (9) photodiode
amplifier; (10) edge rays of fiber phase space; (11) fiber aspherical imaging lens; (12) factory
assembled fiber collimator; (13) fiber SMA connector; (14) 400 µm UV/VIS fiber; (15) 1
inch lens tube housing;

depending on a LabView software system. There is both a 405 nm (violet) LED (LED495E

from Thorlabs in Newton, New Jersey), and a 465 nm (cyan) LED (ThorLabs LED465E).

Two LEDs are used because the PMT photocathode has different thermal coefficients for

different wavelengths near the blue region. The temperature, and therefore part of the gain

shift, can be monitored independently from the relative gain shift of the two LEDs.

Edge rays, (3 in figure 7.3), denote the boundary of the image plan used by a spherical

doublet lens (ThorLabs AC254-035-A), to collimate light prefocused by the optical housing

lens of the LEDs. The collimated light passes through a nonpolarizing 50/50 beam split-

ter, (ThorLabs CM1-BS013). The reentrant primary lens, spherical achromatic doublet

(ThorLabs AC254-035-A), focuses onto the secondary spherical achromatic thin doublet,

(ThorLabs AC254-035-A) images the clear aperture of the photodiode objective lens onto
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the factory mounted photo-diode, where it is amplified by an integrated preamp module

(ThorLabs PDA10A).

The light from the two LEDs is combined and then split 50/50 through a reduced phase

space ray bundle. Although the fiber coupling unit (ThorLabs F671SMA-405) has a tiny

clear aperture of a few millimeters, it contains a pre-aligned ideal aspherical monochromatic

lens designed for single mode laser couping to a fiber at 405 nm. Thus the phase space that

is captured is efficiently imaged onto the entrance plane of the SMA fiber head. Despite

being designed for 405 nm, the fiber collimating lens is easily able to couple both 405 and 465

nm light into the 400 µm fiber entrance. The fiber is optically connected to the scintillator

in the experiment. However, the imaged spot of the LEDs is much larger than the entrance

window to the fiber, thus the phase space is reduced. This is critical to the functioning

of the system as the photodiode requires 107 photons to register a signal, but the PMTs

require only a small sampled fraction of that light on the order of a few tens to thousands

of photons at the most. Since the photodiode has low gain, and since it sees the split light

from the LEDs, it should have a very linear dependence on the number of photons coupled

to the fiber.

The entire system is held together with 1 inch optical threaded tubing, to align the

optics and to prevent stray light from entering into the system. Data are taken to measure

the linearity by ramping the pulse height of the trigger to the CAEN driver module. For

a large fraction of the pulse heights (up to 20 V) the pulse hight corresponded with light

output of the LED. The 50/50 splitter allows for this linearity to be monitored with the Si

photodiode. This light pulse measurement can be compared directly to the PMT response

of the SCS detector. As the PMTs are not as linear as a photodiode, a linearity curve of

light in versus PMT response can be measured. An example of linearity data is shown in

figure 7.4. In 2010, UCNA did not have the LED/photodiode pair installed, so detailed

measurement of the linearity response of the PMTs was not possible. However, in 2011, the

system described here was installed, but not temperature stabilized. Photodiodes, when

reversed biased, are typically linear better than 10−4. Also, with a temperature stability

of 0.5%/◦C, a measurement of PMT gain down to the 0.1% level or better is achievable if

the photodiode is stabilized to 0.2◦C or better. A fit to data taken from just one run from

2011 data shows a nonlinearity of 0.4%. In future analysis, this linearity can be applied to

the UCNA data to increase the fidelity of the Monte Carlo, linearity and gain calibration.
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Figure 7.4. The linearity of an hour long run. The fit shows that these data are linear to
0.3%.

7.2 Overview of Analysis Procedures

As described in section 7.1, the UCNA experiment is a prime example of a parity-violating

asymmetry in beta decay spectrum measurement. Here we develop techniques for construct-

ing the experimental observable used to extract the b correlation with minimum systematic

bias. This involves finding a quantity that cancels out the dependence of the spectrum on

A which is treated like an unknown if A and b are to be determined independently. To find

this quantity, which we will call the super sum, we must first develop a model of the rates

measured in each detector for each spin state. This model must, at the minimum, account

for the asymmetry, A, the detector efficiencies, and UCN loading efficiencies, all of which

are major systematic effects.

7.2.1 Rate Model

In the UCNA apparatus, we measure four rates that depend on neutron spin and the

polarity of the magnetic field of the detector. These rates, along with the asymmetry and



70

Fierz term, A and b, are

r↑1 = η1n
↑(1 + bx−1 +A0y) ΓSM , r↑2 = η2n

↑(1 + bx−1 −A0y) ΓSM ,

r↓1 = η1n
↓(1 + bx−1 −A0y) ΓSM , r↓2 = η2n

↓(1 + bx−1 +A0y) ΓSM ,
(7.1)

where we have defined

x(E) ≡ E

me
, and y(E, θ) ≡ 〈P 〉β cos θ, (7.2)

where 〈P 〉 is the average polarization. These four rates are expressed in terms of the

detector efficiency, η1,2(E, θ). The UCN loading number for each spin state, n↑ and n↓,

which varies on order of a factor of 2, are independent of E and θ, as the UCN physics is

highly decoupled from the beta decay physics. Also, these rates involve the neutron lifetime

and the differential decay rate as a function of energy as predicted by the Standard Model,

PSM(E) = τnΓSM(E). (7.3)

The detector efficiencies are typically both near unity at E > 200 keV, but fall to zero

at lower energies near some cutoff, Eoff
1,2. This cutoff will typically differ for each detector,

introducing differences near cutoffs. The differences create a more complex cutoff function

unless there is a way to extract the geometric mean in the beta spectrum. We will show a

way to do this in section 7.2.2.

7.2.2 Asymmetry and Energy Spectrum

A simple asymmetry, which neglects detector and loading efficiency effects, as measured by

two detector rates r1 and r2, is given by

A =
r1 − r2

r1 + r2
, (7.4)

where the total rate R and total counts N are fixed,

R = r1 + r2 =
N

T
±
√
N

T
, (7.5)
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and if run for a total time period T will have error

σ2
A =

(
∂A

∂r1

)
σ2
r1 +

(
∂A

∂r2

)
σ2
r2 =

4r1r2

TR3
. (7.6)

However, detector efficiencies and neutron loading efficiencies can lead to large biases. This

leads us to use a method for extracting A with a formula that canceled some of the detector

and loading effects. One such formula is the super ratio.

We can divide out the detector and loading efficiencies with the dimensionless quantity

called the super ratio [95] [96],

S(E, θ) =
r↑1r
↓
2

r↑2r
↓
1

. (7.7)

Using our rate model, we can derive

S(E, θ) =

(
1 + bx−1 −A0y

1 + bx−1 +A0y

)2

. (7.8)

Assuming that the detector efficiency is independent of the spin state, the super ratio can

be used to find the true asymmetry, A, which is independent of the loading and detector

efficiencies, but which is not independent of the Fierz parameter, b,

A(E, θ) =
1−
√
S

1 +
√
S
. (7.9)

Assuming the rate model in equation (7.1) we obtain

A(E, θ) =
A0y

1 + bx−1
. (7.10)

If we were to use this to fit both A and b at the same time, we would obtain [26],

σA =
14.8√
N
, σb =

206√
N
. (7.11)

If we can fix b, we reduce the error on A0 considerably down to

σA = 14.8

√
1− ρ2

N
=

2.7√
N
, (7.12)

where ρ = −0.983 [26].



72

In order to extract the Fierz term from a beta decay electron energy spectrum, we need

to find the ratio between the measured spectrum Pe(E) and the spectrum expected from

the Standard Model, PSM(E). This Fierz ratio is defined as

RF(E) =
Pe(E)

PSM(E)
=

1 + bmeE
1 + b

〈
me
E

〉 . (7.13)

To find this ratio from the UCNA experiment, it is helpful to extract a spectrum that does

not have a significant dependence on A. We can use a formula called the super sum to do

this. We can construct the super sum as the arithmetic mean of the geometric means of

the spin/detector pairs. Just as we took the asymmetric component of the super ratio by

dividing the difference of these pairs by the sum, here we just use the sum to preserve the

symmetric component, which reduces to the spin symmetric term,

Σ(E, θ) dE ≡ 1
2

√
r↑1r
↓
2 + 1

2

√
r↑2r
↓
1, (7.14)

where in the above rate model we have

Σ =
√
η1η2n↑n↓(1 + bx−1)ΓSM . (7.15)

While this does not eliminate the detector efficiencies, it does remove any dependence on

A from the extraction of b like a proportionality constant in front of the differential rate.

