
BNL-43293 

FERMILAB-PUB-89/152-T 

NUHEP-TH-89-7 

August, 1989 

Soft Amplitudes in Hot. Gauge Theories: 
A General Analysis 

Eric Braaten 
Department of Physics and Astronomy 

Northwestern University 

Evanston, Illinois 60208 

Robert D. Pisarski 
Fermi National Accelerator Laboratory 

P.O. Box 500 

Batavia, Illinois 60510 

and1 

Department of Physics 

Brookhaven National Laboratory 

Upton, New York 11973 

‘Address as of Sept. 1, 1989 

This manuscript has been authored under contract number DE-.4C02-7DCII0001G with the U.S. Depart- 
ment of Energy. .,4ccordingly, the I1.S. Government retains a non-exclusive. royalty-free license to publish or 
reproduce the published form of this contribut,ion. or allow others to do so. for I;.S. Government purposes. 



Abstract 

A systematic method for the calculation of amplitudes in hot gauge 

theories is developed. It is necessary to distinguish between hard momenta 

(of order 2’) and soft momenta (of order gT). Ordinary perturbation the- 

ory applies at hard momenta, but over soft momenta, effective propagators 

and vertices are required. These effective quantities resum the leading con- 

tributions from thermal fluctuations with hard virtual momenta. These 

“hard thermal loops” arise solely from subdiagrams at one loop order: 

they are ultraviolet finite, gauge independent, and satisfy simple Ward 

identities. To illustrate the method we apply it to the quark and gluon 

self energies. Ward identities are used to show that to one loop order in 

this effective perturbation expansion, the two-point 7-matrix elements 

constructed from the self energies are gauge invariant. This proves that to 

leading order in g, the quark and gluon damping rates are gauge invariant 

and positive. 



Gauge theories at a temperature 7’ are of interest in a variety of problems, such as 

the early universe and the collisions of nuclei at ultrarelativistic energies [l]. The ther- 

modynamic behavior near equilibrium is determined by the behavior of amplitudes 

obtained by the analytic continuation of euclidean green’s functions from imaginary 

to real time. In this work we use perturbation theory to study amplitudes in hot 

gauge theories; by “hot” we mean that the temperature T is much larger than any 

intrinsic mass scale in the problem. 

Recently there has been much interest in a basic amplitude in hot &CD, the 

imaginary part of the .&on self energy on mass shell. This is a physical quantity, 

determining the crossover from damping by gluons to damping by hydrodynamic 

modes. At zero temperature general arguments show that T-matrix elements formed 

by setting two-point amplitudes on mass shell are independent of gauge, and have 

discontinuities of positive sign [2]. Explicit calculations at one loop order appear 

to show that this property fails at nonzero temperature - both the sign and the 

magnitude of the gluon damping rate seem to be gauge dependent [3]. 

In this paper we show that these calculations are incomplete, in that they do not 

include all effects of leading order in the coupling constant g [4]. In hot gauge theories 

the usual connection between the order of the loop expansion and powers of g is lost: 

effects of leading order in g arise from every order in the loop expansion. We develop 

a systematic procedure which resums this infinite subset of graphs, implementing the 

program of resummation proposed by Pisarski [5]. Applying this resummation to the 

damping rates, we show that the resulting damping rates are gauge invariant and 

positive, in accord with general expectation. A summary of the proof for the gluon 

damping rate appeared in ref. [6]. 

The need for resummation is apparent from the example of a hot scalar theory 

with quartic self-coupling g’. Hot implies that the scalar is massless at tree level. 

The effects of nonzero temperature are familiar: the tadpole diagram generates a 

temperature dependent effective mass m, m gT. Here resummation is just a matter 

of replacing the bare propagator, 1/P2, by an effective one, l/(P’ + mf). For the 

scalar theory this is all there is to the resummation: since the running coupling 

constant depends upon temperature only through logarithms, and not powers of T, it 

suffices to use the bare vertex. This kind of resummation is standard in nonrelativistic 

theories, and is generally adequate for field theories at low temperatures. 
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Although the principle remains the same, the resummation required in hot gauge 

theories is more intricate than in a scalar theory. The self energy which enters into the 

effective propagator is.no longer simply a mass term, but depends nontrivially on the 

momentum, It is also necessary to use effective vertices, with nontrivial momentum 

dependence, instead of bare vertices. 

To explain this resummation we introduce some technical concepts. Real time 

amplitudes are obtained from diagrams in imaginary time by continuing the euclidean 

p. for each external leg to po = iw. While the values of po are discrete in imaginary 

time, p. = rjT for integral j, in real time w is a continuous variable. For hot field 

theories the two natural momentum scales are T, which we term “hard”, and gT, 
which we call “soft”. A momentum P = (po,~) is soft if w and p = 1~1 are of order 

gT; ‘a momentum is hard if any component is of order T. 

For hot gauge theories we term the diagrams which must be resummed into ef- 

fective propagators and vertices “hard thermal loops”. These are loop corrections 

which are gaT2/P2 times the corresponding tree amplitude, where P is a momentum 

characteristic of the external lines. When any external leg is hard, these diagrams 

are at least g times the tree amplitude, and are part of the usual perturbative cor- 

rections. When every external momentum is soft, however, g2T2/P2 is of order one, 

and hard thermal loops are as important as the tree diagram. Hard thermal loops 

are generated solely by a small part of the integration region in one loop diagrams in 

which the loop momentum is hard. They represent the contribution of fluctuations 

that are purely thermal, not quantum mechanical, and are ultraviolet finite. 

For a scalar field theory the only hard thermal loop is the temperature dependent 

mass in the self energy, rn3 ‘v g2T2. The hard thermal loop in the the photon self 

energy of QED was computed decades ago by Silin [7,8]. The hard thermal loops 

in the self energies of nonabelian gauge theories were first computed by Klimov and 

Weldon [9,5,10]. I n sec. I we show that in gauge theories there are an infinite number 

of amplitudes with hard thermal loops: at any N 2 2, there are hard thermal loops in 

the N-point functions between N gauge fields, and between a fermion pair and N - 2 

gauge fields. A further complication is that the hard thermal loops of gauge theories 

are produced not only by tadpole diagrams, but by diagrams with discontinuities. 

These discontinuities lie below the light cone, w 5 1~1, and represent Landau damping 

[4]. It is the occurence of Landau damping that turns the hard thermal loops of gauge 
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theories into nontrivial functions of the momenta. 

In order to systematically calculate amplitudes with soft lines, it is necessary to 

resum perturbation theory by including all possible hard thermal loops. For soft lines 

effective propagators must be used, in which the self energies of Silin, Klimov, and 

Weldon are included exactly. When every line going into a vertex is soft, an effective 

vertex, which includes the bare term plus the hard thermal loop, is required. If a line 

is hard, or if a vertex has at least one hard leg, loop corrections are supp.ressed by g, 

so bare propagators and vertices can be used to leading order in g. In particular, it 

is consistent to use bare propagators and vertices in order to calculate hard thermal 

loops. 

The outline of the paper is as follows. In sec. I we show how to pick out the 

contributions of hard thermal loops from a diagram with soft external momenta. 

They arise from integration regions in which the loop momenta is hard. This allows 

us to make numerous approximations which greatly simplify the calculation of hard 

thermal loops. 

The hard thermal loops of nonabelian gauge theories are computed in sec. II. In 

sec. 1I.A we work in Coulomb gauge. The hard thermal loops for two-, three-, and 

four-point functions are computed, and a generating functional for the hard thermal 

loops of arbitrary N-point functions is derived. We also show that the hard thermal 

loops satisfy particularly simple Ward identities. In sec. 1I.B we show that the hard 

thermal loops are the same in Feynman gauge as in Coulomb gauge. The extension 

to general covariant gauges is made in sec. 1I.C. That the hard thermal loops in 

the self energies are gauge invariant was first shown by Klimov and Weldon [9,10]. 

We argue inductively that these cancellations persist in all higher N-point functions. 

The gauge invariance of the hard thermal loops is surprising, for their external legs 

need not be on mass shell - all that is required is that their legs be soft. 

In sec. 1II.A we develop an effective perturbative expansion which resums all hard 

thermal loops. We derive the Ward identities satisfied by the effective propagators 

and vertices, and find that they are identical in form to those satisfied at tree level. 

To illustrate the use of the effective expansion, in sec. 1II.B we examine the leading 

corrections to the effective quark and gluon propagators. For soft momenta these 

corrections are of order g relative to the effective propagator. T-matrix elements are 

formed by sandwiching these effective self energies between physical wave functions, 
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which are defined to lie on the mass shells of the effective propagators. Ward identities 

are then used to show that these I-matrix elements are the same in covariant and 

Coulomb gauges. In sec. 1II.C we discuss the corrections at next to leading order in 

Our proof in sec. 1II.B that the two-point 7-matrix elements are gauge invariant 

implies that the damping rates are gauge invariant as well. In Coulomb gauge all 

states contribute with positive sign to the discontinuities, so gauge invariance auto- 

matically implies that the damping rates are positive. Our proof of gauge invariance 

for I-matrix elements extends the standard arguments at zero temperature [2] to 

our effective expansion, and provides a crucial check that our resummation includes 

all terms of order g. 

In an appendix we compute one loop integrals for three- and four-point functions. 

This paper is the first in a series. In this work we eschew explicit calculation to 

proceed as far as possible with general arguments such as power counting and the 

Ward identities. Detailed calculations of hard thermal loops, and applications to 

damping rates and other quantities, will be presented later [12]. We stress that while 

the effective expansion is not elementary, practical calculations can be performed with 

it. The principal complication - the nontrivial momentum dependence of the effec- 

tive propagators and vertices - can be overcome by using spectral representations 

[5,10,12]. Th is is a straightforward extension of a standard nonconvariant method for 

evaluating loop integrals with bare propagators and vertices at nonzero temperature 

I. Extracting hard thermal loops 

In this section we explain how to isolate the hard thermal loops in one loop 

diagrams. We also enumerate all of the amplitudes which contain hard thermal loops 

and derive some useful identities. 

I Let A(K) be a bosonic propagator in momentum space, 

A(K) = & , k” = 2rjT. (14 

Upper case letters represent four-momenta, lower case letters their components: 
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KP = (k”, &), with & = k L, and K2 = (k”)2 + k2. For one loop diagrams we take Kp 

as the loop momenta, with 

(l-2) 

To perform the sum over the. integers j at nonzero temperature we follow the method 

of ref.‘s [4] and [ll]. Th is “noncovariant” approach uses propagators that depend upon 

the spatial momentum k and the euclidean time r. The noncovariant propagator is 

obtained by fourier transformation of A(K) with respect to k”, 

A(q k) = T ‘c” e-iho 7 A(K) . (1.3) 
j=-00, 

k0=2rjT 

The sum can be evaluated by expressing it as a contour integral [4,10]. In the complex 

k” plane A(K) has p o es 1 at k” = &ik with residues Fi/(2k). The contour integral 

1 gives 

a(~, k) = & ((1 + n(k)) e-‘+ + n(k) etkT) , (1.4) 
where n(k) = l/(ezp(k/T) - 1) is the B ose-Einstein distribution function. Eq. (1.4) 

is valid for 0 2 r 5 P/T; outside of this region, A(r, k) is defined to be periodic in r 

with period l/T. The inverse of eq. (1.3) is 

A(K) = /l/T dr eikor A(q k) . 
0 

(l-5) 

Similar results apply for the quark propagator A,(K). We find it useful to define 

a fermionic propagator A(K) by extracting a JC from the quark propagator, 

A,(K) = ; = i p i(K). 

i(K) differs from A(K) only in the allowed values of k”: 

a(K) = $ , k” = (2j + 1)rT . 

U-6) 

P-7) 

The noncovariant propagator A(r, k) is defined as in eq. (l-3), except for the change 

in the values of k”. After evaluating the sum over j by contour integral methods, we 
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obtain 

A(T,k) = $ ((1 - E(k)) emk7 - ii(k) etkr) , WV 
with ii(k) = l/(ezp( k/T) + 1) th e F ermi-Dirac distribution function. Eq. (1.8) holds 

over 0 < r 5 l/T; otherwise it is defined to be anti-periodic in r with period l/T. 

Note that A(T, k) is obtained from A(T, k) by replacing n(k) + - ii(k). 

In the noncovariant approach [4,10], one-loop integrals are evaluated as follows. 

Start with the expression for the diagram in momentum space. For each virtual line 

use eq. (1.5) (or th e analogous relation for A(K)) to replace the propagator A(K) 

by an integral of A(r, k) with respect to r. The sum over k” produces a b-function 

in the times r, allowing one r integral to be done trivially. The integrals over the 

remaining times are elementary, and yield products of energy denominators. This 

leaves an integral over the three-momentum i. At this point is is relatively easy to 

pick out the contribution of the hard thermal loops. As noted in the introduction, 

hard thermal loops are g2T2/P2 times the corresponding tree diagram: for one loop 

diagrams the g2 is automatic, so the integrals that produce hard thermal loops are 

uniformly proportional to T2. 

To illustrate this procedure we compute several examples. We begin with the 

simplest diagram which produces a hard thermal loop, which is the tadpole diagram 

for bosons, Tr A(K). After using eq. (1.5) the sum over k” just gives 6(r), so the 

T integral is trivial: 

Tr A(K) = / s (1 + 2n(k)) . (1-g) 

The first term in the integral is quadratically divergent, and is removed by renormal- 

ization at zero temperature. In the second term the quadratic divergence is cutoff by 

the Bose-Einstein distribution function n(k). Using 

I +O” 
0 

dk k n(k) = 7 , (1.10) 

we find that the hard thermal loop in this integral - the term proportional to T2 - 

is 
T2 

Tr A(K) z 12 =Z(O). (1.11) 

We introduce the symbol “z” to represent equality between the hard thermal loops 

in two.expressions. We also introduce the notation Z(P) = Z(0) for the hard thermal 
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loop in Tr A(K - P). Later this will be generalized into a compact notation for the 

hard thermal loops in more complicated integrals. 

The quark loop in the gluon self energy also contributes a type of fermionic tad- 

pole, Tr A(K). Using 

J’” dk k G(k) = (f) F , 
0 

(1.12) 

we find 
Tr ii(K) z - 2 = f(0). (1.13) 

Note the identity 

Z(0) = - ; Z(O), (1.14) 

which generalizes to more complicated integrals. 

A more interesting example of a hard thermal loop is Tr k2 A(K) A(P - K). 
This arises in the gluon self energy fiPV, when traced over its spatial indices ,X = u = i. 

z After using eq. (1.5) and eliminating one r integral, 

Tr L2 A (K) A (P - K) = / $ JIIT dr eipor k2 A@, &) A(7, Ep-k) , (1.15) 
0 

where Ek = k, Ep-k = 1~ - &I. The remaining r integral yields a set of energy 

denominators, 

Trk2A(K) A(P-K),=/ $,, YE 
k p-k 

(1.16) 

In passing from eq. (1.15) to eq. (1.16) p” must be treated as an euclidean 

variable, p” = 2xjT, with ezp(ipO/T) = 1. Once the integral is written as a sum over 

energy denominators, though, we can analytically continue p” to minkowski values, 

po = -iw. For soft P - w and p both of order gT - the hard thermal loop can be 

extracted by power counting. 



By definition the hard thermal loop in the self energy II”‘” is the piece which is 

as large as the tree term for soft momentum. The transverse part of the bare inverse 

propagator is P2@‘” - PPP”: at soft P ry gT this is of order g2T2. Since the integral 

in eq. (1.16) is multiplied by g2 in II ““, the hard thermal loop in the integral is the 

term proportional to T2, as stated before. We now extract this term. 

The 1 in the expression 1 t n( J!&) t n( Ep-k) in eq. (1.16) generates the complete 

integral at zero temperature. After renormalization removes the ultraviolet diver- 

gence, this contribution to the integral in eq. (1.16) is proportional to P2,-which at 

soft P is of magnitude g T . 2 2 This illustrates a general feature: for soft momenta, the 

zero temperature terms are down by g2 relative to the hard thermal loops. 

The other terms in eq. (1.16) involve the statistical distribution functions n( &) 

or n( Ep-k). We first consider soft loop momentum k. If the external momentum P@ is 

soft, the integral over magnitude, J dk, is mixed up with the angular integral, J dfl, 
and they are complicated to evaluate. It is not difficult, though, to estimate how 

large this part of the integral is. For soft energies E of order gT, the Bose-Einstein 

.:distribution function is approximately 

n(E) z g - t. (1.17) 

When the external and loop momentum are both soft, the only mass scale in the 

integral is gT, so that the contribution to the integral is of order n(E)(gT)2 - gT2, 
which is suppressed by g relative to the hard thermal loop. 

All that remains is the integration over hard loop momentum. There are signifi- 

cant simplifications when P is soft and k hard. In the energy denominators we can 

approximate 

ip” f (Ek + Ep-k) T~I f2k , 

ip” I!Z (Ek - Ep-k) z ip” f p cos 8 , (1.18) 

where 8 is the angle between p and i& For the distribution functions we can set 

n(&) + n(E,-k) z 2n(k) , 

n( Ek) - n( Ep-k) 2: - ‘+ n(k) (1 + n(k)) . (1.19) 



With these approximations, the integrals over J dk and J dSl = J sin B de dq5 decouple, 

and each can easily be done. The k integral is either that given in eq. (l.lO), or 

1 O” 
T 0 J 

dk k2 n(k)(l+ n(k)) = y , 

For later use, we also give the corresponding integral for C(k), 

f J,=’ dk k2 5i(k)(l -E(k)) = (f) y. 

(1.20) 

(1.21) 

Under the approximations of eqs. (1.18) and (1.19)’ th e angular integral over 2 = cus e 
reduces to 

J 1 dx x 
-1 ip” jp - 2 

=2Ql($) = $Zog($‘;) -2, (1.22) 

where Ql(ip”/p) is a Legendre function of the second kind. 

