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Abstract. Probability distributions of electron-positron pair creation in collisions of a laser
beam and a nonlaser photon (Breit-Wheeler process) are calculated in the framework of strong-
field quantum electrodynamics. The driving laser field is modeled as a finite pulse, similar to the
formulation introduced in Phys. Rev. A 86, 052104 (2012). The sensitivity of pair production
to the driving pulse peak intensity and duration, in the context of spin effects, are investigated.

1. Introduction
With the rapid development of high-power laser technology, the laser radiation in the near-
visible spectrum with intensities as high as 1022 W/cm2 can be produced in the laboratory [1].
These new capabilities have led to a renaissance of theoretical interest in strong-field quantum
electrodynamics (QED), in which electron dynamics in a powerful laser field must be treated
relativistically and in which nonlinear QED processes become important. One of such processes
is nonlinear electron-positron (e−e+) pair creation which occurs in collisions of an intense laser
beam with a nonlaser photon. This process, known as the nonlinear Breit-Wheeler process, is
the topic of our paper (for recent reviews, see, Refs. [2, 3, 4]).

In the original paper of Breit and Wheeler [5], a collision of two light photons which combined
their energies to produce the e−e+ pair was considered. This idea was further developed for the
case when one of the photons is replaced by a strong laser field [6, 7, 8]. In these studies, the laser
field was treated as a monochromatic plane wave. The process in a weakly nonmonochromatic
laser field was investigated by Narozhny and Fofanov [9]. It is crucial to realize that the process
was realized in the series of experiments performed at SLAC [10, 11], which aimed at testing
the hypothesis of light-light scattering.

Since the synthesis of laser pulses with well-controlled properties is currently feasible,
it is important to investigate their impact on the nonlinear Breit-Wheeler process. This
was realized in recent works where pair creation stimulated by a pulsed laser field was
analyzed [12, 13, 14, 15, 16]. While different aspects were studied in these papers, including the
dependence of probability distributions of created pairs on intensity, shape, duration, and carrier-
envelope phase of the driving pulse, neither of them was analyzed in the context of spin effects.
In this paper, we demonstrate that generation of lepton pairs in well-defined spin states can be
effectively altered by varying the parameters of the driving pulse. This is in contrast to previous
investigations of spin effects in strong-field QED processes which rely on a monochromatic plane
wave field approximation (see, for instance, Refs. [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]).

This paper is organized as follows. In Section 2, we present the theoretical formulation of the
nonlinear Breit-Wheeler process which is along the lines presented in our previous paper [15].
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In Section 3, we specify the laser pulse shape for which the actual numerical calculations are
performed. The latter are presented in Section 4, showing a strong dependence of spin effects on
parameters of a driving laser pulse such as pulse duration and peak intensity. A brief summary
of our results is given in Section 5.

In the theoretical formulas below we keep ~ = 1, however the numerical results are presented
in relativistic units such that ~ = c = me = 1 where me is the electron mass.

2. Theory
The probability amplitude for the Breit-Wheeler pair creation process, γKσ → e−pe−λe−

+e+pe+λe+
,

with electron and positron momenta and spin polarizations pe−λe− and pe+λe+ , respectively,
equals

A(γKσ → e−pe−λe−
+ e+pe+λe+

) = −ie

∫
d4x j

(+−)
pe−λe− ,pe+λe+

(x) ·A(+)
Kσ(x), (1)

where Kσ denotes the initial nonlaser photon momentum and polarization. Here,

A
(+)
Kσ(x) =

√
1

2ε0ωKV
εKσe

−iK·x, (2)

where V is the quantization volume, ε0 is the vacuum electric permittivity, ωK = cK0 = c|K|
(K ·K = 0), and εKσ = (0, εKσ) is the linear polarization four-vector satisfying the conditions,

K · εKσ = 0, εKσ · εKσ′ = −δσσ′ , (3)

for σ, σ′ = 1, 2. The matrix element of the pair current operator is defined as

[j
(+−)
pe−λe− ,pe+λe+

(x)]ν = ψ̄
(+)
pe−λe−

(x)γνψ
(−)
pe+λe+

(x). (4)