This does not affect the overall shape of the spectrum, and when we go to normalize the

spectrum in P (E) dE, this term drops out completely. We can then estimate the error on

σΣ in terms of the total counted events for each spin state, N↑ and N↓,

σΣ

Σ
=

1

2

√
1

N↑
+

1

N↓
. (7.16)

7.3 Estimation of Systematic Errors on b from UCNA

In this section we examine several systematic effects that arise when attempting to extract

b from a beta decay spectrum. In order to determine what systematic effects to investigate,

we must discuss how a real detector varies from an idealized one. A real detector will have a

finite resolution in energy and angle. Even once we have a probability distribution function,

P (E), there will be some convolution function, f(E;E′), that will blur the probability
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function, decreasing the effective resolution. This will of course decrease the ability to

extract beta decay parameters, such as A and b, which depend on the spectral shape. Our

intuition tells us that b will suffer more, but let us investigate that possibility.

Another concern is that the A and b terms are both affected by angle. The angle term,

y, that appears in our rate model has a cos θ dependence that controls the asymmetric part

of the rates. Typically, the angle itself cannot be measured and must be integrated away.

This integration also has a convolving effect, particularly on A as it dilutes the asymmetry.

The effect is not limited to A, as angular effects from backscattering, foil absorption, and

magnetic field effects, all conspire to affect the b extraction as well.

A true distribution where all effects are mixed into one term would be the integrals,

r↑1(E) = n↑
∫
η1(E;E′, θ′) Γ+

bA(E′, θ′) dE′dθ′,

r↑2(E) = n↑
∫
η2(E;E′, θ′) Γ+

bA(E′, θ′) dE′dθ′,

r↓1(E) = n↓
∫
η1(E;E′, θ′) Γ+

bA(E′, θ′) dE′dθ′,

r↓2(E) = n↓
∫
η2(E;E′, θ′) Γ+

bA(E′, θ′) dE′dθ′,

(7.17)

where we have defined,

dΓ±bA ≡ (1 + bx−1 ±Ay)dΓSM . (7.18)

It is clear that there is no impact on the super sum and super ratio from the spin state

occupancy, and these will cancel out as before. The effect of the convolution is more subtle,

however. There is unlikely to be a simple closed form expression for ηi(E;E′, θ′), but

we can assume that it is separable into three parts: a detector energy response function

(an angle dependent backscatter and dead layer effect) ηr; a threshold function from real

detector efficiency as a function of energy ηth; and a PMT response function ηpe. The

latter is typically dominated by a Poisson function, from the finite nature of the number of

photoelectrons. These separable terms can be integrated in three stages,

η(E; θ′, E′) =

∫
ηpe(E,E′′;µi) η

th(E′′;µj) η
r(θ′, E′;µk) dE

′′. (7.19)

While no exact closed form expression for any of these components likely exists, we may

easily make some helpful approximations of the three functions, which certainly are a rea-
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sonable approximation, by comparison, to the data.

7.3.1 Analytical Detector Model

The angle and backscatter smearing function, ηr, should have a smaller width when backscat-

ters are summed together as the energy from the detector on each side should be better

accounted for. However, the detector energy response function still exists due to dead layer

effects. In our analysis, we will eliminate most backscattered events from the data stream

as we can cut out events that fire on both detectors. Looking back at equation (7.19), the

detector backscatter response functions can be approximated by the simplifying exponential

function

ηr(E;E′, Etail) ≈


Etaile−(E−E′)/Etail

E < E′,

0.

(7.20)

While our backscatter may be well approximated by an exponential, a more realistic

model is the convolution of a Gaussian with a exponential,

ηr(x;λ, σ) =
1√
8πλ

∫ ∞
λ

ey/λ−1e−(x−y)2/2σ2
. (7.21)

This gives the basis for our response functions,

ηr(x;λ, σ) = exp

(
σ2

2λ2
+
x

λ
− 1

)
erfc

(
σ2 + λ(x− λ)√

2λσ

)
. (7.22)

A plot of a family of these functions is shown in figure 7.5(a). The value of these functions

is that they are simple representations of resolution caused by backscattered electrons and

other effects. The skew component is for backscatter like effects. The resolution function

has a sharp full energy edge for electrons that have no backscatter, and then a decaying

lower energy tail due to energy loss in backscattered electrons. The symmetric part is for

other resolution widening effects such as from electronic noise and shot noise. The resolution

component of our toy model can be expressed as a Poisson distribution,

ηpe
1,2(E,E′) =

µxke
−µ

Γ(x+ 1)
, (7.23)
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Figure 7.5. (a) A plot of the family of functions in equation (7.22) for σ = 1, λ ∈
{0, 1/5, 2/5, . . .}. (b) A plot of the family of threshold functions in equation (7.25) also
for σ = 1, λ ∈ {0, 1/5, 2/5, . . .}.

where

x ≡ E − E′

Epe
k

. (7.24)

The next part of our toy can be modeled by

ηth(x;λ, σ) =
1

2
η(x;λ, σ)− 1

2
erf

(
λ− x√

2σ

)
, (7.25)

which can serve as a quite reasonable detector response function, ηth(E;µi). A family of

threshold functions are shown in figure 7.5(b). A threshold function describes the falloff

of events at low energy due to detector thresholds. At low energy, electrons are not able

to penetrate the detector. They are scattered, slowed, or stopped such that they do not

register either in the wirechamber or in the scintillator below a cutoff energy. Further,

the threshold function is not a sharp edge but has an asymptotic tail from the cutoff to

higher energies as higher energy electrons are more likely to punch through the detector

dead layers and be detected. Also, the cutoff is not completely a sharp edge on the low

energy side due to resolution and other broadening effects. Equation (7.25) serves as a good

approximation of both these effects. Simple Monte Carlo experiments show this effect does

not strongly influence b extraction because the impact of the cutoff falls off exponentially

at higher energies so we will ignore this effect for sufficiently high software threshold. Thus,

a suitable energy range can be chosen that is above the cutoff so as to render no sizable

effect on the spectral shape. Typically, the threshold cutoff is approximately 70 keV with a

energy range starting at 150 keV. The tail, or skewness of the response function distribution
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did not show a significant effects in the first Monte Carlo studies so in further studies, we

neglect it in favor of a simpler symmetric distribution.

7.3.2 Backscatter Effects on Asymmetry and b Extraction

In the UCNA experiment, there exists a problem of multiple foils between the detector and

the fiducial volume where UCN decay. This means that not all emitted electrons make it

through the foils, at least not on the first pass. A fraction of the electrons are backscattered,

while others are fully absorbed. Either way, the asymmetry is diluted by this effect. To

extract the physics asymmetry, this must be corrected. Knowing exactly what is the scale

of this correction, is a challenge. As this does not affect the extraction of b, we remove

discussion to an appendix. See appendix C for a discussion of effect of backscattering as a

function of foil thickness on the asymmetry.

For b extraction, we use events that do not detectably backscatter by software cutting

on events that do not register in both detectors. Later, we will compare only these non-

backscattering events to similar event types in a physics Monte Carlo. The effect of ignoring

backscattering events is only to add to the energy response width of the tail function. We

investigated this by including events that register in both detectors, but this effect is small

since double detector events account for only 3% of all events. Even a b of 0.1 would have

only a δb = 0.003 contribution to the total extraction. In the final analysis we cut out these

events.

7.3.3 Biased Polarization

In section 7.2.1, our model for detector rates assumed that the polarization of neutrons was

the same for both spin states. For the real experiment, this may not be the case. Here we

study the size of this effect. An important systematic effect to analyze for its corrections

on the extraction of A and b is that of polarization that is imperfect, or biased toward one

spin type. A real neutron polarizer may introduce a biased polarization vector for the two

different UCN spin loading types,

〈P 〉 6= ±1. (7.26)
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Instead, we introduce a small polarization component that is spin dependent,

〈P 〉↑1,2 = ±(p+ δ),

〈P 〉↓1,2 = ∓(p− δ).
(7.27)

In this case, we recover

r↑1,2(E) = η1,2n
↑[1 + bx−1 ± (p+ δ)Ay] ΓSM,

r↓1,2(E) = η1,2n
↓[1 + bx−1 ∓ (p− δ)Ay] ΓSM.

