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Introduction

This PhD thesis deals with the study and the development of the
radiofrequency design of a module prototype for a linear accelerator
intended to be used for hadrontherapy, a powerful cure of cancer.

Hadrontherapy is one of the most promising cures of cancer of which
the scientific community is discussing about. The idea is to irradiate
the tumor zone with a proton beam with a variable energy included
within 60 and 250 MeV. This range allows the cure of deep tumors.
The use of protons leads to a better distribution of the radiation dose
in the tumor zone and to a lower dose delivered to the safe tissues.

This property is due to a physical phenomenon known as Bragg’s
Peak : the particles penetrate in the tissue and deliver the most part
of their energy at a certain distance, the value of which depends on
the initial energy. This fact, together with the improved 3D conformal
techniques allowing a precise description of the target, gives a clear
improvement of cancer treatment.

The hardest points in the development of an accelerator for such
a purpose are the production costs and the overall dimensions of the
structure. Both points are necessary for a feasible installation in med-
ical centers and hospitals.

The first point can be partially solved if one thinks of a structure
that uses already existing elements. For example, in several medical
centers, small cyclotrons are already present and delivering a beam
with an energy up to about 60 MeV. Such a beam is used either for
the production of isotopes for medical purposes or for the treatment of
superficial tumours, as the eye ones. Then, an accelerator which boosts
the beam energy of a cyclotron can be used, rather then to use a bigger
superconductive cyclotron which should be a more expensive solution.

The second requirement can be satisfied with the use of an high
frequency compact linear accelerator. At the same time, this linear
accelerator has to need few external components as the radiofrequency
generators (klystrons) for example, and does not have to need expensive
mechanical machining and complex tuning procedures.

The best compromise to satisfy these requirements seems to be the
Side Coupled Linear Accelerator. The accelerator subject of this PhD
thesis, LIBO (LInear BOoster), is of this type and it has been thought
to be a modular structure; in fact the study has been made only for the
first of nine modules, with the idea to deal with a proof of principle.

iii



iv INTRODUCTION

In the state of art of the linear accelerator design, many aspects
are involved: the theoretical design, the numerical design and the ex-
perimental verification, namely the radiofrequency measurement. In
this thesis all the aspects are covered, sometimes with less details and
sometimes with more. This is due to the own nature of the work. It
was developed during the effective design and construction of the mod-
ule, up to all the practical details a construction needs, and for time
reasons, sometimes the more known classical techniques were preferred.
Nevertheless, several scientific ideas have come out in sight of an indus-
trial productions of LIBO. First, the possibility to apply engineering
criteria to the design; then, the possibility to have automatic measure-
ment which should not need high qualified human contribution. All
these points are stressed where it is the case.

Finally, we would spend some words about the agencies involved in
this project. First the TERA Foundation, directed by Prof. U. Amaldi,
where the first ideas were born. Then, the CERN in Geneva, where
the most part of the construction and measurement has been made and
where the project team was used to gather (the author has been spent
almost the half part of his PhD at CERN). Next, INFN Sez. di Milano
e Napoli who gave money and people to work on this project, and last
but not least, the Dipartimento di Ingegneria Elettrica in Naples that
has a good tradition in accelerator development and where the author
has the privilege of doing his PhD.

In the first chapter a short introduction to the hadrontherapy is
presented with a description of the main medical centers in the world
that use hadrontherapy.

In the second chapter, we deal with an introduction to the linear
accelerator, with the definition of the main parameters involved and the
characteristics of coupled cavities. Particular emphasis is paid to the
side coupled structure. In this chapter it is also presented LIBO struc-
ture with the radiofrequency, beam dynamic and mechanical aspects
stressed as well.

In the third chapter the effective radiofrequency design of a side
coupled linac with a top-down methodology is shown. All the aspects
are covered: from the first numbers involved, up to the definition of the
single cavities details, while in the fourth chapter a circuit model is
presented which has the aim to give the sensitivity of the main param-
eters to mechanical tolerances. Numerical results are shown as well.

In the last chapter a detailed description of radiofrequency mea-
surement on the prototypes is illustrated. Some innovative approaches
are presented on the measurement of coupled cavities and a flux dia-
gram of both mechanical and measurement procedure is commented.



CHAPTER 1

Introduction to the Hadrontherapy

In this chapter we will shortly introduce the basic principles of
hadronic1 radiotherapy.

In this sense, we will illustrate the advantages connected to the use
of protons which leads, with respect to the conventional techniques, to
an improvement on the safe of sane tissues and on the destruction of
tumour zone.

A short introduction to the principal medical centers in the world
which are dedicated to the cancer research is presented as well.

All the definitions and information concerning this chapter can be
found in [1, 2, 3].

1. Some definitions on Radiation for Cancer

In the world, cancer is one of the most dangerous diseases. Cancer
is the uncontrolled growth and proliferation of cells in the body, the
triggering of which is not yet fully understood.

Radiation therapy and surgery are the main forms of localized treat-
ments that are used to eliminate the primary tumour. Secondary tu-
mours, originating from the primary, are usually treated by chemother-
apy.

By careful planning, choice and manipulation of the treatment
beams, radiation preferentially destroys cancer cells and spares nor-
mal healthy tissue.

The total radiation dose2 is often divided into small daily fractions
as this results in better tumour control.

About half of all cancer sufferers need to undergo radiation therapy
at some stage during their treatment. Even modest advances in the
therapies will improve the quality of life of a large number of people.

Hospitals operate cobalt machines and linear accelerators which
produce photon and electron beams. These are ineffective for some tu-
mours, particularly advanced or slow-growing ones and proton therapy

1Hadrons are subatomic particles. Radiotherapy hadrons include protons, neu-
trons, pi-mesons and a few heavy ions, i.e. electrically charged atoms, as Helium,
Carbon, Oxygen, etc.

2The dose is radiation energy deposited per unit volume; it is measured in Gray
(Gy): 1 Gray equals 1 Joule per kg. In conventional tumour radiotherapy typical
doses are in the range of 40 to 70 Gy applied over a period of about 10 to 30 days.

1



2 1. INTRODUCTION TO THE HADRONTHERAPY

may be the only effective treatment, sometimes in conjunction with
surgery.

It may not be possible to irradiate some lesions with these conven-
tional beams or to remove them surgically because of the proximity of
critical tissues and proton therapy may be the only possible form of
treatment.

If neutron or proton beams are not available the alternatives are
very expensive chronic medical care or treatment at overseas centers.

Radiation therapy machines are expensive, high technology equip-
ment, but the advantages are

• A sterile environment is not required.
• Few people are involved in patient treatment, which does not

necessarily require the daily presence of a Radiation Oncologist
or any other clinician.

• Most patients are treated as out-patients and therefore do not
occupy scarce and expensive hospital beds.

• Irradiation is not traumatic for patients, who are not anaes-
thetized and usually do not get sick from the treatment.

Radiation therapy is therefore cost-effective and often cheaper than the
alternatives of surgery, chemotherapy and chronic health care.

Neutrons and protons are both nuclear particles of approximately
the same mass. However, the fact that neutrons are uncharged and
protons are charged particles results in their having vastly different
physical properties and biological effects. Using conventional photon
radiation as the standard, the dose distributions of fast neutrons are
very similar, but their biological effects offer advantages for the treat-
ment of certain types of tumours, while the advantages of protons lie
in their physical dose distributions.

Many large tumours have central cores, which lack oxygen because
the blood supply has been reduced by the proliferating tumour cells.
Other tumours are slow-growing and the cells spend a relatively short
time in the dividing phase of the cell cycle, where they are most sensi-
tive to radiation. These tumours are resistant to conventional photon
radiation but are far less resistant to neutron irradiation, which there-
fore in principle has a better chance of effecting a cure. Examples of
tumours that are effectively treated by neutrons include salivary gland
tumours, large breast tumours and certain tumours of other soft tis-
sues. However, because radiation causes damage to the normal tissue
in front of a deep-seated tumour, a so-called isocentric beam delivery
system (one which rotates about the patient) is essential so that the pa-
tient can be irradiated from several different angles. This concentrates
the dose at the tumour and limits the dose to normal tissue.

High energy protons are particularly suitable for treating cancer
or other (benign) abnormalities near sensitive structures such as the
optic nerve, spinal cord, kidneys, etc., where other forms of radiation
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would do too much damage to healthy tissue. This feature results from
the fact that protons can be steered and focused very accurately and
can also be given exactly the right energy to stop at any particular
point within the body, thus completely protecting any organs beyond
this range. They also allow better protection of normal tissue situated
in front, and at the sides, of the target than other types of radiation.
This allows the application of higher doses to a tumour which means
a better chance of cure. The high precision required in proton therapy
demands the ability to accurately set the patient up in the proton
beam. Although not as important as in the case of neutron therapy,
the ability to irradiate the patient from different angles is desirable.

2. Advantages of Hadrontherapy

In the history of radiation therapy there are many examples of how
cure rates have been increased through improvements in physical dose
distribution and the resulting increase in feasible tumor dose.

In deep-seated tumours, the change from x-ray based therapy to
the use of electrons beams coming from high energy accelerators has
yielded an appreciable improvement in therapeutic results; in many
cases, however, an exact fit of the irradiated volume to the target vol-
ume is impossible due to the physical characteristic of the gamma rays
used in therapy. For such a beams, after a short build-up, the dose
decreases at greater depth, and, for deep-seated tumours, the integral
dose is always lower than the one released to the healthy tissues. On
the other side, beams of charged particles (protons and ions) produce a
much more agreeable dose distribution. In fact, due to a phenomenon
known as Bragg peak, for both protons and ions, the delivered dose
increases at greater depth and then declines abruptly behind a sharply
peak which is the maximum of dose, as in figure 1.1 where it is shown
the curves dose-depth for 200 MeV protons, 20 MeV electrons and for
gamma-rays.

From the figure 1.1 it is also clear that the peak is rather shorter,
but the location of that maximum can be precisely fixed by the energy
of the particles. In such a case is possible to sum the shorter peaks to
cover wider region. This is the so called Spread out Bragg peak as it is
shown in figure 1.2.

Finally, protons and ions exhibit a small lateral and range scat-
tering, which is another prerequisite for achieving a tumor conform
treatment.

These physical properties of charged-particle beams lead to a sub-
stantial improvement in the tumour dose with respect to the integral
dose delivered to healthy tissues. This means that healthy tissues are
much more spared and this could be a real advantage in radiotherapy
for young patients, for example, whose long life expectancy mandates
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Figure 1.1. The Bragg peak phenomenon. Comparison
between proton and electron penetration depth in water.
Also shown is a proton depth dose curve with a spread-
out Bragg (SOBP) of 5 cm.

that the risk of late effects, as radiation-induced tumors, should be
minimized.

3. Hadrontherapy in the world

The first proposal to use protons for tumor therapy was put forward
in 1947 by Robert Wilson and pioneer treatments started in 1954 at
the Lawrence Berkeley Laboratory (USA). At present, protontherapy
centers are located in the United States, in Russia, in Japan, in South
Africa and in Europe. Most of the clinical experience has so far been
obtained at physics research institutions which have devoted part of
the accelerator time to medical uses.

Loma Linda is one of the first hospital-based proton radiotherapy
facility for treatment of deep-seated tumors. In figure 1.3 a sketch of
the radiotherapy center is shown.

The table 1.1 shows the main center in the world that use hadron-
therapy, the source is from the site:

http://neurosurgery.mgh.harvard.edu/hcl/ptles.htm

and it is updated to July 2000.
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Figure 1.2. The Spread out Bragg peak. Combining
beams with different energies it is possible to describe a
longitudinal profile.

Figure 1.3. A sketch of Loma Linda radiotherapy cen-
ter in California.
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Who Where What
parti-
cle

First
RX

Last
RX

Total
pa-
tient

Date
of
total

Berkeley 184 CA. USA p 1954 -1957 30
Berkeley CA. USA He 1957 -1992 2054 6-91
Uppsala Sweden p 1957 -1976 73
Harvard MA. USA p 1961 8558 7-00
Dubna Russia p 1967 -1974 84
Moscow Russia p 1969 3268 6-00
Los Alamos NM. USA p -1974 -1982 230
St. Petersburg Russia p 1975 1029 6-98
Berkeley CA. USA heavy

ion
1975 -1992 433 6-91

Chiba Japan p 1979 133 4-00
TRIUMF Canada p -1979 -1994 367 12-93
PSI (SIN) Switzerland p -1980 -1993 503
PMRC, Tsukuba Japan p 1983 629 7-99
PSI (72 MeV) Switzerland p 1984 3014 12-99
Dubna Russia p 1987 58 6-00
Uppsala Sweden p 1989 236 6-00
Clatterbridge England p 1989 999 6-00
Loma Linda CA. USA p 1990 5262 7-00
Louvain-la-Neuve Belgium p 1991 -1993 21
Nice France p 1991 1590 6-00
Orsay France p 1991 1527 12-99
N.A.C. South

Africa
p 1993 367 6-00

MPRI IN USA p 1993 34 12-99
UCSF - CNL CA USA p 1994 284 6-00
HIMAC, Chiba Japan heavy

ion
1994 745 12-99

TRIUMF Canada p 1995 57 6-00
PSI (200 MeV) Switzerland p 1996 41 12-99
G.S.I. Darmstadt Germany heavy

ion
1997 72 6-00

Berlin Germany p 1998 105 12-99
NCC, Kashiwa Japan p 1998 35 6-00

pions 1100
ions 3304
protons 27434
Total 31838

Table 1.1. World Wide charged particle pa-
tient totals. Source updated to July 2000:
http://neurosurgery.mgh.harvard.edu/hcl/ptles.htm.



CHAPTER 2

Linac and SCL Accelerators

The physics and technology of particle accelerators have been highly
developed over the past fifty years. After the second world war, particle
accelerators have been mainly used for experimental nuclear and parti-
cle physics research. The development of accelerators has the merit to
demand new technologies, which are necessary to have more powerful
accelerators, and these new technologies can be used in other fields1.

Linear accelerators, also called linacs, were often used in the past
as the first step of acceleration before large circular machines. Nowa-
days the linacs are appointed to be used for the next generation of
accelerators: the linear colliders, since their output beam can be of
high quality2 and high energy. But linacs can be applied also to other
purposes and the medical applications of linacs are only one example,
surely the most noble, of the several cases where these accelerators can
be used out of the high energy physics field.

Furthermore, the capability to be realized in the range of few meters
to kilometers sizes and in the costs range from a few millions to a
billion euro renders this type of accelerators very promising for intensive
industrial applications.

In the beginning of this chapter only a short review on linear accel-
erators is presented, since in the scientific literature lots of publications,
both articles and book, are dedicated to the explaining of the various
linear accelerators types. For this reason, in the following there is al-
ways the reference to publications where the argument presented is
fully explained.

In the first paragraph the principal definitions and concepts in-
volved in linear accelerators are reminded, while in the following two,
after a short historical review, the principal structures are illustrated
with a particular emphasis on the Side Coupled Linac structure.

In the last paragraph a first general presentation of the accelerator
object of this thesis work, LIBO project, is shown with all the principal

1Consider the www (world wide web) born in the early 80’s at CERN for
example.

2High beam quality means small beam diameter and small beam energy spread.
Other advantages of linacs can be: strong focusing easily reachable, no power losses
for synchrotron radiation, injection and extraction are simpler then for circular
machines, linacs can operate at any duty factor.

7



8 2. LINAC AND SCL ACCELERATORS

parameters involved; also a short review on LIBO particles dynamic
and on mechanical aspects is presented.

1. Fundamental definitions

To accelerate particles we use an electric field; this properties is
represented through the Lorentz Force equation

~F = q( ~E + ~v × ~B)

which gives the force acting on a point charge q in the presence of
electromagnetic field.

The first idea to have particles accelerated by a longitudinal electric
field is to use a circular waveguide operating in the mode TM01, but
in this case the phase velocity of the field is greater than the veloc-
ity of light and the particles would never have synchronism with the
electromagnetic wave, and therefore no continuous acceleration.

Then, we need to lower the phase velocity. One way could be to
charge the waveguide with equally spaced disks, let us call L the dis-
tance between disks. The study of such a structure is based on two
fundamental points:

• Floquet’s Theorem: In a lossless spatial periodic structure, the
wave function is periodic too and it may differ from a period
to the next only by a factor like e−jkL.

• The boundary conditions cannot be satisfied by a single mode
of the structure and there is a continuous spectrum of space
harmonics (Fourier series).

Figure 2.1. Dispersion diagram of a periodic structure
(loaded waveguide); unloaded cavity case is shown for
comparison.

Interesting features are observable in figure 2.1, which shows the
dispersion diagram of an infinite periodic structure and, for comparison,
the diagram of an infinite wide waveguide:

• There is a limited passband effect between ωc and ωπ. The
frequency range of passband is related to the coupling between
cavities.
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• For a given frequency, there is an infinite series of space har-
monics, with the same group velocity, but with different phase
velocity.

• When the electromagnetic energy flows only in one direction
we deal with the solid part of the curve on the diagram and
the structure is a travelling wave accelerator (TW); when the
energy flows in both direction, we deal with solid and dot-
ted part of the curve and the structure is said standing wave
accelerator (SW).

• Travelling wave accelerators operate near the middle of the
passband, where group velocity is maximum and the mode
spacing is biggest.

• Standing wave accelerators operate on lower or upper end of
the passband, because only there the direct and reflected wave
have the same phase velocity, and therefore could accelerate
particles.

The behavior changes for the case of a finite number of coupled cavities.
Let us find the resonant modes of a chain of N + 1 coupled cavities as
sketched in figure 2.2.

Figure 2.2. N + 1 coupled cavities. The first and last
cells are half cavities which act as an electric mirror for
the boundary conditions.

The structure is NL long, periodic of a period L and it is bounded
on two half cells which act as electric mirrors for the boundary condi-
tions. In a resonant condition, in the structure there are a backward
wave E−

z and a forward wave E+
z .

The imposition of boundary conditions gives the resonant modes of
the whole structure.{

z = 0, E−
z (0) = E+

z (0),

z = NL, E−
z (NL) = E+

z (NL) → E−
z (0)e−jNφ = E+

z (0)ejNφ,
(2.1)



10 2. LINAC AND SCL ACCELERATORS

where φ is the phase advance for one period L. From the previous
(2.1), one obtains N + 1 solutions for φ

φ(n) =
nπ

N
, n = 0, 1, . . . , N (2.2)

Therefore the phase advance assumes only a discrete set of values.
There are N + 1 solutions, each of them is called resonant mode of the
structure and it is characterized by its phase advance. The Brillouin
diagram is sampled in these cases, as it is shown in figure 2.3. It is
apparent that for N →∞ the curve becomes continuous again.

0 0.2 0.4 0.6 0.8 1

2.96

2.98

3

3.02

3.04

3.06

φ/π

f 
[G

H
z]

Figure 2.3. N = 7 coupled cavities. The Brillouin di-
agram is sampled in 7 frequencies. We can recognize
modes 0, π/2 and π.