The final result for the hard thermal loop in eq. (1.15) is 

TT k2 A(K) A(P - K) z ;(l- 2QI($)) =z”(O,P). (1.23) 

We introduce the notation P” (PO, PI) f or the hard thermal loop in the integral 

TrKpK”A(Po-K) A(Pl- K). The denominators ip” f (& t Ep-k) in eq. (1.16) 

produce the constant term, T2/24, which is like the tadpole integral of eq. (1.11). 

The term containing Ql(ip”/p) is due to the denominators ip” III (& - Ep-k). The 

Legendre functions Q,(w/p) h ave discontinuities below the light cone, p > w > -p. 

These terms represent Landau damping at nonzero temperature, where one field is 

absorbed from the thermal distribution, and the other emitted into it [4,5]. 

As a third example of a hard thermal loop, consider an integral which enters 

into the quark self energy, TT k” A(K) i(P - K). After summation over k” and 

integration over 7, the integral becomes 

TT k” A(K) & (P - K) = / $$ 2Emi2- 
k P k 

{ t1 + ntEd - ntEp-d) ( ipo _ E,' 
E 

P 
-k t ipo + ,: E 

P 
mk) 
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-ePd+WP-d) ( ipO--~;+E 
P- 
k +ipo+EfmE 

P- 
,)}. (1.24) 

The hard thermal loop is the term that is as large as the bare inverse propagator, p, 

for soft momentum P - gT. In the quark self energy ;I=, the integral in eq. (1.24) 

is multiplied by g2, so the hard thermal part of the integral is proportional to T2/P. 

Such a term is produced only by the two terms in eq. (1.24) with energy denominators 

ip” rt (Ek - Ep-k), integrated over hard momenta k - 7’. Using the approximations in 

eqs. (1.18) and (1.19), th e integral over k decouples from the angular integral, with 

the k integral given by either eqs. (1.10) and (1.12). The angular integral has the 

form 

,= log ip” + p 

ip” - p * 

The final result for the hard thermal loop in the integral is 

Tr k” A(K) &(P - K) z -i T2 

(1.25) 

(1.26) 

We have denoted the hard thermal part of Tr Kp A(Po-K) Z\(P,-K) by P( PO; Pr). 

The other parts of the integral in eq. (1.24) are all smaller by at least one power of g. 

At hard k the energy denominators ip” f (& + Ep-k) produce terms in the integral . 
proportional to T, and are therefore of order g times the hard thermal loop. The 

integral over soft k is also of order g, while the zero temperature term is of order g2 

times the hard thermal loop. 

We have shown how to extract the hard thermal loops in a few simple integrals. 

Before proceeding to the general case, we first list all diagrams which contain hard 

thermal Ioops. In nonabelian gauge theories the only amplitudes which contain hard 

thermal loops are N-gluon amplitudes and the amplitude between N - 2 gluons and 

a quark pair. In Coulomb or Feynman gauges, hard thermal loops are produced by 

a very small subset of one loop diagrams. They arise just from diagrams constructed 

out of three-point vertices, as in Figures 1 and 2. As we show in sec. II, in these 

gauges any diagram with a four-gluon vertex cannot produce a hard thermal loop. 

There is one exception to this rule: for the gluon self energy, the four-gluon vertex 

produces a tadpole diagram, which by eq. (1.11) contains a hard thermal loop. 

This neglect of diagrams with four-gluon vertices holds only in Coulomb and 

Feynman gauges. As we demonstrate in sec. II.C;in covariant gauges other than 
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Feynman, the full set of one loop diagrams contributes to hard thermal loops. When 

every one loop diagram which contributes to a given amplitude is added up, however, 

we find that the sum gives the same hard thermal loop as found in Coulomb or 

Feynman gauge. For the sake of simplicity, in the rest of this section we restrict 

ourselves to Coulomb or Feynman gauge. 

In nonabelian gauge theories, diagrams are often difficult to evaluate because 

in the numerators of integrals, the external and loop momenta become entangled. 

These complications are avoided in hard thermal loops. As in the previous examples, 

hard thermal loops arise from integration regions in which the loop momentum K is 

hard, while all external momenta are soft. If in the numerator of an integral a hard 

loop momentum of order T is replaced by a soft external momentum of order gT, 
this substitution reduces the integral by a power of g. Thus whenever a momentum 

appears in the numerator, such as (P - K)p from a three-gluon vertex, or J’ - F from 

a quark propagator, we need only keep the loop momentum K, dropping all terms 

proportional to the external momenta. Another simplification is that hard thermal 

- loops are only produced by terms in which every external gluon has its spacetime index -- 
p tied to a loop momentum K p; that is, terms proportional to Kronecker deltas in 

the indices between external gluons, P, can be dropped. This simplification arises 

from an identity, eq. (1.33), satisfied by hard thermal loops. Again the gluon self 

energy is an exception: it does have hard thermal loops proportional to Z(0) P’ and 

Z(0) fw. 

Using these rules, we catalog all diagrams which have hard thermal loops in 

Coulomb and Feynman gauges. For the N-gluon amplitude, N gluons can tie onto a 

gluon loop through the one loop diagram of fig. la. This produces the hard thermal 

loop 

Zpl-+N(O,f'~. , .PN.el) = Tr Kp’ . . . KIN A(K) A(P, - K). . . A(PNel - K) , 

(1.27) 

where ~1, . . . . PN are the indices of the external gluons, and Pi, . . . . pN-1 are combina- 

tions of their momenta. Recall that the symbol ‘9 indicates that 2?‘1*+~ is defined 

to be the hard thermal loop in the integral. The N powers of K in the numerator 

arise from the N three-gluon vertices in fig. la. In Feynman gauge, the diagram 

in which N gluons attach to a ghost loop also contribute a hard thermal loop like 

eq. (1.27). The hard thermal loop calculated in eq. (1.23) is a special case of eq. 
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(1.27). The N gl uons can also be tied onto a quark loop as in fig. lb, to give the 

hard thermal loop 

fpl-*pN(O,Pl.. . &-I) = Tr Kpl . . . KpN ii(K) ii(s - K). . . ii&-l - K) , 

(1.28) 

The powers of K in this integral arise from the b’s in the N quark propagators. 

These are all of the hard thermal loops in the N-gluon amplitude for N > 3. As 

noted above, the gluon self energy, N = 2, provides exceptions to these rules. This 

case is discussed at length in sec. II. 

The hard thermal loops for amplitudes with N - 2 gluons and a quark pair arise 

from the diagrams of fig. 2. The integrals are of the form 

zz TT Kp”. . . K”N-’ A(K) . . . A( PM-I - K) ii& - K) . . . &pN-1 - K) . (1.29) 

where M can take any value from 1 to N - 1, and Pr, . . . . PN-r are combinations of the 

external momenta. The indices of the external gluons are ~1, . . . ..!.&N-2; the additional 

index, pNel, is contracted with a Dirac gamma matrix, +‘N-‘. In the arguments 

of eq. (1.29), th e momenta that appear in bosonic propagators are separated by a 

semicolon from those that appear in fermionic propagators. Note that there are only 

N - 1 powers of K in eq. (1.29), versus N powers of K in eqs. (1.27) and (1.28). The 

hard thermal loop calculated in eq. (1.26) is a special case of eq. (1.29), for N = 2 

and n/r = 1. The hard thermal loops in eq. (1.29) exist for all N 2 2. 

In nonabelian gauge theories these are the only integrals which develop h,ard ther- 

mal loops. To justify this we develop a set of rules which enable us to power count 

one loop diagrams. In the appendix we explicitly evaluate the sum over k” and the 

integrals over T for the three- and four-point functions. From these examples, the 

general form of the corresponding result for an N-point function is apparent. To 

be definite, consider the integral in eq. (1.27), taking all of the indices pl, . . ..pN to 

be spatial (this restriction is not essential, and is lifted later). In the noncovariant 

approach, eq. (1.5) is used to introduce a r integral for each of the N propagators. 

The sum over k” produces a delta function in the T’S, which eliminates one r integral. 

Each of the remaining (N - 1) T integrals then gives an energy denominator. 

At this point we invoke a general property of one loop diagrams, which seems to 
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have escaped notice before. By eq. (1.4), each propagator can contribute one power 

of the Bose-Einstein distribution function n(E) to the integral. For the integral in 

eq. (1.27), since there are N propagators, at the outset there will be terms involving 

N powers of the distribution functions. Yet after doing the sum over k” and the 

integrals over each r, we assert that any one loop integral can be written in a form in 

which there are at most single powers of the distribution functions: all higher powers 

in the n(E)‘s cancel. This property is demonstrated explicitly in the appendix for 

arbitrary three- and four-point functions. We also give a physical argument as to 

why this property holds for any N-point function, as a consequence of the way in 

which the cutting rules work at nonzero temperature. 

Using this result, we reduce the integral in eq. (1.27) to a sum which includes 

terms of the form 

J d3k 
Kp’ . . . KIN 

EkEpI -k . - - EpNbl -k 
(+%c) - “‘@,,-k)) 

(iP’: - E/e + EPI-k) . . . (;&-, - E/e + EpNbl - k) ’ 
(1.30) 

The N factors of l/Ep-k arise from the residues of the propagators. Each energy 

denominator corresponds to a way in which the one loop diagram can be cut through 

two virtual lines to produce a discontinuity. For the term shown in eq. (1.30), in 

every denominator the two energies have opposite signs. Consequently, for eq. (1.30) 

any possible cut corresponds to Landau damping: the absorption and emission of two 

particles, with nearly ‘equal momenta, from the thermal bath. For the other terms 

in the integral, the energies in the denominators have different signs, and different 

combinations of the distribution functions appear. 

Hard thermal loops arise from the integration region in which k is of order T. 
Using the approximations of eqs. (1.18) and (1.19), it is simple to estimate the 

magnitude of eq. (1.30) h w en the external momenta are of order gT. In the integral 

over J d3k, the N powers of K in the numerator, and the N residues,, Ei-k z k, are all 

proportional to T, and combine with the integration element to give T3TN/TN = T3. 

By eq. (1.19), th e i d ff erence of distribution functions is of order P/T. Finally, from 

eq. (1.18) each energy denominator is of order P. Altogether, eq. (1.30) is of 

order T2/pNm2. In the N-gluon amplitude, eq. (1.30) is multiplied by gN, giving 
gNT2/PN-2 = (g2T2/P2’) gN-2(PN-4. At tree level the N-gluon amplitude is of 
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order gN-’ /PN-‘. For soft P rv gT, eq. ( 1.30) is of the same order and so produces 

a hard thermal loop. 

There is one other type of term which produces a hard thermal loop from the 

integral of eq. (1.27). C onsider the term in which every energy denominator except 

one corresponds to Landau damping, so one energy denominator is of order T. The 

statistical distribution functions for that energy denominator appear as a sum, and 

are of order 1. The result is that such a term also gives a hard thermal loop. Only 

these two types of terms produce a hard thermal loop: all others are smaller by a 

least one power of g. Note that if N is large, these two types of terms are a small 

fraction of the total number of terms. The analysis of the integral in eq. (1.28) is 

identical, except that the Bose-Einstein distribution functions n(E) must be replaced 

by Fermi-Dirac distribution functions G(E) everywhere. 

The analysis of the integral in eq. (1.29) is similar. After evaluating all the T 

integrals, the integral includes terms like 

J d3k 
KP’ . . . Kp~--l 

EkEpI -k - * * EpN-1 -k 
(n tEd + i-i (Emv-rk)) 

1 

(;P: - Ek + &l-k). . . (ii+-, - & + EpNel-k) * 
(1.31) 

In this term, all energy denominators correspond to Landau damping; thus the sta- 

tistical distribution functions which appear must be the sum of n(E) and Z(E). The 

integral is estimated as before, except that the sum of distribution functions is of 

order one. We find that eq. (1.31) is of order T2/PN-‘; it contributes to the ampli- 

tude for N - 2 gluons and a quark pair as gNTa/PN-* = (g2T2/P2)gN-2/PN--3. The 

amplitude at tree level is of order gNva/PNe3, so eq. (1.31) contributes to the hard 

thermal loop. 

For the integral of eq. (1.29) only terms in which every energy denominator cor- 

responds to Landau damping, as in eq. (1.31), produce hard thermal loops. Observe 

that while the integral in eq. (1.29) h as one fewer power of K in the numerator than 

eqs. (1.27) and (1.28), it is still a hard thermal loop. This happens because the 

distribution functions which enter into eq. (1.30) are of the same statistics, so their 

difference is of order P/T. In eq. (1.31) they are of opposite statistics, so their sum 

of order 1. This change in the distribution functions compensates for the one fewer 
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power of K in the numerator. 

These results can be summarized by a set of rules to power count one loop di- 

agrams. We assume that all external momentum are soft, denoted generically by 

P. 

a The integration element J d3k contributes T3. 

l The first propagator in the integral, times the sum over k”, contributes l/T. 

l Every additional propagator gives l/(PT): l/T from the residue times l/P 

from an energy denominator with Landau damping. 

l Powers of Kp in the numerator from three-gluon vertices or quark propagators 

give T, powers of external momenta give P. 

l For integrals with two or more propagators that are either all bosonic or all 

fermionic, there is an extra factor of P/T from cancelling statistical distribution 

functions. 

In the above, by propagator we mean either n or a; as discussed in sec. III.A, the 

power counting for static modes is different. 

These rules apply to diagrams in which every external momentum is soft. If each 

external momentum is hard, then as T is the only scale in the problem, by dimensional 

analysis any one loop diagram is g2 times the tree amplitude. The case in which some 

external momenta are hard, and some soft, is more involved. Suppose an amplitude 

has two external lines with hard momenta, while the rest are soft. The largest loop 

diagrams are those in which the hard momenta is routed through just one virtual 

line. For the propagator of this hard virtual line, the associated energy denominator 

is hard, of order l/T, instead of soft, of order l/P. The only other change in the rules 

is that there is no suppression from cancelling statistical distribution functions. The 

result is that one loop diagrams with both hard and soft external momenta are at 

most g times the tree amplitude. For example, consider the amplitude between three 

gluons, where two of the gluons have hard momenta, of order Q, and one gluon has 

soft momenta, of order P. At tree level this is of order gQ - gT. By the counting 

above there are diagrams of order g3T2/P - g2T, which for hard Q is g times the 

tree amplitude. 

. 
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The amplitudes discussed, between N gluons, and between N - 2 gluons and a 

quark pair, are the only ones with hard thermal loops. We leave it as an exercise to 

the reader to show that amplitudes with more than one quark pair do not have hard 

thermal loops. The only remaining amplitudes involve ghosts. In gauges in which 

ghosts propagate - such as covariant - virtual ghosts do contribute to hard thermal 

loops. It is always true, however, that amplitudes with ghosts on external lines do 

not exhibit hard thermal loops. For instance, in the one loop diagram between one 

pair of ghosts and N - 2 gluons, one ghost-gluon vertex is proportional to an external 

ghost momentum. Assuming that all of the external momenta are soft, this ghost- 

gluon verrtex brings in one power of a soft external momenta, instead of a hard loop 

momentum. Hence the amplitude with one ghost pair and N - 2 gluons is at most g 

times the one loop amplitude between N gluons. 

We conclude this section by deriving some useful identities for hard thermal loops. 

The integrals of eqs. (1.27) and (1.28) are evidently invariant under permutations of 

their arguments PO = 0, PI,. . . , PN-~ while eq. (1.29) is invariant under permutations 

of PO =O,P,,..., PM-~ and P&f,. . . , PN-~ amongst themselves. 

All arguments can be shifted by a common soft momentum P. For example, 

Zp’-+N (PO,. . . , PN-I) = ~p’*-pN (‘PO + P, . . . , PN-1 + p) . (1.32) 

We often use this freedom to set PO = 0. To prove this identity, we change the 

integration variable in eq. (1.27) from K to K - P. In the numerator, every Kfi 
becomes (K - P)“, b u in the hard thermal loop any factor of the soft P can be t 

dropped. Remember that the functions Z and f are defined to include only the hard 

thermal loops in the integrals of eqs. (1.27) - (1.29); thus identities such as eq. 

(1.32), aud those which follow, are strict equalities. 

The integrals in eqs. (1.27), (1.28), and (1.29) are symmetric under permutation 

of their indices. For N 2 3, the integral P+N is traceless in any pair of indices: 

6”” ~p’p”--pN (0, Pl . . . , PN-1) = 0 , N>3, (1.33) 

and similar!gfor the integrals in eqs. (1.28) and (1.29). The reason is that P1pz Kpl Kf’z 
K2 cancels A(K) in eq. (1.27), leaving an integral with N - 2 factors of K in the 

numerator and N - 1 propagators. From our rules for power counting, this integral is 

of order Tj PNe3, which is not a hard thermal loop. As described earlier, this identity 
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allows us to drop terms with Kronecker deltas in the indices between external gluons, 

for if two external indices are contracted together, then two internal indices must be 

contracted as well. 

When N = 2 the integrals of eqs. (1.27) and (1.28) have nonzero trace: 

P” P” (0, P) = Z(P) = Z(0) , (1.34) 

where Z(0) is given in eq. (1.11). 

The identity of eq. (1.33) is also useful for calculating integrals where more than 

one of the indices ~1. . . PN is time-like. After introducing noncovariant propagators, 

k” becomes i a/r%. Single powers of a/& can be integrated by parts without concern, 

but care must be taken with multiple powers of a/& [4]. Hard thermal loops with 

multiple powers of k” can be evaluated by writing eq. (1.33) as 

~ocL3**~pN(o, PI.. . p&l) = - 2i’p3-*pN(o,P~. . . PN-1) . (1.35) 

With this identity the previous restriction that the indices ~1 . . . j&N all be spatial can 

be lifted. 

There are also identities which relate hard thermal loops for prop.agators with 

different statistics. To start with, the hard thermal loops in eqs. (1.27) and eq. 

