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Aspects of Symmetry in Asymptotically Flat Spacetimes

Abstract

We explore the nature and implications of a variety of asymptotic symmetry groups associated to

gauge theory and quantum gravity in asymptotically flat spacetimes. We re-express Weinberg’s

soft graviton theorem as a Ward identity for supertranslation invariance of the gravitational S-

matrix, and provide an alternate derivation of these symmetries as nontrivial large diffeomorphisms

preserving finite-energy boundary conditions at null infinity. Similarly, we recast Weinberg’s soft

photon theorem as a Ward identity for infinitely many new symmetries of the massless QED S-

matrix. These symmetries are identified as large gauge transformations with angle-dependent gauge

parameters, and lead to a degeneracy of the gauge theory vacuum. We then extend the analysis

to incorporate massive charged particles. Transitions among the degenerate vacua are induced in

any nontrivial scattering process, but conventional computations of scattering amplitudes in QED

ignore this fact and therefore always give zero due to infrared divergences. We demonstrate that

if these vacuum transitions are properly accounted for, the resulting amplitudes are nonzero and

infrared finite.

We then utilize the subleading soft graviton theorem to demonstrate that the S-matrix for

quantum gravity in four-dimensional Minkowski space has a Virasoro symmetry which acts on the

celestial sphere at null infinity. We construct an operator Tzz whose insertion in the four-dimensional

S-matrix obeys the Ward identities of the energy-momentum tensor of a CFT2. Generalizing to

higher dimensions, the (d + 2)-dimensional S-matrix elements are recast as correlation functions
iii
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of local operators living on a spacelike cut Md of the null momentum cone. The Lorentz group

SO(d+1, 1) is nonlinearly realized as the Euclidean conformal group on Md. We demonstrate that

the leading soft photon operator is the shadow transform of a conserved spin-one primary operator

Ja, and the subleading soft graviton operator is the shadow transform of a conserved spin-two

symmetric traceless primary operator Tab. The universal form of the soft limits ensures that Ja

and Tab obey the Ward identities expected of a conserved current and energy-momentum tensor in

a Euclidean CFTd, respectively.
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1
Introduction and Summary

New and surprising connections have recently emerged between seemingly unrelated infrared phe-

nomena in gauge and gravitational theories in asymptotically flat spacetimes. Soft theorems for

scattering amplitudes, infinite-dimensional asymptotic symmetry groups, and physically measur-

able memory effects, once studied in isolation and regarded as disparate subjects, are now viewed

as different manifestations of a single underlying structure. The work described in this dissertation

lies at the intersection of these exciting fields, and has played a crucial role in establishing and

clarifying the connections between these infrared phenomena. These results and related work have

shed new light on a variety of old problems, ranging from infrared divergences in gauge theory to

the black hole information paradox, and have led to the discovery of new soft theorems and memory

effects. Ultimately, this line of investigation is motivated by the search for, and may well lead to,

a holographic description of quantum gravity in asymptotically flat spacetimes.

Asymptotically flat spacetimes model isolated, interacting gravitational systems within the

1



Chapter 1: Introduction and Summary

framework of general relativity. They approximate a wide variety of physical systems, including

many of astrophysical interest. Early investigations of these spacetimes produced both exciting

results and intriguing puzzles. The pioneering work by Bondi, van der Burg, Metzner and Sachs

(BMS) [1–3] successfully identified the class of relevant spacetimes and elucidated many of their

expected physical properties. However, in the course of their investigation, they encountered a

strikingly novel phenomenon whose physical implications are still being actively explored. Straight-

forward calculations demonstrated that the group of nontrivial symmetry transformations of asymp-

totically flat spacetimes, known as the asymptotic symmetry group, was an infinite-dimensional ex-

tension of the expected Poincaré group. At the time of its discovery, this surprising structure, now

known as the BMS group, clashed with naive expectations. The assumption that general relativity

reduced to special relativity in the limit of large distances and low energies was apparently incor-

rect: gravity leaves an infrared footprint. Today, symmetry enhancement in gravitational theories

is a familiar occurrence, and recent work has demonstrated that the BMS group plays a crucial

role in the infrared dynamics of gravity in asymptotically flat spacetimes. In fact, although it was

only discovered recently, the BMS group has an exact mathematical analog in deconfined gauge

theories, where angle-dependent “large gauge transformations” with noncompact support play an

equally important role in controlling infrared phenomena.

While the relativity community was grappling with the implications of the BMS group, particle

physicists were simultaneously exploring extreme infrared effects in perturbative quantum field the-

ories. In the process of investigating the infrared divergences which plague perturbative scattering

amplitudes, a number of physicists were led to investigate so-called soft limits of the S-matrix [4–8].

Their results, commonly referred to as soft photon theorems and soft graviton theorems, display

a striking degree of universality. In the limit in which the momentum of an external photon or

graviton becomes much smaller than any scale in the scattering process, the amplitude factorizes

into a universal piece that depends very simply on the soft particle, multiplied by a reduced ampli-

tude which is independent of the soft photon or graviton. These soft theorems are crucial for the

cancellation of infrared divergences in inclusive cross sections, and have analogues in a variety of

2



Chapter 1: Introduction and Summary

theories. Some receive interesting loop corrections, while others are tree-level exact.

Universal behavior is often indicative of an underlying physical symmetry, and the soft theo-

rems are no exception. As we will see in chapter 2, the leading soft graviton theorem is simply a

reflection of the underlying BMS invariance of the gravitational S-matrix. This connection links

two lines of research pursued independently for decades, and offers a new picture for the role of

soft emissions in scattering processes. The infinite-dimensional “supertranslation” subgroup of the

BMS group is spontaneously broken on the standard perturbative vacuum, leading to a family

of degenerate vacua related by supertranslations. The soft graviton is the Goldstone boson, and

the supertranslation Ward identity yields precisely the leading soft graviton theorem. Chapter 2

demonstrates this correspondence in all even-dimensional spacetimes, while clarifying the nature of

the BMS group in higher dimensions. Perhaps unsurprisingly, similar statements exist relating the

soft photon theorem to large gauge transformations which act nontrivially at null infinity. Aside

from the constant phase rotation corresponding to global charge conservation, these symmetries

are all spontaneously broken on the vacuum and the soft photon is interpreted as the associated

Goldstone boson. Chapter 3 establishes this relationship in all even dimensions for tree-level mass-

less quantum electrodynamics (QED). Most of the work on this subject focuses on the scattering of

massless particles coupled to gauge theory or gravity. Chapter 4 extends the analysis to include the

phenomenologically relevant case of four-dimensional massive QED and makes use of qualitatively

new insights into the correspondence.

It turns out that the relations of these asymptotic symmetry groups to infrared phenomena

run even deeper than originally suspected. It is straightforward to demonstrate that in four dimen-

sions, generic scattering processes induce transitions between the degenerate vacua in gauge and

gravitational theories. Conventional Fock-space calculations of scattering amplitudes in QED fail

to take this into account, and the resultant infrared “divergences” set all such amplitudes to zero.

Chapter 5 demonstrates that if these vacuum transitions are accounted for, the resulting transition

amplitudes are nonzero and infrared finite.

Perhaps the most interesting, and certainly the least understood, part of this story pertains to
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a conjectured extension of the four-dimensional BMS group. The BMS group has a natural action

at null infinity, where the Lorentz group SL(2,C) is realized as the group of conformal motions of

the celestial sphere. The original BMS analysis predated the discovery of the infinite-dimensional

symmetry of 2D conformal field theories [9], but today we are familiar with a number of physical

systems whose SL(2,C) symmetry is enhanced to an infinite-dimensional Virasoro symmetry. This

observation led a number of authors [10–14] to conjecture that a similar phenomenon might occur

in four-dimensional quantum gravity. The connection between asymptotic symmetries and soft

theorems suggests that a new soft graviton theorem is a necessary condition for the validity of

this conjecture. Motivated by this reasoning, Cachazo and Strominger derived a new universal

subleading soft graviton theorem [15]. In chapter 6 we demonstrate its tree-level equivalence to the

Ward identities of the extended BMS group, offering strong evidence for an enhancement of the

global conformal group acting on the celestial sphere.

In chapter 7 we provide further evidence for this conjecture. Scattering amplitudes for massless

particles in 4D can be written as correlation functions on the celestial sphere at null infinity:

single particle asymptotic states simply correspond to operator insertions on the sphere where

the particles enter or exit the spacetime. Lorentz invariance of the S-matrix then guarantees

that these correlation functions transform appropriately under the conformal group. In chapter

7 we use the subleading soft graviton theorem [15] to construct a boundary operator Tzz whose

insertion into the four-dimensional S-matrix obeys the Virasoro-Ward identities of a CFT2 energy-

momentum tensor. This result represents a concrete step towards a potential holographic realization

of quantum gravity in asymptotically flat spacetimes. Chapter 9 extends this analysis to any number

of dimensions, providing the construction of a d-dimensional stress tensor for (d+2) - dimensional

asymptotically flat gravity. The 4D subleading soft graviton theorem receives an interesting one-

loop exact renormalization due exclusively to infrared divergences. In chapter 8 we demonstrate

that this infrared anomaly can be removed by a universal shift of the energy-momentum tensor Tzz,

establishing a loop-corrected Virasoro symmetry of 4D quantum gravity.

Another exciting application of this circle of ideas pertains to the black hole information para-
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dox in asymptotically flat spacetimes. Hawking, Perry and Strominger [16–18] have argued that

asymptotic symmetry groups like the (extended) BMS group also significantly constrain the black

hole evaporation process. The implications of this so-called “soft hair” on black holes are still under

active investigation. Chapter 10 addresses a related problem. Motivated by possible supertransla-

tion ambiguities in the definition of the Page curve, we consider various area/entropy bounds at

null infinity. Our investigations lead to an interesting conjectural “second law of I+” relating area

changes of cross-sectional cuts of I+ to the entanglement entropy across the cut. This and related

work will help to sharpen our understanding of the black hole information paradox.

In the following sections we briefly review the background material needed to motivate and

understand this interconnected web of phenomena. The technical discussion of the results begins

in chapter 2.

1.1 Asymptotically Flat Spacetimes

Asymptotically flat spacetimes model isolated gravitational systems within the framework of classi-

cal general relativity. Although the precise, rigorous description of this class of spacetimes is rather

technical [1–3, 19–23], the physical characterization is extremely simple. On physical grounds one

expects that, at large distances far from the complicated nonlinear gravitational dynamics, the

spacetime should settle down and the curvature should become small. These conditions are typ-

ically enforced through the imposition of boundary conditions on solutions to the Einstein field

equation

Rµν −
1

2
Rgµν = 8πGTµν . (1.1.1)

The proper choice of boundary conditions in general relativity is often a subtle problem. Optimal

boundary conditions should be weak enough to encompass all physical processes under considera-

tion, but strong enough so that the the resulting class of spacetimes is tractable and amenable to

study. For instance, in the case of asymptotically flat spacetimes, any candidate set of boundary

conditions must be weak enough to allow for gravitational radiation, but strong enough so that
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generic solutions have physically reasonable properties like finiteness of energy. In fact, the pio-

neering work conducted by BMS [1–3], which established the working definition of asymptotically

flat spacetimes as well as the existence of the BMS group, was primarily concerned with finding a

non-perturbative, diffeomorphism invariant characterization of gravitational radiation.

To concretely describe the class of spacetimes we have in mind, it is useful to introduce an

explicit retarded null coordinate system (u, r, z, z̄) to represent the geometry in the asymptotic

region. Asymptotically, these coordinates are related to the standard Cartesian coordinates in flat

space

u = t− r , r2 = xixi , xi = rx̂i(z, z̄) , (1.1.2)

where x̂i(z, z̄) is an embedding of the round S2 in R3. These coordinates are particularly well-

suited to describe the conformal boundary of the spacetime. Future null infinity, I+, is given by

the null surface (u, r = ∞, z, z̄). We denote its future boundary where u → ∞ by I+
+ and its past

boundary where u → −∞ by I+
− . The null cones Nu defined by u = constant intersect I+ on

round two-spheres. Spatial infinity i0 is obtained through the limit r → ∞ with t held finite, while

future/past timelike infinity (i±) corresponds to the limit t → ±∞ with r held fixed. To cover

the spacetime patch near the past null boundary, we introduce a separate set of advanced null

coordinates (v, r, z, z̄), where the advanced time v is asymptotically related to the usual Cartesian

coordinates according to

v = t+ r . (1.1.3)

Past null infinity, I−, is given by the null surface (v, r = ∞, z, z̄), and its future/past boundaries

are denoted I−
± . The conformal structure of asymptotically flat spacetimes is illustrated in the

Penrose diagram in figure 1.1.

Four-dimensional coordinate invariance requires the imposition of four gauge fixing conditions.

We will work in Bondi gauge, requiring that

grr = 0 , gra = 0 , det gab = r4 det γab , (1.1.4)

6



Chapter 1: Introduction and Summary

Figure 1.1: Conformal structure of asymptotically flat spacetimes.

where γab is the round metric on the unit S2. To complete the definition of asymptotically flat

spacetimes, we need to impose boundary (large-r) falloff conditions on the remaining components

of the metric. In four dimensions, the appropriate conditions are

guu = −1 +O(r−1) , gur = −1 +O(r−2) , gua = O(1) , gab = r2γab +O(r) . (1.1.5)

Assuming these conditions and imposing the Einstein equation order by order in the large-r expan-

sion, one arrives at a family of metrics of the form

ds2 = −du2 − 2dudr+2r2γzz̄dzdz̄ +
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 + . . . , (1.1.6)

where the ellipsis refers to subleading metric components which will not figure prominently in the

discussion that follows. The Bondi mass aspect mB(u, z, z̄) is a measure of the energy of the

spacetime as a function of retarded time. For the Schwarzschild black hole it is constant and is

given by the Schwarzschild mass, while for time dependent solutions its integral over a u = constant

slice of I+ measures the energy of the spacetime at a particular retarded time.

A primary advantage of working with the Einstein equation at the null boundary is that it
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enables one to explicitly solve the constraint equations and identify the free data of the gravitational

field. Defining the Bondi news tensor

Nzz = ∂uCzz (1.1.7)

and expanding the Einstein equation to leading order, one obtains the famous Bondi mass loss

formula

∂umB =
1

4
D2

zN
zz +

1

4
D2

z̄N
z̄z̄ − 1

2
TM
uu − 1

4
NzzN

zz . (1.1.8)

Integrating this equation against a u = constant slice of I+ and making mild assumptions on

the sign of the matter stress tensor TM
uu , one discovers that the Bondi mass is a monotonically

decreasing function along I+. Moreover, it decreases only in the presence of matter flux through

I+, represented by nonzero TM
uu , or in the presence of nonzero Bondi news. The symmetric traceless

tensor Nzz is therefore a nonperturbative diagnostic of gravitational radiation. Before turning to

a discussion of the asymptotic symmetry group of this class of spacetimes, we would like to point

out one more important feature of equation (1.1.8). The seemingly innocuous term 1
4D

2
zN

zz +

1
4D

2
z̄N

z̄z̄ in the Bondi mass loss formula, which disappears upon integration over the full two-

sphere, will nonetheless play an important role in later chapters. The fact that the term vanishes

when integrated over the whole S2 indicates that it is describing soft radiation: the term only

redistributes the angular distribution of energy on the asymptotic sphere, without altering the

total energy. Indeed it is through this term that we will connect the BMS group to the soft

graviton theorem.

1.2 Asymptotic Symmetry Groups

When studying a physical system, the first step is always to understand the symmetries of the

problem. Symmetries control universal phenomena, simplify the analysis and render otherwise

intractable calculations feasible. In strongly coupled systems, they are often the only tool at our

disposal. However, the notion of symmetry in quantum field theory is somewhat subtle, and an

important distinction is typically drawn between “local” gauge symmetries and global symmetries.
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The subtleties in this distinction will be crucial in all that follows. A basic requirement of a physical

symmetry is that it should act nontrivially on physical states and operators. A transformation law

which acts trivially on the entire Hilbert space as well as on the set of local and nonlocal operators

has absolutely no operational meaning. In other words, if every state and operator in the theory

transforms in the trivial representation of a “symmetry,” then the corresponding transformations

merely introduce redundant descriptions of the same physical state and should be quotiented out.

In the following subsections we will discuss four distinct examples of symmetry in quantum field

theory and quantum gravity, ranging from the well-understood to topics of current research.

1.2.1 Global Symmetries in Quantum Field Theory

The ordinary global symmetries one encounters in the simplest gapped quantum field theories cer-

tainly satisfy our physicality criterion. Internal flavor symmetries and rigid spacetime isometries all

map physical states onto other distinct physical states, and the charges Q that generate these trans-

formations commute with the Hamiltonian and are represented nontrivially on the Hilbert space.

In examples, global charges most often arise as spacelike integrals of local conserved currents jµ(x).

The condition ∂µjµ(x) = 0, which holds classically on solutions to the equations of motion and

quantum mechanically as an operator equality at non-coincident points inside correlation functions,

is equivalent to the requirement that the Hodge dual ∗j be closed:

d ∗ j = 0 . (1.2.1)

Given a spacelike Cauchy surface Σt asymptoting to spatial infinity i0 (i.e. ∂Σt = i0), we can

consider the global charge operator Q(Σt):

Q(Σt) =

∫
Σt

∗j . (1.2.2)

It then follows immediately from (1.2.1) that the operator Q(Σt) is actually independent of the

choice of Cauchy surface Σt and therefore conserved under time evolution. Indeed, given two such
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i0

I+

i+

I+

i0

I−

i−

I−

Σt2

Σt1

Figure 1.2: The charge Q is conserved under deformations of the Cauchy surface.

Cauchy surfaces Σt1 and Σt2 , and denoting the four-volume which they bound by M, we have

0 ≡
∫
M
d ∗ j = Q(Σt2)−Q(Σt1) , (1.2.3)

assuming sufficient falloffs for the current at i0. This is illustrated in figure 1.2.

Analyses based on spacelike Cauchy surfaces and the corresponding behavior at spatial infinity

are useful for describing gapped systems. However, such descriptions often obscure physical effects

in gapless systems, such as the presence of radiation. For instance, if there are massless particles

charged under some symmetry, one way to characterize the presence of radiation would be to

calculate the charge flux carried away by the radiation through I+. Charge integrals defined on

spacelike Cauchy surfaces are obviously inadequate, since the quantities they describe are absolutely

conserved: the passing radiation intersects each Cauchy surface on its way to I+. This situation is

illustrated in figure 1.3. Instead, one can foliate the spacetime with null cones Nu intersecting I+

on two-spheres S2
u of fixed retarded time u. The charges evaluated on these hypersurfaces are not
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i0

I+

i+

i0

I−

i−

I−

∆u

Figure 1.3: The charge carried by the outgoing radiation is registered by any two spacelike
Cauchy surfaces. Null cones separated by the null displacement ∆u are sensitive to radiation
exiting the spacetime.

conserved in the presence of radiation. Instead, they satisfy a balance equation of the form

Q(Nu2)−Q(Nu1) = −
∫
I+
∆u

∗j , (1.2.4)

where I+
∆u is the cylindrical segment of I+ bounded by the spheres S2

u1
and S2

u2
. The gravitational

analogue of equation (1.2.4) is of course the celebrated Bondi mass loss formula (1.1.8) in the theory

of gravitational radiation, and will play a crucial role in the remainder of this work.

1.2.2 Symmetries in Gauge Theory

Our first example of a nonstandard symmetry comes from abelian gauge theory coupled to charged

matter. We can consider electric and/or magnetic charges: the conclusions will apply provided

that the system is in the electric and/or magnetic Coulomb phase. In four dimensions, the electro-
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magnetic field strength F and its dual ∗F are both two-forms. The Maxwell equations

d ∗ F = ∗jE ,

dF = ∗jM ,

(1.2.5)

therefore provide two currents ∗jE and ∗jM which are conserved independently of the equations of

motion due to the nilpotency of the exterior derivative:

d ∗ jE = d2 ∗ F ≡ 0 ,

d ∗ jM = d2F ≡ 0 .

(1.2.6)

The important feature distinguishing the symmetry of the gauge theory from ordinary global sym-

metries is the fact that the currents ∗jE and ∗jM are exact. This is in turn responsible for the

mild nonlocal features of the charged sectors of gauge theories. Given the electric and magnetic

charges defined on a Cauchy slice Σ, we can use Stokes’ theorem to rewrite the charges as boundary

integrals at spatial infinity:

QE(Σ) =

∫
Σ
∗jE =

∫
Σ
d ∗ F =

∫
i0
∗F , (1.2.7)

QM (Σ) =

∫
Σ
∗jM =

∫
Σ
dF =

∫
i0
F . (1.2.8)

In other words, one can determine the presence of a charge deep in the interior of a spacetime by

doing measurements far removed from the location of the charge. Both charges are conserved and

generate U(1) symmetries of the theory, but the nature of these symmetries is distinct from that

of the global symmetries discussed in the previous section. First of all, because the charge can be

written as a surface integral at infinity, it is clear that no local operators can be charged under

the symmetry: local operators commute at spacelike separation. Only nonlocal operators which

somehow “reach” out to spatial infinity can be charged.

These statements are familiar when phrased in terms of the usual Lagrangian description of the

theory, although it should be noted that no local Lagrangian is capable of describing a system with
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both light electric and magnetic charges. Focusing for the moment on the electric symmetry, one is

forced to introduce a redundant description of the physical degrees of freedom in order to describe

the resulting dynamics with local fields in a Lorentz invariant manner. The photon’s two physical

degrees of freedom are embedded into a four-component vector potential Aµ(x) and coupled to the

matter fields ψ(x) of charge Q through an interaction with the conserved current ∗jE so that the

entire Lagrangian is invariant under gauge transformations of the form

A(x) → A(x) + dε(x) , ψ(x) → eiQε(x)ψ(x) . (1.2.9)

Most of these transformations correspond to redundant descriptions of the same physical state.

They are not physical symmetries, and they are represented trivially on the physical Hilbert space.

An important and obvious exception is the case ε = 1, which is represented as a constant phase

rotation on charged states and nonlocal charged operators. The corresponding conserved charge

is simply the global electric charge, given by (1.2.7). More generally, the gauge transformations

with noncompact support which do not die off at infinity act nontrivially on the Hilbert space and

can be realized as physical symmetries. Indeed, the preceding discussion has a straightforward

generalization which will play an important role in the remainder of this dissertation. The mere

existence of the two-form ∗F allows us to consider a more general class of exactly conserved currents1

∗jε = d(ε ∗ F ) (1.2.10)

which are again trivially closed irrespective of the equations of motion. The corresponding charge

is given by

Qε =

∫
i0
ε ∗ F (1.2.11)

and can be nonzero provided that the system is in the Coulomb phase. Note that for the special

1For the remainder of this section we will focus on the electrically charged sector of the theory, although
the discussion that follows has an immediate generalization to the magnetic sector in four dimensions. One
simply replaces ∗F with F in all formulas.
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case ε = 1, this reduces to the ordinary electric charge. For the ε = O(r−1) which fall off at infinity,

the charge is zero and acts trivially on the Hilbert space. These trivial charges correspond to the

redundant gauge transformations which have been quotiented out. However, for ε = O(1) at i0,

the charges are generically nonzero and generate physical transformations on charged states. They

correspond to gauge transformations with noncompact support which act on boundary data and

generate physical symmetries.

It is often useful to rewrite equation (1.2.10) as the sum of two terms

∗jε = dε ∧ ∗F + εd ∗ F = dε ∧ ∗F + ε ∗ jE , (1.2.12)

where we used the Maxwell equations to obtain the second equality. The term dε ∧ ∗F is linear

in the electromagnetic field and creates photons when acting on states, while the term ε ∗ jE is a

weighted version of the matter charge current. This representation will be particularly useful in

making connection with the soft theorems of section 1.3.

These extra symmetry transformations are our first example of an enhanced asymptotic symme-

try group. This distinction between unphysical gauge transformations with compact support and

the physical symmetry transformations, which arose in this case as local gauge transformations with

noncompact support, is even more important in gravitational theories where we must distinguish

between diffeomorphisms with compact and noncompact support.

1.2.3 The BMS Group

As we have just seen, the proper determination of the complete set of physical internal symmetries is

somewhat subtle in gauge theories. In gravitational theories with a fluctuating metric, the definition

of physical “spacetime symmetries” is similarly complicated.

The formulation of local quantum field theory assumes a fixed background metric and corre-

sponding causal structure for the spacetime on which the field theory is defined. The spacetime

symmetries are then identified as the isometries of the background metric and are generated by
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vector fields ξ satisfying the Killing equation

Lξgµν ≡ ∇µξν +∇νξµ = 0 . (1.2.13)

The isometry group of flat spacetime is the Poincaré group, consisting of the four translations,

three rotations and three boosts. The corresponding conserved charges are simply the momentum,

boost, and angular momentum charges. All local (non-gravitational) quantum field theories come

equipped with a local energy-momentum tensor Tµν , and the spacetime symmetry charges can be

expressed as local integrals of a current

jµ = ξνTνµ (1.2.14)

formed by contracting the corresponding Killing vector with the energy-momentum tensor. The

spacetime charge integrals

Q =

∫
Σ
∗j (1.2.15)

then generate the symmetry transformations on local operators.

This straightforward story changes drastically when we consider theories interacting gravita-

tionally with a dynamical metric. First of all, generic solutions to the Einstein equations have

no isometries, and small metric fluctuations about any symmetric spacetime would destroy any

accidental isometries. Asking for an exact isometry in a theory with a fluctuating metric is like

asking for a global symmetry of a particular excited state in a quantum field theory. Generic states

are not invariant under any symmetries. Rather, the symmetries of the theory map states onto

different states in a controlled manner, governed by the representations of the symmetry group.

Clearly, exact isometry is not the appropriate notion of symmetry in gravitational theories.

Instead, we are interested in the symmetries of the collection of asymptotically flat spacetimes

defined in section 1.1 and satisfying the boundary conditions (1.1.5) along with the gauge fixing

conditions (1.1.4). Diffeomorphisms preserving these conditions that do not vanish at I± comprise

the asymptotic symmetry group of four-dimensional asymptotically flat spacetimes. Straightfor-
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ward calculation reveals that all such diffeomorphisms are generated by vector fields with leading

order large-r behavior near I+ of the form

ξ =
(
1 +

u

2r

)
Y z∂z −

u

2r
Dz̄DzY

z∂z̄ −
1

2
(u+ r)DzY

z∂r +
u

2
DzY

z∂u + c.c.

+ f∂u − 1

r

(
Dzf∂z +Dz̄f∂z̄

)
+DzDzf∂r .

(1.2.16)

The two-dimensional vector field Y z satisfies the two-dimensional conformal Killing equation. The

solutions to this equation which are globally well-defined on S2 generate the group SL(2,C) of

global conformal transformations of the celestial sphere. Asymptotically, the Lorentz group is

therefore realized as the group of conformal motions of the celestial sphere. This correspondence

begs to be put to use holographically. The second ingredient in the definition of the vector field

ξ is the function f(z, z̄) on the S2. Without loss of generality we can expand f(z, z̄) in a basis

of spherical harmonics. One finds that the four lowest lying harmonics (l = 0, 1) generate spatial

and time translations. The higher order harmonics are known as supertranslations. Geometrically,

they correspond to angle-dependent retarded time translations at I+.

Just as in gauge theory, we would like to determine the charges associated to these symme-

tries as well as the physical consequences of charge conservation. In abelian gauge theory, the

photon couples to a conserved charge which is expressible as a surface integral at spatial infinity.

In gravitational theories, the equivalence principle states that the “charge” coupled to the graviton

is energy-momentum itself. Classic results in the field [24] demonstrate that in the presence of a

dynamical metric the energy and momentum charges can indeed be written as surface integrals

at spatial infinity. This is a very powerful result, since the charge associated to time translations

is simply the Hamiltonian of the system. It lies at the heart of the holographic principle, mak-

ing it possible for a single Hamiltonian to simultaneously describe (d + 1)-dimensional quantum

gravity and d-dimensional non-gravitational systems. Since the Hamiltonian can be written as a

boundary integral, no local operators undergo nontrivial time evolution: there are no interesting

local operators in theories of quantum gravity. The supertranslation charges are straightforward

generalizations of the ADM mass [24] and are given by the higher moments of the Bondi mass
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aspect

Qf =
1

4πG

∫
i0

√
γ d2z f(z, z̄) mB(z, z̄) . (1.2.17)

1.2.4 The Extended BMS Group

As we remarked earlier, the holomorphic vector fields Y z that enter into the definition of the BMS

generators arise as solutions to the conformal Killing equation on the celestial sphere. The set of

globally defined solutions to this equation on S2 is six-dimensional, and the resulting algebra is

that of the Lorentz group. However, it is well known that allowing for locally holomorphic vector

fields with isolated singularities dramatically enlarges this symmetry, yielding instead the infinite-

dimensional Virasoro algebra. In the study of two-dimensional conformal field theory, the isolated

singularities prove innocuous and the enhanced symmetry provides tremendous constraining power

on physical predictions [9].

The original analysis of the BMS group predated the discovery of the infinite-dimensional

symmetry of two-dimensional conformal field theories, so the authors only considered the conformal

Killing vectors which are globally defined on the S2. Given that the enhancement from SL(2,C)

to Virasoro plays such a crucial role both in AdS3 quantum gravity [25, 26] and in physically

realizable two-dimensional systems [9], several authors [10–14] conjectured that a similar mechanism

of symmetry enhancement might occur in four-dimensional asymptotically flat quantum gravity.

The transformations generated by the singular solutions to the conformal Killing equation have

been termed “superrotations,” and the enlarged asymptotic symmetry group containing both the

supertranslations and superrotations is often referred to as the extended BMS group. We will

later find evidence that these enhanced symmetry transformations do have a role to play in four-

dimensional quantum gravity, although their precise status remains a topic of current research.

17



Chapter 1: Introduction and Summary

1.3 Soft Theorems and Infrared Dynamics

The primary object of interest in any quantum mechanical theory in asymptotically flat spacetime

is the S-matrix. In realistic theories, generic S-matrix elements describing the scattering of a fixed

number of external particles are often extremely complicated and difficult to compute. However,

it turns out that a striking simplification occurs when the momentum of an external photon or

graviton approaches zero. In this “soft limit,” the photon’s (graviton’s) wavelength becomes larger

than any scale in the scattering process, and it is no longer able to resolve the short distance

interactions undergone by the other “hard” particles. Indeed the soft photon (graviton) is only

sensitive to the conserved quantum numbers of the external hard particles. In this limit, the S-

matrix element with the soft insertion factorizes into the product of a universal “soft operator”

acting on the simplified S-matrix element without the soft insertion. This universal relation is

known as a soft theorem, and is illustrated in figure 1.4.

q → 0
+ · · ·= S ·

Figure 1.4: Graphical illustration of the soft theorem.

To make the discussion more concrete, we can consider the tree-level scattering amplitude for

n massless particles

An = ⟨ out |S| in ⟩ , (1.3.1)

where the in- and out-states are labeled by the external particles’ momentum and helicity variables2

| in ⟩ = | p1, s1 ; . . . ; pm, sm ⟩ , ⟨ out | = ⟨ pm+1, sm+1 ; . . . ; pn, sn | . (1.3.2)

2In our conventions incoming states are described as CPT conjugate outgoing states with negative p0 so
that momentum conservation implies

∑n
k=1 p

µ
k = 0.
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The amplitude A(±)
n+1(q) on the left hand side of figure 1.4 includes a graviton of momentum qµ

and polarization ε
(±)
µν (q) along with n other massless particles:

A(±)
n+1(q) = ⟨ out ; q,±2 |S| in ⟩ . (1.3.3)

The soft graviton theorem states that in an expansion about the limit q → 0, the amplitude

factorizes up to order O(q) terms:

A(±)
n+1(q) →

[
S
(±)
0 + S

(±)
1 +O(q)

]
An . (1.3.4)

The soft factors S(±)
0 and S

(±)
1 are given by

S
(±)
0 =

κ

2

n∑
k=1

pµkp
ν
kε

(±)
µν

pk · q
, S

(±)
1 = − iκ

2

n∑
k=1

pµkqλε
(±)
µν

pk · q
J λν
k , κ =

√
32πG , (1.3.5)

where J λν
k is the kth particle’s total angular momentum operator. Note that S(±)

0 is of order O(q−1),

while S(±)
1 is of order O(q0). Both soft factors are completely universal and model independent,

and depend only on the conserved quantum numbers of the external particles. If we replace the

external graviton line with an external photon with polarization ε(±)
µ (q) and take the soft limit, we

obtain a similar factorization to order O(q0):

A(±)
n+1(q) →

[
S
(±)
0 +O(q0)

]
An . (1.3.6)

This relation is known as the soft photon theorem, and the soft operator is given by

S
(±)
0 =

n∑
k=1

Qk
pk · ε(±)

pk · q
, (1.3.7)

where Qk is the electric charge of the kth particle.
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1.4 New Developments

The soft photon and soft graviton theorems demonstrate a striking degree of universality. Recent

developments described in this dissertation have revealed that this universality is a direct conse-

quence of a physical symmetry. The argument, which will be made rigorous in the main body of

the text, goes roughly as follows. Consider the scattering of massless particles coupled to an abelian

gauge field. We have argued in section 1.2.2 that the quantity

∗jε = dε ∧ ∗F + εd ∗ F = dε ∧ ∗F + ε ∗ jE , (1.4.1)

integrated over a Cauchy surface, is conserved in any scattering process. This is equivalent to the

statement that the corresponding charge commutes with the S-matrix. Since the theory contains

only massless particles, both I+ and I− are Cauchy surfaces. Making the definitions

Q+ =

∫
I+

∗jε =
∫
I+

dε ∧ ∗F +

∫
I+

ε ∗ jE ≡ Q+
S +Q+

H ,

Q− =

∫
I−

∗jε =
∫
I−
dε ∧ ∗F +

∫
I−
ε ∗ jE ≡ Q−

S +Q−
H ,

(1.4.2)

we can rewrite

⟨ out |Q+S − SQ−| in ⟩ = 0 (1.4.3)

as a matrix element identity

⟨ out |Q+
SS − SQ−

S | in ⟩ = −⟨ out |Q+
HS − SQ−

H | in ⟩ . (1.4.4)

The soft charge Q±
S is linear in the electromagnetic field and creates a single photon when acting

on the scattering states. Moreover, because the integral over I± involves an integral over the null

coordinate u or v, the energy of this photon is vanishingly small. The hard charge Q±
H measures

the weighted outgoing/ingoing charge flux through I±, and acts diagonally on the scattering states.

Equation (1.4.4) therefore relates a scattering amplitude with an extra soft photon insertion to the

action of an operator on the reduced amplitude without the soft insertion. Further investigation
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reveals that this relation is in fact the soft photon theorem.

Similar arguments can be made relating conservation of supertranslation charge to the leading

soft graviton theorem. It is only the form of the hard and soft charges that changes. Assuming

suitable boundary conditions, one can use the Bondi mass loss formula

∂umB =
1

4
D2

zN
zz +

1

4
D2

z̄N
z̄z̄ − 1

2
TM
uu − 1

4
NzzN

zz (1.4.5)

to rewrite the conserved supertranslation charge

Qf =
1

4πG

∫
i0

√
γ d2z f(z, z̄) mB(z, z̄) (1.4.6)

as an integral over I+

Q+
f = − 1

16πG

∫
I+

√
γ d2z f(z, z̄)

(
D2

zN
zz +D2

z̄N
z̄z̄
)
+

1

8πG

∫
I+

√
γ d2z f(z, z̄)

(
TM
uu +

1

2
NzzN

zz

)
≡ Q+

S +Q+
H . (1.4.7)

The charge can similarly be written as an integral over I−. The soft charge Q±
S is linear in the

gravitational field and creates gravitons of vanishingly small energy when acting on the scattering

states. The hard charge Q±
H measures energy flux through null infinity and acts diagonally on the

scattering states. Just as in electromagnetism, the identity

⟨ out |Q+
f S − SQ−

f | in ⟩ = 0 (1.4.8)

relates scattering amplitudes with an extra soft graviton insertion to the action of an operator on

the reduced amplitude without the soft insertion. This relation is simply the leading soft graviton

theorem. As we will see in chapter 6, similar manipulations also relate superrotation symmetry to

the subleading soft graviton theorem. As we will see, these developments have implications for a

wide range of outstanding problems in theoretical physics.
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1.5 Outline of This Dissertation

The organization of the remainder of this dissertation is as follows. In chapter 2, we study even-

dimensional asymptotically flat spacetimes and their symmetries. We re-express Weinberg’s soft

graviton theorem as a Ward identity for the gravitational S-matrix. The corresponding asymptotic

symmetries are identified as higher-dimensional generalizations of the supertranslations. We provide

an alternate derivation of these asymptotic symmetries as the group of diffeomorphisms preserving

finite-energy boundary conditions at null infinity and acting nontrivially on physical data. In

all even dimensions, the supertranslation symmetry is spontaneously broken in the conventional

vacuum and the soft gravitons are the corresponding Goldstone bosons.

Chapter 3 contains an analysis of abelian gauge theories coupled to massless matter in even-

dimensional spacetimes. We recast Weinberg’s soft photon theorem as a Ward identity for in-

finitely many new nontrivial symmetries of the massless QED S-matrix. We identify these sym-

metries as large gauge transformations with noncompact support. Almost all of the symmetries

are spontaneously broken in the standard vacuum and the soft photons are the corresponding

Goldstone bosons. Chapter 4 develops new techniques in order to extend the analysis to include

four-dimensional U(1) gauge theories coupled to massive matter, including the phenomenologically

relevant case of QED.

In Chapter 5, we revisit the problem of infrared divergences in QED in light of these newly

discovered symmetries. The existence of an enhanced asymptotic symmetry group in QED leads to

an infinite set of degenerate vacua, each differing according to its soft photon content. Moreover,

generic scattering processes induce transitions among the degenerate vacua. Conventional compu-

tations of Fock-space scattering amplitudes in QED do not account for this vacuum degeneracy

and therefore always give zero due to infrared divergences. We demonstrate that if these vacuum

transitions are properly accounted for, the resulting amplitudes are nonzero and infrared finite.