Let us give some definitions on single cavities. There are several
figure of merit that are used to characterize the single cavity. The
first one, which is also used as a parameter in the equivalent lumped
circuits, is the quality factor, defined as

Q = ω
W

P
, (2.3)

where ω is the resonant pulsation, W is the stored energy in the cavity
and P is the average power loss in the cavity. Another important
parameter is the shunt impedance defined as

Rsh =

∣∣∣∣∣∣
L∫

0

Ez(z) dz

∣∣∣∣∣∣
2

2P
, (2.4)
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that is the ratio between the voltage on the axis of the cavity and the
power loss3. Since the power dissipation is proportional to the square of
the field, the Rsh is independent of the field level. This parameter does
not take into account the velocity of the particles, where the transit
time factor T does it:

T =

∣∣∣∣∣∣
L∫

0

Ez(z)e−jωz/vp dz

∣∣∣∣∣∣
L∫

0

Ez(z) dz

, (2.5)

T is a measure of how efficiently a cavity, with an electric field Ez along
the axis, can accelerate particles of velocity vp = βc; it is independent
of the amplitude Ez and it is always smaller than unity; L is the length
of the acceleration gap.

If one makes the hypothesis that Ez(z) = V0

L
sin (ω0t + φ) where

ω0 = 2πc
λ0

and φ is an unknown phase, then the transit time factor is

T =

sin
πL

λ0β
πL

λ0β

, (2.6)

and the smaller the argument is, the bigger is T ; for example, T ap-
proximates the unity when the acceleration gap L goes to zero.

The product of the shunt impedance to the squared transit time
factor is called effective shunt impedance and is defined as

Reff = Rsh · T 2. (2.7)

All these parameters can be defined per unit length of the cavity. An-
other relevant parameter, that it is important for RF measurement, is
the ratio of shunt impedance to quality factor, often called r over Q :
this parameter is independent of amplitude of the field and of power
loss. It depends only on geometry of the cavity and can be easily
measured on scaled prototype.

Adequate support on these definitions and more can be found in
the references [12, 13, 14, 15, 16].

2. Linear accelerators

Starting from the first theoretical proposal for a linac made by
Ising in 1924 [5] which inspired the work and realization of Wideröe in
1928 [6], the linear accelerators has known a big development aimed

3Note that this definition has a factor 2 in the denominator, this is made in
analogy with circuit theory and it is typical of linacs theory.
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at a differentiation of the structure with respect to the type and the
velocity of the particles.

Figure 2.4. Schematic view of the Wideröe drift-tube
linac. D are drift tubes, V is an alternating voltage
source, G are the gaps between the drift tubes and S
is the source of a continuos beam. B are used to group
the particles in bunches.

The Wideröe linac concepts was to apply a time-alternating voltage
to a sequence of drift tubes whose lengths increased with the particles
velocity, so the particles always arrive synchronously at each gap be-
tween tubes. In figure 2.4 a schematic view is presented, D are drift
tubes connected to an alternating voltage source V that applies equal
and opposite voltages to sequential drift tubes, G are the gaps be-
tween the drift tubes in which the electric force acts to accelerate the
particles, and S is the source of a continuous ion beam. For efficient
acceleration the particles must be grouped into bunches, shown by the
black dots, which are injected into the linac at the time when the po-
larity of the drift tubes is correct for acceleration. The bunching can
be accomplished by using an RF gap B between the DC source and
the linac. The original Wideröe linac concept was applicable to heavy
ions and not suitable for acceleration to high energy of lighter protons
and electrons where the drift-tube lengths and the distances between
accelerating gaps would be too large, resulting in a small accelerating
rates, unless the frequency of accelerating field could be increased up
to 1 GHz. But in this range of frequencies the wavelengths are compa-
rable with the sizes of the drift tubes and propagation and radiation
effects should be included in the design.

Linear accelerators are quasi-periodic4 structures where the single
elements, which could be resonant cavities, are coupled together either
electrically or magnetically.

2.1. Disc-loaded structure. It is often used for electrons. Start-
ing from the idea that the electric field in a uniform circular waveguide
cannot provide continuous acceleration of electrons, since the phase ve-
locity always exceed the velocity of light, one can think to lower the

4The structure is quasi-periodic, since the longitudinal dimension of the single
element has to be adequate to the increased particle velocity during the travel.
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phase velocity of the uniform waveguide by loading it with a periodic
array of conducting disks with axial holes.

From the electromagnetic point of view, it is a chain of cavities
coupled, either electrically (through the beam holes) or magnetically
(through coupling slots). Disc-loaded structures operate in the travel-
ing wave and standing wave regime. In the first case phase advance
bigger than π/2 are used, since the group velocity and the mode spac-
ing are bigger too. In the standing wave case, the structure mode is π.
The used frequency range is around 0.5 to 3 GHz.

2.2. Alvarez or drift tube linac (DTL). Alvarez and his group
proposed in 1946 a linear array of drift tubes enclosed in a high quality
factor cylindrical cavity [7, 8]. This structure is normally used to
accelerate protons and other ions in the velocity range from 0.04 to 0.4
times the velocity of light.

Figure 2.5. Schematic view of the Alvarez drift-tube
linac. The beam particles are bunched before injection
into the drift-tube linac. The beam bunches are shown
being accelerated in gaps G. They are shielded from the
wrong polarity field by the drift tubes. These ones are
supported by the stems S. The whole cavity is excited
by the RF current flowing on a coaxial line into the loop
coupler C.

In figure 2.5 a schematic view of Alvarez drift-tube linac is shown.
The Alvarez drift-tube linac is a Standing Wave accelerator and

operates in the 0 mode. The electric and magnetic fields are in phase
in adjacent cells and the separating walls are not necessary and this fact
increases the shunt impedance. In the drift tubes magnetic quadrupoles
are housed for beam focusing.



14 2. LINAC AND SCL ACCELERATORS

2.3. Side-Coupled drift tube linac (SCDTL). The use of drift
tubes in the GHz frequency range requires very small dimensions, where
quadrupole cannot be placed. The SCDTL structure resolves the prob-
lem [9, 10] since quadrupoles are placed between cavities with only a
few drift tubes. To propagate the electromagnetic field, the accelerat-
ing cavities are coupled via coupling cells placed out of axis and near
the quadrupole magnets, see figure 2.6

Figure 2.6. Schematic view of the Side Coupled Drift-
Tube Linac.

3. SCL structures

The Side Coupled linac is a standing wave accelerator where a
biperiodic chain of cavities, often called cells, operates in the π/2 mode;
it was developed in the National Laboratory of Los Alamos for the first
time [18]. This mode of operation has the disadvantage of cells without
field which do not participate to the acceleration, but it has the great
advantage of a rejection to the disturbs and errors of fabrication [14].

The Side Coupled Linac is only one of the possible realizations of
biperiodic chain operating in the π/2 mode. All the solutions are shown
in figure 2.7 and wide explications on the advantages and disadvantages
can be found in [19]. From mechanical and radiofrequency point of
view, the SCL seems to be the best compromise to realize it.

For protons, the structure operates in the range of gigahertz and it
is used for energy of protons around and beyond 100 MeV. For these
particle, the accelerating cavities have noses around the beam aperture
in order to increase the transit time factor T and this implies that a low
electric coupling through the apertures is available; then, a magnetic
coupling is ensured through the coupling cells which are out of axis
in order to augment the acceleration per meter efficiency, the coupling
cells being without field inside in the normal condition of operation.
By this way, the field-stability advantages of the π/2 mode can be
combined with the shunt impedance advantage of the π mode, through
the introduction of such a biperiodic coupled-cavities structure.

The coupling between accelerating and coupling cells is called near-
est neighbour coupling and it is indicated with k or k1; the coupling
between accelerating cells is called next nearest neighbour coupling and
it is indicated with k2 and normally it is one unit factor below k1. There
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Figure 2.7. Different solutions for the realization of a
biperiodic chain of cavities.

is also a next nearest neighbour coupling between coupling cells k3 but
this is really negligible since the coupling cells are normally placed in
opposite sides, see figure 2.8.

Figure 2.8. A Side Coupled Linac example. The cavi-
ties on the beam axis are accelerating cavities. The cav-
ities on the sides couple the accelerating ones and are
nominally unexcited.

When dealing with biperiodic structure, one has to pay attention to
the stop-band concept. Consider a chain of 2N cavities with frequency
fc which alternate with 2N + 1 accelerating cavities with frequency
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Figure 2.9. The dispersion diagrams in the case of a
biperiodic structure with fa = 3 GHz, fc = 3 GHz,
k = 0.04, k2 = 0.005 and k3 = 0 on the left and
fc = fa/

√
1− k2 on the right.

fa; the total number of cavities is therefore 4N + 1. The coupling
between accelerating and coupling cavities is k, between non-adjacent
accelerating cells is k2, and between coupling cells is k3. With the
hypothesis of infinite quality factor, the dispersion formula is [14]

k2 cos2 φ =

(
1− f 2

a

f 2
q

+ k2 cos 2φ

)(
1− f 2

c

f 2
q

+ k3 cos 2φ

)
, (2.8)

where φ is the phase advance. In the previous section we saw that
for a finite structure the phase advance can assume only a finite set
of value, the number of which is equal to the number of resonators.
The previous relation (2.8) shows that there are two solution for the
φ = π/2 frequency:

fac
π/2 =

fa√
1− k2

, f cc
π/2 =

fc√
1− k3

,

that deals to a forbidden range of frequency, which is the stop-band, as
it is shown in figure 2.9 (left). If k2 = 0, then is sufficient to choose
fa = fc, where if k2 6= 0 one has to choose fc = fa/

√
1− k2, the result

of this second case is shown in the figure 2.9 (right).

4. LIBO Specifications

LIBO is a 3 GHz side coupled proton linac. It was conceived as a
LInac BOoster 5, intended to be mounted downstream of a cyclotron
of about 60 MeV (of which many exist in hospitals and physics lab-
oratory), with the aim to boost the energy of the proton beam up to
200 MeV, an energy needed for therapy of deep seated tumors. All the
matters concerning this section are reported in [22, 23, 24, 25].

The beam intensity needed for protontherapy is relatively small,
about 2 · 1010 particles per second, i.e. a few nanoamperes, while the

5This is the origin of word LIBO.
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Figure 2.10. A perspective image of a LIBO installation.

cyclotron current is usually much bigger (50÷100µA). This current can
be pulsed at the LIBO repetition rate (400 Hz) and even with a small
capture efficiency, enough beam passes through the 8 mm diameter
of the cavities beam hole to result in an average output current as
needed for deep therapy. In figure 2.10 a perspective image of a LIBO
installation is presented.

LIBO as been laid out as a modular structure, composed of nine
modules, each of which, fed by its own RF power supply, can be con-
sidered as an independent RF unit. All the modules are conceptually
identical, except for the slight progressive change in length, in agree-
ment with the increased velocity of protons, accelerated from 62 to
200 MeV (the relativistic β varies from 0.35 to 0.566). The simplified
drawing of the first LIBO module is shown in figure 2.11.

A module is composed of 4 tanks, and each tank of 13 accelerating
and 12 coupling cells. In order to simplify the mechanical construction,
all the accelerating cells in a tank are of the same longitudinal length
and all the coupling cells in a module are the same. The design of the
cavities for LIBO is presented at page 33. In figure 2.12 a drawing of a
LIBO tank is presented. In between the tanks are placed the focusing
permanent magnet quadrupoles (PMQ), all of them identical.

The tanks in a module are connected, from an electromagnetic point
of view, via Bridge Couplers; the RF power input is located in the
central Bridge Coupler, while the other two contain pumping vacuum
ports. The specific design of the LIBO Bridge Couplers is presented at
page 35. In table 2.1 the main parameters of LIBO are presented.
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Figure 2.11. The layout of the first module of LIBO,
with details of a half-cell-plate (left) and of a bridge cou-
pler (right).

Figure 2.12. Drawing of the first tank of first LIBO
module (left). The first tank after the brazing (right).

Figure 2.13. Half-cell-plates showing a coupling half
cell (left) and an accelerating half cell (right). Note the
coupling slot.

4.1. Short hints on LIBO beam dynamic. In LIBO struc-
ture a high average axial accelerating gradient E0 (15.3 MV/m) has
been selected to limit the accelerator length. The cyclotron beam will



4. LIBO SPECIFICATIONS 19

Operating frequency [MHz] 2998
Input energy [MeV] 62
Maximum output energy [MeV] 200
Aperture radius [mm] 4
Number of accelerating cells per tank 13
Number of tanks per module 4
Number of modules 9
Total number of tanks 36
Number of power klystrons 9
Number of Permanent Quadrupole Magnets 36
Quadrupole gradient [T/m] 160
Total length [m] 13.32
Synchronous phase angle [degree] 19
Peak RF Power [MW] 32.8
RF duty cycle [%] 0.2
Beam duty cycle [%] 0.18
Repetition rate [Hz] 400
Transverse acceptance [mm mrad] 11.8π
Trapped cyclotron beam [%] 9.6

Table 2.1. Main electromagnetic and beam parameters
of LIBO.

be matched transversely to LIBO by focusing element placed between
the two accelerator and the aperture radius of 4 mm will make the
transverse acceptance such as to contain the cyclotron beam emittance,
which is 12π mm mrad.

The situation is different about the longitudinal dynamic [23]. Only
part of the low frequency cyclotron beam falls into the short LIBO
buckets and many particles remain outside. This effect has been ana-
lyzed by simulating the cyclotron beam, which appears continuous in
phase when referred to the LIBO frequency of 2998 MHz, and dividing
it into many thin phase slices which span 360 degrees. Each slice is fol-
lowed through the linac with a beam dynamics program, and LIBO is
optimized in a preliminary way, assuming no misalignments. It is then
found that about the 50% of the continuous beam can be transmitted
and that about 25% of the transmitted beam is fully accelerated.

Misalignments of Permanent Magnet Quadrupoles and linac tanks,
and other errors such as quadrupole gradient errors, can reduce the
intensity of the accelerated beam. One can estimate the effect of
quadrupole misalignments on the transmission by making a Monte
Carlo optics calculation. Four types of error have been analyzed:
quadrupole displacement errors of ±0.1 mm; tank displacement er-
rors of ±0.1 mm; quadrupole rotation errors of ±1◦; and quadrupole
strength errors of ±1%. The only error that produces any significant
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reduction in the transmission is quadrupole displacement. For a dis-
placement error tolerance of 0.1 mm there is a 90% probability that
the transmission will be greater than 10%.

4.2. Mechanical Aspects. All LIBO modules are essentially iden-
tical, except for their progressive increase in length, corresponding to
the increasing velocity of the protons. There are three basic elements
that compose the accelerating structure in each module: the half-cell-
plate, the bridge coupler and the end cell. Each module contains 102
half-cell-plates, 3 bridge couplers and 2 end cells. The half-cell-plate is
the basic building block of a tank. It is a rectangular plate containing
half of an accelerating and, at the reverse side, half of a coupling cell.
Apart from the slight difference in length, the shape of the cells remains
the same in all the modules. All accelerating cells in a tank have the
same length; the length of the coupling cells as well as the shape of the
coupling slots between the accelerating and coupling cells do not vary
over the whole module.

The bridge couplers and end cells (see figure 2.11) have stainless
steel flanges and cylindrical inserts brazed into them to fix the module
on the girder, thus minimizing stress and deformation in the soft cop-
per. Connections to the beam line at both ends of the module and the
pumping ports to the vacuum manifold are also in stainless steel.

In each bridge coupler and in the end cells are housed PMQs for
beam focussing, pick-up loops for RF field measurements, and mov-
able tuners for frequency corrections after the whole module has been
brazed. The finished and brazed copper structure is mounted on a rigid
girder, onto which an external reference is fixed for alignment purposes.

All copper pieces for LIBO have been machined on numerically-
controlled lathe and milling machines. The manufacturing precision of
the structure must take into account RF, brazing and alignment spec-
ifications. Typical tolerance values are ±10 to 20 mm with 0.4 mm
roughness for RF surfaces and 0.8 mm for brazed surfaces. The half-
cell-plates are made of laminated OFE copper. Pre-machining, fol-
lowed by a 250◦ C stress relieving in air was used to obtain the 20 mm-
planarity for vacuum brazing after the final machining. Bridge couplers
and end cells are of forged OFE copper, while for flanges, manifolds
and fixing points, forged 316 LN stainless steel is used. For the brazing
of the end cells, bridges and half-cell-plates, where the surfaces to be
brazed must be in horizontal position, several grooves are machined in
the bottom surfaces of the pieces, while the upper surfaces are perfectly
flat, see figure 2.13. The positions and dimensions of these grooves, de-
termining the quantity of the brazing alloy, have been tested on sample
pieces with an automatic total-immersion ultrasonic testing method.
All of the half-cell-plates are machined with the external surfaces as
reference, and then these surfaces are used for the alignment during
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the brazing of a tank. These surfaces are machined with sharp angles
in order to avoid any flow of the brazing alloy into the RF cavities.
The complete module is obtained by the brazing of 17 sub-assemblies,
already individually brazed at higher temperature. For the different
brazing steps, commercially available silver-base alloys are used, with
decreasing brazing temperatures ranging from 850◦ C to 750◦ C. All
brazing operations are performed in all-metal vacuum furnaces.

The cooling of the LIBO module is provided by water flowing
through channels inside specially designed copper plates. Two of these
are brazed to either side of each tank, giving eight parallel circuits per
module with a total water flux of 200 l/min. A transfer forced convec-
tion coefficient of 14000 W/(m2 ◦C) for each circuit assures the cooling
of the LIBO tank at full power of 2.3 kW (corresponding to a repetition
rate of 400 Hz and an RF pulse length of 5 ms). The results of a 3-D
finite elements code simulation with lateral cooling can be summarized
as follows:

• The maximum temperature gradient between the nose of the
accelerating cell and the lateral sides of the tank is just below
7 ◦C.

• Thermal expansion of the nose region is about 10 mm and the
frequency change due to temperature (detuning sensitivity) is
about 60 kHz/◦C. Frequency tuning during operation will be
done by regulating the water flow in each tank.

Frequency tuning during operation will be done by regulating the water
flow in each tank.





CHAPTER 3

Design Techniques for a Side Coupled Linac

This chapter deals with the techniques used to design the resonant
cavities and the other electromagnetic apparatus of a Side Coupled
Linac, the emphasis being on the particular case of LIBO.

A linear accelerator is composed by several systems, as shown in
figure 3.1, namely a particle source (or an injection system of the beam
coming from another accelerator), the resonant accelerating cavities
and the magnets for the focusing of the beam, the power klystron or
the radiofrequency power system, the vacuum pumps and the cooling
system.

Figure 3.1. Schematic view of a Linac.

The design of the so-called radiofrequency apparatus and of the
electromagnetic aspects of a Side Coupled Linac is not an automatic
procedure yet; the most part of the design is still a cut and paste proce-
dure where the experimental verification, namely the RF measurement,
plays the fundamental role.

By using a top-down approach, the design of such a structure can
be seen through different levels of detail, as shown in figure 3.2.

First, the accelerator is thought as a black box, where the particles
beam goes through. For this case, the parameters of interest are nu-
merical values, namely the entry and the output energy and velocity
of particles, the desired maximum length of the chain of cavities, the
transit time factor, the peak electric field and the feeding frequency.

23
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All these numbers define the first characteristics of the chain, and one
can say that this is a 0-dimensional design.

Figure 3.2. The design of a Linac with a top-down
methodology. The arrow follows the logic steps from the
first properties of the accelerator to the definitions of all
the details on the single cavities.