(1.28) are equal up to a multiplicative constant. Consider the contribution to the 

hard thermal loop in eq. (1.27) from terms as in eq. (1.30). To obtain the similar 

hard thermal loop for eq. (1.28), merely replace n(E) by -+i( E) in eq. (1.30). From 

eqs. (l.lO), (1.12), (1.20) and (1.21), th is substitution changes the integrals over J dk 
by an overall multiplicative factor of -l/2. This same -l/Z accompanies the other 

terms which contribute to a hard thermal loop, so in all 

p-yo, PI . . . p&l) = (-f) ~p’-+N(o,Pl.. . P,-1) . (1.36) 

Eq. (1.14) is an example of this identity. 

There is another type of identity which relates eq. (.1.29) to similar integrals. 

Define the integral which is obtained from eq. (1.29) by changing each A into A, and 

vice versa, as it: 

?pl-+N-l(o, PI . . . P&l; PM . . . P&l) 
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z Tr Kp’ . . . KpN-’ ii(K). . . A(PM-~ - K) A(PM - K) . . . A(PN-~ -K) . (1.37) 

As seen in eq. (1.31), th e only statistical distributions functions which enter into the 

hard thermal loop of eq. (1.29) are iE(&) +n(~?&~-~-k) N n(k) + n(k). To obtain the 

hard thermal loop for eq. (1.37), in eq. (1.31) each n(E) is replaced by by -n(E), 

and vice versa. Under ,this operation, E(k) + n(k) goes into minus itself, so that 

~pl-“N-‘(o, PI.. .&f-l; PM.. . PN-1) = - ~~‘*-pN-l(o,P~. . . P&l; PM.. . PN-1) . 

(1.38) 

Finally we derive relations between the hard thermal loops of N- and (N - l)- 

point functions. For soft PI we can approximate 

p:Kp=;(-(P~-K)2+K2+P;)z;(-(Pl-K)2+K2)~ (1.39) 

Each of the terms K2 and (PI - K)2 cancels a propagator in eq. (1.27), so 

P[’ 5?’ ““‘““(0, Pi, P2 . . . PN-1) 

. . PN-1) - ~pa--pN (0, P2 . . . PN-1)) . 

For N = 2, this can be further simplified: 

(1.40) 

PP zyo, P) = f (Y(P) -Y(O)) = $ P” Z(0) . (1.41) 

Here we use p(O) = Tr K” A(K) = 0 because the integral is odd in K”, and 

z”(P) = P” Z(0) f o 11 ows from shifting K -+ K + P. An identity similar to eq. (1.40) 

can be derived for eq. (1.29). 

Eq. (1.40) shows that for N 2 3 a soft momenta dotted into an N-point hard 

thermal loop yields a difference of two (N - 1)-point hard thermal loops. In sec. 1I.A 

we use eqs. (1.40) and (1.41) to d erive the Ward identities satisfied by hard thermal 

loops. 

II. Hard thermal loops in hot gauge theories 

For hot gauge theories in Coulomb and Feynman gauge, the hard thermal loops 

can be expressed in terms of the integrals Z and Z of sec. I. In this section we prove a 
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surprising result: at least within the class of Coulomb and general covariant gauges, 

all hard thermal loops are gauge invariant. 

Our conventions for perturbation theory are the following. We work in an SU( N,) 

gauge theory with Nf flavors of fermions in the fundamental representation. The color 

indices a, b. . . run from 1 to N,2 - 1, while the (Euclidean) space-time indices ~1, v . . . 

run from 1 to d. We work in four space-time dimensions, d = 4, but on occasion we 

find it useful to keep d as a bookkeeping device. Roman letters ;,j, . . . denote spatial 

indices, 1 through (d - 1). In propagators the diagonal color factors are suppressed. 

The bare three-gluon vertex between gluons A;(P), A!(Q), and A”,(R) is 

- igfObc lYA(P,Q,R) = -igfabc ((P - Q)‘6pY+pemn.‘s) , (2-l) 

where P + Q + R = 0. We uniformly define all momenta to flow into a vertex. The 

bare four-gluon vertex, when traced over its last two color indices, is diagonal in its 

first two indices. We denote this component of the four-gluon vertex by 

- g2 NC Sab r~“xO (P, Q, R, S) E -g26abNc (2~5~~6~” - 6p’x6” - 6V”) , (2.2) 

with P+Q+R+S = 0. The generators of the adjoint representation are (Ta)bc = fbac. 

The color trace is h(TaTb) = -Ncbab. 

The bare quark-gluon vertex for a gluon A”,(R) coupled to a quark and antiquark 

with momenta P and Q is 

gt” Fp(P,Q;R) = gt” y’+ . P-3) 

The generators ta of the fundamental representation obey tr(tatb) = -bab/2 and 

their Casimir is Cf = (NC2 - 1)/(2N,). Whether the color trace, tr, is that for the 

fundamental or the adjoint representation should be clear from the context. 

A. Coulomb gauge 

In this section we compute all hard thermal loops in Coulomb gauge. With gauge- 

fixing term (a’&)“/(2[c), th e b are propagator for the gauge field is 
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A;(K) = A@) + & $j . (2.4) 
Strict Coulomb gauge is ,& = 0, but we consider arbitrary values of &. The only 

propagating modes are transverse gluons, with the propagator 

All of the other gluon modes, such as the timelike Coulomb gluon, Aoo, are static. The 

Coulomb ghost is also static, with bare-propagator l/h’. It couples to spatial gluons 

through the vertex -igf”*“p’, where pi is the spatial momentum of the antighost leg. 

To illustrate the analysis of a general amplitude, we compute the hard thermal 

loops in the gluon and quark self energies. These were first calculated by Silin, Klimov, 

and Weldon [7- lo]. 0 nce we can calculate these efficiently, the extension to N-point 

functions at N > 3 is immediate. 

The diagrams that contribute to the gluon self energy at one loop order are shown 

in fig. 3. The diagram with two three-gluon interactions, fig. 3a, contributes 

- q Tr I+(-P + K,P, -K) A;#) I?‘“‘(-K,P, -P + K) A,C,,(P - K) . 

(2.6) 
The prefix “6” is introduced to denote the hard thermal loop in an amplitude. 

Many of the terms that appear in eq. (2.6) d o not contribute to a hard thermal 

loop, and can be dropped at the outset. Since the loop momentum K is hard and 

the external momentum P is soft, the terms linear in P in the three-gluon vertices 

can be neglected in comparison to those linear in ‘K. Thus the three-gluon vertex 

reduces to 

I’“‘+P + K,P,-K) z I’cpx( K,O, -K) = -2Kp PA + K” ~5~’ + KA P’” . (2.7) 

The symbol 5” is used here to denote an approximation that is valid for the hard 

thermal loop in an integral. 
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We concentrate on the term in eq. (2.6) that arises when both of the virtual gluons 

are transverse; it turns out that this contribution typifies the hard thermal loops for 

the N-point functions at N 2 3. Several approximations can be made for transverse 

gluons in Coulomb gauge. For soft P and hard K, the transverse propagator is 

proportional to a projection operator in &: 

&;(P-K) = 6’j - (jj - &)‘(p - &)j 
(p - k)” A(P-K) c ( Sii - ii@) A(P- K) . (2.8) 

Consider what happens in eq. (2.6) when the three-gluon vertex of eq. (2.7) is 

sandwiched between two transverse propagators. As the propagators are transverse, 

the loop indices 6, X.. . must all be spatial: u = j, X = i, etc.. Then any term 

in the three-gluon vertex which involves the loop indices, ki or kj, vanishes upon 

contraction with the transverse propagator. The only term which survives is from 

the first term in eq. (2.7), proportional to -2Kt 

A:;,(P - K) lYifvj’(-K,O, K) A&(K) z -2K” (l?j - f’lj) A(K) A(P - K) . 

(2.9) 
Thus when a three-gluon vertex is sandwiched between two transverse gluon prop- 

agators, the projection operator in & survives unscathed. Consequently it is easy to 

contract the remaining vertex with eq. (2.9). As b e ore f any terms proportional to 

k’ or kj vanish ‘upon contraction with eq. (2.9), so the remaining vertex contributes 

2K@ b’j. Contraction of the Kronecker delta iiij with the projection operator in eq. 

(2.9) gives an overall multiplicative factor of 

(2.10) 

The complete hard thermal loop in IIs, is a sum of two terms, 

Tr Kp K” A(K) A(P - K) 

+ g2 NC Tr (6%“j A;;(K)) . (2.11) 

The first term is momentum dependent, proportional to Zpy(O, P). It arises just 

from the contribution of two transverse gluons, as discussed above. The second term, 

proportional to Tr Atr(K), is a constant. It is only nonzero when the indices ,U = v 
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are spatial, and is due to the contribution of one transverse and one timelike gluon, 

Am 

The Coulomb ghosts are static, so the ghost loop in fig. 3b cannot produce a hard 

thermal loop. The tadpole from the four-gluon vertex diagram of fig. 3c produces 

terms independent of the external momentum. The hard thermal loop, which comes 

from transverse gluons only, is 

6Iq(P) = - g2 NC Tr ((d - 2) 8’” A(K) - P” b“j A;;(K)) . (2.12) 

The second term in eq. (2.12) cancels identically against the constant term in eq. 

(2.11). Adding eqs. (2.11) and (2.12) together, we find that the contribution of 

virtual gluons to the hard thermal loop in the gluon self energy is 

~~:;+*,+gh(p) M 2’ (d-2) (9) TT (PK~A(K)A(P-K)- SPA). 

(2.13) 

This result is independent of the Coulomb gauge fixing parameter [c. 

Notice that it is much simpler to compute just the momentum dependent part of 

6lP in eq. (2.13). Th is is due solely to the contribution of two transverse gluons, 

for which the approximations of eqs. (2.7) - (2.9) apply. The ‘constant term in SIIpV l 

is more involved, for then the static modes, through the constant term in eq. (2.11), 

and four-gluon vertices, eq. (2.12), contribute. Fortunately, these complications are 

special to the constant term in the gluon self energy, and do not enter into the hard 

thermal loops of N-gluons when iV 2 3. 

We remark that the constant term in the gluon self energy has a direct physical 

interpretation. Since it is a constant, its value can be determined at any momentum. 

The most convenient choice is at zero momentum, where the behavior of the gluon self 

energy is a familiar story [ 11. F or instance, choosing p” = 0 and then setting p + 0, 
the only nonzero component of IIP” is Iloo = rnzl - g2T2. To this order the electric 

mass m,l is the inverse screening length for static electric fields, and is a physical 

quantity. In sections 1I.B and 1I.C we show that in covariant gauges the constant 

term in the gluon self energy arises in a very different way than in Coulomb gauge. 

Yet since m,l is a physical quantity, and so gauge invariant, we can rest assured that 

in the end, the sum of all such constant terms is bound to be the same. 
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The contribution of the quark loop to the gluon self energy is 

Tr (7’ A,(K) 7” Af (K - P)) , (2.14) 

where the quark propagator Ai is given in eq. (1.6), and there is an implied trace 

over the Dirac indices. Like the three-gluon vertex in eq. (2.7), terms linear in bp in 

the numerator of the second quark propagator can be dropped: 

Ar(P- K) 2 -i jXii(P-K). (2.15) 

This makes, the trace over Dirac indices simple, and eq. (2.14) reduces to 

5lq(P) M - 2d’2 Nf g2 Tr (K’K’a(K) a(P - K) - fv n(K)) , (2.16) 

where the factor of 2d/2 is from the dimensionality of the Dirac matrices. Only the 

transverse gluon contributes to the hard thermal loop in eq. (2.16). 

The hard thermal loops in eqs. (2.13) and (2.16) are given as integrals, which can 

be rewritten in terms of the functions Z and ? of sec. I. The contribution of the quark 

loop involves the function f, but the identity of eq. (1.36) can be used to exchange 

2 for 1. Setting d = 4, the complete hard thermal loop in. the gluon self energy is 

SLY(P) = i g2 (NC + $) (F(0, P) - f F’” Z(o)) . (2.17) 

This is the self energy calculated by Silin, Klimov, and Weldon [5- 91, expressed in 

our compact notation. 

As a second example, consider the quark self energy. To one loop order, 

~W) = g2 C, Tr (7’ Af(P -K)y” AEV(K)) . (2.18) 

Using eq. (2.15), we drop the soft $’ in the numerator of the quark propagator. The 

numerator in the trace is proportional to 

7i F 7j (@j - kij$) = _ (d _ 2) jf . (2.19) 

Only transverse gluons contribute to the hard thermal loop in C, and give 

m:(P) = -i (d - 2) g2 Cf Tr JC A(K) i(P - K) . (2.20) 
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Setting d = 4, and expressing it in terms of the Z function defined in sec. I, we find 

that 

6C(P) = - 2+g2 Cf 7p zqo; P) . (2.21) 

This is the quark self energy calculated by Klimov and Weldon [5,9]. 

It is surprisingly easy to generalize these two examples to calculate all hard thermal 

loops. This is because we can make two approximations for the N-point functions at 

N 2 3 which cannot be made for the constant term in the gluon self energy. The first 

approximation is that only transverse gluons contribute. From the power counting 

rules of sec. I, each propagator for a transversal mode is of order l/(PT) - l/(gP) 

at soft P. In contrast, the propagator for any static mode is of order l/k2 - l/T2 at 

hard k. Thus the substitution of a static for a transverse mode reduces the diagram 

by a power of g. 

The second approximation is that any diagram involving a four-gluon vertex can 

be neglected. Suppose that in a one loop diagram, such as fig. la, two adjacent 

three-gluon vertices, plus the propagator connecting them, is replaced by a four- 

gluon vertex. By the power counting rules, the two adjacent three-gluon vertices each 

contribute g for the coupling constant and K - T, while the propagator connecting 

them gives l/(gZ”); altogether this is of o,rder.(gT)a/(gT2) = g. In contrast, the. 

four-gluon vertex is of order g2. Thus diagrams with one four-gluon vertex are at 

most g times a hard thermal loop. 

These approximations do not apply to the constant term in the gluon self energy 

because this term only involves an integral over one propagator, such as Tr A(K). 

Only for integrals with two or more propagators is there a suppression factor of P/T 
from the cancelling statistical distribution functions between particles of the same 

statistics. 

Using these approximations, we see that the only contribution to the N-gluon 

amplitude is from the gluon loop of fig. 1, when all of the virtual gluons inside the 

loop are transverse. Using eq. (2.8), each of the N transverse propagators contributes 

A( P - K) times a projection operator. The N three-gluon vertices are approximately 

those of eq. (2.7). Wh en sandwiched between two transverse gluons, each vertex 

simplifies as in eq. (2.9), t o contribute a factor of the coupling g times 2Kp. The 

projection operator in & runs around the loop until it contracts upon itself to give 

d - 2, eq. (2.10). Th e resulting integral is that of eq. (1.27), which through the Z 
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function has a hard thermal loop. Summing over all diagrams of the form in fig. la, 
the result is 

sr;- = ZN (d - 2) (-ig)N c tr (2’“‘. . . TaN) Zg’**+N(O, PI.. . PN-I) , N > 2. 
pctm.‘s 

(2.22) 
We have ordered the external gluon lines so that the Ph line is for the gluon A::( Pl - 
PLV1 ), defining PO = PN = 0. The particular term displayed in eq. (2.22) occurs 

when the external legs are ordered consecutively, but the sum runs over all noncyclic 

permutations of the external lines. Notice that’ when N = 2, the overall coefficient, 

2N(d - 2), agrees with that found for the two-point function in eq. (2.13). Eq. (2.22) 

represents the complete contribution from virtual gluons and ghosts to the N-gluon 

hard thermal loop for N 2 3; all other terms are smaller by at least one power of g. 

The quark loop in fig. lb also contributes to the hard thermal part of the N-gluon 

amplitude. In the quark loop, we can use eq. (2.15) to write 

A# - K) rcl Af(P’ - K) = - (JC7” F) ;i(P - K) &” - K) . (2.23) 

In hard thermal loops we can take 

67” jC=2KpJLK27g z 2K@’ (2.24) 

The term K27J‘ is dropped because the K2 cancels Z\(K): the resulting integral, 

with two less powers of K and one less A, is not a hard thermal loop when N > 3. 

Applying the approximations of eqs. (2.23) and (2.24) at every vertex, the Dirac 

trace is trivial. Each of the N vertices contributes 2Kp, while each virtual fermion 

line adds A( P - K). Th e integral which results is the function f defined in eq. (1.28). 

Summing over all diagrams of the form shown in fig. lb, quarks contribute to the 

hard thermal loop in the N-gluon amplitude as 

6r,N,,k = - 2d’2 Nf 2N (-i r~)~ c tr (t”’ . . . t”“) ~pl-“uN(O, PI . . . PN-1) , N > 2. 
petm.‘s 

(2.25) 
Compare the overall coefficient, -2d/2 Nf , with the d - 2 from the gluon loop, eq. 

(2.22). The d - 2 is just the number of transverse gluons. For the quark loop, there is 

Nf from the number of flavors, 2 d/2 from the Dirac trace, and an overall minus sign 
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from Fermi statistics. Eq. (1.36) can be used to change the % function in eq. (2.25) 

to a Z function; this changes the overall coefficient to +2d/2Nf/2. 

In Coulomb gauge the hard thermal loop in the amplitude between a quark pair 

and N -2 gluons is generated by the diagrams of fig. 2. The approximations discussed 

for the N-gluon amplitude apply; for instance, in fig. 2 all of the virtual gluons are 

transverse. This hard thermal loop is most transparent when written in a functional 

form, which is given below in eq. (2.38). 

Before proceeding to derive generating functionals for hard thermal loops, we give 

explicit expressions for the hard thermal loops in the three- and four-point functions. 

