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Abstract of Dissertation

Photon Beam Asymmetry Measurement from the
γn→ K

+

Σ
−

Reaction

Strangeness channels are important in the experimental search for missing baryon reso-

nances. Phenomenological reaction models for the extraction of resonance parameters, such

as coupled-channels analyses, require data for many observables, in different channels, and

on different targets. The analysis presented in this thesis is the first measurement of the

beam asymmetry over a wide range in the kaon azimuthal center-of-mass angle (which is

essential for accessing the s-channel contribution) for the exclusive γn → K
+

Σ
−

reaction,

using the deuteron as a quasi-free neutron target. The data used were from the CLAS g13b

run period (experiment E06-103) at Jefferson Lab, which used linearly polarized tagged

real photons with energies between 1.1 and 2.3 GeV. Results are shown for two photon-

energy bins: 1.9-2.1 and 2.1-2.3 GeV. They agree well (within uncertainties) with the beam

asymmetries obtained at LEPS for forward angles, but show a clear disagreement with the

predictions from the current Kaon-MAID over wide range of kaon c.m. angles.
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Chapter 1: Introduction

Since the discovery of the atomic nucleus, physicists have sought to understand its con-

stituents and the strong interactions between them. Experimental and theoretical efforts

during the second half of the 20th century led to a gradually improved qualitative under-

standing of the nucleon. Significant developments included, among many, Deep Inelastic

Scattering experiments and symmetry-based classification schemes. Such developments

contributed greatly to our understanding of hadrons (mesons and baryons) through their

interpretation as composite systems rather than fundamental particles and, in particular,

through the introduction of a new quantum number, the color charge, which led to the

development of Quantum Chromodynamics (QCD), the now accepted theory of strong in-

teractions.

Among the various properties of QCD, the phenomena of asymptotic freedom and quark

confinement are of great interest for both theorists and experimentalists. At high energies

the interaction is weak (asymptotically), but at lower energies the strength of the interaction

increases significantly. As a consequence, the low-energy behavior of QCD is manifestly non-

perturbative, which restricts the possibilities to perform calculations in this regime. The

confinement of quarks in hadrons is a key part of QCD phenomenology, but understanding

it requires experimental input. Quark confinement as well as intra-hadron dynamics are

manifest in the structure of hadrons. Experiments that test fundamental aspects of the

nucleon structure include Spectroscopy, Deep Inelastic Scattering (DIS), and Deep Exclusive

Scattering (DES) such as Deep Virtual Compton Scattering (DVCS). Spectroscopy is the

topic of this thesis. Contrary to DIS and DES, spectroscopy experiments probe the nucleon

as a whole by means of hadronic (pion) or electromagnetic (photon) probes. In the latter

case, the photon virtuality, or four-momentum transfer (−q2) from the electron, is usually

low. As a result of the (s-channel) process, the nucleon is left in an excited state. To

be considered a true resonant state, the lifetime has to be sufficiently long to allow the

constituents to reach an equilibrium (thermalization) well before the de-excitation process

occurs.1 When the excitation energies become very high, the lifetimes are too short to form

1In this sense, the decay of the resonance depends only on its energy, angular momentum, and parity,
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proper states, and the spectrum transitions into a continuum. To determine its properties,

the decay products of the resonant state are measured and analyzed. As in atomic physics,

the analysis of the spectrum of excited states can reveal important information about the

structure and properties of nucleons. The investigation of this spectrum therefore plays a

vital role in the achievement of a comprehensive picture of strong interaction physics.

1.1 The Strong Interaction

Over the years there have been many attempts to try to explain the properties of physical

systems in terms of their symmetries. Such attempts gave birth to the symmetry-based

quark model, which in turn led to the development of QCD−the theory of the strong

interaction.

1.1.1 The Symmetry-based Quark Model

The generalization of simple rotation symmetries (isospin) to include new properties (stran-

geness), forming larger symmetry groups, led to the formulation of schemes aimed at cat-

egorizing the rapidly expanding list of new particles discovered by the middle of the 20th

century. The best known, and most successful of these schemes was the classification de-

veloped by Murray Gell-Mann [1], given the popular name “the Eightfold Way”. Within

this scheme, hadrons fit into patterns forming octets, nonets, and decuplets. Gell-Mann

recognized that these geometrical patterns could be described mathematically in terms of

representations of a symmetry group. Based on this symmetry and the observed mass dif-

ferences between particles with different values of strangeness (S), Gell-Mann was able to

predict the existence of a new particle with charge Q=−1 and strangeness S=−3. He was

further able to calculate its mass and lifetime, and tell the experimentalists exactly how

to produce it. The correctness of the scheme was confirmed when in 1964 the Ω− was

discovered at the Brookhaven National Laboratory [2].

An understanding of the Eightfold Way came when Gell-Mann and Zweig [3] indepen-

dently proposed a model in which all hadrons correspond to bound states of more elementary

but not on the specific way in which it was produced.

2



constituents−with spin 1/2 and positive parity−which Gell-Mann called quarks. In this

model, referred to as “the quark model”, all the Eightfold Way patterns emerge naturally

from the combination of different type of quarks.

There are currently six known types or “flavors” of quarks (along with six corresponding

anti-quarks): three light quarks, up (u), down (d), and strange (s), and three heavy quarks,

charm (c), bottom (b), and top (t), with the lifetime of the last being, however, too short

to form hadrons.2 Light quarks and anti-quarks form themselves the fundamental repre-

sentation (Figure 1.1) of an approximate symmetry, known as flavor SU(3), from which the

flavor contents of light hadrons can be obtained.3

d u

sS = −1

S = 0

Q = −1

3

Q = +
2

3

ū d̄

s̄

S = 0

S = 1

Q = +
1

3
Q = −2

3

Figure 1.1: Light quarks (left) and light anti-quarks (right) as fundamental representation
of flavor SU(3). The horizontal axis in SU(3) representations is called isospin, while the
vertical one is called hypercharge (here associated with strangeness).