Moreover, ψ
(β)
pλ (x) (with β = +1 for electron and β = −1 for positron) is the Volkov solution of

the Dirac equation coupled to the electromagnetic field [27, 28]

ψ
(β)
pλ (x) =

√
mec2

V Ep

(
1− β

e

2k · p
/A/k

)
u
(β)
pλ e

−iβS
(β)
p (x), (5)

with the phase:

S(β)
p (x) = p · x+

∫ k·x

−∞

[
β
eA(φ) · p
k · p

− e2A2(φ)

2k · p

]
dφ. (6)

Here, Ep = cp0 > mec
2, p = (p0,p), p · p = (mec)

2, and u
(β)
pλ are the free-electron (positron)

bispinors normalized such that

ū
(β)
pλ u

(β′)
pλ′ = βδββ′δλλ′ . (7)

The four-vector potential A(k · x) in Eq. (5) represents an external electromagnetic radiation
generated by lasers such that k ·A(k · x) = 0 and k · k = 0.

We consider a linearly polarized laser pulse that propagates in the direction determined by
the unit vector n and that lasts for time Tp. Its fundamental frequency is ω = 2π/Tp whereas its
wave four-vector is k = k0(1,n) with k0 = ω/c. The laser pulse is characterized by the following
four-vector potential,

A(k · x) = A0εf(k · x), (8)

where A0 relates to the peak laser field intensity, and where a shape function f(k ·x) vanishes for
k ·x < 0 and k ·x > 2π. Here, a linear polarization vector ε = (0, ε) is such that ε2 = −ε2 = −1
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and k · ε = 0. As explained in Ref. [15], such a choice of the polarization four-vector ε as a
spacelike vector (the same concerns also εKσ) is justified by gauge invariance of the probability
amplitude (1). Also in Ref. [15], we showed that this amplitude can be represented such that

A(γKσ → e−pe−λe−
+ e+pe+λe+

) = i

√
2παc(mec2)2

Epe−
Epe+

ωKV 3
ABW, (9)

where α = e2/(4πε0c) is the fine-structure constant, V is the quntization volume, and

ABW =
∑
N

(2π)3δ(1)(P−
N )δ(2)(P⊥

N )DN
1− e−2πiP+

N /k0

iP+
N

. (10)

Here, a four-vector
PN = K − p̄e− − p̄e+ +Nk, (11)

is expressed in terms of the laser-dressed momenta of electron and positron,

p̄e∓ = pe∓∓µmec
ε · pe∓
k · pe∓

〈f〉k + 1

2
(µmec)

2 〈f2〉
k · pe∓

k, (12)

where the averaged values 〈f i〉 for i = 1, 2 are defined as

〈f i〉 = 1

2π

2π∫
0

d(k · x)[f(k · x)]i. (13)

In Eq. (10), the light cone coordinates have been used PN = (P−
N , P

+
N ,P

⊥
N ) in accordance with

Ref. [29]. In addition, the Fourier coefficients, DN , are defined as

DN =
1

2
µmec

[
2k0

Q0

( ε · pe+
k · pe+

− ε · pe−
k · pe−

)
ū
(+)
pe−λe−

/εKσu
(−)
pe+λe+

− 1

k · pe+
ū
(+)
pe−λe−

/εKσ/ε/ku
(−)
pe+λe+

− 1

k · pe−
ū
(+)
pe−λe−

/ε/k/εKσu
(−)
pe+λe+

]
G

(1)
N +

(µmec)
2

4(k · pe+)(k · pe−)

[
2k0

Q0

(
k · pe+ + k · pe−

)
× ū

(+)
pe−λe−

/εKσu
(−)
pe+λe+

+ ū
(+)
pe−λe−

/ε/k/εKσ/ε/ku
(−)
pe+λe+

]
G

(2)
N , (14)

where Q0 = k0 − p0e− − p0e+ 6= 0, and where we have introduced a relativistically invariant

parameter, µ = |eA0|/(mec). The functions G
(i)
N , with i = 1, 2, are expressed in terms of the

generalized Bessel functions (for more details, see [15, 29]).
Now, it is possible to derive the probability distribution for positrons produced in the Breit-