(7.28)

Plugging this into the super sum, we find only a quadratic contribution in δ to

Σ = (1 + bx−1)(1 + ∆b) ΓSM, (7.29)

We get the correction to the Fierz ratio

∆b(δ) = − δ2A2y2

(1 + bx−1)2 − p2A2y2
+O(δ4). (7.30)

Similarly, we can apply the same method to the super ratio to extract a correction for the

measured A,
1−
√
S

1 +
√
S

=
Ay

1 + bx−1
(1 + ∆A). (7.31)

The asymmetry is corrected with

∆A(δ) =
δ2pA2y2

(1 + bx−1)2 − p2A2y2
+O(δ4). (7.32)

We find that both ∆b and ∆A are second order in δ. For UCNA, δ < 1% so ∆A,∆b ≈ 10−6.

These are small enough effects to be neglected.

7.3.4 Simulation Study of Systematics

Presented in this section are the results of a series of Monte Carlo studies of key systematic

effects. As this analysis is basically a study of the electron energy distribution, the major

factors influencing this are detector energy response, detector background and backscat-

tering effects. Backscattering was discussed in section 7.3.2. Here we address the other

systematic sources of error. The effects examined were detector gain, detector linearity in
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second and third order, energy resolution, and background subtraction mismatch. As shown

in the previous section, it is possible to construct a toy model of the effects produced by the

full physics Monte Carlo. The toy model can be altered with the systematic effects listed

above, without the need for the full physics simulation. The advantage of this method, is

that we can vary the parameters, µi, in the model, and quantify the effect on the error

in b as well as determine the χ2/ndf values for the fit to the Fierz ratio, RF. The proce-

dure used changed the value of the parameter being tested, µi while keeping χ2/ndf < 2.

These maximum values are also consistent with the response and background systematic

uncertainties from the full UCNA analysis. Also, to be consistent with the UCNA data, the

same number of events, 25 million, was used. A combination of these values sampled from

an appropriate distribution, was used randomly multiple times to determine the effective

average error on b. This allows us to build a covariance model of the parameters without

the need for lengthy physics Monte Carlo, which can take minutes per event [97]. Some

of the parameters are correlated, so a change in two parameters at the same time may

inversely or identically alter b, rather than any one change in a single parameter by itself.

For example, many parameters spread the resolution width, so changing one has a nearly

identical effect as another. Both spread the resolution in the energy range by some amount

in the same direction. Conversely, some parameters are inversely related, such as energy

offset and cutoff energy. A change in one can be offset by a change in the other.

We began the study by testing for the extraction of b without altering any parameters

of the analytical model. This acted as a control test to see what value of b would arise from

the Fierz ratio of the control Monte Carlo to another control with b = 0. Then we fit the

curve
1 + bx−1

1 + b 〈x−1〉
(7.33)

to this ratio, and extracted b from the fit. Three values of b were simulated, b = 0,±0.05

and and these were compared to a Monte Carlo of a null b. Figure 7.6(a)–7.6(c) show this

control study.

The nonlinearity of the detectors response was then investigated by taking the Fierz

ratio of a simulated set of data with b = 0,±0.05. To characterize the nonlinearity, we

introduce a quadratic and quartic nonlinearity function

δx = −1.71α(x− a)(x− b) + 5.86β(x− a)(x− (a+ b)/2)(x− b), (7.34)
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Table 7.1. A summary of numerical systematic studies

parameter µi δµi b fit b

control none 0 -0.05 -0.054(2)
0.0 -0.004(2)
0.05 0.052(2)

quadratic 0 0.007 -0.05 -0.037(4)
0.0 0.084(3)
0.05 0.133(3)

quartic 0 0.003 -0.05 -0.076(5)
0.0 -0.025(5)
0.05 0.030(5)

resolution 0.05 0.005 -0.05 -0.059(2)
0.0 -0.006(2)
0.05 0.043(2)

endpoint 2.53 0.005 -0.05 -0.044(5)
0.0 -0.054(5)
0.05 0.100(5)

background 0 0.002 -0.05 -0.055(5)
0.0 -0.000(4)
0.05 0.046(5)

where a and b are the starting point and endpoint and x = E/me. A plot of this linearity

map is shown in figure 7.7 where the influence of the parameters on the nonlinearity can be

seen in an exaggerated manner. In these studies, we first varied the α parameter with the

maximum value of α = 3.6keV/me. Figure 7.8(a)–7.8(c) show an study where the second

order linearity is tested by varying the α parameter in the energy distortion function

Similarly to the quadratic nonlinearity study, the third order parameter was varied to

determine the impact of higher order nonlinearity. Figure 7.9(a)–7.9(c) show distortion

experiments using the same distortion function as above but varying the β parameter such

that β = 1.0 keV /me at maximum.

Another study was performed by varying the resolution of the detectors. Detector

resolution was varied in a simple Gaussian model and then the Fierz parameter, extracted.

Figure 7.10(a)–7.10(c) show variation of the width by 10% from σ = 0.05 to σ = 0.055 in

dimensionless units. This is equivalent to a resolution width of 51 and 56 keV respectively.

Even though the real resolution is a function of energy such as the ∝
√
E due to the shot

noise effect, for this study it was held constant. The detailed Monte Carlo showed the true

E dependence had a negligible effect.
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Figure 7.11(a)–7.11(c) show variation in the end point by 2.5 keV such that x′0 = 0.998x0.

This works out to a gain shift of 0.3% which is consistent with the gain stabilization of the

real data set.

Figure 7.14(a)–7.14(c) show an example where an artificial background in introduced.

The background has the toy fourth-order spectral shape shown in figure 7.12. The toy

background captures the two important features of the real background, shown in 7.13

[97], of gammas in the low energy regime and muon background toward high energy. The

amplitude of background variation is ≈0.2% overall which is 10% of the total size of the

background noise to signal which for UCNA is 2%.

Figure 7.15(a)–7.15(c) show a single example of a combination of randomly generated

values of all parameters about the center values used in the previous experiments. The

random values are generated using a Gaussian distribution such that the values used above

are one standard deviation. Based on these studies where 100 separate parameter values

were sampled, we compute a total systematic error of σb = 0.08.

7.4 Results from UCNA data

Presented in this section are the results of the UCNA 2010 data set compared to physics

Monte Carlos and the systematic studies mentioned in the previous section. Two Monte Car-

los were used to compare to UCNA data. One Monte Carlo was written using the GEANT4

tootlkit [98] and was developed by Dr. J. Liu and graduate student M. P. Mendenhall [96,97].

The other was written using the PENELOPE [99], developed by graduate student (now

Dr.}) R. Pattie [95]. Shown in figure 7.16 are the super sums of both data from the UCNA

2010 run and the full GEANT4 electron physics Monte Carlo with the residuals shown in

figure 7.17. Shown in figure 7.18 are the super sums of both data from the UCNA 2010 run

and the full PENELOPE Monte Carlo with the residuals shown in figure 7.19.

The gray bands in figure 7.20 and 7.21 represent the systematic error of a null result

consistent with b = 0. The band is computed using an envelope of approximately 70%

of Monte Carlo curves generated from the toy model used in the previous section. These

results show that a best fit to the GEANT4 calculated Fierz ratio, RF, of the fit function
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1 + bme/E − 〈me/E〉) gives

bn = 0.079± 0.005(stat)± 0.080(sys), (7.35)

and from PENELOPE gives

bn = 0.095± 0.005(stat)± 0.080(sys). (7.36)

Averaging these, the systematic error in equations (7.35) and (7.36) give us a limit on

−0.044 < bn < 0.218 (90% C.L.).
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Figure 7.6. These plots show the results of three control studies. In each test, we have set
b = 0 and ±0.05. The Fierz ratio was computed and plotted by dividing out by a Monte
Carlo spectrum with b = 0. The thin line is the analytical ratio, RF. The thick line is the
best fit to the randomly generated points shown as dots with error bars.
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Figure 7.7. A plot of the linearity map in equation (7.34) for α = 0.3 (red) and β = 0.1
(yellow) compared to linear (blue).
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Figure 7.8. In this set of plots, we show the results of a study similar to the control test
in 7.6. In this study however, a quadratic term in the linearity of the gain was varied to
α = 0.007. Again, Monte Carlo data with b = 0,±0.05 was divided by a spectrum with
b = 0. The curves are the same as described in figure 7.6.
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Figure 7.9. This study was similar to the nonlinearity study with a quadratic term, α, except
here the third order term was set to β = 0.003. The curves are the same as described in
figure 7.6.
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Figure 7.10. In this study, the resolution was increased by 10%. The curves are the same
as described in figure 7.6.
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Figure 7.11. In this study, the endpoint was increased by 0.3%. The curves are the same
as described in figure 7.6.
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Figure 7.12. A plot of the toy background shown with a beta decay spectrum.