Within the quark model, the hadron spectrum is classified in the following way:

• Mesons correspond to bound states of quark-antiquark pairs (qq̄). For the light quarks

there is a total of nine (3 ⊗ 3̄) possible qq̄ flavor combinations with a total spin J and

angular momentum L. These can be decomposed into a sum of two irreducible SU(3)

representations, an octet and a singlet: 3 ⊗ 3̄ = 8 ⊕ 1. For ground-state pseudoscalar

mesons (JP= 0+) these correspond to an octet formed by π±, π0, η, K±, K0, K̄0 and

2With a very short lifetime (∼ 5×10−25 s) the top quark decays through the weak interaction before it
hadronizes.

3In group theory, the SU(n) group describes rotations in complex space, and can be represented by a
set of n × n Special Unitary matrices with a determinant that is equal to +1. The number of generators
in the group is given by n2 − 1. Based on the generators, each group with a certain value of n can have
representations with dimensions (n, n+1, n+2, n+3, ...), with n being called the fundamental representation
of the corresponding SU(n) group.
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the η′ as a singlet. If flavor SU(3) were an exact symmetry, all nine mesons would have

the same mass.

• Baryons (antibaryons) correspond to bound states of three quarks qqq (antiquarks q̄q̄q̄).

In contrast to mesons, which are bosons, baryons are fermions, and their wave functions

must be antisymmetric under exchange of any two quarks. The number of possible light

flavor (qqq) combinations rises to 27 (3⊗3⊗3). These can be decomposed into a decuplet,

two octets, and a singlet: 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1. The lowest-mass baryons (L=0)

form a spin-1
2 octet (n, p, Λ0, Σ0, Σ±, Ξ−, Ξ0) and a spin-3

2 decuplet (∆0, ∆±, ∆++,

Σ∗0, Σ∗±, Ξ∗0, Ξ∗−, Ω−).

The quark model (at this level of simplicity) is, in essence, a symmetry-based classification

scheme for hadrons.4 However, despite its success, an apparent problem was revealed with

the ∆++ and ∆− baryons, as well as with the predicted Ω−. These baryons are composed

of three identical quarks: uuu, ddd, and sss, respectively. For these baryons, the exchange

of any two quarks leads to a symmetric total wave function, which contradicts the antisym-

metric behavior expected for a fermionic system. The problem was solved by introducing

an additional quantum number called “color”, which can take three possible values: r, g,

and b. The color wave function for a baryon is:

(qqq)color =

√
1

6
(rgb− rbg + brg − bgr + gbr − grb)

which is antisymmetric and shows that the probability of finding a quark in any of the three

color states is 1/3. Thus, by assuming each quark to be in a different color state, they are

no longer identical, and the required antisymmetric character of the total wave function

is recovered. The introduction of the color charge as a new quantum number led to the

development of Quantum ChromoDynamics (QCD).

4Further developments of the flavor-symmetric quark model provide a more quantitative description of
the different states of hadrons through calculations including asymptotic freedom and quark confinement in
the form of phenomenological potentials.
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1.1.2 Quantum Chromodynamics

The formulation of the quantum field theory of the strong interaction (QCD) was inspired by

Quantum ElectroDynamics (QED). However, although both theories share some similarities

in their structure, they have fundamental differences that make non-abelian QCD much

more complicated. This is related to the fact that in QCD there are three different types of

“positive” and “negative” charge, which comes in three colors: red (r), green (g), and blue

(b) and for anti-quarks, in three anti-colors: anti-red (r̄), anti-green (ḡ), and anti-blue (b̄).5

As with the flavor SU(3) symmetry for the light quarks encountered in the quark model,

the 3 colors and 3 anti-colors form the fundamental representations of a new symmetry in

QCD called color SU(3). In contrast to flavor SU(3), this is a symmetry expected to be

exact since the color charge seems to be a conserved quantity.

As in QED, the strong interaction is mediated via the exchange of massless spin-1 bosons

called gluons (from glue). Unlike the QED photon, which does not carry any charge, a gluon

does carry color charge. Therefore, gluons play a dual role: they act as generators of the

SU(3) color group transforming one color state into another, and they also act as “particles”

that can couple directly not only to quarks but also to other gluons. This characteristic

of QCD creates the possibility of having bound states of only interacting gluons, called

glueballs, and states formed of the combination of a gluonic excitation with either three

quarks or a quark-antiquark pair, called hybrid baryons and hybrid mesons, respectively. The

gluon-gluon interaction also results in a complex behavior of the strong “coupling constant”

αs. In the surroundings of a quark, the quantum vacuum creates virtual clouds of both

quark-antiquark pairs and gluons that appear from nothing and immediately disappear.

Such clouds, in terms of expansions of the QCD vertex in Feynman diagrams, are included

as fermionic and bosonic loops, respectively. The effect of the quark-antiquark loops coming

out of the vacuum is to screen the color charge, reducing its value for increasing distance.

This effect is known as charge screening and, as a consequence, shows that the magnitude

of the measured charge depends on the distance (or the energy) at which one is probing

the charge. The action of the gluon loops dominates and goes in the opposite direction,

5More generally, the various color charges and anti-charges can be interpreted as eigenstates of color
isospin and color hypercharge.
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producing charge antiscreening. Thus, the net effect concerning QCD (in contrast to QED)

is that the color charge increases with the increasing probe distances [4]. A comparison of

the screening characteristic of the electric and color charge is shown in Figure 1.2.

Figure 1.2: Screening of the (a) electric and (b) color charge. Only one of all the possible
diagrams for the electron and quark charge clouds is shown. Figure taken from [5].

The screening of the color charge is reflected in the behavior of the strong “coupling

constant” αs. At high energies, two quarks interact through color fields of reduced strength

(small αs) and asymptotically approach a state where they behave as essentially free, non-

interacting particles. Hence, a perturbative treatment of QCD at these energies is justified.