In chapter 6 we begin our investigation of the extended BMS group. We use the four-dimensional

subleading soft graviton theorem to demonstrate that the tree-level S-matrix for quantum gravity

in four-dimensional Minkowski space has a Virasoro symmetry which acts on the conformal sphere
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at null infinity. Chapter 7 continues with the analysis of the superrotations. We use the subleading

soft graviton theorem to construct an operator Tzz whose insertion in the four-dimensional tree-

level quantum gravity S-matrix obeys the Virasoro-Ward identities of the energy-momentum tensor

of a two-dimensional conformal field theory (CFT2). The celestial sphere at null infinity plays

the role of the Euclidean sphere of the CFT2, with the Lorentz group acting as the unbroken

SL(2,C) subgroup. The subleading soft graviton theorem, and therefore the tree-level operator

Tzz, receives an interesting one-loop exact correction due to infrared divergences. In chapter 8, we

demonstrate that the effects of the IR divergent part of this “anomaly” can be eliminated by a

one-loop renormalization that shifts Tzz, establishing a loop-corrected Virasoro symmetry of 4D

quantum gravity.

In chapter 9 we generalize the construction of the boundary stress tensor to all even-dimensional

asymptotically flat spacetimes. Specifically, we consider the tree-level scattering of massless par-

ticles in (d + 2)-dimensional asymptotically flat spacetimes. The S-matrix elements are recast as

correlation functions of local operators living on a spacelike cut Md of the null momentum cone.

The Lorentz group SO(d + 1, 1) is nonlinearly realized as the Euclidean conformal group on Md.

Operators of nontrivial spin arise from massless particles transforming in nontrivial representations

of the little group SO(d), and distinguished operators arise from the soft-insertions of gauge bosons

and gravitons. We demonstrate that the leading soft photon operator is the shadow transform of

a conserved spin-one primary operator Ja, and that the subleading soft graviton operator is the

shadow transform of a conserved spin-two symmetric traceless primary operator Tab. The universal

form of the soft-limits ensures that Ja and Tab obey the Ward identities expected of a conserved

current and energy-momentum tensor in a Euclidean CFTd, respectively.

Finally, in chapter 10 we explore various area/entropy bounds at null infinity in light of the

new developments regarding the BMS group. Our investigations lead to an interesting conjectural

“second law of I+” relating area changes of cross-sectional cuts of I+ to the entanglement entropy

across the cut.
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2
Higher-Dimensional Supertranslations and

Weinberg’s Soft Graviton Theorem

2.1 Introduction

Asymptotic symmetry groups play a vital role in our modern understanding of general relativity.

Although the concept originated in the early 1960’s, it continues to influence much of the contempo-

rary research on classical and quantum gravity. From holography and black hole thermodynamics

to the infrared behavior of the gravitational S-matrix, asymptotic symmetry groups have provided

crucial insights into many of today’s most exciting research topics. They will undoubtedly continue

to play a critical role in further clarifying the nature of quantum gravity.

The asymptotic symmetry group of asymptotically flat spacetimes is particularly interesting

from both theoretical and phenomenological points of view. Early research on this topic by Bondi,
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Van der Berg, Metzner and Sachs [1–3] led to a surprising conclusion: the asymptotic symmetry

group of four-dimensional asymptotically flat spacetimes is not the finite-dimensional Poincaré

group, but an infinite-dimensional group now known as the Bondi-Metzner-Sachs (BMS) group.

The BMS group contains the boosts, rotations and translations that comprise the isometry group

of flat spacetime. However, it also includes an infinite-dimensional abelian subgroup, known as

the supertranslation subgroup, whose existence seems to have troubled the early pioneers of the

subject. Repeated attempts to eliminate these extra symmetries proved unsuccessful, and the

BMS group ultimately gained acceptance as the physically correct asymptotic symmetry group for

four-dimensional asymptotically flat spacetimes.

It was eventually recognized that the BMS supertranslations were related to the infrared be-

havior of the gravitational theory [27–29]. This relationship has recently been made precise. In

[30] it was argued that a certain diagonal subgroup of the product of the past and future BMS

groups is a symmetry of both classical and quantum gravitational scattering. In [31] it was further

demonstrated that the Ward identity associated to this diagonal supertranslation invariance of the

gravitational S-matrix is equivalent to Weinberg’s soft graviton theorem [4]. Further investigations

along these lines have established a robust and detailed correspondence between soft theorems for

gauge theory/gravity scattering amplitudes and Ward identities for extended asymptotic symme-

try groups [30–44]. Moreover, it has been shown [45] that the gravitational memory effect [46–48],

which occurs in the deep infrared, provides direct and measurable consequences of BMS symmetry.

Although the asymptotic symmetry group of asymptotically flat spacetimes is well-studied in

four dimensions, the higher-dimensional analog has received limited attention [49–56]. Interestingly,

nearly all of these analyses concluded that supertranslations do not exist in higher dimensions. This

result seems to be at odds with the soft theorem/asymptotic symmetry correspondence, given that

Weinberg’s soft graviton theorem holds in any dimension. The resolution of this discrepancy is the

focus of this chapter.

Briefly, the analyses that claim to eliminate supertranslations in higher dimensions do so by plac-

ing restrictive boundary conditions on the metric at null infinity. We demonstrate that by slightly
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relaxing these boundary conditions to allow for zero-energy, “large diffeomorphism” contributions

to the metric, one may recover the full BMS group, including supertranslations, in any even dimen-

sion.1 We corroborate this with an investigation of Weinberg’s soft graviton theorem in arbitrary

even-dimensional spacetimes. Manipulation of this universal relation allows us to prove a Ward

identity relating S-matrix elements and derive a corresponding conserved charge. This charge is

rewritten, using the constraints and our boundary conditions, as a boundary integral involving the

generalized Bondi mass aspect. A set of brackets is proposed for which this charge generates the su-

pertranslations. Hence, our weakened boundary conditions allow a derivation of the Weinberg soft

identities between S-matrix elements, while the imposition of stronger boundary conditions misses

this important feature of scattering. The argument can also be turned around, reverse-engineering

Weinberg’s soft theorem into a supertranslation symmetry of gravitational scattering.

We defer the study of odd dimensions due to known difficulties in defining null infinity in

odd-dimensional spacetimes [57].

The outline of this chapter is as follows. In section 2.2 we define and discuss asymptotically

flat spacetimes in even dimensions. We establish our coordinate system and relevant boundary

conditions, and then derive the corresponding asymptotic symmetry group. In section 2.3 we

briefly discuss the semiclassical gravitational scattering problem as well as the known subtleties

in connecting past and future null infinity. In section 2.4 we specialize to six dimensions for ease

of presentation, deriving equations needed in the analysis of Weinberg’s soft theorem. In section

2.5 we derive a Ward identity from Weinberg’s soft theorem, and in section 2.6 we demonstrate its

equivalence to the supertranslation Ward identity for soft gravitons and hard matter fields. We do

not verify that the terms in the charge which are quadratic in the metric perturbations correctly

generate supertranslations for hard gravitons. We expect this to be the case but an analysis of

gauge fixing and Dirac brackets at subleading order would be required. Section 2.7 details the

1In d = 4, the “boundary gravitons” produced by supertranslations and the radiative gravitons both
appear at the same order in 1

r . For higher d, the boundary gravitons appear at lower order in the 1
r

expansion, so that boundary conditions constraining pure diffeomorphisms at lower order than the radiative
modes will kill supertranslations. The situation here is like AdS3 [25], where the leading allowed excitations
are all pure diffeomorphisms.
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generalization to arbitrary even-dimensional spacetime. Section 2.8 concludes with a series of open

questions.

2.2 General Relativity in d = 2m + 2 Dimensions

In this section we study even-dimensional asymptotically flat solutions to Einstein’s field equa-

tions without a cosmological constant. Working in Bondi gauge, we propose appropriate boundary

conditions for asymptotically flat spacetimes and derive their asymptotic symmetry groups. Our

definition of asymptotic flatness differs from that used in previous analyses, and we comment on

the implications. Finally, we collect a series of useful equations in the linearized theory.

2.2.1 Bondi Gauge

Metric solutions to Einstein’s equations in d = 2m+ 2 dimensions satisfy

Rµν −
1

2
Rgµν = 8πGTM

µν , (2.2.1)

where TM
µν is the matter stress-energy tensor. We choose coordinates u, r, za (a = 1, . . . , 2m) that

asymptote to the usual retarded coordinates on flat spacetime. At large-r and in terms of flat space

Cartesian coordinates t, xi we have

u = t− r , r2 = xixi , xi = rx̂i(za) , (2.2.2)

where x̂i(za) defines an embedding of S2m in R2m+1. Future null infinity I+ is given by the null

hypersurface (r = ∞, u, za), with future (u = ∞) and past (u = −∞) boundaries denoted by I+
+

and I+
− , respectively. In this coordinate system, Bondi gauge is defined by the 2m+2 gauge fixing

conditions

grr = 0 , gra = 0 , det gab = r4m det γab , (2.2.3)
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where γab is the round metric on the unit S2m with covariant derivative Da. Such a metric can

always be put into the form

ds2 = e2βMdu2 − 2e2βdudr + gab(dz
a − Uadu)(dzb − U bdu) . (2.2.4)

For the case of asymptotically flat spacetimes, we will assume β, M , Ua, and gab admit an expansion

near I+ of the form:

β =
∞∑
n=2

β(n)(u, z)

rn
, M = −1 +

∞∑
n=1

M (n)(u, z)

rn
, Ua =

∞∑
n=0

U
(n)
a (u, z)

rn
,

gab = r2γab +

∞∑
n=−1

C
(n)
ab (u, z)

rn
. (2.2.5)

In the vicinity of past null infinity, I−, we choose advanced coordinates v, r, za asymptotically

related to the flat space Cartesian coordinates through the relations

v = t+ r , r2 = xixi , xi = −rx̂i(za) . (2.2.6)

Here x̂i is the same embedding of the S2m in R2m+1 as in (2.2.2). Note in particular that the

angular coordinate za on I− is antipodally related to the angular coordinate on I+, so that null

generators of I passing through spatial infinity (i0) are labeled by the same numerical value of za.

I− is the (r = ∞, v, za) null hypersurface, with future (v = ∞) and past (v = −∞) boundaries

denoted by I−
+ and I−

− , respectively. The metric in advanced Bondi gauge takes the form

ds2 = e2β
−
M−dv2 + 2e2β

−
dvdr + g−ab(dz

a −W adv)(dzb −W bdv) , (2.2.7)
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where β−, M−, Wa, and g−ab admit the large-r expansions

β− =

∞∑
n=2

β−(n)(v, z)

rn
, M− = −1 +

∞∑
n=1

M−(n)(v, z)

rn
, Wa =

∞∑
n=0

W
(n)
a (v, z)

rn
,

g−ab = r2γab +
∞∑

n=−1

D
(n)
ab (v, z)

rn
. (2.2.8)

2.2.2 Asymptotically Flat Spacetimes

Having fixed a coordinate system, we must now choose the boundary conditions that define asymp-

totic flatness at I+ in this gauge. Our conditions on the metric components are the same as those

in four dimensions:

guu = −1 +O(r−1) , gur = −1 +O(r−2) , gua = O(1) , gab = r2γab +O(r) . (2.2.9)

We also require

Ruu = O(r−2m) , Rur = O(r−2m−1) , Rua = O(r−2m) , (2.2.10)

Rrr = O(r−2m−2) , Rra = O(r−2m−1) , Rab = O(r−2m) . (2.2.11)

The analogous conditions define asymptotic flatness at I−. When the theory is coupled to matter

sources, we impose the same falloff conditions on the components of TM
µν as onRµν . It is important to

note that the boundary conditions (2.2.9)-(2.2.11) are less restrictive than those typically considered

in the literature [49–54]. In particular, the falloff condition on gab in equation (2.2.9) does not

reflect the large-r behavior of generic gravitational radiation in d = 2m+ 2 dimensions, for which

gab = r2γab+O(r2−m). As we will see, the choice of this boundary condition essentially determines

whether or not the corresponding asymptotic symmetry group contains supertranslations. Naively,

our less restrictive falloff conditions on the metric components could lead to bad behavior at infinity

and divergences in physical quantities. However, the metric itself is not physically observable and

the boundary conditions on the Ricci tensor ensure finiteness of energy flux and other gravitational
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observables. As we will see, the potentially dangerous pieces of the metric turn out to be pure

“large diffeomorphism” for the spacetimes we consider. In the next section we demonstrate that

allowing these leading pieces of the metric to be pure diffeomorphism, rather than setting them

equal to zero, enlarges the asymptotic symmetry group from ISO(2m+ 1, 1) to BMS2m+2.

2.2.3 Asymptotic Symmetries

We are now in a position to discuss the asymptotic symmetry group of asymptotically flat 2m+ 2

- dimensional spacetimes. We define the asymptotic symmetry group to be the group of all diffeo-

morphisms preserving Bondi gauge (2.2.3) and the boundary conditions (2.2.9)-(2.2.11), modulo

the subgroup of trivial diffeomorphisms.2 All such diffeomorphisms are generated by vector fields

ξ satisfying the following set of differential equations:

Lξgrr = 0 , Lξgra = 0 , gabLξgab = 0 , (2.2.12)

Lξguu = O(r−1) , Lξgur = O(r−2) , Lξgua = O(1) , Lξgab = O(r) . (2.2.13)

The most general vector field satisfying (2.2.12)-(2.2.13) takes the form

ξu = f(z) +
u

2m
DaY

a(z) , (2.2.14)

ξa = Y a(z)−Dbξ
u

∫ ∞

r
e−2βgabdr′ , (2.2.15)

ξr = − r

2m
[Daξ

a − UaDaξ
u] . (2.2.16)

The Y a(z) are conformal Killing vectors on the S2m, and generate the SO(2m+1, 1) transformations

of the Poincaré group. Transformations with Y a = 0 and an arbitrary function f(z) on the sphere

are known as supertranslations. Near I+, they are generated by the vector field

ξ = f∂u − 1

r
γabDaf∂b +

1

2m
D2f∂r + . . . (2.2.17)

2 See [55] for a related derivation of the BMS algebra in higher dimensions.
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In the linearized theory, where we ignore transformations homogenous in metric perturbations (such

transformations require quadratic terms in the associated charges), the effect of a supertranslation

is to shift C(−1)
ab according to

δC
(−1)
ab =

1

m
D2fγab − (DaDb +DbDa)f , (2.2.18)

leaving all other C(n≥0)
ab fixed. Note that δC(−1)

ab = 0 for the 2m + 2 global translations given

by f(z) ∝ 1, x̂i(z). A similar analysis holds for the asymptotic symmetry group at I−. There,

supertranslation generators take the asymptotic form

ξ− = f−∂v +
1

r
γabDaf

−∂b −
1

2m
D2f−∂r + . . . (2.2.19)

and generate the transformation

δD
(−1)
ab = −

[
1

m
D2f−γab − (DaDb +DbDa)f

−
]
. (2.2.20)

2.2.4 Discussion of the BMS Group in Higher Dimensions

Previous analyses of higher-dimensional asymptotically flat spacetimes have concluded that the

BMS group does not exist in higher dimensions and that the appropriate asymptotic symmetry

group is the finite-dimensional Poincaré group [49–54]. Notable exceptions include [55, 56], where

it was argued that supertranslations do exist in higher dimensions. The source of the apparent

discrepancy can be found in the choice of boundary conditions. In 2m + 2 spacetime dimensions,

the radiative degrees of freedom of the gravitational field enter the metric on the sphere at order

O(r2−m). As we have seen, supertranslations affect an O(r) change in the metric on the sphere. For

d = 4, these two orders agree, and it is impossible to eliminate the supertranslations without simul-

taneously eliminating radiative solutions. In higher dimensions, one can consistently set C(−1)
ab = 0

while still allowing for radiative solutions, which have nonzero C(m−2)
ab . Since the boundary condi-

tion C(−1)
ab = 0 is not supertranslation invariant, it effectively reduces the infinite-dimensional BMS
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group to the finite-dimensional Poincaré group.

The definition of an asymptotic symmetry group depends on the boundary conditions of the

theory, and the appropriate boundary conditions are often determined by the phenomena under

consideration. Therefore, in higher dimensions it is meaningless to discuss the “correct” asymptotic

symmetry group, and one should simply choose the group best adapted to the problem at hand.

In four dimensions, the extra supertranslation symmetries were intimately related to the infrared

behavior of gravitational scattering amplitudes. Therefore it seems reasonable that if one wishes to

study the infrared dynamics of higher-dimensional gravity, one should choose the relaxed boundary

conditions (2.2.9) which allow for supertranslations. As we will see in sections 2.5 and 2.6, this is

indeed the case.

2.2.5 Boundary Conditions and Constraints

In this section we collect a few select formulas which will prove useful for the analysis of Weinberg’s

soft theorem. The analysis up to this point is completely general and holds in the non-linear theory.

In what follows we will focus on the linearized theory for ease of presentation. First, note that

linearization effectively eliminates the function β in the metric. In the nonlinear theory,

Rrr =
4m

r
∂rβ +

2m

r2
− 1

4
gacgbd∂rgab∂rgcd . (2.2.21)

The boundary conditions Rrr = O(r−2m−2) and gur = O(r−2) then imply that β is quadratic in

metric perturbations up to order O(r−2m+1). Since these are the only orders of β that could appear

in the equations (2.2.28)-(2.2.32) needed for our analysis, β may be consistently set to zero along

with all other terms quadratic in metric perturbations. Also note that in the linearized theory, the

Bondi gauge determinant condition requires that all C(n)
ab be traceless. We then have

Ruu = − 1

r2
∂uD

aUa −
1

2
r−2m∂r(r

2m∂rM)− m

r
∂uM − 1

2r2
D2M , (2.2.22)
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Rra =
1

2
r−2m∂r(r

2m+2∂r(r
−2Ua)) +

1

2r2
∂rD

bgba + rγcaDbg
bc , (2.2.23)

Rur = −1

2
r−2m∂r(r

2m∂rM)− 1

2r2
∂rD

aUa . (2.2.24)

The corresponding equations in advanced Bondi gauge are:

Rvv = − 1

r2
∂vD

aWa −
1

2
r−2m∂r(r

2m∂rM
−) +

m

r
∂vM

− − 1

2r2
D2M− , (2.2.25)

Rra = −1

2
r−2m∂r(r

2m+2∂r(r
−2Wa)) +

1

2r2
∂rD

bg−ba + rγcaDbg
−bc , (2.2.26)

Rvr =
1

2
r−2m∂r(r

2m∂rM
−)− 1

2r2
∂rD

aWa . (2.2.27)

The boundary condition on Ruu reads

1

2
[D2 + n(n+ 1− 2m)]M (n) + ∂uD

aU (n)
a +m∂uM

(n+1) = 0 , 0 ≤ n ≤ 2m− 3 . (2.2.28)

The boundary condition on Rur reads

−n(n+ 1− 2m)

2
M (n) +

(n− 1)

2
DaU (n−1)

a = 0 , 0 ≤ n ≤ 2m− 2 . (2.2.29)

The boundary condition on Rra reads

(n+ 2)(n+ 1− 2m)

2
U (n)
a − (n+ 1)

2
DbC

(n−1)
ba = 0 , 0 ≤ n ≤ 2m− 2 . (2.2.30)

The null normal to I+ is given by n = ∂u − 1
2∂r. The constraint equations take the form

nµ(Rµν −
1

2
Rgµν) = 8πGnµTM

µν . (2.2.31)
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The boundary conditions (2.2.10)-(2.2.11) ensure that R = O(r−2m−1). In what follows we never

need terms of this order, so we drop the trace term from the constraint equation. The first nontrivial

order of the u-constraint equation then reads

1

2
[D2 − 2(m− 1)]M (2m−2) + ∂uD

aU (2m−2)
a +m∂uM

(2m−1) + 8πGTM(2m)
uu = 0 . (2.2.32)

2.3 The Semi-Classical Scattering Problem

So far, our analysis has treated I+ and I− separately. In order to discuss the symmetries of the

gravitational S-matrix, we need to define the semiclassical scattering problem in general relativity

and determine how to relate symmetry transformations at I+ and I−. In essence, given initial data

for the characteristic Cauchy problem at I−, we must determine the corresponding outgoing data

on I+. One of the most attractive features of the asymptotic analysis based at I is the ability to

solve this problem without making reference to the interior of the spacetime. However, in order to

do so, we need to be able to relate data and symmetry transformations on I− to the corresponding

data and transformations on I+. Doing so requires us to impose certain regularity conditions at

spatial infinity.

2.3.1 CK Constraint in Higher Dimensions

In four dimensions, arbitrary asymptotically flat initial data does not lead to a well-defined scat-

tering problem. In fact, i0 is generically a singular point of the conformal compactification of

asymptotically flat spacetimes. This naively precludes the identification of BMS transformations

at I+ and I−. In four dimensions, the work of Christodoulou and Klainerman (CK) [58] estab-

lished necessary bounds on initial data in order to allow for smooth identifications at i0. To our

knowledge, no such analysis has been performed in higher dimensions. In four dimensions, the

CK conditions played an essential role in connecting I+ to I− and matching gravitational data

at i0. We are thus led to impose a “generalized CK constraint.” Specifically, we require that the
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higher-dimensional analog of the magnetic component of the Weyl tensor Cµνρσ vanishes near the

boundaries of I+:

Curab|I+
±
= O(r−2) . (2.3.1)

The O(r−1) term in this constraint requires that

DaU
(0)
b −DbU

(0)
a = 0 (2.3.2)

at I+
± . The O(1) Rab boundary condition implies ∂uC(−1)

ab = 0. Combining these two conditions

we see that DbC
(−1)
ba = Dag(z) for some function g(z) on the sphere. The most general solution

consistent with Bondi gauge is

C
(−1)
ab =

1

m
γabD

2ψ(z)− 2DaDbψ(z) , (2.3.3)

with ψ(z) unconstrained. Note that this is simply the requirement that C(−1)
ab be pure supertrans-

lation. Under the action of a supertranslation with parameter f(z), ψ(z) transforms according

to ψ(z) → ψ(z) + f(z). The function ψ(z) will later be identified as the Goldstone mode for

spontaneously broken supertranslation symmetry. The analogous condition at I− yields

D
(−1)
ab = − 1

m
γabD

2ψ−(z) + 2DaDbψ
−(z) . (2.3.4)

In what follows, we are primarily interested in vacuum to vacuum geometries, and we impose

the “scattering constraints”

M (2m−1)|I+
+
=M−(2m−1)|I−

−
= 0 , C

(2m−3)
ab |I+

±
= D

(2m−3)
ab |I−

±
= 0 . (2.3.5)

2.3.2 Scattering and Matching

In order to connect I− to I+ we must match data at i0. Following the analysis in [30], all fields

and functions are taken to be continuous along the null generators of I passing through i0. Due
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to the antipodal identification of the angular coordinates on I+ and I−, the zero-modes C(−1)
ab and

D
(−1)
ab are matched according to

ψ(z) = ψ−(z) . (2.3.6)

This identification also allows for a canonical identification of BMS+ and BMS− transformations

according to the rule

f(z) = f−(z) , (2.3.7)

yielding a diagonal BMS subgroup that may be identified as a symmetry of the gravitational S-

matrix.

2.4 Six-Dimensional Gravity

In this section we focus on six-dimensional asymptotically flat spacetimes. We identify the free

radiative data, and collect a number of equations needed for the analysis of Weinberg’s soft theorem.

2.4.1 Boundary Conditions and Constraints

In six dimensions, the boundary conditions for asymptotically flat spacetimes satisfying the scat-

tering constraints and the generalized CK constraint take the form

guu = −1 +O(r−1) , gur = −1 +O(r−2) , gua = O(1) , gab = r2γab +O(r) ,

Ruu = O(r−4) , Rur = O(r−5) , Rua = O(r−4) , Rrr = O(r−6) , Rra = O(r−5) ,

Rab = O(r−4) , C
(1)
ab |I+

±
= 0 , Curab|I+

±
= O(r−2) , M (3)|I+

+
= 0 .

The Ruu boundary conditions take the form

∂u

[
DaU (0)

a + 2M (1)
]
= 0 ,

1

2

[
D2 − 2

]
M (1) + ∂u

[
DaU (1)

a + 2M (2)
]
= 0 , (2.4.1)
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while the Rur boundary conditions reduce to

M (1) = 0 , M (2) = −1

2
DaU (1)

a . (2.4.2)

The Rra boundary conditions read

U (0)
a = −1

6
DbC

(−1)
ba , U (1)

a = −1

3
DbC

(0)
ba , U (2)

a = −3

4
DbC

(1)
ba . (2.4.3)

The O(r−4) u-constraint equation reads

1

2

[
D2 − 2

]
M (2) + ∂uD

aU (2)
a + 2∂uM

(3) = −8πGTM(4)
uu . (2.4.4)

C
(0)
ab is free, unconstrained data. A complete solution of course requires integration of the constraints

and equations of motion to all orders.

2.4.2 Mode Expansions

The fluctuations of the gravitational field in an asymptotically flat spacetime are determined by the

relation gµν = ηµν + κhµν , where κ2 = 32πG and ηµν is the flat metric. We represent the radiative

degrees of freedom of the gravitational field by the mode expansion

hµν(x) =
∑
α

∫
d5q

(2π)5
1

2ωq

[
ε∗αµνaα(q⃗ )e

iq·x + εαµνaα(q⃗ )
†e−iq·x

]
. (2.4.5)

Here, ωq = |q⃗ | and εαµν are the polarization tensors of the graviton in six dimensions. The commu-

tation relations are given by

[
aα(p⃗ ), aβ(q⃗ )

†
]
= 2ωqδαβ(2π)

5δ(5)(p⃗− q⃗ ) . (2.4.6)
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The free radiative data at I+ then takes the form

C
(0)
ab (u, z) ≡ κ lim

r→∞
∂ax

µ∂bx
νhµν(u+ r, rx̂(z)) . (2.4.7)

We evaluate this limit using the large-r saddle point approximation to obtain the expression

C
(0)
ab (u, z

a) = − 2π2κ

(2π)5
∂ax̂

i∂bx̂
j
∑
α

∫
ωqdωq

[
ε∗αij aα(ωqx̂)e

−iωqu + εαijaα(ωqx̂)
†eiωqu

]
. (2.4.8)

The positive and negative frequency modes are then given by

C
ω(0)
ab (z) = − κω

8π2
∂ax̂

i(z)∂bx̂
j(z)

∑
α

ε∗αij aα(ωx̂(z)) ,

C
−ω(0)
ab (z) = − κω

8π2
∂ax̂

i(z)∂bx̂
j(z)

∑
α

εαijaα(ωx̂(z))
† ,

(2.4.9)

where ω > 0 in both formulas. The ω → 0 limit of these expressions defines a zero-mode operator

C
0(0)
ab =

1

2
lim
ω→0

(
C

ω(0)
ab + C

−ω(0)
ab

)
. (2.4.10)

The asymptotic data at I− is given by

D
(0)
ab (v, z) = κ lim

r→∞
∂ax

µ∂bx
νhµν(v − r, rx̂i(z)) , (2.4.11)

which may be decomposed into the positive and negative frequency modes

D
ω(0)
ab (z) = − κω

8π2
∂ax̂

i(z)∂bx̂
j(z)

∑
α

ε∗αij aα(−ωx̂(z)) ,

D
−ω(0)
ab (z) = − κω

8π2
∂ax̂

i(z)∂bx̂
j(z)

∑
α

εαijaα(−ωx̂(z))† .
(2.4.12)

The associated zero-mode creation operator is given by

D
0(0)
ab =

1

2
lim
ω→0

(
D

ω(0)
ab +D

−ω(0)
ab

)
. (2.4.13)
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2.5 Ward Identity from Weinberg’s Soft Theorem

In this section we use Weinberg’s six-dimensional soft graviton theorem to derive a Ward identity for

a charge operator constructed from the gravitational field. In the following section, we demonstrate

the relationship between this charge operator and the supertranslations described in section 2.2.

In six dimensions, Weinberg’s soft graviton theorem takes the form

lim
ω→0

ω⟨zn+1, . . . |aα(q)S|z1, . . . ⟩ =
ωκ

2

[
n+n′∑
k=n+1

εαµνp
µ
kp

ν
k

pk · q
−

n∑
k=1

εαµνp
µ
kp

ν
k

pk · q

]
⟨zn+1, . . . |S|z1, . . . ⟩ .

(2.5.1)

Here, aα(q) is a creation operator for an outgoing on-shell graviton with energy ω, polarization εαµν

and momentum qµ. A null momentum vector in six dimensions is determined by an energy ω and

a point za on the S4, so we parametrize the soft graviton’s momentum as

qµ = ω
[
1, x̂i(z)

]
. (2.5.2)

Here, x̂i(z) is the embedding of S4 into R5 defined previously. The momenta of the massless

external particles are similarly given by

pµk = Ek

[
1, x̂i(zk)

]
. (2.5.3)

Thus the in- and out-states are determined by the energy Ek and I+ crossing point zk for each

external particle. For simplicity we suppress internal quantum numbers which are totally decoupled

from the analysis. We denote the in- and out-states by

|z1, . . . , zn⟩ , ⟨zn+1, . . . , zn+n′ | , (2.5.4)
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respectively. Motivated by the form of the radiative modes (2.4.9), we define a function

F out
ab (z, z1, . . . , zn+n′) ≡ ω∂ax̂

i(z)∂bx̂
j(z)

∑
α

ε∗αij

[
n+n′∑
k=n+1

εαµνp
µ
kp

ν
k

pk · q
−

n∑
k=1

εαµνp
µ
kp

ν
k

pk · q

]

=

n+n′∑
k=n+1

Ek∂bP (z, zk)∂a log(1− P (z, zk))−
n∑

k=1

Ek∂bP (z, zk)∂a log(1− P (z, zk)) .

(2.5.5)

Here, we have used the completeness relation for polarization tensors

2
∑
α

ε∗ijα (q⃗ )εklα (q⃗ ) = πikπjl + πilπjk − 1

2
πijπkl , πij = δij − qiqj

q⃗ 2
, (2.5.6)

energy and momentum conservation

n+n′∑
k=n+1

Ek −
n∑

k=1

Ek = 0 ,

n+n′∑
k=n+1

Ekx̂
i(zk)−

n∑
k=1

Ekx̂
i(zk) = 0 , (2.5.7)

and defined a function3

P (z, zk) ≡ x̂i(z)x̂
i(zk) . (2.5.8)

We then use F out
ab (z, z1, . . . , zn+n′) (abbreviated F out

ab (z; zk)) to relate Weinberg’s soft theorem to

the zero-mode insertion:

⟨zn+1, . . . |C0(0)
ab (z)S|z1, . . . ⟩ = − κ2

2(4π)2
F out
ab (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ . (2.5.9)

Note that F out
ab (z; zk) obeys the differential equation

√
γ
[
D2 − 2

]
DaDbF out

ab = 3(4π)2

[
n+n′∑
k=n+1

Ekδ
(4)(z − zk)−

n∑
k=1

Ekδ
(4)(z − zk)

]
. (2.5.10)

3P is known as the invariant distance on the S4, and is related to the cosine of the geodesic distance.
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We can similarly consider Weinberg’s soft theorem for an incoming soft graviton

lim
ω→0

ω⟨zn+1, . . . |Saα(q)†|z1, . . . ⟩ = −ωκ
2

[
n+n′∑
k=n+1

ε∗αµνp
µ
kp

ν
k

pk · q
−

n∑
k=1

ε∗αµνp
µ
kp

ν
k

pk · q

]
⟨zn+1, . . . |S|z1, . . . ⟩ .

This can similarly be rewritten

⟨zn+1, . . . |SD0(0)
ab (z)|z1, . . . ⟩ =

κ2

2(4π)2
F in
ab (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ , (2.5.11)

where

F in
ab (z, z1, . . . , zn+n′) =

−
n+n′∑
k=n+1

Ek∂bP (z, zk)∂a log(1 + P (z, zk)) +

n∑
k=1

Ek∂bP (z, zk)∂a log(1 + P (z, zk)) . (2.5.12)

Combining equations (2.5.9), (2.5.10) and (2.5.11), we obtain the identity

− 1

3κ2

∫
d4z

√
γf(z)(D2 − 2)DaDb⟨zn+1, . . . |C0(0)

ab (z)S|z1, . . . ⟩

+
1

3κ2

∫
d4z

√
γf−(z)(D2 − 2)DaDb⟨zn+1, . . . |SD0(0)

ab (z)|z1, . . . ⟩

=

[
n+n′∑
k=n+1

Ekf(zk)−
n∑

k=1

Ekf(zk)

]
⟨zn+1, . . . |S|z1, . . . ⟩

(2.5.13)

for an arbitrary function f(z) on the sphere. This relation can be rewritten as a Ward identity

⟨zn+1, . . . |Q+S − SQ−|z1, . . . ⟩ = 0 , (2.5.14)

where Q± have been decomposed into hard and soft parts

Q± = Q±
H +Q±

S . (2.5.15)
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The action of the hard charges is defined so that

Q−
H |z1, . . . ⟩ =

n∑
k=1

Ekf(zk)|z1, . . . ⟩ , ⟨zn+1, . . . |Q+
H = ⟨zn+1, . . . |

n+n′∑
k=n+1

Ekf(zk) , (2.5.16)

while the soft charges take the form

Q+
S =

1

3κ2

∫
d4z

√
γf(z)(D2 − 2)DaDbC

0(0)
ab (z) ,

Q−
S =

1

3κ2

∫
d4z

√
γf−(z)(D2 − 2)DaDbD

0(0)
ab (z) .

(2.5.17)

2.6 From Ward Identity to BMS Supertranslations

The charges (2.5.15) commute with the S-matrix and represent a symmetry of the theory. In this

section we argue that, given the zero-mode bracket postulated below, the symmetry generated by

these charges is none other than the supertranslation symmetry encountered in section 2.2.

2.6.1 Action of the Matter Charges

The form of the hard charges may be deduced from (2.5.16), yielding

Q+
H = lim

r→∞
r4
∫
I+

dud4z
√
γ f(z)TM

uu(u, r, z) , (2.6.1)

Q−
H = lim

r→∞
r4
∫
I−
dvd4z

√
γf−(z)TM

vv (v, r, z) . (2.6.2)

These expressions can be rewritten in the form

Q+
H = lim

Σ→I+

∫
Σ
dΣ ξµnνΣT

M
µν , Q−

H = lim
Σ→I−

∫
Σ
dΣ ξµnνΣT

M
µν . (2.6.3)

Here Σ is a spacelike Cauchy surface, nΣ is a unit normal to Σ, and ξ is the BMS vector field

(2.2.17). Written in this form, it is clear that the hard charges generate supertranslations on the

asymptotic states. Standard commutation relations for the matter fields confirm that the quantities

(2.6.3) generate the large diffeomorphisms for any matter field coupled to gravity.
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Note that because we consider the linearized theory, the gravitational field does not appear in

the hard charges. In the full nonlinear theory, when we allow for external graviton states with non-

zero momentum, we expect new contributions to the hard charge quadratic in the gravitational field.

These additional terms characterize the energy and momentum flux carried by gravitational radia-

tion through null infinity, and serve to generate transformations of the metric that are proportional

to metric perturbations (transformations which we neglect in the linearized theory).

2.6.2 Action of the Gravitational Charges

Supertranslations are by definition large diffeomorphisms, and general relativity is diffeomorphism

invariant if and only if all fields transform under the diffeomorphisms. Therefore, it is intuitively

clear that the charges (2.5.15) must generate supertranslations of the gravitational field. We can

make this relationship precise by using the boundary conditions and constraints of section 2.4.1 to

rewrite the charges as boundary integrals

Q+ =
1

4πG

∫
I+
−

d4z
√
γf(z)M (3)(z) ,

Q− =
1

4πG

∫
I−
+

d4z
√
γf−(z)M−(3)(z) .

(2.6.4)

These expressions resemble the supertranslation generators encountered in the four-dimensional

case [31]. In order to claim that they generate supertranslations of the gravitational field, we need

to discuss the symplectic form for the gravitational free data.

2.6.3 Brackets for the Free Data

The commutator for the radiative degrees of freedom of the gravitational field is familiar from four

dimensions and can be derived from the plane wave mode expansion. It is given by

[
C

(0)
ab (u, z), ∂u′C

(0)
cd (u′, z′)

]
= i

κ2

4

δ(u− u′)δ(4)(z − z′)
√
γ

[
γacγbd + γadγbc −

1

2
γabγcd

]
. (2.6.5)
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This expression does not determine the zero-mode brackets. We postulate the simple form

[
M (3)(z), ψ(z′)

]
= 4πiG

δ(4)(z − z′)
√
γ

. (2.6.6)

This reproduces (2.2.18) and defines a symplectic form on the extended gravitational phase space.

It closely resembles the analogous zero-mode bracket in QED [36].

2.7 Generalization to Arbitrary Even-Dimensional Space-

time

The results of the preceding sections generalize to arbitrary even-dimensional asymptotically flat

spacetimes. In this section, we outline the derivation of the supertranslation Ward identity for

d = 2m + 2 - dimensional spacetime. The perturbations of the asymptotically flat gravitational

field are defined by gµν = ηµν + κhµν as in six dimensions. The plane wave expansion takes the

form

hµν(x) =
∑
α

∫
d2m+1q

(2π)2m+1

1

2ωq

[
ε∗αµν(q⃗ )aα(q⃗ )e

iq·x + εαµν(q⃗ )aα(q⃗ )
†e−iq·x

]
. (2.7.1)

Here, ωq = |q⃗ | and α labels the polarizations of the graviton. The operator aα(q⃗ )† is a graviton

creation operator satisfying the commutation relations

[
aα(p⃗ ), aβ(q⃗ )

†
]
= 2ωqδαβ(2π)

2m+1δ(2m+1)(p⃗− q⃗ ) . (2.7.2)

The leading term in the large-r expansion of (2.7.1) yields an expression for the radiative degrees

of freedom of the gravitational field near I+. The positive and negative frequency modes take the
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form

C
ω(m−2)
ab (z) =

(−i)mωm−1κ

2(2π)m
∂ax̂

j(z)∂bx̂
k(z)

∑
α

ε∗αjk aα(ωx̂(z)) , (2.7.3)

C
−ω(m−2)
ab (z) =

imωm−1κ

2(2π)m
∂ax̂

j(z)∂bx̂
k(z)

∑
α

εαjkaα(ωx̂(z))
† . (2.7.4)

The corresponding zero-mode operator is defined to be

C
0(m−2)
ab =

1

2
lim
ω→0

(iω)2−m
[
C

ω(m−2)
ab + (−1)mC

−ω(m−2)
ab

]
. (2.7.5)

In terms of this zero-mode operator, Weinberg’s soft theorem (2.5.1) takes the form

⟨zn+1, . . . |C0(m−2)
ab (z)S|z1, . . . ⟩ = −(−1)mκ2

8(2π)m
F out
ab (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ . (2.7.6)

The soft factor

F out
ab (z, z1, . . . , zn+n′) ≡ ∂ax̂

i∂bx̂
jω
∑
α

ε∗αij

[
n+n′∑
k=n+1

εαµνp
µ
kp

ν
k

pk · q
−

n∑
k=1

εαµνp
µ
kp

ν
k

pk · q

]

=

n+n′∑
k=n+1

Ek∂bP (z, zk)∂a log(1− P (z, zk))−
n∑

k=1

Ek∂bP (z, zk)∂a log(1− P (z, zk))

(2.7.7)

satisfies the dimension-dependent differential equation

(−1)m
√
γ

2m−1∏
l=m+1

[
D2 − (2m− l)(l − 1)

]
DaDbF out

ab

= (2m− 1)Γ(m)2m(2π)m

[
n+n′∑
k=n+1

Ekδ
(2m)(z − zk)−

n∑
k=1

Ekδ
(2m)(z − zk)

]
.