Figure 7.13. A plot of the real east and west backgrounds from UCNA 2010 data.



89

0 200 400 600 800

0.99

1.00

1.01

1.02

E�me

R
F

(a) bexp = −0.05, bfit = −0.055(5)

0 100 200 300 400 500 600 700

0.995

1.000

1.005

E�me

R
F

(b) bexp = 0, bfit = −0.000(4)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.990

0.995

1.000

1.005

1.010

1.015

1.020

1.025

E� me

R
F

(c) bexp = 0.05, bfit = 0.046(5)

Figure 7.14. In this study, an artificial background was introduced to simulate mismatched
background subtraction. The curves are the same as described in figure 7.6.
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Figure 7.15. This figure show a single example of a combination of randomly generated
values of all parameters about the center values used in the previous experiments. The
random values are generated using a Gaussian distribution such that the values used above
are one standard deviation. The curves are the same as described in figure 7.6.
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Figure 7.16. A comparison of the UCNA 2010 super sum data and the GEANT4 Monte
Carlo super sum spectrum.
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Figure 7.17. Residual of the UCNA 2010 data super sum and the UCNA GEANT4 Monte
Carlo super sum.
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Figure 7.18. A comparison of the UCNA 2010 super sum data and the PENELOPE Monte
Carlo super sum spectrum.
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Figure 7.19. Residual of a comparison of the UCNA 2010 super sum data and the UCNA
PENELOPE Monte Carlo super sum.
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Figure 7.20. The Fierz ratio of UCNA 2010 data and the GEANT4 Monte Carlo. The dark
line is the fit function RF ≈ 1 + b(me/E − 〈me/E〉). The gray band represents the possible
b = 0 systematic 1σ limit based on an envelope of possible Fierz ratio curves with randomly
varied parameters as described in the previous section. The fit gives bfit = 0.079± 0.005.
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Figure 7.21. The Fierz ratio of UCNA 2010 data and the PENELOPE Monte Carlo spec-
trum. The dark line is the fit for the fit function RF ≈ 1 + b(me/E − 〈me/E〉). The gray
band represents the possible b = 0 systematic 1σ limit. The fit yields bfit = 0.095± 0.005.
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Chapter 8

The UCNb Experiment

In any field find the strangest thing

and then explore it.

John Wheeler

8.1 Detector concept

The UCNb experiment started around a simple suggestion from Dr. Chris Morris that we

could make an experiment that measures the neutron beta decay spectrum, to unprece-

dented accuracy, with a detector and UCN trap in one device. By placing a scintilating

chamber that also stored neutrons at the LANL UCN source gate valve, where the density

is highest [100], around 60 UCN/cc [101], we could measure the neutron electron spectrum

with better statistics than any other UCN apparatus in the experimental hall. The experi-

ment also could be modeled after an optical integrating sphere, which could measure light

output from the scintillator in an position independent manner. But such an experiment

would require a material that could act as an electromagnetic calorimeter and still have a

high enough Fermi potential to store UCN.

Deuterated polystyrene (DPS) was a good first candidate. It has a Fermi potential of

150 neV. But it is not quite as high as the 180 neV of the stainless steel used to direct UCN

to the experiment. So with DPS there could be some loss, but it is still large enough to

store a significant fraction of the UCN spectrum if the entire experiment is elevated 30 mm

above the main beam line. A major drawback of DPS is its very high cost. Building the

entire scintillator out of DPS would be ideal from a design standpoint, but at $1k/cc the

price was prohibitive for a prototype.
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Table 8.1. Possible UCNb scintillator and wall coating material choices.

scintillator coating VF (neV) photons (MeV−1) decay time (ns)

BC-408 BC-444 156 10,000 2
BC-444 - 156 10,000 2
CaF2 - 102 25,000 900
CaF2 MgF2 133 25,000 900
BC-408 MgF2 133 10,000 2

Figure 8.1. This photo
shows the assembly process
for the scintillator boxes
used in UCNb. The
boxes were locked into place
with PTFE protected opti-
cal clamps mounted to an
optical breadboard. The en-
tire assembly was lifted up
so that edge to be bonded
would be facing as upright
as possible.

Polystyrene is a good plastic scintillator. At 60% of anthracene, it outputs 10,000

photons per MeV of energy deposited [102]. This results in a resolution of 3% or 30 keV at

1 MeV.

Dr. Alexander Saunders proposed placing a thin (100 µm) layer of DPS on top of PS

scintillator to reduce the neutron absorption losses due to the hydrogen in standard PS.

The DPS would emit UV similarly to PS, but the wave shifter in the scintillator region

would reemit in the visible range [103].

Other candidates were bare CaF2 and MgF2 on CaF2. While these scintillators do not

have as high of a UCN storage potential, CaF2 has a higher and more linear light yield

than plastic scintillator. In the end, the best choice was MgF2 because of the quality of its

surface and reasonably high potential, at 133 neV. Table 8.1 shows a list of possible surface

coatings and scintillator choices available to the UCNb experiment. Figure 8.1 shows a

prototype CaF2 box and figure 8.2 shows a prototype MgF2 box.
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Figure 8.2. This photo shows the MgF2

polystyrene scintillator box assembled and
placed inside the integrating cube. The top
is on top of the box showing the insert hole
for the insertable source.

8.2 Modeling UCNb

8.2.1 The integrating sphere

An important feature of the UCNb experiment is the integrating reflector. Though actually

a cube in the prototype device, the principles in modeling the reflector is the same as with

any optical integrating sphere. The rate of light, ΓS, onto a sensitive detector of area AS is

determined by the mean free path

`S =
4V

AS
, (8.1)

giving

ΓS =
ASc

4V
. (8.2)

There is also a photon rate reflected off the outer reflector of area AR with reflectivity ρ,

ΓR =
ρARc

4V
. (8.3)

A photon in an integrating sphere has three options during its lifetime. The first possibility

is that it is absorbed by the dead area of the reflector, AD ≡ (1− ρ̄)AR. The second possible
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outcome is that it is reflected and continues on its way, and the third is that it is detected by

the photosensitive area of the detector. The total efficiency of the detector is given by the

ratio of live rates. These three possibilities are encoded in an infinite sum for the efficiency

η,

η =
∞∑
k=0

AS
AT

(
1− AS +AD

AT

)k
, (8.4)

where AT = AD + AS + AR. The geometric series sums to reveal the integrating sphere

efficiency

η =
AS

AS +AD
. (8.5)

This result makes sense, as we can only have the final state of the photon ultimately in

the sensitive area or the dead area. Equation (8.5) can be given explicitly for certain

geometries and detector layouts. Let us assume that we have n detectors, each of radius a.

For a spherical integrating chamber of diameter d, this works out to

ηsphere =

[
1 +

d2(1− ρ̄)

na2

]−1

. (8.6)

For a cubic integrating chamber of side length d, this works out to

ηcube =

[
1 +

6d2(1− ρ̄)

nπa2

]−1

. (8.7)

The sphere thus has greater efficiency than the cube, so this can be used to estimate the

effects of the position dependence at the corners of a cube over a sphere.

8.2.2 Monte Carlo

Caltech undergraduate student Chi Feng and I constructed a Monte Carlo model of the

UCNb experiment using GEANT4 [104]. The system simulates electrons from 1 keV to

several MeV. Simulating electron energies below 1 keV becomes less reliable because of the

complexities of the atomic physics at that scale.

Also simulated in GEANT4 is the optical model of the reflector and scintillator. Optical

photons are reflected off the high reflectivity outer surface of the integrating chamber.

Figure 8.3 shows the geometry of both the reflector and the scintillator used in one of the

Monte Carlo studies. Some photons are internally trapped in the scintillator until they are
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scattered out into the reflecting chamber or are absorbed by the bulk. This model allowed

for calculation of the optical properties beyond just using the analytical model in (8.5).