In contrast, at low energies, the strength of the color field increases asymptotically (large

αs), creating strongly bound states of quarks and antiquarks (hadrons). This makes a

perturbative treatment of the physical quantities analytically unfeasible. This property of

QCD manifested by the behavior of the coupling constant (better called the running of

the coupling constant) is known as “asymptotic freedom” and was found theoretically by

Politzer, Gross, and Wilczek [6, 7].6 Experimentally, the value of αs has been determined

6This theoretical discovery saved QCD from being thrown out as it acquired the status of a QED-like
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from the analysis of various processes, for instance, through scaling violations in deep in-

elastic scattering, the probability of observing a third jet in e+e− hadronic processes, and

excessive hadronic production in e+e− interactions. Figure 1.3 presents the results obtained

for αs from such analyses along with corresponding theoretical predictions [6, 7]. The effect

of the non-perturbative QCD behavior is evident from the results for αs observed at low

energies.

Figure 1.3: Energy dependence of the strong running coupling constant αs. World data
points from different experiments are shown as well as some QCD calculations (solid and
dashed lines) [6, 7]. Figure taken from reference [8].

While many particles carry electric charge, no observed particles have ever been found to

carry color. Experimentally, quarks seem to be confined in colorless packages of two and

three quarks, that is to say, confined within mesons and baryons. The particles measured in

the laboratory (hadrons) are therefore indirect and complicated manifestations of Chromo-

dynamics rather than elements of the theory itself. Hadrons are not present in QCD directly

as particles, but as bound states of quarks and antiquarks. The unsuccessful attempts to

theory useful to calculate interquark potentials (in the asymptotic limit).
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observe free quarks formed the basis for the confinement hypothesis. Confinement is the

mechanism that is believed to keep quarks and antiquarks permanently inside the hadrons.

Figure 1.4 represents an interpretation of quark confinement. At distances of about one

fermi (where αs approaches one), the color field can be seen as concentrated in a narrow

flux tube (the shaded region). As the quark-antiquark separation distance increases, the

length of the tube increases, but its diameter remains approximately constant. Therefore,

the energy density of the field remains constant, and the potential energy of the quark

system has to increase proportionally to its separation length. When the potential energy

in the tube is large enough, it becomes energetically more convenient to break the tube

producing a new quark-antiquark pair rather than further separate the original quarks,

causing the system to be left with two mesons instead of one. Since an infinite amount of

energy is needed to separate two quarks [4], the model prevents the possibility of breaking

the hadron to produce free quarks.

Figure 1.4: Sketch of the confinement between a quark (c) and an antiquark (c̄). The color
field is represented by the shaded region. Figure taken from reference [9].

It is therefore at low energies−where perturbation theory cannot be applied to QCD−that

most of the puzzling features of the strong interaction reveal themselves most clearly. Since

many of the nucleon resonant states dominate at low energies, the nucleon constitutes a

promising testing ground for understanding some of the features of QCD. One of the av-

enues is to explore the nucleon through its excited states. The discussion of some of the

techniques, approaches, and models applicable in the low-energy regime will be the focus

of the next subsections.
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1.2 Experimental Studies of the Nucleon

There are basically two complementary ways of approaching the experimental study of

nucleon structure: either through a direct or an indirect process. Directly probing the

constituents of the nucleon in its ground state requires sufficiently good resolution. This

means that the wavelength of the probe particle has to be small compared to the nucleon

radius, λ<<R, or the four-momentum transfer from the photon Q2>>~2/R2. To achieve

large four-momentum transfers in scattering experiments, high energies are required [10].

The use of high-energy elementary particles (electrons, muons, and neutrinos) as probes

allows one to go deep inside the nucleon and directly explore its composition at the quark-

gluon level. Direct processes are divided into inclusive and exclusive reactions. In the first

case, only the scattered electron is detected while all the final states are summed over; in

the second case, the complete final state is measured. Direct inclusive experiments include

Deep Inelastic scattering (DIS). For direct exclusive experiments, form-factor measurements

and Deep Virtual Compton Scattering (DVCS) are good examples.

In the indirect process, the nucleon is explored as a whole (a compound system) rather

than through its components. Information about nucleon structure is obtained by studying

the characteristics of the nucleon and its excited states. This indirect approach is used in

spectroscopy experiments where the nucleon is excited by an intermediate-energy probe.

The nucleon then decays into a measurable final state. The analysis of such decays of the

excited nucleon can, for instance, provide insight into quark correlations.

Worthy of mention is the fact that both direct and indirect methods share similarities

in their procedures. Their main goal is to learn about different aspects of nucleon structure

that are not observables. Direct methods provide structure functions from which parton

distributions have to be extracted while indirect methods give global information on the

nucleons excited states from which one can understand the behavior of its constituents

through model calculations.
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1.2.1 Direct Inclusive Processes

In Deep Inelastic Scattering (DIS), the structure of the nucleon is explored through scat-

tering of high-energy leptons (electrons, muons, and neutrinos) off the nucleon. In this

process, one of the partons (quarks) in the nucleon is struck, but neither the hadrons from

the struck quark nor the nucleon remnant are detected directly. By measuring only the

scattered electron one thus sums over all possible final states. This allows application of the

optical theorem, which together with factorization gives access to the Parton Distribution

Functions (PDFs). Diagrams of the inelastic process and the DIS “handbag” are shown in

Figure 1.5.

Figure 1.5: (left) Schematic diagram of the lowest-order electron-nucleon “inelastic” scat-
tering. The virtual photon γ∗ interacts with a single quark of the nucleon. The hit quark
hadronizes and escapes the nucleon leaving the final hadronic state undetermined. The only
particle measured in DIS is the scattered electron e′. (right) The optical theorem: the cross
section of the DIS process is equivalent to the imaginary part of the forward amplitude of
the double virtual Compton scattering on a quark.