For the three-gluon amplitude, the sum of the hard thermal loops in eqs. (2.22) and 

(2.25) is 

6P”‘(P, Q, R) = -8 g2 (AC+?) ZwuA(o,P,-Q), $26) 

where P + Q + R = 0. Note that the coefficient N, + Nfj2 is the same as in the gluon 

self energy, eq. (2.17). The hard thermal loop in the quark-gluon vertex is 

6Fp( P, &; R) = -4g2 Cr yv P’(0; P, -&) . (2.27) 

It is surprising to find that the hard thermal loop in the vertex is proportional to the 

Casimir Cf, as found for the quark self energy in eq. (2.21). The vertex correction in 

eq. (2.27) comes from two distinct diagrams, both of which are of the form shown in 

fig. 2. The first diagram is common to QED, but the second involves the nonabelian 

three-gluon coupling, and so is special to &CD. In general these two diagrams are 

not simply related to each other, but their hard thermal loops are related by the 

conjugation identity of eq. (1.36), so that they combine to give a result which is 

proportional to Cf. 

For the four-point functions, we give the hard thermal loops for amplitudes which 

are summed in the color indices for two of the gluon legs. These are the only ampli- 

tudes that are required for the calculations of self energies in sec. III. At tree level the 

four-gluon amplitude is given in eq. (2.2). The hard thermal loop for this amplitude 

is 

6i?‘“‘“( P, Q, R, S) 

= _ 32g2 $- CfNf N,” + 2 
>( 

z~+(o, p, p + Q, -R) + Zclyx’=(O, P, P + Q, -s)) 
c 
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+;(N+) z’“yo, P, P + R, -S)) , (2.28) 

with P + Q + R + S = 0. This effective four-point interaction occurs even in QED. 

At tree level there is no coupling between a quark pair and two gluons. Such an 

amplitude is induced at one loop order, through the diagrams of fig. 2. Three distinct 

diagrams contribute to the hard thermal loop. Summing over the color indices of the 

two gluons, the amplitude equals - i g2 Cf 6I%‘, where 

@‘“(P, Q; R,.S) 

= 8 g2+ ((Cf + NJ (Y’x(O, -R, P + Q; P) + Pua(O, -S, P + Q; P)) 

++ (P(0, -S; P, P + R) + Y”(0, -R; P, P + S))) . (2.29) 

Note, that the bare amplitude vanishes: ?py = 0. 

The Ward identities satisfied by hard thermal loops follow from eqs. (1.40) and 

(1.41). Because these relations are so simple, so are the Ward identities. For the 

gluon self-energy in (2.17), eq. (1.41) shows that it is transverse, 

PP bW”(P) = 0 . (2-N) 

The other Ward identities can be read off from eq. (1.40). For the three-point 

functions, they are: 

RA 6Yx(P, Q, R) = 6W”(P) - &I”“(Q) , (2.31) 

Rp 6@( P, Q; R) = i bC( P) + i SE(Q) . (2.32) 

After tracing over the color indices of two gluon legs, the four-point functions have a 

trivial color structure, and obey Ward identities similar to those for the three-point 

functions: 

sqyxu (P, Q, R, s) = 6rpva (P + S, Q, R) - 6Yx (P, Q + S, R) , (2.33) 

s” b?py (P,Q; R,S) = @(P + S,Q; R) - @(P,Q + S;R) . (2.34) 

These Ward identities are used in sec. III to prove the gauge invariance of two-point 

T-matrix elements. 
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We conclude this section by deriving generating functionals which succinctly sum- 

marize all hard thermal loops. For amplitudes between N-gluons, eqs. (2.22) and 

(2.25) can be written as a functional 6S[A]: 

SS[A] = 2 &I?% 
N=2 . 

w (d - 2) NC + 2d’;Nf) g2T2 J d4a (A;)’ 

+ d-2 ( )J 
+ (‘“i::) J 

d4z Tr tr log ((-# - K’L)2 - 2igT”A;(z)K’) 

f d4z Tr tr Zug (( -i#‘ - Kp)2 - 2 ig t”AE(z) Kp) . (2.35) 

In this expression A; is assumed to be an arbitrary external gauge field with soft 

momenta. The term proportional to (A”,)2 arises from the constant term in the‘gluon 

self energy, eq. (2.17). The logarithm proportional to d - 2 sums the contributions 

of all gluons loops in fig. la, eq. (2.22); the logarithm proportional to Nf sums the 

fermion loops in fig. lb, eq. (2.25). In the logarithms the factors of the loop momenta 

K are explicit, while the derivatives a act just on the soft gauge fields. In eq. (2.35) 

A% is written in coordinate space; as each logarithm is expanded in powers of A;(z), 
transformation from coordinate to momentum space gives 

-+ n(P - K) Kp A( P’ - K) A;( P - P’) . 

(2.36) 

Eq. (2.35) is so simple because expansion of the logarithms automatically incorporates 

the sum over permutations of the external lines in eqs. (2.22) and (2.25). 

The generating functional 6S[A] can be derived more directly. Suppose the quark 

and gluon fields are divided into those with hard and those with soft momentum. 

Integration over the hard fields produces an effective action which is a functional of 

the soft, background field A:. At one loop order, the contribution of hard virtual 

gluons to 6S[A] is related to the gluon propagator in a background gluon field, 

6S+,,,[A] z - f V Tr tT log -D2bcI” + Dp D” + 2g Fpv - ;@&‘%vj) . 
c 

(2.37) 
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D, = a,, - g Ta A4 is the covariant derivative for an adjoint field, etc.. The approx- 

imations made previously diagram by diagram can be made directly in eq. (2.37). 

Except for the two-point function, diagrams with four-gluon interactions do not con- 

tribute to hard thermal loops; this corresponds to dropping terms proportional to 

(A;)2 in eq. (2.37). Similarly, since the field strength tensor PY is that for the soft 

background field, it is proportional to a soft momenta, and so negligible. In this way 

the inverse gluon propagator in eq. (2.37) reduces to the inverse propagator of an 

adjoint scalar, which is the argument of the logarithm in the term proportional to 

d - 2 in eq. (2.35). L’k 1 ewise, in the term prcportional to Nf, the operator is the 

approximate form for the inverse quark propagator in a soft, background gluon field. 

A generating functional can also be derived for the hard thermal loops between a 

quark pair and any number of gluons: 

N=2 (N - 2)! 

x ;(d- 2) g2 / d4x Tr $ JC t” 
(-;a@ + Kr)” +‘2 ig tc A;(x) Kfi tb ’ 

(49 - KP)~ -:igTdA:(x)Kp .; ’ 1 
(2.38) 

In this expression the momentum operator -i a,, acts on both the gluon fields A,,(x) 
and on the quark field +. Under the approximations that produce hard thermal loops, 

this functional is the quark self energy to one loop order, in the presence of a soft, 

background gluon field. 

B. Feynman gauge 

In this section we show that the hard thermal loops in Feynman gauge are identical 

to those in Coulomb gauge. With a gauge fixing term (apAz)2/(2( 1 - [)), the bare 

gauge propagator is 

A,,(K) = P’A( K) - < KP K” A”(K) 

= A;v(K) - t A:#) . (2.39) 
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In this section we restrict ourselves to Feynman gauge, which is the choice { = 0. The 

ghosts in covariant gauge propagate, with the bare propagator A(K). The vertex 

between a gluon AZ(P), a ghost TV, and an antighost v(R) is ig f”” RF. As 

discussed in sec. I, amplitudes with ghosts as external lines do not have hard thermal 

loops. On the other hand, in covariant gauges virtual ghosts do propagate, and 

contribute to the hard thermal loops of N-gluon amplitudes. 

As before we start with the example of the gluon self energy. In eq. (2.6), Coulomb 

propagators are replaced by those in Feynman gauge, AF. Each of the three-gluon 

vertices can be approximated by the sum of three terms, as in eq. (2.7). In Coulomb 

gauge, only one term survives when this vertex is sandwiched between two transverse 

propagators, eq. (2.8). In Feynman gauge, however, all three terms survive and 

contribute to hard thermal loops. We organize the calculation of the hard thermal 

loop in a way which generalizes easily to the N-gluon amplitude. Consider the 

product of two three-gluon vertices, as in eq. (2.6), tied together by a Feynman 

propagator. For hard K, this reduces to 

l?‘(K,O,-K) AfA,(K) I’x’v”‘(-K,O,K) 

=-- 22 KP K” 6”“’ _ 2 Kf K” 6J“” - 2 KP K”’ 6”” _ Kl’ K” 6”“’ _ K”’ K” 6Pu 

+ K2 P’= ~5”“’ + K” Kff’P’ A(K) . 
> 

(2.40) 

Multiplying eq. (2.40) by the remaining Feynman propagator Aso(P - K), we find 

that in Feynman gauge the hard thermal loop in fig. 3a is 

sI-I~;(P) 25 7 Tr ((2’d-6) KpK”+ 2P’K2) A(K)A(P-K). (2.41) 

In Feynman gauge there are also hard thermal loops from the virtual ghosts of 

fig. 3b and from the tadpole diagram of fig. 3c. The ghost loop is easy to evaluate, 

because the dependence on the soft external momenta in the ghost-gluon vertices can 

be dropped, so that the two vertices are proportional to K” and K”. The sum of the 

contributions to the hard thermal loop from figs. 3a, 3b, and 3c is 

TT (((22d - 6) - 2) K’K”A(K)A(P - K) 

+( 2 - 2(d - l))iYA(K)) . (2.42) 
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In the momentum dependent term, the piece proportional to 22d-6 is from eq. (2.41), 

while that proportional to -2, is from the ghost loop of fig. 3b. The constant term 

also receives two contributions: the 2 is from eq. (2.41), the - 2(d - 1) is from the 

tadpole diagram of fig. 3c. Eq. (2.42) is equal to the corresponding result in Coulomb 

gauge, eq. (2.13). Since there is no change in the contribution from the quark loop, 

eq. (2.16), we conclude that GIIP” is the same in Coulomb and Feynman gauge. 

Our second example is the quark self energy. In eq. (2.18) we substitute the 

Feynman for the Coulomb propagator. The numerator inside the trace is proportional 

to 

rg Pi p = -(d-2) Ji. (2.43) 

Since the right hand side here equals that of eq. (2.19), this hard thermal loop is the 

same in Feynman gauge as in Coulomb gauge, eq. (2.20). 

With these examples in hand we turn to the N-point functions at N 2 3. The 

calculation of the hard thermal loop in the N-gluon amplitudes is a straightforward 

generalization of that for the momentum dependent term in the gluon self energy. 

The only diagrams which contribute at N > 3 are those of fig. la, from a gluon 

loop, plus the analogous diagram from a ghost loop; any diagrams with four-gluon 

vertices do not contain hard thermal loops. In fig. la, the three-gluon vertices can 

be approximated as in eq. (2.7). S ewing two such vertices together with a Feynman 

propagator gives eq. (2.40). If N vertices are sewed together with N - 1 Feynman 

propagators, the numerator reduces to 

V 01 tit --WVN+i = l?Q’=g(-K,O, K) I’a~J‘~u3(-K,0, K) . . . I’uNpNuN+l(-K,O, K) 

25 9 KP’ KPz . . . KPN 6"' ~N+I 

N 
- 

c 2N-f ( Kpl . . . KPf-I K”’ KPf+’ . . . KPN ~UN+I 

+ Kp’ . . . KPN-f K"Nt' .KPN+'-' . . . KIN pi+ 1 --LPI 
> * (2.44) 

In this expression the p indices refer to the external gluons, and the c indices to the 

virtual gluons inside the loop. The virtual gluon indices 61 and bN+i, at each end of 

the string of N three-gluon vertices, are free. The result in eq. (2.44) is obtained by 

making approximations which are valid only for hard thermal loops. By the identity 

of eq. (l-33), when N 2 3 all terms proportional to K2, or to a Kronecker delta 
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between two external indices, such as PlW, can be dropped. With the neglect of 

such terms, eq. (2.44) can be proven inductively. 

With eq. (2.44) in hand, it is direct to show that the hard thermal loops for 

an N-gluon amplitude in Feynman gauge equal those in Coulomb gauge. To obtain 

the. numerator of the N-gluon amplitude, eq. (2.44) is contracted with b”lQ’+l from 

the remaining Feynman propagator in the gluon loop. Each term is proportional to 

K’L1 . . . Ky which is the usual numerator in a hard thermal loop, eq. (1.27). The 

first term in (2.44) is proportional to 6”1uN+l, and produces a factor of d; relative to 

this, every other term gives a 1. Thus the numerator of the amplitude is proportional 

to 

6 al@N+l V fllPl..+N@N+l = CN 
glucm KM1 . . . KpN , (2.45) 

where 

CN gluon = 2N d - 5 2l = 2N d - 2N+’ + 2. (2.46) 
L=l 

For N = 2, this coefficient is 22 d - 6, which agrees with the momentum dependent 

term in eq. (2.41). Th e contribution of the ghost loop to the N-gluon amplitude is of 

the same form as the gluon loop: with the normalization of eq. (2.45), its contribution 

is CgTOdt = -2. The (-) g si n is from ghost statistics, the 2 from the sum of loops 

oriented in opposite directions. Thus in Feynman gauge the sum of the gluon and 

ghost loops has an overall coefficient 

($,, + C,$hort = zN (d - 2) . (2.47) 

Comparison with eq. (2.22) h s ows that this equals the coefficient found before in 

Coulomb gauge, and demonstrates that for N-gluons the hard thermal loops are the 

same in the two gauges. By similar means, one can show that the hard thermal loops 

for the amplitude between a quark pair and N - 2 gluons agree in both gauges. 

C. Covariant gauges 

In this section we show that in an arbitrary covariant gauge, the hard thermal 

loops of N-point functions are independent of the gauge parameter t, Klimov and 

Weldon first showed that the hard thermal loops in the self energies are independent 

of [ [9]. It is extraordinary to find that this gauge independence extends to all hard 
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thermal loops, for the external legs do not have to be on the mass shell; they just have 

to be soft. This property is special to leading order: relative to the tree amplitude, 

corrections of order g are in general gauge dependent off the mass shell. 

To appreciate the complications which arise in a general covariant gauge, start 

with a diagram which has a a hard thermal loop in Feynman gauge, such as in figs. 

la or 2. For one virtual gluon leg in the diagram, substitute the gauge dependent 

piece of the propagator, - [ AC,(K) in eq. (2.39), for the Feynman propagator. 

This substitution adds an extra factor of K" K" A(K) to the integral. Following the 

power counting rules of sec. I, each Kp is proportional to T, and the propagator to 

l/(PT), so this substitution produces terms which change the integral by an overall 

factor of T2/(PT) - l/g for soft P. Thus in individual diagrams, terms proportional 

to <” can be l/g” times hard thermal loops. 

Nevertheless, we prove that when all diagrams which contribute to a given N-point 

amplitude are added together, the dependence upon t cancels identically. Our proof 

proceeds in two steps. First we use the Ward identities for the bare propagators 

‘and vertices to show that diagram by diagram, all terms which are powers of l/g 

times a hard thermal loop cancel. The terms which remain are t dependent hard 

thermal loops. These arise both from diagrams which have hard thermal loops in 

Feynman gauge, and from diagrams with four-gluon interactions, which do not have 

hard thermal loops in Feynman gauge. We show that the sum of these t dependent 

hard thermal loops vanishes in any amplitude. Our proof is inductive, using the 

simple form for.the Ward identities satisfied by hard thermal loops. 

As in previous sections we begin with the examples of the gluon and qrlark self 

energies. Kl imov and Weldon demonstrated that the hard thermal loops in these 

amplitudes are independent of e by direct calculation. We take a different approach, 

which directly generalizes to the higher N-point functions. 

Consider the contribution to the gluon self energy from the diagram of fig. 3a. 

Substituting the t dependent gluon propagators of eq. (2.39) for the Coulomb prop- 

agators in eq. (2.6), we find that the [ dependent part of the hard thermal loop in 

fig. 3a is given by 

~qlg(P) = -g+ TV r+(-p + K,P,-K) (2< A;~,(K) + t2aE,,,(K)) 
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rxfuu’( - K, P, -P + K, ) A$,(P - K) . (2.48) 

The t dependence arises from the part of the gluon propagator proportional to At, 

which can be inserted on either one or on both legs of the diagram. The single 

insertions give the same result, so we assume that the insertion is on the leg with 

momentum P - K, and multiply by two. 

The rules for simplifying diagrams must be modified when dealing with < depen- 

dent terms. As noted above, for terms linear in t, the integrals contain terms which 

are l/g times a hard thermal loop. Consequently, to keep all hard thermal loops, it 

is necessary to retain terms with one power of the soft momentum P. In general, for 

terms proportional to <“‘, terms up to order P” must be included. 

Eq. (2.48) can be simplified most directly by using the Ward identities. We 

introduce the transverse inverse propagator 

A;,‘(K) = P‘” K2 - KM K” . (2.49) 

Our notation is unconventional, for A-’ is not the full inverse propagator: it excludes 

.the terms for gauge fixing, and is therefore not invertible. The notation is convenient, 

however, because it is A-l that enters into the Ward identity for the bare three-gluon 
. 

vertex: , 

(P - K)” I’“@ “(-P + K,P,-K) = - A;;(P) + A;$‘(K) . ‘2.50) 

The transverse inverse propagator is proportional to a projection operator, and so 

satisfies some simple identities. When contracted with the covariant propagator, 

A;;(K) AX”(K) = A;;(K) A(K), (2.51) 

because the transverse inverse propagator annihilates the gauge dependent term, 

A;:( K)Af,( K) = 0. (2.52) 

Also, the product of two A-l’s is 

A;;(K) Ai; = K2 A;;(K) . (2.53) 

From the form of eq. (2.48), ‘t 1 is evident why the bare Ward identity is of help, The 

term A:,,( P - K) is proportional to (P - K)“(P - K)“‘. Each of the P - K’s is 

35 



contracted with a three-gluon vertex, and can be simplified using eq. (2.50). The 

result is 

m;,;, z - 9 Tr A’(P - K) (A;: (K) - A;; (P)) (2e A&(K) + 4” A:,,(K)) 

(Ai;( A,t(P)) . (2.54) 

It is easy to see that the term proportional to t” does not contain a hard thermal 

loop. The factors of A-l(K) can be dropped because of eq. (2.52). The remaining 

term involves two factors of A-l(P), so it is of order P4; this integral is at most g2 

times a hard thermal loop, and so is negligible. For the term proportional to t, as the 

integral is no more than l/g times a hard thermal loop, factors of A-l(P) - P2 can 

be dropped. The remaining term can be simplified by using eqs. (2.51) and (2.53). 