This is important for studying the systematic effects of position dependence and absorption

variation of different materials.

Using both the electron and optical models, GEANT4 allowed us to analyze the response

function of the energy loss to light conversion. The modeled function is a combination

of multiple factors: the response of the light output from different positions within the

scintillator box, the optical position dependent response function, and finally the spread of

the response function caused by Poisson statistics (also called shot noise). Figure 8.3 shows

one of the modeled geometries where the scintillating box was smaller than the integrating

reflector.

Figure 8.3. One of the Monte Carlo 2012 geometry used as generated by GEANT4

Figure 8.4 shows a simulation of a single photon emitted from the collision point of a

10 keV electron with the plastic scintillator wall. A UV photon that is produced is shifted

to blue, and then reflects multiple times until it is detected by the simulated PMT window.

Only one photon is shown in figure 8.4(a) for clarity. In reality, many photons are released

as shown in figure 8.4(b).
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Nominally, even in a well-designed 4π scintillator with very minimal position depen-

dence, the largest part of the response that broadens the response function (e.g., resolution)

is the Poisson noise from the finite number of photons.

Figure 8.5 shows the difference in response function for 100 keV electrons directed toward

the photodetector or aimed at a wall without a photodetector. The response function

shows that direct photodetector events have a bimodal distribution, whereas wall events

do not [105]. The bimodal distribution is a result of some events depositing more of their

scintillator generated light directly into the window of the PMT. Figure 8.6 shows the

difference in response function caused by position dependence.

(a) (b)

Figure 8.4. Monte Carlo simulation of a collision of a 10 keV electron with the scintillator
wall (a) showing only one UV photon which generates one blue photon and (b) a shower of
UV photons which are waveshifted into blue photons.

8.3 Error budget

8.3.1 Response function

As discussed in chapter 7, one of the most difficult challenges in extracting b is the de-

termination of the response function. This is further compounded by the problem that

most calibration sources are not exact monoenergetic sources and have overlapping conver-

sion lines. Good approximations of mono-energetic electron sources are conversion electron

sources such as 113Sn or 207Bi which have conversion lines in the neutron beta decay energy
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Figure 8.5. Monte Carlo results of events directed toward a detector or toward a wall.

range. Because of the poor resolution of a scintillator-based calorimeter, the response func-

tion is difficult to measure directly without good understanding of these type of electron

sources. One solution is to calibrate the response function ex situ using an electron accel-

erator. We have one such “e-gun” at the Kellogg Radiation Laboratory at the California

Institute of Technology. The e-gun only reaches an energy of 135 keV which is not the full

range of the end point, E0, of the neutron beta decay spectrum. Ideally, we would want to

calibrate to even higher energy than the end point to extend the region in which we test for

linearity. A possible improvement to the UCNb experiment is to construct an e-gun that

covers most or all of the energy range of neutron beta decay electrons. One advantageous

option would be to construct this in situ with the UCN source.

8.3.2 Inherent γ backgrounds

Several inherent backgrounds are present in the experimental hall which must be subtracted.

The pulsed proton beam induces spallation inside the target, producing thermal neutrons
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Figure 8.6. Monte Carlo results of events produced in the center or the corner of the
scintilator in the geometry that fills the entire detector.

that quickly activate the iron and concrete in the shield package. This creates long-lived

activated nuclei as well as prompt gammas. The prompt background can easily be gated

out by vetoing a short time window around the beam pulse, about 1 ms every 5 seconds.

The longer-lived components are much more difficult to veto. They must be shielded out

by a lead shield and background subtracted.

8.3.3 UCN generated backgrounds

UCN can generate background from the prompt γ following neutron capture on the walls

of the storage vessel. This prompt γ rate can be estimated by

Γ = ρλnσnv0/vn, (8.8)

where ρ and σn are the density and thermal cross section for nuclei in the walls, λn is the

wavelength of the UCN, vn is the UCN velocity, and v0 = 2200 m/s the thermal speed of

neutrons. For deuterated polystyrene walls, the main capture nucleus is mostly carbon.

The thermal capture cross section for 12C (98.9%) is 0.0035 barn. Using this for UCN at 5
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m/s we get a neutron capture rate of 6× 10−7 per bounce,

(5× 1022 /cc)(80 nm)(0.0035 barn)(2200 m/s)/(5 m/s) = 6× 10−7. (8.9)

In the large plastic scintillator geometry, the box volume is 2 L so there are 6×104 k UCN at

30 UCN/cc so the overall bounce rate is about 3 MHz. This yields a prompt gamma rate of

about 2 Hz. The gammas should generate ≈ 3% Compton rate in the beta scintillator which

leads to a ≈ 50 mHz prompt background. The noise to signal ratio for this is ≈ 7× 10−4,

independent of UCN density.

The thermal cross section for 13C (1.1%) is 0.0014 barn, so the natural abundance

capture rate is 8 mHz. This gives an additional prompt gamma background of 0.2 mHz and

a noise to signal ≈ 3 ppm, which is obviously dwarfed by the 12C capture background.

In addition to the prompt background, UCN can also activate materials that later beta

decay. Unlike the prompt UCN generated background, this background would build up over

time. For example, 14C beta decay could be a source of background because the peak and

end point (156.5 keV) is in the region of interest for b. To find out how big this effect is,

we need to know the effective beta decay rate generated by UCN capture on natural 13C.

What we find is that even after running 100 days of continuous activation, though time

dependent, this background is very small, ≈ 70 nHz. This has a noise to signal of 1 ppb.

Unlike the prompt background, this depends on the UCN density. These calculations show

the biggest background is from prompt gammas from capture on 12C, but this rate is still

small enough for a 0.01 measurement of b.

8.3.4 Lead shield

In order to limit the inherent background, the experiment must be placed inside a lead

shielding box. Since even high energy gammas can scatter inside the experiment and create

a low energy background, the shielding must have a high attenuation factor to 1 MeV

gammas. The lead shield can seen schematically in figure 8.14.

8.4 Calibration and gain monitoring

Since the measurement of b is basically a measurement of the energy spectrum, careful

calibration and gain monitoring are required. We designed a new PMT base to increase the
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Figure 8.7. This photo
shows our custom Hama-
matsu R7725 base assembly.

linearity specifications provided by Hamamatsu for tube type R7725 (see figure 8.7 and 8.8.)

The PMT base circuit was a custom modification of the original Hamamatsu design. One

important change was the increase of the voltage rating of the capacitors, as these failed in

the UCNA experiment and caused severe nonlinearity in the original Burle bases, first used

in the UCNA apparatus. Another change was the addition of more interstage capacitors in

the lower stages to help replenish charge on the lower stage dynodes of the PMT. Assuming

the log of the gain, logG = 7, each stage has a gain of roughly 107/12 ≈ 3.8 and thus if

charge is depleted on a stage n dynode, the output signal could drop at peak voltage by

` = 10−(n logG)/12. (8.10)

A goal of 10−3 linearity would require a capacitor on the 5th stage of the voltage divider

chain. Some comparatively simple changes were also made such as adding a bypass 100 MΩ

resistor to allow discharge of the signal isolation capacitor.

While the new design improved linearity, many systematic effects such as gain drift

and temperature-dependent linearity remained. Because the gain follows voltage to the

12th power for a 12 stage PMT, a slight change within the resistance chain can lead to a

large change in gain. To mediate these stability errors, the experiment is designed to be

temperature stabilized using copper cooling plates attached to a high precision cooler. Even

with temperature stability however, gain monitoring is required. To do this, we prototyped

several gain monitoring systems (GMS) for monitoring the drifts in optical and electronic
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Figure 8.8. The schematic of the Hamamatsu R7725 base design.

gain.

8.4.1 Insertable sources

An important method for monitoring gain is a direct measurement of the light output from

a known and stable electron source. An ideal solution is to use radioactive sources that emit

conversion electrons. Two examples are 113Sn and 207Bi with conversion lines around 360

keV for 113Sn and 500 keV and 1 MeV for 207Bi. We designed a source that sits on the end

of a fiber and can be inserted and withdrawn without breakng vacuum. This is done with

a fiber feedthrough and vacuum bellows. The value of a source that can be inserted with a

sealed vacuum bellows system is that the PMT voltage does not need to be toggled off and

on. Also, the system does not need to be vented and pumped down, all time consuming

and possibly gain destabilizing.