Then, it is necessary that the subdivision in cavities be made, the
number of which gives the electric field gradient for each cavity. The
cavities are coupled together either electrically or magnetically and the
coupling coefficients characterize this coupling. At this point, it is pos-
sible to build up an equivalent model where each single-mode resonant
cavity is represented by a lumped equivalent circuit. With the help of
this circuit, the behavior of the whole chain can be studied, including
the effect of machining tolerances in the cavities parameters and their
effects on the chain behavior. This second step is a 1-dimensional de-
sign because one can move through the chain along the longitudinal
direction.

Last, one has to design the single cavity shape taking into account
the properties requested by the whole chain, that are the designed
shunt impedance, quality factor, resonant frequency and coupling fac-
tor among cavities. This step is not trivial because the translation of
those properties in electromagnetic properties of the cavities needs at-
tention, since they cannot be fixed one at a time. Also the possibility
of slightly change in frequency by using movable tuners has to be in-
cluded. This is the final step and it is a 2-dimensional design, when
one designs the single cavity, and therefore moves along the orthogonal
plane to the longitudinal direction, and it is 3-dimensional design when
the slot is open and one considers two or more cavities, and therefore
moves also along the longitudinal direction.

The following sections respect this view, and so first we calculate the
main parameters, as the acceleration gradient, involved with the whole
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structure; then we continue with the analysis of a cavities chain, coming
to the properties of the single cavities and the last sections are devoted
to their design. Particular emphasis is on the design of the coupling
mechanism for the feeding of the structure through a waveguide in the
last section. It is apparent that the various steps have a reciprocal
feedback and are not completely close each other, but in any case they
give a way to follow.

Finally, it is worth noting that we lead with a procedure that was
not completely followed during the design of first LIBO module, be-
cause of problem of time and of feasibility of proposed solutions. This
is normal because we remember that the first LIBO module was a
proof of principle and then it was thought golden plated. In this sense,
we hope that the procedure presented will be a first attempt to have
a methodology easy to transfer to an industrial construction of these
type of structure instead.

1. Global Parameters of the Accelerator

An accelerator for hadrontherapy needs low production costs and
not large overall dimensions of the structure. Both points are necessary
for a feasible installation in medical centers and hospitals. The second
point can be satisfied if the cavity are small in dimensions and stacked
as much as possible. Furthermore, if these cavities let easily flow the
power, it is possible to use a single alimentation for a large amount
of cavities. In reality, the type, the entry energy, and the velocity of
particles suggest the type of the structure with a good efficiency to use.
In our case, protons and 60 MeV beam entry energy suggest exactly a
multi-cell coupled structure.

The choice of the frequency and of the total length of a normal-
conducting structure comes applying the Kilpatrick criterion [16, 26,
27] which states the maximum value for the electric field in each cavity
before breakdowns and sparking occur. The Kilpatrick results were
expressed in a convenient formula given as

f = 1.64E2
Ke−8.5/EK , (3.1)

where f is the frequency in MHz and EK is in MV/m and it is said the
Kilpatrick limit. The behaviour of formula (3.1) is shown in figure 3.3.
The Kilpatrick criterion is based on experimental results, and nowadays
it is considered conservative; the formula is still used, except that the
actual peak surface field is expressed as ES = bEK , where b is known
as the bravery factor and it is chosen in a range from 1.0 to 2.0.

Let us enter now in the details of the first LIBO module; the large
availability of low cost power klystrons at 3 GHz could be a good reason
to choose that frequency. The correspondent Kilpatrick limit is around
47 MV/m. After that, one has to consider:
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Figure 3.3. The behavior of Kilpatrick formula 3.1.

• For the first LIBO module the bravery factor is b = 1.1, which
is a conservative value.

• The maximum electric field is not the accelerating one, the
shunt impedance concept gives the effective accelerating field,
which is lower.

• The input and output energy for the first LIBO module are
60 MeV and 70 MeV respectively. Then, a boost of 10 MeV
is necessary.

• Of course, not all the path is accelerating for the particles: a
coefficient expresses the ratio accelerating gaps to total length.
It is a mean value and takes into account the variation of
dimensions along the structure for the synchronism with the
accelerated particles.

• The transit time factor has to be considered, using formula
(2.6). Note that for this parameter it should be better to
have short accelerating gaps, but in this case the length of the
structure is not well used, because the ratio gaps to cell period
becomes smaller. Therefore, there is a trade-off that should
be considered.

• The first module should be as short as possible (1.3m long).

Finally, in this step of design the global parameters for each cavities
are fixed, as the feeding frequency, the necessary shunt impedance in
order to obtain the desired acceleration gradient, and the subdivision
of the accelerator in modules, and then, in cavities.
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2. Analysis of Coupled Cavities

In this section we deal with the study of the properties of a resonant
cavities chain. From the previous step one obtains the frequency of
feeding1, that has to be the resonant frequency of the whole chain and
the shunt impedance for the accelerating cavities. The quality factor
of the cavities can be assigned from the used material and the foreseen
roughness of surfaces; of course after the design of cavities, a feedback
is necessary to control the results with the real values.

In this step, the value of the coupling coefficient between cavities
could be chosen. This parameter has a fundamental role since it de-
termines the separation between resonant modes of the chain and the
power flow through the chain. The undesirable coupling coefficient
between non-adjacent accelerating cavities and between non-adjacent
coupling cavities has to be considered too. Its value could be supposed
known and stated to percent fractions and obtained later during the
single cavities design.

The aim of the analysis is to verify the correct behavior of the axial
electric field, which is the accelerating field, taking into account the
machining tolerance. The latter is represented through errors in the
cavities parameters.

It is apparent that for this analysis it is sufficient a lumped single
mode resonant circuit to describe each cavity, rather then a detailed
3-D description of each cavity. Different approaches are thinkable: one
can simulate the chain of equivalent circuits with an electric network
simulator, and we follow this way in the next section, by using Spice,
or one can use a semi-analytical approach, by means of matrices repre-
sentations, and study the effects of tolerances using the perturbations
theory, and we follow this second way in the next chapter.

2.1. Equivalent circuit for resonant coupled cavities. Let us
start from the bricks of which are made the equivalent model we want
to present. A microwave cavity resonating at a certain frequency can be
represented using an equivalent lumped circuit [12] with a resistance,
an inductance and a capacitance. Each of them represent an effect: the
inductance represents the magnetic energy stored in the cavity volume,
the capacitance represents the strong electric field effect around the
typical noses for non-relativistic particles and the resistance represents
the ohmic losses on the cavity walls.

The R, L and C parameters are also related with the resonant fre-
quency, the quality factor expressed by the formula (2.3) and with the
shunt impedance expressed by the formula (2.4). The relations are the

1Thanks to the power generator, namely the klystron, it is usually a narrow
band of frequencies, rather then a single tone.
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Figure 3.4. The equivalent circuit for two half cavi-
ties coupled through a cavity with different parameters
(coupling cell).

following

ω0 =
1√
LC

, Q =
ω0L

R
, Rsh = ω0LQ =

(ω0L)2

R
(3.2)

In the case of magnetically coupled cavities, one can introduce a cou-
pling coefficient between the inductances.

2.2. Spice analysis. In this section we explain the behavior of a
chain of lumped circuits using the electric circuits simulator Spice2.

The accent is placed on the behavior of the chain of RLC circuits.
In the following we consider, as basic unit, the circuit shown in figure
3.4 which represents three coupled resonant cavities: two half cells and
one whole cavity of a different type. We can recognize in the half cells
the accelerating ones and in the whole cavity, the coupling cavity of a
biperiodic structure. Moreover, we consider only the coupling between
adjacent cavities, which is the strongest, and the coupling between non-
adjacent accelerating cavities. Finally, we neglect the coupling between
non-adjacent coupling cavities because, due to the geometry of the side
coupled linacs, those cells are placed on opposite sides and the coupling
vanishes. It is worth noting that the non-adjacent couplings are con-
sidered as a disturb, since they change and complicate the behavior of
the chain.

2Spice was born in the University of California in the early ‘70, the name
is the acronym of Simulation Program with an Integrated Circuits Emphasis, and
of course, it was thought to be used with integrated circuit with thousands of
components. Apart from the others merits, it had a broadly diffusion because it
was completely freeware. Nowadays several private software companies distribute
commercial versions of Spice, and almost all are used to distribute also an evaluation
version with some limitations on the number of components that the simulation
allows. This fact has implied a broad diffusion of Spice language, which is nowadays
considered a standard. Other information on the use of this program can be found
in [28].
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Spice has the relevant possibility to include the scheme of figure
3.4 in a sub-circuit that can be reproduced as a black-box connected
only through external nodes. Let us start from the study of a chain
composed by 13 coupled cells. In this case we deal with 7 accelerating
cavities and 6 coupling cavities. Each cavity resonates at 3 GHz and
there is a coupling between adjacent cavities equal to 0.04, the chain
is terminated on short-circuited half cells, which are accelerating ones.
The Q value for all the cavities is 8000. On the left side there is also
the alimentation which is a simply voltage generator. Note that it is
important the position of the alimentation along the chain. In fact,
one could think to put the alimentation in the middle of the chain, but
in that case, due to the behavior of the modes, not all the modes are
excited and should be recognizable. For example, thinking to the π/2
mode, the coupling cells are nominally uncharged for that mode. The
alimentation in the first ot in the last cell of the chain assures that all
the modes are excited, instead.

In figure 3.5 it is shown the frequency spectrum of a periodic struc-
ture without second neighbour coupling. The π/2 mode is at 3 GHz.
Due to the finite Q value, note that near 0 and π modes there is a
mode mixing: if the structure is excited at those frequencies, two or
more modes could be excited. In this sense, we could appreciate the
π/2 mode behavior that have the longest distance to the adjacent reso-
nant modes. In figure 3.6, the current in a coupling cell in a logarithmic
scale is also shown: in the π/2 mode the coupling cells are nominally
uncharged.

In figure 3.7 the case with finite second neighbour coupling is shown.
The chain is periodic again and this leads to a distortion in the dis-
tribution of modes. The π/2 mode is no more located at 3 GHz. We
know from resonant circuit theory [17, 18] that it is necessary that a
biperiodic chain be considered, the frequency of coupling cells being

fb =
f0√

1− k2

,

where f0 is the frequency of the accelerating cavities and also the de-
sired π/2 mode frequency and k2 is the second neighbour coupling
between accelerating cavities. In figure 3.8 the result is shown.

Finally, the powerful of a spice analysis is that one could deal with
an almost real model of the structure and simulate in a short time the
whole chain, up to all the 102 cells of a module. The disadvantage
is that it is not an approach that gives general properties but only
empirical rules.

3. Single cavity design

As already explained in the previous introduction, the design of the
single cavities of a Linac aims to the definitions of all the geometrical
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Figure 3.5. Spice simulation for a periodic chain with-
out next nearest neighbor coupling.
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Figure 3.6. Spice simulation for a periodic chain with-
out next nearest neighbor coupling. The coupling cavi-
ties are nominally uncharged.

dimensions and mechanical details and uses the parameters, as resonant
frequency and coupling factor, defined in the previous steps of design.
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Figure 3.7. Spice simulation for a periodic chain with
next nearest neighbor coupling.
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Figure 3.8. Spice simulation for a biperiodic chain with
next nearest neighbor coupling.

It is worth noting that the passage from the previous step to this
one is not trivial, since the relation between the lumped parameters and
the electromagnetic properties of the cavity is not expressed through
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a closed formula, while the viceversa is. In other words, given a re-
sistance, inductance and capacitance of a lumped resonant circuit, the
geometry of the related cavity is not uniquely determined.

The shape of cavities of multi-cell coupled structure is almost fixed:
the longitudinal dimensions are related to the particles velocity in order
to have synchronism, and one tries to have them as small as possible
in order to stack as much cavities as possible. Moreover, the shapes
are rounded to reduce the wall currents path and then to maximize the
quality factor. Useful advises and procedure to design cavities shape
can be found in [12, 16]. An hard point in the design could be the
definition of the tuners shape and position, because one wants then
with a large range of intervention, but with a linear behavior and these
two requirements are normally in contrast.

In this section, after a short introduction to numerical computer
codes that are necessary for the design of a general-shape cavity, we
deal with the specific example of the single cavities design for LIBO
project.

3.1. Numeric codes. The numeric computer codes are used in
the design of cavities for linear accelerators because the analytical cal-
culations can be used only with simple geometries, as the so called
pill-box, which are not useful for real applications.

These numerical programs are used to optimize the shape of the
cavity, given overall dimensions, in order to get the best values for the
requested resonant frequency, field pattern and quality factor. Most
known and used computer programs for such a calculations are:

• Superfish3 is a frequency domain 2-dimensional (2D) simula-
tor which uses a finite elements algorithm. From the practical
point of view, after the preparation of a file with the geome-
try of the structure, one can obtain the resonant frequency for
every resonant mode of the cavity, the quality factor and the
shunt impedance and other useful parameters. The program
has lots of internal macro dedicated to the calculations of pa-
rameters useful in the accelerator cavities design as the power
dissipated on each wall of the cavity. Other useful results given
are the resonant frequency variations for a unit displacement
of all the walls of which the cavity is composed.

• MAFIA4 (MAxwell’s equations using a Finite Integration Al-
gorithm) is a 3-dimensional code either in the time and the
frequency domain. It has a CAD-like interface and it is a
powerful general purpose simulator. The later versions have
also the relevant possibility of calculation with small losses in
the walls.

3See also the site www.lanl.gov for more information.
4See also the site www.cst.de for more information.
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• HFSS 5 (High Frequency Structure Simulator) is a recent prod-
uct from ANSOFT and is a 3D structure electromagnetic field
simulator. Thanks to the CAD-like approach, it offers an in-
tuitive interface to simplify design entry, a field solving en-
gine with accuracy-driven adaptive solutions based on a fi-
nite element method (FEM), and a post-processor for post-
elaborations of the calculated fields. The software has also an
optimization tool.

With the help of Superfish it is possible to design the shape of a
single cavity, supposed to have a rotational symmetry. The goal could
be the optimization of the shunt impedance and quality factor, once
the correct resonant frequency is obtained. Also it is important that
one controls the sensitivity of the resonant frequency with respect to
machining errors for all the cavity dimensions. This study helps to
understand where the machining tolerance has to be more stringent.

On the other hand, with the help of MAFIA or HFSS, one can
design the coupling slots between cavities which usually break the ro-
tational symmetry. The goal is to reach the correct coupling factor,
keeping the resonant frequency unchanged. This last point is reached
after slightly changes of one or more geometrical dimensions of the
cavity.

3.2. The design of accelerating and coupling cavities of
LIBO. In this subsection we explain the specific design of LIBO cav-
ities. As explained in the previous subsection 13 accelerating cavities
and 12 coupling cavities compose a LIBO tank. The 25 cavities are
distributed on 26 tiles. Each tile contains one half accelerating cav-
ity and one coupling cavity, the geometries of which are rotationally
symmetric. The two half cavities are coupled through a slot which is,
first, generated by the intersection of geometries and then machined
to enlarge the aperture. The slot brokes the 2-D symmetry of the half
cavities.

First, the dimensions and shape of the accelerating cells (ACs) and
coupling cells (CCs) have been evaluated using Superfish to fix the
shunt impedance, the quality factor and, in a preliminary way, the
resonant frequency. Then, MAFIA code was used to start the design
of the coupling slot and to bring back the resonant frequency to the
design value6. The coupling value of the foreseen slot was obtained
from MAFIA in a preliminary way, but radiofrequency measurement
on a cell prototype was preferred to control the result because it was
judged more reliably in this case.

5See also the site www.ansoft.com for more information.
6It is worth noting that the presence of the slot changes both the frequencies

of the cavities involved.



34 3. DESIGN TECHNIQUES FOR A SIDE COUPLED LINAC

The design of these cells has been conceived to minimize the num-
ber of changing of the geometrical parameters in order to simplify their
mechanical construction. The CCs and the slots do not present changes
in dimensions along a module. The ACs have little changes in dimen-
sions in order to be adapted to the increasing velocity of the particle
along the modules. These changes are made tank by tank: all the ACs,
and then all the tiles, are perfectly equal in a tank.

With this design the accelerating structure presents the same av-
erage electric field on axis in all the ACs and a decreasing coupling
coefficient between adjacent cavities. These characteristics fully satisfy
the beam dynamic requirements.

In the conceiving of the cavities, it was preferred having as more
tuning instruments as possible, and in this sense the cavities had machin-
able rings placed in the inductive zone that were used before the brazing
of each tank to bring the frequencies to an opportune mean value. This
procedure is explained in the radiofrequency measurement chapter. Af-
ter the brazing of a tank, it was possible to use two inductive tuners
that are copper rods of few millimeters diameter for each cavity. The
frequency ranges of these tuners were about 2.5 MHz for the ACs and
3.5 MHz for the CCs. In figure 3.9 the two sides of a tile with the
cavities and both systems of tuning are shown.

Figure 3.9. Particulars of the machinable ring and of
the tuning rod hole for the coupling cavities (top) and
for the accelerating cavities (down).
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4. Bridge Couplers design

The bridge coupler has a fundamental role in a Side Coupled Linac.
It allows to have tanks which are separated by magnetic quadrupoles
and fed by the same RF waveguide. In the figure 3.10 a sketch of this
functionality is shown.

Figure 3.10. Schematic view of the Bridge Coupler
functionality. The Bridge Coupler cavity couple two
tanks and leaves the space for a Permanent Quadrupole
Magnet by which the particles beam is focused.

Of course, the Bridge Couplers are particular cells, the design of
which should be conceived paying attention to different claims with
respect to the accelerating and coupling cavities.

Not so many Bridge Couplers have been realized in the accelera-
tors community. The few examples are the ones for the 800 MHz Side
Coupled Linac in the Los Alamos National Laboratory [19], and the
800 MHz Side Coupled Linac in the FermiLab in Chicago. For these
linacs, the bridge couplers was connected to coupling cells, therefore,
from the electromagnetic point of view they were analogous to acceler-
ating cells.

In this case, one could think to a single cavity bridge coupler which
directly connects two accelerating cells but mode mixing could arise7.
The resonant mode we choose has to be far away from the others to
avoid mode mixing.

In a LIBO module there are three Bridge Couplers. One is con-
nected with the feeding waveguide through an iris (see figure 3.11),
and the other two have pumping ports for the vacuum. In order to
reduce the overall dimensions, it has been chosen a bridge coupler in-
cluding also two coupling cells, which, of course, are specially designed.

The principal quality of such a structure is the transit time of energy
which is equal to the length of the bridge coupler divided by the group
velocity of the cavity mode. As the bridge coupler length is determined
by other considerations, the principal figure of merit for a particular
bridge coupler candidate is its group velocity, the higher the better
[29].

7Due to a finite quality factor of the resonant cavities, more than one mode
could be excited from a frequency tone and this phenomenon is called Mode mixing.
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Figure 3.11. The LIBO Bridge Coupler with the feed-
ing waveguide. It is also shown the half part of the cou-
pling cell in the bridge coupler with the banana slots,
Finally note the steel body for pick-up housing.

The longitudinal lengths are fixed by the beam dynamics in order
to get the correct accelerating field when the particles enter in the next
tank. The length of each BC is normally constrained to be odd multi-
ples of the average cell length βλ/2 where β is the particle velocity and
λ is the wavelength of RF Power. Therefore, in non relativistic linacs,
where the particles velocities increase with energy, every bridge coupler
has a different length. Strict application of this constraint would imply
that every bridge coupler would also have different dimensions. These
differences would imply also increased costs of fabrication.