The final result is 

GII~~, = - ( g2 N, Tr (A2(P - K) A;;(K)) . (2.55) 

Shifting the integration variable, we find that the hard thermal loop is a constant, 

independent of the momentum P. It cancels identically against a contribution from 

the four-gluon vertex diagram of fig. 3c. The ghost loop of fig. 3b and the quark . 
loop are independent of t, so this establishes that the hard thermal loop in the gluon 

self energy is independent of [. We remark that once we reduce the t dependence of 

fig. 3a to a constant, as in eq. (2.55), th ere is no need for further calculation. As 

discussed in sec. II.A, to this order the. constant term is related to a physical quantity 
- the electric screening length - and so is gauge invariant. Thus the [ dependence 

must cancel between diagrams. 

Demonstrating that the hard thermal part of the quark self energy is independent 

of t is even easier. The t dependent term is obtained by inserting -(AL,(K) in place 

of the Coulomb propagator in eq. (2.18), 

6C((P) 22 - t g2 Cf TT- (Y A@ - K) Y A:vtK)) - (2.56) 

This term is of order l/g times a hard thermal loop. We use the Ward identity for 

the bare quark-gluon vertex, 

Kp yp = -i @;‘(I’ - K) - A;‘(P)) , (2.57) 

36 



which is obvious since AT’(P) = -i ,P. Applying this to both of the vertices 7~ 

and rv produces four terms.. The term with two powers of A-l(P) gives integrals 

which are g times a hard thermal loop, and so negligible. In the other terms, the 

propagator Ar(P - K) is cancelled by one of the numerator factors Ay’(P - K). 

After this cancellation, the remaining terms in 6Xe are at best of the same order as 

a hard thermal loop. Thus terms which involve AT’(P) in the numerator can be 

dropped. This leaves 

5&(P) = i 6 g2 Cf Tr (A;‘(e - K) A’(K)) z 0, (2.58) 

which is not a hard ‘hermal loop. This proves that the hard thermal loop in the 

quark self energy E is independent of c$. 

Power counting indicates that the t dependent integrals contain terms which are 

powers of l/g times a hard thermal loop. The examples of the self energies show 

that the terms of order l/g” can be organized by the Ward identities so that they 

cancel. This generalizes directly to the < dependence of higher N-point functions. 

For example, consider the N-gluon amplitude of fig. la. We snip off the part of fig. 

la that contains the three-gluon vertices for the external gluons ,**(Pr - PO) and 

Apz(Pz - Pi), as well as the string of three propagators which are attached to the 

adjacent vertices. We call this quantity W: 

A,,,, (Pi - K) I”lpzx2 (PI - K,P, - PI, -Pz + K) Ax,&% - K) . (2.59) 

The indices Xs and g2 refer to the virtual gluon legs at the ends of the string. Each 

propagator is the full covariant form of eq. (2.39). Decompose W into the piece in 

Feynman gauge, plus the t dependent term: W = WF + Wt. In Feynman gauge, the 

terms which contribute to the hard thermal loop are 

)@o Pl P2 =2 z A(Po - K) A(Pi - K) A(& - K) Yxocc1”20~ , (2.60) 

with the Y of eq. (2.46). To obt ain Wt, start with the propagator in the middle of 

eq. (2.59), &,,,(PI - K). N ow substitute the t dependent piece, At, and use the 

bare Ward identity, eq. (2.50), and eqs. (2.51)-(2.53,), to simplify the result. Doing 
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so, we find 

WXOPl P242 z 
e - t (A(& - K) Kpl (PO - ,)‘O 6”24a +A&-K) K’zz (Pz-K)“’ PA0 

+ A(Po- K) A(& - K) Ii?“’ P” (PO - K)Xo (P2 - K)“‘) A’(P, - K) + . . . . 

(2.61) 

Only the terms linear in t are shown. We assume that W is part of the N-gluon 

amplitude of fig. la at N > 3, which allows many terms to be dropped. For momenta 

tied to an external gauge index, powers of the soft P can be neglected relative to K: 

( Pl - K)fil M -Kpl, etc.. Similarly, terms where each external JL is tied to a loop 

index, such as A’(Pl - K) 6 filXo bfitOz, do not produce a hard thermal loop, and can 

be ignored. 

Notice that in eq. (2.61), every term is accompanied by a factor of the loop 

momentum for the beginning or the end of the string, tied to the appropriate loop 

index: either (PO - K)Xo, or (Pz - K)“‘. Thus when Wt is stitched back into fig. la, 

these factors of the loop momenta continue to eat their way around the loop, in a 

manner such that the bare Ward identity can be applied repeatedly. 

The term in Feynman gauge, WF in eq. (2.60), has three A’s and two K’s, The 

first two terms in Wt, eq. (2.61), h ave the same number of A’s and K’s, and so like 

WF produce-a hard thermal loop. The last term in Wt is different: it has four A’s 

and four K’s, so it appears to produce integrals of order l/g times a hard thermal 

loop. In the first two terms, though, the loop momenta is tied to its index at either 

the beginning or the end of the string; for the last term, this happens at both ends. 

Thus in the last term, the loop momenta eat their way around the diagram in both 

directions, and the bare Ward identity can be used to show that the possible terms 

of order l/g cancel. 

This example demonstrates that for terms proportional to t in the N-gluon am- 

plitude, all terms which are l/g times a hard thermal loop vanish in each individual 

diagram. This leaves t dependent hard thermal loops. For the self energies, once ;he 

Ward identities reduce the < dependence to hard thermal loops, it is simple to show 

that the sum vanishes when all diagrams were added together. At N > 3, there are 

many more diagrams, and this is not at all apparent. 

To understand the cancellation of t dependent hard thermal loops, we catalog the 

possible integrals which arise. From the diagram of fig. la in Coulomb or Feynman 
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gauge, the hard thermal loop is proportional to 

P’--~‘N (PO, PI, Pz , P.. . . . PN-2,o) . (2.62) 

The ordering and notation is as in eq. (2.22), except that here we take PO # 0 .and 

PN-i = 0, instead of vice versa. The color factors and coupling constants do not 

enter into our arguments, and so are suppressed. The terms linear in t from fig. la 

are typified by the integral that arises from the second term in eq. (2.61), 

f P--wN( PI, P*, Pa, P3 . . . PN-2,O) ) (2.63) 

in which the momentum P1 is repeated, so the integral contains a double pole. For 

the virtual gluon line with momentum PI - K, these terms arise by replacing the 

Feynman propagator, AF, with the t dependent part (At. Since AF is proportional 

to A, and At to A2, it is natural to find that for the terms linear in ; the same 

propagator appears twice. Remember, though, that it is essential to use the bare 

Ward identities to show that KpK” in the numerator of AL(K) does not spoil this 

simple expectation. 

When t # 0 diagrams with four-gluon interactions also produce hard thermal 

loops. For example, suppose one starts with fig. la, and removes the piece given 

in eq. (2.59), W’op1Ccga2. Now sew the diagram together again with a four-gluon 

interaction, 

W;;0111112’=1 = AAo,,(Po - K) lT;;r1~2X~ Axzf12(P2 - K) . (2.64) 

Here r+ denotes the four-gluon vertex with its color indices and momenta suppressed. 

If both propagators are Feynman propagators, Wdg does not produce a hard thermal 

loop. So assume that on the line with momentum PO - K, the { dependent part of A 

is substituted. Power counting indicates that this diagram produces a hard thermal 

loop, proportional to < Zpl+N(Po, PO, P2, P3 . . .). The bare Ward identities show that 

these hard thermal loops only appear when N 2 4. 

The nature of terms with higher powers of [ is apparent. After using the bare 

Ward identities, terms quadratic in ( reduce to hard thermal loops such as 

<” F+N(P~, PI, Pz, Pz, P*. . . PN-2,O) , (2.65) 
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in which there are two sets of double poles. 

We assert that the sum of all t dependent hard thermal loops, as in eqs. (2.63) 

and (2.65), vanishes in any given amplitude. This was first discovered by explicit 

calculation for the three- and four-gluon amplitudes. The most interesting exampl’- 

is the four-gluon amplitude. At one loop order, the diagrams with a gluon loop which 

contribute are those of fig. 4. In Coulomb or Feynman gauge, only the four-point 

form of fig. la, fig. 4a, contributes. Things appear much more complicated at [ # 0: 

there are hard thermal loops from fig. 4a proportional to 1 and [, from fig. 4b 

proportional to < and t2, and from fig. 4c proportional to C2. Yet when these terms 

are added together, the terms proportional to t and t” cancel, leaving the result in 

Feynman gauge. 

This cancellation of t dependent hard thermal loops, which in explicit examples 

seems rather mysterious, has an elementary explanation. We assume that the [ 

dependent terms cancel in the (N - 1)-d uon amplitude, and show that they then 

must cancel in the N-gluon amplitude. (The same argument applies to the amplitude 

between a quark pair and N - 2 gluons.) For the N-gluon amplitude, at < = 0 the 

hard thermal loops are like that of eq. (2.62); for [ # 0, those of eqs. (2.63) and 

(2.65) appear in individual diagrams. Without loss of generality we assume that the 

momenta PO . . _ Plr-2 are nonexceptional, so that PO # PI # P2 . . ., etc:. This allows 

us to distinguish simply between the terms at 6 = 0 and [ # 0: for terms proportional 

to P, the hard thermal loops which accompany them have m pairs of double poles. 

The Ward identities which relate the hard thermal.loops of N-gluon amplitudes 

to (N - l)-gluon amplitudes can be read off from eq. (1.40). Consider an N- 

gluon amplitude, where the external gluon leg A,,(Pl - PO) is contracted with its 

momentum, (PI - Po)‘Q. In Feynman gauge, eq.(2.62) becomes 

. PN4,O) - Zp2..+‘N( PO, P2, P3 . . . P,-2 IO)) . (2.66) 

Note that both sides are free of double poles. For the term linear in < in eq. (2.63), 

(PI - , ),I F+‘““( PI, PI, Pz . . . PN-2,o) 
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- PO”’ ~p’-*pN ( PI, PI, Pa . . . PN4,o) . (2.67) 

There are three terms on the right hand side. The first two are hard thermal loops 

for a (N - l)-gluon amplitude; the first has a double pole in PI, while the second is 

free of double poles. The last term on the right hand side is a hard thermal loop for a 

N-gluon amplitude; because the momenta are nonexceptional, it cannot be reduced 

any further. 

With these expressions in hand, our inductive proof is trivial. By assumption, the 

(N - l)-gluon amplitude is independent of t, and so free of double poles. To obtain 

the Ward identity which relates the hard thermal loops in the N- and the (N - l)- 

gluon amplitudes, we contract with (PI - Po)fi, which is a linear operation. Thus 

the only way for the sum of double poles to cancel after contraction is if they cancel 

before contraction. In other words, the N-gluon amplitude has no double poles, and 

so is independent of [. 

Notice that in all of this we have blithely ignored color factors, which invariably 

complicate the detailed form of the Ward identities. For hard thermal loops, though, 

the Ward identities imply that the N-gluon amplitude, contracted with one of the 

external momenta, is a combination of (N - l)-gluon amplitudes. (This abbreviated 

Ward identity applies only to hard thermal loops, since otherwise many other things, 

such as ghost amplitudes, enter.) The detailed form of the (N - l)-gluon amplitudes 

is of no consequence: however the color indices are distributed, these amplitudes 

remain free of double poles. All we need to know is that after contraction with P”, 

the sum of double poles in the N-gluon amplitude cancels, and that this contraction 

is a linear operation. 

This concludes our proof that hard thermal loops are the same in Coulomb and 

covariant gauges. A more elegant proof could probably be given using functional 

techniques. For N- 1 g uon amplitudes, we would start with the effective action in a 

soft background field, eq. (2.35). In covariant gauges, the inverse propagator that 

enters into eq. (2.35) d p d p e en s u on I’, and determines the E dependence of soft 

amplitudes. Surely the approximations that we developed diagrammatically can be 

cast succinctly in functional form to show that 6S[A], the generating functional for 

hard thermal loops, is independent of 5. 

Unfortunately, we have no physical insight into why hard thermal loops are gauge 

invariant. (We assume that because they are equivalent in Coulomb and covariant 
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gauges, this extends to arbitrary choices of gauge.) Admittedly, hard thermal loops 

form a very special subset of diagrams at one loop order. But we are unaware of any 

other instance in nonabelian gauge theories where an entire class of diagrams is gauge 

invariant off mass shell, at arbitrary momenta. 

III. Resummation of ‘hard thermal loops 

In this section we develop an effective perturbation theory which resums the in- 

sertions of hard thermal loops to all orders in the loop expansion. To illustrate the 
use of the effective expansion, we apply it to the quark and gluon self .energies: these 

are the most basic quantities to compute, and have occasioned the most interest [3,4]. 

The propagators and vertices in the effective expansion are defined in sec. 1II.A. 

They are combined in sec. 1II.B into diagrams that give perturbative corrections 

to the quark and gluon self energies, including all terms which contribute to their 

liscontinuities at order g times the tree amplitude. The two-point I-matrix elements 

are constructed by sandwiching the self energies between physical wave functions. We 

establish that the +wo-point I-matrix elements are gauge invariant by proving that 

they are equal in Coulomb and covariant gauges. In sec. 1II.C we discuss the effective 

expansion beyond leading order in g, to outline the diagrams which contribute at order 

g and g2 to the gluon self energy. 

A. Effective propagators and vertices 

We have seen that if all of the external legs in a bare amplitude are soft, then 

certain corrections to that amplitude - the hard thermal loops - are of the same 

order in g. In order to calculate consistently, this infinite subset of corrections to the 

bare amplitude must be included by resummation. Having isolated the contribution of 

hard thermal loops in sections I and II, we carry out this resummation by developing 

an effective perturbation expansion. 

The effective expansion is similar to the usual perturbation theory, except that for 

soft momenta, the bare propagators and vertices are replaced by effective quantities, 

The effective propagators and vertices include the hard thermal loops, and are denoted 

by a left superscript “*“. Topologically, many diagrams are the same as in the bare 
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expansion. But there are also diagrams which are special to the effective expansion, 

being constructed out of effective vertices which have no bare counterpart. 

The effective propagators resum all insertions of the hard thermal loop in the 

self energies, &II for gluons and bI= for quarks. The infinite sum of corrections to 

the propagator corresponds to an additive correction to the inverse propagator. The 

effective inverse propagator for gluons is 

*A;y’(p) = A;;(P) - bII,,(P) , (3-l) 

where 6II is given in eq. (2.17). Th is is’ represented in fig. 5a. Like the bare inverse 

propagator A-l of eq. (2.49), *A-’ refers only to the transverse part of the effective 

inverse propagator. It is transverse in Pp because SIIpy( P) satisfies the Ward identity 

in eq. (2.30). Th e complete inverse propagator is obtained by adding terms for gauge 

fixing, which are unaffected by resummation. The discussion of the effective gluon 

propagator in different gauges is deferred until the end of this section. The effective 

inverse propagator for quarks is represented in fig. 5b, and is given by 

*A;‘(P)= A?‘( P)-5X(p), P-2) 

with the 6X of eq. (2.21). W e assume that all quarks are massless; the extension to 

quarks with a nonzero bare mass is elementary [lo]. 

The effective vertices are formed by adding the hard thermal loop to the bare 

vertex; schematically, T = l? + SI’. For example, for the three-gluon vertex, 

?‘"'(P,Q,R) = I'@(P,Q,R) + 61'w"X(P,Q,R) , (3.3) 

as illustrated in fig. 6a. The hard thermal Ioop in the three-gluon vertex, bP’“‘\, 

is given in eq. (2.26). The effective three-gluon vertex has the same symmetry 

properties as the bare vertex. For example, it is an odd function under a change in 

sign of all the momenta, 

*l?'YX(-P,-Q,-R) = - *Y'(P,Q,R) , 

and under the interchange of the momenta and Lorente indices for two lines, 

*l%(Q,P,R) = - *FA(P,Q,R) . 

(3.4) 

(3.5) 
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The effective quark-gluon vertex “5iw is shown in fig. 6b: 

*i+ (P, Q; RR) = yP + Si+’ (P, Q; R) , (3.6) 

where the hard thermal loop is that of eq. (2.27). 

The effective four-gluon vertex is illustrated in fig. 7a. The component that is 

diagonal in the color indices of both the first pair and the last pair of gluons is 

* pvxo r (CQ,&S) = r ~Xu(P)Q,R,S)+6rC(“Xu(~,Q,R,S) , (3.7) 

where SI’ is given in (2.28). Th is vertex is symmetric under interchange of momenta 

and Lorentz indices of the first two lines, the last two lines, and interchange of the 

first pair with the second pair. The vertex between a quark pair and two gluons 

is illustrated in fig. 7b. There is no bare vertex, so the effective vertex is given 

completely by the hard thermal loop. If we take the trace over the color indices of 

the gluons, the effective vertex T p” = b@’ is given in eq. (2.29). This vertex is 

typical of the higher N-point vertices. There are no bare vertices for N > 4, so the 

effective vertices between N gluons, or between a quark pair and N - 2 gluons, are 

given exclusively by the hard thermal loop. 

As discussed in sec. I, there are no hard thermal loops with ghosts on external 

lines, so in the effective expansion the ghost propagator and the ghost-gluon vertex 

remain the same as in the bare expansion. 