Wheeler process by a finite laser pulse [15]

d3P(p)

dEpe+
d2Ωpe+

=
α(mec)

2k0|pe+ |
(2π)2ωK(k · pe−)

∣∣∣∑
N

DN
1− e−2πiP 0

N/k0

P 0
N

∣∣∣2, (15)

where the electron four-momentum pe− equals

p⊥
e− = w⊥, (16)

p
‖
e− =

(mec)
2 + (w⊥)2 − (w−)2

2w− , (17)

p0e− =
(mec)

2 + (w⊥)2 + (w−)2

2w− , (18)
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with w = K−pe+ . The last formulas follow from solving the momentum conservation conditions,
P−
N = 0 and P⊥

N = 0, which are defined by the delta functions in Eq. (10). One can check
that these solutions satisfy the on-mass shell relation, pe− · pe− = (mec)

2. Note also that the
corresponding probability distribution for electrons can be obtained from (15) by interchanging
e+ and e−.

3. Laser pulse shape
For numerical illustrations, we choose the four-vector potential of the form

A(k · x) = A0Bεf(k · x), (19)

with the following shape function:

f(k · x) = NA sin2
(k · x

2

)
sin(Nosck · x). (20)

Here, A0 is related to the parameter µ whereas Nosc denotes the number of field oscillations.
As one can understand, the pulse lasts for time Tp = 2πNosc/ω. In addition, the parameter B
is introduced in Eq. (19). If we choose B = Nosc the mean intensity contained in the pulse is
fixed, irrespective of its duration. For this to happen, we have to keep

1

2π

∫ 2π

0
d(k · x)[f ′(k · x)]2 = 1

2
, (21)

where the derivative is with respect to k·x (for more details, see [30]). In the following, we assume
that the laser pulse propagates in the z-direction (n = ez) and its polarization vector is ε = ex.
In the considered configuration, the nonlaser photon is counterpropagating (nK = −ez) and its
polarization vector is either parallel, εK = ex, or perpendicular, εK = −ey, to the polarization
direction of the laser pulse. For these two configurations, in the next section we compare the
angle-fixed energy spectra of created positrons.
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Figure 1. The angle-fixed energy spectra
of positrons [defined by Eq. (15)] which
are produced in a head-on collision of a
laser pulse with a nonlaser photon. The
parameters of the colliding pulse are such
that µ = 1, ωL = 0.3mec

2, and Nosc =
32, while for the nonlaser photon we have
ωK = mec

2. Both polarization directions
are parallel, i.e., ε = εK = ex. While the
solid blue line corresponds to the creation
of a positron and an electron with the same
helicity (λe+λe− = 1), the dashed red line
(which is hardly visible on the scale of this
figure) corresponds to the opposite helicity
configuration for the produced particles
(λe+λe− = −1).
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Figure 2. The same as in Fig. 1 but for
εK = −ey.
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Figure 3. The same as in Fig. 1 but for
Nosc = 4.

4. Numerical illustrations
The distribution (15) is defined for well-defined spin states of produced electrons and positrons.
Based on this formula, we shall study now the spin effects in the nonlinear Breit-Wheeler process.

In Figs. 1 and 2 we show the positron spectra (15) calculated at fixed detection angles in
the (yz)-plane, as denoted in each panel. We present the results for the case when linear
polarizations of the laser pulse and the colliding photon are parallel (Fig. 1), ε = εK = ex, or
perpendicular (Fig. 2) to each other, ε = ex and εK = −ey. The remaining parameters are
given in the caption to Fig. 1. Here, we focus on spin effects of the created pairs. Therefore, we
compare the energy distributions for the case when the positron and electron are created with
the same (solid lines) or the opposite (dashed lines) spin projections. As one can see in Fig. 1,
the former configuration dominates. This tendency, however, can be manipulated by changing
the polarization direction of the colliding photon or that of the laser pulse, as shown in Fig. 2.