Another constrain is about the level of the field in the central cavity
of the bridge coupler: it should be as low as possible to decrease the
dissipated power on the cavity walls.

4.1. Computer code design hints. The definition of a three
cells bridge coupler with cavities coupled through magnetic banana
slots was made through the following steps

• Definition of the geometry of the cavities with Superfish.
• Opening of slots using MAFIA. Correction of the frequency

changing the noses lengths.
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• Since the coupling factor does not strictly depend on the reso-
nant frequency of cavities, one can start studying the definition
of the correct coupling factor changing the dimensions (radii,
length and position) of slots.

• After this operation, one can operate again on the nose lengths
to readjust the resonant frequency to the correct value.

We chose also movable inductive tuners in the bridge couplers cells with
a big range of correction in order to prevent the error of simulation
of MAFIA code which is about 10 MHz for our structure8. For the
simulations, the tuners was considered in their middle position in order
to have positive and negative change of frequency. The range of these
tuners was established by calculation of the beginning of a capacitive
effect (decrease of frequency).

5. Coupling between Waveguide and Bridge Coupler

In this section, we show a method which uses MAFIA and some
other tools to determine the correct coupling between the waveguide
and the bridge coupler in the LIBO module.

Correct coupling means that the feeding waveguide is matched to its
characteristic impedance Z0, and therefore there is no power reflected
back to the klystron.

The figure of merit to quantify this concept is the coupling factor
β, which is the cavity impedance, normalized to Z0 that the waveguide
sees through the coupling mechanism, namely the iris.

Then, β = 1 means perfect matching, β > 1 means that the module
is overcoupled, and finally, β < 1 means that the module is undercou-
pled.

The goal is to translate the condition of perfect matching in the
better dimensions of the iris, and of course the perfect matching is
unfeasible; in this case it would be better to be slightly overcoupled.

The idea of this method is to use MAFIA to measure the electric
reactance of the cavity seen by the waveguide through the iris in the
fundamental mode TE10 in a similar way as bridges are used for mea-
surement: the unknown is given from a balance of reactances.

The parameters to choose are the iris dimensions (width, length
and depth) and the length of a short-circuited waveguide (see figure
3.11).

Note that the cavity is magnetically coupled to the waveguide, since
the iris is located on the short side of the waveguide section. The funda-
mental mode TE10 has the maximum of the longitudinal component of
the magnetic field there. Therefore, it is better to put a short-circuited

8This error in the computation was estimated comparing the RF measurement
made in the microwave laboratory of INFN Sez. di Napoli with the results of the
same structure simulated with MAFIA.
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d2

Bridge Coupler

Waveguide

d1

Figure 3.12. Coupling between the waveguide and
Bridge Coupler. The structure simulated with MAFIA
having two waveguides and one cavity.

waveguide whose length is about λ/4, in order to make the reflected
wave having a constructive interference with the incoming wave.

With the help of MAFIA one can simulate the structure shown in
figure 3.12: a single cavity coupled, through the iris, to a short-circuited
waveguide, whose lengths are d1 and d2 from the iris center (standing
wave structure). Such a structure gives a resonant frequency which has
no relation with the one of the bridge coupler connected with an open,
or extremely long waveguide, because that situation has a travelling
wave character, namely there is no standing field in the waveguide. In
our case we are simulating a closed structure, the resonant frequency
of which depends on the waveguide lengths d1 and d2.

But, using reasonable dimensions9, the waveguides work in the fun-
damental mode TE10 and they see the cavity through the iris as a
purely reactance, and then it is possible to represent the structure by
using the equivalent circuit shown in figure 3.13, that is composed by
two transmission lines whose characteristic impedance is the one of the
mode TE10 and, of course, the lengths are equal to the ones of the
waveguides, and finally, the reactance is unknown.

The resonant condition of the circuit in figure 3.13 implies the fol-
lowing relation

Xi = − X1X2

X1 + X2

where X1,2 = Zo tan(β d1,2) (here β is the TE10 waveguide propagation
constant). If one varies the electric length of one waveguide, using
opportune steps, one obtains the behaviour of the reactance Xi. For
example, the figure 3.14 shows the reactance of a copper Bridge Coupler
model made in Naples in the mechanical workshop of INFN. It is worth
noting that this reactance has a behaviour that is a characteristic of the
iris dimensions and of the bridge coupler cavity and does not depend

9The waveguide lengths d1 and d2 have to be longer than two wavelengths, at
least.
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jXi
Zo

d1 d2

Zo

Figure 3.13. The equivalent circuit of the structure
simulated with MAFIA. Two transmission lines and a
purely reactance.

on the waveguides lengths. These waveguide lengths are only a tool we
use to explore the behaviour.
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35x10x2mm iris

Figure 3.14. An example of reactance coming from
MAFIA. The iris has dimensions 35× 10× 2 mm (model
made in Naples).

In figure 3.14 the reactance crosses the frequency axes, i.e. has zero
value, after it has a resonant behaviour and asymptotically goes to zero
for frequencies approaching infinity. The behaviour is always of this
type, in spite of different irises and bridge coupler cavity dimensions.

Such a behaviour is well fitted by the equivalent circuit shown in
figure 3.15 on the left: the parallel elements give the resonant behaviour
and at high frequency the reactance is mainly due to the capacitance
C1. The correct values for these elements can be found by a least
square fitting. But, more important is the interpretation of the lumped
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L

C1
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R

C1

L1

k

L
C

Figure 3.15. The equivalent circuit of the reactance Xi

of the coupling mechanism (left) and a possible equiva-
lent circuit from the cavity point of view (right).

elements of this circuit: indeed, it is clear that the resonant behaviour
is due to the cavity (the resonant frequency of the Bridge Coupler),
whereas the capacitance C1 represents the effect of the iris seen by
the waveguide. It could seem uncorrect that a magnetic coupling is
represented through a capacitance, but one has to think that the iris
is about a quarter of wavelength long and this is sufficient to change
the behaviour seen through a parallel element.

In order to find sufficient elements to fit the equivalent circuit, one
has to compute points about the zero crossing (for the reactance), about
the resonance (it is a zero crossing for the susceptance) and a point at a
very high frequency (which means very short waveguides). In practical
cases, not more than twelve points are needed.

The next point is how to go from the equivalent circuit of a cavity
to the circuit we have just introduced. Figure 3.15 on the right shows
a guess. The lower part of the circuit represents the bridge coupler, the
transformer represents the magnetic coupling existing between cavity
and waveguide (we know that, due to the position of the iris, only
the magnetic fields are involved in the coupling process). Finally, the
capacitance C1 plays the same role as in figure 3.15 left. Note that we
introduced another inductance L1 and the mutual coupling k. If one
tries to fit this circuit to the previous one, as shown in figure 3.16, one
finds that

• L1 must be equal to L
• k is equal to 1
• R is connected in series with C

Finally, with the help of a computer code (Matlab, Mathcad, etc.),
one has to find the frequency at which the real part of this equivalent
circuit is equal to the characteristic impedance of the waveguide10.

10Remember that also the characteristic impedance of the waveguide weakly
depends on the frequency.
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R

L

C1

C

Figure 3.16. The final equivalent circuit for a cavity
seen from the waveguide through the iris.

Here is a first disadvantage: if the resonant frequency of the simu-
lated structure is different from the working frequency, the procedure
with MAFIA should be repeated until the correct frequency and match-
ing are reached. Once one has the correct frequency and, of course, the
right dimension for the iris, one can calculate the right dimension d2

for the short-circuited waveguide that makes the reactance null.
The latter point can be satisfied if one defines Zi = Ri + jXi as the

impedance of the circuit in figure 3.16, then

Yi =
Ri

R2
i + X2

i

− j
Xi

R2
i + X2

i

;

next, one finds the frequency satisfying

R2
i + X2

i

Ri

= Z0

and last, gets the value for d2

d2 =
1

β
arctan

(
−R2

i + X2
i

XiZ0

)
(3.3)

It is worth noting that from this procedure a perfect matching fre-
quency is always given, but it could happen that the correspondent
frequency is not the designed π/2 mode frequency. Note that the value
of d2 given from the formula (3.3) is always negative, but it is sufficient
to sum to it one half of waveguide wavelength.

5.1. The procedure for the whole module. With a 3D nu-
merical code as MAFIA it is impossible to simulate the whole module
with more than one hundred cavities. It is necessary to introduce some
equivalences in order to use the simulation with a single cavity. We sub-
stitute the equivalent lumped circuit for one cavity with a circuit which
represents the whole module considering only the cavities charged with
electromagnetic energy (N = 52 accelerating cells plus N = 3 bridge
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coupler central cells). We have to consider that the π/2 mode operation
for the module implies that

• of course, the frequency operation for the whole structure is
the same for every cell;

• the quality factor of the whole structure can be assumed equal
to the one of a single cavity;

• the total stored energy is about N times the energy stored in
one cell.

In order to respect these conditions, the lumped elements of the equiv-
alent circuit become:

• RN = R/N
• LN = L/N
• CN = NC

Of course, in the LIBO structure there are two different types of charged
cells (accelerating cavities and bridge coupler central cells): it would
be possible to make a weighted mean of the parameters.

In the following we report possible steps for the procedure

• Calculation with MAFIA. Twelve points around the zero cross-
ing, the resonance and the asymptotic value are necessary
to fully individuate the reactance curve, then evaluate initial
guess for the least square fitting giving the values for L,C and
C1.

• Calculation with Superfish and/or RF measurement in order
to characterize a cavity with an equivalent lumped circuit,
one needs at least three global parameters that can be: the
resonant frequency f0, the quality factor Q and the ratio of
shunt impedance and quality factor r over Q. You can use a
combination of Superfish calculation and RF measurement to
get the correct values.

• Calculation with Matlab. In the equivalent circuit of figure
3.16, we can use the R, L and C parameter coming from the
previous step and use C1 coming from MAFIA analysis. In this
case the behaviour of the cavity plus the iris is well reproduced.
In order to study the correct coupling for the whole module, we
apply the rule we have established in the previous subsection.

Finally, for example, we show in more details the results obtained
with an iris with dimensions 41×10×2 mm. Figure 3.17 shows the reac-
tance obtained with MAFIA and Superfish simulations. The fitting val-
ues are LMAFIA = 3.941nH, CMAFIA = 0.7230pF, C1MAFIA =
0.02366pF . Using f0 = 2998MHz, Q = 8000 and RsQ = 90 as cavity
parameters, we get LSF = 4.778nH, CSF = 0.5899pF, RSF =
11.25mΩ. The research of the correct frequency gives

fβ=1 = 2997MHz, d2 + λg/2 = 42.45mm (0.3λg)
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Figure 3.17. The Reactance of a 41× 10× 2 mm iris.
The dashed line interpolates the circles that are Superfish
points. The continuous line interpolates points from
Mafia.

In figure 3.18 are shown the dependencies of reflection coefficient
on the short-circuit length and on the capacitance C1 that is related
with the iris dimensions. These plots are important to understand the
sensitivity of the iris design, and it is apparent that the matching is
very sensitive.
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Figure 3.18. Dependence of Γ on d2 (left). Depen-
dence of Γ on C1 (right).





CHAPTER 4

Circuit Model

In this chapter we analyze the equivalent circuit model of a chain of
cavities magnetically coupled by using a transmission matrix approach.
This latter allows an easy representation of the whole chain and easily
introduces to the perturbation technique, as well. As explained in the
previous chapter, the aim is to study the effect of the single cavities
errors on the resonant frequency and on the flatness of the axial elec-
tric field of the whole structure, paying particular attention to the π/2
mode, which is the one of the Side Coupled structures. This situation
well represents the effect of the machining tolerances on the single cav-
ities resonant frequencies. We believe that a semi-analytical approach
is useful to better understand the behaviour of such a structure. At
a first moment, it could seem more useful a full numerical analysis by
means of a circuit simulator, as Spice; but in this case, only empiri-
cal rules should be obtainable, where our approach could give general
properties.

We have to say that, for the sake of simplicity, we consider only
the coupling between adjacent cavities and we neglect the secondary
coupling between non-adjacent cavities. Nevertheless, the approach
seems to be promising even in this simplifying hypothesis.

1. Transmission matrix representation

Let us remember the definition of the transmission matrix [33] for
the generic two-ports shown in figure 4.1.

Figure 4.1. A generic two-ports network.

The input and the output can be connected via the transmission
matrix representation(

V1

I1

)
=

(
t11 t12

t21 t22

)
·
(

V2

I2

)
45
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where the matrix elements are defined as follows

t11 =
V1

V2

∣∣∣∣∣
I2=0

, t12 =
V1

I2

∣∣∣∣∣
V2=0

,

t21 =
I1

V2

∣∣∣∣∣
I2=0

, t22 =
I1

I2

∣∣∣∣∣
V2=0

.

The great advantage of such a representation is that a chain of dis-
positives is simply represented by the product of the respective trans-
mission matrices, while others representation, such as resistances and
conductances matrices, do not allow this operation.

1.1. Transmission Matrix for a single cavity. As stated in
the previous chapter, a resonant cavity mode can be represented by the
behavior of an equivalent lumped circuit. In this paragraph we deduce
the transmission matrix of such a circuit. It should be better that the
transmission matrix represent two half cavities magnetically coupled;
this fact simplifies very much the building of the model, because it
well represents the tiles composing a LIBO tank, and therefore, in the
following, we call this circuit cell. In other words, a cell represents a
tile with two half cavities magnetically coupled.

Figure 4.2. The equivalent circuit for a single cell rep-
resenting two magnetically coupled half cavities.

Let us start from the calculation of the parameter t11; from the
figure 4.2 it is easy to write

V ′
1 = jω

L

2
I1 − jωMI2, V ′

2 = jωMI1 − jω
L

2
I2

V1 =

(
R

2
+

1

jω2C
+ jω

L

2

)
I1 − jωMI2,

where V ′
1 and V ′

2 are the voltages on the inductances. When I2 = 0 it
is valid that

V2 = V ′
2 = jωMI1 → I1 =

V2

jωM
,



1. TRANSMISSION MATRIX REPRESENTATION 47

and then

V1 =

(
R

2
+ jω

L

2
+

1

jω2C

)
1

jωM
V2

and, finally, the term t11 is

t11 =

[
R

2
+ jω

L

2

(
1− 1

ω2LC

)]
1

jωM
(4.1)

=
1

K

(
ω0

jωQ
+ 1− ω2

0

ω2

)
.

Note that ω0 = 1√
LC

is the resonant frequency of an half cavity, and of

a cell as well, Q is the quality factor, Q = ω0L
R

and we use the relation
K = 2M/L, leading to

t11 =
1

k

(
ω0

jωQ
+ 1− ω2

0

ω2

)
, (4.2)

Then, let us approach to the term t12:

V ′
2 = jωMI1 − jω

L

2
I2 =

(
R

2
+

1

jω2C

)
I2

and

I1 =
I2

jωM

[
R

2
+

1

jω2C
+ jω

L

2

]
and so

V1 = (
R

2
+

1

jω2C
+ jω

L

2
)I1 − jωMI2 (4.3)

=

[
(
R

2
+

1

jω2C
+ jω

L

2
)2 1

jωM
− jωM

]
I2

=

[
(
R

2
+

1

jω2C
+ jω

L

2
)2 1

(jωM)2
− 1

]
jωMI2

and by using the equation (4.2), one obtains

t12 = jωM(t211 − 1). (4.4)

Next, we approach to the term t21

V1 =

(
R

2
+

1

jω2C
+ jω

L

2

)
I1,

and imposing again I2 = 0, one obtains

V2 = V ′
2 = jωMI1 →

I1

V2

=
1

jωM
,

and finally

t21 =
1

jωM
(4.5)
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For the latest term of the matrix, it is valid that

V ′
2 = jωMI1 − jω

L

2
I2 =

(
R

2
+

1

jω2C

)
I2

I1 = (
R

2
+

1

jω2C
+ jω

L

2
)

I2

jωM
→ t22 = (

R

2
+

1

jω2C
+ jω

L

2
)

1

jωM

and again

t22 = t11. (4.6)

Then we can write the whole transmission matrix

T =

 t11 (t211 − 1)jωM

1

jωM
t11

 (4.7)

and it is apparent that the matrix determinant is unitary, as expexted
for a reciprocal system.

In order to represent a chain of cavities, in the following sections
we use powers of the matrix T . In this sense a spectral decomposition
of matrix T would be useful, being

T = UΛU−1 → TN = UΛNU−1, (4.8)

where U is the eigenvectors matrix and Λ is the eigenvalues diagonal
matrix, namely

Λ =

(
λ1 0
0 λ2

)
(4.9)

where λ1 and λ2 are solutions of the characteristic polynomial

det(T − ΛI) = 0 → λ1,2 = t11 ±
√

t211 − 1 (4.10)

and by introducing a new variable x, such that

t11 = cosh x, (4.11)

we obtain a rationalization of the expressions

Λ =

(
cosh x + sinh x 0

0 cosh x− sinh x

)
(4.12)

,U =

 jωM sinh x 1

1
j

ωM sinh x

 (4.13)

,U−1 =
1

2

 − j

ωM sinh x
1

1 −jωM sinh x

 . (4.14)
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1.2. Transmission Matrix for a chain of N cells. By using
the expressions (4.12) to (4.14), it is possible to write

TN =


λN

1 + λN
2

2
jωM sinh x

(
λN

1 − λN
2

2

)
−j

ωM sinh x

λN
1 − λN

2

2

λN
1 + λN

2

2

 (4.15)

but noting that λ1 = ex and λ2 = e−x, it is easy to show that

λN
1 + λN

2

2
= cosh Nx

λN
1 − λN

2

2
= sinh Nx (4.16)

and, finally

TN =

 cosh Nx jωM sinh x sinh Nx

−j sinh Nx

ωM sinh x
cosh Nx

 (4.17)

which is the transmission matrix of a chain of N cells (tiles) containing
N − 1 full cavities and 2 half cavities at the ends.

1.3. Resonant frequencies. Let us start now using the trans-
mission matrix representation, to calculate the relevant parameters of
the whole chain. Of course, the resonant frequencies of such a structure
depend on the particular way we terminate the two half cells. Usually,
there are two possibilities: either to terminate the half cell with an-
other special half cell in order to have a whole cavity, or to terminate
the half cell with a conducting plane, which is an electric mirror.

In our model there are three possibilities instead: the third one con-
sists in terminating the two half cells with open-circuits, which should
be unfeasible magnetic mirrors.

In the following, we always consider the structure terminated on
the electric mirrors, i.e. the short-circuits in our equivalent model. The
implementation of such a condition can be to right-multiply the matrix
TN by the column vector (0 1)T . This operation implies that the
voltage is zero and the current is unitary on the last half cell. The
second one is an arbitrary position and enforces the amplitude of the
signals travelling on the chain to obey to that unitary value. In other
words, this position fixes the amplitude of voltages and currents along
the chain (remember that in a resonant condition these should be fixed
from the initial energy of the system).

The resonant conditions of the structure are represented by those
values of the frequency making zero the impedance Zing seen from the
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left side of the chain. This impedance is expressed by

Zing =
(TN)12

(TN)22

=
jωM sinh x sinh Nx

cosh(Nx)
, (4.18)

where with the notation (A)ij we indicate the element of place (i, j)
in the matrix A. The denominator of the previous impedance (4.18)
cannot be infinite, unless the frequency is infinite, while the numerator
has N + 1 zeros.