The Ward identities satisfied by the effective vertices follow immediately from 

those obeyed by the hard thermal loops, eqs. (2.30) - (2.34). For the three-point 

amplitudes, 

RX *Pvx(P, Q, R) = - *A;;(P) + *A;;(Q), (3.8) 

Rp ~‘(P,Q;R) = -i (*A;‘(P) + *A;‘(Q)) . P-9) 

We require the Ward identities for the four-point vertices that are traced in the color 

indices of two gluons. The four-gluon vertex satisfies 

y *pvXu(p,Q,R,S) = *l?(P t S,Q,R) - *I+(P,Q t S,R) . (3.10) 

For the vertex between a quark pair and two gluons? the Ward identity is 

S” ~LIY(P,Q;W) = *F”(P + S,Q;R) - Tp(P,Q + S;R) . (3.11) 
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What is most striking about these Ward identities is that formally they are iden- 
tical in structure to those satisfied by the propagators and vertices at tree level. For 

example, the Ward identity for the bare three-gluon vertex is given in eq. (2.50). 

That satisfied by the effective three-gluon vertex, eq. (3.8), is obtained merely by 

“starring” everything! Similarly, the Ward identity for the effective quark-gluon ver- 

tex, eq. (3.9), f o 11 ows that for the bare vertex, eq. (2.57). The same can be shown for 

the Ward identities of the effective four-gluon vertex, eq. (3.10), and its bare coun- 

terpart. At first it seems as if the Ward identity for the vertex between a quark pair 

and two gluons, eq. (3.11), provides an exception, but the analogy holds even here. 

Since there is no bare vertex between two quarks and two gluons, @’ = 0. The bare 

quark-gluon vertex is independent of momentum, i% = yp. Thus eq. (3.11) applies 

rather trivially to the bare vertex. The simplicity of the effective Ward identities is 

crucial in establishing the gauge invariance of the I-matrix elements in sec. 1II.B. 

We next review [5- lo] the physical interpretation of the propagating modes in 

the effective propagators. The effective quark propagator is obtained from eq. (3.2) 

directly by inversion. After analytic continuation to ko = -iw, the limiting behavior 

of the effective propagator as k + 0 is 

*Arm + -,a”, m2 
9 

(5 (7’ + i F) .+ 5 (7’ - i if)) , (3.12) 

where k = &a T/k. The hard th ermal loop in the self energy has produced a “mass” 

mp for the quarks, where rni = g2CfT2/8. Th e seemingly baroque fashion in which 

the Dirac structure is written is deliberate: the physical modes in the effective quark 

propagator form eigenstates of chirality and helicity, y” f i b. Klimov and Weldon 

first observed that contrary to naive expectation, the effective propagator has not 

one but two branches at positive energy above the light cone [9,5,10]. The term 

proportional to 7’ + i fi corresponds to the standard branch, with chirality equal to 

helicity. Because of the term proportional to y” - i p, there is also a second branch, 

along which chirality is equal to minus the helicity. This second branch represents a 

collective excitation, special to light fermions in an ultrarelativistic plasma [5,10]. At 

k = 0 these two branches are degenerate, but they diverge away from zero momentum. 

In both cases the effective mass shells do not have a relativistically invariant form, 

which is why we refer to the quark “mass” in quotes. For k >> mp, each branch 

approaches the light cone, and so the fields become essentially massless. As written 
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in eq. (3.12), at zero momentum the residue of each mode is one-half the usual value. 

When k > mp, the residue of the standard branch approaches one, while that for the 

collective mode vanishes exponentially. The detailed forms can be found elsewhere 

[v,W 

Unlike the effective quark propagator, the form of the effective gluon propagator 

depends upon the gauge. By the Ward identity of eq. (2.30), the hard thermal 

loop in the gluon self energy is transverse in K. At nonzero temperature the gluon 

self energy has two independent components, longitudinal and transverse. The hard 

thermal loop in the gluon self energy can be decomposed accordingly: 

moo(K) =‘J&(K) 7 

6@j(K) = (@ - ko” 
rc’ij) m,(K) + w p SrI(( K) , (3.13) 

where 6IIl is the longitudinal and 6II, the transverse components. 

The effective gluon propagator is obtained by adding gauge-fixing terms to eq. 

(3.1), and then inverting it. The physical excitations of the gluon are most transparent 

in strict Coulomb gauge, where & = 0: 

*A?(K) = *AL(K) , *AZ(K) = 0 , 

*~&-q = (S;j - iiij) *Am . 

We have introduced the transverse and longitudinal propagators, 

*At(K) = ’ 
K2 - 6&(K) ’ 

*AL(K) = ’ 
k2 - tXI,(K) ’ 

(3.14) 

(3.15) 

with K2 = kz + k2. When [c # 0, the C ou omb 1 propagator is given by adding 

&K’K”/(k2)’ to the *A?(K) of eq. (3.14). 

The transverse propagator *At represents the two physical degrees of freedom of 

a field with spin one. When k” = -iw and the momentum k goes to zero, 

(3.16) 
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where m, is the gluon “mass”, rni = (iV, + Nj/2) (gT)‘/S . Physically, l/m, is the 

frequency at which time dependent magnetic fields are screened over large distances. 

The pole in the transverse propagator approaches the light cone at large momentum 

k; w times its residue is of order one at all momenta. 

The longitudinal degree of freedom, with propagator *A,, plays a special role at 

nonzero temperature. At zero temperature it can often be ignored: because it is a 

static mode, it produces the familiar Coulomb interaction, but does not contribute 

to discontinuities. At nonzero temperature, however, the hard thermal loop in the 

longitudinal self energy turns it into a propagating mode. As k + 0, the effective 

longitudinal propagator behaves as 

*AL(K) + g -y2:m2 . 
9 

(3.17) 

The longitudinal and transverse modes have the same “mass” mg: over large dis- 

tances, the screening frequency for time dependent electric and magnetic fields are 

equal. The propagation of the longitudinal mode is a collective effect, completely 

analogous to the same mode in a nonrelativistic plasma. The mass shells for the 

longitudinal and transverse modes differ at nonzero momentum. Notably, the longi- 

tudinal mode only contributes significantly to discontinuities at soft momentum, for 

when p > m, its residue is exponentially small [lo]. 

In covariant gauge the propagator is obtained by adding the gauge-fixing term 

-(I - t)KpKK” to eq. (3.1) and inverting. 

to express the propagator in covariant gauge 

gauge: 

For our purposes it is most convenient 

in terms of its difference from Coulomb 

*A’“(K) = *Ar(K) + K’K”*Al(K) + (npK” + Kh”) *A2(K) , (3.18) 

where nP is a unit vector such that np Kp = k”, and the last two terms are 

5 tc k,2 --- - “n1(K) = (K2)2 (k2)2 + (K2)2 ‘af(K) ’ 

*A,(K) = - $& *A!(K) . (3.19) 

The transverse mode, *A,, enters in the same manner in any covariant or Coulomb 

gauge. In contrast, in covariant gauge the longitudinal mode *Al appears not only 
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in *A,,, as in Coulomb gauge, eq. (3.14), but it also appears in each term of the 

difference in (3.18). 

The role of the longitudinal mode can be clarified by the example of an abelian 

gauge field coupled to a conserved, external current JCL, as considered by Weldon [9] 

and Pisarski [lo]. The effective action in the presence of this current is 

(3.20) 

The covariant propagator *A can be replaced by the Coulomb propagator *AC be- 

cause, by eq. (3.18), every term in the difference is proportional to either Kp or K”, 
and these terms vanish when sandwiched between conserved currents, KpJp = 0. 
This shows that in the covariant propagator, the longitudinal mode, *A,, appears in 

both physical and unphysical terms. Only that term identical to *A? is physical, as 

it contributes to a physical quantity, SJ. All of the other ways in which *Al enters in 

the covariant propagtor, through *Al and *Az, are unphysical. 

This example illustrates another important point. The transverse mode in *A, 

is a typical physical excitation, with positive residue on mass shell. In contrast, 

the longitudinal mode has negative residue on its mass shell [S,iO]. This can be 

seen by comparing eqs.- (3.16) and (3.17): about zero momentum the residue of 

the longitudinai mode is -w2/k2 ‘v -ml/k’ times that for the transverse mode. 

In Coulomb gauge, however, the longitudinal mode couples only to the time-like 

component of the current; through Jo *ApJ”/2 in SJ. With our euclidean conventions 

Jo is imaginary on mass shell, and (Jo)2 negative, so in all the contribution of the 

longitudinal mode to physical quantities is positive -just like that of the transverse 

modes. 

The effective propagators and vertices define a perturbative expansion which re- 

sums all hard thermal loops. The effective expansion is defined diagrammatically, as 

in ordinary perturbation theory, except that when the momenta are soft, the bare 

propagators and vertices are replaced by effective propagators and vertices. In loop 

diagrams, the integrals over virtual momenta must be separated into the those over 

soft and over hard momenta. (The need for this is discussed more fully in sec. 1II.C.) 

Each soft line requires an effective propagator; bare propagators are used for hard 

lines. If all the legs of a vertex are soft, an effective vertex is needed; a bare vertex is 

used if two or more legs are hard. 
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It should be evident that within the effective expansion, loop corrections are down 

by at least one power of g. In the bare expansion, the only diagrams which are as 
large as a tree amplitude are the hard thermal loops, which arise for amplitudes 

in which every leg is soft. By resumming these into the effective propagators and 

vertices, all that remains are corrections of order g times the tree amplitude. Thus the 

effective expansion defines a power series in g, where only a finite number of diagrams 

contribute to any fixed order in g. Loop corrections in the effective expansion are 

discussed further in sec. 1II.C. 

While the mathematical expressions for diagrams with effective propagators and 

vertices are considerably more complicated than their bare counterparts, they can 

be used for practical calculations. In any loop the integration over loop momenta is 

divided into a sum of the int.egral over soft k, Tr(,,ft) , and the integral over hard 

k, Tr(,,,,d) . Like in bare perturbation theory, it is convenient to do the discrete sum 

over k. noncovariantly. This requires that the effective propagators and vertices be 

fourier transformed from functions of k” into functions of 7, as in eq. (1.3) [5,10,12]. 

Fourier transformation generates a spectral representation for an effective SU+lantity 

in the form of the integral of a spectral density, p(w, k), with respect to a spectral 

parameter w. The spectral representations required for the explicit evaluation of 

diagrams are left to another work [12]. At present ‘we only need to know -that the 

form of the spectral densities is such that w is always of the same order as k. Hence 

we can use the spatial momentum k to characterize whether a line carries soft or 

hard momentum. Doing the sum over k” and the integrals over T is no more difficult 

than for the bare expansion, since all of the complications of the effective expansion 

reside in the spectral densities. It remains only to integrate over k and over the 

spectral parameters w, with the integrand a product of spectral densities, energy 

denominators, and statistical distribution functions. In this form, even after analytic 

continuation it is safe to estimate a diagram by power counting. 

The effective propagators and vertices define a nonlocal effective field theory which 

can be understood intuitively as the result of a renormalization group transformation. 

Divide the original theory into fields with hard and those with soft momenta. As 

discussed in sec. 1I.A preceeding eq. (2.37), integrating out all fields with hard 

momenta produces an effective theory for fields with soft momenta. Keeping only 

the contribution of hard thermal loops, and discarding all terms which are down by 

powers of g, produces the above effective theory. In this light, the appearance of new 
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vertices merely represents the expansion of the effective action at one loop order in 

powers of the soft A field. 

We conclude this section by noting that the effective expansion can alternately be 

derived as an approximate solution to the Schwinger-Dyson equations. The effective 

vertices and propagators represent approximate solutions to the exact quantities. In 

the effective expansion, an effective vertex is required whenever all of the momenta 

going into a vertex are soft. In the Schwinger-Dyson equations, though, both bare and 

exact vertices appear, even when the loop momentum is soft. The loop integrals in 

the Schwinger-Dyson equations, though, run over all momenta, hard and soft. It can 

be shown that the integral over hard momentum generates a hard thermal loop, which 

combines with the bare vertex to form the usual effective vertex. Our original view - 

constructing the effective expansion by integrating out all hard thermal fluctuations 
- is both more direct and more natural. 

B. Gauge invariance of I-matrix elements 

In this section we use the effective expansion to write down expressions for the 

one loop corrections to the quark and gluon self energies at soft momentum. These 

expressions include all terms that contribute at order g to the discontinuities in the 

self energies. We construct two-point Z--matrix elements from these self energies, and 

use the Ward identities to establish their equality in covariant and Coulomb gauges. 

This proves that the damping rates are gauge invariant to lowest order in g. 

As we discuss in sec. IILC, there are three classes of diagrams which contribute 

at order g to the self energy: one loop diagrams with soft loop momentum, and one 

and two loop diagrams, in which all loop momenta are hard. Our principal interest 

is in the damping rates, which are due to the discontinuities of the self energy on the 

mass shell. At order g, the discontinuity arises only from the soft one loop diagrams, 

and so we concentrate on them in this section. 

Power counting shows that soft one loop diagrams contribute to the self energies 

at order g. For soft momenta, our effective propagators and vertices are of the same 

order as their bare counterparts, so the power counting of soft loop diagrams in the 

effective expansion is the same as for bare diagrams in the bare expansion. If both 

the external and the loop momenta are soft, all momenta in the diagram are of order 

50 



gT. Thus to estimate a diagram, we need only keep track of the powers of g and the 

behavior of the statistical distribution functions. In one loop diagrams, only single 

powers of the statistical distribution functions, n(E) and Z(E), appear: for soft E, 

n(E) 2 T/E - l/g and ii(E) z l/2. Thus soft one loop diagrams with at least 

one gluon line are of order ga n(E) - g. Those involving just quark lines, and so 

Fermi-Dirac distribution functions, are of order g2 c(E) - g2. 

We first discuss the effective self energy for the gluon, )TIp”, which includes leading 

corrections to the effective propagator, *Ap”. There are three diagrams with soft loop 

momenta which contribute at order g: 

“n”“(P) = “ng P) + *q;(P) + *II;;(P) . (3.21) 

Q39 is given by the graph in fig. 8a with two effective three-gluon interactions, 

Tr(,,,,,) *I’+( -P + K, P, -K) *A"'(K) 

*I’A’vu’( -K, P, -P + K) *a”‘“(P - K) . (3.22) 

Qdg is given by the graph with an effective four-gluon interaction, fig. 8b, 

*II:(P) = - f Tr(,,fq *Pvxu( P, -P, K, -K) *A’“(K) . 

Lastly there is the contribution of the ghost loop in fig. 8c, 

(3.23) 

*H;(P) = g2 Nc +m,t) K”(P - K)” A(K) A(P - K) . (3.24) 

In figs. 8a and 8b, all propagators and vertices are dotted to denote that they are 

effective quantities. Since ghost amplitudes do not have hard thermal loops, nothing 

in the ghost loop of fig. 8c is dotted. 

The effective self energy % P” of eq. (3.21) is that of covariant gauge: in eqs. (3.22) 

and (3.23), every gluon propagator is covariant. In Coulomb gauge, the effective self 

energy equals 

*rIy(P) = *lysg(P) + *n&,(P) + *TI!?&(P) * (3.25) 

QC3, and %r*, are given just by replacing covariant with Coulomb gauge propa- 

gators everywhere in eqs. (3.22) and (3.23). The ghosts are static in Coulomb gauge, 
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and contribute only when the indices p and u are spatial: 

a$,,,( P) = g2 N, T ‘(@) 
k’ (p - k)j 
k2 (p _ k)2 ’ (3.26) 

For generic momentum P, the effective self energies are gauge dependent: *np” varies 

with t, *nr varies with &, and %Gy # *n$‘. 

The position of the pole in a propagator is a physical quantity, and therefore gauge 

invariant. At lowest order the mass shell conditions are defined by the poles in the 

effective propagators. For gluons, the physical polarization vector obeys 

*A;m e”(P) Imaas #hell = 0 , (3.27) 

where *A$, eq. (3.1), is the transverse part of the effective inverse propagator. Since 

*Ai; is gauge invariant, so is the mass shell condition which it defines. Whenever 

f+(P) appears in an equation, implicitly Pp is on the appropriate mass shell. At 

nonzero temperature ep( P) h as three independent components - two for the trans- 

verse modes, and one for the longitudinal mode. While *A;: is independent of gauge, 

the wave functions are not. The covariant gauge wave function satisfies Pp ep( P) = 0, 
while the Coulomb gauge wave function obeys pf e&(P) = 0. The two are related as 

. 

e$( P) = ep( P) - Pp 
p- f?(P) 

P2 * 
(3.28) 

The corrections of order g to the mass shell are determined by the effective self 

energy *IIPy, which also contains gauge variant information. To isolate the gauge 

invariant terms in 9”” which shift the mass shell, we construct the two gluon I- 

matrix element. This is formed by putting 9”” on the mass shell of eq. (3.27) and 

sandwiching it between physical wave functions. In covariant gauge this I-matrix 

element is 
7 = ep *np” ev . (3.29) 

7 is of course a function of the momentum P, but for notational ease, in this equation 

and henceforth we assume that each 7, %pV, e’+, etc., are functions of P alone, and 

so drop their explicit dependence on P. The terms in %pLv which are proportional 

to *A$ are gauge variant: they don’t contribute to 7, but produce wave function 

renormalization. The terms in Qpy which contribute to 7 are gauge invariant, and 
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shift the position of the pole away from the mass shell condition in eq. (3.27), by an 

amount of order g 3 T ‘. The shift in the real part of the pole represents a perturbative 

correction to the inverse screening length mg. The shift in the imaginary part of the 

pole is proportional to the damping rate. 

In Coulomb gauge the T-matrix element ‘is 

To establish gauge invariance we need to prove that 7 = 7~. Our proof of gauge 

invariance exploits the Ward identities satisfied by the effective vertices. As we noted 

in the last section, these Ward identities have the same structure as the Ward identi- 

ties for the bare vertices; thus our proof involves exactly the same manipulations as 

are required at zero temperature. 

As a preliminary step in the proof, we establish the identities 

(3.31) 

and 
pp *npy e” = 0 . (3.32) 

The first relation is a Ward identity that holds for arbitrary Pp, and shows that *np” 

is transverse in PP. The second identity applies only on mass shell. The proof of 

eqs. (3.31) and (3.32) are essentially the same. In each case, the Ward identities are 

used to reduce the contraction of Pp with a three- or four-gluon vertex. After using 

these Ward identities, terms proportional to *A;:(P) appear. But these terms vanish 

whether *A;:(P) is contracted with P’, because *A-l(P) is transverse, or with ey, 

by the definition of the wave function. It therefore suffices to prove eq. (3.32). 

