
Physics Letters B 759 (2016) 138–140
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Photon mass as a probe to extra dimensions

G. Alencar a,∗, C.R. Muniz b, R.R. Landim a, I.C. Jardim a, R.N. Costa Filho a

a Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
b Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras do Sertão Central, R. Epitácio Pessoa, 2554, 63.900-000 Quixadá, Ceará, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 January 2016
Received in revised form 14 April 2016
Accepted 20 May 2016
Available online 25 May 2016
Editor: M. Cvetič

In this manuscript we show that the geometrical localization mechanism implies a four dimensional mass 
for the photon. The consistence of the model provides a mass given exactly by mγ = √

R/4 where R is 
the Ricci scalar. As a consequence, the cosmological photon has a mass related to the vacuum solution 
of the Einstein equation. At the present age of the universe we have a dS vacuum with R = 4�, where 
Lambda is a positive cosmological constant. With this we find that mγ ≈ 2 ×10−69 kg, which is below the 
present experimental upper bounds, and such correction may be observed in the next years with more 
precise measurements. By considering the value of R inside some astrophysical sources and environments 
we find that the bound is also satisfied. The experimental verification of this mass, beyond pointing to 
the existence of extra dimensions, would imply in a fundamental change in cosmology, astrophysics and 
in particle physics.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Compact extra dimensions has first been considered by Kaluza 
and Klein in the 20’s. In this model the only way to recover the 
four dimensional physics is by considering a small compact extra 
dimension. The scenario has changed in the 90’s when Arkani et al.
proposed that the hierarchy problem can be solved by a large extra 
dimensions [1,2]. In this model the metrics is factorable and the 
Einstein–Hilbert (EH) action becomes M̄3

pl V
∫

d4x
√

g(x)R(x). Here 
M̄pl is the higher dimensional Planck mass, and V is the volume 
of the compact space. Therefore, if a TeV scale for M̄pl is consid-
ered we can get an effective four dimensional Mpl = 1018 GeV if 
V is large. Soon later Randall–Sundrum proposed a model, with a 
non-factorable metric, in which the extra dimension can be in fact 
of infinity range [3,4]. The idea is that a strong decreasing met-
ric can provide a finite integration even for an infinity range in 
the extra dimension, and a consistent gravity theory is obtained 
over the membrane. However, a drawback in the above models 
is that gauge fields do not confine, failing to provide a consistent 
four dimensional observable universe. More precisely, in a confor-
mal coordinate the metrics is given by GMN = e2A(z) gMN(x), where 
A(z) is the warp factor, z and x are the extra dimension and brane 
coordinates, respectively. Before considering an specific form for 
the energy momentum tensor some comments are important. The 
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EH action is given by S = 2M3
∫

d5x
√−G R(x, z) and for the above 

metric we know that the determinant of the metric is given by √−G = e5A√−g(x) and for the Ricci scalar

R(x, z) = e−2A(R(x) − 8A′′ − 12A′ 2). (1)

With this we see that the action contains a term given by

S ⊃ 2M̄3
∫

dze3A
∫

d4x
√−g(x)R(x), (2)

and the four dimensional EH action is recovered if 
∫

dze3A is finite 
and this also relates the Planck mass in five and four dimensions 
by M2 = M̄3

∫
dze3A .

In the RS setup we have a Minkowski vacuum with solution 
A(z) = − ln(k|z| + 1). This is obtained by considering a cosmo-
logical constant and two branes, one with positive tension at the 
origin and one with negative tension at the location zc . Also, by 
imposing a Minkowski vacuum in four dimensions, a fine tuning 
between the tensions and the cosmological constant is needed. The 
above relation is then given by

M3 = M̄3

k
(1 − 1

kzc + 1
). (3)

Here an interesting issue about this result is that it is valid for 
zc → ∞, and the model becomes an alternative to compactifica-
tion. Next, Randall and Sundrum showed that the graviton zero 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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mode is bound to the brane. Despite the fact that the model local-
izes the graviton, it can not be applied to more complex gravita-
tional scenarios since the RS brane is flat. For example, the model 
is not suitable for a cosmological description, since the most re-
cent observations indicate the existence of a positive cosmological 
constant. Soon after the RS paper, models with a non-vanish con-
stant scalar curvature emerged [5,6]. In particular for the dS brane, 
which describes the current expansion phase of the universe, the 
warp factor is convergent. Another advantage of these models is 
that no fine tuning between the brane tension and the bulk cos-
mological constant is needed. These models localize the gravity, 
but the localization of other fields is not guaranteed, in particular 
the gauge fields. For this case the action is given by