Furthermore, in the following we make the hypothesis of infinite
quality factor of the cavities, namely the resistances in the equivalent
circuit are zero; the zeros of the function sinh x are enclosed in those
of the function sinh Nx. By imposing that x = jx′, we can write
sinh Nx = j sin Nx′ and therefore the zeros are

x′ =
sπ

N
with s = 0, 1, . . . , N (4.19)

and the equation (4.2) and noting that t11 = cos x′, it is easy to deduce
the resonant frequencies

ω =
ω0√

1− k cos
sπ

N

. (4.20)

The quantity φ = sπ
N

can be seen as the phase advance of the fields
along the chain at a certain frequency [12]. It is worth noting that all
the resonant frequencies are enclosed within the interval

ω ∈
[

ω0√
1 + k

,
ω0√
1− k

]
(4.21)

where the extremes are the so called 0-mode and the π-mode and are
characterized by a phase advance of 0 and π. Finally, it is apparent
that the π/2 mode resonant frequency is present only if the number of
cavities is odd, that is when N is even; and since we want to deal with
a structure operating in the π/2-mode, then in the following we always
consider N as an even number1.

1.4. The axial field. In this section we calculate the expression
of the voltage on the capacitance of the generic cavity. This parameter
is related to the accelerating voltage of the real cavity.

The voltage on the i-th capacitance is proportional to the current of
the same index through the impedance 1

jωC
for the generic cavity and

through 1
j2ωC

for the half cavities terminating the chain. If we consider

the last half cavity, we have(
VN

IN

)
= TN

(
VN+1

IN+1

)
1It is worth noting that if one assumes an infinite quality factor, then the π/2

mode corresponds to x = jπ/2, which means ω = ω0 and t11 = 0.
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and if it is short-circuited, then(
VN

IN

)
= TN

(
0
1

)
=

(
(TN)12

(TN)22

)
and in an analogous way, for the other cavities, it is(

VN−1

IN−1

)
= TN−1

(
VN

IN

)
= TN−1 · TN

(
0
1

)
=

(
(TN−1 · TN)12

(TN−1 · TN)22

)
(

VN−2

IN−2

)
= TN−2 · TN−1 · TN

(
0
1

)
=

(
(TN−2 · TN−1 · TN)12

(TN−2 · TN−1 · TN)22

)
(4.22)

Last, we can deduce the rule for the generic capacitance

Vci ∝ Ii =

(
N∏
l=i

Tl

)
22

for i = 1, 2, . . . , N (4.23)

and, of course, VcN+1 ∝ 1.
In the expression (4.23) we need the product of N−i+1 transmission

matrix, but remembering the matrix (4.17), we can obtain in a similar
way

N∏
l=i

Tl =

 cosh (N − i + 1)x jωM sinh x sinh (N − i + 1)x

−j sinh (N − i + 1)x

ωM sinh x
cosh (N − i + 1)x


(4.24)

and therefore

Vci ∝ cosh (N − i + 1)x for i = 1, 2, . . . , N

VcN+1 ∝ 1
(4.25)

1.5. Asymptotic expression of the ratio between the volt-
ages on the capacitances of two adjacent cavities in an infinite
structure. In this short subsection we consider an interesting prop-
erty of an infinite chain of cavities, that is given from the ratio of the
voltages of two adjacent cavities. Let us start from the ratio

Vci

Vci+1

=
cosh (N − i + 1)x

cosh (N − i)x
(4.26)

and imposing that N − i + 1 = i′, one obtains

Vci

Vci+1

=
cosh i′x

cosh (i′ − 1)x
=

cosh i′x

cosh i′x cosh x + sinh i′x sinh x

=
1

cosh x + sinh x tanh i′x

(4.27)
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and if N →∞, namely the chain is infinite, i′ also goes to the infinity,
tanh i′x = 1 and therefore

Vci

Vci+1

=
1

cosh x + sinh x
=

1

λ1

= λ2 (4.28)

Therefore, we obtain that the ratio is equal to the eigenvalue λ2 of the
transmission matrix T . It is worth noting that this could be a way to
obtain the dispersion diagram for an infinite chain and it is interest-
ing that this concept is related to the eigenvalues of the transmission
matrix.

2. The perturbed transmission matrix

This section deals with the case of a chain of equivalent circuits
with different lumped parameters, i.e. the inductances and capacitances
depend from the cavities.

This situation represents the realistic case of finite machining tol-
erance and errors for the copper tiles containing two coupled half cells.
Such errors lead to a different resonant frequency and a different shunt
impedance for each half cell and could be interesting to find a connec-
tion between the machining tolerances and the reachable relevant pa-
rameters of the whole chain that are the π/2-mode resonant frequency
and the axial field.

In the equivalent model these errors are schematized by a shift in
the resonant frequency ω0 becoming ω0 + δω0i for each cavity.

2.1. The perturbed transmission matrix for one cell. Let
us consider the single two-ports shown in figure 4.3, which is composed
by two half cavities and where i is the two-ports index.

Figure 4.3. The two-ports representing two coupled
half cavities with different parameters.

The machining tolerances are represented by errors in the cavity
inductance and capacitance which are different for the left and right
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sides of the two-ports. In this case, the transmission matrix becomes

Ti =

 tL11i (tL11it
R
11i − 1)jωM

1

jωM
tR11i

 (4.29)

where we have defined

tL11i =
1

Ki

[
1−

(
ωL

0i

ω

)2
]√

LL
i

LR
i

∼=
1

Ki

[
1−

(
ωL

0i

ω

)2
]

tR11i =
1

Ki

[
1−

(
ωR

0i

ω

)2
]√

LR
i

LL
i

∼=
1

Ki

[
1−

(
ωR

0i

ω

)2
] (4.30)

Therefore, starting from the scheme of figure 4.3 we introduce the fol-
lowing notation

CL
i = 2C + δCL

i

LL
i =

L

2
+ δLL

i

CR
i = 2C + δCR

i

LR
i =

L

2
+ δLR

i

(4.31)

where the apexes L and R indicate respectively the left and the right
side half cell parameters. If ωL

0i and ωR
0i are the resonant frequencies

then

ωL
0i = ω0 + δωL

0i =
1√

LL
i CL

i

ωR
0i = ω0 + δωR

0i =
1√

LR
i CR

i

(4.32)

Let us find now the frequencies perturbations δωL
0i e δωR

0i. The pertur-
bation on the resonant frequency can be related to the inductance and
capacitance in the following way

ω0 =
1√
LC

→ δω0

ω0

= −1

2

(
δL

L
+

δC

C

)
, (4.33)

then the perturbations for both sides are

δωL
0i

ω0

= −1

2

(
δLL

i

LL
i

+
δCL

i

CL
i

)
δωR

0i

ω0

= −1

2

(
δLR

i

LR
i

+
δCR

i

CR
i

) (4.34)

The terms in parenthesis can be assumed of the same order of magni-
tude, because they are consequence of the same machining tolerances.
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Under this hypothesis, we can write

δωL
0i

ω0

= −δCL
i

CL
i

δωR
0i

ω0

= −δCR
i

CR
i

.

(4.35)

And considering that

ωL
0i = ωR

0i − δωR
0i + δωL

0i

ωR
0i = ωL

0i − δωL
0i + δωR

0i

(4.36)

and after a substitution in the t11 expression (4.2), one obtains

tL11i =
1

Ki

[
1− ωL

0iω
R
0i + ωL

0i(δω
L
0i − δωR

0i)

ω2

]
∼=

∼=
1

Ki

[
1− ω2

0

ω2
− 2

δωL
0i

ω0

]
= ˙t11i + εL

i

tR11i =
1

Ki

[
1− ωR

0iω
L
0i + ωR

0i(δω
R
0i − δωL

0i)

ω2

]
∼=

∼=
1

Ki

[
1− ω2

0

ω2
− 2

δωR
0i

ω0

]
= ˙t11i + εR

i

(4.37)

where we introduce the new error parameters

εL
i = − 2

Ki

δωL
0i

ω0

εR
i = − 2

Ki

δωR
0i

ω0

(4.38)

By neglecting the higher order terms, the matrix T becomes then

Ti = Ṫi + εL
i

 1 jωM ˙t11

0 0

+ εR
i

 0 jωM ˙t11

0 1

 (4.39)

where the variables with a dot on top indicate imperturbed quantities.
The expression (4.39) can be rearranged as

Ti = Ṫi +
εL

i + εR
i

2

 1 j2ωM ˙t11

0 1

+
εL

i − εR
i

2

 1 0

0 −1

 (4.40)

and in a short way

Ti = Ṫi + ε+
i Pi + ε−i Qi (4.41)

where we introduced

ε+
i =

εL
i + εR

i

2
ε−i =

εL
i − εR

i

2
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and Pi = I+B, I being the identity matrix and if one defines b = 2jωM
then

B =

 0 b

0 0

 , Qi =

 1 0

0 −1

 (4.42)

2.2. The perturbed transmission matrix of the whole chain.
The behavior of the whole chain is represented by the product of the
transmission matrix for each cell; in the case of errors, this product is
not given from TN because the T is different for each cell. It is given
by the product of terms like T + Pp + Qp instead.

Ttot = (Ṫ + P1 + Q1)(Ṫ + P2 + Q2) . . . (Ṫ + PN + QN)

= ṪN + P1 Ṫ . . . Ṫ︸ ︷︷ ︸
(N−1)times

+ṪP2 Ṫ . . . Ṫ︸ ︷︷ ︸
(N−2)times

+ . . . + Ṫ . . . Ṫ︸ ︷︷ ︸
(N−2)times

PN−1Ṫ

+ Ṫ . . . Ṫ︸ ︷︷ ︸
(N−1)times

PN + Q1 Ṫ . . . Ṫ︸ ︷︷ ︸
(N−1)times

+ṪQ2 Ṫ . . . Ṫ︸ ︷︷ ︸
(N−2)times

+ . . . + Ṫ . . . Ṫ︸ ︷︷ ︸
(N−2)times

QN−1Ṫ + Ṫ . . . Ṫ︸ ︷︷ ︸
(N−1)times

QN + high order terms

(4.43)

where we neglected the product of two or more perturbed matrices.
Then, in a short form we can write

Ttot
∼= ṪN +

N∑
p=1

Ṫ p−1PpṪ
N−p +

N∑
p=1

Ṫ p−1QpṪ
N−p

The first term of the previous sum is

Ṫ p−1Pp ṪN−p = UΛp−1U−1Pp UΛN−pU−1

= ε+
p UΛp−1U−1(I + B)UΛN−pU−1 =

= ε+
p ṪN−1 + ε+

p UΛp−1U−1BUΛN−pU−1

(4.44)

and since T can be expressed as the product of a diagonal matrix by
the eigenfunctions matrices, one obtains

Ttot = ṪN + ṪN−1

N∑
p=1

ε+
p +

N∑
p=1

ε+
p UΛp−1U−1BUΛN−pU−1+

+
N∑

p=1

ε−p UΛp−1U−1QpUΛN−pU−1

(4.45)

The expressions for the third and fourth terms of previous formula are
obtained in a similar way. Then, the expression for the transmission
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matrix of the whole chain is

Ttot = ṪN + ṪN−1

N∑
p=1

ε+
p +

cosh x

sinh x

N∑
p=1

ε+
p [♥+♦] +

N∑
p=1

ε−p ♣ (4.46)

where the symbols represent the following matrices

♥ =

 sinh (N − 1)x jωM sinh x cosh (N − 1)x

cosh (N−1)x
jωM sinh x

sinh (N − 1)x


♦ =

 − sinh (2p−N − 1)x jωM sinh x cosh (2p−N − 1)x

− cosh (2p−N−1)x
jωM sinh x

sinh (2p−N − 1)x


♣ =

 cosh (N − 2p + 1)x jωM sinh x sinh (N − 2p + 1)x

− sinh (N−2p+1)x
jωM sinh x

− cosh (N − 2p + 1)x


It is apparent that the matrix (4.46) has an imperturbed term, a per-
turbed one not depending on the errors positions along the chain and
two terms that depend instead.

3. The perturbed resonant frequency

The resonant frequencies of the whole chain can be obtained from
the zeros of the element of place (1, 2) in the transmission matrix,
representing the chain impedance seen from one side when the opposite
side is short-circuited.

We mainly refer to the π/2 mode and want to analyze the ef-
fect of the errors on the resonant frequency that goes from ω0 to
ω = ω0 + ∆ω. We can represent this situation by a function: ∆ω =
F (δω01, δω02, . . . , δω0N). We obtain the expression for the element (1, 2)
from the formula (4.46) which is(

N∏
i=1

Ti

)
12

= h(ω, δω01, . . . , δω0N) = g(ω0 + ∆ω, εL
p , εR

p )

and then the resonant frequency can be seen as an implicit function
g(ω0+∆ω, εL

p , εR
p ) = 0, the solution of which is the perturbed frequency

we are looking for. In that case we deal with

g(ω0 + ∆ω, εL
p , εR

p ) = f(j
π

2
+ ∆x, εL

p , εR
p ) = 0

It could be convenient to calculate ∆x which is the error of x, rather
than directly calculate ∆ω. Let us expand, up to the first order, the
function f around the imperturbed value ∆x = 0, namely x = x0 = j π

2
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and εL,R
p = 0 ∀p.

f

∣∣∣∣∣
∆x,εp=0

+
N∑

p=1

εL
p

∂f

∂εL
p

∣∣∣∣∣
∆x,εL

p =0

+
N∑

p=1

εR
p

∂f

∂εR
p

∣∣∣∣∣
∆x,εR

p =0

+∆x
∂f

∂x

∣∣∣∣∣
∆x,εp=0

= 0

(4.47)
The first term represents the imperturbed part that is zero. Let us
remember the expression of the element (1, 2) of TN in the perturbed
case

(
N∏

i=1

Ti

)
12

= jωM {sinh x sinh Nx

+
N∑

p=1

ε+
p [sinh x sinh (N − 1)x + cosh x cosh (N − 1)x]

+ cosh x

N∑
p=1

ε+
p cosh (2p−N − 1)x

+ sinh x
N∑

p=1

ε−p sinh (N − 2p + 1)x

}
(4.48)

If one deals with the derivative with respect to x of the previous ex-
pression, it is useless to consider more than the first term, because the
others become zero when one substitutes εp = 0 ∀p. In the following,
using x = j π

2
+ ∆x, we can simplify

sinh x = j cosh ∆x

sinh Nx = cos N
π

2
sinh N∆x

where we consider N as an even number, because we want to excite
the π/2 mode. Then, it is valid that

f(∆x) = −ωM cos N
π

2
cosh ∆x sinh N∆x,

and therefore

∂f

∂x

∣∣∣∣
x=jπ/2

= −ωMN cos Nπ/2. (4.49)
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For the derivative with respect to εL,R
p , we have to consider all the

terms, and by considering the following trigonometric identities

sinh (N − 2p + 1)x = j(−1)p cos N
π

2
cosh (N − 2p + 1)∆x

cosh x = j sinh ∆x

sinh (N − 1)x = j sin (N − 1)
π

2
cosh (N − 1)∆x

cosh Nx = cos N
π

2
cosh N∆x

cosh (N − 1)x = j sin (N − 1)
π

2
sinh (N − 1)∆x

(4.50)

the expression (4.48) becomes(
N∏

i=1

Ti

)
12

= −ωM

{
cos N

π

2
cosh ∆x sinh N∆x + j sin (N − 1)

π

2

N∑
p=1

ε+
p

· [− cosh ∆x cosh (N − 1)∆x− sinh ∆x sinh (N − 1)∆x]

−
N∑

p=1

ε+
p sinh ∆x cosh

[
(2p−N − 1)(j

π

2
+ ∆x)

]

−j
N∑

p=1

ε−p cosh ∆x(−1)p cos N
π

2
cosh (N − 2p + 1)∆x

}
= f(∆x, εL

p , εR
p )

(4.51)

In the derivative with respect to εL,R
p , the only term different from zero

comes from i = p. For example, the term in εL
p is

∂f

∂εL
p

= −j
ωM

2
·{

sin (N − 1)
π

2
[cosh ∆x cosh (N − 1)∆x + sinh ∆x sinh (N − 1)∆x]

− 2j sinh ∆x cosh
[
(2p−N − 1)(j

π

2
+ ∆x)

]
cosh ∆x(−1)p cos N

π

2
cosh (N − 2p + 1)∆x

}
And finally, the resonance equation is

jωM cos N
π

2

[
N∑

p=1

ε+
p + jN∆x + (−1)p

N∑
p=1

ε−p

]
= 0

and therefore the unknown is

∆x = j
1

N

N∑
p=1

[
εL

p + εR
p

2
+ (−1)p

εR
p − εL

p

2

]
= j

∑N
p=1 ε∗p
N

(4.52)
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where we introduced the new error parameter

ε∗p =
N∑

p=1

[
εL

p + εR
p

2
+ (−1)p

εR
p − εL

p

2

]
(4.53)

In order to evaluate the frequency error and remembering the equation
(4.11), one obtains

∆ω = ω0

(
1√

1− jK sinh ∆x
− 1

)
∼= −jω0

K

2
sinh ∆x (4.54)

Since ∆x is of the same order of magnitude of all the εL,R
p , it is accept-

able the following approximation

∆ω = −jω0
K

2
sinh

(
j

1

N

N∑
p=1

ε∗p

)
∼=

ω0K

2N

N∑
p=1

ε∗p (4.55)

Note that the quantity ε∗p is equal to εR
p for even p, and for odd p it is

equal to εL
p . Then, ∆ω is proportional to the following sum

εL
1 + εR

2 + εL
3 + εR

4 + εL
5 + . . . (4.56)

which is a sum over the odd cavities.
This is a general result since it states that the frequency error of

the whole chain depends only on the errors in the accelerating cavities,
which are the charged ones for the mode π/2 mode. It is worth noting
that this result is obtained under the hypothesis of negligible non-
adjacent cavities coupling, since in the other case the stop-band concept
is involved and the errors in the coupling cavities become important.
Furthermore, the expression (4.55) does not contain product of different
cavity errors, as we arrested the expansion to the first order, namely we
neglect the correlation among the errors. Finally, under the previous
hypothesis, it is also clear that the frequency error is independent of the
relative positions of the cavities and that the variance of the frequency
error is N times the one of the variables εL,R

p .