(2.7.8)

Here, we have used the completeness relation for polarization tensors

2
∑
α

ε∗ijα (q⃗ )εklα (q⃗ ) = πikπjl + πilπjk − 1

m
πijπkl , πij = δij − qiqj

q⃗ 2
, (2.7.9)
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along with energy and momentum conservation. The in-modes take the form

D
ω(m−2)
ab (z) =

imωm−1κ

2(2π)m
∂ax̂

j(z)∂bx̂
k(z)

∑
α

ε∗αjk aα(−ωx̂(z)) , (2.7.10)

D
−ω(m−2)
ab (z) =

(−i)mωm−1κ

2(2π)m
∂ax̂

j(z)∂bx̂
k(z)

∑
α

εαjkaα(−ωx̂(z))† , (2.7.11)

and the associated zero-mode operator is

D
0(m−2)
ab =

1

2
lim
ω→0

(iω)2−m
[
D

ω(m−2)
ab + (−1)mD

−ω(m−2)
ab

]
. (2.7.12)

The soft theorem for an incoming soft graviton may be rewritten as

⟨zn+1, . . . |SD0(m−2)
ab (z)|z1, . . . ⟩ =

κ2

8(2π)m
F in
ab (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ , (2.7.13)

where

F in
ab (z, z1, . . . , zn+n′) =−

n+n′∑
k=n+1

Ek∂bP (z, zk)∂a log(1 + P (z, zk))

+
n∑

k=1

Ek∂bP (z, zk)∂a log(1 + P (z, zk)) . (2.7.14)

After applying (2.7.8) to equations (2.7.6) and (2.7.13), we may integrate against an arbitrary

function f(z) on the sphere to obtain the Ward identity

⟨zn+1, . . . |
(
Q+S − SQ−) |z1, . . . ⟩ = 0 . (2.7.15)

The charges Q± = Q±
H + Q±

S commute with the S-matrix and induce infinitesimal symmetry

transformations on I± states. Q±
H is defined by its action on the asymptotic states:

Q−
H |z1, . . . ⟩ =

n∑
k=1

Ek f(zk)|z1, . . . ⟩ , ⟨zn+1, . . . |Q+
H = ⟨zn+1, . . . |

n+n′∑
k=n+1

Ek f(zk) . (2.7.16)
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The soft charges are given by

Q+
S =

1

(2m− 1)κ2
22−m

Γ(m)

∫
d2mz

√
γ f(z)

2m−1∏
l=m+1

[
D2 − (2m− l)(l − 1)

]
DaDbC

0(m−2)
ab , (2.7.17)

Q−
S =

(−1)m

(2m− 1)κ2
22−m

Γ(m)

∫
d2mz

√
γ f−(z)

2m−1∏
l=m+1

[
D2 − (2m− l)(l − 1)

]
DaDbD

0(m−2)
ab . (2.7.18)

The hard charges Q±
H can be written in terms of the matter stress-energy tensor

Q+
H = lim

r→∞
r2m

∫
I+

dud2mz
√
γf(z)TM

uu(u, r, z) , (2.7.19)

Q−
H = lim

r→∞
r2m

∫
I−
dvd2mz

√
γf−(z)TM

vv (v, r, z) . (2.7.20)

This operator induces an infinitesimal supertranslation with parameter f(z) when acting on the

matter fields. The boundary conditions and constraints of section 2.2.5, combined with the general-

ized CK constraint and the scattering constraints, allow us to write the total charge Q± = Q±
H+Q±

S

as a boundary integral

Q+ =
4m

κ2
lim
r→∞

r2m−1

∫
I+
−

d2mz
√
γ f(z)M(z) ,

Q− =
4m

κ2
lim
r→∞

r2m−1

∫
I−
+

d2mz
√
γ f−(z)M−(z) .

(2.7.21)

A straightforward generalization of the brackets of section 2.6.3 can then be used to demonstrate

that (2.7.21) generates supertranslations on the matter and gravitational fields.

2.8 Conclusions and Open Questions

In this chapter we considered the asymptotic symmetry group of even-dimensional asymptotically

flat spacetimes. Using less restrictive boundary conditions than those previously considered in

the literature, we demonstrated that the BMS group naturally arises as the asymptotic symmetry

group of asymptotically flat spacetimes in any even dimension. Motivated by the recently discovered

47



Chapter 2: Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem

correspondence between soft theorems and asymptotic symmetry groups, we considered Weinberg’s

soft graviton theorem in even-dimensional spacetime and used it to derive a Ward identity for a

set of symmetry transformations. Reasonable, physically motivated boundary conditions and a

natural extension of the symplectic form allowed us to identify these symmetry transformations as

supertranslations. This result further solidifies the general correspondence between soft theorems

and asymptotic symmetry groups.

It would be worthwhile to tackle the hard metric fluctuations at quadratic order and thereby

extend the analysis to the full nonlinear theory. It would also be interesting to consider the

odd-dimensional case, where special properties of radiating solutions make the conformal methods

usually employed in four dimensions essentially useless. Our analysis is carried out at tree-level,

and while we expect that the leading soft factor is not renormalized (as in four dimensions), it

would be useful to explicitly verify this. One could also extend the analysis to allow for massive

external states.
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3
Asymptotic Symmetries of Massless QED in

Even Dimensions

3.1 Introduction

Recent work [30–35] has connected long understood soft theorems [4–8] for gauge theory and gravity

scattering amplitudes to Ward identities for asymptotic symmetry groups of massless interacting

theories coupled to gauge theory and gravity in four dimensions. While several of the soft theorems

have been known and understood since the 1960’s, many of their associated asymptotic symmetry

groups have only recently drawn attention. Conjectures stemming from the correspondence have

led to the discovery and investigation of new soft theorems in four dimensions [15, 44, 59–65], many

of which were subsequently identified with asymptotic symmetry groups [33, 35, 39]. The leading

and subleading soft theorems have been investigated at loop-level [66–69], in the context of string
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and (ambi)-twistor string theory [42, 43, 70–72], and have been shown to hold in higher dimensions

[73–76]. Some of the asymptotic symmetry groups associated to these new soft theorems, such

as the extended BMS group, were previously conjectured [10–13], while the nature of others [35]

remains unknown.

Although much work has been done, many questions remain unanswered. The tree-level leading

soft theorem is universal among all theories in arbitrary dimensions. Such striking universality can

only be a reflection of an underlying symmetry. Motivated by the established correspondence

between soft theorems and asymptotic symmetries in four dimensions and the existence of the soft

theorems in higher dimensions, we are led to consider the leading soft theorem in massless QED

in even-dimensional Minkowski spacetime. The odd-dimensional case is of course also of interest

but has additional subtleties which require a separate investigation. We recast the soft theorem in

the form of a Ward identity for a new group of asymptotic symmetries. The asymptotic symmetry

group in d = 2m + 2 dimensions is the subgroup of the local U(1) large gauge transformations

with a gauge parameter given by an unconstrained function on the S2m. Our result generalizes the

analysis performed in the four-dimensional case [34], further strengthening the relationship between

soft theorems and asymptotic symmetries in all even dimensions.

We work in the semiclassical limit and therefore prove the result only at tree-level. However,

given that the leading QED soft factor is not renormalized in four dimensions, the result may

be exact. Although massless QED is not renormalizable in dimensions greater than four, we are

interested in infrared effects where two derivative theories minimally coupled to matter fields serve

as good low energy effective theories. The infrared structure of gauge theories is simpler in d > 4

due to the absence of soft divergences, so we hope that studying the soft theorems and associated

asymptotic symmetries in higher dimensions will help to clarify the fate of the new symmetries in

the presence of loop corrections both in d = 4 and d > 4.

This chapter is organized as follows. In section 3.2 we review the structure of massless QED in

d = 2m + 2 dimensions and establish our coordinates and conventions. In section 3.3 we restrict

our attention to six dimensions for illustrative purposes. We determine appropriate boundary
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conditions and introduce the gauge field mode expansions and the relevant soft photon operators.

In section 3.4 we rewrite Weinberg’s soft theorem as a Ward identity for local charge operators

involving the matter current and the soft photon operators. In section 3.5 we demonstrate that

these charges generate a new asymptotic symmetry group, which is a subgroup of the original U(1)

gauge group. In section 3.6 we discuss how to generalize our result to the arbitrary even-dimensional

case. Section 3.7 concludes with a series of open questions.

3.2 Maxwell’s Equations in Even-Dimensional Minkowski

Spacetime

Abelian gauge theory in d = 2m+2 - dimensional flat Minkowski spacetime is governed by Maxwell’s

equations

∇µFµν = e2JM
ν , (3.2.1)

where Fµν = ∂µAν − ∂νAµ, JM
ν is the matter current density, and e is the coupling constant of the

theory. The equations (3.2.1) are invariant under local gauge transformations of the form

Aµ → Aµ + ∂µε , ΨQ → eiQεΨQ , (3.2.2)

where ΨQ is a matter field with electric charge Q. It is useful to introduce retarded coordinates

(u, r, za) given by

x0 = u+ r , xi = rx̂i(z) , (3.2.3)

where u is retarded time and x̂i(z) describes an embedding of the unit S2m with coordinates

za, a = 1, . . . , 2m into R2m+1 with coordinates xi, i = 1, . . . , 2m + 1. The flat Minkowski metric

then takes the form

ds2 = −(dx0)2 + (dxi)2 = −du2 − 2dudr + r2γabdz
adzb . (3.2.4)
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Here γab is the metric on the unit radius S2m with covariant derivative Da. In the conformal

compactification of Minkowski spacetime, we can identify future null infinity (I+) as the null

surface (r = ∞, u, za). We also employ advanced coordinates

x0 = v − r , xi = −rx̂i(z) , (3.2.5)

so that past null infinity (I−) is identified as the surface (r = ∞, v, za) and

ds2 = −dv2 + 2dvdr + r2γabdz
adzb . (3.2.6)

The advanced S2m coordinate z is antipodally related to the retarded S2m coordinate z in such a

way that null generators of I passing through spatial infinity are labeled by the same value of z on

I+ and I−. We denote the u = ±∞ boundaries of I+ as I+
± , and the v = ±∞ boundaries of I−

as I−
± . Maxwell’s equations in retarded coordinates take the form

r−2m∂r
(
r2mFru

)
− ∂uFru + r−2DaFau = e2JM

u ,

−r−2m∂r
(
r2mFur

)
+ r−2DaFar = e2JM

r , (3.2.7)

r−2m+2∂r
(
r2m−2 (Fra − Fua)

)
− ∂uFra + r−2DbFba = e2JM

a .

Similar expressions hold for the advanced coordinates. The constraint equation for the hypersurface

at future null infinity is

nµ∇νFνµ =
1

2
r−2m∂r

(
r2mFru

)
− ∂uFru + r−2Da

(
Fau − 1

2
Far

)
= e2nµJM

µ , (3.2.8)

where the null normal vector is n = ∂u − 1
2∂r.
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3.3 Six-Dimensional Maxwell Primer

In this section we consider six-dimensional abelian gauge theory at null infinity,1 postponing the

discussion of arbitrary even dimensions to section 3.6. We determine appropriate boundary con-

ditions for the gauge fields, determine matching conditions to link I− quantities to I+ quantities,

and isolate the gauge field zero-mode operators appearing in Weinberg’s soft theorem.

3.3.1 Asymptotic Analysis at I+

We work in retarded radial gauge. The gauge fixing conditions are

Ar = 0 , Au|I+ = 0 . (3.3.1)

This leaves unfixed a residual large gauge symmetry parameterized by an unconstrained function

ε(z) on the S4 at I+. Under such a large gauge transformation

δAa(z) = ∂aε(z) . (3.3.2)

In order to analyze the field equations near I+ we assume an asymptotic expansion for the

gauge field:

Aa =
∑
n=0

A
(n)
a

rn
, Au =

∑
n=1

A
(n)
u

rn
. (3.3.3)

The O(r−2, r−3, r−4) orders of the constraint equation are (in the absence of matter currents)

∂u(A
(1)
u −DaA(0)

a ) = 0 , (3.3.4)

(D2 − 1)A(1)
u + ∂u(2A

(2)
u −DaA(1)

a ) = 0 , (3.3.5)

−A(2)
u − ∂uF

(4)
ru +Da(F (2)

au − 1

2
F (2)
ar ) = 0 . (3.3.6)

1Janis and Newman studied the null Cauchy problem for Maxwell’s equations in four dimensions in [77]
with similar conclusions.
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In six dimensions, a plane wave has transverse field strength behaving as Fab ∼ 1
r . Finiteness of the

energy flux at each point on I+ and finiteness of the total energy evaluated on a spacelike Cauchy

surface requires
F

(0)
ab = ∂aA

(0)
b − ∂bA

(0)
a = 0 ,

F
(0)
ub = ∂uA

(0)
b = 0 ,

(3.3.7)

which implies

A(0)
a = ∂aϕ(z) . (3.3.8)

Here ϕ(z) is a free, unconstrained function on S4 which will later be identified as the Goldstone

mode of the spontaneously broken large gauge symmetry.

The subleading term A
(1)
a (u, z) represents the free radiative data. Finiteness of the total radiated

energy requires that at large values of |u|

A(1)
a |I+

±
= 0 . (3.3.9)

Finiteness of the Coulombic energy and integration of (3.3.4) then imply

A(1)
u = 0 . (3.3.10)

Demanding that the electric field fall off like 1
r4

near I+
− together with (3.3.5) then imply

A(2)
u |I+

+
= 0 , (3.3.11)

and interior values of A(2)
u are determined by integrating (3.3.5). At the next order we must specify

the boundary data for the electric field

F (4)
ru |I+

−
= −3A(3)

u |I+
−
≡ Er . (3.3.12)

We are interested in scattering processes that revert to the vacuum at u = ∞, so we require
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F
(4)
ru |I+

+
= 0. We additionally require A(2)

a |I+
±
= 0. A full perturbative solution of course requires

the equations of motion as well as the constraints.

3.3.2 Asymptotic Analysis at I−

Similar analysis can be applied to a Maxwell field Bµ in advanced coordinates near I−. We label

the corresponding field strength tensor Gµν = ∂µBν − ∂νBµ, and denote G(4)
rv |I−

+
= E−

r . Advanced

radial gauge

Ar = 0 , Av|I− = 0 (3.3.13)

leaves unfixed a residual large gauge symmetry parameterized by an unconstrained function ε−(z).

The various finiteness conditions applied in the previous section lead to a similar set of boundary

conditions for Bµ. In particular, we have B(0)
a (z) = ∂aψ(z), with ψ(z) an unconstrained function

on S4.

3.3.3 Scattering

Given asymptotic data Aµ on I+ and Bµ on I−, we must specify a matching condition for the

boundary values of the two gauge fields in order to properly define the scattering problem. In doing

so, we also single out a diagonal subgroup of the large gauge transformations acting separately at

I+ and I−, which can then be interpreted as a symmetry of the S-matrix.

The boundary condition (3.3.9) provides a trivial matching condition for the radiative data.

The only nontrivial components of the gauge field strength on the boundaries of I+ and I− are

the quantities Er and E−
r . As in four dimensions [34], we impose the matching condition

Er(z) = E−
r (z) . (3.3.14)

Here z labels a null generator, so that the coordinate argument of E−
r is antipodally related to the

55



Chapter 3: Asymptotic Symmetries of Massless QED in Even Dimensions

argument of Er. The corresponding matching condition for the Goldstone modes is

ϕ(z) = ψ(z) . (3.3.15)

The diagonal subgroup of large gauge transformations acting at I+ and I− is therefore obtained

by imposing

ε(z) = ε−(z) . (3.3.16)

3.3.4 Mode Expansions

The radiative modes of the gauge field in the plane wave basis take the form

Aµ(x) = e
∑
α

∫
d5q

(2π)5
1

2ωq

[
ε∗αµ (q⃗ )aα(q⃗ )e

iqx + εαµ(q⃗ )aα(q⃗ )
†e−iqx

]
, (3.3.17)

where ωq = |q⃗ |, εαµ are the four independent polarization vectors for the photon in six dimensions,

and [
aα(p⃗ ), aβ(q⃗ )

†
]
= 2ωqδαβ(2π)

5δ(5)(p⃗− q⃗ ) . (3.3.18)

The free radiative data in this basis is of the form

A(1)
a (u, za) = − 2π2e

(2π)5
∂ax̂

i
∑
α

∫
ωqdωq

[
ε∗αi aα(ωqx̂)e

−iωqu + εαi aα(ωqx̂)
†eiωqu

]
. (3.3.19)

We can define a Fourier image for the radiative modes

Aω(1)
a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

ε∗αi aα(ωx̂(z)) ,

A−ω(1)
a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

εαi aα(ωx̂(z))
† ,

(3.3.20)

with ω > 0 assumed for both expressions. We can define the corresponding zero-mode operator

A0(1)
a ≡ 1

2
lim
ω→0

(
Aω(1)

a +A−ω(1)
a

)
. (3.3.21)
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In a similar way we can introduce the in-modes

B(1)
a (v, z) ≡ lim

r→∞
r∂ax

i(r, z)Ai(v − r, rx̂i(z)) (3.3.22)

so that

Bω(1)
a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

ε∗αi aα(−ωx̂(z)) ,

B−ω(1)
a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

εαi aα(−ωx̂(z))† .
(3.3.23)

The corresponding zero-mode operator is

B0(1)
a ≡ 1

2
lim
ω→0

(
Bω(1)

a +B−ω(1)
a

)
. (3.3.24)

3.4 Soft Theorem as a Ward Identity

In this section we recast Weinberg’s soft theorem as a Ward identity for charges constructed out

of the matter and gauge fields. In the following section, we demonstrate that this Ward identity is

associated to a new group of asymptotic symmetries of massless QED.

3.4.1 Soft Theorem

Weinberg’s soft theorem takes the same form in any dimension:

lim
ω→0

ω⟨zn+1, . . . |aα(q)S|z1, . . . ⟩ = eω

[
n+n′∑
k=n+1

Qk
pk · εα
pk · q

−
n∑

k=1

Qk
pk · εα
pk · q

]
⟨zn+1, . . . |S|z1, . . . ⟩ .

(3.4.1)

Here, aα(q) is a creation operator for an outgoing on-shell photon with polarization εα and momen-

tum q. A null momentum vector in six dimensions is completely characterized by its energy ω and
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a point z on the S4. This allows us to express the soft photon’s momentum as

qµ = ω
[
1, x̂i(z)

]
. (3.4.2)

Here, x̂(z) is the embedding of the unit S4 into R5. We use the same parametrization for the

momenta of the massless external particles:

pµk = Ek

[
1, x̂i(zk)

]
. (3.4.3)

In-states and out-states are then determined by the energy Ek, electric charge Qk, and I-crossing

point zk for each external particle. We denote the in- and out-states by

|z1, . . . , zn⟩ , ⟨zn+1, . . . , zn+n′ | , (3.4.4)

respectively. In what follows, we assume that the incoming and outgoing states do not include soft

photons.

Motivated by the expression for the radiative modes (3.3.20), we define the function

F out
a (z, z1, . . . , zn+n′) ≡ ∂ax̂

i(z)ω
∑
α

ε∗αi

[
n+n′∑
k=n+1

Qk
pk · εα
pk · q

−
n∑

k=1

Qk
pk · εα
pk · q

]
(3.4.5)

=

n+n′∑
k=n+1

Qk∂a log(1− P (z, zk))−
n∑

k=1

Qk∂a log(1− P (z, zk)) . (3.4.6)

Here we have used the completeness relation for polarization vectors

∑
α

ε∗iα (q⃗ )ε
j
α(q⃗ ) = δij − qiqj

q⃗ 2
(3.4.7)

and defined a function2

P (z, zk) ≡ x̂i(z)x̂
i(zk) . (3.4.8)

2P is known as the invariant distance on the S4, and is related to the cosine of the geodesic distance.
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F out
a (z, z1, . . . , zn+n′) (abbreviated Fa(z; zk)) is simply related to the zero-mode insertion:

⟨zn+1, . . . |A0(1)
a (z)S|z1, . . . ⟩ = − e2

(4π)2
F out
a (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ . (3.4.9)

Straightforward algebra reveals that F out
a (z; zk) obeys the differential equation

√
γ(D2 − 2)DaF out

a (z; zk) = −(4π)2

[
n+n′∑
k=n+1

Qk δ
(4)(z − zk)−

n∑
k=1

Qk δ
(4)(z − zk)

]
. (3.4.10)

We may also consider Weinberg’s soft theorem for an incoming soft photon, which reads

lim
ω→0

ω⟨zn+1, . . . |Saα(q)†|z1, . . . ⟩ = −eω

[
n+n′∑
k=n+1

Qk
pk · ε∗α
pk · q

−
n∑

k=1

Qk
pk · ε∗α
pk · q

]
⟨zn+1, . . . |S|z1, . . . ⟩ .

(3.4.11)

We similarly define

F in
a (z, z1, . . . , zn+n′) ≡ ∂ax̂

i(z)ω
∑
α

εαi

[
n+n′∑
k=n+1

Qk
pk · ε∗α
pk · q

−
n∑

k=1

Qk
pk · ε∗α
pk · q

]
(3.4.12)

= −

[
n+n′∑
k=n+1

Qk∂a log(1 + P (z, zk))−
n∑

k=1

Qk∂a log(1 + P (z, zk))

]
, (3.4.13)

which is in turn related to the zero-mode insertion

⟨zn+1, . . . |SB0(1)
a (z)|z1, . . . ⟩ =

e2

(4π)2
F in
a (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ . (3.4.14)

Combining equations (3.3.16), (3.4.9), (3.4.10), and (3.4.14), we obtain the relation

1

2e2

∫
d4z

√
γ ε(z)(D2 − 2)Da⟨zn+1, . . . |A0(1)

a (z)S|z1, . . . ⟩

+
1

2e2

∫
d4z

√
γ ε−(z)(D2 − 2)Da⟨zn+1, . . . |SB0(1)

a (z)|z1, . . . ⟩

=

[
n+n′∑
k=n+1

Qkε(zk)−
n∑

k=1

Qkε(zk)

]
⟨zn+1, . . . |S|z1, . . . ⟩ .

(3.4.15)
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We can rewrite this expression as a Ward identity

⟨zn+1, . . . |
(
Q+

ε S − SQ−
ε

)
|z1, . . . ⟩ = 0 , (3.4.16)

where Q±
ε are charges acting on I± states. Q±

ε can be decomposed into a hard charge and a soft

charge:

Q±
ε = Q±

H +Q±
S . (3.4.17)

The hard charges Q±
H are defined so that

Q−
H |z1, . . . ⟩ =

n∑
k=1

Qk ε(zk)|z1, . . . ⟩ , ⟨zn+1, . . . |Q+
H = ⟨zn+1, . . . |

n+n′∑
k=n+1

Qk ε(zk) . (3.4.18)

The soft charges are given by

Q+
S = − 1

2e2

∫
d4z

√
γ ε(z) [D2 − 2]DaA0(1)

a (z) ,

Q−
S =

1

2e2

∫
d4z

√
γ ε−(z) [D2 − 2]DaB0(1)

a (z) .

(3.4.19)

3.5 From Ward Identity to Asymptotic Symmetry

We would now like to interpret the Ward identity (3.4.16) in terms of symmetry transformations

on the matter and gauge fields and to identify the asymptotic symmetry group of six-dimensional

massless QED.

3.5.1 Action on Matter Fields

Equation (3.4.18) indicates that the charges Q±
H generate a gauge transformation on the matter

fields. We can express Q±
H in terms of the gauge current:

Q+
H = lim

r→∞

∫
I+

r4
√
γdud4z ε(z) JM

u (u, r, z) ,

Q−
H = lim

r→∞

∫
I−
r4
√
γdvd4z ε−(z) JM

v (v, r, z) .

(3.5.1)
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For a matter field ΨQ of charge Q we have

[
Q+

H ,ΨQ(u, r, z)
]
=

[
lim
r→∞

∫
I+

r4
√
γ εJM

u ,ΨQ(u, r, z)

]
= −ε(z)QΨQ(u, r, z) . (3.5.2)

The soft charges Q±
S commute with ΨQ, so we see that the total charges Q±

ε generate gauge

transformations on the matter fields with gauge parameter ε(z).

3.5.2 Action on Gauge Fields

Since the full theory is invariant only under combined gauge transformations of the matter and

gauge fields, it is intuitively obvious that Q±
S must generate a large gauge transformation for the

gauge fields Aa and Ba. In order to make this relationship precise, we can use the constraint

equation (3.2.8) along with the boundary conditions from section 3.3.1 to rewrite the total charge

as a boundary integral

Q+
ε =

1

e2
lim
r→∞

∫
I+
−

r4
√
γ d4z ε(z) Fru(u, r, z) =

1

e2

∫
I+
−

√
γ d4z ε(z) Er(z) , (3.5.3)

Q−
ε =

1

e2
lim
r→∞

∫
I−
+

r4
√
γ d4z ε−(z) Grv(v, r, z) =

1

e2

∫
I−
+

√
γ d4z ε−(z) E−

r (z) . (3.5.4)

At this point several comments are in order. For ε(z) = 1 these expressions reduce to the

familiar expressions for total electric charge at I+
− and I−

+ . For non-constant ε(z) they are the

natural generalization of the asymptotic symmetry generators in the four-dimensional case [34].

Both charges are written as pure boundary integrals of the free data Er and E−
r , allowing for

a canonical identification of asymptotic symmetry transformations at I+ and I−. In the next

subsection we demonstrate that it is possible to define a symplectic structure on the phase space of

the theory so that the charges do in fact generate large gauge transformations on the gauge fields.
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3.5.3 Bracket for the Free Data

In order to claim that the Q±
ε generate gauge transformations we need to define the symplectic

structure on the phase space of the theory. The bracket for the radiative modes is unambiguous

[78, 79] and can be deduced from the mode expansion:

[
A(1)

a (u, z), ∂u′A
(1)
b (u′, z′)

]
= i

e2

2
γab δ(u− u′)

δ(4)(z − z′)
√
γ

. (3.5.5)

The bracket for the zero-modes can then be defined so that the charge Q±
ε generates the correct

gauge transformation. The correct bracket is given by

[
Er(z), ϕ(z

′)
]
= ie2

δ(4)(z − z′)
√
γ

. (3.5.6)

The bracket (3.5.6) resembles that of the constant modes in [34]. Similar expressions hold for I−

quantities. It follows that [
Q+

ε , Aa(z)
]
= i∂aε(z) , (3.5.7)

and we conclude that the charges Q±
ε generate large gauge transformations on the matter fields

and gauge fields of the theory.

As we have seen, Q±
S does not annihilate the conventional vacuum of the theory. In fact, when

Q±
S acts on the vacuum it creates a soft photon, indicating that the large gauge symmetries are

spontaneously broken. Under a large gauge transformation with parameter ε(z), the free data ϕ(z)

transforms as a Goldstone boson:

ϕ(z) → ϕ(z) + ε(z) . (3.5.8)
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3.6 Generalization to Arbitrary Even-Dimensional Space-

time

The results of the preceding sections can be straightforwardly generalized to arbitrary even-dimensional

flat spacetimes. In this section, we sketch the derivation of the Ward identity for d = 2m + 2 -

dimensional spacetime, omitting a detailed discussion of the boundary conditions and symplectic

form.

The plane wave expansion of the gauge field in d = 2m+ 2 dimensions is given by

Aµ(u, r, z) = e
∑
α

∫
d2m+1q

(2π)2m+1

1

2ωq

[
ε∗αµ (q⃗ )aα(q⃗ )e

iqx + εαµ(q⃗ )aα(q⃗ )
†e−iqx

]
. (3.6.1)

Here, ωq = |q⃗ | and α labels the 2m polarizations of the photon with corresponding polarization

vectors εαµ(q⃗ ). The operator aα(q⃗ )† is a photon creation operator normalized so that

[
aα(p⃗ ), aβ(q⃗ )

†
]
= 2ωqδαβ(2π)

2m+1δ(2m+1)(p⃗− q⃗ ) . (3.6.2)

We can evaluate the leading term in the large-r expansion of (3.6.1) using the saddle point ap-

proximation, yielding an expression for the radiative degrees of freedom of the Maxwell field in

d = 2m+ 2 dimensions near I+. The expression for the Fourier image is

Aω(m−1)
a (z) =

(−i)mωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

ε∗αj aα(ωx̂(z)) , (3.6.3)

A−ω(m−1)
a (z) =

imωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

εαj aα(ωx̂(z))
† , (3.6.4)

where x̂i(z) is an embedding of S2m into R2m+1. We can define a generalized zero-mode operator

A0(m−1)
a =

1

2
lim
ω→0

(iω)2−m
[
Aω(m−1)

a + (−1)mA−ω(m−1)
a

]
. (3.6.5)
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Using the conventions (3.4.2)-(3.4.4), we can rewrite Weinberg’s soft theorem (3.4.1) in the form

⟨zn+1, . . . |A0(m−1)
a (z)S|z1, . . . ⟩ = −(−1)me2

4(2π)m
F out
a (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ . (3.6.6)

Here, the soft factor

F out
a (z, z1, . . . , zn+n′) ≡ ∂ax̂

i(z)ω
∑
α

ε∗αi

[
n+n′∑
k=n+1

Qk
pk · εα
pk · q

−
n∑

k=1

Qk
pk · εα
pk · q

]
(3.6.7)

=
n+n′∑
k=n+1

Qk∂a log(1− P (z, zk))−
n∑

k=1

Qk∂a log(1− P (z, zk)) (3.6.8)

satisfies the differential equation

(−1)m+1√γ
2m−1∏
l=m+1

[D2 − (2m− l)(l − 1)]DaF out
a

= Γ(m)2m(2π)m

[
n∑

k=1

Qkδ
(2m)(z − zk)−

n+n′∑
k=n+1

Qkδ
(2m)(z − zk)

]
.

(3.6.9)

We can similarly introduce the in-modes

Bω(m−1)
a (z) =

imωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

ε∗αj aα(−ωx̂(z)) , (3.6.10)

B−ω(m−1)
a (z) =

(−i)mωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

εαj aα(−ωx̂(z))† , (3.6.11)

and the associated zero-mode operator

B0(m−1)
a =

1

2
lim
ω→0

(iω)2−m
[
Bω(m−1)

a + (−1)mB−ω(m−1)
a

]
. (3.6.12)

We then have

⟨zn+1, . . . |SB0(m−1)
a (z)|z1, . . . ⟩ =

e2

4(2π)m
F in
a (z; zk)⟨zn+1, . . . |S|z1, . . . ⟩ , (3.6.13)
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where

F in
a (z, z1, . . . , zn+n′) = −

[
n+n′∑
k=n+1

Qk∂a log(1 + P (z, zk))−
n∑

k=1

Qk∂a log(1 + P (z, zk))

]
. (3.6.14)

Combining equations (3.3.16), (3.6.6), (3.6.9), and (3.6.13), we can rewrite the soft theorem as

the Ward identity

⟨zn+1, . . . |
(
Q+

ε S − SQ−
ε

)
|z1, . . . ⟩ = 0 . (3.6.15)

The charges Q±
ε = Q±

H +Q±
S act on I± states, with the action of Q±

H defined so that

Q−
H |z1, . . . ⟩ =

n∑
k=1

Qk ε(zk)|z1, . . . ⟩ , ⟨zn+1, . . . |Q+
H = ⟨zn+1, . . . |

n+n′∑
k=n+1

Qk ε(zk) . (3.6.16)

The soft charges take the form

Q+
S = − 1

2e2
22−m

Γ(m)

∫
d2mz

√
γ ε(z)

2m−1∏
l=m+1

(D2 − (2m− l)(l − 1))DaA0(m−1)
a , (3.6.17)

Q−
S =

(−1)m

2e2
22−m

Γ(m)

∫
d2mz

√
γ ε−(z)

2m−1∏
l=m+1

(D2 − (2m− l)(l − 1))DaB0(m−1)
a . (3.6.18)

Note that the careful limiting procedure of section 3.4 may still be applied to Aω
a near ω = 0. The

charges Q±
H can be written in terms of the gauge current

Q+
H = lim

r→∞
r2m

∫
I+

√
γ ε(z) JM

u (u, r, z) , Q−
H = lim

r→∞
r2m

∫
I−

√
γ ε−(z) JM

v (v, r, z) . (3.6.19)

This operator generates a gauge transformation with parameter ε(z) when acting on the matter

fields. Assuming a natural generalization of the boundary conditions from section 3.3 and using

Maxwell’s equations (3.2.7), we can write the total charge Q±
ε = Q±

H +Q±
S as a boundary integral

Q+
ε =

1

e2
lim
r→∞

r2m
∫
I+
−

d2mz
√
γ ε(z) Fru(u, r, z) ,

Q−
ε =

1

e2
lim
r→∞

r2m
∫
I−
+

d2mz
√
γ ε−(z) Grv(v, r, z) .

(3.6.20)
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We can introduce an extended phase space for the modes on I+ and I− to include ϕ(z) and Er(z).

The symplectic form of section 3.5.3 can then be used to demonstrate that (3.6.20) generates large

gauge transformations on the matter fields and gauge fields. These large gauge transformations are

the asymptotic symmetries for even-dimensional massless QED.

3.7 Open Questions and Relations to Subsequent Work

Our analysis has been restricted to the case of massless matter fields. It would be interesting to

extend the analysis to include massive particles, along the lines of [80, 81]. Since this work first

appeared, there have been a number of papers which analyze the action of large gauge symmetries

in four-dimensional QED in a basis of infrared safe states [82–84]. Since the QED S-matrix is

infrared finite for D > 4, it is unclear whether or not such analyses are relevant to the questions

considered in this chapter, but the issue deserves further consideration. In four dimensions, the

soft theorems and asymptotic symmetries of QED have been related to so-called electromagnetic

memory effects [85–87]. The soft theorems, asymptotic symmetries [88] and memory effects [89, 90]

have been separately analyzed in the higher-dimensional case. These are outstanding problems for

future investigations.
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4
New Symmetries of QED

4.1 Introduction

The soft photon theorem [4–7, 91] has played a ubiquitous role in the study of QED and more

general abelian gauge theories. For example, it is essential for taming otherwise uncontrollable

infrared divergences in the S-matrix and is central to the analysis of jet substructure. Recent

considerations [34, 36–38, 44, 92–95] have demonstrated that, in abelian gauge theories with only

massless charged particles, the soft theorem is a Ward identity of an infinite-dimensional symmetry

group comprised of certain “large” gauge transformations which do not die off at infinity. These

symmetries are spontaneously broken and the soft photons are the Goldstone bosons. This is but

one instance of a recently-discovered universal triangle connecting soft theorems, symmetries and

memory in gauge and gravitational theories [15, 30–45, 61, 62, 87, 88, 96–99].

Of course in the real world QED has massive, not massless, charged particles. Hence, it is
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desirable to extend our results to the massive case. That goal is achieved in this chapter. As seen

below, the massive case is rather more subtle than the massless one and requires a careful analysis

of timelike infinity.

We hope that the identification given herein of the symmetry which controls the electromag-

netic soft behavior of QED and more generally, the Standard Model will have practical utility for

organizing and predicting a variety of physical phenomena.

The outline of this chapter is as follows. In section 4.2, we establish conventions and review rel-

evant aspects of abelian gauge theories and their asymptotic symmetries. In section 4.3, we discuss

the asymptotic states, derive the Ward identity of the asymptotic symmetries, and demonstrate its

equivalence to the soft photon theorem.

A key ingredient of our analysis is that, in physical applications, the electromagnetic field is

generically1 not smooth near spatial infinity i0. Rather, it obeys a matching condition near i0 which

identifies its value at the future of past null infinity (I−
+ ) with its value at the antipodal point on

the sphere at the past of future null infinity (I+
− ). In appendix 4.A, we show in detail how this

follows from the standard Liénard-Wiechert formulae.

4.2 Abelian Gauge Theory with Massive Matter

We consider the theory of an abelian gauge field Aµ coupled to massive matter fields Ψi with charges

eQi, where Qi is an integer, in Minkowski space. In retarded coordinates, the Minkowski metric

reads

ds2 = −dt2 + (dxi)2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ , (4.2.1)

1For instance when, as in electron-positron scattering, the dipole moment is not constant in the far past
or future.
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where u is retarded time and γzz̄ is the round metric on the unit radius S2 with covariant derivative

Dz. The S2 coordinates (z, z̄) are related to standard Cartesian coordinates by

r2 = xix
i , u = t− r , xi = rx̂i(z, z̄) . (4.2.2)

In retarded coordinates, future null infinity (I+) is the null hypersurface (r = ∞, u, z, z̄).

Near past null infinity (I−), we work in advanced coordinates (v, r, z, z̄) with line element

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄ . (4.2.3)

Advanced coordinates are given by

r2 = xix
i , v = t+ r , xi = −rx̂i(z, z̄) , (4.2.4)

and I− corresponds to the null hypersurface (r = ∞, v, z, z̄). Note in particular that the angular

coordinates on I+ are antipodally related to those on I− so that a light ray passing through the

interior of Minkowski space reaches the same value of z, z̄ at both I+ and I−. We denote the future

(past) boundary of I+ by I+
+ (I+

− ), and the future (past) boundary of I− by I−
+ (I−

− ).