The PDFs, as functions of −q2 and x (the momentum fraction carried by the struck

quark in a fast-moving nucleon), reveal the longitudinal momentum distributions of quarks

and gluons inside the nucleon. PDFs are obtained indirectly through global fits of cross

section data. The DIS cross section is expressed in terms of structure functions. Unpolar-

ized structure functions are called f , and polarized ones are called g.7 Figure 1.6 shows the

longitudinal momentum fraction carried by quarks and gluons as a function of the momen-

tum fraction x. At high values of x, the nucleon is dominated by valence quarks (u and d

7The structure function h, which is related to the target polarization, cannot be measured in DIS.
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for the case of protons) and gluons. In contrast, at lower x, quark-antiquark pairs (known

as the “sea quarks”) and gluons become more prominent.

Figure 1.6: Parton Function Distributions (PDFs) in DIS. At high x, valence quarks and
gluons govern the nucleon while at low x, virtual quarks and gluons are more noticeable.

Deep inelastic scattering experiments also allow for the possibility of exploring the lon-

gitudinal spin of the proton. Using polarized electron beams, it has been demonstrated that

no more than ∼30% of the spin of the nucleon comes from the spin of the quarks [11]. There

is a variation of DIS called semi-inclusive DIS (or SIDIS), in which the hadron coming from

the struck quark is also detected. By tagging the active quark, semi-inclusive DIS offers

the opportunity for determining spin-flavor decomposition of nucleon PDFs. If in addition,

the kinematics of that specific hadron are measured, one can learn about the transverse

momentum distribution of quarks and gluons inside the nucleons (known as TMDs). Using

polarized beams and targets, TMDs may offer a way of understanding the orbital angular

momentum of quarks, a fact that seems important for a complete decomposition of the

proton spin.

1.2.2 Direct Exclusive Processes

1.2.2.1 Form Factors (Elastic Scattering)

Nucleon form factors describe the spatial distribution of charge and magnetization inside the

nucleon. The form factors are measured through the elastic scattering of leptons (electrons
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or muons) off protons or neutrons: eN → eN ′. In elastic scattering no additional particles

are produced and the target remains intact after the interaction (see Figure 1.7). As a con-

sequence, the four-momentum transfer to the nucleon, t, is identical to the four-momentum

transfer from the electron, −q2.

Figure 1.7: Schematic diagram of the lowest-order electron-nucleon “elastic” scattering.
The virtual photon γ∗ interacts with a single quark which remains in the nucleon. The
nucleon changes its momentum in the process but it remains a nucleon, unlike the DIS
process where it is “smashed into pieces”.

In non-relativistic theory, the charge distribution is simply given by the Fourier trans-

form of the form factors. The nucleons require a description with two form factors, F1

and F2, which generalize the “effective” charge and magnetic moment. F1 is associated

with the deviation from a point charge Dirac particle and F2 with the deviation from a

point anomalous magnetic moment. The linear combination of F1 and F2 leads to a more

convenient set of form factors, one electric GE(t) and one magnetic GM (t). For the case

of electron scattering off a nucleon, GE and GM can be accessed experimentally through

the measurement of the eN scattering differential cross section for a given value of t at

various scattering angles θ, corresponding to different beam energies. This is known as

the Rosenbluth method [10, 5]. Another alternative, newer method to determine GE/GM

is to measure polarization observables in eN scattering rather than cross sections. This

leads to a more accurate determination of the form factors since radiative corrections are

greatly reduced. Some of the most recent and accurate measurements of nucleon form fac-

tors following this polarization method have been taken in Hall A [12, 13] and Hall C [14]
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at JLab. However, the Rosenbluth and Polarization methods differ significantly in their

results, and there is not yet a clear explanation of the disagreement, although two-photon

exchange is now being investigated as a possible cause [15]. Nonetheless, the measurement

of the t-dependence of the electromagnetic form factors GE and GM is important to obtain

information about the radial charge distributions and the magnetic moments which is very

valuable to understand the transverse spatial distribution of quarks inside the nucleon.8

1.2.2.2 Generalized Parton Distributions (GPDs)

Extensive information about the structure of the nucleon can be obtained from the correla-

tion between spatial and momentum coordinates of partons, i.e., simultaneous knowledge of

the transverse position and the longitudinal momentum of quarks and gluons in the nucleon.

Such a generalization of the phase space allows one to to create an image of the nucleon

in longitudinal momentum (x) and impact parameter (b) space within a single framework.

Generalized Parton Distributions (GPDs) carry the information needed to generate such

phase-space images of the quarks and gluons in hadrons.

GPDs are probed through the study of hard processes.9 A key point here is QCD factor-

ization, the separation of a “hard” scattering on a single quark, which is exactly calculable

in pQCD and a “soft” non-perturbative part encoding the nucleon-structure part ampli-

tude parametrized in terms of a set of generic structure functions, GPDs. While moments

of GPDs are also possible to calculate in Lattice QCD [16], in terms of measurements,

the simplest processes accessing GPDs are deep-inelastic exclusive production of mesons

and photons. These include Deep Virtual Meson Production (DVMP), where both vector

(ρ0,±, ω, φ) and pseudoscalar (π, η) mesons are produced off the nucleon, and Deep Virtual

Compton Scattering (DVCS), where a real photon is produced in the final state. DVMP

involves gluon-exchange processes that make testing against GPD models technically much

more difficult (especially at low Q2) compared to DVCS. As a consequence, Compton scat-

tering (DVCS) is the theoretically cleanest and most easily understood reaction to infer

8The interpretation of the Fourier transform of the form factors as the charge and magnetic distributions
of the nucleon only has meaning in the Breit frame, a frame in which the scattered electron transfers
momentum but no energy to the proton.