4. The perturbed axial field

In the circuit model, the voltage on the capacitance of a generic
cell is equal to the accelerating voltage. Then, except for the term
1/(jω2Ci) (1/(jωCi) for the lateral half cells), we look for the current
Ii which is

Ii =

(
N∏
l=i

Tl

)
22

, for i = 1, 2, . . . , N (4.57)

Note that such an expression comes from the hypothesis IN+1 = 1
which means that the last half cell is short-circuited and we arbitrarily
fixed the current to one. In the following, we always use this hypothesis,
and i = 1, 2, . . . , N .
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Remembering the expression of TN with errors, in the calculations
of the expression (4.57), we obtain a formula similar to the formula
(4.43), but in this case the product is limited to the last N − i + 1
terms. And therefore, we have dealings with(

N∏
l=i

Tl

)
= (Ṫ + Pi + Qi)(Ṫ + Pi+1 + Qi+1) . . . (Ṫ + PN + QN)

∼= ṪN−i+1 +
N∑

q=i

Ṫ q−iPqṪ
N−q +

N∑
q=i

Ṫ q−iQqṪ
N−q

(4.58)

and in a similar way, we obtain(
N∏
l=i

Tl

)
= ṪN−i+1 + ṪN−i

N∑
q=i

ε+
q +

cosh x

sinh x

N∑
q=i

ε+
q [♥+♦] +

N∑
q=i

ε−q ♣

(4.59)
where the cards symbols represents the following matrices

♥ =

 sinh (N − i)x jωM sinh x cosh (N − i)x

cosh (N−i)x
jωM sinh x

sinh (N − i)x


♦ =

 − sinh (2q −N − i)x jωM sinh x cosh (2q −N − i)x

−1
jωM

cosh (2q−N−i)x
sinh x

sinh (2q −N − i)x


♣ =

 cosh (N − 2q + i)x jωM sinh x sinh (N − 2q + i)x

− sinh (N−2q+i)x
jωM sinh x

− cosh (N − 2q + i)x


and therefore it is

Ii(ε
L
p , εR

p ) =

= cosh (N − i + 1)x +

[
cosh (N − i)x +

sinh (N − i)x

tanh x

] N∑
q=i

ε+
q

−
N∑

q=i

[
ε+

q

sinh (N − 2q + i)x

tanh x
+ ε−q cosh (N − 2q + i)x

]
(4.60)

As stated in the previous section, the machining tolerances are repre-
sented by a displacement of the variable x → jπ/2 + ∆x, where ∆x is

the one of the expression (4.52), namely
∑N

p=1 ε∗p/N . After a substitu-
tion of the perturbed x in the previous expression and noting that we
are interested in the odd cavities, which are the accelerating ones, one



4. THE PERTURBED AXIAL FIELD 61

obtains

Ii(ε
l
p, ε

R
p ) = (−1)

N−i+1
2 {cos [(N − i + 1)∆x]

+ [sin [(N − i)∆x]− tan (∆x) cos [(N − i)∆x]]
N∑

q=i

ε+
q

− tan (∆x)
N∑

q=i

ε+
q (−1)(i−q) cos [(2q −N − i)∆x]

−
N∑

q=i

ε−q (−1)(i−q) sin [(2q −N − i)∆x]

}
(4.61)

By noting that εp is a small quantity, we can expand the trigonometric
functions around zero, leading to the following expression of Ii

Ii(ε1, . . . , εN) = (−1)
N−i+1

2

1− (N − i + 1)2

N2

(
N∑

p=1

ε∗p

)2

+

+
N∑

p=1

ε∗p

N∑
q=i

ε+
q

[
N − i + 1− (−1)(i−q)

N

]

−
N∑

p=1

ε∗p

N∑
q=i

ε−q

(
2q −N − i

N

)}

for i = 2s + 1 with s = 0, . . . ,
N

2
− 1

(4.62)

and we note that the first is the imperturbed term, the second term
is independent of the errors positions and the last two are dependent,
like for the perturbed resonant frequency.

It is worth noting that the cells current is stationary respect to the
perturbations, because it depends on the square of εL,R

p .

In the following the term (−1)
N−i+1

2 is considered equal to 1, because
it represents the phase relation between accelerating cavities. In fact,
at a certain time, the electric field E(t) in two adjacent accelerating
cavities has a phase difference equal to π, but we are interested to the
field experienced from the particles and they see always a positive field,

and therefore we consider (−1)
N−i+1

2 = 1.
In order to obtain Vci, it is sufficient to multiply the previous cur-

rents by the capacitive impedance of the cavities.
If we come back to the case without errors, the structure we consider

is symmetric and terminated on two half cavities, and therefore in the
equivalent model, the circuits i = 1 and i = N + 1 have a double
capacitance and an half inductance. The field in the cavities can be
represented through a bar-plot as in figure 4.4, where the height of
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the bars is proportional to the amplitude of the field and all the bars
are normalized to one. The graph is in a percent scale. Note that the
coupling cavities, which are represented by the even bars, are nominally
uncharged.
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Figure 4.4. The relative level of field in the cavities in
the imperturbed case.

Therefore, the lateral cavities produce an half voltage and we can
drop this dissymmetry by considering only a contribution i = 1 which
is the sum of the two half voltages. In such a way we do not directly
consider the cavity i = N+1 and we deal with N/2 accelerating cavities
and index i goes from 1 to N . Then, the value of Vci for the generic
cavity is

Vci(ε1, . . . , εN) =
1

jωCeqi

1− (N − i + 1)2

N2

(
N∑

p=1

ε∗p

)2

+

+
N∑

p=1

ε∗p

N∑
q=i

ε+
q

[
N − i + 1− (−1)(i−q)

N

]

−
N∑

p=1

ε∗p

N∑
q=i

ε−q

[
2q −N − i

N

]}
for i = 2s + 1 with s = 1, 2, . . . , N/2− 1

(4.63)

where Ceqi is the capacitance of the cavity with number i and it is the
series of the capacitances of the two half cavities with indexes i−1 and
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i.

1
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2

)] (4.64)

After a substitution of expression (4.64) in the expression for Vci, one
obtains

Vci =
1

jωC

[
1− K

2

(
εR

i−1 + εL
i

2

)]1− (N − i + 1)2
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(
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+
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[
ε+

q

(
N − i + 1− (−1)(i−q)

N

)
− ε−q

(
2q −N − i

N

)]}
(4.65)

This formula needs further explication, it contains both square and
linear terms in εp. A superficial analysis could drop the square terms,
where a depth one should show that the coefficients of these terms are
different in magnitude and their ratio is of the order of magnitude of
σε. Therefore, it is not allowed to drop the quadratic term.

For example, if the machining tolerances lead to a typical
δωL,R

0p

ω0
=

K
2
εL,R

p in the range [10−3, 10−4] then, if K = 0.04, we have εL,R
p ε [5 ·

10−2, 5 · 10−3]. The term ε2
p is in the range [2.5 · 10−3, 2.5 · 10−5], and

then it exists a range where the values of K
2
εL,R

p (namely the errors of

the capacitances) and of ε2
p are similar. With these considerations the

expression of Vci becomes

Vci
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1
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q

(
N − i + 1− (−1)(i−q)
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)
− ε−q

(
2q −N − i

N

)]}
(4.66)

Concerning the expression of Vc1, we states that it is the sum of the first
and last cells contribution, and remembering that the last cell current
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is unitary, one obtains
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1
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)}
(4.67)

Each voltage is characterized by an imperturbed term, a perturbed
term that depends on the errors of all the cells and a local term that
depends on the capacitances of the cavity we are considering.

It is apparent that the field is flat, if the voltages are near the mean
value Vcm, evaluated on the odd cavities. Therefore, the expression of
the mean square error σrms is defined as

σrms =
∑
oddi

(Vcm − Vci)
2 (4.68)

and this value is an index for the flatness of the voltages in the equiv-
alent model, and therefore of the field in the cavities.

One can use the value (4.68) in the research of the best disposition of
the cavities after all the possible permutation. For example in figure 4.5
is shown the voltages on the capacitance of a generic disposition, where
the figure 4.6 shows the best disposition with the same errors. The
numeric values were obtained with the help of a MATLAB program.

5. Conclusion

In this short section we resume the results obtained with the per-
turbation approach. Let us start from the resonant frequency of the
whole structure.

• The π/2 mode frequency error depends only on the acceler-
ating cavities errors and does not depend on the position of
cavities.

• Moreover, the frequency is the arithmetic mean of the accel-
erating cavities frequencies.

• The variance of ∆ω is N times smaller than the one of the
random variable δa

ω0p.
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Figure 4.5. The relative level of field in the cavi-
ties for a generic disposition of the cavities, N = 8,
δω0/ω0 = 0.001 and K = 0.04 and σrms = 8.81 · 10−8.
The computed values are normalized to the unity, but are
shown using the formula (Vci − 0.999) · 105 for a better
visualization.

Even though, it is worth remember that these results were obtained
under the hypothesis of negligible non-adjacent cavities coupling and
of infinite quality factors for all the cavities.

The second point, which should be true also without the previ-
ous hypothesis, leads to very interesting tuning procedure of such a
structure. One could think to act on all the accelerating cavities fre-
quencies of the same quantity, in order to change only the mean value.
This point simplifies the tuning procedure and is discussed in the next
chapter.

Finally, let us give some comments on the third point: the δω0p is
due to the machining tolerances and one can assume that quantity as
a random gaussian variable with a mean equal to zero and a variance
equal to σ2. It follows that the error ∆ω is still a gaussian variable
whose variance is σ2

∆ω = σ2/N .
About the flatness of the axial field, starting from the expressions

(4.66) and (4.67), we have already identified the parameter (4.68) as
a good figure of merit. One could use a numerical program making
all the permutation and using σrms as optimization parameter. For
example, in the best disposition of figure 4.6, it is σrms = 4.54 · 10−10,
where in the generic disposition of figure 4.5, it is σrms = 8.81 · 10−8.
Concerning this last point, it is worth noting that the errors in the cav-
ities are experimentally measured and, as we state in the next chapter,
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Figure 4.6. The relative level of field in the cavities for
the best disposition of the cavities, N = 8, δω0/ω0 =
0.001, K = 0.04 and σrms = 4.54 · 10−10. The computed
values are normalized to the unity, but are shown using
the formula (Vci − 0.999) · 105 for a better visualization.

they are affect by a measurement error. Therefore, the procedure of
optimization is effective when the measurement error is proportionally
smaller than the measured values.



CHAPTER 5

Radiofrequency Measurement

In this chapter a detailed description of the radiofrequency (RF)
measurement performed on LIBO prototypes is presented. RF mea-
surement are very important on this type of structures, since they are
the only way to correct the unavoidable errors that are mirrors of the
mechanical machining tolerances. Note that the errors we have dealings
with can big enough to need a correction to get the desired design value
for the main electromagnetic parameters, even if they are very small
(for example, the frequency error of each cavity is typically included
within the 0.1%).

In the following, each section begins with an overview on the tech-
nique, the instruments and the tools used for the specific measurement
explained: single cavity and coupled cavities measurement are pre-
sented, and for each type of measurement, specific tasks for LIBO are
illustrated. The tuning procedure to obtain a flat longitudinal electric
field for the whole LIBO module is also presented.

1. Introduction

In the analysis of structures where the geometrical dimensions are
comparable with the wavelength of the electromagnetic signals, it is
correct to use the concept of reflected and transmitted waves rather
then currents and voltages, since propagation effects become very im-
portant.

In this frame, the parameters of interest are the scattering param-
eters, namely the reflection and the transmission coefficients [33].

The sequence of RF measurement to perform is quite the opposite
of the one used for the design. Indeed, the tiles with two half cavities
are normally the first pieces built and then the first measurement is
on the single cavities. In figure 5.1 it is shown a flux diagram of the
procedures adopted with LIBO to build up the module, involving both
measurement and machining on the copper pieces.

First, as we said, one starts from the measurement on the tiles,
as they come out from the mechanical workshop. On these pieces
three types of measurement are performed: coupled cells measurement
giving coupling coefficients and resonant frequencies, single frequency
measurement and stacked cell measurement that gives the π/2 mode
frequency and the stop-band amplitude. If the values are not correct
and/or present a large dispersion around the design values, one can

67
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Figure 5.1. The flux diagram of the measurement and
machining procedure.

work on the rings in the half cavities to change the frequency and
on the slot dimensions to change the coupling. Then, the tiles are
brazed together to make a tank. On this structure frequency and bead
pulling measurement are done; first measurement changing the lateral
rod tuners positions can be made as well, in order to control that the
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design parameters are reachable. This step is repeated for all the tanks
in the same way.

On the other hand, the bridge coupler pieces are stacked to make
coupled cells measurement and to control that the design values are in
the movable tuner range.

Once these steps are finished, the whole module brazing is made,
and after, one deals with a structure where it is still possible to move
the rod tuners in the cavities and the tuners in the three bridge cou-
plers. Last, the hard point has to be fixed: after regulations on all those
tuners, one control the π/2 mode, by means of a frequency measure-
ment, and the axial electric field by means of a bead pulling measure-
ment. The procedure go ahead with the help of the empirical criteria
found with the equivalent model and with lots of patience and skill
operators. At the same time, one has to control the coupling between
the waveguide and the whole module and has to choose the length of
the short-circuited waveguide (see figure 3.11).

Finally, after the parameters are fixed within the design ranges, the
rod tuners are also brazed and the module is ready for the power tests.

2. RF Measurement on a single cavity

As it is shown in the previous chapters, a resonant mode of an elec-
tromagnetic cavity can be fully represented by only three parameters:
resonant frequency, quality factor and shunt impedance.

By using a network analyzer and some mechanical and electrical
tools, it is possible to measure all these three parameters. In principle,
these measurements are very easy, but a big effort has to be made in
order to get correct results and to avoid systematic errors when one
measures the cavities of a structure such a LIBO.

2.1. Measurement of the resonant frequency. The measure-
ment of resonant frequency on a closed cavity (excepted for the beam
holes) is performed using probes which penetrate until the inner sur-
face of the cavity. One probe allows the measurement of reflection
coefficient, whereas two probes allow measurement of transmission co-
efficient. It is apparent that the cavity should has one or two holes for
the probes, unless the beam holes are used. The probes are realized in
the following two ways:

• electric pick-up which is a rigid coaxial cable, whose inter-
nal conductor juts out of about 4 mm over the external one.
This type of antenna should be used where the electric field is
strong1. In figure 5.2 an example of realization is shown.

• magnetic loop which is a rigid coaxial cable, whose internal
conductor juts out over the external one and realizes a loop

1It could be put along the axis of the cavity through the beam hole where the
longitudinal electric field should be strong.
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Figure 5.2. Electric pick-up (up) and Magnetic loop
(down) for radiofrequency measurement in cavities.

solded on the external conductor. The solder assures the elec-
tric contact. This type of antenna should be used where the
magnetic field is strong and the loop can concatenate magnetic
flux. In figure 5.2 an example of realization is shown.

The probe must be introduced in the cavity at a depth which assures
a certain coupling. To avoid perturbation to the cavity field and hence
to the resonant frequency, this coupling should not be too large. As a
rule of thumb, we can consider a good coupling for each pick-up when
the minimum of the reflection coefficient is around 0.5 dB below the
reference level outside of resonance.

Once the frequency range for the network analyzer is restricted
around the resonant behaviour, the resonant frequency is that which
corresponds to the maximum of the transmission coefficient, or to the
minimum of the reflection coefficient. The error of the measurement is
mainly due to the resolution of the used instrument2.

The measurement of the resonant frequency for an half cavity is
more difficult. In this case the measurement is performed closing the
half cell on an electric mirror which is a good conductor plane3. In
this situation, a good electric contact between the conductor plane and
the limit surface of the half cavity must be assured, in order to have
a high quality factor and a good frequency measurement. But on the
other hand, one has to be sure that both the half cavity and the plane
are not deformed after the measurement. In conclusion, this type of
measurement has the high risk to produce systematic errors and then
a statistical approach is preferred, as it is shown in the next section.

2For example, a measurement with 100 points over a frequency range of
100 MHz gives an error of ± 1 MHz.

3From electromagnetic theory it is known that the equivalent circuit of this con-
figuration has half inductance and double capacitance and the resonant frequency
does not change.
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In figure 5.3 the necessary mechanical tools and a particular solu-
tion of electric mirror are shown: the half cavity rests on a plane and is
closed on a circular surface whose diameter is bigger, of a few millime-
ters, than the cavity diameter. The pressure on the contact reference
surface can be controlled by using a dynamometric key and should be
kept below the mechanical limit of plastic deformations for the material
used for the cavities.

Figure 5.3. Mechanical tools for RF measurement on
the LIBO tiles. On the top right the use of these tools is
shown.

2.2. The statistical approach to the measurement of the
frequencies of LIBO cells. Frequency measurement of half cavities
on electric mirror can be source of systematic errors. In fact, it is very
difficult to realize a good contact between the cavity and the conductor
plane, even if a reference contact surface is realized. The measurement
is not reliable for each cavity, but a statistical approach can be used.

As it is explained in section 4, in LIBO project the single tiles which
form a tank contain two half cavities with a ring. The height of this ring
can be machined in order to change the volume of magnetic field, and
then the resonant frequency. This operation implies only a decrease
of resonant frequency. For this reason, the half cavities are designed
with a resonant frequency which is higher than the desired value and,
in this sense, there are no cells which do not need interventions, since
all the cells have to be corrected to the required resonant frequencies
using the machinable ring.

In figure 5.4 is shown the dispersion of frequencies value for the half
cells in the tiles around the mean value. The frequencies are measured
with an unknown systematic error which, due to the mechanical tools,
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result to be the same for all the cells. Each cell has a ∆fi with respect
to the calculated mean value.

After the measurement of the single frequencies, all the cells are
staked together and the resulting fπ/2 and the stop-band value are
measured. This value is very reliable since it comes from a measurement
over 30 cells4 and the systematic error due to the pressure on the first
and the last cells does not play a recognizable role. The modification to
be done on the ring of the single accelerating half cavity is calculated
to correct the following frequency error

∆fAC
i + (fπ/2meas − fπ/2goal),

where the fπ/2goal is the design frequency which takes into account all
the difference with respect to the effective operating conditions. In this
sense, the steps of correction make the dispersion around mean value
smaller and also make the mean value approaching the goal frequency.

For the coupling cavities, the correction takes into account also the
measured value of the stop-band

∆fCC
i + (fπ/2meas − fπ/2goal) + ∆fSB,

where ∆fSB is considered with its sign.
In figure 5.4 the results after each intervention are shown. The

dispersion is reduced to a part over ten thousand for a frequency error
which is largely in the margin of intervention of the movable tuners
available after the brazing.

2.3. Quality factor measurement. From the electromagnetic
theory it is known that the quality factor can be defined as

Q =
f0

∆f

where f0 is the resonant frequency and ∆f is the positive difference
between the two frequency at which the transmission coefficient is 3 dB
lower than the resonant peak. Often, the network analyzer has already
this function inside. It is worth noting that for this measurement the
probes must perturb the cavity as little as possible, in order to get the
correct value for the quality factor. Otherwise the probes drain power
and the measurement is not correct5.

In this sense, the measurement of the quality factor for the half
cavity rested on the conductor plane is not so significant, since incorrect
values could arise from imperfect contacts at the joints. At least, the
measurement could not be repeatable and reliable. In this case, the
measurement of quality factor is necessary only to be sure that the

4Note that 30 is greater then the requested number of tiles (25) for a tank. But,
of course, more than the needed tiles are produced in order to discard the worst
ones.

5In this case the quality factor is said loaded. This concepts is explained in the
last paragraph.
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Figure 5.4. The dispersion of frequencies before and
after two steps of machining on the rings for the acceler-
ating and coupling half cavities in the tank #1. For the
accelerating cavities the dispersion around mean value is
reduced to roughly 1.5 MHz (left), whereas for the cou-
pling cavities is less than 1 MHz (right).

quality factor is sufficiently high to give the requested precision on
frequency measurement.

2.4. Shunt impedance measurement. Although several tech-
niques can be conceived to permit the direct measurement of the shunt
impedance, indirect methods are preferred. In fact, the ratio between
shunt impedance and quality factor Rsh/Q do not depend on frequency
and losses but only on geometrical factors. This fact implies that the
measurement of Rsh/Q is more reliable than the direct measurement of
the shunt impedance. In fact, the cavity under test can be built with
two half parts or with an half part rested on a conductor plane because
the losses in the joints do not affect appreciably the distribution of the
fields and therefore, the measurement of Rsh/Q.