We consider theories with a U(1) gauge field strength F = dA subject to the Maxwell equation

∇µFµν = e2Jν , (4.2.5)

where Jν is the matter charge current. This is invariant under the gauge transformations

Aµ(x) → Aµ(x) + ∂µε(x) , Ψi(x) → eiQiε(x)Ψi(x) , (4.2.6)

where ε ∼ ε+ 2π and Ψi is a wavefunction or field. Gauge transformations that vanish at infinity

correspond to redundant descriptions of the same physical state and can be eliminated by a choice

of gauge. However, as in the massless case [34], we are interested in certain angle-dependent large

gauge transformations which act nontrivially on physical states.
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4.2.1 Asymptotics

We now analyze the behavior of the theory near I+ in retarded radial gauge

Ar = 0 , Au|I+ = 0 . (4.2.7)

This gauge choice leaves unfixed a class of residual large gauge transformations parameterized by

an arbitrary function ε+(z, z̄) on S2. These gauge transformations change boundary data at I+

and are to be regarded as physical symmetries of the theory. Near I+, we assume the asymptotic

expansion

Au =

∞∑
n=1

A
(n)
u (u, z, z̄)

rn
, Az =

∞∑
n=0

A
(n)
z (u, z, z̄)

rn
. (4.2.8)

A similar asymptotic expansion holds for fields near I−.

We are interested in scattering processes for which the initial and final states consist of non-

interacting massive charges moving at constant velocities. Hence, we require that the only con-

tributions to the electric and magnetic fields at future/past timelike infinity (i±, t → ±∞) are

those fields sourced by the constant velocity massive charges, and that the magnetic fields vanish

at spatial infinity:

Fzz̄|I+
−
= 0 , Fzz̄|I−

+
= 0 . (4.2.9)

In retarded coordinates, Maxwell’s equations read

r−2∂r
(
r2Fru

)
− ∂uFru + r−2

(
DzFzu +Dz̄Fz̄u

)
= e2Ju , (4.2.10)

r−2∂r
(
r2Fru

)
+ r−2

(
DzFzr +Dz̄Fz̄r

)
= e2Jr , (4.2.11)

∂r (Frz − Fuz)− ∂uFrz + r−2Dz̄Fz̄z = e2Jz . (4.2.12)

Massive particles with finite energy cannot reach I, so the matter current vanishes at this surface:

Jµ|I = 0 . (4.2.13)
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The leading order equation for the evolution of the gauge field along I+ is then given by

∂uF
(2)
ru + ∂u

(
DzA(0)

z +Dz̄A
(0)
z̄

)
= 0 . (4.2.14)

The free data at this order includes the boundary data F
(2)
ru |I+

−
along with the radiative mode

A
(0)
z (u, z, z̄).

In advanced coordinates, we can perform the analogous large-r expansion near I− and obtain

the leading order equation

∂vF
(2)
rv − ∂v

(
DzA(0)

z +Dz̄A
(0)
z̄

)
= 0 . (4.2.15)

The free data at this boundary includes the field strength boundary data F (2)
rv |I−

+
along with the

radiative mode A(0)
z (v, z, z̄). The residual large gauge symmetry is parameterized by an arbitrary

function ε−(z, z̄) on S2.

4.2.2 Matching Near Spatial Infinity

The above discussion treats the asymptotic dynamics at I+ and I− separately. However, to study

the semiclassical scattering problem, we must first specify how to relate free data and symmetry

transformations at I+ to their counterparts at I−. Generic solutions to the sourced Maxwell

equations satisfy2

F (2)
ru (z, z̄)|I+

−
= F (2)

rv (z, z̄)|I−
+
. (4.2.16)

Recalling that, according to (4.2.2) and (4.2.4), the points labelled by the same (z, z̄) in retarded

and advanced coordinates are antipodally related, this equates the boundary values of past and

future fields at antipodal points near spatial infinity i0. As discussed in [34, 96], a CPT and

2See appendix 4.A for an expanded discussion of this matching condition.
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Lorentz-invariant matching condition for the gauge field is given by

Az(z, z̄)
∣∣
I+
−
= Az(z, z̄)

∣∣
I−
+
. (4.2.17)

Requiring that the large gauge transformations preserve this matching condition gives:

ε+(z, z̄) = ε−(z, z̄) . (4.2.18)

This matching condition singles out a canonical diagonal subgroup of the large gauge transforma-

tions at I+ and I−. The corresponding gauge parameters are constant along the null generators

of I and generate nontrivial physical symmetries of the S-matrix.

4.2.3 Mode Expansions

The standard mode expansion for the gauge field in the plane wave basis takes the form

Aµ(u, r, z, z̄) = e
∑
α

∫
d3q

(2π)3
1

2ωq

[
ε∗αµ (q⃗ )aα(q⃗ )e

iq·x + εαµ(q⃗ )aα(q⃗ )
†e−iq·x

]
. (4.2.19)

The free data is contained in the O(r0) term in this expansion, which we may isolate using the

saddle point approximation:

A(0)
z (u, z, z̄) = − ie

2(2π)2
∂zx̂

i
∑
α

∫ ∞

0
dωq

[
ε∗αi aα(ωqx̂)e

−iωqu − εαi aα(ωqx̂)
†eiωqu

]
. (4.2.20)

To extract the contribution from the zero-modes, we define the following operator:

Fω
uz(z, z̄) ≡

∫ ∞

−∞
du eiωu∂uA

(0)
z (u, z, z̄) (4.2.21)

= − e

4π
∂zx̂

i
∑
α

∫ ∞

0
dωq ωq

[
ε∗αi aα(ωqx̂)δ(ω − ωq) + εαi aα(ωqx̂)

†δ(ω + ωq)
]
.
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We can separate this operator into its positive and negative frequency components

Fω
uz(z, z̄) = −eω

4π
∂zx̂

i
∑
α

ε∗αi aα(ωx̂) , F−ω
uz (z, z̄) = −eω

4π
∂zx̂

i
∑
α

εαi aα(ωx̂)
† , (4.2.22)

with ω > 0 in both expressions. The zero-mode is then given by

F 0
uz(z, z̄) ≡

1

2
lim
ω→0

(
Fω
uz + F−ω

uz

)
= − e

8π
∂zx̂

i lim
ω→0

∑
α

[
ωε∗αi aα(ωx̂) + ωεαi aα(ωx̂)

†
]
, (4.2.23)

and creates/annihilates soft photons. An analogous construction holds at I− with the incoming

soft photon operator given by

F 0
vz(z, z̄) =

e

8π
∂zx̂

i lim
ω→0

∑
α

[
ωε∗αi aα(−ωx̂) + ωεαi aα(−ωx̂)†

]
. (4.2.24)

4.2.4 Liénard-Wiechert Fields

In the analysis that follows, we will need expressions for the electric field due to moving point

charges, commonly known as Liénard-Wiechert fields. The radial electric field due to a single

particle of charge eQ, moving with constant velocity β⃗ and passing through the origin at t = 0 is

given by

Er(t, r, z, z̄) =
Qe2

4π

γ
(
r − tx̂(z, z̄) · β⃗

)∣∣γ2[t− rx̂(z, z̄) · β⃗
]2 − t2 + r2

∣∣3/2 . (4.2.25)

Here, x̂(z, z̄) is a unit vector specifying a point on the sphere and γ−2 = 1− β2.

The Liénard-Wiechert field near I+ due to a set of particles, each with charge eQk and moving

with constant velocity β⃗k, is derived by taking a superposition of the single-particle fields (4.2.25),

writing them in retarded coordinates, and taking the large-r limit with u = t− r held fixed

E+
r (z, z̄) =

∑
k

Qke
2

4πγ2kr
2

1[
1− x̂(z, z̄) · β⃗k

]2 . (4.2.26)

Likewise, the field near I− is derived by taking the large-r limit of the field (4.2.25) in advanced
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coordinates with fixed v

E−
r (z, z̄) =

∑
k

Qke
2

4πγ2kr
2

1[
1 + x̂(z, z̄) · β⃗k

]2 . (4.2.27)

Importantly, the Liénard-Wiechert formula (4.2.25) implies that the value of Er near spatial

infinity i0 depends on how it is approached. In particular, E+
r and E−

r at a fixed angle from the

origin are not in general equal near i0: rather they obey the antipodal matching condition (4.2.16).3

For unaccelerated charges, the asymptotic electric field and the asymptotic magnetic field B⃗ =

x̂× E⃗ are time-independent. Since the “hard” radiative photons involved in the scattering process

exit/enter I± at finite values of retarded/advanced time, the electromagnetic fields at I+
+ and I−

−

arise solely from the collection of charged particles long after/before the scattering process occurs

and thus are of the form given above.

4.3 Symmetries of the S-matrix

In this section we determine the phase associated to a large gauge transformation on an asymp-

totic massive charged particle state, find the S-matrix Ward identity and finally demonstrate its

equivalence to the soft photon theorem.

4.3.1 Gauge Transformations of Asymptotic States

Outgoing massless particles of charge eQ and momentum p, as considered in [34], pierce I+ at a

definite point (z(p), z̄(p)). The associated out-state therefore acquires a phase

|p⟩out → eiQε(z(p),z̄(p))|p⟩out (4.3.1)

3The constant-velocity trajectory considered in this section gives rise to a Liénard-Wiechert field that
is insensitive to the choice of Green’s function. In appendix 4.A, we consider slightly more complicated
trajectories to demonstrate that this matching condition holds for a generic Green’s function.
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under a large gauge transformation. Here we are interested in massive particles that never reach

I+, so determining the associated phase is more subtle. There is no canonical point on the S2

associated to a massive particle in the plane wave basis.4 Indeed, a massive particle with zero

three-momentum is rotationally invariant. In this subsection, we use the Liénard-Wiechert formula

to determine the analog of the phase (4.3.1).

The asymptotic states associated to the QED S-matrix are typically taken to be free photons

and “bare” non-interacting charged particles. However, the “bare” electron states are not strictly

speaking bare (nor are they non-interacting) in the sense that they source non-vanishing electro-

magnetic fields. These long-range fields accompanying the scattering states are responsible for the

infrared divergences in the loop-level matrix elements: even widely separated electrons experience

a nonzero acceleration, causing them to bremsstrahlung radiate infinite numbers of low-energy

photons. Physically, it is impossible to separate a charged particle from its electromagnetic field.

Mathematically, the ability to do so would violate Gauss’s law, which is a constraint in the quantum

theory in physical gauges:

[
∇ · E⃗(x, t)− e2ρ(x, t)

]
|phys⟩ = 0 . (4.3.2)

This sourced electromagnetic field can be treated as a classical background, while the transverse

photons describe excitations of the quantized, unsourced electromagnetic field. Since outgoing

charged particle states with momentum pµ = γm
[
1, β⃗

]
source Liénard-Wiechert fields, the action

of the electric field at I+
+ is nontrivial and given by

Er(r, z, z̄)|p⟩out =

[
Qe2

4πγ2r2
1[

1− x̂(z, z̄) · β⃗
]2
]
|p⟩out . (4.3.3)

Then, since gauge transformations are generated by the electric charge operator, under a large

4Since plane waves of massless particles localize to points on the conformal sphere at null infinity, they
are related to local operator insertions on that sphere. Likewise, massive particles in boost eigenstates are
also associated to local points on the sphere.
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gauge transformation, such a state acquires a phase

|p⟩out → exp

[
i
1

e2

∫
I+
+

d2z γzz̄ε
+F (2)

ru

]
|p⟩out

= exp

[
i

∫
I+
+

d2zγzz̄ε
+

(
1

4πγ2
Q[

1− x̂(z, z̄) · β⃗
]2
)]

|p⟩out .
(4.3.4)

Similarly, in-states transform as

|p⟩in → exp

[
i

∫
I−
−

d2zγzz̄ε
−

(
1

4πγ2
Q[

1 + x̂(z, z̄) · β⃗
]2
)]

|p⟩in . (4.3.5)

For an n-particle state, the phase will be a sum of n such terms. This phase replaces the much

simpler expression (4.3.1) for massless particles but nevertheless, as will be seen shortly, precisely

reproduces the soft factor for massive particles.

4.3.2 Ward Identity

We are now in a position to discuss the symmetries of the S-matrix. The symmetry transformations

(4.2.6) for massless matter fields have already been analyzed in [34], where it was demonstrated

that the charge

Q+
ε =

1

e2

∫
I+
−

d2zγzz̄ε
+(z, z̄)F (2)

ru (z, z̄) (4.3.6)

generates the correct I+ symmetry transformation on the gauge field and matter fields. The form of

this charge is essentially fixed by the transformation law for the gauge field. We can use the leading

order Maxwell equation (4.2.14) to turn this expression into an integral over I+. As discussed

in section 4.2.4, the existence of massive particles generates charge flux through future timelike

infinity, so the local charge operator takes the form

Q+
ε =

1

e2

∫
I+

γzz̄dud
2z ε+∂u

(
DzA(0)

z +Dz̄A
(0)
z̄

)
+

1

e2

∫
I+
+

d2z γzz̄ε
+F (2)

ru

≡ 1

e2

∫
S2

γzz̄d
2z ε+

(
DzF 0

uz +Dz̄F 0
uz̄

)
+

1

e2

∫
I+
+

d2z γzz̄ε
+F (2)

ru . (4.3.7)
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The first piece of the charge is written in terms of the soft photon operator and will be referred

to as the soft charge Q+
S . If we consider the fixed-angle charge by choosing ε(z, z̄) = δ(2)(z − w),

then the second term is simply the radial electric field in the direction (w, w̄) resulting from the

charged particles in the final state at i+. We label this term the hard charge Q+
H . It differs from

the expression for the hard charge in the massless case which involves an integral over I+.

An analogous computation can be performed at I−, where the hard charge encodes the radial

electric field of the charged particles in the initial state at i−. The charge is given by

Q−
ε =

1

e2

∫
S2

γzz̄d
2z ε−

(
DzF 0

vz +Dz̄F 0
vz̄

)
+

1

e2

∫
I−
−

d2z γzz̄ε
−F (2)

rv ≡ Q−
S +Q−

H . (4.3.8)

The statement that the transformations (4.2.6) are symmetries of the S-matrix is equivalent to

the statement that the charges (4.3.7) and (4.3.8) commute with the S-matrix:

⟨out|
(
Q+

ε S − SQ−
ε

)
|in⟩ = 0 . (4.3.9)

In order to facilitate comparison with the soft theorem, we separate the hard and soft contributions

and rearrange the Ward identity:

⟨out|
(
Q+

SS − SQ−
S

)
|in⟩ = −⟨out|

(
Q+

HS − SQ−
H

)
|in⟩ . (4.3.10)

4.3.3 Soft Theorem → Ward Identity

The soft photon theorem for the emission of an outgoing photon in a scattering process with m

incoming hard particles and (n−m) outgoing hard particles reads

lim
ω→0

ω⟨pm+1, . . . |aα(q)S|p1, . . . ⟩

= eω

[
n∑

k=m+1

Qk
pk · εα
pk · q

−
m∑
k=1

Qk
pk · εα
pk · q

]
⟨pm+1, . . . |S|p1, . . . ⟩ .

(4.3.11)
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A null momentum vector is uniquely specified by an energy and a point z on the asymptotic sphere,

and so we parameterize the photon’s momentum as

qµ = ω [1, x̂(z, z̄)] ≡ ωq̂µ(z, z̄) , (4.3.12)

where x̂ : S2 → R3 is an embedding of the sphere into flat three-dimensional space.

We parameterize a massive particle’s momentum as

pµk = γkmk

[
1, β⃗k

]
, (4.3.13)

where m is the rest mass of the particle, β⃗ is the particle’s velocity and γ is the relativistic factor

γ−2 = 1− β2.

We can relate the left-hand side of equation (4.3.11) to the zero-mode operator defined in equa-

tion (4.2.23) by taking a weighted sum over polarizations. If we perform the analogous operation

on the right-hand side and use the identity

∂zx̂
i(z, z̄)

∑
α

ε∗αi
pk · εα

pk · q̂(z, z̄)
= ∂z log(pk · q̂) , (4.3.14)

the soft theorem can be written

⟨pm+1, . . . |F 0
uzS|p1, . . . ⟩

= − e2

8π

[
n∑

k=m+1

Qk ∂z log(pk · q̂)−
m∑
k=1

Qk ∂z log(pk · q̂)

]
⟨pm+1, . . . |S|p1, . . . ⟩ .

(4.3.15)

The soft photon theorem for an incoming soft photon reads

lim
ω→0

ω⟨pm+1, . . . |Saα(q)†|p1, . . . ⟩

= −eω

[
n∑

k=m+1

Qk
pk · ε∗α
pk · q

−
m∑
k=1

Qk
pk · ε∗α
pk · q

]
⟨pm+1, . . . |S|p1, . . . ⟩ .

(4.3.16)
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An identical calculation yields

⟨pm+1, . . . |SF 0
vz|p1, . . . ⟩

=
e2

8π

[
n∑

k=m+1

Qk ∂z log(pk · q̂′)−
m∑
k=1

Qk ∂z log(pk · q̂′)

]
⟨pm+1, . . . |S|p1, . . . ⟩ ,

(4.3.17)

where q̂′ = [1,−x̂i(z, z̄)]. Taking the divergence of each equation, using global charge conservation,

and integrating against the respective gauge parameter, we find

⟨pm+1, . . . |
(∫

S2

d2zγzz̄ε
+
(
DzF 0

uz +Dz̄F 0
uz̄

))
S|p1, . . . ⟩

= −1

2

∫
S2

d2zγzz̄ε
+r2
( [
E+

r

]
out −

[
E+

r

]
in

)
⟨pm+1, . . . |S|p1, . . . ⟩ (4.3.18)

and

⟨pm+1, . . . |S
(∫

S2

d2zγzz̄ε
− (DzF 0

vz +Dz̄F 0
vz̄

))
|p1, . . . ⟩

=
1

2

∫
S2

d2zγzz̄ε
−r2
( [
E−

r

]
out −

[
E−

r

]
in

)
⟨pm+1, . . . |S|p1, . . . ⟩ . (4.3.19)

Taking the difference and using the matching conditions (4.2.16)-(4.2.18), we obtain

⟨pm+1, . . . |Q+
SS − SQ−

S |p1, . . . ⟩

= − 1

e2

∫
S2

d2zγzz̄r
2
(
ε+Er

∣∣
I+
+
− ε−Er

∣∣
I−
−

)
⟨pm+1, . . . |S|p1, . . . ⟩ (4.3.20)

= −⟨pm+1, . . . |Q+
HS − SQ−

H |p1, . . . ⟩ .

This precisely reproduces the Ward identity (4.3.10).

In conclusion, while the details are more intricate than in the massless case, the soft photon

theorem is the Ward identity of an infinite-dimensional asymptotic symmetry group for abelian

gauge theories with massive particles. We expect similar conclusions to apply in other contexts

such as non-abelian gauge theory and gravity.
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4.A Gauge Field Strength Near i0

In this section, we consider an idealized semiclassical scattering process in which m incoming mas-

sive particles with constant velocities {β⃗1, . . . , β⃗m} scatter to (n−m) outgoing massive particles with

constant velocities {β⃗m+1, . . . , β⃗n}. For scattering occurring at the origin at t = 0, the semiclassical

electromagnetic current is given by

jµ(x) =

m∑
k=1

Qk

∫
dτUk

µΘ(−τ)δ(4)
(
x− Ukτ

)
+

n∑
k=m+1

Qk

∫
dτUk

µΘ(τ)δ(4)
(
x− Ukτ

)
, (4.A.1)

where Uk
µ = γk

[
1, β⃗k

]
is the 4-velocity of the kth particle. Ignoring the radiative contributions

arising from the infinite acceleration of particles at the origin, the field strength sourced by this

current takes the form

Frt(x) =
e2

4π

m∑
k=1

g(x; β⃗k) Qkγk
(
r − tx̂ · β⃗k

)∣∣γ2k[t− rx̂ · β⃗k
]2 − t2 + r2

∣∣3/2 + e2

4π

n∑
k=m+1

h(x; β⃗k) Qkγk
(
r − tx̂ · β⃗k

)∣∣γ2k[t− rx̂ · β⃗k
]2 − t2 + r2

∣∣3/2 , (4.A.2)

where the functional form of g and h depends on the choice of Green’s function.

For the retarded solution, the asymptotic behavior of g and h is given by

g(r = ∞, u, x̂; β⃗k) = Θ(−u) , h(r = ∞, u, x̂; β⃗k) = Θ(u) , (4.A.3)

g(r = ∞, v, x̂; β⃗k) = 1 , h(r = ∞, v, x̂; β⃗k) = 0 . (4.A.4)

The electric field at I+
− is obtained by working in retarded coordinates and taking the limit r → ∞,

followed by the limit u → −∞. This electric field will be of the form (4.2.26), but only receives

contributions from the incoming particles. On the other hand, the electric field at I−
+ is obtained by

working in advanced coordinates and taking the limit r → ∞, followed by the limit v → +∞. The

electric field measured at I−
+ will be of the form (4.2.27), but will also only receive contributions

from the incoming particles, thereby satisfying the matching condition (4.2.16).
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Likewise, for the advanced solution, the asymptotic behavior of g and h is given by

g(r = ∞, u, x̂; β⃗k) = 0 , h(r = ∞, u, x̂; β⃗k) = 1 , (4.A.5)

g(r = ∞, v, x̂; β⃗k) = Θ(−v) , h(r = ∞, v, x̂; β⃗k) = Θ(v) . (4.A.6)

Hence, the advanced solution also obeys the matching condition (4.2.16) near i0, but in contrast

to the retarded solution, only receives contributions from the outgoing particles. Moreover, linear

combinations of the advanced and retarded solutions evaluated near i0 will obey the matching

condition and receive contributions from both outgoing and incoming particles.

Of course, one could always add a homogeneous solution to the free Maxwell equations which

does not obey the matching condition. However, we do not know of any physical application in

which it is natural to do so: finite energy wave packets die off at i0. Hence, we conclude that the

antipodal matching condition (4.2.16) holds in generic physical applications.
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5
Infrared Divergences in QED, Revisited

5.1 Introduction

Recently, it has been shown [32, 34, 80, 81, 96] (see [100] for a review) that the infrared (IR) sector

of all abelian gauge theories, including QED, is governed by an infinite-dimensional symmetry

group. The symmetry group is generated by large gauge transformations that approach angle-

dependent constants at null infinity. The soft photon theorem is the matrix element of the associated

conservation laws. This large gauge symmetry is spontaneously broken, resulting in an infinite

vacuum degeneracy.

QED has been tested to 16 decimal places and is the most accurate theory in the history of

human thought. The preceding statements have no mathematically new content within QED, and

certainly do not imply errors in any previous QED calculations! However, as emphasized herein,

they do perhaps provide a physically illuminating new way of describing the IR structure. Moreover,
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generalizations of this perspective to other contexts have led to a variety of truly new mathematical

relations in both gauge theory and gravity [100].

One of the puzzling features of the IR structure of QED is the appearance of IR divergences.1

These divergences set all conventional Fock-basis S-matrix elements to zero. Often they are dealt

with by restricting to inclusive cross sections in which physically unmeasurable photons below some

IR cutoff are traced over. The trace gives a divergence which offsets the zero and yields a finite

result for the physical measurement [4, 103–105]. While this is adequate for most experimental

applications, for many purposes it is nice to have an S-matrix.2 For example, precise discussions

of unitarity or symmetries require an S-matrix.

It is natural to ask if the newly-discovered IR symmetries are related to the IR divergences of

the S-matrix. We will see that the answer is yes. The conservation laws imply that every nontrivial

scattering process is necessarily accompanied by a transition among the degenerate vacua. Conven-

tional QED S-matrix analyses tend to assume the vacuum is unique and hence that the initial and

final vacua are the same. Since this violates the conservation laws, the Feynman diagrammatics

give a vanishing result. This is usually attributed to “IR divergences,” but we feel that this phrase

is something of a misnomer. Rather, zero is the correct physical answer. The vanishing of the

amplitudes is a penalty for not accounting for the required vacuum transition. In this chapter we

allow for vacuum transitions to occur, and find that the resulting amplitudes are perfectly IR finite

and generically nonvanishing when the conservation laws are obeyed.

Although we have phrased this result in a way that sounds new, the mathematics behind it is

not new. We have merely rediscovered the 1970 formulae [106–110] of Faddeev and Kulish (FK)

and others, who showed that certain dressings of charges by clouds of soft photons yield IR finite

scattering amplitudes. The FK dressings implicitly generate precisely the required shift between

1 Originally, these were found by looking at the spectrum and number of photons produced by particles
undergoing acceleration. Mott [101] looked at corrections to Rutherford scattering as a result of the emission
of photons. Bloch and Nordsieck [102] examined the spectrum of photons produced by a small change in the
velocity of an electron.

2It may also be challenging to describe experimental measurements of the electromagnetic memory effect
[85–87] in a theory with a finite IR cutoff.
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degenerate vacua.

While our formulas are not new,3 our physical interpretation is new. One may hope that the

new physical insight will enable a construction of IR finite S-matrices for deconfined non-abelian

gauge theory and also have useful applications to gravity.

Related discussions of the FK construction in the context of large gauge symmetry have ap-

peared in [82, 83, 111, 112].

5.2 Vacuum Selection Rules

In this section we review the derivation of, and formulas for, the vacuum transitions induced by the

scattering of charged massless particles. We refer the reader to [32, 34, 37, 96] for further details.

The conceptually similar massive case is treated in section 5.5. Incoming states are best described

in advanced coordinates in Minkowski space

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄ , (5.2.1)

while outgoing states employ retarded coordinates

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ . (5.2.2)

Here γzz̄ = 2
(1+zz̄)2

is the unit round metric on S2 and u = t − r (v = t + r) is the retarded

(advanced) time. The z coordinates used in the advanced and retarded coordinate systems differ

3Except for, in section 5.6, a conjectured generalization of the FK IR divergence cancellation mechanism
to amplitudes involving some undressed charges but still obeying the conservation laws. An example given
there is e+e− scattering with no incoming radiation.
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by an antipodal map on S2. In- and out-states are characterized by the charges4

Q−
ε =

1

e2

∫
I−
+

d2wγww̄εFrv ,

Q+
ε =

1

e2

∫
I+
−

d2wγww̄εFru , (5.2.3)

where F is the electromagnetic field strength, I−
+ is the future boundary of I−, I+

− is the past

boundary of I+ and ε is any function on S2. The conservation law for these charges

⟨ out |(Q+
ε S − SQ−

ε )| in ⟩ = 0 (5.2.4)

is implied by the soft photon theorem. In and out soft photon modes are defined as integrals of the

radiative part of F over the null generators of past and future null infinity (I±) according to

∫ ∞

−∞
du Fuz ≡ N+

z , (5.2.5)∫ ∞

−∞
dv Fvz ≡ N−

z . (5.2.6)

Choosing ε(w, w̄) = 1
z−w , (5.2.4) can be written in the form

⟨ out |(N+
z S − SN−

z )| in ⟩ = Ωsoft
z ⟨ out |S| in ⟩ , (5.2.7)

where the soft factor is

Ωsoft
z = Ωsoft

z
− − Ωsoft

z
+
, (5.2.8)

Ωsoft
z

−
=
e2

4π

∑
k∈in

Qk

z − zk
, Ωsoft

z
+
=
e2

4π

∑
k∈out

Qk

z − zk
. (5.2.9)

4In these and the following equations, (Frv, Fru, jv, ju) denote the coefficient of the leading O(r−2) term
of the large-r field expansions, while (Fvz, Fuz) denote the leading O(r0) terms.
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Here, Qk and zk denote the charges of the asymptotic particles and the angles at which they enter

or exit at I±. Degenerate incoming vacua can be characterized by their N−
z eigenvalue:

N−
z (z, z̄)|N in

z ⟩ = N in
z (z, z̄)|N in

z ⟩ . (5.2.10)

Let us consider special states denoted | in;N in
z ⟩ comprised of finite numbers of non-interacting

incoming charged particles and hard photons built by acting with asymptotic creation operators

on eigenstates (5.2.10) of N−
z .5 Such hard particles do not affect the zero-modes and hence obey

N−
z | in;N in

z ⟩ = N in
z | in;N in

z ⟩ . (5.2.11)

Adopting a similar notation for out-states, (5.2.7) becomes

(Nout
z −N in

z )⟨ out;Nout
z |S|N in

z ; in ⟩ = Ωsoft
z ⟨ out;Nout

z |S|N in
z ; in ⟩ . (5.2.12)

We conclude that either

⟨ out;Nout
z |S|N in

z ; in ⟩ = 0 , (5.2.13)

or

Nout
z −N in

z = Ωsoft
z . (5.2.14)

The second relation (5.2.14) expresses conservation of the charges - one for each point on the sphere -

associated to large gauge symmetries. The first states that any amplitude violating the conservation

law must vanish.

In conventional formulations of QED, the vacuum is presumed to be unique.6 In that case,

(5.2.14) is not an option, and we conclude that, according to (5.2.13), all S-matrix elements vanish.

5It is assumed here that the Fourier coefficients of the photon creation operators are finite as the frequency
ω → 0.

6Since Nz manifestly carries zero energy, if the vacuum is assumed to be unique it would have to be an
Nz eigenstate.
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In fact, this result is well-known and attributed to IR divergences. We see here that the IR

divergences which set all such amplitudes to zero can be understood as a penalty for neglecting

the fact that the in- and out-vacua differ for every nontrivial scattering process. Armed with this

insight, we will construct a natural and IR finite set of scattering amplitudes.

The necessity for vacuum transitions in any scattering process follows from the constraint

equations on I+

∂uFru +DzFuz +Dz̄Fuz̄ + e2ju = 0 , (5.2.15)

and I−

∂vFrv −DzFvz −Dz̄Fvz̄ − e2jv = 0 . (5.2.16)

Assuming that the electric field vanishes in the far past and far future and using the matching

conditions7

Fru|I+
−
= Frv|I−

+
, (5.2.17)

Az|I+
−
= Az|I−

+
, (5.2.18)

the divergence of (5.2.14) (and its complex conjugate) is the sum of the integrals of (5.2.15) and

(5.2.16).

Let us examine the classical electromagnetic field configuration needed to satisfy the constraints.

A single charge Q0 particle incoming at (v0, z0, z̄0) corresponds to

jv = Q0δ(v − v0)γ
zz̄δ(2)(z − z0) . (5.2.19)

We write the state consisting of one such particle in the N in
z = 0 vacuum as

| z0; 0 ⟩ , N−
z | z0; 0 ⟩ = 0 . (5.2.20)

7Here we consider theories with no magnetic charges so that Fzz̄|I+
−
= 0 = Fzz̄|I−

+
.
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We can solve the constraints for finite z either using the Coulombic modes with8

Frv = Q0e
2θ(v − v0)γ

zz̄δ(2)(z − z0) , (5.2.21)

or with the radiative modes9

Az = −Q0e
2

4π
∂zG(z, z0)θ(v − v0) , Fvz = −Q0e

2

4π
∂zG(z, z0)δ(v − v0) , (5.2.22)

where

∂z∂z̄G(z, w) = 2πδ(2)(z − w) . (5.2.23)

For finite z the choice

G(z, w) = ln |z − w|2 (5.2.24)

gives simply

Az = − Q0e
2

4π(z − z0)
θ(v − v0) . (5.2.25)

The purely Coulombic choice will violate the matching conditions (5.2.17) unless the outgoing

state also has Coulomb fields at z = z0, where there may not even be any particles on I+. We

first consider the radiative dressing (5.2.25). This potential is pure gauge except at advanced time

v = v0 where a radiative shock wave emerges. There is a shift in the flat gauge connection between

the boundaries I−
+ and I−

− of I− given by N−
z = − Q0e2

4π(z−z0)
.

Of course more general solutions of the constraints, which do involve Coulomb fields, are possible

and can be obtained by adding to (5.2.25) any solution of the source-free equation. Indeed, the

difference between (5.2.21) and (5.2.25) is such a solution. We will return to the more general case

in sections 5.5 and 5.6.

The Green function G in (5.2.24) leads to image charges at z = ∞. Since there are no physical

8θ(v) = 1 for v > 0 and vanishes otherwise.

9Note that the “soft charge” N−
z vanishes for the Coulombic dressing, while for the radiative dressing all

Q−
ε reduce to multiples of the global charge for which ε = 1.
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charges presumed at this point and we must preserve the constraints, delta function “wires” of

nonzero Fvr are added connecting the images at various values of vk where particles enter. One

such wire with net integral
∑

k∈inQk will cross to I+. Overall charge conservation guarantees, if a

similar construction is used to satisfy the I+ constraints, that this will match with the z = ∞ wire

on I+.

Of course these wires can be smoothed out by adding source-free solutions of the free Maxwell

equation.10 For example we can use

G(z, w) = ln
[
|z − w|2(1 + zz̄)−1(1 + ww̄)−1

]
, (5.2.26)

which obeys 2∂z∂z̄G = 4πδ(2)(z − w) − γzz̄. This effectively spreads the image charges, and along

with them the Fvr flux wires required for their cancellation, evenly over the sphere.

For our purposes we are primarily interested in the structure near z = z0 which has the same

singularity for all the G’s. The choice of G will not be central and we focus on the simplest one

(5.2.24).

5.3 Dressed Quantum States

The story of dressed charges began with Dirac [114], who realized that part of the problem with the

formulation of quantum electrodynamics was that conventional states for charged particles were

not gauge invariant. Suppose one is considering the Dirac field for an electron, ψ(x). Then one

usually thinks of the operator ψ(x) as creating an electron at the point x. In classical physics, if

one makes a gauge transformation

Aµ → Aµ + ∂µε(x) , (5.3.1)

10There may be a preferred Lorentz covariant dressing if the charged particles are taken as conformal
primaries rather than plane waves as in [113].
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then the gauge transformation of a field with charge Q0 is

ψ(x) → eiQ0ε(x)ψ(x) . (5.3.2)

Dirac made a field invariant under gauge transformations which die at infinity by introducing a

dressing of the charged particle. One replaces ψ(x) by the gauge invariant ψ∗(x) defined by

ψ∗(x) = ψ(x)eiQ0

∫
Aµ(x′)Cµ(x′) d4x′

. (5.3.3)

Cµ(x) is then required to obey the equation

∂µC
µ = δ(4)(x− x′) . (5.3.4)

Solutions to this equation are of course not unique, since we are free to add any solution of the

homogeneous equation. Thus Dirac’s prescription is not unique, and may involve either radiative

or Coulomb modes depending on how Cµ is chosen.

In quantum field theory in the Schrödinger picture, operators are time-independent and so one

would replace these expressions by the corresponding non-covariant forms in which only the spatial

components of Aµ and Cµ are used. The integral is then taken over a three-dimensional spatial

section of spacetime and the four-dimensional delta function is replaced by the three-dimensional

delta function. Thus

ψ∗(x) = ψ(x)eiQ0

∫
Ai(x′)Ci(x

′) d3x′ (5.3.5)

and

∂iC
i = δ(3)(x− x′) . (5.3.6)

This prescription replaces the bare electron by an electron together with an electromagnetic

cloud. It is important to note that the operator (5.3.3) is only invariant under small gauge trans-

formations vanishing sufficiently quickly at infinity, since an integration by parts is needed in order

to demonstrate invariance. Under large gauge transformations, Dirac’s operators transform with a
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phase, as charged operators should. Dirac provided an illuminating example of a Ci that satisfies

∂iC
i = δ(3)(x− x′). This is just

Ci = −∂i

{
1

4π|x− x′|

}
. (5.3.7)

Ci is then just the electric Coulomb field of a point charge.

In the full interacting quantum theory, the radiative modes of the electromagnetic field obey

the exact I− commutator

[
Aw(v, w, w̄), Fv′z̄(v

′, z, z̄)
]
=
ie2

2
δ(v − v′)δ(2)(w − z) . (5.3.8)

The commutators of Coulombic modes are then, according to Dirac, whatever they must be in

order that the constraints (5.2.16) are satisfied. That is, the operator Frv is defined by

Frv ≡
∫ v

−∞
dv′
(
DzFv′z +Dz̄Fv′z̄ + e2jv′

)
, (5.3.9)

where the constant of integration is set (for massless charges only) by demanding that the Coulomb

field vanish in the far past. Its commutators are then computed using (5.3.8) along with those for

the matter fields appearing in jv.

The coherent quantum state corresponding to (5.2.25) is, up to a large gauge transformation,

| z0; 0 ⟩dressed ≡ eiR0 | z0; 0 ⟩,

R0 ≡ Q0

2π

∫
d2wγww̄G(z0, w)D ·A(v0, w, w̄) , (5.3.10)

where D ·A ≡ DwAw +Dw̄Aw̄. We may describe this as a charged particle surrounded by a cloud

of soft photons. It easily follows from (5.3.8) and (5.3.9) that |z0; 0⟩dressed obeys the constraints

without any Coulombic Fvr wires extending out of the charge, and the matching condition (5.2.17)
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is trivially satisfied. The dressing shifts the action of Fvz on states by

[Fvz(v, z, z̄), iR0] = −Q0e
2δ(v − v0)

4π(z − z0)
. (5.3.11)

We see explicitly that the early and late vacua on I− differ by a large gauge transformation and

N−
z | z0; 0 ⟩dressed = − Q0e

2

4π(z − z0)
| z0; 0 ⟩dressed . (5.3.12)

Had we started with a vacuum state with nonzero N in
z , the dressing would have simply shifted the

eigenvalue.

The dressed single particle state (5.3.10) is easily generalized to a multiparticle state

| in; 0 ⟩dressed ≡ eiR| in; 0 ⟩ ,

R ≡ 1

2π

∫
dvd2wγww̄d

2zγzz̄jv(v, z, z̄)G(z, w)D ·A(v, w, w̄) . (5.3.13)

Also, for outgoing states

⟨ out; 0 |dressed ≡ ⟨ out; 0 |e−iR . (5.3.14)

The dressed states accompany the charges with nonzero eigenvalues for the soft photon operator,

N−
z | in; 0 ⟩dressed = −

∑
k∈in

Qke
2

4π(z − zk)
| in; 0 ⟩dressed ,

⟨ out; 0 |dressedN+
z = −⟨ out; 0 |dressed

∑
k∈out

Qke
2

4π(z − zk)
.

(5.3.15)

In particular, the eigenvalues automatically obey the selection rule (5.2.14)

N+
z −N−

z = Ωsoft
z , (5.3.16)

so that generically

⟨ out; 0 |dressedS| in; 0 ⟩dressed ̸= 0 . (5.3.17)
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+ + + + ...

Figure 5.1: IR divergences arise from soft photon exchange between pairs of external charges.
When the charges are dressed with appropriately correlated clouds of soft photons, these
divergences are pairwise cancelled by exchanges involving the soft clouds.