Figure 8.9 shows us a magnified view of the tip of the insertable sources. Figure 8.10

show us detail of the machined tip of the insertable sources. The sources were made from a
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scintillating blue fiber, 1 mm in diameter. A jig was constructed by the Caltech Instrument

Shop to drill a 800 µm cup 1000 µm deep. The inside of the cup is coated with dried

radioactive material such as 113Sn or 207Bi. The fiber is scintillating so that if an electron

Figure 8.9. An insertable source used for calibrating with a conversion electron source such
as 113Sn or 207Bi without venting the UCNb vacuum system.

passes through the wall of the cup, or into the fiber, a tagging signal can be detected. This

may be done with a PMT on the end of the fiber, outside the vacuum system. This can

either be used as a veto, or, if enough light is captured, can be used to measure the lost

energy. The amount of light captured is limited by the trapping efficiency of the fiber, which

is low if unclad.

8.4.2 Other calibration sources

Two other methods were tested as a means of calibration. The first method used traditional

gamma sources, cobalt-60 and cesium-137, outside the vacuum chamber. The gamma rays

from these sources Compton scatter off electrons in the calorimeter, leaving a Compton

edge. The UCNb calorimeter, made of carbon and hydrogen, is too thin and too low in Z

to see a full energy photopeak. Figure 8.11 and figure 8.12 show spectra of the Co and Cs

sources used to identify the Compton edge as a calibration point.

Also used as a calibration source was activated xenon. We placed natural xenon into

the LANL UCN source and froze it to the bottom surface where the cold neutron density is
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Figure 8.10. A detailed schematic of the insertable source. (1) 1 mm plastic scintillator fiber;
(2) machined hole coated with radioactive material; (3) conversion electron leaving the hole;
(4) tagged conversion electron; (5) vetoed conversion electron; (6) liberated scintillation
light; (7) trapped scintillation light.

largest. Within minutes the xenon is activated and can be warmed back into the gas phase.

The gas is stored and small quantities can be carefully delivered into the detector. Figure

8.13 shows a plot of data taken using activated Xe. The dominant peaks are 134 keV from

125Xe with a 16.9 hour half-life and 444 keV from 135Xe which also has a 915 keV end point

beta decay spectrum and a 9.14 hour half life.

8.5 The experiment

In this section we describe the UCNb experimental setup and discuss some early results

form runs during the 2010–2012 run period. Since most of this time period was spent on

constructing the experiment, little time was left for iterative running and revising. However,

enough run time was collected to learn about the systematic effects to help steer the design

for the upcoming run cycle.
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Figure 8.11. Exterior 60Co source

8.5.1 Mechanical setup

A schematic view of the UCNb experiment in situ is shown in figure 8.14. UCN first exit the

source shield package. The density of UCN are sampled by a small hole into the Gate Valve

monitor. UCN that fall through this guide are accelerated by gravity and detected by a 3He

proportional wire chamber neutron detector. The majority of UCN continue on through

the UCN Gate Valve. UCN can be shut off to most experiments by closing the gate valve.

As discussed in chapter 5, the UCN source is sealed off from the rest of the UCN beam line

by a zirconium foil. The foil is embedded in a magnetic field generated by the prepolarizing

magnet (PPM). The coils in the PPM are contained in a return yoke so as to minimize the

field outside PPM bore. Hall probe measurements have shown the field to drop to 20 Gauss

outside the bore. While most of the UCN beam line is well isolated from the UCN source,

the UCNb experiment is not. Instead, it has a small port before the gate valve that can

be closed by its own ball valve. After the ball valve, is a thin (6 µm) polyethylene window.

Polyethylene was chosen because it has a near-zero Fermi potential which allow UCN to

pass through without the magnetic boost needed to pass through the 90 neV potential of

the zirconium foil. This avoids the need to polarize the UCN entering the UCNb apparatus,

which would cut the UCN density in half and introduce a systematic asymmetry by making

the UCN sensitive to magnetic fields. When the ball valve is open, UCN enter the decay
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Figure 8.12. Exterior 137Cs source

volume enclosed by the scintillating walls. Surrounding the walls is a 7 mm thick layer of

Spectralon made by Lab Sphere in North Sutton, New Hampshire. [106, 107]. Spectralon

is a special reflective material made of sintered PTFE, with reflectivity of 99% at 400

nm. Connecting to the top is the insertable source. The source is connected by a vacuum

bellows to an optical fiber, via 1 mm fiber UV/VIS feedthrough. The source consists of a

scintilating fiber with a small cup. We manufactured the 207Bi sources at California Institute

of Technology and the 113Sn source at North Carolina State University. Radioactive material

was dried inside the cup repeatably until the desired activity of about 50 nCi was achieved.

PMTs also enter the integrating cubical reflector, but not the scintillating cube. The

PMTs are connected to an electronic voltage divider base, that is mounted inside the vacuum

chamber, but is sealed off from the vacuum by o-ring seals that hold a pressurized non-

conductive gas, typically CF4 which has a high dielectric standoff.

In one set of runs, the entire assembly sat inside of a lead shielding enclosure to reduce

the ambient and beam background.

8.5.2 Electronics

The photosensors used were Hamamatsu R7725 Bialcali photomultiplier tubes. These tubes

are the same type as employed by the UCNA experiment. A custom base circuit was already
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Figure 8.13. Activated Xe run in the large DPS geometry.

designed and tested by Hickerson and Morris for the UCNA experiment. The linearity tests

were also performed in the SCS using the UCNA light pulser system and DAQ, so we knew

that the combination PMT and base would have linearity of at least 1% in a similar rate

and charge per pulse as the UCNb experiment.

Figure 8.18 shows an example of the electronic schematic used for runs in 2012. The

output of the PMT base was amplified by an Ortec 474 timing filter amplifier. A small

integration time of 20 ns was added to smooth out some high frequency noise. The input to

the 474 is terminated at 100 Ω, whereas the PMT base was terminated at 50 Ω to impedance

match the signal cables used, so a 100 Ω termination resistor must be placed in parallel

with the signal line.

The output is then split to a Phillips Scientific 708 discriminator and also a > 64 ns

delay for the ADC. The threshold of the discriminator was typically set to 30 mV, right

above the single photon peak. The discriminator logic pulse was fed into a Phillips Scientific

756 coincidence unit to allow for 2/4 coincidence of multiple PMT channels.

The coincidence signal was used as a trigger for a Phillips Scientific 794 gate generator.

This gate generator also had an inhibit input used to gate off beam pulses from a conditioned

H-GX signal provided by the LANCE accelerator. The output of the 794 was split back to

act as a gate for the Phillips Scientific 744, to gate on the delayed PMT output signal, and

to a scalar and timer pair used to measure the raw rate. The corrected gated signal was

either fed back directly into our custom flash ADC (fADC) or was summed with all channels
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Figure 8.14. Experimental setup for the foil transmission measurements. (1) the shield
package surrounding the UCN sources; (2) the UCN monitor port; (3) UCN guides; (4)
UCN 3He detectors; (5) gate valve housing; (6) UCN valve; (7) Zr foil; (8) PPM; (9) PPM
current coils; (10) PPM shielding yoke; (11) UCNb 1” ball valve; (12) UCNb 1” UCN
guide with thin polyethylene film window; (13) Spectralon reflector; (14) scintillator; (15)
insertable source bellows; (16) insertable source fiber; (17) Pb shielding; (18) PMT base;
(19) PMT.

and fed into a MCA for a simple, less gain matched signal. The fADC was designed and

built by Dr. Fred Grey of Regis University primarily for use at LANL on the µrad proect.

8.6 Results

In our first runs we discovered that we had 6He contamination from spallation in the source

vacuum enclosure. Using a timing of 30 seconds between beam pulses, we could isolate the

6He signal (807 ms half-life and 3.5 MeV endpoint) from the UCN generated signal and the

γ ray prompt background. The results are shown in 8.19. For later runs, a UCN transport

thin polyethylene film was inserted to block the 6He. Polyethylene was used because it has

a Fermi potential very near zero.
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Figure 8.15. The Spectralon reflector.

Shown in figure 8.20 are the calibration results from runs using a 207Bi disk placed inside

the scintillator box. The disk was placed in the center of the bottom of the box, over the

UCN entrance hole. The drawback of this calibration scheme is that conversion electrons

may scatter off the disk holder material (Mylar) before reaching the scintillator. Another

drawback is that optics of the integrating box are altered by the presence of the 1” silver

colored disk. This electron scattering results in peak broadening and resolution reduction.