S A = 1

4

∫
d5x

√−GGMOGNPYMNYOP (4)

where YMN = ∂M XN − ∂N XM . Just like for the gravity case, in order 
to obtain a well defined four dimensional action the integration 
over the extra dimension must be finite. This is attached by per-

forming the separation of variables Xμ(x, z) = e− A
2 ψ(z)Aμ(x) and 

the equations of motion (EOM) are given by

∂μ
√

g F μν = −m2 Aν, (5)

with a Schrödinger like mass equation

ψ ′′ − V (z)ψ = m2ψ. (6)

The prime means a z derivative and V (z) is given by

V = A′′

2
+ A′ 2

4
. (7)

With this, similarly to the gravity case, the five dimensional action 
contains the term

S A = 1

4

∫
ψ2dz

∫
d4x

√−g gμν gαβ Fμα Fνβ, (8)

and the problem of obtaining a well defined action is resumed 
to find a normalized solution with 

∫
ψ2dz = 1. However, differ-

ently from the gravity case the solution to the zero mode is not 
normalizable. This is easily found since the above potential pro-

vides the general analytical solution ψ = e
A
2 for the zero mode. 

This is very similar to the gravity case but the integral does not 
converge if asymptotically we have an AdS solution. In the search 
for a solution to the gauge field localization which does not in-
clude the addition of new degrees of freedom a new model has 
been proposed in a series of papers [7–10]. This model provides an 
analytical solution given by ψ = e A , which is a square integrable 
solution to the mass equation valid for any warp factor recovering 
RS asymptotically. The basic ingredient is the addition of a new 
term to the action given by

S I = − 1

32

∫
d5x

√−G RGMN XM XN . (9)

In the first version of the geometrical localization mechanism 
[7], the original RS model was considered when R(x) = 0. Using 
Eq. (1) R(x, z) = −e−2A(8A′′ + 12A′ 2), and a massless photon is 
obtained over the brane at least in first approximation. Another 
interesting point about the interaction term is that it has no free 
parameters and this will become crucial for determining the pho-
ton mass. From now on we will consider the full theory and show 
that the gauge field is confined for arbitrary four dimensional back-
ground. The proof is very similar to the flat case, but we give it 
here for completeness. We must be careful since now we have 
ds2 = e2A(z)(gμν(x)dxμdxν + dz2). The equations of motion are
∇M(GMOGNPYOP) = − 1

16
RGNO X O , (10)

leading to the condition ∇N (RGNO X O ) = 0, or

e3A∇μ(R Xμ) = −∇5(e3A R X5). (11)

Since the gauge invariance is now broken by the interaction 
term we have to show that a transversal gauge invariant zero mode 
is localized. For this we must split the gauge field in longitudi-
nal and transversal components and show that they decouple. As 
mentioned before, in the previous version of the mechanism R was 
independent of x and the derivative on the left side of the above 
identity did not act on it. However, we will see that this does not 
spoil the decoupling. First we split our field as Xμ = Xμ

L + Xμ
T , 

where L stands for longitudinal and T stands for transversal with 
Xμ

T = (δ
μ
ν −∇μ 1�∇ν)Xν ; Xμ

L = ∇μ 1�∇ν Xν . Now we define X5 = 


and the first thing we observe is that (11) will give us a relation 
between the scalar field and the longitudinal part of Xμ . We also 
need the following identities

Y 5μ = ∂ Xμ
T + ∂ Xμ

L − ∂μ
 ≡ ∂ Xμ
T + Y 5μ

L ;
Y μ5

L = ∇μ 1

�∇νY ν5. (12)

Now considering the EOM for N = 5; ν the set of equations are 
obtained:

∇μY μ5 + 1

16
e2A R
 = 0, (13)

and

e A∇μY μν + 1

16
e3A R Xν

T +

+ ∇5

(
e A∂ Xν

T

)
+ ∇5(e A Y 5μ

L ) + 1

16
e3A R Xν

L = 0. (14)

Using (11), (12) and (13) we get

∇5(e A Y μ5
L ) = − 1

16
∇μ 1

�∇5(e3A R
) = − 1

16
e3A R Xν

L , (15)

and finally we can decouple the equation of motion for the trans-
verse part of the gauge field for arbitrary R

e A∇μY μν + ∂
(

e A∂ Xν
T

)
+ 1

16
e3A R Xν

T = 0. (16)

Finally performing the same transformation as before, or, 
Xμ(x, z) = e− A

2 ψ(z)Aμ(x) we get the following equations of mo-
tion

∇μ(F μν) = −(m2 + R(x))Aν, (17)

with a Schrödinger like mass equation

ψ ′′ − V (z)ψ = m2ψ, (18)

but now with V (z) given by

V = A′′ + A′ 2. (19)

The solution ψ = ce A for the zero mode and our four dimensional 
action of the vector field is given by

S A = 1

4

∫
c2e2Adz

∫
d4x

√−g(x)gμν gσδ Fμσ Fνδ. (20)

Therefore the confining of the gauge field is reduced to the con-
dition 

∫
c2e2Adz = 1. It is important to point that for the warp 

factor given before the above integral is convergent for any range 
of the extra dimension and the four dimensional gauge action is 
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Table 1
Photon mass values.