The results presented in Figs. 1 and 2 relate to a rather long driving pulse, which contains
32 field oscillations. In this case, we observe separate multiphoton peaks in the energy spectra
of created particles, with dominant peaks as shown in the figures and smaller peaks which are
hardly visible on the scale of these figures (see, also Ref. [15]). The question arises whether the
pulse duration has any observable impact on the spin effects. To answer this question we present
the results for a much shorter pulse, which contains only four oscillations of the electromagnetic
field, Nosc = 4. Both configurations, when the polarization vectors of the pulse and the nonlaser
photon are parallel or perpendicular to each other, are considered (Fig. 3 and 4, respectively).

When comparing Figs. 1 and 3, we observe the same tendency which is that electrons and
positrons are mostly created with the same spin projection. It turns out that for perpendicular
polarizations, the creation of particles with the opposite spin projections is more significant for
shorter pulses (compare Figs. 2 and 4). The latter depends also on the peak intensity of the
driving pulse. This can be seen when comparing Figs. 4 and 5. Both figures relate to the same
physical geometry, but the peak field strength is different in these two cases (it is either µ = 1
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Figure 4. The same as in Fig. 2 but for
Nosc = 4.
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Figure 5. The same as in Fig. 4 but for
µ = 0.1.

in Fig. 4, or µ = 0.1 in Fig. 5). Note that for a weaker field (Fig. 5), we observe quite broad
regions of positron energy where both product particles are created in the same spin states [this
specifically concerns the case when the particles are detected in the propagation direction of the
pulse, i.e., for small θe+ (see, the upper left panel for θe+ = 0.1π)]. However, if we increase the
peak field strength (Fig. 4), this energy region significantly deteriorates.

Here, we have looked at the energy spectra of created positrons in the (yz)-plane, i.e., in the
plane normal to the polarization direction of the pulse. While for the colinear polarizations of
the pulse and the nonlaser photon the electron and the positron are predominantly created in
the same spin states (Figs. 1 and 3), the situation is changed for the perpendicular polarizations
of the pulse and the nonlaser photon (Figs. 2, 4, and 5). Although we do not present here the
corresponding results we have also looked at the positron spectra in the (xz)-plane, i.e., in the
plane defined by the polarization and the propagation direction of the driving field. In this case,
we observe that the configuration with the opposite spin projections becomes dominant for a
colinear configuration of ε and εK unless the particles are detected in the propagation direction
of the pulse (at small angles θe+). The electrons and the positrons produced at small angles θe+
are in the same spin states. On the other hand, when the laser pulse and the nonlaser photon
polarizations are perpendicular, the leptons which are created at small angles are in the opposite
spin states. This stays true for different values of µ and Nosc.

In closing, we note that the stronger the peak field intensity the more effective is pair creation,
as illustrated by Figs. 4 and 5. This explains also why the signal of pair creation becomes larger
when, for a fixed µ, we decrease the incident pulse duration. Once we keep the average intensity
contained in a pulse fixed (see, the discussion in Sec. 3), the maximum value of the electric and
magnetic fields must be effectively increased when decreasing the pulse duration. Consequently,
an enhancement of the probability of pair production induced by shorter laser pulses is observed.
Specifically, if one compares Figs. 1 and 3 the spectra are enhanced roughly four times; if one
compares Figs. 2 and 4 the spectra are enhanced by one order of magnitude.
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5. Conclusions
In this paper, we have focused on spin effects in the electron-positron pair creation which happens
via collisions of a strong laser pulse with a nonlaser photon; both being linearly polarized. We
have compared two cases of the colinear and perpendicular polarizations of the laser pulse and
the nonlaser photon. We have observed that while for the colinear polarizations, both leptons
(when detected at small angles) tend to be in the same spin state thus for the perpendicular
polarizations this tendency is reversed. This cannot be generalized for particles detected at bigger
angles. We have demonstrated that the spin effects in the nonlinear Breit-Wheeler process are
sensitive to both the driving pulse peak strength and its duration. Therefore, they can be used
as control parameters when producing highly polarized positron (electron) beams.
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