Then, if the measurement of a single prototype with a low qual-
ity factor is performed, one can use an electromagnetic simulator to
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deduce the value of the quality factor; for brazed cavities, Q can be
measured with accurate methods, or can be extrapolated from numeri-
cal calculations. Therefore, this procedure provides an indirect method
to determine the shunt impedance Rsh.

In the following a perturbation technique is shown [34] which in-
volve the measurement of the resonant frequency of the cavity as a
function of a certain perturbation objects.

Remembering the definition of quality factor and shunt impedance

Q = ω
energy stored

energy lost per second
=

ωU

W
, Rsh =

(∫
Edl

)2

2W

where W is the power loss and the integral is usually calculated along
the axis where the particles pass through the cavity. If the electric field
E is constant along the path of integration, it is valid that

Rsh =
d2E2

2W
,

where d is the length of the path, which should be the acceleration gap.
Combining the two definitions

Rsh/Q =
d2E2

2ωU
.

The quantity E2/U can be determined experimentally by placing a
perturbing object of volume ∆τ into the cavity where the electric field is
quite constant and measuring the resultant change in frequency. From
Slater Perturbation theorem [34, 36]

∆f

f
= −αε∆τ

4

E2

U
,

where α is a constant which depends on the shape and on the material of
the perturbing object. It should be determined from the measurement
on a cavity with a known electric field distribution. Combining the
previous relations one obtains

Rsh/Q =
−2d2

αωεf

∆f

∆τ
, (5.1)

which links Rsh/Q and the change in frequency due to the perturbing
object.

It is worth noting that, in principle, it is not necessary to know
the constant α for the perturbing object. In fact, the equation (5.1)
depends on the derivative of the change in frequency and therefore, it
could be evaluated also for the unperturbed point (zero displacement
for the perturbing object), leading automatically to α = 1.

In order to have a more accurate measurement, it is possible to
measure also points when the plunger is displaced inside the conductor
plane, in order to have negative displacements. Finally, note that in
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Figure 5.5. The change in frequency due to a metallic
plunger for the measurement of r over Q.

the calculation it is only necessary to use known relative steps advance-
ment for the plunger, rather than exact measurement of how much the
plunger penetrates into the cavity.

Consider, for example, the figure 5.5. It shows the typical change
in frequency due to a 2.3 mm diameter cylindrical plunger which pen-
etrates, through a conductor plane, an half pill-box like cavity with a
resonant frequency of 3.0359 GHz. The plunger is moved through a
series of positions at which the changes of resonant frequency are mea-
sured. The slope is determined from a numerical interpolation of the
curve.

3. RF Measurement on coupled cavities

From the electromagnetic theory it is known that two or more res-
onators coupled together lose their single resonant frequencies and meet
in a number of modes equal to the number of resonators [17]; those fre-
quencies mainly depend from the single resonant frequencies and from
the coupling between the resonators. In few words, the resonant modes
of the coupled cavities correspond to all the possible ways to satisfy
the new boundary condition.

From the single cavity point of view, also the own resonant fre-
quency is modified from the coupling mechanism. For example, an
aperture between two cavities in a zone where the magnetic field is
strong changes the stored magnetic energy of the cavities and, as a
consequence, the single resonant frequencies.
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In principle, it is possible to measure the single resonant frequencies
also when the cavities are coupled together, it is sufficient to short-
circuit the cavities near the one under measurement6.

Aim of this paragraph is to show a method which allows the mea-
surement of the own resonant frequencies and the true coupling coeffi-
cient between two or three coupled cavities. The method is character-
ized by an high degree of reliability.

3.1. Coupling measurements on two cells. In the case of two
coupled cavities, the system can be represented by an equivalent lumped
circuit, as it is explained in chapter 3, and by using the Kirchhoff equa-
tions one can obtain [17]:(

1− f 2
1

f 2

)(
1− f 2

2

f 2

)
= k2, (5.2)

where f1 and f2 are the single cell frequencies (without any coupling),
k is the coupling coefficient and the equations are written for an infinite
quality factor. The two resonant frequencies of the coupled system are
the solutions of the above equation with respect to f :

f 2
± =

1

1− k2

f1
2 − f2

2

2
±

√
f1

2 + f2
2

4
− f1

2f2
2(1− k2)

 (5.3)

In these relations f1, f2 and k are unknown quantities. From an exper-
imental point of view, one measures the two frequencies of the coupled
system f± (looking at the transmission coefficient of the system) keep-
ing one cavity unperturbed and varying the other one by introducing
a perturbation in the cell.

In this way, varying the perturbation we measure the corresponding
resonance frequencies f±, both modified, for each couple of unknown
values, f1 and f2 - the first one fix and the second variable.

Starting from equation (5.3) and looking for invariant expressions
we can find useful relations between the unknown quantities and the
measured ones. We used two methods, one more general and the second

6The measurement on a single cavity stacked in a tank is possible if one short-
circuit the cavities near the one under measurement. This technique takes into
account the coupling slots effect and the relative frequency change, but they do
not allow the measurement of coupling coefficient k. Furthermore this procedure,
still having a high degree of sensibility (depending on the instrument), it is not
sufficiently precise for our purpose, since it introduces a systematic error on the
frequency. This error depends on the particular realization of short-circuit and
cannot be always determined.
From the practical point of view, the short-circuited cavity becomes a coaxial cav-
ity, which resonates at a higher frequency respect to the unperturbed cavity (for
LIBO cavities the frequency goes from 3 GHz to around 5 GHz) but this frequency
displacement depends on the type of short-circuit.
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one [38] useful when the single cell frequency values are very close each
other.

3.1.1. Line method (more convenient if f1 is not so close to f2).
Let f2 vary and keep f1 constant. We find a linear relation between
f 2

+ · f 2
− and f+

2 + f−
2 as it follows

f+
2 · f−2 = (f+

2 + f−
2)f1

2 − f1
4

1− k2
, (5.4)

and by interpolating the data, we could get k and f1 with their errors.
The analysis gives a reliable value for f1 with a great accuracy (relative
error 10−5), meanwhile k is obtained with less accuracy. The frequency
f2 can be obtained from the measured data when no perturbation is
introduced through the relation:

f 2
2 = (f 2

+ + f 2
−)(1− k2)− f 2

1 , (5.5)

and in figure 5.6 a typical case is shown.

Figure 5.6. The result of the line method applied to
two coupled cavities. The own frequencies fcc and fac,
and the coupling coefficient k are reported.

3.1.2. Parabola method (convenient if f1 is very close to f2). Let f2

vary and keep f1 constant. If we introduce now the following variables:

k′ =
f 2

+ − f 2
−

f 2
+ + f 2

−
and f ′ =

√(
f 2

+ + f 2
−

2

)
(5.6)

and plotting k′ as function of f ′, we obtain a parabola, whose minimum
is reached when f2 = f1. The minimum gives us the value of the
true coupling coefficient k and of f1, the other unknown frequency
can be extracted as before from a unperturbed measurement by using
the equation (5.5). The f1 value corresponds to the π/2 mode. This
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method gives a reliable k value with a small error. In figure 5.7 a
typical case is reported.

Figure 5.7. The result of parabola method applied to
two coupled cavities. The coupling coefficient and the
minimum frequency, which is the one of the π/2 mode,
are reported.

The method gives an high degree of reliability since it is based on
a set of measurement. This means that it is possible, using standard
techniques, to evaluate the correctness of the results and the reliability
of the procedure. The method can not be applied to cavities whose
frequencies are very different since too large perturbations could be
necessary to reach the minimum; in this case the behaviour of fields in
the perturbed cavity could be too much modified.

3.2. Measurements on three coupled cells. In the case of
three coupled cells with f0, f1 and f2 resonant frequencies respectively,
the theory of the coupled resonators gives for the resonant frequencies
of the coupled structure the following solutions (valid in the particular
case of f0 = f2, for the bridge coupler case, these are the coupling
cavities frequencies):

f̃ =
f0

1 + k2/2
(5.7)

f 2
± =

[f 2
0 + f 2

1 (1− k2/2)]±
√

[f 2
0 − f 2

1 (1− k2/2)]
2
+ 2f 2

0 f 2
1 k2

1

1− k2/2− k2
1/2

(5.8)

where f± and f̃ are the measured frequencies, k1 and k2 are the coupling
of first and second order and f1 is the resonant frequency of the bridge
coupler central cavity.
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By manipulating these solutions we obtain a linear relation between
two functions of the measured frequencies:

f̃ 2

f 2
+

+
f̃ 2

f 2
−

=
1− k2

2

1 + k2

2

+
1 + k2

2

1− k2

2
− k1

2

2

f̃ 4

f 2
+f 2

−
(5.9)

which relates k1 and k2 to the measured frequencies f−, f+ and f̃ .
From the interpolation of the data we can obtain k1 and k2 with their
errors. If the bridge coupler central cavity is the perturbed cavity, its
frequency can be obtained from the first unperturbed data:

f 2
1 =

f 2
+f 2

−

f̃ 2

1− k2

2
− k1

2

2

1 + k2

2

, (5.10)

and f0 can be determined from the expression for the resonant fre-
quency:

f 2
0 = (1 + k2/2)2f̃ 2 (5.11)

3.3. An RF measurement procedure on a brazed LIBO
tank. With the help of metallic rods and long pick-ups, the previ-
ous method can be applied also to a brazed prototype of a LIBO tank.
We should make the following RF measurements:

• Resonant frequency (and quality factor) of Coupling Cells (CC)
• Resonant frequency (and quality factor) of Accelerating Cells

(AC)
• First Coupling coefficient between AC and CC
• Secondary Coupling coefficient among ACs and CCs

We propose the use of metallic rods to short-circuit the cells not in-
volved in the measurement. This solution makes the resonant frequen-
cies of the short-circuited cells very high, and therefore the coupling
with the cavities produces a small displacement (around 100 kHz) and
comparable with the measurement error.

This method needs passing through holes in ACs and CCs. The
ACs holes are fixed from the beam and have a 8 mm diameter. The
holes for the CCs have to be made right for this measurement but can
be chosen in a range which do not change drastically the mechanical
construction7. Let us give a comment about the mechanical pieces
needed for this measurement.

• AC and CC Pick-up rods are simple electric pick-ups (3.65mm
diameter) of the right length. They do not have to touch the
uninvolved cells. They simply arrive on the nose in the cell un-
der measurements. With reflection coefficient measurements
we control the perturbation (less than 0.5dB). Finally, we can

7A 5 mm diameter hole change the CC resonant frequency of roughly 8MHz,
it does not introduce an appreciable coupling between adjacent CCs. Compare to
the AC case: now the diameter of the hole is smaller than the beam hole and the
space between cells is bigger too (very little coupling).
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perform transmission measurements to easily get resonant fre-
quency and quality factor8.

• AC Short-Circuit (SC) rod is able to short-circuit one AC cell.
• CC SC rod is able to short-circuit one CC cell.

In figure 5.8 the measurement on a stacked CC is shown. Four
metallic rods short-circuit the adjacent cavities to the one under mea-
surement and two pick-up rods makes the transmission coefficient mea-
surement. In figure 5.9 the same scheme is proposed for the accelerating
cavity. In figure 5.10 and 5.11 the measurement for the couplings are
shown. Note that we can use the rods as perturbing object in the
cavities.

Figure 5.8. Measurement on a stacked CC using the rods.

Figure 5.9. Measurement on a stacked AC using the rods.

4. Bead pulling measurement

In the construction of a linear accelerator the tolerance on the di-
mension of mechanical pieces and some unavoidable construction errors
limit the ideal performances reachable in theory. This important fact
implies several errors in the relevant parameters of the single cavities,

8Note that the quality factor in a brazed tank should be the design value and
its measurement has a low error.
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Figure 5.10. Measurement for the coupling for stacked
cavities. In order to apply line and parabola methods,
in addition to the AC and CC screws, one can move also
(*) rod to change the CC frequency.

Figure 5.11. Measurement for the second order cou-
pling for stacked cavities. In order to apply line and
parabola methods, in addition to the AC and CC screws,
you can move also (*) rod to change the CC frequency.

as the resonant frequency, or of the coupled cavities, as the coupling
factor, or of the whole multi-cell structure.

For the whole structure, the parameter of interest is the electric
field distribution along the axis, which is the field that the particles
experience during their travel through the accelerator. It is very im-
portant that the electric field level in the accelerating cavities is flat
within a certain tolerance.

In fact, a distribution field which present big relative differences
between cavities could imply different results with respect to the lon-
gitudinal dynamic of the particles [21, 20].

Furthermore, as explained in chapter 2 the Kilpatrick criterion [26]
will limit the maximum level of field reachable, since this one will be
set for the cavity which presents the highest level, whereas in case of
flat field this condition is the same for all the cavities.
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All this means that it is required a RF measurement able to acquire
the relative electric field distribution inside the cavities and this is
possible using the bead pulling technique.

Bead pulling is a perturbation technique based on Slater’s theorem
[36, 37]. With the help of a perturbing object (the bead) which travels
along the axis of the multi-cell structure, the electric field distribution
is determined in terms of phase variation introduced by the bead. The
multi-cell structure is driven at a fixed frequency that is the accelerating
mode frequency.

The Slater perturbation theorem can be written as follows:

f 2 = f 2
0

[
1 + α

∫
∆τ

(µH2 − εE2) dτ∫
V
(µH2 + εE2) dv

]
(5.12)

where α is a constant related to the particular perturbing object, the
numerator represents the integration over the volume of the perturbing
object and the denominator is equal to twice the average energy stored
in the cavity U . If perturbation is small the (5.12) can be simplified to

∆f

f0

=
α

4U

∫
∆τ

(µH2 − εE2) dτ. (5.13)

This important relation states that the change in frequency depends
upon the integral

∫
∆τ

(µH2 − εE2) dτ . And, if the perturbing object
acts in a zone where only the electric field is present in a significant
way, the previous relation simplifies again.

Then, a procedure to measure the relative level of electric field in a
multi-cell structure can be set up as follows:

(1) A nylon wire is stretched along the longitudinal axis of the
structure and some mechanical tools and a motor allow the
movement of the wire. Note that the wire itself modifies the
resonant frequency, since it is a dielectric9. Of course, a good
alignment is needed between the wire and the axis of the cav-
ities in order to have the same perturbation in all the cavities.

(2) A perturbing object (the bead) is put on the wire. The di-
mensions should be little enough to perturb as little as possi-
ble the field distribution, but sufficient to give a good signal
noise ratio. Using a cylindrical shape (a needle for example),
the perturbation acts on the axis and only the longitudinal
component of the electric field is perturbed.

(3) The network analyzer drives the structure at the resonant fre-
quency. The bead perturbs the electric field distribution along
the axis and this implies a change in frequency10 and then,
in the phase of the signal detected by the network analyzer.

9The nylon wire lowers the frequency since it acts in a zone where electric field
is strong and, as in a capacitor, it canalizes the field lines.

10Strictly speaking, the bead grows the frequency.
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Therefore, around resonances, the relative change of electric
field is proportional to the change in phase shown by the net-
work analyzer11

∆E2

E2
∝ ∆Φ

Φ
, for each cavity,

(4) The measurement is made in the time domain. The motor
moves the wire and the bead through the cavities and the net-
work analyzer shows the relative electric field level for each
cavity. The longer is the measurement time, the more precise
the measurement is. At high resonant frequencies, very long
times need a temperature controlled laboratory, since even
little changes in temperature imply changes of resonant fre-
quency and this implies a linear slope in the output graph.

The figure 5.12 shows a schematic view of a bead pulling apparatus
and the figure 5.13 shows a particular realization on the LIBO module.
In a next paragraph several examples of bead pulling will be given,
since the bead pulling measurement is a fundamental pawn to tune the
LIBO module to the correct distribution field.

Figure 5.12. Sketch of a bead pulling measurement apparatus.

5. A tuning procedure for the LIBO module

In this section it is presented the procedure used to tune the first
LIBO module. The bead pulling measurements reported on the follow-
ing were made before the final brazing where the four thanks and the
three bridge couplers were brazed together. The goal of the measure-
ment was to fix the position of the rods tuners for the 102 cavities in
the four tanks.

The facts are reported in a chronological order, and through the
presentation of the followed steps, whereas it is convenient, some expli-
cations are reported on the connected theory and on the technological
aspect of the LIBO module.

11It is better to use a driven frequency which is slightly different from the
resonant frequency, because in this case the change in phase is always in the same
direction, whereas at the exact resonant frequency some noise in the measurement
can give results with a bigger error.
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Figure 5.13. The particular realization of the bead
pulling measurement for the LIBO module.

5.1. Preliminary considerations. In linear accelerators the level
of the axial electric field in the accelerating cavities must be flat within
a certain tolerance fixed by the dynamic of the beam. Usually, each
cavity in LINACs has one or two tuners which are able to change the
resonant frequency within 0.1% and, after that all the cavity are brazed
together, these tuners are used for two important purposes: to make
the whole resonant frequency at the value set by the power klystron,
and to make the electric field level be flat in the cavities.

The beam dynamic of LIBO is not stringent and requires a flat field
within ±2.5% [20, 21].

We remember that one LIBO module has 4 tanks and 3 bridge cou-
plers. Each tank has 13 accelerating cells and 12 coupling cells which
are out of beam axis. Each bridge coupler is composed by 3 cavities:
two coupling cells and a cell which is equivalent to an accelerating cell
but, as the others two cells, it is displaced out of the beam axis, in order
to leave space for the permanent quadrupole magnet, placed between
each two tanks.

It is worth remember that the resonant frequency of each cavity
inside the four tanks ready for the bead pulling measurement has an
error less than 500 kHz, respect to the π/2 frequency of the same tank.
This result is obtained after the machining of the ring placed in each
cavity, as it is explained in section 2.2. But this procedure does not
leave out the possibility that the π/2 frequencies are different among
the four tanks, in fact these were different within 500 kHz too. This
means that we know that the tuners have to correct also this difference
between the frequencies of the tanks.

Another consideration has be done about the bridge couplers. The
movable tuners of this cells were used before the bead pulling, in order
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Figure 5.14. The bead pulling result after the bridge
couplers tuning.

to have the design values for the frequencies, and, more important,
to have the frequencies of the coupling cells perfectly equals. This
is important, because any difference in the coupling cells of a bridge
coupler produces a step in the electric field of the adjacent tanks.

5.2. Bead pulling measurement. The first bead pulling of the
whole structure gave the result shown in figure 5.14. The figure shows
the normalized level of the squared electric field in all the accelerating
cavities; the space between two cavities represents the coupling cells.
The space between two tanks is the one of the bridge coupler which is
out of axis and the bead does not pass through its cells.

It is worth noting again that for the tuning procedure it is inter-
esting only the relative levels between the tanks and not the absolute
values, since this procedure is made at a low power level.

For the measurement of figure 5.14, the π/2 frequency was 2996.99 MHz.
Taking into account all the variations due to the real conditions12, the
goal frequency should be 2997.10 MHz. The quality factor value was
around 4500 which is a good value, but still far from the final 7200,
this was due to the imperfect joints between the tanks and the bridge
couplers, since they were not brazed together yet.