However, the 1 MeV peak of Bi is still plainly visible allowing a reliable method to find the

location of the neutron endpoint.

Figure 8.21 shows the calibration results for a 113Sn disk, also embedded in mylar. Again,

this has the same drawbacks as the Bi disk by affecting optics and electron scattering. In

the 2012 data runs, we were able to use the insertable sources. These are designed to impact

the optics less as well as tag the events where scattering occurs.

In figure 8.22, the results from a background-subtracted run using the 207Bi insertable

source are shown. An unexpected result is that the single 1 MeV beak appears bimodal.

Similarly, figure 8.23 shows the 113 insertable source. We suspect that this is the result of

the geometry of the fiber cup shape in which some electrons leave the cup through the open

bottom, and some must pass through fiber. It is also possible that this is the result of the

splitting predicted by the GEANT4 Monte Carlo as shown in figure 8.5, however, it is not

clear why the bimodel splitting would be on the order of 50% when the Mote Carlo predicts
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Figure 8.16. This CAD drawing shows the UCNb experiment in a proposed 2012 geometry.

around 10% of the events should be direct and have a higher light output. Further analysis

and measurement is needed to see if this effect can be eliminated by cutting on the pulse

height of light through the fiber or by reducing the position dependence of the box.

Figure 8.24 shows the background subtracted runs of UCN placed in the UCNb appara-

tus. The runs consisted of 120 sec of the UCN valve open, with 120 sec runs with the UCN

valve closed to serve as a background measurement. The background is shown in 8.25. The

most striking feature of these runs are that what UCN generated signal does not appears to

have any definitive beta decay spectral shape. The UCN rate in the range 100–1600 keV,

as calculated using the rate with the UCN vale closed subtracted from the rate with the

UCN valve open is 4.9(1) sec−1. This was on top of a background rate (UCN valve closed)

of 29.4(1) sec−1. If the UCN generated rate was completely accounted for by beta decay,

the density would be 2.8 UCN/cc.
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Figure 8.17. This CAD drawing shows a cross section of the UCNb experiment in one of
the proposed 2012 geometries. Inside is shown the CaF2 scintillator with a MgF2 coating.

To date, the UCNb experiment has been an effective prototype of a UCN calorimeter

except for the inability to store UCN for long lifetimes, and the inability to collect a definitive

beta decay spectrum. Future upgrades should help alleviate these issues.
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Figure 8.18. The electronic schematic for the NIM electronics for a typical UCNb experi-
mental setup.The detail of the PMT base labeled B is shown in figure 8.8.

Figure 8.19. A 2D plot of counts per time, by time versus pulse height. Visible is the decay
of spallation 6He, the beam pulse background, and the UCN generated signal which has the
longest lifetime determined by the storage time of the UCN source.
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Figure 8.20. 207Bi 2010 from a calibration disk.

Figure 8.21. 113Sn 2010 from a calibration disk.
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Figure 8.22. Background-subtracted 207Bi 2012 using the insertable source.
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Figure 8.23. Background-subtracted 113Sn 2012 using the insertable source.



117

KE (keV)
200 400 600 800 1000 1200 1400 1600

ra
te

 (
1/

se
c)

0

0.05

0.1

0.15

0.2

0.25

ucn-backgrounducn-background

Figure 8.24. Background-subtracted UCN generated signal from the 2012 run.
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Figure 8.25. Background from the 2012 run.
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Chapter 9

Future Directions

9.1 Upgrades for UCNb

The future holds some exciting possibilities for the UCNb experiments. The final goal of

the current experimental project at LANSCE is to measure |bn| < 10−3. To do this, several

improvements over the current prototype are required. These improvements include devel-

oping the detector coatings; increasing the size of both the detector volume and integrating

sphere; adding a phoswich (see below); and increasing the overall symmetry of the response.

The detector stack needs to store neutrons. Developing a working coating, which does

not leak UCN to regions where they can generate background, is the top goal of the re-

mainder of 2012. Past that, the goal will likely be to create a coating that is thin, even,

and does not have a significant dead layer to electrons.

Another improvement is to increase the overall size of the entire apparatus. The larger

the storage cell, the larger the signal to background becomes. A larger storage cell also

allows for large statistics to be collected very quickly, decreasing the variation in background.

Also, by increasing the size of the integrating sphere relative to the storage cell, the position

response can be reduced through optical integration. Figure 9.1 shows a possible upgrade

to the UCNb experiment that is larger, with eight PMTs, but still fits onto the current

platform.

One method for rejecting lower energy gammas, x-ray and Compton background is to use

a phoswich. A phoswich is a sandwich of multiple scintillators with different characteristics

that allows for the distinction of different particle types or momenta directions. For example,

one implementation in the UCNb box is to place a hermetic outer slow scintillator around

a fast inner scintillator.
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Figure 9.1. This drawing
shows a cartoon of a possi-
ble upgrade of the UCNb ex-
periment. There are eight
PMTs that lie on the faces
of a virtual icosahedron that
lay on the outer spherical
vacuum jacket.

A phoswich also acts as a muon veto. Adding a phoswich to the design is a critical

step to lowering the extrinsic background from outer Compton electrons generated in the

vacuum enclosure. The phoswich will also help identify low-energy x-rays and Compton

electrons that are intrinsically generated by UCN from inside the box. Experimentally

determining if the phoswich provides an effective method for tagging both types of back-

ground event, extrinsic and UCN generated, will be the highest priority for UCN run the

next year. Increasing the spherical symmetry is an important method of decreasing the

systematic error induced from varying response from differing parts of the apparatus. A

spherically symmetric scintillator will release the same amount of light, at the same angles

for each electron. Light emitted into a true integrating sphere will be integrated equally and

uniformly. Figure 9.2 shows a cross section of a possible upgrade to the UCNb experiment

which has uniform spherical symmetry. The experiment has a clamshell design with two

halves merging at an equator. The new design also features a phoswich that envelops the

main scintilating calorimeter.
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Figure 9.2. This drawing
shows a cross section of
a possible upgrade of the
UCNb experiment. The in-
tegrating chamber and scin-
tillator are spherical to max-
imize symmetry.

9.2 Future Run plans

The run plan for the rest of 2012 is to construct two boxes of different sizes. Each box will

have an inner and outer layer. The inner layers will be the primary detector made of fast

BC-404 (or EJ-204). The outer boxes will be made of BC-444 (or EJ-240) and will produce

a slow response time pulse which can be used as a veto by pulse shape analysis [102].

9.3 Toward 10−4

Another, equally important goal is to develop a path toward a |bn| < 10−4 experiment.

Due to the low resolution of PMTs and scintillators, it is difficult to see how the current

approach could take us to 10−4. This would require measuring the response mean and other

moments to more than two orders of magnitude below actual detector resolution. Detectors

with better resolution would allow for a better measurement of the response function of the

detector.

Other detectors possibilities include high resolution Si detectors such as will be used

for the UCNB experiment [108]. Another possibility is to use microcalorimeters. Mi-

crocalorimeters have resolution in the eV range, yet can measure over MeV energy ranges

making them ideal for precision spectroscopy.

Whatever direction the experiment takes, reaching a precision of 10−4 would unlock new

insight into scalar and tensor interactions.
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Appendix A

n-forms

For the p-form α ∈ Λp(Rn), and q-form β ∈ Λq(Rn),

α ∧ β = (−1)p+qβ ∧ α, (A.1)

and

d(α ∧ β) = dα ∧ β + (−1)p(α ∧ dβ). (A.2)

Stokes’ Theorem say for a k-manifold M with boundary ∂M and ω is a (k− 1)-form on M ,

then ∫
M
dω =

∫
∂M

ω. (A.3)
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Appendix B

Leptoquarks

In this appendix we have a table provided by Dr. V. Cirigliano and Dr. E. Passemar. We

present the Lagrangian used to caclulate the effective four-fermion interaction term and the

Fierz rearangment terms,

L = g1Lq
c
Liτ2`LS1 + g1Ru

c
ReRS1 + g̃1Rd

c
ReRS̃1

+ g3Lq
c
Liτ2~τ`L · ~S3 + g2Ld

c
Rγ

µ`LV
†

2µ

+ g2Rq
c
Lγ

µeRV
†

2µ + g̃2Lu
c
Rγ

µ`LṼ
†

2µ

+ h2LuR`LR
†
2 + h2RqLiτ2eRR

†
2 + h̃2LdR`LR̃

†
2

+ h1LqLγ
µ`LU1µ + h1RdRγ

µeRU1µ

+ h̃1RuRγ
µeRŨ1µ + h3LqL~τγ

µ`L · ~U3µ.