In fact, the dressed amplitudes are free of IR divergences altogether. The basic mechanism is

illustrated in figure 5.1. IR divergences arise from the exchange of soft photons between pairs of

external legs. These exponentiate in such a way to cause ordinary Fock-basis amplitudes to vanish.

However, when the charged particles are dressed by soft photon clouds, further divergences arise

when a soft photon is exchanged between one external leg and the soft cloud surrounding the second

external leg or between the pair of soft clouds. FK [110] showed that by a judicious choice of such

a soft cloud one can arrange for the IR divergences to cancel and obtain an IR finite S-matrix. In

the next section we show that our dressed states differ from those of FK only by terms which are

subleading in the IR, and therefore effect the same IR cancellations.

5.4 Faddeev-Kulish States

Faddeev and Kulish [110], building on Dirac and others [106–109], developed a scheme for dressing

charged particles which eliminates IR divergences. Their starting point was to argue that the LSZ

procedure for identifying asymptotic states is inapplicable in quantum electrodynamics: since the

electromagnetic interaction has infinite range, there can be no isolated interaction region. They
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resolved this by observing that the action for charged particles contains a term

∫
JµAµ d

4x , (5.4.1)

where Jµ is the electromagnetic current. Since this current is conserved, the action is gauge invariant

provided appropriate boundary conditions hold for the gauge transformations. This is a special

case of Dirac’s treatment which leads to a collection of soft photons accompanying any charged

particle.

If one studies the state for a single electron of three-momentum pi, then in the eikonal approx-

imation the current is the classical current of a single charged particle located at xi = pit/m. FK

dressed a single particle charged state | p⃗ ⟩ with the associated soft cloud

| p⃗ ⟩FK = exp

[
− eQ0

(2π)3

∫
d3q

2q0

(
fµa†µ(q⃗ )− f∗µaµ(q⃗ )

)]
| p⃗ ⟩ , fµ =

[
pµ

p · q
− cµ

]
e
i p·k
p0

t
, (5.4.2)

where cµ satisfies c · q = 1, c2 = 0. In fact, they demonstrated that in order to cancel infrared

divergences, it is sufficient to choose an arbitrary dressing

fµ =

[
pµ

p · q
− cµ

]
ψ(p, q) , (5.4.3)

with the condition that ψ(p, q) = 1 in a neighborhood of q = 0. For a multi-particle state with zero

net total charge and minimal dressing ψ = 1, the cµ terms cancel out of the dressing function and

we can deal solely with the dressing factor

fµ =
pµ

p · q
. (5.4.4)

We wish to rewrite (5.4.2) in terms of asymptotic fields at I. The plane-wave expansion of the

radiative modes of the electromagnetic potential is given by

Aν(x) = e
∑
α=±

∫
d3q

(2π)3
1

2ωq

[
ε∗αν (q⃗ )ain

α (q⃗ )e
iq·x + εαν (q⃗ )a

in
α (q⃗ )

†e−iq·x
]
, (5.4.5)
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where q2 = 0, the two polarization vectors satisfy a normalization condition εναε
∗
βν = δαβ, and

[
ain
α (p⃗ ), a

in
β (q⃗ )

†
]
= δαβ(2π)

32ωqδ
(3) (p⃗− q⃗ ) . (5.4.6)

Null momenta can be characterized by a point on the asymptotic S2 and an energy ω

qµ =
ω

1 + zz̄
(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) = (ω, q1, q2, q3) . (5.4.7)

The expansion for the spatial part of the plane wave is given by

eiq⃗·x⃗ =
∑
l

il (2l + 1) jl(qr)Pl(cos γ) , (5.4.8)

where jl are the spherical Bessel functions, γ is the angle between q⃗ and x⃗, and q = | q⃗ |. The

asymptotic form of jl(qr), for qr ≫ 1, is given by

jl(qr) ∼
1

qr
sin(qr − 1

2
πl) , (5.4.9)

yielding an approximation that localizes the momentum of the gauge field in the optical direction

A(0)
z (v, z, z̄) = lim

r→∞
Az(v, r, z, z̄)

= − i

8π2

√
2e

1 + zz̄

∫ ∞

0
dω
[
ain
+(ωx̂)e

−iωv − ain
−(ωx̂)

†eiωv
]
, x̂ = x̂(z, z̄) .

(5.4.10)

One then finds

| p⃗ ⟩FK = exp

[
i

2π

∫
dvd2wγww̄d

2zγzz̄jv(v, z, z̄)G(z, w)D ·A(0, w, w̄)
]
| p⃗ ⟩ . (5.4.11)

This is almost the same as our dressed state (5.3.10), except that the soft cloud in an FK state

is always at v = 0, whereas in (5.3.10) it appears at the same advanced time v0 as the charged
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particle.11 This difference is subleading in ω, since leading order quantities at ω = 0 are insensitive

to null separations. In fact, with the natural choice

ψ = eiωv0 , (5.4.12)

which clearly satisfies ψ = 1 near ω = 0, one obtains precisely the dressing in section 5.3. Since the

two dressings differ only by terms higher order in ω, both implement the all-orders cancellation of

IR divergences established by FK.

5.5 Massive Particles

In this section the discussion is generalized to massive particles. The soft factor Ωsoft
z , which

determines the change in the vacuum state, is given for massless particles in (5.2.8) in terms of the

points zk at which they exit or enter the celestial sphere. Such a formula cannot exist for massive

particles in eigenstates with momentum pµk as they never reach null infinity. Instead, a massive

particle is characterized by a point on the unit 3D hyperboloid H3 which may be parameterized by

p̂µ =
pµ

m
, p̂2 = −1 . (5.5.1)

As described in [80, 115], the contribution to Ωsoft
z from such a particle is proportional to

Gz(p̂k) =

∫
d2wG(w, w̄; p̂k)

1

w − z
, (5.5.2)

where G here is the bulk-to-boundary propagator on H3 obeying □G = 0. If we infinitely boost p̂,

G reduces to a boundary delta function. Hence, in analogy with (5.3.10), in order to prevent IR

11 The FK states can still satisfy the constraints, at the price of Coulomb fields extending from v = 0 to
the locations of the charged particles.
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divergences from setting the amplitudes to zero, we should dress such massive particle states as

| p̂1, . . . ; 0 ⟩dressed ≡ eiRm | p̂1, . . . ; 0 ⟩ ,

Rm ≡
∑
k∈in

Qk

2π

∫
d2z (Gz(p̂k)Az̄(0, z, z̄) + h.c.) , (5.5.3)

where to avoid separate discussion of the zero-mode we restrict to the special case
∑

k∈inQk = 0

with zero net charge. It is straightforward to show that this is precisely the FK state given by

(5.4.4) and therefore has IR finite scattering amplitudes.

Unlike the massless case studied above, this construction gives Coulomb fields. One finds

[
DzFvz +Dz̄Fvz̄, iRm

]
= −δ(v)γzz̄

∑
k∈in

Qke
2G(z, z̄, p̂k) . (5.5.4)

This is a radiative shock wave coming out at v = 0. As there are no charged particles incoming at

v = 0, the constraints then imply that Frv(z, z̄) must shift by −γzz̄
∑

k∈inQke
2G(z, z̄, p̂k) at v = 0.

This is precisely the (negative of the) asymptotic incoming Coulomb field in the absence of any

radiation, associated with a collection of incoming massive point particles with momentum mp̂k.

The constant part of Frv is fixed by demanding that near I−
− it equal the Coulomb field sourced

by the massive charges entering through past timelike infinity i−. This gives

Frv = θ(−v)γzz̄
∑
k∈in

Qke
2G(z, z̄, p̂k) . (5.5.5)

The effect of the radiative shock wave is to set to zero the Coulomb fields after v = 0 (note we

are considering zero net charge). Similarly, fixing the integration function for Fru with a boundary

condition at I+
+ , the corresponding out-state has no Coulomb fields before u = 0. This is illustrated

in figure 5.2. Since we then have

Fru|I+
−
= 0 = Frv|I−

+
, (5.5.6)

this construction guarantees that the matching condition (5.2.17) is trivially satisfied and the

amplitude need not vanish. Had we not restricted to the zero charge sector, the boundary field
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Figure 5.2: Dressed massive particles of zero net charge come in from i−, scatter and go out
to i+. The Faddeev-Kulish dressing introduces radiative shock waves at v = 0 and u = 0
which cancel the asymptotic Coulomb fields of the particles for v > 0 and u < 0 respectively.
For neutral scattering states the Coulomb field will vanish near spatial infinity while for
charged ones it will be an angle-independent constant.

strengths (5.5.6) would be angle-independent constants.

Note that for massive charged particles in plane wave states, the soft photon cloud can never

be “on top of” the particle. Massive particles go to timelike infinity, while radiative photons always

disperse to null infinity. The simplest FK states have them coming out at u = 0, but exactly when

they come out, or the fact that they come out before the charges themselves, is unimportant since

only the leading IR behavior of the cloud is relevant to the cancellation of divergences.

5.6 Charged States

In this section we consider a more general class of physical states in which Coulomb fields persist

to I+
− and I−

+ , the generic charges are nonzero and the matching conditions nontrivially satisfied.

The condition (5.5.6), which is obeyed by all FK states (with zero net charge) implies that the
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in- and out-charges Q±
ε vanish. Explicitly, one finds

Q−|ε= 1
z−w

| in; 0 ⟩dressed =

(
4π

e2
N−

z −
∑
k∈in

QkGz(p̂k)

)
| in; 0 ⟩dressed = 0 , (5.6.1)

⟨ out; 0 |dressedQ
+|ε= 1

z−w
= ⟨ out; 0 |dressed

(
4π

e2
N+

z −
∑
k∈out

QkGz(p̂k)

)
= 0 . (5.6.2)

That is, the incoming (outgoing) soft photon cloud shields all of the nonzero-mode charges of the

incoming (outgoing) charged particles. Since the charges all commute with ain†± (k⃗), adding radiative

photons will not change the charges.12

In contrast to the situation for FK states, nonzero-mode Q±
ε charges are generically all nonva-

nishing in the real world. Consider for example e+e− scattering in the center-of-mass frame with

incoming velocities ±v⃗, unaccompanied by incoming radiation. The coefficient of the 1
r2

radial

electric field is given by the Liénard-Wiechert formula

Frv =
e2(1− v⃗ 2)

4π
(
1 + x̂ · v⃗

)2 − e2(1− v⃗ 2)

4π
(
1− x̂ · v⃗

)2 = −e
2

π

x̂ · v⃗(1− v⃗ 2)

(1− (x̂ · v⃗ )2)2
. (5.6.3)

The charges constructed from this are nonzero:

Q−|ε= 1
z−w

= −
∫
I−
+

d2wγww̄
1

z − w

1

π

x̂ · v⃗(1− v⃗ 2)

(1− (x̂ · v⃗ )2)2
= Q+|ε= 1

z−w
= Gz(p̂−)−Gz(p̂+) , (5.6.4)

where p̂− (p̂+) is the momentum of the electron (positron). Nonzero Q±
ε charges can be generically

sourced by radiative Maxwell fields and arise even in the absence of charged particles. Source free

initial data for the Maxwell equation is given by specifying an arbitrary function Fvz(v, z, z̄) on I−.

Assuming that Frv vanishes in the far past, one has

Frv(z, z̄)|I−
+
=

∫ ∞

−∞
dv
(
DzFvz(v, z, z̄) +Dz̄Fvz̄(v, z, z̄)

)
. (5.6.5)

12Assuming the frequency distribution does not have poles or other singularities for ω → 0. If it does have
such poles, new IR singularities may appear, and the state would not be among those shown by FK to be
IR finite.
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Demanding that the right hand side vanishes is a nonlocal constraint on the incoming initial data.

Such nonlocal constraints are indeed imposed on FK states, which are dressed charged particles

plus radiative modes. As mentioned above, the frequency-space coefficients of the field operators

Az are (except for the charge dressings) presumed to be finite for ω → 0, which precisely imposes

the nonlocal constraint on the field strength that the integral (5.6.5) vanish.

Quantum states which describe these physical situations with nonzero Q±
ε charges certainly

exist, even if they are not FK states.13 It is natural to ask if such states can ever have IR finite

scattering amplitudes. Given our earlier argument that the true role of IR divergences is simply to

enforce conservation of all the charges, one might expect it to be possible. We now propose that

this is indeed the case.

The basic idea is that the soft photon clouds and charged particles can be separated without

affecting the IR cancellation mechanism of FK, even if we move a particle from incoming to outgoing,

leaving its cloud intact. However, moving a charged particle from incoming to outgoing will in

general take a zero-charge FK state to one with all charges excited.

Let’s consider Bhabha scattering as a specific example

e+e− → e+e− , (5.6.6)

where the incoming and outgoing charges are all given FK dressings. Then there will be an incoming

wave of photons shielding the incoming charges at v = 0 and an outgoing one at u = 0 shielding

the outgoing charges. The long range fields will be angle-independent, in contrast to (5.6.3). The

scattering is IR finite, with IR divergences from soft photon exchanges between pairs of external

charges canceled by divergences from soft photon exchanges between external particles and radiative

clouds and pairs of radiative clouds. This was depicted in figure 5.1.

Now, let us move the outgoing positron to an ingoing electron with the same momentum, and

13We note that all the nonzero-mode charges can be shielded, classically or quantum mechanically, by a
correlated cloud of very soft radiation with arbitrarily small energy at arbitrarily large radius. In this sense,
any state can be approximated by an FK state.
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add a radiative photon to the out-state to conserve energy and momentum:

e+e−e− → e− + γ . (5.6.7)

This has no effect on the soft factor, since the motion from out to in and the change in the sign

of the charge each contribute a factor minus one. The same (−1)2 = 1 applies to the leading IR

divergence of an attached soft photon and ensures that these soft exchanges will continue to cancel.

See figure 5.3.

+ + + + ...

Figure 5.3: In this figure, the outgoing positron in figure 5.1 is crossed to an incoming
electron, but its associated soft photon cloud remains as part of the out-state. The leading
IR divergences from the depicted soft photon exchange still cancel, even though the in- and
out-states carry nontrivial Q±

ε charges and are no longer Faddeev-Kulish states.

Since we have also done nothing to N±
z , the conservation law (5.3.16) remains satisfied. However,

we have changed the charges. While they were previously zero, the contribution from the FK shield

of the outgoing positron is no longer cancelled, while the new incoming electron does not have an

FK shield. These give equal contributions to the incoming and outgoing charges

Q±(z) = Gz(p̂) . (5.6.8)

Ultimately, one might hope to use crossing symmetry to prove IR finiteness in this context. FK

infrared cancellations occur order by order in Feynman diagram perturbation theory, while crossing

symmetry also holds in perturbation theory. The action of crossing a single outgoing particle to
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an ingoing particle produces general Q±
ε charges while changing FK to some more general class of

states. We conjecture that scattering amplitudes among these more general charged states are IR

finite.
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6
Semiclassical Virasoro Symmetry of the

Quantum Gravity S-matrix

6.1 Introduction

BMS+ transformations [1, 2] comprise a subset of diffeomorphisms which act nontrivially on fu-

ture null infinity of asymptotically Minkowskian space times, or I+. BMS− transformations act

isomorphically on past null infinity, or I−. A particular “diagonal” subgroup of the product group

BMS+×BMS− has recently been shown [30] to be a symmetry of gravitational scattering. Ward

identities of this diagonal symmetry relate S-matrix elements with and without soft gravitons.

These S-matrix relations are not new [31]: they comprise Weinberg’s soft graviton theorem [4].

More generally, the connection to soft theorems provides a new perspective on asymptotic symme-

tries in Minkowski space [32].
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Over the decades a number of extensions/modifications to the BMS group have been proposed:

e.g. the Newman-Unti group [116], the Spi group [22] and the extended BMS group [10–13]. A

criterion is needed to decide whether or not such extensions are “physical.” Here we adopt the

pragmatic approach that a Minkowskian asymptotic symmetry is physical if and only if it provides

nontrivial relations among S-matrix elements. We will view these S-matrix relations as a definition

of the symmetry.

In this chapter we will show that, at tree-level, quantum gravity in asymptotically Minkowskian

spaces in this sense has a physical Virasoro symmetry. The symmetry is implied by a recently proven

soft theorem [15] and acts (diagonally) on the conformal S2 at I+.

Our story begins with a conjecture of Barnich, Troessaert and Banks (BTB) [10–13]. BMS+ has

an SL(2,C) Lorentz subgroup generated by the six global conformal Killing vectors (CKVs) on the

S2 at I+. Locally, BTB showed that all of the infinitely many CKVs preserve the same asymptotic

structure at I+ and are hence also candidate asymptotic symmetry generators. This larger set

of vector fields was a priori excluded in the original work of BMS, who demanded that they be

nonsingular everywhere on S2. This restriction cuts the Virasoro group down to a mere SL(2,C).

BTB conjectured that the true asymptotic symmetry group of I+ is the “extended BMS+ group”

generated by all CKVs. However, it has not been clear if or in what sense the singular CKVs truly

generate physical asymptotic symmetries.

Herein we consider, in the spirit of [30], a certain diagonal subgroup of (extended

BMS+)×(extended BMS−), denoted X . Ward identities are derived for a Virasoro subgroup of

X . They are found to involve a soft graviton insertion with the Weinberg pole projected out, leav-

ing the finite subleading term in the soft expansion. These Ward identities are in turn shown to

be implied by a conjectured [117] soft relation schematically of the form

lim
ω→0

Mn+1 = S(1)Mn . (6.1.1)

Here Mn+1 is an n + 1-particle amplitude with a certain (pole-projected) energy ω soft graviton

insertion, and S(1) involves the soft graviton momentum as well as the energies and angular mo-
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menta of the incoming and outgoing particles. Details are given below. The proof [15] of (6.1.1)

for tree-level gravity amplitudes then implies a semiclassical Virasoro symmetry for the case of

pure gravity. This demonstrates that the singularities in the generic CKVs do not, at least in this

context, prevent them from generating physical symmetries.1

One might also hope to run the argument backwards and see to what extent the Virasoro

symmetry of the S-matrix implies the soft relation (6.1.1). In the case of supertranslations, the

argument can be run in both directions [31]. However, here we encounter several obstacles, including

the need for a prescription for handling the CKV singularities and some zero-mode issues. We

leave this to future investigations.2 Hence, at this point the existence of a Virasoro symmetry is

potentially a weaker condition than the validity of the soft relation (6.1.1).

The analysis of [30, 31] related two structures which have been well-established and thoroughly

studied over the last half-century: BMS symmetry and Weinberg’s soft graviton theorem. Here

the situation is rather different. We are relating two unestablished and understudied structures:

asymptotic Virasoro symmetries and subleading soft graviton theorems. We hope the relation will

illuminate both. In any case it is a rather different enterprise!

An important issue which we will not address is the quantum fate of the semiclassical Virasoro

symmetry. Here the situation is currently up in the air. In [66, 67] it was shown that, in a standard

regulator scheme, (6.1.1) receives IR divergent quantum corrections (at one loop only), which also

make the S-matrix ill-defined in this scheme. However in [68], the factor S(1) in (6.1.1) relating

the 5 and 4 point amplitude was found to remain uncorrected at one loop in a scheme with the

soft limit taken prior to removing the IR cutoff.3 In the recent work [120, 121] (see also [122]) it

1 It may alternatively be possible to reach this conclusion without appealing to direct computations, such
as in [15], by carefully regulating the singularities and analyzing their effects. We do not attempt such an
analysis herein.

2The Virasoro charges constructed in [10–12] may be useful for this purpose.

3 [68] claims a result only for this one special case by direct computation. However, it has been suggested
[118] that, using [119], a proof can be constructed in the scheme of [66, 67] that all loop corrections to S(1) in
(6.1.1) are linked to discontinuities arising from infrared singularities and hence in the scheme of [68] (with
the soft limit taken first) all loop corrections would disappear along with the discontinuities.
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was shown that a properly defined S-matrix utilizing the gravity version of the Kulish-Faddeev

construction [110] is free of all IR divergences. This may be the proper context for the discussion,

as it is hard to have a symmetry of an S-matrix without an S-matrix! Should it ultimately be

found that (6.1.1) does receive scheme-independent corrections, one must then determine whether

it implies a quantum anomaly in the asymptotic Virasoro symmetry (which is potentially weaker

than (6.1.1)), or a quantum deformation in its action on the amplitudes. Clearly highly relevant,

but not yet fully incorporated into this discussion, is the low-energy theorem of Gross and Jackiw

[8] who use dispersion theory to show that there is no correction to the first three terms4 of the Born

approximation to soft graviton-scalar scattering. This generalized the classic low-energy theorem

for QED by Low [91]. Progress on the gravity version was recently made by White [122]. Clearly,

there is much to understand!

The existence of a Virasoro symmetry potentially has far-reaching implications for Minkowski

quantum gravity in general. However, at this point there are many basic unresolved points. For

example we do not know if the symmetry has quantum anomalies, what kind of representations

appear,5 the role of IR divergences or the connection to stringy Virasoro symmetries [32, 41].

Very recent developments indicate that these ideas, including the realization of the subleading

soft theorem as a Virasoro symmetry, have a natural home in the twistor string [42, 43]. Since

the symmetry acts at the boundary, it is likely relevant to any holographic duality as long ago

envisioned in [27, 28, 79].

This chapter is organized as follows. Section 6.2 establishes notation and reviews a few salient

formulae for asymptotically flat geometries. Section 6.3 describes the conjectured extended BMS±

symmetry following [10–12]. In section 6.4 we define the diagonal subgroup X of (extended

BMS+)×(extended BMS−) transformations, review Christodoulou-Klainerman (CK) spaces, and

define extended CK spaces by acting with X . A prescription is given to define classical gravitational

scattering from I− to I+ and shown to be symmetric under X . In section 6.5 the discussion of

4S(0), S(1) and S(2) in the notation of [68].

5They may not be the familiar ones from the study of unitary 2D CFT on the sphere.
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the quantum theory begins with the the action of extended BMS± generators on in- and out-states.

A Ward identity is then derived which is equivalent to infinitesimal X -invariance of S. It relates

amplitudes with and without a particular soft graviton insertion. Finally in section 6.6 we give the

detailed form of the soft relation (6.1.1) and show that it implies the X Ward identity.

6.2 Asymptotically Flat Geometry

6.2.1 Metrics

A general asymptotically flat metric can be expanded in 1
r around I+. In retarded Bondi coordinates

it takes the form6

ds2 =− du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 + 2guzdudz + 2guz̄dudz̄ + ... , (6.2.1)

where the first line is the flat Minkowski metric, γzz̄ (Dz) is the round metric (covariant derivative)

on the unit S2 and

guz =
1

2
DzCzz +

1

6r
CzzDzC

zz +
2

3r
Nz +O(r−2) . (6.2.2)

The Bondi mass aspect mB, the angular momentum aspect Nz and Czz depend only on (u, z, z̄)

and not r. The outgoing news tensor is defined by

Nzz ≡ ∂uCzz . (6.2.3)

I+ is the null surface (r = ∞, u, z, z̄). We use the symbol I+
+ (I+

− ) to denote the future (past)

boundary of I+ at (r = ∞, u = ∞, z, z̄) ((r = ∞, u = −∞, z, z̄)). This is depicted in figure 6.1.

6We largely adopt the notation of [10–12] to which we refer the reader for further details.
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There is an analogous construction on I− with the metric given by

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄

+
2m−

B

r
dv2 + rDzzdz

2 + rDz̄z̄dz̄
2 + 2gvzdvdz + 2gvz̄dvdz̄ + ... , (6.2.4)

with

gvz = −1

2
DzDzz −

1

6r
DzzDzD

zz − 2

3r
N−

z +O(r−2) . (6.2.5)

The I− coordinate z in (6.2.4) is antipodally related to the I+ coordinate z in (6.2.1) in the sense

that, for flat Minkowski space, a null geodesic begins and ends at the same value of z. Put another

way, in the conformal compactification of asymptotically flat spaces, all of I is generated by null

geodesics which run through spatial infinity i0. These generators have the same constant z value

on both I+ and I−. The incoming news tensor is defined by

Mzz ≡ ∂vDzz . (6.2.6)

When expanding about flat Minkowski space we sometimes employ flat coordinates in which the

flat metric takes the form

ds2F = ηµνdx
µdxν . (6.2.7)

These are related to Bondi coordinates in flat space by

x0 = u+ r = v − r , x1 + ix2 =
2rz

1 + zz̄
, x3 =

r(1− zz̄)

1 + zz̄
. (6.2.8)

6.2.2 Constraints

The data in (6.2.1) are related by the constraint equations Gµν = T M
µν , where T M

µν is the matter

stress tensor and we adopt units in which 8πG = 1. The leading term in the expansion of the Guu
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Figure 6.1: Penrose diagram for Minkowski space. Near I+ surfaces of constant retarded time
u (red) are cone-like and intersect I+ in a conformal S2 parametrized by (z, z̄). Cone-like
surfaces of constant advanced time v (green) intersect I− in a conformal S2 also parametrized
by (z, z̄). The future (past) S2 boundary of I+ is labelled I+

+ (I+
− ), while the future (past)

boundary of I− is labelled I−
+ (I−

− ).

constraint equation about I+ is

∂umB =
1

4
D2

zN
zz +

1

4
D2

z̄N
z̄z̄ − 1

2
TM
uu − 1

4
NzzN

zz , (6.2.9)

where

TM
µν (u, z, z̄) = lim

r→∞
r2T M

µν (u, r, z, z̄) (6.2.10)

is the rescaled matter stress tensor which we have assumed falls off like 1
r2

near I+. The Guz

constraint gives

∂uNz = −1

4

(
DzD

2
z̄C

z̄z̄ −D3
zC

zz
)
− TM

uz + ∂zmB +
1

16
Dz∂u (CzzC

zz) (6.2.11)

− 1

4
N zzDzCzz −

1

4
NzzDzC

zz − 1

4
Dz (C

zzNzz −N zzCzz) .
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Given the Bondi news, mB, Nz and Czz are all determined up to u-independent integration con-

stants which are discussed below. The I− constraints are

∂vm
−
B =

1

4
D2

zM
zz +

1

4
D2

z̄M
z̄z̄ +

1

2
TM
vv +

1

4
M zzMzz , (6.2.12)

∂vN
−
z =

1

4

(
DzD

2
z̄D

z̄z̄ −D3
zD

zz
)
− TM

vz − ∂zm
−
B +

1

16
Dz∂v (DzzD

zz)

− 1

4
M zzDzDzz −

1

4
MzzDzD

zz − 1

4
Dz (D

zzMzz −M zzDzz) . (6.2.13)

6.3 Extended BMS± Transformations

The extended BMS+ group has been proposed [10–13] as the asymptotic symmetry group at I+ of

gravity on asymptotically flat spacetimes. It is generated by vector fields ξ+ that locally preserve

the asymptotic form (6.2.1) of the metric at I+

Lξ+gur = O(r−2) , Lξ+guz = O(1) , Lξ+gzz = O(r) , Lξ+guu = O(r−1) . (6.3.1)

All such vector fields near I+ are of the form

ξ+ =
(
1 +

u

2r

)
Y +z∂z −

u

2r
Dz̄DzY

+z∂z̄ −
1

2
(u+ r)DzY

+z∂r +
u

2
DzY

+z∂u + c.c. (6.3.2)

+ f+∂u − 1

r

(
Dzf+∂z +Dz̄f+∂z̄

)
+DzDzf

+∂r ,

where f+ is an arbitrary function on S2 and here and elsewhere we suppress (in some cases metric-

dependent) terms which are further subleading in 1
r and irrelevant to our analysis: see [10–12] for a

recent treatment specifying these terms. Y + must be a conformal Killing vector on S2 which obeys

the equation

∂z̄Y
+z = 0 . (6.3.3)
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Globally there are six real vector fields in an antisymmetric matrix Y z
µν obeying (6.3.3):

Y z
12 = iz , Y z

13 = −1

2

(
1 + z2

)
, Y z

23 = − i

2

(
1− z2

)
,

Y z
03 = z , Y z

01 = −1

2

(
1− z2

)
, Y z

02 = − i

2

(
1 + z2

)
. (6.3.4)

These generate the six Lorentz boosts and rotations on I+. Locally there are infinitely many

solutions of the form Y z ∼ zn with poles somewhere on the sphere. In their original work [1, 2],

BMS excluded these singular vector fields. However, in this chapter we shall explore the conjecture

of [10–13] that all of these “superrotations” should be included as part of the asymptotic symmetry

group.

The extended BMS+ group is a semi-direct product of superrotations with supertranslations.

The supertranslations were recently analyzed in [30, 31]. For notational brevity we henceforth

consider only the superrotation subgroup which has f+ = 0 in (6.3.2) and reduces to

ξ+ =
(
1 +

u

2r

)
Y +z∂z −

u

2r
Dz̄DzY

+z∂z̄ −
1

2
(u+ r)DzY

+z∂r +
u

2
DzY

+z∂u + c.c. . (6.3.5)

This maps I+ to itself via

ξ+|I+ = Y +z∂z +
u

2
DzY

+z∂u + c.c. . (6.3.6)

Similarly, on I− we have BMS− vector fields parametrized by Y −

ξ− =
(
1− v

2r

)
Y −z∂z +

v

2r
Dz̄DzY

−z∂z̄ −
1

2
(r − v)DzY

−z∂r +
v

2
DzY

−z∂v + c.c. . (6.3.7)

Infinitesimal BMS+ transformations act on the Bondi-gauge metric components as

δY +Czz =
u

2

(
DzY

+z +Dz̄Y
+z̄
)
∂uCzz + LY +Czz −

1

2

(
DzY

+z +Dz̄Y
+z̄
)
Czz − uD3

zY
+z ,

δY +Nzz ≡ ∂uδCzz =
u

2

(
DzY

+z +Dz̄Y
+z̄
)
∂uNzz + LY +Nzz −D3

zY
+z . (6.3.8)
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Similarly, at I−

δY −Dzz =
v

2

(
DzY

−z +Dz̄Y
−z̄
)
∂vDzz + LY −Dzz −

1

2

(
DzY

−z +Dz̄Y
−z̄
)
Dzz + vD3

zY
−z ,

δY −Mzz =
v

2

(
DzY

−z +Dz̄Y
−z̄
)
∂vMzz + LY −Mzz +D3

zY
−z . (6.3.9)

6.4 X Transformations

BMS± symmetries act on the physical data at I± while preserving certain asymptotic structures

such as the symplectic form [27, 28, 79]. They are not themselves symmetries of gravitational

scattering: that is, given some solution (Dzz, Czz) of the gravitational scattering problem, we

cannot obtain a new one by acting with an element of BMS+ or BMS−. However, for the case

of supertranslations, it was argued in [30] that a certain diagonal subgroup of BMS+×BMS− is a

symmetry of gravitational scattering in a suitable neighborhood [58] of flat space. This subgroup is

generated by pairs of SL(2,C) Killing vector fields and supertranslations (Y +, f+;Y −, f−) obeying

Y +z(z) = Y −z(z) ≡ Y z(z) , f+(z, z̄) = f−(z, z̄) ≡ f(z, z̄) , (6.4.1)

with the understanding that the coordinate z is constant along null generators of I as they pass

from I− to I+ through spatial infinity i0 in the conformal compactification of the spacetime. This

means that points labelled by the same value of z on I− and I+ lie at antipodal angles from the

origin. This antipodal identification may sound a little odd at first, but in fact is required in order

for the subgroup (6.4.1) to contain the usual global Poincaré transformations.

In this chapter we are interested in extended BMS+×BMS− transformations. We denote by

X the subgroup of these transformations generated by vector fields asymptotic to (ξ+, ξ−) on

(I+, I−) subject to (6.4.1), where now Y z is any of the infinitely many conformal Killing vectors on

the sphere. Elements of X transform a solution (Dzz, Czz) of the gravitational scattering problem

to a new one (D′
zz, C

′
zz) with different final and initial data. We will argue below that the new data

is a new solution of the scattering problem.
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6.4.1 Christodoulou-Klainerman Spaces

We are interested in asymptotically flat solutions of the Einstein equation which revert to the

vacuum in the far past and future. In particular we want to remain below the threshold for

black hole formation. We will adopt the rigorous definition of such spaces given by Christodoulou

and Klainerman (CK) [58] who also proved their global existence and analyzed their asymptotic

behavior.

CK studied asymptotically flat initial data in the center-of-mass frame on a maximal spacelike

slice for which the Bach tensor ϵijkD(3)
j G

(3)
kl of the induced three-metric decays like r−7/2 (or faster)

at spatial infinity and the extrinsic curvature like r−5/2. This implies that in normal coordinates

about infinity the leading part of the three-metric has the (conformally flat) Schwarzschild form,

with corrections which decay like r−3/2. CK showed that all such initial data which moreover satisfy

a global smallness condition give rise to a global, i.e. geodesically complete, solution. We will refer

to these solutions as CK spaces.

The smallness condition is satisfied in a finite neighborhood of Minkowski space, so this result

established the stability of Minkowski space. Moreover, many asymptotic properties of CK spaces

at null infinity were derived in detail. See [48] for a summary. Here we note that the Bondi news

Nzz vanishes on the boundaries of I+ as

Nzz(u) ∼ |u|−3/2 (6.4.2)

or faster. Similarly on I−,

Mzz(v) ∼ |v|−3/2 (6.4.3)

or faster. The Weyl curvature component Ψ0
2 which in coordinates (6.2.1) is given by

Ψ0
2(u, z, z̄) ≡ − lim

r→∞

(
rCuz̄rzγ

zz̄
)
= −mB − 1

4
CzzN

zz +
1

4

(
DzDzCzz −Dz̄Dz̄Cz̄z̄

)
(6.4.4)

113



Chapter 6: Semiclassical Virasoro Symmetry of the Quantum Gravity S-matrix

obeys

Ψ0
2|I+

+
= 0 , (6.4.5)

while at u = −∞

Ψ0
2|I+

−
= −GM , (6.4.6)

where G is Newton’s constant and M is the ADM mass. Similar results pertain to I−.

In this chapter we consider generalizations of pure gravity, which include coupling massless

matter which dissipates at late (early) times on I+ (I−) so that the system begins and ends in the

vacuum. The CK analysis has not been fully generalized to this case, although there is no obvious

reason analogs of (6.4.2)-(6.4.6) might not still pertain to a suitably defined neighborhood of the

gravity+matter vacuum. In the absence of such a derivation (6.4.2)-(6.4.6) will simply be imposed,

in the matter-coupled case, as restrictions on the solutions under consideration.

6.4.2 Classical Gravitational Scattering

The classical problem of gravitational scattering is to find the outgoing data at I+ resulting from

the evolution of given data on I−. We take the incoming data to be Dzz(v, z, z̄) and the outgoing

data to be Czz(u, z, z̄). The remaining metric components on I are then determined by constraints.

We consider the geometries in the neighborhood of flat space defined by CK, which have mB = 0

(m−
B = 0) at I+

+ (I−
− ). In particular, we remain below the threshold for black hole formation.

A CK geometry, as described in (t, r, θ, ϕ) coordinates, does not quite provide a solution to

this scattering problem. To find the in (out) data, one must perform a coordinate transformation

to ingoing (outgoing) Bondi coordinates and determine Dzz (Czz). This procedure is not unique:

the coordinate transformations are ambiguous up to extended BMS± transformations on I+ or I−.

Dzz and Czz are not invariant under these transformations. Hence, a solution of the scattering

problem requires a prescription for fixing this ambiguity. A prescription to fix this ambiguity is to

demand that

Dzz|I−
+
= Czz|I+

−
= 0 . (6.4.7)
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It was shown in [30] that the falloffs (6.4.2)-(6.4.6) imply this is always possible. One may then

integrate the constraint equations to determine Dzz and Czz, which will not in general vanish at

I+
+ and I−

− .

This prescription does not give all near-flat solutions of the scattering problem. Indeed, all

such solutions are in the center-of-mass frame and have vanishing ADM three-momentum. How-

ever, given any solution of the scattering problem obeying (6.4.7), a new one with nonzero three-

momentum may be obtained simply by acting with the boost element of X . More generally, our

prescription to define gravitational scattering is to take all solutions obtained by doing arbitrary

X transformations on the solutions obeying (6.4.7). We shall refer to such scattering geometries,

complete with I± data, as extended CK spaces. Acting with an arbitrary finite conformal transfor-

mation w(z) followed by an arbitrary finite supertranslation f on (6.4.7) leads to the asymptotic

behaviors for large negative u and positive v7

Cww(u,w, w̄) ∼ −2u (∂wz)
1/2 ∂2w (∂wz)

−1/2 − 2D2
wf +O(u−3/2) ,

Dww(v, w, w̄) ∼ 2v (∂wz)
1/2 ∂2w (∂wz)

−1/2 + 2D2
wf +O(v−3/2) . (6.4.8)

We also have the relations at all the boundaries of I±

∂z̄Nzz|I+
±
= 0 ,

∂z̄Mzz|I−
±
= 0 ,[

D2
z̄Czz −D2

zCz̄z̄

]
I+
±
= 0 ,[

D2
z̄Dzz −D2

zDz̄z̄

]
I−
±
= 0 . (6.4.9)

7 Interestingly, the news tensor at the boundary I+
− obeys Nww|I+

−
= −2(∂wz)

1/2∂2w(∂wz)
−1/2, which is

the transformation law for a 2D CFT stress tensor.
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6.5 X Ward Identity

6.5.1 Quantum States

In the quantum theory, incoming (outgoing) states on I− (I+) are presumed to form representations

of extended BMS− (BMS+). In this subsection we will describe the action of an infinitesimal

Virasoro transformation δY parameterized by Y z on a generic Fock-basis in-state. For I− we define

Q−(Y −)| in ⟩ = −iδY − | in ⟩ , (6.5.1)

and similarly we define Q+(Y +) on I+.8 Q− may be decomposed into a hard and soft part as

Q− = Q−
H +Q−

S , (6.5.2)

where Q−
H generates the diffeomorphism ξ−(Y −) on the incoming hard particles, and Q−

S creates

a soft graviton. Let us denote an in-state comprised of n particles with energies Ek incoming at

points zk for k = 1, . . . , n on the conformal S2 by

|z1, z2, . . . ⟩ . (6.5.3)

Then the hard action is simply to act with ξ−µ∂kµ on each scalar particle

Q−
H |z1, z2, . . . ⟩ = −i

∑
k

(
Y −z(zk)∂zk −

Ek

2
DzY

−z(zk)∂Ek

)
|z1, z2, . . . ⟩ , (6.5.4)

Here, −(1 + Ek∂Ek
) arises from the Fourier transform of v∂v, and the coefficient of DzY

−z is

shifted by one half as in [32] due to the r∂r term in (6.3.7). For spinning particles we must replace

8 Explicit expressions for the proper BMS± charges as integrals of fields on I were worked out in detail
in [31] and shown to generate the proper BMS± symmetries. Expressions for the Virasoro charges Q± are
given in [10–12], but were not shown to generate the symmetries. In this chapter such explicit expressions
will not be needed: transformation laws for the states suffice.
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Y −z(zk)∂zk with the Lie derivative LY −(zk).9

To determine Q−
S , note that the inhomogeneous transformation of the incoming Bondi news

Mzz is

δY −Mzz(v, z, z̄) = D3
zY

−z . (6.5.5)

The action of Q−
S on a state must implement this shift. It follows that

[
Q−

S ,Mzz

]
= −iD3

zY
−z . (6.5.6)

Using the commutator [27, 28, 79]

[
Mz̄z̄(v, z, z̄),Mww(v

′, w, w̄)
]
= 2iγzz̄δ

(2)(z − w)∂vδ(v − v′) , (6.5.7)

one concludes that, up to a total derivative commuting with Mzz,

Q−
S =

1

2

∫
I−
dvd2zD3

zY
−zvM z

z̄ . (6.5.8)

This reproduces the linear term in the full expression for the charge given in [10–12].10 Q−
S is

a zero-frequency operator (because of the v integral) linear in the metric fluctuation. Acting on

the in-vacuum, it creates a soft graviton with polarization tensor proportional to D3
zY

−z. The

explicit form of the momentum space creation operator will be constructed below in subsection

6.5.3. Altogether then, Q− maps the n-particle states into themselves plus an n-hard+1-soft state:

Q−|z1, z2, . . . ⟩ = −i
n∑

k=1

(
Y −z(zk)∂zk −

Ek

2
DzY

−z(zk)∂Ek

)
|z1, z2, . . . ⟩ +Q−

S |z1, z2, . . . ⟩ . (6.5.9)

9More explicitly if we have a particle of helicity h, and Rindler energy −iv∂v = ER, the parentheses in
(6.5.4) are of the form Y z∂z +Y z̄∂z̄ +hRDzY

z +hLDz̄Y
z̄ where for helicity h, the “conformal weights” (see

e.g. [32]) are hR = h
2 − 1

2E∂E = 1
2 (h+ 1 + iER), hL = −h

2 − 1
2E∂E = 1

2 (−h+ 1 + iER).