Also, in that configuration and from a frequency measurement, it
was possible to evaluate the stop-band of the second nearest modes
which was SBB = +216 kHz. This stop-band is related to the bump-
like behavior in the response of bead pulling measurement, its presence
means that the second nearest modes in the dispersion diagram are
excited and the behavior for these modes is just as a bump, having a
minimum for the field (maximum) in the central bridge coupler cavity
and a maximum field in the end cells (minimum).

12Vacuum effect, temperature, final brazing, etc..
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tank # cell type left [mm] right [mm]

1 AC +2.3 +7.6
CC +0.3 +7.2

2 AC +5.0 +6.2
CC +0.3 +7.2

3 AC +5.0 +6.8
CC +0.3 +7.2

4 AC out +6.0
CC +0.3 +7.2

Table 5.1. Tuners positions for the bead pulling of fig-
ure 5.14.

Since all the bead pulling measurement was made feeding the mod-
ule by the wave-guide, it was not possible to measure the first nearest
mode stop-band. This stop-band is related to a tilt-like behavior in the
response, since the nearest modes have a linear behavior from the first
cell to the last one and have a null in the central cavity; this means
that it is not possible to feed and to measure these modes from the
wave-guide at a recognizable level.

Last, in the table 5.1 the tuners positions for the figure 5.14 are
shown. Some comments on those values are necessary. For each tank,
two lines of tuners are available for each type of cell13. Here, the left
side is the one on the left when one looks the module from the first tank
to the fourth one. It is also possible to act on one side at a time. The
values shown represents the length of the part of the tuners that juts
out of the tank side wall; again, this is not important for our purposes,
since only relative displacement are relevant. In the table out means
that the tuner are completely out and the end side of the tuner does
not penetrate in the inner surface of the cavity. In the tuning process,
the tuners for each tank have been moved all at the same time, as each
tank should be one accelerating cavity and one coupling cavity and
this fact has simplified very much the procedure. Consider the bead
pulling measurement of figure 5.15. The only intervention was to push
the tuners of ACs on the right side of tank #1 inside of +0.3 mm,
because before the level of this tank was very low. Of course, the little
displacement does not change dramatically the situation, but it is in
the right direction since the level of tank #1 was increased. The π/2
frequency was increased to 2997.01 MHz and this was clear because
the resonant frequencies of ACs of tank #1 were increased. The Bump
stop-band was decreased to SBB = +201 kHz and this was due to the
fact that the mean frequencies of ACs increased where the ones of the
CCs remained constant. In figure 5.16 is shown a bead pulling made

13A lines of tuners is constituted by a number of tuners that move together.
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Figure 5.15. The bead pulling result after the first op-
eration on tank #1.

Figure 5.16. The bead pulling result before the first
operation on all the CCs.

after similar intervention on the first two tanks. The π/2 frequency
was increased to 2997.02 MHz and the bump stop-band was decreased
to SBB = +178 kHz. At that point an intervention on all the CCs was
necessary in order to bring back the SBB to bigger value.

This is a very important property of LIBO module, since it is pos-
sible to use the ACs tuning to level the field and to control the π/2
frequency and the CCs tuning to control the stop-bands.

But it is worth noting that the interventions on the tanks are effec-
tive and get clear results only if the stop-bands keep always the same
sign. In fact, the bump and tilt effects are connected with the sign of
the respective stop-bands and if one sign changes the relative effects
change sign also (a bump with a maximum in the center becomes a
one with a minimum in the center). For this reason, it was important
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Figure 5.17. The bead pulling result after the first op-
eration on all the CCs.

Figure 5.18. The bead pulling result for the tuners po-
sitions of table 5.2.

to keep the bump stop-band always to relatively big values, keeping
in mind that at the end of the tuning procedure it should has been
possible to decrease the stop-bands using the CCs tuning.

The figure 5.17 shows the bead pulling measurement after that the
CCs enter inside of +0.3 mm on the left side. The π/2 frequency
was unchanged and the bump stop-band increased to +270 kHz. It is
clear that the intervention made worse the field level. This happened
because the stop-band was bigger than in the previous situation. In
fact, the entity of the bump and tilt effects are directly related to the
entity of the respectively stop-bands. The bigger is the stop-band, the
bigger is the effect of the nearest modes on the field level of π/2 mode.
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tank # cell type left [mm] right [mm]

1 AC +3.5 +7.9
CC +0.3 +7.0

2 AC +6.7 +6.2
CC +0.3 +7.0

3 AC +5.0 +6.2
CC +0.3 +7.0

4 AC out +4.4
CC +0.3 +7.0

Table 5.2. tuners positions for the bead pulling of fig-
ure 5.18.

Figure 5.19. The first good bead pulling result.

The figure 5.18 shows the bead pulling measurement after some
interventions on the tuners resumed in the table 5.2. The π/2 frequency
was 2996.96 MHz and SBB = +222 kHz.

6. The final steps of the tuning procedure

It is clear from the previous section that the tuning procedure
should be made by little steps in order to be sure to keep positive
the two stop-bands and to fully understand the results on the field
level. Unfortunately, sometimes the intervention on one tank has also
effect on the near tanks and this implies that all the interventions must
be careful made and without big displacements of the tuners.

The figure 5.19 shows a bead pulling measurement14 that was quite
good since the field level was flat within ±5%. The π/2 frequency was

14Note that the figure 5.19 is the output plot of the network analyzer. The
scale is the same of the previous figures, the maximum being 8 divisions.
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Figure 5.20. A bead pulling with the field level flat
within ±2.85%.

Figure 5.21. The final bead pulling with the field level
flat within ±2.5%.

2997.075 MHz and the SBB = +160 kHz. After some interventions on
the tanks #2 and #3, the bead pulling was the one of figure 5.20 which
was flat within ±2.85%.

The π/2 frequency was 2997.080 MHz and the SBB = +145 kHz.
The final result is shown in figure 5.21 with the tuners positions

shown in table 5.3. The π/2 frequency was 2997.025 MHz and it took
into account the effect of temperature and of the nylon wire stretched
along the axis. The bump stop-band was SBB = +212 kHz.

6.1. Rejection to the disturbs. When a Side Coupled Linac is
well tuned, namely the field level is flat and the stop-bands are little,
the structure is able to reject disturbs. This means that, starting from



6. THE FINAL STEPS OF THE TUNING PROCEDURE 91

tank # cell type left [mm] right [mm]

1 AC +4.5 +6.6
CC +1.2 +6.4

2 AC +6.2 +6.8
CC +1.2 +6.4

3 AC +5.9 +4.4
CC +1.2 +6.4

4 AC +2.0 +4.6
CC +1.2 +6.4

Table 5.3. The final tuners positions.

such a condition, a local error does not change significantly the flatness
of field and the π/2 frequency. The figure 5.22 shows four cases of

Figure 5.22. The effect of perturbations a) in the end
cell, b) in 6 CCs (two for tank), c) in 2 ACs in tank #2,
d) in all the ACs of tank #3.

perturbation on the structure. In the case a) a magnetic loop was
introduced in the end cell of the fourth tank and this implied a shift of
the resonant frequency of 40 kHz. In the case b) the tuners of two CCs
for the tanks #1,#3 and #4 were brought out of 0.3 mm. In the case
c) the tuners of two ACs of tank #2 were completely brought out and,
at last, in the case d) the tuners of seven ACs of tank #3 were brought
out of 0.4 mm and the tuners of six ACs of tank #3 were pushed inside
of 0.4 mm.
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In all the cases it is clear that the differences respect the reference
case of figure 5.21 were acceptable.

In figure 5.23 is shown the effect of a perturbation on the CCs which
are nearest to the bridge coupler. From first bead pulling, which are
the reference, it is apparent that the level of field in the last AC of
tank #1 is high respect to the mean of the tank, the theory says that
if the nearest CC is changed the level in the following AC (respect to
the feeder) changes also.

Figure 5.23. The effect of local perturbations in the
CCs at the end of a tank.

7. Measurement of the coupling between the module and
the waveguide through an iris

In this paragraph the procedure to measure the coupling between
the power waveguide and the LIBO module is explained [34]. The pro-
cedure is exportable to other cases, as the case of multi-cells structures
feeded by one cavity through an iris.

First, we introduce some basic concepts and the equivalent circuit,
then we introduce some figures of merit to evaluate the correct match-
ing, next we explain the RF procedure to get the numerical data with
the help of a Network Analyzer; last we introduce a numeric MATLAB
program that, starting from the measurement data, is able to deduce
the desired figures of merit, and finally we comment the results.

7.1. The equivalent circuit for one cavity. In the previous
chapters we already introduced the concept of equivalent lumped ele-
ments circuit for resonant cavities. Of course, we know that the equiv-
alent description is rather difficult because, as in wave-guides, the or-
dinary concept of voltage and current does not play its usual role.

ω2
0 = 1/LC, Q0 =

ω0L

Rs

, R0 = ω0LQ0 =
(ω0L)2

Rs

(5.14)

The three quantities defined by these relations can be measured exper-
imentally, as it is shown in the previous sections, and can be used to
establish the lumped elements

L =
R0

ω0Q0

, C =
Q0

ω0R0

, Rs =
R0

Q2
0

. (5.15)
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Figure 5.24. Coupling through an iris. Sketch of a
resonant cavity coupled with a transmission line.

Figure 5.25. Coupling through an iris. The generator
is referred to the secondary.

These set of parameters are involved in a equivalent circuit that repre-
sent the cavity in one mode and can be used in most applications.

7.2. Equivalent circuits, definitions of Q0, QL, Qext and cou-
pling coefficient β. Consider a signal generator connected to a trans-
mission line, those characteristic impedance Z0 is equal to the internal
impedance of the generator. The transmission line is coupled to a res-
onant cavity through a magnetic coupling mechanism. The resonant
cavity is represented by a lumped circuit as it is shown in figure 5.24.

The magnetic coupling mechanism is represented as a transformer,
where L1 is the auto-inductance and M is the mutual-inductance of
the transformer. The coupling mechanism is supposed to be without
loss.

We can either refer the cavity impedance to the primary or to refer
the generator to the secondary. The latter case leads to the definition
of matched generator, whose internal impedance is

Z =
(ωM)2

jωL1 + Z0

, (5.16)

and this leads to the circuit of figure 5.25.
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We can write the definition (5.16) as

Z =
(ωM)2

Z0[1 + (X1/Z0)2]
(1− jX1/Z0) = Rc(1− jX1/Z0), (5.17)

where Rc is called coupled resistance and X1 = ωL1. Let us introduce
the definition of coupling coefficient15

β =
(ωM)2

Z0Rs

1

[1 + (X1/Z0)2]
= β1

1

[1 + (X1/Z0)2]
=

Rc

Rs

, (5.18)

therefore, from the principle of maximum transfer of power, it is clear
that when β = 1 the coupled resistance and cavity losses are equal, and
the cavity is said to be critically coupled. When β < 1 the cavity is
said to be undercoupled ; when β > 1, the cavity is called overcoupled.

It is worth note that under most circumstances, the term [1 +
(X1/Z0)

2] is nearly equal to unity and β ≈ β1. Moreover, The defi-
nition (5.16) can be written

Z = βRs(1− jX1/Z0), (5.19)

The loaded Q value of the system is defined as the ratio of the total
reactance to the total series loss. It is given by

QL =
ωL− βRsX1/Z0

Rs(1 + β)
=

ωL

Rs

1− (βRs/Z0)(X1/ωL)

1 + β
, (5.20)

and if it is valid that

• ω = ω0 = 1/
√

LC,
• the unloaded Q is Q0 = ω0Rs/L, and
• (βRs/Z0)(X1/ωL) � 1,

then we can write the following relations

QL =
Q0

1 + β
,

1

QL

=
1

Q0

+
β

Q0

, Qext =
Q0

β
, (5.21)

where Qext is called external Q. It is worth noting that at the critical
coupling (β ≈ 1), QL ≈ Q0/2.

7.3. Detuned short position. The solution of many problems
involving resonant cavities can be simplified by considering, either
graphically or numerically, the cavity input impedance in the complex
impedance plane.

The impedance at the generic terminals a−a′ in figure 5.26 is equal
to

Zaa′ = jX1 +
(ωM)2

Rs + j(ωL− 1/ωC)
→

Zaa′

Z0

= j
X1

Z0

+
β1

1 + j(ωL/Rs)[1− (ω0/ω)2]
.

(5.22)

15It is worth note that β is the same symbol used for the speed of particles,
namely v = βc; the significance should be apparent from the context.
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Figure 5.26. Coupling through an iris. The cavity is
referred to the primary.

For cavities with high quality factor ω ≈ ω0 and then, equation (5.22)
can be written as

Zaa′

Z0

= j
X1

Z0

+
β1

1 + j2Q0δ
, δ =

ω − ω0

ω0

, (5.23)

and the quantity δ is called the frequency tuning parameter. The sec-
ond term of equation (5.23) corresponds to a circle on the complex
impedance plane, where the first term expresses the effect of the self-
reactance of the coupling system.

We can choose the reference planes along the transmission line at
which the first term disappears and this series of positions are called
the detuned short positions. Let the terminals b − b′ be selected at a
distance l away from the terminals a− a′. The impedance Zaa′ can be
transformed in

Zbb′

Z0

=
Zaa′ + jZ0 tan αl

Z0 + jZaa′ tan αl
, (5.24)

where α is the propagation number. The location of terminals b − b′

can be chosen so that the impedance at terminals b− b′ becomes zero
when the cavity is detuned. This means that the impedance locus is
symmetric respect to the real axis on the complex impedance plane,
since the far points out of resonance are near the point where R = ∞.

7.4. RF procedure. In this section we derive a RF measurement
recipe that implies only the use of a Network Analyzer. The used
functions are so general that each specific model should have them.

• First, we assumed that the source of our cavity had an internal
impedance Z0 equal to the characteristic one of the transmis-
sion line used to feed the cavity in the previous relations. This
implies that the network analyzer cables and the other tools
used to feed the cavity right on to the coupling mechanism
should be perfectly matched too.

• Then, we consider the measurement of reflection coefficient S11

and we use the Smith chart visualization of it. If the frequency
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range is set around the resonance, the locus of impedance
points describes a complete circle which should be seen on
the display.

• Next, we use the phase offset option to make the circle sym-
metric respect to the real axis of Smith Chart. By this way,
we put our point of view in a detuned short position.

• Last, we store the data on a diskette, in order to continue the
procedure on a personal computer.

By using definitions (5.21), we can write

Zbb

Z0

=
β

1 + j2Q0(δ − δ0)
=

β

1 + j2QL(1 + β)(δ − δ0)

=
β

1 + j2Qextβ(δ − δ0)
.

(5.25)

By then, we use a matlab program that numerically finds the frequency
points where the following relation occurs

Zbb

Z0

=
β

1± j
,

and, in this case, it is true that 2Q0(δ − δ0) = ±1. Let us call δ1 and
δ2 the two points where they occur, then

Q0 =
1

δ1 − δ2

=
f0

f1 − f2

, (5.26)

f1 and f2 are called half power points. In analogous way, we can find
points where

Zbb

Z0

=
β

1± j(1 + β)
→ Ybb

Y0

= G± jB =
1

β
± j(

1

β
+ 1)

and, in this case, it is true that 2QL(δ−δ0) = ±1. Then, it is sufficient
to find the points where B = G+1, let us call δ3 and δ4 the two points
where it occurs, next

QL =
1

δ3 − δ4

=
f0

f3 − f4

, (5.27)

Finally, we can find points where

Zbb

Z0

=
β

1± jβ
→ Ybb

Y0

= G± jB =
1

β
± j1

and, in this case, it is true that 2Qext(δ−δ0) = ±1. Then, it is sufficient
to find the points where B = 1, let us call δ5 and δ6 the two points
where it occurs, next

Qext =
1

δ5 − δ6

=
f0

f5 − f6

, (5.28)

Of course, this procedure could be manually carried out, by using
Smith Chart. The relevant points are shown in figure 5.27. Finally,
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Figure 5.27. Identification of the half-power points
from the Smith chart. Q0 locus is given by X = R
(B = G); QL by B = G + 1 and Qext by B = 1.

note also that the coupling factor β is the normalized impedance when
the impedance focus crosses the real axis.





Conclusions and Outlook

In this thesis the study and the development of the radiofrequency
design of a module prototype for a linear accelerator intended to be
used for hadrontherapy have been carried out. The aim was to proof
the feasibility of such a structure in a not expensive way, together
with the development of techniques to be used in a future industrial
production. The conclusions to draw are on different levels and concern
the various treated aspects.

Concerning the realized module prototype, the result was quite sat-
isfactory. The following figure shows the successful installation of the
prototype in the LIL area at Cern in Geneva in the first days of Novem-
ber 2000. The reached performances of the module were 25% better
than what was expected.

This result means that the adopted design was sufficiently robust to
support better performances and that some conservative approaches,
as the one concerning the bravery factor for the Kilpatrick limit, could
be relaxed in the next realization, leading to a shorter accelerator. This
thing does not have to astonish the reader, since the first LIBO module
was thought as a proof of principle and, from this point of view, it was
realized golden plated.
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Concerning the design procedure, the conclusion to draw is that
the engineering procedures for an industrial production of this kind of
structures still need lots of work to simplify the construction respect
to the usual procedures used for the high energy physics linear accel-
erators. Even though, several innovative approaches have been carried
out during the development.

First of all, the design steps have been rewritten with a top-down
methodology. The best advantage of this approach should be the study
of an equivalent circuit model before the detailed design of the mechan-
ical pieces, as the tiles. In this case, one can fix the largest mechanical
tolerances to satisfy the requested electromagnetic parameters of the
structure.

This preliminary study can be carried out by using either a full
numerical approach, as the one with Spice-like simulators, or a trans-
mission matrix representation that easily allows a perturbation study
of the structure. With this latter approach good results were reached.

Concerning the resonant frequency of a coupled cavities chain, the
deviation depends only on the errors in the accelerating cavities, which
are the charged ones for the mode π/2 mode. It is worth noting that
this result was obtained only under the hypothesis of negligible non-
adjacent cavities coupling, but it should be also true without the pre-
vious hypothesis, and leads to very interesting and simplified tuning
procedure of such a structure: One could think to act on all the accel-
erating cavity frequencies of the same quantity, in order to change only
the mean value. This point really simplified the tuning procedure.

About the flatness of the axial field, it was found a manageable
formula that could be used in a numerical program that makes the
permutation and use a mean square error as optimization parameter.
Concerning this last point, it is worth noting that the errors in the cav-
ities are experimentally measured and, as we stated before, they are
affect by a measurement error. Therefore, the procedure of optimiza-
tion is effective when the measurement error is proportionally smaller
than the measured values.

The full numerical approach could be used as a further proof of the
criteria expressed by the perturbation approach.

For the realization of the first LIBO prototype module, the radiofre-
quency measurement was the strongest tool of correction and under-
standing of the structure behaviour. With respect to the literature on
the argument, the developed procedures seem to be easier and more
understandable. A further consideration has to be made on the possi-
bility to make automatic measurement: the use of simplified formulas,
as the ones of the perturbation approach, together with a skilled use of
a network analyzer, a personal computer and some motors, etc., should
permit the realization of an automatic measurement station on these
structures, where the man power would not be high qualified.
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Finally, a comment on the next future possibility to make 6−11 GHz
models of these structures. Actually, the optimization and measure-
ment criteria should allow a feasible design without the requirement of
stringent tolerances that should grow up the costs.
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