Environments mγ � (kg) m0
γ ≈ (kg) m�

γ ≈ (kg)

Neutron star core – 8 × 10−48 8 × 10−48

Terrestrial ionosphere 4 × 10−49 2 × 10−57 2 × 10−57

Jupiter magnetosphere 7 × 10−52 10−65 10−65

Sun core – 4 × 10−54 4 × 10−54

Sun magnetosphere 2 × 10−54 2 × 10−72 2 × 10−69

Intergalactic medium 10−62 2 × 10−75 2 × 10−69

Cosmological vacuum – 0 2 × 10−69

recovered for both RS models. Moreover, the above integral is also 
convergent for any warp factor that recovers the RS metrics at 
the boundaries. This is very powerful since the only condition is 
that we must consider an AdS five dimensional vacuum to obtain 
a well defined theory. However, beyond the above term we have 
the non-minimal coupling which will generate a four dimensional 
contribution given by

Sint = − 1

32

∫
c2e2Adz

∫
d4x

√−g(x)R(x)gμν Aμ Aν . (21)

Interestingly if we have a convergent solution to the gauge field 
this term is necessarily confined and this spoils the four dimen-
sional gauge invariance. This result is a testable prevision of the 
model. Note that, in the original RS model, the brane vacuum is flat 
with R(x) = 0 and the gauge invariance is recovered for the vac-
uum. However, when we go to the next order we find a necessary 
breaking of the gauge invariance throughout the above interaction. 
Since we have no free parameters, the exact value of this mass can 
be obtained, mγ = √

R/4. In the Table 1 we consider the value of 
the Ricci scalar inside some sources and we find that the mass ob-
tained for the photon is within the experimental bounds. The more 
interesting and important case occurs when we consider that the 
four dimensional universe is not flat but has a vacuum energy and 
R = 4�, where lambda is a positive cosmological constant. With 
this we get that a cosmological photon propagating in the vacuum 
must have the exact mass given by mγ ≈ 2 × 10−69 kg. As far as 
we know this is the first model in which the mass of the photon 
is a not a supposition but a necessary ingredient. Moreover, since 
the mass is not a free parameter, this provides a testable prevision 
of the model. We should point that the above interaction, despite 
being very small, should have consequences for astrophysics and 
stellar evolution.

To obtain values for the photon mass, mγ , according to our ge-
ometric model of gauge field localization, we must consider some 
cosmological and astrophysical environments in order to calculate 
R and then mγ = (h̄/c)

√
R/4, comparing such values with the re-

spective constraints for the mass photon obtained from the current 
experimental and speculative inferences. To do this, we will sup-
pose that the astrophysical medium is a perfect fluid with matter 
density ρ and pressure P , with the vacuum being filled with an 
energy density which comes from the cosmological constant �. 
Thus the Ricci scalar is in the rest frame given by
R = 8πG

c4
(ρc2 − 3P ) + 4�. (22)

For example, at the center of a neutron star, with ρ ≈ 5.0 ×
1017 kg/m3 and P ≈ 1032 Pa [11], we find mγ ≈ 8 × 10−48 kg. At 
the Sun core, ρ ≈ 1.5 ×105 kg/m3 and P ≈ 2 ×1016 Pa [12], yield-
ing mγ ≈ 4 × 10−54 kg. Finally, in the vacuum, we have R = 4�, 
and then mγ ≈ 2 × 10−69 kg, for � ≈ 2 × 10−52/m2 [13].

It is interesting to establish a comparison, shown in the Ta-
ble 1, of these and other values based on the model with the 
upper bounds (mγ �) coming from both experimental procedures 
and theoretical estimates, according to [14,15].

Note that m�
γ and m0

γ are the photon masses calculated from 
the model with and without cosmological constant. The photon 
masses associated to the solar magnetosphere and intergalactic 
medium were calculated according to the energy density of the 
magnetic fields present in these scenarios, of 10−10 T and 10−13 T
[16], respectively. It is worth also notice that all the obtained val-
ues are far below those upper limits.
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