10The formula in [10–12] differs by a total derivative which improves the large |v| behavior and may be
essential in a more general context. The slightly simpler expression here is sufficient for the present purpose.
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Similarly Virasoro transformations on I+ are decomposed as

Q+ = Q+
H +Q+

S , (6.5.10)

and we denote out-states comprised of m particles with energies Ek outgoing at points zk for

k = n+ 1, . . . , n+m by

⟨zn+1, zn+2, . . . | . (6.5.11)

One finds

⟨zn+1, zn+2, . . . |Q+ = i

n+m∑
k=n+1

(
Y +z(zk)∂zk −

Ek

2
DzY

+z(zk)∂Ek

)
⟨zn+1, zn+2, . . . |

+ ⟨zn+1, zn+2, . . . |Q+
S , (6.5.12)

where

Q+
S = −1

2

∫
I+

dud2zD3
zY

+zuN z
z̄ . (6.5.13)

6.5.2 X -Invariance of S

In this section we derive a quantum Ward identity from the assumption that X -invariance survives

quantization. The quantum version of infinitesimal X -invariance of classical gravitational scattering

is, using (6.4.1)

⟨ out |Q+(Y )S − SQ−(Y )| in ⟩ = 0 , (6.5.14)

for any pair of in- and out-states (| in ⟩, | out ⟩). Let us define the normal-ordered soft graviton

insertion

: QS(Y )S := Q+
S (Y )S − SQ−

S (Y ) . (6.5.15)
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(6.5.14) is then the Ward identity

⟨zn+1, zn+2, . . . | : QSS : |z1, z2, . . . ⟩ =

− i

n+m∑
k=1

(
Y z(zk)∂zk −

Ek

2
DzY

z(zk)∂Ek

)
⟨zn+1, zn+2, . . . |S|z1, z2, . . . ⟩ , (6.5.16)

where the k sum now runs over both in- and out-particles. For spinning particles the Lie derivative

replaces the ordinary one on the right hand side. This relates the derivatives of any S-matrix

element to the same S-matrix element with a particular soft graviton insertion.

6.5.3 Mode Expansions

We wish to expressQ±
S in terms of standard momentum space soft graviton creation and annihilation

operators. The flat space graviton mode expansion is11

houtµν (x) =
∑
α=±

∫
d3q

(2π)3
1

2ωq

[
εα∗µν(q⃗ )a

out
α (q⃗ )eiq·x + εαµν(q⃗ )a

out
α (q⃗ )†e−iq·x

]
, (6.5.17)

where q0 = ωq = |q⃗ |, α = ± are the two helicities and

[
aoutα (p⃗ ), aoutβ (q⃗ )†

]
= 2ωqδαβ(2π)

3δ(3) (p⃗− q⃗ ) . (6.5.18)

The outgoing gravitons with momentum q correspond to final-state insertions of aoutα (q⃗ ). It is

convenient to parametrize the graviton four-momentum by (ωq, w, w̄)

qµ =
ωq

1 + ww̄
(1 + ww̄,w + w̄, i (w̄ − w) , 1− ww̄) , (6.5.19)

11Here, we take gµν = ηµν +
√
32πGhµν = ηµν + 2hµν .
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with polarization tensors

ε±µν = ε±µε±ν ,

ε+µ(q⃗ ) =
1√
2
(w̄, 1,−i,−w̄) ,

ε−µ(q⃗ ) =
1√
2
(w, 1, i,−w) . (6.5.20)

These obey ε±µqµ = ε±µ
µ = 0 and

ε+z̄ (q⃗ ) = ∂z̄x
µε+µ (q⃗ ) =

√
2r (1 + zw̄)

(1 + zz̄)2
, ε−z̄ (q⃗ ) = ∂z̄x

µε−µ (q⃗ ) =

√
2rz (w − z)

(1 + zz̄)2
. (6.5.21)

In retarded Bondi coordinates

Cz̄z̄(u, z, z̄) = 2 lim
r→∞

1

r
houtz̄z̄ (r, u, z, z̄) . (6.5.22)

Using houtz̄z̄ = ∂z̄x
µ∂z̄x

νhoutµν and the mode expansion one finds

Cz̄z̄ = 2 lim
r→∞

1

r
∂z̄x

µ∂z̄x
ν
∑
α=±

∫
d3q

(2π)3
1

2ωq

[
εα∗µν(q⃗ )a

out
α (q⃗ )e−iωqu−iωqr(1−cos θ) + h.c.

]
, (6.5.23)

where θ is the angle between x⃗ and q⃗. This integral is dominated for large r by the contribution

near θ=0:

Cz̄z̄ = − i

4π2
ε̂+z̄z̄

∫ ∞

0
dωq

[
aout− (ωqx̂)e

−iωqu − aout+ (ωqx̂)
†eiωqu

]
. (6.5.24)

Here, x̂ is parameterized by (z, z̄)

x̂ ≡ x⃗

r
=

1

1 + zz̄
(z + z̄, i(z̄ − z), 1− zz̄) (6.5.25)

and

ε̂+z̄z̄ =
∂z̄x

µ∂z̄x
ν

r2
ε+µν =

2

(1 + zz̄)2
. (6.5.26)
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Define

Nω
z̄z̄ ≡

∫
eiωu∂uCz̄z̄du . (6.5.27)

Then from the large-r saddle point expansion of (6.5.23), we have

Nω
z̄z̄ = − 1

2π
ε̂+z̄z̄ωa

out
− (ωx̂) ,

N−ω
z̄z̄ = − 1

2π
ε̂+z̄z̄ωa

out
+ (ωx̂)† , (6.5.28)

with ω > 0 in both cases. We define N (1)
z̄z̄ as

N
(1)
z̄z̄ ≡

∫
duuNz̄z̄

= − lim
ω→0

i

2

(
∂ωN

ω
z̄z̄ + ∂−ωN

−ω
z̄z̄

)
(6.5.29)

=
i

4π
ε̂+z̄z̄ lim

ω→0
(1 + ω∂ω)

[
aout− (ωx̂)− aout+ (ωx̂)†

]
.

A mode expansion analogous to (6.5.24) can be defined for Dz̄z̄ on I−

Dz̄z̄ = − i

4π2
ε̂+z̄z̄

∫ ∞

0
dωq

[
ain−(ωqx̂)e

−iωqv − ain+(ωqx̂)
†eiωqv

]
, (6.5.30)

from which we find

Mω
z̄z̄ = − 1

2π
ε̂+z̄z̄ωa

in
−(ωx̂) ,

M−ω
z̄z̄ = − 1

2π
ε̂+z̄z̄ωa

in
+(ωx̂)

† , (6.5.31)

and

M
(1)
z̄z̄ = − lim

ω→0

i

2

(
∂ωM

ω
z̄z̄ + ∂−ωM

−ω
z̄z̄

)
=

i

4π
ε̂+z̄z̄ lim

ω→0
(1 + ω∂ω)

[
ain−(ωx̂)− ain+(ωx̂)

†
]
. (6.5.32)
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We are interested in the matrix element

⟨ out |N (1)
z̄z̄ S + SM (1)

z̄z̄ | in ⟩

=
i

4π
ε̂+z̄z̄ lim

ω→0
(1 + ω∂ω)⟨ out |

(
aout− (ωx̂)− aout+ (ωx̂)†

)
S + S

(
ain−(ωx̂)− ain+(ωx̂)

†
)
| in ⟩ (6.5.33)

=
i

4π
ε̂+z̄z̄ lim

ω→0
(1 + ω∂ω)⟨ out |aout− (ωx̂)S − Sain+(ωx̂)†| in ⟩ ,

which is ⟨ out |S| in ⟩ with soft graviton insertions.12 Such insertions generically have Weinberg poles

behaving as 1
ω . However the prefactor 1+ω∂ω projects out this pole, leaving the subleading O(ω0)

soft factor. Equation (6.5.33) and its hermitian conjugate are related to the QS matrix element by

⟨ out | : QSS : | in ⟩

= −1

2

∫
d2zγzz̄D3

zY
z⟨ out |N (1)

z̄z̄ S + SM (1)
z̄z̄ | in ⟩ (6.5.34)

= − i

8π
lim
ω→0

(1 + ω∂ω)

∫
d2zγzz̄D3

zY
z ε̂+z̄z̄⟨ out |aout− (ωx̂)S − Sain+(ωx̂)†| in ⟩ .

Given the asymptotic behavior (6.4.8) near i0, the boundary relation Nz̄z̄|I+
−

= −Mz̄z̄|I−
+

estab-

lishes a correspondence between the in- and out-modes, such that the contributions to the matrix

element (6.5.34) from the aout− (ωx̂) and −ain+(ωx̂)† insertions are equal.

6.6 From Soft Theorem to Virasoro Symmetry

In this section we begin by assuming the subleading soft relation13

lim
ω→0

(1 + ω∂ω)⟨zn+1, zn+2, . . . |a−(q)S|z1, z2, . . . ⟩ = S(1)−⟨zn+1, zn+2, . . . |S|z1, z2, . . . ⟩ , (6.6.1)

12 Here, we assume that the | in ⟩ and ⟨ out | states contain no soft gravitons.

13A single soft graviton insertion has the ω expansion

⟨zn+1, zn+2, . . . |a−(q)S|z1, z2, . . . ⟩ =
(
S(0)− + S(1)−

)
⟨zn+1, zn+2, . . . |S|z1, z2, . . . ⟩+O(ω).
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with

S(1)− = −i
∑
k

pkµε
−µνqλJkλν
pk · q

. (6.6.2)

Here, Jkλν ≡ Lkλν + Skλν is the total ingoing orbital + spin angular momentum of the kth particle

which obeys the global conservation law
∑
Jkλν = 0. We note the (1 + ω∂ω) prefactor on the left

hand side projects out the would-be Weinberg pole accompanying a soft insertion. For notational

brevity we consider the contribution for negative polarization: the general formula has an S(1) with

a general polarization tensor replacing (6.6.2). We will show that (6.6.1) implies the Ward identity

(6.5.16), which in turn is equivalent to infinitesimal X -invariance of the S-matrix. Although the

relation (6.6.1) potentially has wider validity, the only case in which it is known to be a theorem is

for tree-level gravitons [15]. Hence, only for this case do we claim the results of this section imply

a Virasoro symmetry.

Gauge invariance provides an important check on this formula. Amplitudes must vanish for

pure gauge gravitons with polarizations

εµνΛ = qµΛν + qνΛµ (6.6.3)

for any Λ. Inserting this into (6.6.2) we find

iS(1)(εΛ) = qµΛν
∑
k

Jkµν +
∑
k

pk · ΛqµqνJkµν
pk · q

. (6.6.4)

The first term vanishes by global angular momentum conservation, while the second vanishes by

antisymmetry of Jkµν . This is very similar to the gauge invariance of the Weinberg pole, which

vanishes due to global energy-momentum conservation or equivalently translational symmetry. The

Weinberg soft theorem implies that this global translational symmetry is promoted to a local

supertranslational symmetry on the sphere [31], because there is one symmetry for every angle q⃗.

In this section we will see a parallel story for rotational invariance: the soft relation (6.6.1) implies

that rotations are promoted to a local superrotational - equivalently Virasoro - symmetry on the

sphere.
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The first step is to write the hard particle momenta pk, the soft graviton momentum q and

chosen polarization ε−µν = ε−µε−ν in terms of the points zk and z at which they arrive on the

asymptotic S2 and their energies Ek, ω

pµk =
Ek

1 + zkz̄k
(1 + zkz̄k, z̄k + zk, i(z̄k − zk), 1− zkz̄k) , (6.6.5)

qµ =
ω

1 + zz̄
(1 + zz̄, z̄ + z, i(z̄ − z), 1− zz̄) , (6.6.6)

ε−µ =
1√
2
(z, 1, i,−z) . (6.6.7)

One then finds for the orbital terms

S(1)− =
∑
k

(
Ek(z − zk)(1 + zz̄k)

(z̄k − z̄)(1 + zkz̄k)
∂Ek

+
(z − zk)

2

(z̄k − z̄)
∂zk

)
. (6.6.8)

The spin term will be added in below. This expression obeys

γzz̄D3
z

(
ε̂+z̄z̄S

(1)−
)
= −2π

∑
k

(
Dzδ

(2)(z − zk)Ek∂Ek
+ 2δ(2)(z − zk)∂zk

)
. (6.6.9)

Multiplying both sides of (6.6.1) by D3
zY

z ε̂+z
z̄ and integrating over the soft graviton angle z gives

⟨zn+1, zn+2, . . . | : QSS : |z1, z2, . . . ⟩ = (6.6.10)

− i
∑
k

(
Y z(zk)∂zk −

Ek

2
DzY

z(zk)∂Ek

)
⟨zn+1, zn+2, . . . |S|z1, z2, . . . ⟩ , (6.6.11)

which is exactly the Ward identity (6.5.16) arising from an asymptotic Virasoro symmetry, minus

the thus-far-omitted spin terms.

The spin contribution comes from evaluating:

S
(1)−
S = −i

∑
k

pkλε
−λνqµSkµν
pk · q

. (6.6.12)
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In terms of the helicity h defined by

hpµ = −1

2
εµνλρS

νλpρ , (6.6.13)

one finds

S
(1)−
S =

∑
k

(z − zk)(1 + zz̄k)

(z̄ − z̄k)(1 + zkz̄k)
hk , (6.6.14)

while the third derivative obeys

γzz̄D3
z

(
ε̂+z̄z̄S

(1)−
S

)
= 2π

∑
k

hkDzδ
(2)(z − zk) . (6.6.15)

Hence, the spin contribution for the helicity states corrects (6.6.10) to

⟨zn+1, zn+2, . . . | : QSS : |z1, z2, . . . ⟩ = −i
∑
k

(
Y z(zk)∂zk −

Ek

2
DzY

z(zk)∂Ek
+
hk
2
DzY

z(zk)

)
⟨zn+1, zn+2, . . . |S|z1, z2, . . . ⟩ , (6.6.16)

in agreement with the spin-corrected version of (6.5.16). In conclusion, the soft relation (6.6.1),

whenever valid, implies a Virasoro symmetry of the quantum gravity S-matrix.
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7
A 2D Stress Tensor for 4D Gravity

7.1 Introduction

Any quantum scattering amplitude of massless particles in four-dimensional (4D) asymptotically

Minkowskian spacetime can be rewritten as a correlation function on the celestial sphere at null

infinity. Asymptotic one-particle states are represented as operator insertions on the sphere at the

points where they exit or enter the spacetime. The energy and other flavor or quantum numbers

then label distinct operators. The SL(2,C) Lorentz invariance acts as the global conformal group

on the celestial sphere and implies that these correlators lie in SL(2,C) representations.

In this chapter we consider the S-matrix for 4D quantum gravity in asymptotically Minkowskian

spacetime. We construct an explicit soft graviton mode, denoted Tzz, and prove that its insertions in

the tree-level S-matrix (with no other external soft insertions) obey all the Virasoro-Ward identities

of a stress tensor insertion in a CFT2 correlator on the sphere. Our main tool is the subleading soft
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graviton theorem [8, 15, 122, 123]. Our construction refines and extends results and conjectures

of [10, 11, 13, 14, 33, 124]. It demonstrates that such quantum gravity scattering amplitudes are

in Virasoro representations, as are CFT2 correlators. This extends, from gauge theory to gravity,

earlier work [34, 96] in which soft photon and gluon insertions were shown to obey the Ward

identities of a Kac-Moody algebra on the celestial sphere.

The current work has several limitations. We do not consider massive particles, but do expect

the extension to the massive case to be possible along the lines of [80, 81, 125]. Qualitatively

important issues arise - including a possible central term - when there are multiple soft insertions

that are not addressed here. At the one-loop level, corrections to the Ward identity are expected as a

consequence of corrections to the soft theorem [66, 67, 72]. We have not analyzed their implications.

Finally, although our results imply that certain quantum gravity scattering amplitudes are in

Virasoro representations, there is no reason to expect that they are the same kinds of unitary

representations appearing in conventional 2D CFTs. We leave the nature of these representations

to future work.

7.2 Soft Graviton Limits

In this chapter we consider tree-level scattering amplitudes of massless particles in four dimensions.

The single particle states are labeled by | p, s ⟩, where p and s denote the four-momentum and

helicity of the particle respectively. The particles may carry charges or flavors, but these indices

are not relevant and are suppressed. The normalization of these states is given by

⟨ p, s | p′, s′ ⟩ = (2π)3(2p0)δs,s′δ
(3)
(
p⃗− p⃗ ′) . (7.2.1)

The tree-level scattering amplitude involving n massless states is denoted by

An = ⟨ out |S| in ⟩ , (7.2.2)
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where we use the shorthand

| in ⟩ = | p1, s1 ; . . . ; pm, sm ⟩ , ⟨ out | = ⟨ pm+1, sm+1 ; . . . ; pn, sn | , (7.2.3)

and suppress the dependence of An on the momenta pk. We use a convention in which incom-

ing states are described as CPT conjugate outgoing states with negative p0 so that momentum

conservation implies
∑n

k=1 p
µ
k = 0.

Let A(±)
n+1(q) be an amplitude involving a graviton of momentum qµ and polarization ε(±)

µν (q) as

well as n other massless asymptotic states

A(±)
n+1(q) = ⟨ out ; q,±2 |S| in ⟩ . (7.2.4)

The soft q0 → 0 limit of this amplitude is governed by the leading [4] and subleading [8, 15, 122, 123]

soft graviton theorems1

A(±)
n+1(q) →

[
S
(±)
0 + S

(±)
1 +O(q)

]
An , (7.2.5)

where An is the original amplitude without the soft graviton (7.2.2) and

S
(±)
0 =

κ

2

n∑
k=1

pµkp
ν
kε

(±)
µν (q)

pk · q
, S

(±)
1 = − iκ

2

n∑
k=1

ε
(±)
µν (q)pµkqλ
pk · q

J λν
k , κ =

√
32πG . (7.2.6)

Here, Jkµν is the angular momentum operator acting on the kth outgoing state. It is the sum of

the orbital angular momentum operator Lkµν and spin angular momentum Skµν . Explicitly (see

[126]),

Lkµν = −i
[
pkµ

∂

∂pνk
− pkν

∂

∂pµk

]
,

Skµν = −isk
[
ε(+)
µ (pk)ε

(−)
ν (pk)− ε(+)

ν (pk)ε
(−)
µ (pk)

]
+ skε

(+)
ρ (pk)Lkµνε

(−)ρ(pk) .

(7.2.7)

1As shown in [15, 44, 61], tree-level graviton amplitudes are also constrained by a sub-subleading soft
graviton theorem.
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The ε(±)
µ (p) are polarization vectors that satisfy2

ε(±)(p) · p = 0 , ε(±)(p) · ε(±)(p) = 0 , ε(±)(p) · ε̄ (±)(p) = 1 . (7.2.8)

Equation (7.2.7) continues to hold for particles of half-integer helicity provided that the little group

phase of the wavefunction is chosen consistently. Gauge invariance of the leading and subleading

soft limits implies momentum and angular momentum conservation respectively,

n∑
k=1

pµkAn =
n∑

k=1

JkµνAn = 0 . (7.2.9)

Null momenta are characterized by an energy and a direction (equivalently, a point on S2). To write

out the soft factors explicitly, we parameterize the massless particles’ momenta and polarization

vectors using stereographic coordinates on the sphere3

pµk = ωk

(
1,

zk + z̄k
1 + zkz̄k

,
−i(zk − z̄k)

1 + zkz̄k
,
1− zkz̄k
1 + zkz̄k

)
,

ε(+)
µ (pk) =

1√
2
(−z̄k, 1,−i,−z̄k) ,

ε(−)
µ (pk) =

1√
2
(−zk, 1, i,−zk) , k = 1, . . . , n . (7.2.10)

For the soft graviton, we write

qµ = ω

(
1,

z + z̄

1 + zz̄
,
−i(z − z̄)

1 + zz̄
,
1− zz̄

1 + zz̄

)
,

ε(+)
µ (q) =

1√
2
(−z̄, 1,−i,−z̄) ,

ε(−)
µ (q) =

1√
2
(−z, 1, i,−z) . (7.2.11)

2Note that (7.2.8) is invariant under ε(±)
µ (q) → eiθ±(q)ε

(±)
µ (q), i.e. (7.2.8) only determines the polarizations

up to an overall momentum dependent phase. These correspond to the little group transformations.

3In writing the explicit forms of the polarization vectors in (7.2.10), (7.2.11) we have specified our choice
of little group phase.
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The graviton polarization is ε(±)
µν (q) = ε

(±)
µ (q)ε

(±)
ν (q). In this parameterization, the soft factors

(7.2.6) are given by

S
(+)
1 =

κ

2

n∑
k=1

(z̄ − z̄k)
2

z − zk

[
2h̄k
z̄ − z̄k

− Γz̄k
z̄k z̄k h̄k − ∂z̄k + |sk|Ωz̄k

]
,

S
(−)
1 =

κ

2

n∑
k=1

(z − zk)
2

z̄ − z̄k

[
2hk
z − zk

− Γzk
zkzk

hk − ∂zk + |sk|Ωzk

]
. (7.2.12)

Here Γz
zz is the connection with respect to the unit round metric γzz̄ = 2(1 + zz̄)−2 on the sphere,

Ωz =
1
2Γ

z
zz is the spin connection,4 and we have defined the operators5

hk ≡ 1

2
(sk − ωk∂ωk

) , h̄k ≡ 1

2
(−sk − ωk∂ωk

) . (7.2.13)

In this parameterization, equation (7.2.9) takes the form

(
n∑

k=1

ωk

)
An =

(
n∑

k=1

ωk
zk + z̄k
1 + zkz̄k

)
An = −i

(
n∑

k=1

ωk
zk − z̄k
1 + zkz̄k

)
An =

(
n∑

k=1

ωk
1− zkz̄k
1 + zkz̄k

)
An = 0,

− i
n∑

k=1

[
Y zk

(
∂zk − |sk|Ωzk

)
+ Y z̄k

(
∂z̄k − |sk|Ωz̄k

)
+DzkY

zkhk +Dz̄kY
z̄k h̄k

]
An = 0 , (7.2.14)

where Y z(z) = a+ bz + cz2 is a global conformal Killing vector and Dz is the covariant derivative

on the unit sphere.

4The zweibein chosen here is
(
e+, e−

)
=

√
2γzz̄

(
dz, dz̄

)
for which Ω±

± = ± 1
2

(
Γz
zzdz − Γz̄

z̄z̄dz̄
)
. This

choice is related to the little group phase chosen in (7.2.10), (7.2.11).

5Single particle momentum eigenstates do not diagonalize the dilation operator hk + h̄k. At tree-level,
amplitudes are rational functions of the external momenta and we can formally define Mellin-transformed pri-
mary operators Õ(m, z, z̄) =

∫∞
0
dωωm−1O(ω, z, z̄) with conformal weights h = 1

2 (s+m), h̄ = 1
2 (−s+m).
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7.3 Mode Expansions Near I+

Four-dimensional asymptotically flat metrics [1, 2, 10–12, 124] admit an expansion near I+ of the

form

ds2 = −du2 − 2dudr+2r2γzz̄dzdz̄ +
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2

+DzCzzdudz +Dz̄Cz̄z̄dudz̄ + . . . .

(7.3.1)

In these coordinates, I+ is the null surface (u, r = ∞, z, z̄). The retarded time u parameterizes the

null generators of I+, and (z, z̄) are stereographic coordinates on the conformal S2. The boundaries

of I+ are located at (u = ±∞, r = ∞, z, z̄) and are denoted I+
+ and I+

− respectively. The Bondi

mass aspect mB and Czz depend only on (u, z, z̄) and not on r. The news tensor is defined by

Nzz ≡ ∂uCzz . (7.3.2)

When expanding near flat spacetime, the Bondi coordinates are related to flat Cartesian coordinates

by

x0 = u+ r , xi = rx̂i(z, z̄) , x̂i(z, z̄) =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1− zz̄) . (7.3.3)

The space of asymptotically flat metrics in Bondi gauge with prescribed falloffs [1, 2] admits an

infinite-dimensional asymptotic symmetry group, the BMS group, parameterized by vector fields

of the form

ξ =
(
1 +

u

2r

)
Y z∂z −

u

2r
Dz̄DzY

z∂z̄ −
1

2
(u+ r)DzY

z∂r +
u

2
DzY

z∂u + c.c.

+f∂u − 1

r

(
Dzf∂z +Dz̄f∂z̄

)
+DzDzf∂r + . . . .

(7.3.4)

Here, f(z, z̄) is a free function on the sphere associated to the supertranslation subgroup of the

BMS group. The two-dimensional vector field Y (z, z̄) is a conformal Killing vector (CKV) which

realizes the action of the Lorentz group SL(2,C) on the asymptotic sphere. For a more general

CKV, obeying ∂z̄Y
z = 0 except at isolated singularities, the Bondi gauge condition is preserved,
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but the falloffs imposed on the metric are violated at the singularities. It was conjectured [10, 11,

13, 14, 124] and proven in tree-level perturbation theory [33] that such symmetries nevertheless

play an important role.

The flat space outgoing graviton mode expansion is6

hout
µν

(
x0, x⃗

)
=
∑
α=±

∫
d3q

(2π)3
1

2ωq

[
ε̄(α)µν (q)a

out
α (q⃗ )eiq·x + ε(α)µν (q)a

out
α (q⃗ )†e−iq·x

]
,

where ωq = |q⃗ | and [
aout
α (p⃗ ), aout

β (q⃗ )†
]
= (2π)3

(
2p0
)
δαβδ

(3) (p⃗− q⃗ ) . (7.3.5)

Outgoing gravitons with momentum q and polarization α as in the amplitude (7.2.2) correspond

to final-state insertions of aout
α (q⃗ ).

In retarded Bondi coordinates

Cz̄z̄(u, z, z̄) = κ lim
r→∞

1

r
∂z̄x

µ∂z̄x
νhout

µν

(
u+ r, rx̂(z, z̄)

)
. (7.3.6)

This large-r limit can be computed using the stationary phase approximation [31, 33] and one finds

Cz̄z̄(u, z, z̄) = − iκ

8π2
ε̂z̄z̄

∫ ∞

0
dωq

[
aout
−
(
ωqx̂

)
e−iωqu − aout

+ (ωqx̂
)†
eiωqu

]
. (7.3.7)

Here, x̂ ≡ x̂(z, z̄) and

ε̂z̄z̄ =
1

r2
∂z̄x

µ∂z̄x
νε(+)

µν (ωqx̂) =
2

(1 + zz̄)2
. (7.3.8)

We define the first moment of the Bondi news

N
(1)
z̄z̄ ≡

∫
duuNz̄z̄ = − i

2
lim
ω→0

∂ω

∫
du
(
eiωu − e−iωu

)
Nz̄z̄

=
iκ

8π
ε̂z̄z̄ lim

ω→0
(1 + ω∂ω)

[
aout
−
(
ωx̂
)
− aout

+

(
ωx̂
)†]

,

(7.3.9)

6Here, we take gµν = ηµν + κhµν which implies a canonical normalization for the graviton field, L ∼
1
2 (∂h)

2.
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along with a similar definition for N (1)
zz . We note that N (1)

z̄z̄ has the Weinberg pole projected out by

the factor 1 + ω∂ω. Hence, it has nonzero finite scattering amplitudes.

The insertion of the zero-mode (7.3.9) is then given by (7.2.5) and (7.2.12) with

⟨ out |N (1)
z̄z̄ S| in ⟩ = 4Gi

(1 + zz̄)2

n∑
k=1

(z − zk)
2

z̄ − z̄k

[
2hk
z − zk

− Γzk
zkzk

hk − ∂zk + |sk|Ωzk

]
⟨ out |S| in ⟩ .

(7.3.10)

7.4 A 2D Stress Tensor

Massless scattering amplitudes An of any four-dimensional theory may always be recast as two-

dimensional correlation functions of local operators on the asymptotic S2 at null infinity [96],

An = ⟨O1(ω1, z1, z̄1) . . .On(ωn, zn, z̄n) ⟩ . (7.4.1)

The operator Ok creates a massless single-particle state with momentum and polarization given

by (7.2.10). The particle intersects the asymptotic S2 at the point (zk, z̄k).7 The four-dimensional

Lorentz group SL(2,C) acts as the global conformal group on the asymptotic S2 according to8

z → z′ =
az + b

cz + d
, ad− bc = 1 . (7.4.2)

This implies that all Minkowskian QFT4 amplitudes are in representations of the same global

conformal group as Euclidean CFT2 correlators. In this section we will see that (hard) quantum

7The same is not true for scattering amplitudes involving massive particles since a massive four-momentum
does not localize to a point on I. However following [80, 81, 125] we expect the analysis of this chapter to
have a suitable generalization to the massive case, as the subleading soft theorem [8, 15, 122, 123] remains
valid for massive particles.

8This also acts on the energy as

ω̃ → ω̃|cz + d|2 , ω̃ =
ω

1 + zz̄
.
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gravity amplitudes are in representations of the full CFT2 Virasoro group. Indeed, it has already

been shown that the leading soft photon and graviton theorems are the Ward identities of abelian

Kac-Moody current algebras acting on the asymptotic S2 [30–32, 34]. A similar Kac-Moody struc-

ture for non-abelian gauge theory scattering amplitudes was studied in [127]. The leading soft gluon

theorem in a non-abelian gauge theory with gauge group G was shown in [96] to be equivalent to the

Ward identity of a G Kac-Moody current algebra. In all of these cases, holomorphic Kac-Moody

current insertions were related to positive helicity soft insertions. For instance, the soft photon

Kac-Moody current is

Jz = −8π

e2
F (0)
uz =

1

e
ε̂z lim

ω→0

[
ωaout

+

(
ωx̂
)
+ ωaout

−
(
ωx̂
)†]

, (7.4.3)

where F (0)
uz is the zero-mode of the photon field strength, ε̂z =

√
ε̂zz, and aout

+

(
ωx̂
)

creates outgoing

positive helicity photons. Insertions of this current take the form

⟨ JzO1 . . .On ⟩ =
∑
k

Qk

z − zk
⟨O1 . . .On ⟩ , (7.4.4)

where eQk is the electric charge of the operator Ok and we have dropped the dependence of the

operators on (ωk, zk, z̄k) for compactness.

In a similar vein, it has been shown [33, 39] that the subleading soft graviton theorem is the

Ward identity for the superrotations [10] which generate an infinite-dimensional Virasoro subgroup

of the extended BMS group.9 In the language of 2D correlators, the current corresponding to these

local conformal transformations is the stress tensor. We now turn to an explicit construction of

this operator.

Our starting point is (7.3.10), which has a form reminiscent of a stress tensor Ward identity.

9The sub-subleading soft graviton theorem has also been recently recast as a symmetry of the S-matrix
(see [128, 129]).

134



Chapter 7: A 2D Stress Tensor for 4D Gravity

To bring this into the usual form, we define

Tzz ≡ i

8πG

∫
d2w

1

z − w
D2

wD
w̄N

(1)
w̄w̄ . (7.4.5)

This integro-differential operator relating Tzz to N (1)
w̄w̄ can be applied to the matrix element (7.3.10)

in order to determine the matrix elements of Tzz. One finds

⟨TzzO1 . . .On ⟩ =
n∑

k=1

[
hk

(z − zk)2
+

Γzk
zkzk

z − zk
hk +

1

z − zk
(∂zk − |sk|Ωzk)

]
⟨O1 . . .On ⟩ , (7.4.6)

which is the precise form of the stress tensor correlator in a conformal field theory on a curved back-

ground. This can be brought to the more familiar form by dressing the operators with appropriate

factors of the zweibein. See [130] for a more detailed discussion.

Define the charge

TC [Y ] =

∮
C

dz

2πi
Y zTzz , (7.4.7)

where Y z is a local CKV obeying ∂z̄Y z = 0 with no singularities inside the contour. Geometrically,

these vector fields generate the local conformal transformations of the sphere. Therefore, one

expects the operators (7.4.7) to implement the action of the Virasoro algebra quantum-mechanically.

Indeed, insertions of (7.4.7) take the form

⟨TC [Y ]O1 . . .On ⟩ =
∑
k∈C

[DzkY
zkhk + Y zk (∂zk − |sk|Ωzk)] ⟨O1 . . .On ⟩ . (7.4.8)

Thus, TC [Y ] generates a local conformal transformation on all operators inside C.10

Now, consider a contour C that encircles all zk and a Y z that is globally defined on the sphere,

i.e. Y z = a + bz + cz2. Since we are on a compact S2, insertions of TC [Y ] can be computed by

10This operator is closely related to the soft part of the superrotation charge defined in [33]. More precisely,
if C is a contour that surrounds all zk, then

Q+
S = − i

2
TC [Y ] .
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either closing the contour towards z = zk or away from it. No poles are crossed when the contour

is closed away from z = zk and these insertions must vanish. In other words,

n∑
k=1

[DzkY
zkhk + Y zk (∂zk − |sk|Ωzk)] ⟨O1 . . .On ⟩ = 0 , Y z = a+ bz + cz2 , (7.4.9)

which is the statement of boost/angular momentum conservation (7.2.14). In ordinary two-

dimensional conformal field theories, the existence of the full Virasoro symmetry serves as a drastic

constraint on allowed dynamics and is responsible for most of the simplifications in 2D CFTs rel-

ative to higher-dimensional theories. One hopes that the identification of this symmetry of the

four-dimensional gravitational S-matrix can be exploited to similar effect.

The stress tensor (7.4.5) is non-local on S2 in the news tensor zero-mode N (1)
z̄z̄ . Nevertheless, we

have proven that insertions of Tzz are local on the S2. In contrast, the construction of the boundary

stress tensor in AdS/CFT [131, 132] is local in the bulk fields when written in terms of subleading

terms in the metric expansion. Leading and subleading terms in the metric expansion have a gauge-

dependent and generally non-local relation on the S2 enforced by the Einstein equation. We have

tried unsuccessfully to find, by rewriting N
(1)
z̄z̄ in terms of subleading metric components, such a

local expression in Bondi gauge.11 However, it is possible that such a manifestly local expression

exists in some other gauge. On the other hand, the non-locality may indicate that the Virasoro

action in 4D quantum gravity has a different character than that in conventional 2D CFT. We leave

this question unanswered for now.

Obviously, an anti-holomorphic stress tensor Tz̄z̄ could be similarly constructed. However, a

number of yet unresolved issues arise for multiple soft current insertions, even in the Maxwell case,

as discussed in [34, 96]. The result of this chapter is that insertions of a single Tzz generate local

conformal transformations when all other insertions are hard.

11The O(r0) term in gzz is an obvious suspect.
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8
Loop-Corrected Virasoro Symmetry of 4D

Quantum Gravity

8.1 Introduction

Recently, it has been demonstrated [33] that any theory of gravity in four asymptotically flat

dimensions has, at tree-level, a Virasoro or “superrotational” symmetry that acts on the celestial

sphere at null infinity. This verified conjectures in [10, 11, 13, 14, 124] and follows from the newly

discovered subleading soft graviton theorem [15]. Except for an anomaly arising from one-loop

exact infrared (IR) divergences [44, 66, 67, 69, 72], this subleading soft theorem extends to the full

quantum theory. However, the implications of this anomaly for the Virasoro symmetry of the full

quantum theory are not understood, and the exploration of such implications comprises the subject

of the present chapter.
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There are several open possibilities. One possibility is that the Virasoro action is defined in

the classical but not in the quantum theory. If so, anomalous symmetries still have important

quantum constraints that would be interesting to understand. A second possibility is that the

Virasoro action acts on the full quantum theory, but that the generators and symmetry action are

renormalized at one-loop. This is suggested by the discussion in [16], where it is pointed out that

the very definition of a scattering problem in asymptotically flat gravity requires an infinite number

of exactly conserved charges and associated symmetries, as well as by [68], which found that the

anomaly vanishes with an alternate order of soft limits. A third possibility is that the implications

can only be properly formulated in a Faddeev-Kulish [106–110, 133] basis of states (constructed

for gravity in [121]), in which case all IR divergences are absent. After all, IR divergences preclude

a Fock-basis S-matrix for quantum gravity and, although we have become accustomed to ignoring

this point, it is hard to discuss symmetries of an object which exists only formally!