For the contribution of the diagram in fig. 8a, eq. (3.22), the Ward identity of eq. 

(3.8) can be used to replace Pp *rVpx by *A;:( P - K) - *A,:(K). After shifting the 

variable of integration K + P - K, we see that both terms are equal, and give 

tiAA’(K) *P’vO’( -K, P, -P + K) ev . (3.33) 
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For the diagram of fig. 8b, eq. (3.23), the Ward identity of eq. (3.10) is used to 

express Pp Tpvxu as the sum of two terms, which are again equal after a shift in K: 

Pp “ng e” = g2 NC ‘i”r(,,ft) *AAc( K) *ruvA( -K, P, -P + K)e” . (3.34) 

To reduce eq. (3.33), we use the identity 

*A;;(K) *A’“(K) = Y’ - Kp K” A(K) . (3.35) 

This has the same form as the similar relation for the bare quantities, eq. (2.51). It is 

more striking here, since while the left hand side involves the (complicated) effective 

propagators in covariant gauge, the right hand side does not. Using this identity, we 

find that 
Pp ( *II:: + ‘II~~) e” 

= g2 Nc Tqaoft) A( P - K) (P - K)’ *AA,(K) 

)TuyX’(-K, P,-P + k) (P - K)A’ e” . (3.36) 

We can use the Ward identity again to replace (P-K)” TQvA’ by *A;:(P)- *A,$( K). 
The first term vanishes upon contraction with e” (or P”), while eq. (3.35) can be 

used to simplify,the latter. Eq. (3.36) becomes 
. 

= g2 NC TT(,,,,) A( P - K) (P - K)p (~5~” - KM K” A(K)) ev . (3.37) 

Thus we obtain an expression involving only bare quantities, free of effective prop- 

agators and vertices. It is then easy to show that eq. (3.37) cancels against the 

contribution of the ghost loop, P p %rL e”. This completes the proof of eq. (3.32). 

The proof of gauge invariance for the two-point I-matrix element proceeds in two 

steps. First we need to show that in the Coulomb I-matrix element of eq. (3.30), 

Coulomb can be replaced by covariant wavefunctions: 

7~ = ep *IIT e” . (3.38) 

This is demonstrated by proving the identities of eqs. (3.31) and (3.32) for the effective 

self energy in Coulomb gauge, qr; then eq. (3.38) follows easily from eq. (3.28). 

The second step in the proof is to show that for the covariant I-matrix element, eq. 
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(3.29), the effective self energy *IIpV can be rep laced by its counterpart in Coulomb 

gauge: 

Then evidently, 7 = 7~. 

7 = er *II7 e” . (3.39) 

The proof of eq. (3.39) involves the same type of manipulations as above, so 

we can afford to be sketchy. The difference between the covariant and Coulomb 

propagators is given in eq. (3.18): each term involves at least one power of either 

K” or K”. For instance, in eq. (3.22), the difference *Am”‘(P - K) - *A”,“‘(P - K) 
includes a term proportional to (P - K)“. When contracted with *rapA, it reduces 

to *A;:(P) - *A;,‘(K) by the Ward identity of eq. (3.8). The first term, *A;:(P), 

vanishes when contracted with e p. The second term is simplified by using eq. (3.35). 

Continuing in this way, it can be shown that 

- *A2(K) ( *rvp”(-P + K, P, -K) nx + nc *rbYp(K, -P, P - K) 

A(P-K)(P-K)pn xv A *A-‘(K) + A(P - K) *A;,‘(K) n”.(P - K)Y) 

+ *AZ(K) *As( P - K) *A$( P - K) nx n” *A;:(K)] ey . (3.40) 

We define 73s =.ep *rrgi e”, etch. The first 

contribution from the four-gluon vertex: 

Gg - 7&, = g2 NC ep Tq,,ft) 

+ *AZ(K) (*lY“(-P + K, P, -K) nx t 

Lastly, there is the difference between the 

gauge: 

terms in eq. (3.40) are cancelled by the 

[- *al(K) %$(P- K) 

nQ*rbYp(K,-P,P -K))] ey . (3.41) 

ghost loops in covariant and Coulomb 

Igh - %,gh = g 2 NC ep Tq,,ft) (Kp (P - K)” A(K) A(P - K) 

- 
k2(pY &)2 CKP - Ice np ) ((P - K)” - (p - kj”nu)] e” . 

To further reduce eq. (3.40), we employ the relation 

*A;z(K)n” = ’ (K2np- k°Kp) . 
k2 *A,(K) 

(3.42) 

(3.43) 
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Using this identity, it can be shown that the sum of eqs. (3.40), (3.41) and (3.42) 

vanishes. This completes the proof of eq. (3.39), and so of the gauge invariance of the 

two-gluon I-matrix. It also proves that the damping rate is positive, for in Coulomb 

gauge all contributions to the discontinuities are positive. 

The treatment of the quark self energy is similar. The effective self energy for 

quarks, *E(P), includes leading corrections to the effective quark propagator, *A,(P). 

There are two diagrams with soft loop momenta which contribute at order g: 

*x(P) = *c,(P) +.*c,(P) . (3.44) 

*cs, in fig. 9a, is the usual self energy graph at one loop order, except that all of the 

vertices and propagators are effective: 

*G(P) = -g2 Cf Tq,oft) *rp(P, -P+K; -K) *Af(P-K) *I’“(-P, P-K; K) *APV(K) . 

(3.45) 

_ Cq comes from a second graph, fig. 9b, which is special to the effective expansion. It 

-- arises from the effective vertex between two gluons and a quark pair: 

*x,(p) = - i 9 Tr(,,,,) *Fpy(P, -P; K, -K) *AP”(K) . (3.46) 

Like the gluon self energy, there are also one and two loop diagrams with hard loop 

momentum which contribute to the real - but not the imaginary - part of the self 

energies at order g. 

The expressions in eqs. (3.45) and (3.46) are valid in covariant gauge. The 

effective quark self energy in Coulomb gauge, %c = *cc,s + *C,Z,~, is obtained by 

replacing the covariant with Coulomb propagators in eqs. (3.45) and (3.46). For 

generic momenta P, the effective self energies are gauge dependent. 

The 7-matrix for a quark pair is obtained by putting the effective self energy *C 

on mass shell, and sandwiching it between quark wave functions. The mass shell and 

the quark wave functions are defined by 

(3.47) 

Whenever +(P) appears in an equation, implicitly Pp is on the mass shell. The quark 

wave functions do not depend upon gauge. As discussed following eq. (3.12), there 
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are two branches to the quark mass shell. We do not distinguish which branch the 

wave function +(P) b 1 g t e on s o. The I-matrix for a quark pair is 

%$*E$, (3.48) 

where 7, *c, and 4 are implicitly functions of P. 

In Coulomb gauge the corresponding I-matrix element, ‘&, is given by replacing 

*Z with *cc in eq. (3.48). W e a ain exploit the Ward identities to prove that g 

7 = ‘&. For example, when a term in the gluon propagator proportional to Kp or 

Ku is contracted with a vertex between a quark pair and a gluon, eq. (3.9) is used. 

Some of the resulting terms contain A;‘(P), and vanish by eq. (3.47). The remaining 

terms reduce to 

E-fc,3= -ig2CFFTr (*A,(K)K”+2 *Az(K)n”) 

*I”‘(-P,P- K;K)$, (3.49) 

for 7, = F *Cs +, etc.. The terms from fig. 9b, 7a - 7&, ar,e simplified by using the 

Ward identity of eq. (3.11). This term, which has no analogy at zero temperature, 

exactly canceIs eq.. (3.49). 

This completes the proof that 7 is gauge invariant; it also shows that to leading 

order in g, the quark damping rate is gauge invariant. The extension to quarks with 

nonzero bare mass is direct [5,10]. For light quarks with a soft mass of order gT, 
the hard thermal loops are unaffected, so the bare mass is just included in *AT’, eq. 

(3.2). Heavy quarks with a hard mass of of order T, are even easier, for then bare 

propagators and vertices can be used for the heavy quark. In either case, the proof 

of gauge invariance for the two-point I-matrix elements goes through essentially 

unchanged. For instance, with a heavy quark [5], th ere is only the contribution similar 

to fig. 9a, with no diagram like fig. 9b. The difference betwwen the contribution of 

fig. 9a in covariant and Coulomb gauges is given by eq. (3.49), except that the bare 

vertex y” replaces T”. This vanishes because the integral is odd in K. 

We conclude this section by contrasting our calculations with those familiar at zero 

temperature [2]. As noted above, the effective Ward identities required at nonzero 

temperature have the same form as at zero temperature. Yet our manipulations 

appear rather more involved than the customary analysis. This is because what is 
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usually established is merely unitarity - that only physical states contribute to the 

discontinuities of I-matrix elements. For the two-point functions we have shown a 

stronger statement, that the entire I-matrix elements are gauge invariant. It is easier 

for us to show the latter, for in hot gauge theories unitarity is more complicated than 

at zero temperature. At zero temperature, unitarity means showing that the only 

contribution to the discontinuities of gauge invariant operators are from transverse 

modes. In a hot gauge theory, physical discontinuities receive contributions not just 

from the transverse modes, but over soft momenta, from the physical - but not the 

unphysical! - parts of the longitudinal modes. 

C. Beyond leading order in the effective expansion 

In this section we discuss where corrections beyond leading order arise in the 

effective expansion. We consider the gluon self energy as a typical example. In the 

last section, we gave explicit expressions for some terms of order g in the gluon self 

- energy. Here we discuss where the remaining corrections of order g, and those of .- 
order g2, arise. 

6ur discussion is schematic. The bare gluon propagator is written as A, the bare 

three- and four-gluon vertices as g I?3 and g2 r4; the analogous effective quantities 

are *A, g *Ts and g2 ?I’, . We drop the color and space-time indices, as well as the 

momentum dependence of the vertices. Quarks are ignored, but could be incorporated 

in an obvious way. We label a loop correction as O(g”) if it is of order g” relative to 

the corresponding tree amplitude. 

To proceed systematically in the effective expansion, one starts with the bare 

action, Share, and then adds and subtracts an action which generates all hard thermal 

loops, 6s in eq. (2.35). In th e effective expansion, amplitudes at “tree” level are 

generated by the sum, Sb=rc + 6s. The remainder, -bS, is treated perturbatively as a 

counterterm, to ensure that hard thermal loops are not double counted. Remember 

that the effective amplitudes generated by bS only enter when all momenta are soft; 

otherwise, bare quantities are used. 

Before discussing corrections to the effective self energy at soft momentum, we 

establish that the leading corrections to the self energy at hard momentum are of 

O(g2), and that corrections to a vertex in which any leg is hard are at most of O(g). 
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For a gluon with hard momentum P, the leading corrections to the self energy are: 

n(p) = g2 TT(hord) r3 A(K) r3 A( P - K) + g2 TT(hard) h A(*) 

+ g2 Tqmft) r3 *A(K) r3 A(P - K) . (3.50) 

The integrals over hard Ic generate the usual terms at zero temperature, including the 

standard ultraviolet divergences, plus additional finite terms at nonzero temperature. 

The integral over soft k can be estimated by analogy to eq. (1.16). The largest 

contribution occurs when each vertex I’s is proportional to a hard momentum P. The 

statistical distribution function enters as n(Ek) N- T/&. If the external momentum 

P is near its mass shell, some energy denominators are soft, ip” - Ep-k f Ek - k. 
The magnitude of the soft integral in eq. (3.56) is 

g2 J d3 k - g2PT, 
soft k 

(3.51) 

which is of O(g2) for P + 2’. Terms neglected in this estimate a:,--,!own by more 

powers of g. In eq. (3.50), we did not include the soft integral involving the four-gluon 

vertex because it is of O(g3): 

g2 Tqm,t) *I’, *A(K) - cj2 loft k d3k n(k) ; - g3T2 . (3.52) 

If the gluon is not near its mass shell, all energy denominators et-.-hard, and the 

soft integral in eq. (3.50) is of O(g3); in this case the O(g2) corrections are given 

just by the hard integrals in eq. (3.50). Th e region near the mass shell is often of 

the greatest interest, though: for example, the damping rate is determined by the 

discontinuity of the self energy on mass shell. For kinematic reasons the hard integral 

does not contribute to this discontinuity [4], and the damping rate is determined 

solely by the soft integral [5]. 

We remark that severe infrared divergences appear near the mass shell, showing 

up in quantities such as wave function and vertex renormalization. At zero temper- 

ature these infrared divergences are logarithmic. At nonzero temperature, due to 

the behavior of Bose-Einstein distribution function about zero energy, eq. (1.17), 

the mass shell divergences become power-like: for massless particles, they are of the 

form g”T/(w - p) as w -+ p. We assume that all such mass shell divergences cancel 

59 



in arbitrary discontinuities, and in physical quantities such as I-matrix elements. 

In other words, for the purposes of power counting, we assume that a term such as 

g2T/(w - p) is of O(g’). 

The corrections for a vertex in which any line is hard are similar to the hard self 

energy of eq. (3.50). If all of th e external momenta are hard, corrections from hard 

loops are of O(g2), with terms from soft loops down by more powers of g. For vertices 

in which the external lines are both hard and soft, the leading corrections can be of 

O(g), as discussed following the power counting rules in sec. I. Vertex correctiohs also 

exhibit mass shell singularities; for instance, when two external momenta are equal, 

P = Q, they develop terms of the form g”T/(w - p). 

With these results in hand, we consider the corrections to the gluon self energy 

at soft momentum. Corrections of order g arise from diagrams at both one and two 

loop order. 

i. One loop diagrams. We discuss separately the two cases in which the loop 

- momenta are soft and hard. 
.- 

l Soft loop. These are the corrections *TI: which are given in eq. (3.21). 

l Hard loop. The hard loop gives terms of O(l), which are cancelled by 6II in the 

counterterm -6s. The hard loop, h owever, also includes subleading terms of 

O(g). For example, in going from eq. (1.16) to eq. (1.23) in sec. I, we neglected 

terms that are p/k times the hard thermal loop. 

ii. Two loop diagrams. There are corrections of O(g) from two loop diagrams 

in which both loop momenta are hard. Consider, for example, the diagram of fig. 

10. Fig. 10 is obtained from the hard one loop diagram of fig. 3a by adding a 

self energy correction at hard K, II(K), and one extra propagator, 1/K2. From eq. 

(3.50), II(K) - g2T2. As seen in sec. I, if the extra propagator corresponds to 

Landau damping, it can produce terms which are of order l/(gT2). In all, II(K) 
times the extra l/K2 is g times smaller than fig. 3a. Since fig. 3a is of O(l), then, 

fig. 10 includes terms of O(g). It is notable that while corrections to the hard line are 

down by g2, their effects within loop diagrams are suppressed merely by g because of 

Landau damping. 
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The corrections of O(g) f rom hard diagrams, at either one or two loop order, do not 

contribute to the imaginary part of the two-gluon I-matrix element. The reason is 

just kinematical. The one loop diagrams, such as fig. 3a, can be cut just through two 

lines, which by assumption are hard. These cuts are either those of Landau damping, 

and so below the light cone, or far above. The two loop diagrams, such as fig. 10, 

can be cut either through two or three virtual lines. As both loops are hard, cutting 

through two virtual lines gives the same kind of discontinuities as for the hard one 

loop diagram, If three lines are cut, a typical discontinuity at nonzero temperature 

occurs if one particle is absorbed from the thermal distribution, and two emitted into 

it. The imaginary part for this cut has SUppOrt for w = J!& + &-k1-k2 - Ek2, with 

ICI and k2 the two momenta for each loop. If both kl and k2 are hard, this becomes 

w 2: ICI + ]iE, + La/ - kz. Now while it is possible for this w to be soft, it only occurs 

if i& Z --h2. Because this happens just in a small part of phase space, fig. 10 only 

contributes to the discontinuity through terms that are O(g2), and not O(g). This 

holds for all hard two loop diagrams, however the momenta are routed: simply put, it 

is not easy for the sum or difference of three hard momenta to equal a soft momenta. 

In sec. 1II.B we showed that to O(g), the I- matrix elements formed from the 

effective one loop diagrams at soft loop momenta, %, themselves form a gauge in- 

variant set: Thus the I-matrix element formed from the remaining terms of O(g) - 

from the hard one and two loop diagrams - comprise a separate, gauge invariant set. _ 

Since these diagrams do not have an imaginary part to O(g), they do not contribute 

to the damping rates at leading order; they do, however, gives corrections of order 

g3T2 to rni. 

To show that the effective expansion can be used to higher order, we discuss 

where terms of O(g”) arise in the gluon self energy at soft momenta. They arise from 

diagrams with one, two, and three loops. 

i. One loop diagrams: There are contributions of O(g) from one loop diagrams 

with either soft or hard loop momentum; these diagrams also have subleading terms 

of O(g2). These terms of O(g”) include all of those at zero temperature, such as the 

ultraviolet divergent terms which produce wave function renormalization, as well as 

additional finite terms at nonzero temperature. 

ii. Two loop diagrams: We divide this class of corrections of O(g2) into three 

subclasses, according to whether the loop momenta are soft or hard. 
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l Both loops soft: In these diagrams effective propagators and vertices must be 

used throughout. The vertices include both the effective forms of the bare 
vertices, as well as new effective vertices generated by hard thermal loops. For 

instance, from the effective four gluon interaction, one pair of virtual gluons 

can be tied together at one loop order, as in fig. 8b. The effective six gluon 

interaction, with two pairs of gluons tied together, contributes at two loop order. 