9Hard processes are defined as reactions in which the large transfer of momentum to quarks and gluons
allows for the application of perturbative QCD.
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information at low energies about GPDs. Figure 1.8 shows the leading-twist “handbag”

diagram for DVCS and DVMP where the complex structure of the nucleon is parametrized

in terms of GPDs. A point to notice is that DVCS can probe the nucleon at values of x

that can be different before and after the reaction. The difference in x, represented by ξ, is

called “skewness”.

Figure 1.8: Exclusive electron-nucleon scattering eN → e′N ′(γ,M) for Deep Virtual Comp-
ton Scattering (DVCS) and Deep Virtual Meson Production (DVMP). γ stands for a real
photon produced off the nucleon and M = {ρ0, π, . . . } for a meson. The lower blob repre-
sents the unknown structure of the nucleon which is parametrized in terms of four indepen-
dent generalized structure functions: H, E, H̃, and Ẽ.

The GPD framework unifies PDFs (DIS) and elastic form factors. The DIS diagram is

an asymptotic case of DVCS when ξ = 0 and t = 0. Therefore, in that limit, Compton

scattering should give access to PDFs. On the other hand, in the limit of small skewness

(ξ → 0), the t-distribution at each (Q2, x) point can be related to a transverse spatial

distribution through a Fourier transform, providing similar information to that extracted

from elastic form factors, if integrated over x. In addition, at large skewness, GPDs can

also reflect the correlations between partons (e.g. qq̄ pairs) inside the nucleon. This can

be seen as being directly complementary to the studies of correlations between constituents

(essentially valence) quarks that we can carry out through N∗ spectroscopy.
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1.2.3 Nucleon Spectroscopy

The nucleon can be explored as a whole through its interaction with low-energy beams.

As a result, it is left in an excited state (resonance). Since much of the work in nucleon

spectroscopy has been done with the pion + nucleon (πN) system, an excited state is

conventionally written as L(
√
s)2I,2J where L, being defined as the relative orbital angular

momentum between the pion and nucleon, is labeled as S, P , D, F , G according to its value

L=0, 1, 2, 3, 4.
√
s is the center-of-mass energy at which the resonance is observed, and I

and J are the isospin and total angular momentum, respectively. Nucleon resonances with

I = 1
2 are called N∗ while resonances with I = 3

2 are known as ∆∗.

The study of the properties of the nucleon resonance spectrum, known as nucleon spec-

troscopy, offers the opportunity to learn about the dynamics of constituent quarks, and in

particular, about their collective behavior and correlations between them, shedding light on

the comportment of QCD in the non-perturbative energy regime. The study of nucleon reso-

nances is, however, not a matter of just extracting resonance parameters from experimental

data. It is the interpretation of such extracted resonances through either predictions from

phenomenological models of the nucleon or numerical solutions from QCD-based calcula-

tions that allows one to learn the underlying physics. Predictions from phenomenological

models, represented by constituent quark models (CQM), are connected with the under-

standing of correlations between quarks inside the nucleon. On the other hand, reproducing

the measured spectrum of nucleons from QCD-based calculations, like lattice QCD (LQCD),

would validate QCD as the correct theory of strong interactions.

Extracting nucleon resonances from data is thus fundamental for corroborating models

and QCD calculations. Particularly, it is important for two reasons: to characterize the

resonance spectrum, firmly establishing the resonance properties (mass, spin, decay widths,

etc), and to search for nucleon resonances predicted by phenomenological models of the

nucleon (e.g. CQM) but not found experimentally yet. These unobserved nucleon excited

states, known as the “missing resonances”, call into question whether the quark correlations

implicit in CQM are correct or not. There are two possible solutions to this problem.

One solution points to reduce the dynamical degrees of freedom used in CQM since three
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symmetrical constituent quarks might not be physically realized. A model having fewer

degrees of freedom in the system would lead to a spectrum with fewer missing states. Such

an alternative model, consisting of a quark and a strongly correlated pair of quarks, is called

the di-quark model. The other solution deals with the fact of possibly not looking for the

missing resonances in the correct place. Most of the experimentally known resonances come

from channels that include pions in the final state of the reaction. Capstick and Roberts [17]

have shown that some missing nucleon resonances could couple weakly to pion final states

but may have significant couplings to different final states, like strangeness production,

vector-meson production, etc. In fact, recent theoretical analyses [18, 19] of the same CLAS

polarization data for strangeness photoproduction on the proton [20] result in claims of

evidence either for aD13 or a P13 missing resonance at about 1900 MeV. Data for strangeness

photoproduction on the neutron is needed to tell which theoretical analysis, if either, is

correct. Therefore, investigation of nucleon resonances from formation channels other than

pion-production might lead to the discovery of some of the missing states. However, finding

some of the missing states would not necessarily imply a confirmation of the validity of

the constituent quark models. In addition to the usual three valence quark states, QCD

predicts the existence of baryons with “excited glue”, the so-called hybrid baryons. As a

consequence, the discovery of a new resonant state can be interpreted either as one of the

missing resonances predicted by the constituent quark models, or as one of the undiscovered

hybrid states predicted by QCD, or even as a mixture of both of them.

The nucleon resonances cannot be extracted directly from the experimental observables.