(B.1)
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interaction 4− fermion vertex Fierz− transformed vertex
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Table B.1. Four fermion vertices for leptoquarks inferred from the Lagrangian of reference
[1–3] for F = 0. Courtesy Dr. V. Cirigliano and Dr. E. Passemar [4].
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interaction 4− fermion vertex Fierz− transformed vertex
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Table B.2. Four fermion vertices for leptoquarks inferred from the Lagrangian of reference
[1–3] for F = 2. Courtesy Dr. V. Cirigliano and Dr. E. Passemar [4].
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Appendix C

Asymmetry dilution from thin foils

One method for addressing the challenge of determining the correction necessary to a mea-

sured asymmetry is to measure the effective dilution of asymmetry as a function of foil

thickness. By using multiple foils, each with a different thickness, we can extrapolate to

zero thickness, which should have the maximal asymmetry. Here we analyze the details of

such an experimental approach.

We can dilute the asymmetry measurement by varying d, such as a detector window

thickness, which will scatter events to the opposing rate count. A simplifying approximation

of the dilution of the asymmetry due to back scatter may be given by an exponential

form away from the baseline (and physical) asymmetry, A0. The measured value is then

approximately

A = A0e
−d/`. (C.1)

This gives us a form for the two rates that we can use to find σA from the Poisson statistics

of r1 and r2 with errors σr1 =
√
r1/T and σr2 =

√
r2/T ,

r1 = 1
2R
(

1 +A0e
−d/`

)
= 1

2R (1 +A) , (C.2)

and

r2 = 1
2R
(

1−A0e
−d/`

)
= 1

2R (1−A) , (C.3)

so that

σ2
A =

4r1r2

TR3
=

1−A2
0e
−2d/`

TR3
=

1−A2

TR3
. (C.4)

We can make a linear approximate the dilution of the asymmetry dependence on d
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provided d� `.

A ≈ A0

(
1− d

`

)
. (C.5)

We want to estimate A0 for nonzero values of d. We can estimate the error on A0 from a

least square fit of A if we spend varying amount of time Ti for each point di.

σ2
A0
≈ R

∆

∑
i

Tid
2
i

1−A2
i

, (C.6)

where

∆ =

(∑
i

RTi
1−A2

i

)(∑
i

RTid
2
i

1−A2
i

)
−

(∑
i

RTidi
1−A2

i

)2

, (C.7)

and Ai ≈ A0(1− di/`).

Near the limit that the foils are thin, and therefore the backscatter is small, A0 may be

determined by as few as two points. Under this approximation the extrapolation is simply

linear. We consider only two extreme points measured at d1 and d2 (both nonzero) for time

periods T1 = λT and T2 = (1−λ)T and with asymmetries A1 and A2 as measured at those

points. With

σ2
A0
≈ N

∆

(
λd2

1

1−A2
1

+
(1− λ)d2

2
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2

)
, (C.8)

and

∆ = N2
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(C.9)

where we can minimize σA0 by varying λ.

λ =
d2

√
1−A2

1

d2

√
1−A2

1 + d1

√
1−A2

2

. (C.10)

With this value, the optimal time spent on the two measurements is

T1 =
Td2

√
1−A2

1

d2

√
1−A2

1 + d1

√
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2

, and T2 =
Td1
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. (C.11)

This gives us a minimized estimated error on A0 of

σA0 =
1√
N

∣∣∣∣∣d2

√
1−A2

1 − d1

√
1−A2

2

d2 − d1

∣∣∣∣∣ . (C.12)



127

For the case that d is very small compared to ` so that A0 ≈ A1 ≈ A2 we can use

λ =
d2

d2 + d1
, (C.13)

so that the error minimized measurement times are

T1 =
Td2

d2 + d1
, and T2 =

Td1

d2 + d1
. (C.14)

This gives us an estimated error on A0 of

σA0 ≈
√

1−A2
0

N
. (C.15)
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R. Rios, R. Russell, A. Saunders, S. Seestrom, W. Sondheim, E. Tatar, R. Vogelaar,

B. VornDick, C. Wrede, H. Yan, and A. Young. Determination of the axial-vector

weak coupling constant with ultracold neutrons. Phys. Rev. Lett., 105(18), 2010.

[97] M. Mendenhall. Private communication, 2012.

[98] S. Agostinelli et al. Geant4 A simulation toolkit. Nucl. Inst. Meth. Phys. Res. A,

506(3):250–303, 2003.

[99] J. Baroc J. M. Fernndez-Varead F. Salvat J. Sempaua, E. Acostab. An algorithm

for Monte Carlo simulation of coupled electron-photon transport. Nucl. Inst. Meth.

Phys. Res. B, 132(3):377–390, 1997.

[100] C. Morris, J. Anaya, T. Bowles, B. Filippone, P. Geltenbort, R. Hill, M. Hino,

S. Hoedl, G. Hogan, T. Ito, T. Kawai, K. Kirch, S. Lamoreaux, C.-Y. Liu, M. Makela,



137

L. Marek, J. Martin, R. Mortensen, A. Pichlmaier, A. Saunders, S. Seestrom,

D. Smith, W. Teasdale, B. Tipton, M. Utsuro, A. Young, and J. Yuan. Measure-

ments of ultracold-neutron lifetimes in solid deuterium. Phys. Rev. Lett., 89(27),

2002.

[101] A. Saunders et al. Rev. Sci. Instrum. A, 2011. submitted.

[102] Saint Gobain. Plastic scintillators, 2012. http://www.detectors.saint-

gobain.com/Plastic-Scintillator.aspx.

[103] A. Saunders, 2009. Private communication.

[104] C. Feng, K. P. Hickerson, and B. Filippone. A Monte Carlo simulation for under-

standing energy measurements of beta particles detected by the UCNb experiment.

California Institute of Technology, 2010. Summer Undergraduate Research Fellowship.

[105] C. Feng, K. P. Hickerson, B. Filippone, and R. Russell. A Monte Carlo simulation for

understanding energy measurements of beta particles detected by the UCNb experi-

ment, 2011. Poster.

[106] LabSphere. Technical guide: Reflectance material and coatings, 2009.

http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-

materials-and-coatings.pdf.

[107] LabSphere. Spectralon design guidlines, 2009.

http://www.labsphere.com/uploads/datasheets/PB-13005-000n

[108] M. Makela. LDRD update, 2011. Private communication.



138

Index

gA, 8–11

gS, 10

gT, 10

gV, 8–11

n-forms, 121

backing gas, 65

beta decay parameters, 13, 73

Burle, 103

Cabibbo-Kobayashi-Maskawa matrix, 4

CAEN, 66

convolution, 74

convolution function, 72

edm, see electric dipole moment

electric dipole moment, 6

Fermi, 17

Fermi potential, 16

Fermi, Enrico, 15

Fierz interference

center-of-mass term, 20

energy dependence of, 21

Fermi term, 23, 28

Gamow-Teller term, 23

in MSSM, 24

in NMSSM, 27

in the Standard Model, 20

Gate Valve, 107

gravitational potential, 17

gravity, 17

Hamamatsu, 103

Higgs boson, 20, 24, 27

high-field seekers, 17

holding field, 65

Lab Sphere, 108

LANSCE, 64

leptoquarks, 27

low-field seekers, 17

Monte Carlo, 78

MSSM, 24

muon veto, 119

MWPC, 65

neopentane, 65

NMSSM, 27

nuclear form factors, 8

PDG, 14

Perkeo II, 13

Perkeo III, 13

phoswich, 118

PMT, 65

PMT base, 102



139

polarization, 76

QCD, 8

quark decay, 9

quark-lepton mixing, 28

rate model, 69

response function, 74

Richard Feynman, 1

singlino, 27

Standard Model, 20

super potential, 27

super ratio, 71

super sum, 71, 72

superfield, 27

Supersymmetry, 24

ThorLabs, 67, 68

UCN units, 17

UCNτ ,, 17

UCNA, 64, 69, 72, 80

detector model, 74

VAST, 9