In this chapter we give evidence which is consistent with, but does not prove, the second

hypothesis, which states that the Virasoro action persists to the full quantum theory but requires

the generators to have a one-loop correction. We use the recent construction of a 2D energy-

momentum tensor Tzz found in [134, 135], where z is a coordinate on the celestial sphere, in terms

of soft graviton modes. The tree-level subleading soft theorem [15] implies that insertions of Tzz

in the tree-level S-matrix infinitesimally generate a Virasoro action on the celestial sphere. At

one-loop order, the subleading soft theorem has an IR divergent term with a known universal form.

This spoils the Virasoro action generated by Tzz insertions. However, we show explicitly that the

effects of the IR divergent term can be removed by a certain shift in Tzz that is quadratic in the soft

graviton modes. The possibility that this could be achieved by a simple shift is far from obvious

and requires a number of nontrivial cancellations.

This does not demonstrate that there is a Virasoro action on the full quantum theory generated

by a renormalized energy-momentum tensor, as there may also be an IR finite one-loop correction

to the subleading soft theorem. At present, little is known about such finite corrections. In all

cases which have been analyzed [66, 67], the finite part of the correction vanishes. Yet, there is no
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known argument that this should always be the case, and this remains an open issue for us.

The outline of this chapter is as follows. In section 8.2 we fix conventions and recall the con-

struction of the tree-level soft graviton energy-momentum tensor. We then reproduce the derivation

of the one-loop exact IR divergent corrections to the subleading soft graviton theorem in section

8.3. Finally, this divergence is rewritten in section 8.4 in terms of the formal matrix element of

another quadratic soft graviton operator, effectively renormalizing the tree-level energy-momentum

tensor.

8.2 Tree-Level Energy-Momentum Tensor

In this section, we review the derivation of the 2D tree-level energy-momentum tensor living on

the celestial sphere at null infinity [134, 135]. Asymptotic one-particle states are denoted by | p, s ⟩,

where p is the 4-momentum and s is the helicity, and such states are normalized so that

⟨ q, s′ | p, s ⟩ = (2π)3
(
2p0
)
δss′δ

(3)(p⃗− q⃗ ) . (8.2.1)

An n-particle S-matrix element is denoted by

Mn ≡ ⟨ out |S| in ⟩ , (8.2.2)

where | in ⟩ ≡ | p1, s1; . . . ; pm, sm ⟩ and ⟨ out | ≡ ⟨ pm+1, sm+1; . . . ; pn, sn |. Consider the amplitude

M±
n+1(q) ≡ ⟨ out; q,±2 |S| in ⟩ , (8.2.3)

consisting of n external hard particles along with an additional external graviton that has momen-

tum pn+1 ≡ q, energy p0n+1 ≡ ω, and polarization ε±µν . Denoting the same amplitude without the

extra external graviton as Mn, the tree-level soft graviton theorem states that

lim
ω→0

M±
n+1(q) =

[
S(0)±
n + S(1)±

n +O(q)
]
Mn , (8.2.4)
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where the leading and subleading soft factors are given by

S(0)±
n =

κ

2

n∑
k=1

pµkp
ν
kε

±
µν(q)

pk · q
, S(1)±

n = − iκ
2

n∑
k=1

ε±µν(q)p
µ
kqλ

pk · q
J λν
k , (8.2.5)

respectively. Here, κ ≡
√
32πG is the gravitational coupling constant, and J λν

k is the total angular

momentum operator for the kth particle.

Asymptotically flat metrics in Bondi gauge take the form

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 +DzCzzdudz +Dz̄Cz̄z̄dudz̄ + . . . .

(8.2.6)

Here, γzz̄ ≡ 2
(1+zz̄)2

is the round metric on the S2 and Dz is the associated covariant derivative. The

coordinates (u, r, z, z̄) are asymptotically related to the standard Cartesian coordinates according

to

x0 = u+ r , xi = rx̂i(z, z̄) , x̂i(z, z̄) =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1− zz̄) . (8.2.7)

A massless particle with momentum pk crosses the celestial sphere at a point (zk, z̄k). In the

helicity basis, the particle momentum and polarization can be parameterized by an energy ωk and

this crossing point. It follows from (8.2.7) that

pµk = ωk

(
1,

zk + z̄k
1 + zkz̄k

,
−i(zk − z̄k)

1 + zkz̄k
,
1− zkz̄k
1 + zkz̄k

)
, k = 1, . . . , n ,

ε+µ (pk) =
1√
2
(−z̄k, 1,−i,−z̄k) , ε−µ (pk) =

1√
2
(−zk, 1, i,−zk) ,

qµ(z) = ω

(
1,

z + z̄

1 + zz̄
,
−i(z − z̄)

1 + zz̄
,
1− zz̄

1 + zz̄

)
≡ ωq̂µ(z) ,

ε+µ (q) =
1√
2
(−z̄, 1,−i,−z̄) , ε−µ (q) =

1√
2
(−z, 1, i,−z) ,

(8.2.8)

where the soft graviton polarization tensor is taken to be ε±µν = ε±µ ε
±
ν .
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Now, the perturbative fluctuations of the gravitational field have a mode expansion given by

hout
µν

(
x0, x⃗

)
=
∑
α=±

∫
d3q

(2π)3
1

2ωq

[
ε̄αµν(q)a

out
α (q⃗ )eiq·x + εαµν(q)a

out
α (q⃗ )†e−iq·x

]
, (8.2.9)

where aout
α (q⃗ )† and aout

α (q⃗ ) are the standard creation and annihilation operators for gravitons

obeying the commutation relations

[
aout
α (p⃗ ), aout

β (q⃗ )†
]
= (2π)3 (2ωp)δαβδ

(3) (p⃗− q⃗ ) . (8.2.10)

The transverse components of the metric fluctuations near I+ are given by

Cz̄z̄(u, z, z̄) ≡ κ lim
r→∞

1

r
∂z̄x

µ∂z̄x
νhout

µν

(
u+ r, rx̂(z, z̄)

)
. (8.2.11)

The large-r saddle-point approximation yields

Cz̄z̄(u, z, z̄) = − iκ

8π2
ε̂z̄z̄

∫ ∞

0
dωq

[
aout
−
(
ωqx̂

)
e−iωqu − aout

+ (ωqx̂
)†
eiωqu

]
, (8.2.12)

where

ε̂z̄z̄ =
1

r2
∂z̄x

µ∂z̄x
νε+µν(q) =

2

(1 + zz̄)2
. (8.2.13)

Note that (8.2.12) is an intuitively plausible result since it states that the graviton field operator

at a point (z, z̄) on the celestial sphere has an expansion in plane wave modes whose momenta are

aimed towards that point.

The Bondi news tensor Nzz = ∂uCzz has Fourier components

Nω
zz ≡

∫
dueiωuNzz , Nω

z̄z̄ ≡
∫
dueiωuNz̄z̄ . (8.2.14)

The zero-mode of the news tensor is defined by

N
(0)
z̄z̄ ≡ 1

2
lim
ω→0

(
Nω

z̄z̄ +N−ω
z̄z̄

)
= − κ

8π
ε̂z̄z̄ lim

ω→0

[
ωaout

−
(
ωx̂
)
+ ωaout

+

(
ωx̂
)†]

. (8.2.15)
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Similarly, the first zero energy moment of the news is defined by

N
(1)
z̄z̄ ≡ − i

2
lim
ω→0

∂ω
(
Nω

z̄z̄ −N−ω
z̄z̄

)
=
iκ

8π
ε̂z̄z̄ lim

ω→0

(
1 + ω∂ω

) [
aout
−
(
ωx̂
)
− aout

+

(
ωx̂
)†]

. (8.2.16)

All of these quantities have nonvanishing S-matrix insertions even as ω → 0. The operator N (0)
z̄z̄

projects onto the leading Weinberg pole in the soft graviton theorem [4], so its matrix elements are

tree-level exact and are given by

⟨ out |N (0)
z̄z̄ S| in ⟩ = − κ

8π
ε̂z̄z̄ lim

ω→0
ωS(0)−

n ⟨ out |S| in ⟩ , (8.2.17)

where

S(0)−
n = − κ

2ω
(1 + zz̄)

n∑
k=1

ωk(z − zk)

(z̄ − z̄k)(1 + zkz̄k)
. (8.2.18)

In a similar fashion, N (1)
z̄z̄ projects onto the subleading O(1) term in the soft graviton theorem. At

tree-level, its matrix elements are given by

⟨ out |N (1)
z̄z̄ S| in ⟩ = iκ

8π
ε̂z̄z̄S

(1)−
n ⟨ out |S| in ⟩ , (8.2.19)

where

S(1)−
n =

κ

2

n∑
k=1

(z − zk)
2

z̄ − z̄k

[
2hk
z − zk

− Γzk
zkzk

hk − ∂zk + |sk|Ωzk

]
. (8.2.20)

In this expression, Γz
zz is the connection on the asymptotic S2, hk and h̄k are the conformal weights

given by

hk ≡ 1

2
(sk − ωk∂ωk

) , h̄k ≡ 1

2
(−sk − ωk∂ωk

) , (8.2.21)

and Ωz is the corresponding spin connection.1 As was demonstrated in [134], (8.2.19) implies that

insertions of the operator

Tzz ≡ 4i

κ2

∫
d2w

γww̄

z − w
D3

wN
(1)
w̄w̄ (8.2.22)

1The zweibein is
(
e+, e−

)
=

√
2γzz̄

(
dz, dz̄

)
and Ω±

± = ± 1
2

(
Γz
zzdz − Γz̄

z̄z̄dz̄
)
.
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into the tree-level S-matrix reproduce the Ward identity for a 2D conformal field theory:

⟨ out |TzzS| in ⟩ =
n∑

k=1

[
hk

(z − zk)2
+

hk
z − zk

Γzk
zkzk

+
1

z − zk
(∂zk − |sk|Ωzk)

]
⟨ out |S| in ⟩ . (8.2.23)

8.3 One-Loop Correction to the Subleading Soft Gravi-

ton Theorem

The matrix element (8.2.17) is exact because the leading Weinberg pole in the soft graviton expan-

sion is uncorrected. On the other hand, the subleading theorem which governs the O(1) terms in

the soft graviton expansion does have quantum corrections that modify the matrix element (8.2.19)

[66]. These corrections are known to be one-loop exact, and arise from IR divergences in soft ex-

changes between external lines. Indeed, they must be present in order to cancel (within suitable

inclusive cross-sections) IR divergences that arise from the Weinberg pole. The divergent part of

this one-loop correction was derived in [66], which we will now review.

The loop expansion of the n-particle scattering amplitude is

Mn =

∞∑
ℓ=0

M(ℓ)
n κ2ℓ , (8.3.1)

where we factored out the κ2 term that comes along with each additional loop.2 In dimensional reg-

ularization with d = 4− ϵ, the divergent part of the one-loop n-point graviton scattering amplitude

is universally related to the tree-level amplitude according to [136, 137]

M(1)
n

∣∣∣
div

=
σn
ϵ
M(0)

n , (8.3.2)

with

σn ≡ − 1

4(4π)2

n∑
i,j=1

(pi · pj) log
µ2

−2pi · pj
. (8.3.3)

2In addition, there is a factor of κn−2 in each M(ℓ)
n due to the n external lines.
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The O
(
ϵ−1
)

singularity is due exclusively to IR divergences because pure gravity is on-shell one-

loop finite in the UV and has no collinear divergences. Using (8.3.2) and applying the tree-level

soft theorem involving a negative-helicity soft graviton, we obtain

M(1)−
n+1 (q)

∣∣∣
div

q→0−−−→ σn+1

ϵ

(
S(0)−
n + S(1)−

n

)
M(0)

n . (8.3.4)

We would like to expand the above equation in powers of the soft energy ω. To proceed, we separate

σn+1 into two terms, one with the soft graviton momentum q and one without:

σn+1 = σn + σ′n+1 , σ′n+1 ≡ − 1

2(4π)2

n∑
i=1

(pi · q) log
µ2

−2pi · q
. (8.3.5)

Note that σ′n+1 = O(ω) as the logω term vanishes by momentum conservation, while σn = O
(
ω0
)
.

We then find, up to O
(
ω0
)
,

M(1)−
n+1

∣∣∣
div

q→0−−−→
(
S(0)−
n + S(1)−

n

)
M(1)

n

∣∣∣
div

+
σ′n+1

ϵ
S(0)−
n M(0)

n − 1

ϵ

(
S(1)−
n σn

)
M(0)

n , (8.3.6)

where S(1)−
n in the last term acts only on the scalar σn. The anomalous term consists of the last

two terms on the right-hand-side of the above equation and is O
(
ω0
)
. It is a universal correction

to the subleading soft theorem from IR divergences.

Thus far, we have been focusing on the IR divergent part of the one-loop amplitude. However,

the one-loop amplitude also has a finite piece:

M(1)
n = M(1)

n

∣∣∣
div

+ M(1)
n

∣∣∣
fin

. (8.3.7)

It is expected from [66] that

M(1)−
n+1

∣∣∣
fin

q→0−−−→
(
S(0)−
n + S(1)−

n

)
M(1)

n

∣∣∣
fin

+∆finS
(1)−
n M(0)

n , (8.3.8)

where ∆finS
(1)−
n is the one-loop finite correction to the negative-helicity subleading soft factor S(1)−

n .
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Given that the subleading soft graviton theorem is one-loop exact [66], it follows that the all-loop

soft graviton theorem is

M−
n+1

q→0−−−→
[
S(0)−
n + S(1)−

n + κ2
(
σ′n+1

ϵ
S(0)−
n − 1

ϵ

(
S(1)−
n σn

)
+∆finS

(1)−
n

)]
Mn , (8.3.9)

where the terms in square brackets proportional to κ2 are the IR divergent and finite parts of the

anomaly.

Little appears to be currently known about ∆finS
(1)−
n . In all explicitly checked cases, including

all identical helicity amplitudes and certain low-point single negative-helicity amplitudes, it was

demonstrated that there are no IR finite corrections to the subleading soft graviton theorem [66, 67],

implying ∆finS
(1)−
n = 0 for these cases. Nevertheless, we are unaware of any argument indicating

that this term always vanishes, or on the contrary that its form is universal. In the absence of such

information, we will restrict our consideration to the universal divergent correction given in (8.3.6).

8.4 One-Loop Correction to the Energy-Momentum

Tensor

The one-loop corrections (8.3.9) to the subleading soft factor are expected to result in corrections to

the tree-level Virasoro-Ward identity (8.2.23). In this section, we show that this is indeed the case.

Moreover, we find that the effects of the universal divergent correction in (8.3.6) can be eliminated by

a corresponding one-loop correction to the energy-momentum tensor. That is, whenever we have

∆finS
(1)−
n = 0, the shifted energy-momentum tensor obeys the unshifted Virasoro-Ward identity

(8.2.23).

The tree-level matrix elements of the operator N (1)
z̄z̄ are given by (8.2.19). At one-loop level,

the matrix elements acquire a divergent correction of the form

⟨ out |N (1)
z̄z̄ S| in ⟩

∣∣∣
div

=
iκ3

8π
ε̂z̄z̄ lim

ω→0

(
1 + ω∂ω

)(σ′n+1

ϵ
S(0)−
n − 1

ϵ

(
S(1)−
n σn

))
⟨ out |S| in ⟩ . (8.4.1)
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It immediately follows from (8.2.22) that the IR divergent one-loop correction to the Tzz Ward

identity is given by

⟨ out |∆TzzS| in ⟩ (8.4.2)

= − κ

2πϵ

∫
d2w

γww̄

z − w
D3

w

[
ε̂w̄w̄ lim

ω→0
(1 + ω∂ω)

(
σ′n+1S

(0)−
n −

(
S(1)−
n σn

))]
⟨ out |S| in ⟩ ,

where

⟨ out |TzzS| in ⟩|div ≡ ⟨ out |∆TzzS| in ⟩ . (8.4.3)

It is far from obvious, but nevertheless possible, to rewrite this in terms of the zero-modes of the

Bondi news. This computation is done explicitly in appendix 8.A, and we find that ∆Tzz can be

expressed as

∆Tzz = − 2

πκ2ϵ

∫
d2w

γww̄

z − w

(
2N (0)

wwDwN
(0)
w̄w̄ +Dw

(
N (0)

wwN
(0)
w̄w̄

))
. (8.4.4)

Hence, the shifted energy-momentum tensor, given by

T̃zz = Tzz −∆Tzz , (8.4.5)

obeys the unshifted Ward identity

⟨ out |T̃zzS| in ⟩ =
n∑

k=1

[
hk

(z − zk)2
+

hk
z − zk

Γzk
zkzk

+
1

z − zk
(∂zk − |sk|Ωzk)

]
⟨ out |S| in ⟩ (8.4.6)

to all orders, whenever ∆finS
(1)−
n = 0.

This result seems interesting for a number of reasons. First of all, note that while the renor-

malized soft factor contains logarithms and explicit dependence on the renormalization scale, such

terms do not appear in the anomalous contribution to the energy-momentum tensor. Furthermore,

the fact that the divergence takes the form of a matrix element involving only the local operators

N
(0)
ww(w) and N

(0)
w̄w̄(w) allows us to perform an “IR renormalization” of the operator Tzz by sub-
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tracting away the divergent operator. The form of the divergence, when rewritten in terms of the

soft graviton operators, is reminiscent of the forward limit of a scattering amplitude. However, it

remains to be seen whether or not there are finite corrections to the Ward identity (8.4.6) and, if

so, whether or not they can be eliminated by a further finite shift of the energy-momentum tensor.

8.A IR Divergence of One-Loop Tzz Correction

In this appendix, we explicitly compute the matrix elements of ∆Tzz given in (8.4.2) by

⟨ out |∆TzzS| in ⟩ (8.A.1)

= − κ

2πϵ

∫
d2w

γww̄

z − w
D3

w

[
ε̂w̄w̄ lim

ω→0
(1 + ω∂ω)

(
σ′n+1S

(0)−
n −

(
S(1)−
n σn

))]
⟨ out |S| in ⟩ .

For completeness, we recall the expressions for the leading and subleading tree-level soft factors:

S(0)±
n =

κ

2

n∑
k=1

pµkp
ν
kε

±
µν(q)

pk · q
, S(1)±

n = − iκ
2

n∑
k=1

ε±µν(q)p
µ
kqλ

pk · q
J λν
k . (8.A.2)

Since S(1)−
n acts on a scalar in (8.A.1), the action of Jkµν is given by

Jkµνσn = −i
[
pkµ

∂

∂pνk
− pkν

∂

∂pµk

]
σn . (8.A.3)

Using (8.A.2), (8.A.3), and momentum conservation, it follows that

∆divS
(1)−
n ≡ 1

ϵ

[
σ′n+1S

(0)−
n −

(
S(1)−
n σn

)]
=

κ

4(4π)2ϵ

n∑
i,j=1

[
(pi · ε−)2

pi · q
(pj · q) log

pj · q
pi · pj

− (pi · ε−)(pj · ε−) log
µ2

−2pi · pj

]
.

(8.A.4)

Momentum conservation implies that (8.A.4) is independent of both the soft energy ω and the

renormalization scale µ. It follows that (8.A.1) becomes

⟨ out |∆TzzS| in ⟩ = − κ

2π

∫
d2w

γww̄

z − w
D3

w

(
ε̂w̄w̄∆divS

(1)−
n

)
⟨ out |S| in ⟩ . (8.A.5)

147



Chapter 8: Loop-Corrected Virasoro Symmetry of 4D Quantum Gravity

Before proceeding, it is useful to define the quantity

ε̂w̄ ≡ ∂w̄x̂
i(w)ε+i (q(w)) =

√
2

1 + ww̄
, (8.A.6)

so that ε̂w̄w̄ = ε̂w̄ε̂w̄. It is then straightforward to show that

D2
w

(
ε̂w̄ε

−) = 0 ,

D2
wq = 0 ,

Dw̄Dw

(
ε̂w̄w̄

(pi · ε−)2

pi · q̂

)
= −2πωiδ

(2)(w − zi) ,

(8.A.7)

where qµ = ωq̂µ. Using the first of the above identities, we have

D3
w

(
ε̂w̄w̄(pi · ε−)(pj · ε−) log

µ2

−2pi · pj

)
= 0 , (8.A.8)

which implies

D3
w

(
ε̂w̄w̄∆divS

(1)−
n

)
=

κ

4(4π)2ϵ

n∑
i,j

D3
w

(
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · q) log

pj · q
pi · pj

)
. (8.A.9)

To evaluate this, we distribute the covariant derivatives via the product rule and first compute the

term

n∑
i,j=1

D3
w

(
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · q)

)
log

pj · q
pi · pj

= −2πγww̄

n∑
i,j=1

ωi

[
(pj · q̂)Dwδ

(2)(w − zi) + 3(pj · ∂wq̂)δ(2)(w − zi)
]
log

pj · q̂
pj · p̂i

,

(8.A.10)
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where we have used the last two identities of (8.A.7) along with momentum conservation. Similarly,

using (8.A.7) and momentum conservation, we find

3

n∑
i,j=1

Dw

[
Dw

(
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · q)

)
Dw

(
log

pj · q
pi · pj

)]

= 3

n∑
i,j=1

Dw

[
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · ∂wq)2

pj · q

]
, (8.A.11)

and

n∑
i,j=1

ε̂w̄w̄
(pi · ε−)2

pi · q
(pj · q)D3

w

(
log

pj · q
pi · pj

)
=

n∑
i,j=1

ε̂w̄w̄
(pi · ε−)2

pi · q
2

(pj · q)2
(pj · ∂wq)3 . (8.A.12)

Finally, using momentum conservation and the relationship between the soft momenta and polar-

ization vectors [135]

ε+µ = ∂w

(
1

√
γww̄

q̂µ

)
, (8.A.13)

we find
n∑

j=1

(pj · ∂wq̂)2

pj · q̂
=

n∑
j=1

ε̂ww
(pj · ε+)2

pj · q̂
. (8.A.14)

Substituting (8.A.10), (8.A.11), and (8.A.12) into (8.A.9), and then using (8.2.17) along with

(8.A.14), we find

⟨ out |∆TzzS| in ⟩

= − 2

πκ2ϵ

∫
d2w

γww̄

z − w

⟨
out

∣∣∣ [−2N
(0)
w̄w̄DwN

(0)
ww + 3Dw

(
N (0)

wwN
(0)
w̄w̄

)]
S
∣∣∣ in⟩

= − 2

πκ2ϵ

∫
d2w

γww̄

z − w

⟨
out

∣∣∣ [2N (0)
wwDwN

(0)
w̄w̄ +Dw

(
N (0)

wwN
(0)
w̄w̄

)]
S
∣∣∣ in⟩ ,

(8.A.15)

which is precisely (8.4.4).
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9
A d-Dimensional Stress Tensor for Minkd+2

Gravity

9.1 Introduction

The lightlike boundary of asymptotically flat spacetimes, I = I+ ∪ I−, is a null cone with a

(possibly singular) vertex at spatial infinity. Massless excitations propagating in such a spacetime

pass through I at isolated points on the celestial sphere. Guided by the holographic principle,

one might hope that the S-matrix for the scattering of massless particles in asymptotically flat

spacetimes in (d + 2)-dimensions might be re-expressed as a collection of correlation functions of

local operators on the celestial sphere Sd at null infinity, with operator insertions at the points

where the particles enter or exit the spacetime. The Lorentz group would then be realized as the

group of conformal motions of the celestial sphere, and the Lorentz covariance of the S-matrix
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would guarantee that the local operators have well-defined transformation laws under the action of

the Euclidean conformal group SO(d+1, 1). On these general grounds one expects the massless S-

matrix to display some of the features of a d-dimensional Euclidean conformal field theory (CFTd).

It has recently become possible to make some of these statements more precise in four dimen-

sions, due in large part to Strominger’s infrared triangle that relates soft theorems, asymptotic

symmetry groups and memory effects [30–37, 39, 40, 42, 43, 45, 80, 81, 83, 84, 88, 96, 100, 113,

124, 125, 128, 129, 134, 138–152]. While the specific details of a putative holographic formulation

are expected to be model dependent, it should be possible to make robust statements (primar-

ily regarding symmetries) based on universal properties of the S-matrix. One interesting class

of universal statements about the S-matrix concerns the so-called soft limits [4–8, 91, 102, 123]

of scattering amplitudes. In the limit when the wavelength of an external gauge boson or gravi-

ton becomes much larger than any scale in the scattering process, the S-matrix factorizes into a

universal soft operator (controlled by the soft particle and the quantum numbers of the hard par-

ticles) acting on the amplitude without the soft insertion. This sort of factorization is reminiscent

of a Ward identity, and indeed in four dimensions the soft photon, soft gluon, and soft graviton

theorems have been recast in the form of Ward identities for conserved operators in a putative

CFT2 [32, 96, 127, 134, 135, 144, 146]. Most importantly for the present work, in [134, 135, 144]

an operator was constructed from the subleading soft graviton theorem whose insertion into the

four-dimensional S-matrix reproduces the Virasoro Ward identities of a CFT2 energy-momentum

tensor. The subleading soft graviton theorem holds in all dimensions [15, 61, 66, 73, 153–155], so

it should be possible to construct an analogous operator in any dimension. We will see that this is

indeed the case, and that the construction is essentially fixed by Lorentz (conformal) invariance.

The organization of this chapter is as follows. In section 9.2 we establish our conventions

for massless particle kinematics and describe the map from the (d + 2)-dimensional S-matrix to

a set of d-dimensional “celestial correlators” defined on a spacelike cut of the null momentum

cone. Section 9.3 describes the realization of the Euclidean conformal group on these correlation

functions in terms of the embedding space formalism. Section 9.4 outlines the construction of
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conserved currents – namely the conserved U(1) current and the stress tensor – in the boundary

theory and their relations to the leading soft photon and subleading soft graviton theorems. Section

9.5 concludes with a series of open questions. In appendix 9.A, we briefly discuss the bulk spacetime

interpretation of our results and their relations to previous work.

9.2 Massless Particle Kinematics

The basic observable in asymptotically flat quantum gravity is the S-matrix element

S = ⟨ out | in ⟩ (9.2.1)

between an incoming state on past null infinity (I−) and an outgoing state on future null infinity

(I+). The perturbative scattering states in asymptotically flat spacetimes are characterized by

collections of well separated, non-interacting particles.1 Each massless particle is characterized by

a null momentum pµ and a representation of the little group SO(d), as well as a collection of other

quantum numbers such as charge, flavor, etc. Null momenta are constrained to lie on the future

light cone C+ of the origin in momentum space Rd+1,1,

C+ = {pµ ∈ Rd+1,1
∣∣ p2 = 0 , p0 > 0} . (9.2.2)

A convenient parametrization for the momentum, familiar from the embedding space formalism in

conformal field theories [156, 157], is given by

pµ(ω, x) = ωΩ(x)p̂µ(x) , p̂µ(x) =

(
1 + x2

2
, xa,

1− x2

2

)
, ω ≥ 0 , xa ∈ Rd , (9.2.3)

1In four dimensions, the probability to scatter into a state with a finite number of gauge bosons or
gravitons is zero due to infrared divergences [102]. In higher dimensions, infrared divergences are absent and
one can safely consider the usual Fock space basis of scattering states.
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where x2 = xaxa = δabx
axb. The metric on this null cone is degenerate and is given by

ds2C+ = dpµdpµ = 0dω2 + ω2Ω(x)2dxadxa . (9.2.4)

For a fixed ω, this parametrization specifies a d-dimensional spacelike cut Md of the future

light cone with a conformally flat metric induced from the flat Lorentzian metric on Rd+1,1:

ds2Md
= Ω(x)2dxadxa . (9.2.5)

Ω(x) defines the conformal factor on Md. In most of what follows we will choose Ω(x) = 1 for

computational simplicity, although the generalization to an arbitrary conformally flat Euclidean

cut is straightforward.2 The (d+ 2)-dimensional Lorentz-invariant measure takes the form

∫
dd+1p

p0
=

∫
ddx

∫
dωωd−1 , (9.2.6)

while the Lorentzian inner product is given by

−2p̂(x1) · p̂(x2) = (x1 − x2)
2 . (9.2.7)

Massless particles of spin s can be described by symmetric traceless fields

Φµ1...µs(X) =
∑
ai

∫
dd+1p

(2π)d+1

1

2ωp
εa1...asµ1...µs

(p)
[
Oa1...as(p)e

ip·X +O†
a1...as(p)e

−ip·X
]

(9.2.8)

satisfying the equations

□XΦµ1...µs(X) = 0 , ∂µ1Φ
µ1

µ2...µs(X) = 0 . (9.2.9)

2Other choices of Ω(x) have also proved useful in previous analyses. In particular, the authors of [15, 30,
31, 34, 81] choose Ω(x) = 2(1+x2)−1, yielding the round metric on Sd. For non-constant Ω(x), d-dimensional
partial derivatives are simply promoted to covariant derivatives, and powers of the Laplacian are replaced
by their conformally covariant counterparts, the GJMS operators [158].
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Under gauge transformations,

Φµ1...µs(X) → Φµ1...µs(X) + ∂(µ1
λµ2...µs)(X) . (9.2.10)

We will work in the gauge

nµ1Φµ1...µs(X) = 0 , nµ = (1, 0a,−1) . (9.2.11)

A natural basis for the vector representation of the little group SO(d) is given in terms of the d

polarization vectors

εµa(x) ≡ ∂ap̂
µ(x) =

(
xa, δ

b
a,−xa

)
. (9.2.12)

These are orthogonal to both n and p̂ and satisfy

εa(x) · εb(x) = δab , εaµ(x)ε
ν
a(x) = Πν

µ(x) ≡ δνµ + nµp̂
ν(x) + nν p̂µ(x) . (9.2.13)

We also note the property

p̂(x) · εa(x′) = xa − x′a . (9.2.14)

The polarization tensors for higher spin representations of the little group can be constructed from

the spin-1 polarization forms. For instance, the graviton’s polarization tensor is given by

εabµν(x) =
1

2

[
εaµ(x)ε

b
ν(x) + εbµ(x)ε

a
ν(x)

]
− 1

d
δabΠµν(x) . (9.2.15)

The Fock space of massless scattering states is generated by the algebra of single particle creation

and annihilation operators satisfying the standard commutation relations

[
Oa(p),Ob(p

′)†
]
= (2π)d+1δab(2p

0)δ(d+1)(p⃗− p⃗ ′) . (9.2.16)

We can rewrite these relations in terms of our parametrization (9.2.3) of the momentum light cone
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[
Oa(ω, x),Ob(ω

′, x′)†
]
= 2(2π)d+1δabω

1−dδ(ω − ω′)δ(d)(x− x′) . (9.2.17)

Note that in terms of the commutation relations of local operators defined on the light cone, the

energy direction actually appears spacelike rather than timelike.3 The creation and annihilation

operators can be viewed as operators inserted at specific points of Md carrying an additional

quantum number ω, so that the S-matrix takes the form of a conformal correlator of primary

operators. In other words, the amplitude with m incoming and n−m outgoing particles4

An,m = ⟨ pm+1, . . . , pn | p1, . . . , pm ⟩ (9.2.18)

can be equivalently represented as a correlation function on Md

An = ⟨O1(p1) . . .On(pn) ⟩Md
= ⟨O1(ω1, x1) . . .On(ωn, xn) ⟩Md

. (9.2.19)

In this representation, outgoing states have ω > 0 and ingoing states have ω < 0. In the rest of

this chapter, we will freely interchange the notation pi ⇔ (ωi, xi) to describe the insertion of local

operators.

In appendix 9.A, we demonstrate that the spacelike cut Md of the momentum cone is naturally

identified with the cross-sectional cuts of I+. We construct the bulk coordinates whose limiting

metric on future null infinity is that of a null cone with cross-sectional metric (9.2.5). This provides

a holographic interpretation of our construction, recasting scattering amplitudes in asymptotically

flat spacetimes in terms of a “boundary” theory that lives on I+.

3This is also the case for the null direction on I in asymptotic quantization.

4Here, we have suppressed all other quantum numbers that label the one-particle states, such as the
polarization vectors, flavor indices, or charge quantum numbers.
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9.3 Lorentz Transformations and the Conformal Group

In this section, we make explicit the map from (d + 2)-dimensional momentum space S-matrix

elements to conformal correlators on the Euclidean manifold Md. The setup is mathematically

similar to the embedding space formalism, although in this case the (d+2)-dimensional “embedding

space” is the physical momentum space rather than merely an auxiliary ambient construction.

The Lorentz group SO(d + 1, 1) with generators Mµν acts linearly on momentum space vectors

pµ ∈ Rd+1,1. The isomorphism with the conformal group of Md is given by the identifications

Jab =Mab , Ta =M0,a −Md+1,a , D =Md+1,0 , Ka =M0,a +Md+1,a . (9.3.1)

The Jab generate SO(d) rotations, D is the dilation operator, and Ta and Ka are the generators

of translations and special conformal transformations, respectively. These operators satisfy the

familiar conformal algebra

[Jab, Jcd] = i(δacJbd + δbdJac − δbcJad − δadJbc) ,

[Jab, Tc] = i(δacTb − δbcTa) ,

[Jab,Kc] = i(δacKb − δbcKa) ,

[D,Ta] = −iTa ,

[D,Ka] = iKa ,

[Ta,Kb] = −2i(δabD + Jab) .

(9.3.2)

Equation (9.3.1) describes the precise map between the linear action of Lorentz transformations

on pµ and nonlinear conformal transformations on (ω, x). The latter amount to transformations

x→ x′(x) for which
∂x′c

∂xa
∂x′d

∂xb
δcd = γ(x)2δab (9.3.3)

along with

ω → ω′ =
ω

γ(x)
. (9.3.4)
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Using (9.3.1), the conformal properties of the operators O(ω, x) (we suppress spin labels for

convenience) follow from their Lorentz transformations,

[O(p),Mµν ] = LµνO(p) + Sµν · O(p) , [O(p), Pµ] = −pµO(p) , (9.3.5)

where

Lµν = −i
(
pµ

∂

∂pν
− pν

∂

∂pµ

)
(9.3.6)

and Sµν denotes the spin-s representation of the Lorentz group. We would like to rewrite these

relations in a way that manifests the action on Md. First, we note that

∂ω

∂pa
=

2xa
1 + x2

, ω
∂xa

∂pb
= δab − 2xaxb

1 + x2
,

∂ω

∂pd+1
=

2

1 + x2
, ω

∂xa

∂pd+1
= − 2xa

1 + x2
. (9.3.7)

It follows that

L0,a = ixa[ω∂ω − xb∂b] +
i

2
(1 + x2)∂a , L0,d+1 = i[ω∂ω − xa∂a] ,

La,d+1 = −ixa[ω∂ω − xb∂b] +
i

2
(1− x2)∂a , Lab = −i[xa∂b − xb∂a] .

(9.3.8)

The action of the spin matrix Sµν can be conveniently expressed in terms of the polarization vectors

(9.2.12). For instance, the action on a spin-1 state is given by

[Sµν ]a
b = −i

[
εµaε

b
ν − ενaε

b
µ

]
+ ερaLµνε

b
ρ . (9.3.9)

In general one finds

S0,d+1 = 0 , S0a = Sd+1,a = xbSab , (9.3.10)

where Sab is the representation of the massless little group SO(d). The action of the conformal
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group on the creation and annihilation operators is then given by

[O(ω, x), Ta] = i∂aO(ω, x) ,

[O(ω, x), Jab] = −i(xa∂b − xb∂a)O(ω, x) + Sab · O(ω, x) ,

[O(ω, x), D] = i(xa∂a − ω∂ω)O(ω, x) ,

[O(ω, x),Ka] = i(x2∂a − 2xax
b∂b + 2xaω∂ω)O(ω, x) + 2xbSab · O(ω, x) .

(9.3.11)

We recognize these commutation relations as the defining properties of a spin-s conformal primary

operator, with a non-standard dilation eigenvalue

∆ = −ω∂ω . (9.3.12)

The fact that ∆ is realized as a derivative simply reflects the fact that the energy eigenstates do not

diagonalize the dilation operator, which simply translates the spacelike cut Md of the momentum

cone along its null direction.5

9.4 Conserved Currents and Soft Theorems

The operator content and correlation functions of the theory living on Md are highly dependent

on the spectrum and interactions of the (d+ 2)-dimensional theory under consideration. However,

the universal properties of the (d+2)-dimensional S-matrix are expected to translate into general,

model independent features of the “boundary theory.” In this section, we explore the consequences of

the universal soft factorization properties of S-matrix elements. Soft factorization formulas closely

resemble Ward identities, and indeed many soft theorems are known to be intimately related to

symmetries of the S-matrix. The existence of the soft theorems should therefore enable one to

construct associated conserved currents for the theory living on Md. The appropriate currents

were constructed for d = 2 in [32, 96, 134, 135, 144, 146]. Here, we generalize these results to d > 2.

5It is possible to obtain standard conformal primary operators via a Mellin transform, O(∆, x) =∫
C dωω

∆−1O(ω, x) for some contour C in the complex ω plane.
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9.4.1 Leading Soft Photon Theorem and the Conserved U(1) Cur-

rent

The leading soft photon theorem is a universal statement about the behavior of S-matrix elements

in the limit that an external photon’s momentum tends to zero. It is model independent, exists in

any dimension, and states that

⟨Oa(q)O1(p1) . . .On(pn) ⟩
q0→0−→

n∑
k=1

Qk
εa · pk
q · pk

⟨O1(p1) . . .On(pn) ⟩ , (9.4.1)

where Oa(ω, x) creates an outgoing photon of momentum p(ω, x) and polarization εµa(x), and Qk

is the charge of the kth particle. We will first define the “leading soft photon operator”

Sa(x) = lim
ω→0

ωOa(ω, x) . (9.4.2)

Insertions of this operator are controlled by the leading soft photon theorem (9.4.1) and take the

form

⟨Sa(x)O1(ω1, x1) . . .On(ωn, xn) ⟩ = ∂a

n∑
k=1

Qk log
[
(x− xk)

2
]
⟨O1(ω1, x1) . . .On(ωn, xn) ⟩. (9.4.3)

From (9.4.3), we see that Sa(x) is a conformal primary operator with (∆, s) = (1, 1). Note also

that Sa(x) satisfies

∂aSb − ∂bSa = 0 (9.4.4)

identically, without contact terms. In even dimensions,6 the leading soft photon theorem is known

[34, 36, 37, 80, 81] to be completely equivalent to the invariance of the S-matrix under a group of

angle dependent U(1) gauge transformations with noncompact support. In d = 2, this symmetry

is generated by the action of a holomorphic boundary current Jz satisfying the appropriate Kac-

6From this point on, we will consider only the even-dimensional case in order to avoid discussion of
fractional powers of the Laplacian.
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Moody Ward identities (see [96]). In higher dimensions, one consequently expects to encounter a

conformal primary operator Ja(x) with (∆, s) = (d− 1, 1) satisfying the Ward identity

⟨ ∂bJb(y)O1(ω1, x1) . . .On(ωn, xn) ⟩ =
n∑

k=1

Qkδ
(d)(y − xk)⟨O1(ω1, x1) . . .On(ωn, xn) ⟩ . (9.4.5)

Our goal is to construct the conserved current Ja(x) from the soft operator Sa(x). The in-

verse problem – constructing Sa(x) from an operator Ja(x) satisfying (9.4.5) – is easily solved.