8 One soft and one hard loop: Suppose in fig. 10 that the outer loop has soft 

momenta, while the self energy correction has hard loop momenta. There is a 

corresponding diagram in which a counterterm for a hard thermal loop, -SII, 

is inserted on one line. While the terms of O(1) in the hard loop cancel those 

in -SD, there remain corrections of O(g). Since the one loop graph with soft 

momenta is itself of O(g), in all these terms are of O(g’). 

l Both loops hard: Hard two loop graphs produce terms of O(g). Thus there 

are subleading terms in these graphs, which contribute at O(g2). There are 

also hard two loop graphs which first contribute at O(g2): the graph with two -- 
distinct four gluon vertices is one example. 

iii. Three loop diagrams: Three loop graphs in which every loop momentum is 

hard will, by ‘the power counting above, produce terms that are O(g’). 

In all of this we repeatedly used-the separation into soft and hard momenta. While 

this separation is awkward, we stress that it is necessary.. As defined, hard thermal 

loops include all terms of O(l), and occur just when every external momentum is soft. 

By dividing the momenta into soft and hard, and using effective quantities exclusively 

over soft momenta, our resummation only includes terms of 0( 1). 

Suppose that one did not divide the momenta into soft and hard, and attempted 

to use effective quantities even when the external momenta are hard. This would rep- 

resent a further resummation of perturbation theory, in which terms that are strictly 

of O(g) and higher are included. This further resummation appears to be relatively 

innocuous, so long as the higher order corrections included by this resummation are 

not double counted. 

With a further resummation, however, the cancellation of mass shell singular- 

ities is not automatic. Mass shell singularities only arise at hard momenta, since 

at soft momenta the effective mass shells are well above the light cone. Typically, 
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mass shell singularities involve a propagator correction such as 1 + cg’T/(w - p), 
cancelling against a vertex correction like 1 - cg’T/(u - p). This cancellation fails 

if a further resummation is attempted. This is because the terms which produce 

mass shell singularities are not the same as those which generate hard thermal loops. 

For example, in the propagator the terms which produce a hard thermal loop at 

soft momenta produce part, but not all of the mass shell singularity at hard mo- 

menta: they contribute c’ g”T/(w - p) t o a propagator correction, with c’ # c. In 

part, a further resummation consists of writing the corrections to the propagator as 

[l + (c - c’)gZTl(w, - pII/! - c’g2TI(w - p)].. The mass shell divergences in this 

expression cancel against those of the vertex, but only when it is expanded out in g 
- in which case one is not performing a further resummation. 

The problems with this further resummation are also illustrated in a recent work 

by Gatoff and Kapusta 131. In th is work they consider a partial resummation of terms 

ofO(g’ d ar momenta. Doing so, they appear to find that their further resumma- 

tion dramatically alters the analysis: loop corrections are l/g times the corresponding 

terms at tree level, and completely overwhelm the usual hard thermal loop. This hap- 

pens because when terms of O(g2) are retained in the hard self energy, a small change 

in the mass shell produces a large change in one over the energy denominators. In- 

stead of this further resummation, we argue that perturbative corrections must always 

be treated as such. For the self energy, instead of keeping terms of O(g”) in the energy 

denominators, they should be expanded out in powers of g. One can show that this 

avoids the pathologies found by Gatoff and Kapusta: at hard momenta neither mass 

shells nor energy denominators change significantly, and consequently all corrections 

are of O(g) or higher. 

The typical infrared divergences which we have discussed above are what we term 

“nonstatic” - they arise when (hard) fieJd s are near the light cone, w --f p. We 

believe that these divergences cancel in any discontinuity, order by order in g. Never- 

theless, we do not believe that all infrared divergences cancel. At zero temperature, 

Poggio and Quinn [14] showed that infrared divergences cancel in discontinuities be- 

cause the euclidean green’s functions are infrared finite. But in hot QCO it is known 

that beginning at two loop order, the euclidean green’s functions display infrared 

divergences which do not cancel [ 151. Th ese are associated with the infrared diver- 

gences of three-dimensional &CO. Thus we suggest that in hot &CO, these infrared 

divergences survive in the analytic continuation from euclidean to real time. We term 
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these noncancelling divergences “St atic”, for they are associated with gluonic lines in 

which the energy is (nearly) zero, w < p < T. (Three-dimensional QED is infrared 

finite, and so the infrared divergences should cancel in hot QED.) 

In the bare expansion these static divergences first appear in the gluon self energy 

at two loop order. Since the effective expansion is a resummation of the bare per- 

turbation theory, though, static divergences can appear at even one loop order. For 

example, in ref. [5] the damping rate of a heavy quark was computed to leading order. 

At nonzero momentum (much larger than g2T), a static divergence appears in the 

damping rate. At least in this example, the static divergence is not a disaster. The 

divergence in the damping rate becomes finite after a screening length, of order g2T, 
is included for static magnetic fluctuations. To leading order, the static divergence in 

the damping rate is merely logarithmic. Thus for a heavy quark, the damping rate, 

expected to be of O(g2), is in fact y2 times Zog(l/g). We suspect that this mild loga- 

rithmic dependence on g is the worst which the static infrared divergences produce, 

but this is just conjecture. Clearly we need to compute a wide variety of quantities 

-- in the effective expansion in order to settle this. 

IV. Conclusion 

In this paper we laid out a general framework for studying processes in hot gauge 

theories. We showed how the hard thermal loop corrections can be resummed to all 

orders in the loop expansion into effective propagators and vertices, and that these can 

be used to generate a systematic expansion in g. We applied the effective expansion 

to the self energy corrections for quarks and gluons at soft momenta, and showed that 

the two-point I-matrix elements, on the effective mass shells, are gauge invariant. 

This solves the long-standing problem of the apparent gauge dependence in the gluon 

damping rate. 

We stress that while our work was inspired by the problem of damping rates in hot 

&CD, the effective expansion is required for the calculation of arbitrary processes in 

any hot theory, It is needed in arbitrary processes, for while the effective expansion 

only differs from the bare expansion over soft momenta, inevitably soft momenta 

contribute to amplitudes at some finite order in g. The order at which this happens 

depends upon the process. Naive power counting suggests that the higher the mass 
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dimension of the quantity under consideration, the higher the power in g at which 

effects of soft momenta first enter. Thus all of the complications which arise in 

the gluon damping rate at lowest order do not appear until higher order for other 

quantities of interest, such as the free energy, transport coefficients, etc.. We intend 

to study these questions in future work. 

Similarly, the effective expansion is necessary not just in hot &CD, but for all hot 

theories. One obvious example, in which the need for resummation does not seem to 

have been appreciated, is hot QED. Because so many of the results for hard thermal 

loops have an “abelian” form, our results for hot QCD easily carry over to hot QED. 
A less trivial example involves hot gauge theories coupled to scalars, such as for the 

weak interactions at temperatures far above the weak scale. The only hard thermal 

loop in the scalar self energy is a constant mass term, but there are also hard .thermal 

loops in the vertices between scalars and gauge fields. These can be computed using 

the machinery which we have developed here. 

We conclude by noting that although the language and methods appear very dif- 

ferent, there are close similarities between our analysis and transport theory. Indeed, 

originally Silin used classical kinetic theory to derive the hard thermal loop in the 

photon’s self energy [i’]. The hard th ermal loops in the quark and gluon self energies 

can also be computed in this way 181; surely this can be. extended to our classifica- 

tion of arbitrary hard thermal loops in sec.‘s I and II. More significantly, in order 

to develop a complete and consistent transport theory, our program of an effective 

expansion over soft momenta - including both effective propagators and vertices - 

must be employed. 

Appendix: One loop integrals and cutting rules 

In this section we reduce the integrals which arise at one loop order in the two-, 

three-,and four-point functions to integrals over the three-momentum %. These 

examples illustrate general features, discussed in sec. I, which allow us to isolate the 

hard thermal loops in arbitrary N-point functions. These integrals also represent all 

of those needed for the explicit calculation of the damping rates [12]. 

To treat boson and fermion propagators in a unified way, we introduce an index 
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“T”, T = + for bosons and T = - for fermions: 

A(K) c A+(K) , A(K) E A-(K). (A4 

All momenta are assumed to be euclidean, so the index TK for a momentum K. is 

TK = eikoiT. Indices are multiplicative: for a propagator A’(P - K), T = TP TK. We 

use the index r to distinguish between Bose-Einstein and Fermi-Dirac statistics: 

n+(E) = n(E), n-(E) = ii(E) . (A4 

Finally, we introduce the statistical distribution functions f,‘(E), where a = + denotes 

emission, and a = - absorption: 

K(E) = 1 + d(E) , f:(E) = Td(E) . (A4 

The distribution functions satisfy the simple identities 

_- f:,(E) = T e-sE’T f,‘(E) , (A-4) 

f,‘(E) - f:,(E) = .3 . (A-5) 
They also satisfy 

f,‘(E) f::(E’) - L(E) f:G’) 
= f$ + 8’ T d(E) + 8 T’ d(E’) 

Note that the terms quadratic in the statistical distribution functions cancel. 

The boson and fermion propagators of eqs. (1.4) and (1.8) can be written as 

A’(T,E) = & c f,‘(E) PET , 0 I 7 5 $ , 
s-• 

(A-7) 

where E G k. For purposes of calculation, it is essential to remember that this 

representation is valid only for 0 5 7 5 l/T. If an integral depends upon a value of r 

outside of this range, the propagator must be transformed so that T lies within this 

range. This is done by using the periodicity condition 

A’(T + m /T, E) = F’ A’-(T, E) . (A4 
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In this appendix we consider for simplicity traces with no powers of K” in the 

numerator. Integrals involving powers of C‘ can be easily found from these results. 

Powers of the spatial momentum ki just tag along, while single powers of k” can be 

replaced by derivatives with respect to T, which give GE. Integrals involving higher 

powers of Cc0 can be reduced to at most single powers of k” by using (k”)a = K2 - ka 

repeatedly. 

We introduce some further notation to simplify our formulae. For integrals which 

involve the propagator A’f(Pt - K), define El = lpi - Ll; fourier transformation then 

produces Art(~t, El), which can be expressed in terms of fd’(’ using eq. (A.7). In the 

distribution functions the explicit dependence on EL is dropped: fzi s fI;( Et). For a 

trace with j propagators, the integration element over the three-momentum E, times 

the residues of all the propagators, is defined to be Djk: 

Djk s J (A4 

We start with an integral which arises in the two-point functions: 

I2 = TT A’(K) A”(Pi - K) . (A.lO) 

Eq. (1.5) is used to introduce A?(T, E) and A” (71, El). The sum over k” gives a 

delta-function which sets ~1 = 7, with a result like eq. (1.15). Note that in this case 

there is no problem with the region of integration. With eq. (A.7) the r integral is 

elementary: 

where we have also used eq. (A.4). Although two powers of the f,“s enter in eq. 

(A.ll), because of eq. (A.6), no more than single powers of n(E) or G(E) occur: 

term by term, double powers of‘the distribution functions cancel between emission 

and absorption. 

The trace with three propagators illustrates the complications which arise when 

there is more than one 7 integral: 

1, = TT A’(K) A”(Pi - K) A”(P2 - K) . 
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Introducing r integrals for each propagator, and doing the sum over k” to eliminate 

the 72 integral, 

z, = j G llIT dr ltfT drl ei(P:r~+P~(r-r~)) Ar(7, E) Arl(rl, El) A’+-ri, Ea) . 

(A.13) 

In Ara(, - 71, Ez), the regions r > ~1 and T < ~1 must be treated seperately: 

Ar+--,,Ez) = 8(r-~i)A+*(+~i,, E2)+O(- + ) r ri T2 Ar2(~-r1+1/T,E2) , (A.14) 

where 19(z) is the step function: l?(z) = +l for t > 0, 8(z) = 0 for 2 < 0. In eq. 

(A.14) we have used eq. (A.8) t o ensure that for both terms the argument in r lies 

between 0 and l/T, so that the representation of eq. (A.7) can be employed. ,From 

eq. (A-4), 

Ar”(T - T1,J&) = -& c e-~2Eab-71) (e(, - ~)fdi’ + d( -T + ~l)f?#~) v (A.15) 
2 s2=* 

- Doing the r integral, 

1 
-hf:,’ + szf;; e (i(p~-p~)--slEl+szEz)r 

i(pT - pi) - 81& + 32~32 
(A.16) 

The terms from r > 71 and T < ri have been combined, and eq. (A.5) used to simplify 

the expression. After doing the r integral, eq. (A.16) reduces to a sum of integrals 

similar to 12, 

Z3 = J I&k c 1 

d,Sl ,a1=* i(P? -P!)- 31& -k 82E2 

91 

ip: - SE - &Es (f.rf:: - fr#fl’,,) - ;& _ ,;- 8lEl 
(A.17) 

Note that by eq. (A.6), at most single powers of n(E) and ii(E) survive. This 

cancellation of higher powers of the distribution functions is only evident because we 

performed the integrals in the order we did, integrating first over ri, collecting all 

terms, and then doing the r integral. 

Another way of calculating eq. (A.13) would be to follow Baym and Sessler and 

Dzyaloshinski [ 111, who originally developed this “noncovariant” approach. These 
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authors always do the integral over the smallest time first. Thus for r > ri, they 

integrate over rl and then over r (as we do), but for r < ~1, they integrate in the 
reverse order, over r and then ~1. As discussed in sec. III of Baym and Sessler [ll], 

this has some advantages, in that series of terms can be systematically regrouped. 
With their technique, though, the cancellation of higher powers of the n(E)‘s in one 
loop diagrams is only apparent after all terms had been regrouped over common 

energy denominators. By keeping uniformly to the same order of integration in the 

r’s, we make these cancellations manifest as each succeeding r integral is done. 

The trace that arises in the four-point functions is 

1, = TT A’(K) A’l(P, - K) Arz(P2 - K) ArJ(P3 - K) (A.18) 

We perform this integral as follows. Times 7, rl, r2, r3 are introduced for each propa- 

gator. Using the sum over k O to eliminate rs = r - rr - r2, we integrate over 7-2, then 

71, and finally over r. The result is 

X4 = VD4k c J 1 

Vl,QtW=* i(pi - Pi) - 82Ez + 83E3 

[, 82 93 

i(pY --p~)-~lEl+~3E3 ipy - 8E - slEl 
fb’f;: - 

91 - 
ip!j - 8E - 83E3 (fIf1:; - fl.fl:,)) 

+ 53 

ib? - P!) - ~1&+8zEz ( 91 

ipi - 8E - 82E2 ( f,‘f,:’ 
82 - 

ip! - 8E - 8lEl 

- 

- 

From eq. (A.6) t i is apparent that only single powers of the distribution functions 

survive. 

We now discuss a remarkable feature that is crucial to our power counting esti- 

mates for hard thermal loops in sec. I. We assert that for arbitrary N-point’functions 

at one loop order, there are never more than single powers of the statistical distribu- 

tion functions. Originally, each of the N noncovariant propagators brings in a factor 

of n(E) or S(E), but after all the T integrals are done, all multiple powers of n(E) 
and Z(E) cancel. This is demonstrated explicitly by our results for the two-, three-, 
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and four-point functions. These cancellations are a consequence of how the cutting 

rules work at nonzero temperature. The discontinuity in a one loop diagram is a sum 

of cuts through two virtual lines: the cut lines are put on their mass shell, and the 

rest of the diagram is the product of two disjoint tree amplitudes. This is’familiar 

at zero temperature. Computing the diagram at 2’ = 0 noncovariantly, we get a sum 

over products of energy denominators, as in eqs. (l.lS), except that in factors such as 

1 + n(E), only the 1 is kept. A discontinuity is produced by the analytic continuation 

of an external Euclidean energy p” to -i(‘1u + ic). This turns one energy denominator, 

involving p”, into a delta-function in w. The energy denominators which are not cut 

combine to give the two disjoint tree amplitudes, by identities such as 

1 1 ~- = 
ip” + p ip” - p 2P -j& . (A.20) 

The factors of 2p on the right hand side cancel the residues, 1/(2p), in the non- 

covariant propagators. 

At nonzero temperature the cutting rules go through in much the same way [13,4]. 

Isolate the part of the discontinuity which arises from cutting through two gluon lines 

in a diagram. There must be factors of n(E) for the two cut lines, since each cut line 

is either emitted into or absorbed from the thermal, distribution, with probabilities 

1 +n( E) or n(E), respectively. The double powers of n(E) associated with the two cut 

lines, cancel between emission and absorption as in eq. (A.6). For a given cutting, 

however, the factors of n(E) or fi( E) associated with the uncut lines must cancel. 

If they didn’t, the identities analogous to eq. (A.20) would not go through, and the 

uncut energy denominators would not reduce to a product of disjoint tree amplitudes. 

It is easy to conjecture how this result generalizes to higher loop order. We suggest 

that for arbitrary N-point amplitudes computed to L-loop order, the integral can 

always be written in a’form in which at most L factors of the statistical distribution 

functions appear. 
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Figure captions 

[l] Diagrams which contribute to the hard thermal loop of the N-gluon amplitude 

in Coulomb gauge. 

[2] Diagrams which contribute to the hard thermal loop of the amplitude between 

a quark pair and (N - 2)-gluons in Coulomb gauge. 

[3] One loop diagrams which contibute to the gluon self energy. 

[4] One loop diagrams which contibute to the four-gluon amplitude. 

[5] The effective inverse propagators: (a) *A&!, for gluons; (b) *A;‘, for quarks. 

In the one loop diagrams of figs. 5, 6, and 7, only the hard thermal loops are 

included, as indicated by the symbol “ x “; J ‘ust the diagrams which contribute 

in Coulomb gauge are shown. 

[6] The effective three-point vertices: (a) VP”‘, between three gluons; (b) Tp, 

between a quark pair and a gluon. 

[7] The effective four-point vertices: (a) *rprvxu, between four gluons; (b) Tpy, 

between a quark pair and two gluons: 

[8] One loop diagrams which contribute to the effective gluon self energy, *Tzp”. 

[9] One loop diagrams which contribute to the effective quark self energy, T. 

[lo] A two loop diagram which contributes to the gluon self energy. 
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