Instead, the observables are linked to the nucleon excited states through the use of reac-

tion models. This is connected with the existence of interfering resonances in the nucleon

resonance spectrum. At intermediate energies (see Figure 1.9), the spectrum (the nucleon

photoproduction cross section) shows three prominent peaks referred to as “first”, “second”,

and “third” resonance regions (the low-lying states). The first region is well understood as

it is composed mainly of a single resonant state, the ∆(1232). In contrast, the other two

resonance regions−where most of the missing resonances are located−are composed of a set

of broad overlapping resonant states with significant background contributions. Isolating

these resonant states from each other and from the background is a non-trivial task to

solve. Reaction models are an attempt to carry out such a task. These fit-based reaction
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models−with no predictive power at all, and performed on a partial-wave basis−make as-

sumptions about both the input resonances and the functional form of the background that,

when combined, might satisfactorily describe a certain partial wave. The best fit to exper-

imental observables dictates the reasonableness of the assumptions. However, since this

involves many fitting parameters, the process typically yields a large number of solutions;

often several random searches are made, each giving a different best fit. The fit ambiguity in

the reaction models can be reduced by having several independent observables per channel

determined with small uncertainties and spread over an ample angular range. Access to

a fair number of independent observables can be achieved by using polarized beams (e.g.

photon beams). Hence, high-quality measurements concerning photoproduction data off

the nucleon play a key role as input for reaction models which, at the end, are the way to

go to improve the current picture of the nucleon and as such, of non-perturbative QCD.

Figure 1.9: Total cross section for the reaction γp→ “anything”. The bumps observed at
photon energies below 2.0 GeV are interpreted as nucleon resonances.

1.3 Outline of the Thesis

Chapter 2 gives a more comprehensive description of the main tools involved in a complete

study of nucleon spectroscopy. The first part of the chapter is focused on the interpreta-

tion of resonance parameters via quark models and lattice QCD calculations. The second

part discusses some of the models used to extract resonance parameters from partial-wave
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amplitudes.

Chapter 3 deals with the state of the art at the experimental level for the reaction

of interest γn → K
+

Σ
−

. Here, the experimental data on both cross section and beam

asymmetry acquired at different experimental facilities are reviewed. This chapter demon-

strates the importance of the measurements performed in this thesis to extend the kinematic

coverage of the current beam asymmetry measurement found in the literature.

Chapter 4 describes the experimental setup involved in the experiment. The chapter

starts with a brief description of the CEBAF accelerator which delivers the electron beam

required to run the experiment. Then, the techniques used to produce a polarized photon

beam based on the electron beam are described. Subsequently, the main components of

experimental Hall B where the data were taken are delineated, starting with the tagging

spectrometer used to tag bremsstrahlung photons, continuing with a description of the

CLAS detector system, and ending with some general comments about the target type, the

data acquisition and trigger characteristics.

Chapter 5 reports on the methods carried out to reconstruct the particle energy and

momentum from the measured energy, path lengths and time values. All the analysis steps

needed to reconstruct the invariant mass of the Σ− are explained in detail in this chapter.

The conditions required to select the quasi-free events as well as the background studies

also form part of this chapter.

Chapter 6 concentrates on the determination of the photon beam asymmetry. The

procedure adopted to extract the photon beam asymmetry is explained in detail. This

involves the use of two different extraction methods: the φ-bin and the moments methods.

Employing two different methods is useful to evaluate the systematic uncertainty associated

with the extraction procedure.

Chapter 7 is devoted to the study of the sources of systematic errors associated with the

determination of the photon beam asymmetry. Different sources are investigated: methods

followed to extract the asymmetry, kinematical cuts used to extract the yields for the

K
+

Σ
−

final state, and the effect of varying the parameters involved in the photon beam

asymmetry determination.
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In the final Chapter, the results obtained in this work are compared with those obtained

by H. Kohri for the LEPS collaboration [21]. The results are also compared with the

predictions of the kaon-MAID [22] model.
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Chapter 2: Nucleon Excited States

As mentioned in the Introduction (Section 1.2), the study of nucleon excited states plays a

vital role in the understanding of intra-nucleon dynamics as well as of QCD as a valid theory

for strong interactions in the medium-energy range. Given the non-perturbative behavior of

QCD at these energies, such an understanding has to be investigated through approximate

solutions of QCD: QCD-inspired models and QCD-based calculations. Within the QCD-

inspired models, constituent quark models solve, in an exact way, an “approximate” QCD

Lagrangian where the valence quarks are replaced by effective quarks which interact through

potentials that mimic QCD asymptotic freedom and quark confinement. Conversely, in

QCD-based calculations, lattice QCD tries to solve the “exact” QCD Lagrangian with a

minimum set of approximations by discretizing space-time. Solving the QCD Lagrangian

provides an avenue for accessing the hadronic spectrum. The underlying physics emerges

then from the comparison between the “approximate” spectra obtained from the QCD

approaches and the spectrum extracted from experimental data.

The extraction of resonances from data brings in some difficulties due to the need for

reaction models to isolate interfering resonant states and non-resonant states. The use of

reaction models leads to model dependency in the extraction procedure. Therefore, the

extracted nucleon spectrum can vary from group to group depending on the specific char-

acteristics of the reaction model used. As a consequence, there is not a general consensus

about the correct “experimental” nucleon resonance spectrum, and the comparison with

“approximate” spectra turns out not to be very fruitful. Having high-precision measure-

ments off the nucleon of independent experimental observables on as many channels as

possible is thought to be the solution to minimize the model dependency in the extraction

of resonance parameters.

Figure 2.1 summarizes the scheme followed in the analysis of reactions produced off

the nucleon (nucleon spectroscopy): (1) extraction of nucleon resonance parameters from

experimental data, and (2) interpretation of such parameters by means of QCD-based ap-

proaches. Resonances are extracted from experimental data by initially decomposing the
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observables in terms of partial-wave amplitudes which subsequently are analyzed through

reaction models. On the other hand, resonances can be predicted from quark models or cal-

culated from lattice QCD. The interpretation of the experimental resonances is only viable

when compared either with the predicted or calculated resonance states.

QCD

Quark Models Lattice QCD

Resonance parameters

Reaction Models

πN → {πN, ππN, ηN, ωN, KY, . . .}

~γ
(↑) (∗)

N → {πN, ππN, ηN, ωN, KY, . . .}

Reaction Data

Figure 2.1: The study of nucleon structure from nucleon spectroscopy data. Nucleon
resonance parameters (resonances) are extracted from experimental data by means of reac-
tion models. The understanding of the extracted parameters depends on comparisons with
the results from phenomenological QCD-inspired models of the nucleon and QCD-based
numerical calculations.