Multiplying both sides of (9.4.5) by
∫
ddy∂a log[(x− y)2], we find

∫
ddy∂a log[(x− y)2]⟨ ∂bJb(y)O1(ω1, x1) . . .On(ωn, xn) ⟩

= ∂a

n∑
k=1

Qk log[(x− xk)
2]⟨O1(ω1, x1) . . .On(ωn, xn) ⟩

= ⟨Sa(x)O1(ω1, x1) . . .On(ωn, xn) ⟩ .

(9.4.6)

We therefore identify7

Sa(x) =

∫
ddy∂a log[(x− y)2]∂bJb(y) = 2

∫
ddy

Iab(x− y)

(x− y)2
Jb(y) , (9.4.7)

where Iab(x− y) is the conformally covariant tensor

Iab(x− y) = δab − 2
(x− y)a(x− y)b

(x− y)2
. (9.4.8)

This nonlocal relationship between the ∆ = 1 primary Sa and the ∆ = d− 1 primary Ja is known

as a shadow transform. For a spin-s operator of dimension ∆, the shadow operator is given by

[156]

Õa1...as(x) = δb1...bsa1...as

∫
ddy

Ib1c1(x− y) . . . Ibscs(x− y)

[(x− y)2]d−∆
Oc1...cs(y) . (9.4.9)

7Note that this integral expression is insensitive to improvement terms of the form Ja → Ja + ∂bK[ba]

which do not affect the Ward identity (9.4.5).
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Here, δb1...bsa1...as is the invariant identity tensor in the spin-s representation,

δb1...bsa1...as = δ
{b1
{a1δ

b2
a2 . . . δ

bs}
as} , (9.4.10)

where the notation { , } denotes the symmetric traceless projection on the indicated indices. The

shadow transform is the unique integral transform that maps conformal primary operators with

(∆, s) onto conformal primary operators with (d−∆, s). Given that Sa has (∆, s) = (1, 1) while Ja

has (∆, s) = (d− 1, 1), it seems natural to expect the appearance of the shadow transform.

The shadow transform is, up to normalization [156, 159], its own inverse8

˜̃Oa1...as(x) = c(∆, s)Oa1...as(x) , c(∆, s) =
πd(∆− 1)(d−∆− 1)Γ

(
d
2 −∆

)
Γ
(
∆− d

2

)
(∆− 1 + s)(d−∆− 1 + s)Γ(∆)Γ(d−∆)

.

(9.4.11)

Using this, we can immediately write

Sa(x) = 2J̃a(x) , Ja(x) =
1

2c(1, 1)
S̃a(x) . (9.4.12)

Interestingly, the property (9.4.4) allows one to obtain a local relation between Ja(x) and Sa(x)

Ja(x) =
1

(4π)d/2Γ(d/2)
(−□)

d
2
−1Sa(x) . (9.4.13)

It is straightforward to verify that insertions of Ja(x) are given by

⟨Ja(x)O1(ω1, x1) . . .On(ωn, xn)⟩ =
Γ(d/2)

2πd/2

n∑
k=1

Qk
(x− xk)a
|x− xk|d

⟨O1(ω1, x1) . . .On(ωn, xn) ⟩ (9.4.14)

and satisfy (9.4.5).

In summary, we find that the leading soft photon theorem in any dimension implies the existence

of a conserved current Ja(x) on the spatial cut Md. This current is constructed as the shadow

8The spatial integrals involved here are formally divergent and are regulated by the iϵ-prescription.
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transform of the soft photon operator Sa(x). This correspondence is reminiscent of a similar

construction in AdS/CFT, where again the presence of a massless bulk gauge field produces a

dual conserved boundary current. There have been attempts to make this analogy more precise

using a so-called “holographic reduction” of Minkowski space [14, 135]. The (d + 2)-dimensional

Minkowski space can be foliated by hyperboloids (and a null cone), each of which is invariant under

the action of the Lorentz group. Inside the light cone, this amounts to a foliation using a family of

Euclidean AdSd+1, all sharing an asymptotic boundary given by the celestial sphere.9 Performing

a Kaluza-Klein reduction on the (timelike, noncompact) direction transverse to the AdSd+1 slices

decomposes the gauge field A(X) in Minkowski space into a continuum of AdSd+1 gauge fields

Aω(x) with masses ∼ ω (ω is the so-called Milne energy). The ω → 0 gauge field – equivalent to

the soft limit – is massless in AdSd+1 and therefore induces a conserved current on the d-dimensional

boundary. The holographic dictionary suggests that in the boundary theory, one has a coupling of

the form ∫
ddxSa(x)Ja(x) . (9.4.15)

The discussion here suggests that a deeper holographic connection (beyond the simple existence

of conserved currents) may exist between the theory on Md and dynamics in Minkowski space.

While intriguing, much remains to be done in order to elucidate this relationship. The hypothetical

boundary theory is expected to have many peculiar properties, one of which we discuss in section

9.4.3.

9.4.2 Subleading Soft Graviton Theorem and the Stress Tensor

In the previous section, we demonstrated that the presence of gauge fields in Minkowski space

controls the global symmetry structure of the putative theory on Md. As in AdS/CFT, more

interesting features arise when we couple the bulk theory to gravity and consider gravitational

9This construction seems more natural in momentum space, where it is only the interior of the light cone
which is physically relevant, and one never needs to discuss the timelike de Sitter hyperboloids lying outside
the light cone.
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perturbations. Flat space graviton scattering amplitudes also display universal behavior in the

infrared that is model independent and holds in any dimension. Of particular interest here is the

subleading soft graviton theorem, which states10

lim
ω→0

(1 + ω∂ω)⟨Oab(q)O1(p1) . . .On(pn)⟩ = −i
n∑

k=1

εµνab pk µqρ
pk · q

J ρν
k ⟨O1(p1) . . .On(pn)⟩ . (9.4.16)

Here, Oab(q) creates a graviton with momentum q and polarization εabµν(q), and Jkρν is the total

angular momentum operator for the kth particle. The operator (1+ω∂ω) projects out the Weinberg

pole [4], yielding a finite ω → 0 limit.

Returning to the analogy with AdSd+1/CFTd, one might expect that the bulk soft graviton is

associated to a boundary stress tensor, just as the bulk soft photon is related to a boundary U(1)

current. In a quantum field theory, the stress tensor generates the action of spacetime (conformal)

isometries on local operators. As we saw in (9.3.11), the angular momentum operator Jρν generates

these transformations on the local operators on Md. Therefore, it is natural to suspect that the

bulk subleading soft graviton operator

Bab(x) = lim
ω→0

(1 + ω∂ω)Oab(ω, x) (9.4.17)

is related to the boundary stress tensor. Such a relationship was derived in four dimensions (d = 2)

in [134, 135, 144]. In this section, we generalize the construction to d > 2.

Insertions of Bab(x) are controlled by the subleading soft graviton theorem (9.4.16) and take

the form (see (9.3.8) and (9.3.10) for the explicit forms of the orbital and spin angular momentum

operators)

⟨Bab(x)O1(ω1, x1) . . .On(ωn, xn)⟩ =
n∑

k=1

[
Pc

ab(x− xk)∂xc
k
+

1

d
∂cPc

ab(x− xk)ωk∂ωk

− i

2
∂[cPd]

ab(x− xk)Skcd

]
⟨O1(ω1, x1) . . .On(ωn, xn)⟩ ,

(9.4.18)

10We work in units such that
√
8πG = 1.
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where

Pc
ab(x) =

1

2

[
xaδ

c
b + xbδ

c
a +

2

d
xcδab −

4

x2
xcxaxb

]
. (9.4.19)

From (9.4.18), we see that Bab(x) is a conformal primary operator with (∆, s) = (0, 2). One can

also check that

∂{cPd}ab(x) = I{a{c(x)Id}b}(x) . (9.4.20)

As in section 9.4.1, it is easiest to first determine Bab in terms of Tab. Recall that the Ward

identities for the energy-momentum tensor of a CFTd take the form [160]

⟨ ∂dTdc(y)O1(ω1, x1) . . .On(ωn, xn) ⟩ = −
n∑

k=1

δ(d)(y − xk)∂xc
k
⟨O1(ω1, x1) . . .On(ωn, xn) ⟩ , (9.4.21)

⟨T c
c(y)O1(ω1, x1) . . .On(ωn, xn) ⟩ =

n∑
k=1

δ(d)(y − xk)ωk∂ωk
⟨O1(ω1, x1) . . .On(ωn, xn) ⟩ , (9.4.22)

⟨T [cd](y)O1(ω1, x1) . . .On(ωn, xn) ⟩ = − i

2

n∑
k=1

δ(d)(y − xk)Scd
k ⟨O1(ω1, x1) . . .On(ωn, xn) ⟩. (9.4.23)

Multiplying (9.4.21) by −
∫
ddyPc

ab(x− y), (9.4.22) by 1
d

∫
ddy∂cPc

ab(x− y), (9.4.23) by∫
ddy∂cPd

ab(x− y), and taking the sum, one finds

Bab(x) = −
∫
ddy∂{cPd}ab(x− y)T cd(y)

= −
∫
ddyI{a{c(x− y)Id}b}(x− y)T cd(y)

= −T̃{ab}(x) .

(9.4.24)

Once again, the soft operator appears as the shadow transform of a conserved current. The rela-

tionship could have been guessed from the outset based on the dimensions of Bab and T{ab}.11

11Note that only the symmetric traceless part of the stress tensor appears in this dictionary since the
graviton lies in the symmetric traceless representation of the little group. The trace term may be related to
soft dilaton theorems.
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Having derived (9.4.24), we can now invert the shadow transform to find

T{ab}(x) = − 1

c(0, 2)
B̃ab(x) . (9.4.25)

The shadow relationship between the soft operator Bab and the energy-momentum tensor is

again suggestive of a coupling ∫
ddxBab(x)Tab(x) (9.4.26)

in some hypothetical dual formulation of asymptotically flat gravity: the soft graviton creates an

infinitesimal change in the boundary metric, sourcing the operator Tab. In [134], it was viewed as a

puzzle that the energy-momentum tensor appears non-local when written in terms of the soft modes

of the four-dimensional gravitational field. Here we see that this is essentially the consequence of a

linear response calculation, and that the non-locality is actually the only one allowed by conformal

symmetry.

As in [134], it is possible to derive a local differential equation for T{ab} in even dimensions. We

first define the following derivative operator

DaOab ≡
1

2(4π)d/2Γ(d/2 + 1)

[
(−□)d/2∂aOab +

d

d− 1
∂b(−□)d/2−1∂e∂fOef

]
. (9.4.27)

One can check that

DaPc
ab = −δcbδ(d)(x) . (9.4.28)

Then, acting on the first equation of (9.4.24) with Da, we find

DaBab(x) = ∂aT{ab}(x) . (9.4.29)
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9.4.3 Leading Soft Graviton Theorem and Momentum Conserva-

tion

In the previous two subsections, we have avoided the discussion of currents related to the lead-

ing soft graviton theorem. This soft theorem is associated to spacetime translational invariance

(and more generally to BMS supertranslations [30, 31, 88, 125]). For scattering amplitudes in the

usual plane wave basis, this symmetry is naturally enforced by a momentum conserving Dirac delta

function. In our discussion above, we have chosen to make manifest the Lorentz transformation

properties of the scattering amplitudes. Consequently, translation invariance, or global momen-

tum conservation, is unwieldy in our formalism. In fact, it must somehow appear as a non-local

constraint on the correlation functions on Md, since arbitrary operator insertions corresponding

to arbitrary configurations of incoming and outgoing momenta will in general violate momentum

conservation. The difficulty can also be seen at the level of the symmetry algebra. Momentum

conservation cannot arise simply as a global Rd+1,1 symmetry of the CFTd, since the associated con-

served charges do not commute with the conformal (Lorentz) group. In light of this, it is not clear

that our construction can really be viewed as a local conformal field theory living on Md.12 We

have tried, unsuccessfully, to find a natural set of operators whose shadow reproduces the leading

soft graviton theorem13

lim
ω→0

ω⟨Oab(q)O1(p1) . . .On(pn)⟩ = ω
n∑

k=1

εabµνp
µ
kp

ν
k

pk · q
⟨O1(p1) . . .On(pn)⟩ . (9.4.30)

The soft operator

Gab(x) = lim
ω→0

ωOab(ω, x) (9.4.31)

12However, it is also not clear that we should expect a local QFT dual to asymptotically flat quantum
gravity. The flat space Bekenstein-Hawking entropy is always super-Hagedorn in d ≥ 4. The high energy
density of states grows faster than in any local theory.

13It has also been suggested [161] that translational invariance of the S-matrix is realized through null
state relations of boundary correlators rather than through local current operators, since the former are
typically non-local constraints on CFT correlation functions.
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has insertions given by

⟨Gab(x)O1(ω1, x1) . . .On(ωn, xn)⟩ =
2

d

n∑
k=1

ωkI
(d)
ab (x− xk)⟨O1(ω1, x1) . . .On(ωn, xn)⟩ , (9.4.32)

where

I(d)
ab (x) = δab − d

xaxb
x2

. (9.4.33)

One finds that the operator

Ua =
1

(4π)d/2Γ (d/2) (d− 1)
(−□)

d
2
−1∂bGba (9.4.34)

satisfies

⟨∂aUa(x)O1(ω1, x1) . . .On(ωn, xn)⟩ = −
n∑

k=1

ωkδ
(d)(x− xk)⟨O1(ω1, x1) . . .On(ωn, xn)⟩ . (9.4.35)

Thus, Ua(x) satisfies the current Ward identity corresponding to “energy” conservation. However,

since ω is not a scalar charge, the current Ua(x) is not a primary operator (though it has a well-

defined scaling dimension ∆ = d). Acting on (9.4.35) with −2
d

∫
ddxI(d)

ab (y − x), one finds

Gab(x) = −2

d

∫
ddy I(d)

ab (x− y)∂cUc(y) . (9.4.36)

Unlike the U(1) current and the stress tensor, the leading soft graviton “current” is not related to

the soft operator Gab through a shadow transform. It may be possible to interpret (9.4.36) as some

other (conformally) natural non-local transform of Uc(x), but we do not pursue this here.14

14The shadow transform (∆, s) → (d −∆, s) is related to the Z2 symmetry of the quadratic and quartic
Casimirs of the conformal group c2 = ∆(d −∆) + s(2 − d − s), c4 = −s(2 − d − s)(∆ − 1)(d −∆ − 1). c2
and c4 are also invariant under another Z2 symmetry under which (∆, s) → (1− s, 1−∆). Equation (9.4.36)
may be the integral representation of a shadow transform followed by the second Z2 transform which maps
(d+ 1, 0) → (−1, 0) → (1, 2).
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9.5 Conclusion

In this chapter we have taken steps to recast the (d + 2)-dimensional S-matrix as a collection of

celestial correlators, but many open questions remain. Our analysis relied on symmetry together

with the universal behavior of the S-matrix in certain kinematic regimes. It would be interesting to

analyze the consequences of other universal properties of the S-matrix for the celestial correlators.

The analytic structure and unitarity of the S-matrix should be encoded in properties of these

correlation functions, although the mechanism may be subtle. It seems likely that the collinear

factorization of the S-matrix could be used to define some variant of the operator product expansion

for local operators on the light cone. Although this chapter only addressed single soft insertions,

double soft limits, appropriately defined, could be used to define OPEs between the conserved

currents and stress tensors. We expect supergravity soft theorems to yield a variety of interesting

operators, including a supercurrent. Finally, the interplay of momentum conservation with the

CFTd structure requires further clarification. We leave these questions to future work.

9.A Spacetime Picture

In this appendix we construct coordinates for Minkd+2 whose limiting metric on I+ has cross-

sectional cuts given by Md. Consider the coordinate transformation from the flat Cartesian coor-

dinates Xµ to the coordinates (u, r, xa) given by

Xµ(u, r, xa) = rpµ(xa) + ukµ(xa) , (9.A.1)

where pµ(xa) is given by (9.2.3) with ω set to one. We have

dpµdpµ = Ω2(x)dxadxa . (9.A.2)
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If the vector kµ(xa) is chosen to satisfy

∂ak
µ = 0 , kµ∂apµ = 0 , (9.A.3)

then one finds

dXµdXµ = k2du2 + 2(p · k)dudr + r2dpµdpµ . (9.A.4)

Since neither pµ nor kµ scales with r, the limit r → ∞ with u fixed yields a degenerate metric on

I+ with cross-sectional metric

ds2 = r2Ω2(x)δabdx
adxb = r2ds2Md

. (9.A.5)

For instance, the flat metric on Md corresponds to the choice

pµ(x) =

(
1 + x2

2
, xa,

1− x2

2

)
, kµ =

1

2
[1, 0a,−1] , (9.A.6)

which yields the familiar coordinate transformation

Xµ(u, r, xa) =

[
u+ r(1 + x2)

2
, rxa,

r(1− x2)− u

2

]
(9.A.7)

and a metric of the form

ds2 = −dudr + r2δabdx
adxb . (9.A.8)

In order to achieve cross-sectional cuts of I+ which are metrically Sd, one chooses

pµ(x) =
2

1 + x2

(
1 + x2

2
, xa,

1− x2

2

)
, kµ = [1, 0a, 0] . (9.A.9)

The coordinate transformation is then

Xµ(u, r, xa) =

[
u+ r,

2rxa
1 + x2

, r
1− x2

1 + x2

]
(9.A.10)
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and the spacetime metric is

ds2 = −du2 − 2dudr +
4r2

(1 + x2)2
δabdx

adxb . (9.A.11)

In order to make the relationship between Md and I+ even more explicit, consider the flat coordi-

nate system (9.A.7). A massless field in the plane wave basis takes the form

Φµ1...µs(X) =
∑
ai

∫
dd+1q

(2π)d+1

1

2ωq
εa1...asµ1...µs

(q)
[
Oa1...as(q)e

iq·X +O†
a1...as(q)e

−iq·X
]
. (9.A.12)

To perform an asymptotic analysis near I+, one considers the limit r → ∞ with u fixed, so that

X → rpµ(xa). In this limit, the argument of the exponential

irωqq(ya) · p(xa) = − i

2
rωq(x− y)2 (9.A.13)

is large so that the exponential is rapidly oscillating. At leading order in 1
r , the only momenta

that contribute to the integral are those for which the phase is stationary, i.e. for which x = y.

Therefore in the large-r lightlike limit, one effectively trades the transverse coordinates on I+ for

the momentum coordinates on Md.

Armed with this knowledge we can further elaborate on the results of section 9.4. The soft

photon operator Sa(x) is related to the boundary current Ja(x) through a differential equation of

the form

(−□)
d
2
−1Sa(x) = (4π)d/2Γ(d/2)Ja(x) . (9.A.14)

The physical picture is clear: charged particles passing through I+ act as a source Ja(x) for the

soft radiation Sa(x) (see [36] for relevant expressions relating (9.A.14) to the soft charge for large

U(1) gauge transformations). Similar statements apply to the gravitational case [88]. Energetic

particles passing through I+ act as an effective source (the boundary energy-momentum tensor

Tab) for soft graviton radiation Bab(x).
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10
Area, Entanglement Entropy and

Supertranslations at Null Infinity

10.1 Introduction

The Bekenstein-Hawking area-entropy law [162, 163]

SBH =
Area

4ℏG
(10.1.1)

ascribes an entropy to a null surface proportional to its cross-sectional area in Planck units. This

law has a number of fascinating generalizations [164–183], including the Bousso bound [184–189]

which bounds the change in the area to the entropy flux through the null surface.

One of the most interesting null surfaces is future null infinity (I+), which is a future boundary
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of asymptotically flat spacetimes. It is a universal observer horizon for all eternal observers which

do not fall into black holes. It is natural to try to relate the change in the area of cross-sectional

“cuts” Σ of I+ to the energy or entropy flux across I+. An immediate obstacle is that both the

areas and area changes of such cuts are infinite. The Bousso bound is obeyed but in a trivial

manner.

In this chapter we define a finite renormalized area of cuts of I+ and conjecture a nontriv-

ial bound relating it to the entropy radiated through I+. A family of regulated null surfaces

parametrized by r which approach I+ for r → ∞ is introduced. For finite r these have finite area

for any cut Σ. We then define a subtracted area by subtracting the area of the same cut in a fiducial

vacuum geometry. The gravitational vacuum has an infinite degeneracy labeled by an arbitrary

function C0 on the sphere at I+ [30].1 Under BMS supertranslations, also parameterized by an

arbitrary function (denoted f) on the sphere, C0 → C0 + f and these vacua transform into one

another. We show that the subtracted area, denoted AΣ
0 , is finite (and typically negative) in the

r → ∞ limit. However it retains “anomalous” dependence on the choice of a fiducial C0.

This renormalized area AΣ
0 is found to have several interesting properties. When C0 coincides

with the physical vacuum at the location of the cut, AΣ
0 is the negative of the so-called modular

energy of the region I+
> lying to the future of Σ, including “soft graviton” terms which are linear in

the Bondi news. It tends to increase towards the far future, and asymptotically reaches zero from

below when C0 coincides with the asymptotic future vacuum. Moreover, under supertranslations

it shifts by the supertranslation charge on Σ.

In quantum gravity, the outgoing quantum state is supported on I+. The cut Σ divides I+ into

two regions, and a quantum entanglement entropy Sent
0 of the portions of the outgoing quantum

state on opposing sides of the cut is expected. In principle, unlike the entanglement across generic

fluctuating interior surfaces, Sent
0 should be well defined because gravity is weakly coupled near

the boundary. However, it is beset by both ultraviolet (UV) divergences from short wavelength

entanglements near the cut and infrared (IR) divergences from soft gravitons. A choice of vacuum

1Prescient early discussions of vacuum degeneracy are in [27, 28, 92].
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is required for subtraction of UV divergences, so Sent
0 will also acquire an “anomalous” dependence

on the fiducial C0. We will not try to give a precise definition of Sent
0 herein which would, among

other things, require a decomposition of the soft graviton Hilbert space.2 Nevertheless we will

motivate a conjecture that a suitably defined Sent
0 obeys the bound

− AΣ
0

4ℏG
≥ Sent

0 (Σ) (10.1.2)

for any cut Σ of I+. Typically, at late times both sides of this equation are positive and decreasing.

This relation incorporates the BMS structure at I+ into the study of the relation between area and

entanglement entropy.

Our results are plausibly relevant to, and were motivated by, the black hole information paradox.

A unitary resolution of this paradox would amount, roughly speaking, to showing that late and

early time Hawking emissions are correlated in such a way that, for a pure incoming state, the full

quantum state on I+ is a pure state. However, a more precise BMS-invariant statement is needed.

One would like to compute the entanglement entropy Sent
0 across any cut Σ. Naively, one expects

that it approaches zero for all cuts in the far past and far future and has a maximum somewhere in

the middle, possibly at the Page time [193, 194]. Given both the IR and UV subtractions needed

to define Sent
0 , the resulting anomalies in supertranslation invariance and the discovery of soft hair

[16, 45], it is not obvious to us what precisely the expectation following from unitarity should be. In

particular, the requirement that Sent
0 vanish in the far future is not fully supertranslation invariant.

We do not attempt to resolve these issues herein. Rather, we view the present effort as a first step

in obtaining a precise statement of the black hole information paradox.

This chapter is organized as follows. Section 10.2 contains preliminaries and notation. In

section 10.3 we define a renormalized area AΣ
F in which we subtract the area associated to the

asymptotic future vacuum and relate it to the “hard” modular energy of the region to the future

of the cut. In section 10.4 we show that AΣ
F varies under supertranslations into the hard part of

2A relevant discussion appears in [190–192].
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the supertranslation charge. Section 10.5 introduces the more general renormalized AΣ
0 involving

an arbitrary vacuum subtraction. Its variation under supertranslations is shown to involve the full

modular energy including soft graviton contributions. In section 10.6 we motivate and conjecture

a bound relating the renormalized area to the entanglement entropy which can be viewed as the

second law of I+.

Throughout this chapter we assume for simplicity that the geometry reverts to a vacuum in the

far future and that all flux though I+ is gravitational. This highlights many of the salient features,

but a treatment of more general cases would be of interest.

10.2 Preliminaries

In retarded Bondi coordinates, asymptotically flat metrics [1–3, 29] near I+ take the form

ds2 =− du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 +DzCzzdudz +Dz̄Cz̄z̄dudz̄ + . . . .

(10.2.1)

Here, γzz̄ is the round metric on the unit S2 and Dz is the associated covariant derivative. Defining

Nzz = ∂uCzz ,

Tuu =
1

2
N zzNzz ,

Uz = iDzCzz , U = Uzdz + Uz̄dz̄ ,

Vz = iDzNzz , V = Vzdz + Vz̄dz̄ ,

ε = iγzz̄dz ∧ dz̄ , (10.2.2)

the leading order vacuum constraint equation reads

∂umB du ∧ ε = −1

2
Tuu du ∧ ε− 1

4
du ∧ dV . (10.2.3)
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We could easily add a matter contribution to Tuu but we omit this for brevity. We assume that

near the future boundary I+
+ of I+ the spacetime reverts to a vacuum so that

mB|I+
+
= 0 , Czz|I+

+
= −2D2

zCF , (10.2.4)

for some function CF (z, z̄). In the quantum theory we denote the corresponding vacuum state by

|CF ⟩. Given CF and the Bondi news tensor Nzz, the mass aspect mB is determined by integrating

the constraint equation (10.2.3) backwards from I+
+ .

Asymptotically flat spacetimes admit an infinite-dimensional symmetry group, known as the

Bondi-Metzner-Sachs (BMS) group [1–3]. The supertranslations are labeled by an arbitrary func-

tion f(z, z̄) on the S2 and are generated by the vector fields

ξ = f∂u − 1

r
(Dzf∂z +Dz̄f∂z̄) +

1

2
D2f∂r , D2 = 2DzDz . (10.2.5)

Infinitesimal supertranslations act on the geometry as [12, 124]

δfCzz = fNzz − 2D2
zf ,

δfCF = f ,

δfUz = fVz + iDzfNzz − iD2Dzf ,

δfmB = f∂umB +
1

4
D2

zfN
zz +

1

4
D2

z̄fN
z̄z̄ +

i

2
∂zfV

z − i

2
∂z̄fV

z̄ ,

δfTuu = f∂uTuu . (10.2.6)

These transformations are generated by the supertranslation charges

Q[f ] =

∫
I+
−

f(z, z̄) mB ε =
1

4

∫
I+

f(z, z̄) du ∧ dV +
1

2

∫
I+

f(z, z̄) Tuu du ∧ ε . (10.2.7)

The first term, known as the soft charge, is linear in the gravitational field. It is written in terms

of the zero-mode of the Bondi news, and creates soft gravitons when acting on physical states. The

second term, or hard charge, is quadratic in the matter and gravitational fields and characterizes
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the hard energy flux through I+.

10.3 Renormalizing the Area

We wish to study the area of a cut Σ of I+ defined by

u = uΣ(z, z̄) (10.3.1)

in the geometry (10.2.1), and also to study its variation under supertranslations of Σ

uΣ → uΣ + f (10.3.2)

with the geometry held fixed. Of course this area is infinite so we must introduce both a regulator

and a subtraction. We regulate the area by the replacement of I+ with the past light cone of a

point which approaches i+. For the flat Minkowski metric the null hypersurface

r = −1

2
(u− u0) (10.3.3)

approaches I+ for u0 → ∞ with u held fixed. More generally we solve the ODE

(
1− 2mB

r

)
du+ 2dr = 0 , (10.3.4)

which guarantees that the surface is null, and choose the integration constants at each (z, z̄) so that

the surface lies at large radius, approaching infinity, for finite u.3 The null condition (10.3.4) has
1
r corrections. For brevity such corrections are suppressed here and hereafter whenever they drop

3Such a surface will generically terminate at a cusp rather than a point, but this will not matter as the
quantities considered below do not have contributions from the endpoint of the surface.
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out of the large-r limit. Equation (10.3.4) can be rewritten as

dr2

du
= 2mB − r . (10.3.5)

The area of a cut Σ of I+ defined by u = uΣ(z, z̄) then follows from the metric induced from

(10.2.1) and is given by

A(Σ, Nzz, CF ) =

∫
Σ
d2z
√

det g =

∫
Σ

(
r2ε− 1

2
duΣ ∧ U

)
. (10.3.6)

Both the area (10.3.6) as well as its variation with respect to retarded time are divergent in the

large-r limit of interest. A subtraction is necessary to obtain a finite result. We define a fiducial

“CF -vacuum” in which the news Nzz vanishes and Czz = −2D2
zCF on all of I+. This flat geometry

coincides with (10.2.1) at late times. A fiducial null hypersurface in this fiducial spacetime solving

(10.3.5) (with mB = 0) can then be found which coincides exactly with the solution of (10.3.4)

in (10.2.1) at late times. A subtracted area, with a finite large-r limit, may then be obtained by

subtracting the area of the fiducial hypersurface:

AΣ
F = A(Σ, Nzz, CF )−A(Σ, 0, CF )

=

∫
Σ

[
(r2 − r20)ε+

1

2
duΣ ∧∆U

]
.

(10.3.7)

Here, ∆U = UF −UΣ is the change in U and r0 is the radius in the fiducial vacuum. Using (10.3.5),

we have
d

du
(r2 − r20) = 2mB . (10.3.8)

Integrating this equation from I+
+ to uΣ, one finds

r2(uΣ, z, z̄)− r20(uΣ, z, z̄) = −
∫ ∞

uΣ

du 2mB(u, z, z̄) . (10.3.9)
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The finite renormalized area is then given by

AΣ
F = −

∫
I+
>

du ∧
[
2mBε−

1

2
duΣ ∧ V

]
, (10.3.10)

where I+
> is the three-dimensional region of I+ lying to the future of the cut Σ. Using the constraint

equation and the identity

∫
I+
>

du ∧ duΣ ∧ V =

∫
I+
>

(u− uΣ)du ∧ dV = −
∫
Σ
uΣd∆U , (10.3.11)

the renormalized area can be rewritten

AΣ
F = −

∫
I+
>

(u− uΣ)Tuudu ∧ ε = −
∫
Σ
d2zγzz̄

∫ ∞

uΣ

(u− uΣ)Tuudu . (10.3.12)

This expression could equivalently be derived through integration of the Raychaudhuri equation,

and matches familiar expressions for the modular Hamiltonians of lightsheets [188, 195, 196]. We

refer to this as the (negative of the) hard modular energy of the region I+
> . We note that AΣ

F is

typically negative and increases to zero in the far future due to the subtraction scheme.

10.4 Supertranslations

AΣ
F is strictly invariant under coordinate transformations which both move the cut and transform

the physical and subtraction geometries. In particular, AΣ
F is invariant if we simultaneously shift

the cut uΣ → uΣ+f and supertranslate the geometry by the inverse transformation. However, one

can consider evaluating the subtracted area on a supertranslated cut, sending uΣ → uΣ + f while

keeping the geometry fixed. Starting from either (10.3.10) or (10.3.12), one easily finds

δfA
Σ
F =

∫
Σ
f

[
2mBε−

1

2
d∆U

]
=

∫
I+
>

fTuu du ∧ ε . (10.4.1)
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The right hand side is the hard part of the supertranslation charge on I+
> . Alternately, (10.4.1)

may be derived by infinitesimally supertranslating the geometry according to (10.2.6).

10.5 A General Subtraction

The subtraction used in (10.3.7) to obtain a finite area change has a teleological nature: we must

know which vacuum the geometry settles into in the far future in order to define AΣ
F . In this

section we consider a more general, non-teleological subtraction of the area of Σ at u = uΣ in the

null hypersurface defined by solving (10.3.5) in an arbitrary vacuum characterized by the arbitrary

function C0 with C0zz = −2D2
zC0. Unlike the case in (10.3.7), the subtracted geometry is not

identical to the physical one at late times, and so the late-time contributions are not manifestly

finite or well-defined. To characterize the resulting ambiguity we introduce a late-time cutoff by

terminating both surfaces at a final cut ΣF at u = uF (z, z̄), in the late-time vacuum region with

mB = 0.4 One finds

AΣ
0 = AΣ

F +
1

2

∫
Σ
d(uΣ − uF ) ∧ (U0 − UF ) , (10.5.1)

where U0 and UF are constructed from C0 and CF according to (10.2.2). As may be easily verified,

this expression is invariant if we supertranslate the physical geometry, the fiducial vacuum C0 and

both cuts at Σ and ΣF . We now restrict consideration to the case uF = constant, in which case

this expression reduces to

AΣ
0 = −

∫
I+
>

du ∧ (u− uΣ)
(
εTuu +

1

2
dV
)
+

1

2

∫
Σ
duΣ ∧ (U0 − U) . (10.5.2)

Fixing the geometry and varying uΣ → uΣ + f , we find

δfA
Σ
0 =

∫
Σ
f

[
2mBε−

1

2
d(U0 − U)

]
. (10.5.3)

4It would be interesting to analyze the more generic case of the area change over a more general finite
interval.
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The right hand side is the full supertranslation charge in the special case U = U0 on Σ.

10.6 An Area-Entropy Bound Conjecture

Given a cut Σ and a vacuum state |C0⟩ on all of I+ we may define a density matrix on the region

I+
> to the future of Σ by

σ0 = tr<|C0⟩⟨C0| , (10.6.1)

where the trace is over the region prior to Σ, and the dependence on the choice of cut is suppressed.

Similarly, for an excited state |Ψ⟩ we define the density matrix on I+
>

ρ = tr<|Ψ⟩⟨Ψ| . (10.6.2)

We normalize so that trρ = trσ0 = 1. The modular hamiltonian which measures local Rindler

energies relative to |C0⟩ is

− lnσ0 . (10.6.3)

σ0 has contributions from the entanglement of both hard and soft modes across the surface Σ. Hard

mode entanglements contribute [195, 196]5

− lnσ0|hard =
1

4ℏG

∫
I+
>

du ∧ (u− uΣ)εT̂uu + constant = −
ÂΣ

F

4ℏG
+ constant , (10.6.4)

where here T̂uu and Â are both operators and the constants depend on the normal ordering pre-

scription. It would be extremely interesting, but beyond the scope of this chapter, to regulate,

define and compute the soft contributions to σ0. The precise form of σ0 may well depend on the

renormalization scheme. Here we simply conjecture, motivated by the structures encountered in

5Note that our normalization of the stress energy tensor as defined in (10.2.3) differs by a factor of 8πG
from some other references.
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the previous section, that these contributions can be defined in such a way that

− lnσ0 = − ÂΣ
0

4ℏG
+ constant , (10.6.5)

where the operator-valued area appearing here is

ÂΣ
0 = −

∫
I+
>

du ∧ (u− uΣ)(εT̂uu +
1

2
dV̂ ) +

1

2

∫
Σ
duΣ ∧ (U0 − Û) . (10.6.6)

We interpret the first term as the full modular Hamiltonian, including soft terms. The last is a soft

term which vanishes when U0 = Û on the cut Σ.

The C0-vacuum subtracted modular energy of the state |Ψ⟩ restricted to I+
> is

K0 = −trρ lnσ0 + trσ0 lnσ0 . (10.6.7)

This expression vanishes for ρ = σ0, as does AΣ
0 when the physical geometry is the C0 vacuum.

Hence, the constant is fixed so that

K0 = − AΣ
0

4ℏG
. (10.6.8)

We further define the regulated entanglement entropy

Sent
0 = −trρ ln ρ+ trσ0 lnσ0 (10.6.9)

and the relative entropy

S(ρ |σ0) = trρ ln ρ− trρ lnσ0 . (10.6.10)

Evidently

S(ρ |σ0) = K0 − Sent
0 . (10.6.11)

Positivity of relative entropy and the conjecture (10.6.5) then implies the bound

− AΣ
0

4ℏG
≥ Sent

0 . (10.6.12)

181



Chapter 10: Area, Entanglement Entropy and Supertranslations at Null Infinity

We note that the renormalized area AΣ
0 is typically negative while the entanglement entropy is

typically positive. If the renormalized area and entanglement entropy both tend to zero when the

cut Σ is taken to I+
+ , then it follows from (10.6.12) that the change (final minus initial) ∆A in the

renormalized area and the change ∆Sent in the entanglement entropy obey the “second law of I+”6

∆A

4ℏG
+∆Sent ≥ 0 . (10.6.13)

In this inequality, ∆A is typically positive while ∆S is typically negative, reflecting the fact that

the outgoing flux after the cut Σ is correlated with the flux prior to Σ if it is to restore quantum

purity.

10.7 Future Directions

Our work leaves open several important questions meriting further investigation. It seems imper-

ative to define, regulate, and compute the soft contributions to the modular Hamiltonian and the

entanglement entropy at I+. This question seems related to the careful treatment of soft quanta

required at the horizons of black holes [16]. A more pressing question regards the apparent ambi-

guity in the subtraction scheme introduced in section 10.5. Our vacuum subtraction prescription

is reminiscent of the subtraction procedure employed in the Euclidean approach to black hole ther-

modynamics in asymptotically flat spacetimes. There the boundary term in the on-shell action has

a large-radius divergence which must be regulated with a vacuum subtraction. In that case the

subtraction scheme is essentially fixed by requiring agreement with already known results calcula-

ble by other means. In the present context, there is no known answer to be reproduced. However,

one might hope that a unique subtraction scheme could be singled out by other means, or that a

covariant scheme exists, perhaps with a simple counterterm prescription. We leave this interesting

question for future investigation.

6This highlights the differences with the situations typically considered in [184] involving area decreases
and positive entropy fluxes.
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