This chapter will focus on giving an overview of the approaches used for interpretation

of experimental resonance parameters (constituent quark models and lattice QCD) as well

as of the main reaction models aimed at extracting resonance parameters from data.
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2.1 Quark model

In addition to the three quarks determining the quantum numbers of the baryons (called

valence quarks), the QCD Lagrangian gives rise to a large number of virtual quark-antiquark

pairs and gluon combinations inside the nucleon (the quark sea). The QCD picture of the

nucleon is therefore a rather complicated system to study as shown in panel (a) of Figure 2.2.

Given that complexity, the properties of the nucleon can be alternatively studied in terms of

bound quarks through an approach known as the constituent quark model (CQM). In this

model, the nucleon is no longer formed of current quarks (or QCD quarks) but instead, it

is assumed to be composed of three “effective” weakly-correlated quarks, called constituent

quarks. Qualitatively, a constituent quark may be viewed as an object in which a “bare”

valence quark is dressed by clouds of quark-antiquark pairs and gluons. The quark sea is

therefore accounted for by assuming the constituent quarks to have a spatial extent, large

masses, and the same quantum numbers as those of the valence quarks.1 Panel (b) of

Figure 2.2 shows the CQM nucleon picture.

(a) (b)

Figure 2.2: (a) The QCD picture of the nucleon: three valence quarks embedded within
the quark sea. (b) The quark model picture of the nucleon: three constituent quarks.

The simplest form of the CQM model is the static quark model in which no interactions

between quarks are included. The predictions from this model arise solely from symmetry

1The point to keep in mind is that QCD quarks and constituent quarks are quite different objects, with
the former being much lighter than the latter.
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rather than from detailed dynamics, which makes it useful to determine only properties like

masses of ground states or magnetic moments. However, despite the simplicity of the model,

the general agreement of its predictions with experimental data is quite impressive [23]. The

inability of the static quark model to explain the observed values for the mass splitting of

hadrons (∆−N , Σ−Λ) led to the development of non-relativistic2 dynamical quark models

that introduced aspects of QCD into the description of constituent quark interactions. The

two key pieces that any formulation of a dynamical quark model must include are a model

for the strong interaction and a confinement potential.3 The Hamiltonian of a conventional

dynamical quark model is then written as

H =
3∑
i=1

(
mi +

|~pi|2

2mi

)
+

3∑
i<j

Vij + Vconf (2.1)

where the first term represents the kinetic energy of the three quarks with mass mi and

momentum |~pi|. Vij is the interaction potential and Vconf is the effective confinement po-

tential.

The pioneering version of the dynamical quark models is that by De Rujula, Georgi, and

Glashow (RGG) [24]. In this model, it is assumed that the hadron-mass splitting is caused

only by the short-range term (spin-spin term) of an interaction connected with the exchange

of one gluon between quarks. Many studies of excited baryon states and electromagnetic

transition amplitudes connecting the nucleon and its excited states were made based on the

observations of the RGG model; the most detailed, representative and phenomenologically

successful of these is the model of Isgur and Karl [25, 26] which describes the interaction

Vij between quarks not only by a short-range term but also by a long-range term and omits

any contribution of the spin-orbit force term.4 This interaction is expressed as

Vij = −αs
λci · λcj

16mimj

(
8π

3
δ(rij)σi · σj +

1

r3
ij

Sij

)
(2.2)

2A system is considered non-relativistic when its binding energy is small compared to the rest energies
of its constituents. Otherwise, the system is relativistic. For nucleons, quark-quark binding energies are
on the order of a few hundred MeV, which is about the same as the effective rest energy of u, d, or s
quarks. Therefore, the nucleon is a relativistic system. Paradoxically, most of the conventional quark
models approximate the nucleon as a non-relativistic system!

3Different versions of the dynamical quark model correspond to different assumptions for the interaction
model approach and/or the confinement potential.

4Except for a factor (related to gluon color), this interaction coincides with the spin-dependent part of
the perturbative Fermi-Breit interaction of QED, which describes the interaction of two fermions by means
of the exchange of one photon.
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where αs is the strong coupling constant, ri, mi, σi and λci are the coordinate, mass, spin,

and color of the ith quark, respectively, rij = ri−rj , and Sij is the tensor operator defined by

Sij = 3σi · r̂ijσj · r̂ij−σi ·σj with r̂ = r/|r|. For the confinement potential Vconf of Equation

(2.1), the Isgur-Karl model uses a quadratic form (harmonic oscillator) combined with an

anharmonic potential. The quadratic potential is especially suited for some S11 resonances

(N(1535) and N(1650)) which have similar internal structures that are not sensitive to the

details of the confinement potential. The anharmonic potential is introduced in the model

as a perturbation.

The Isgur-Karl model describes adequately the systematics of the baryon spectrum, be-

ing especially successful in the description of higher baryon resonances like P-wave baryons.

Although the Isgur-Karl model (and in general, any dynamical constituent quark model)

predicts more states than those actually observed (as mentioned in Section 1.2.3), its abil-

ity to perform calculations of the couplings of resonance states to the πN channel revealed

that most of the unobserved states are weakly coupled to the πN channel. This observation

opened the study of strange channels as a means to search for the extra resonances. On the

other hand, whereas the phenomenology of the Isgur-Karl model indicates that spin-orbit

forces between constituent quarks are not important in the baryon mass spectrum, the QCD

Breit interaction certainly yields such forces. This raises a conceptual problem about the

detailed properties of the residual interactions beyond one-gluon exchange. The issues are

relativistic corrections, ~L · ~S forces from a Lorentz scalar confining potential via Thomas

precession, and genuine three-body interactions between quarks. Relativistic extensions

of the Isgur-Karl model by Godfrey and Isgur [27] and others [28] have been addressed

to discuss some of those unanswered questions about the deeper foundations of the non-

relativistic quark models. Nevertheless, in spite of their conceptual problems and its lack of

a field theoretical basis, the non-relativistic models have a major virtue, namely their phe-

nomenological simplicity. From this perspective, the Isgur-Karl model presents a prototype

hamiltonian which successfully combines the group theoretical framework of SU(6)×O(3)

symmetry with minimal dynamical input and gives a surprisingly good description of a large

amount of baryon data [23].

Besides the quark model, it is important to mention that there exist other phenomenolog-

24



ical approaches used to analyze and interpret the vast amount of experimental data dealing

with nucleon structure. Among them, one can find the bag model and soliton models. Bag

models start from a picture of hadrons as color singlet cavities, or bags, of perturbative

vacuum occupied by relativistic quarks and gluons. The bag is embedded in a condensed

medium which represents the QCD ground state. Soliton models view the nucleon as a

localized lump of energy density formed out of mesons and quarks. All these models, in-

cluding the quark model, are constructed to mimic certain selected aspects of QCD but none

of them is QCD. Each one has its specific merits and limitations. Non-relativistic quark

models emphasize the role of massive constituent quarks as quasi-particles and have some

features reminiscent of phenomenological shell models in nuclear physics. Soliton models

are typically representative of collective models: they operate with the low-mass mesons

as collective degrees of freedom. Bag models are an attempt to unify quark and meson

descriptions [23].

2.2 Lattice QCD

Nowadays, numerical calculations of QCD offer the only possibility to understand the dy-

namics of strong interactions in the non-perturbative regime (intermediate energies). Lattice

QCD (LQCD) represents the best known non-perturbative tool for addressing issues like the

confinement mechanism and chiral symmetry breaking, the role of topology, and the equi-

librium properties of QCD at finite temperature, and, in particular, for calculating−within

statistical errors−the hadronic spectrum from first principles.

Lattice QCD is the formulation of QCD on a discrete space-time grid. Since no new

parameters or field variables are introduced in this discretization, LQCD retains the funda-

mental character of QCD. Lattice calculations are performed computationally using meth-

ods analogous to those used for Statistical Mechanics systems. This strategy allows one to

calculate observables and correlation functions of hadronic operators in terms of the fun-

damental quark and gluon degrees of freedom. The starting point of a lattice calculation is

the exact QCD Lagrangian:

LQCD =
∑
j

ψ̄j(i6D −mj)ψj + LYM [Aµ] (2.3)
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where ψj is the quark field of flavor j, mj is the quark mass for flavor j, 6D = γµ(∂µ−iAaµλa)

is the covariant derivative for the quarks that includes the quark-gluon interaction term,

with γµ and λa corresponding to the standard Dirac and Gell-Mann matrices, respectively.

The term LYM is the Yang-Mills Lagrangian for the gluon gauge boson field Aµ.

In order to perform the calculation of an observable using QCD, the Lagrangian LQCD
is turned in the context of a path integral according to:

ZQCD =

∫
[DAµDψ̄Dψ] exp(iS) (2.4)

where S =
(
i
∫
d4xLQCD

)
is the QCD action. The expectation value of an observable Ô is

then defined as

< Ô >= Z−1

∫
[DAµ]O(Aµ) det(i 6D −M) exp(iS) (2.5)

with M arising from the dynamics of the virtual quarks. The integral in Equation (2.5) is

performed over the fields Aµ, ψ, and ψ̄ which accounts for each possible field configuration

(an example of a field configuration is shown above in Figure 2.2 (a)). Given that the

number of configurations is infinite and each configuration contributes with a weight given

by the imaginary exponential exp(iS), numerical calculations require limiting the number of

field configurations to a finite representative subset comprised only of those configurations

with large contributions to the integral (importance sampling). The imaginary exponential,

however, gives rise to large oscillations from configuration to configuration, making it hard to

probabilistically sample those configurations that will contribute the most to the observable

in question. A convenient numerical formulation of QCD thus implies the use of a Euclidean

formulation (Wick rotation). This formulation consists in the rotation from Minkowski time

to Euclidean time by means of the substitution t→ iτ . Equation (2.5) then turns into:

< Ô >= Z−1

∫
[DAµ]O(Aµ, ψ, ψ̄) det(6D +M) exp(−S) (2.6)

where the exponential and the determinant factor can now be interpreted as a probabilistic

weight function.

The numerical evaluation of Equation (2.6) is to be performed on a lattice, with the

Euclidean space-time discretized into a finite four-dimensional volume of grid points with

spacing a, spatial extent L = Nxa, and temporal extent T = Nta. In this volume, consisting
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of a collection of N3
x × Nt grid points, the quark fields ψ reside on the grid points while

the gluon fields are defined on each link between the points (see Figure 2.3). A few key

elements of this discretized scheme are:

• The gauge symmetry can be fully preserved, and no additional unphysical degrees of

freedom are thus introduced.

• The details of the discretization become (in general) irrelevant in the continuum limit.

Any reasonable lattice formulation will give the same continuum theory up to finite

renormalizations of the gauge coupling and the quark masses.

• Lattice QCD admits an expansion in terms of Feynman diagrams that coincides with

the usual expansion up to terms proportional to the lattice spacing. The consistency of

the lattice theory with the standard perturbative approach to QCD is thus guaranteed.

• The discrete space-time lattice acts as a nonperturbative regularization scheme. Fi-

nite values of the lattice spacing a as well as of the lattice sizes L and T provide

natural ultraviolet (at π/a) and infrared cutoffs which result in renormalized physical

quantities free of any divergence, that is, with a finite well-behaved limit as a→ 0.

The above-mentioned discretized schemes leads however to the challenge of developing

and implementing efficient simulation methods for LQCD that work well under conditions

of large lattices and small quark masses. The efficiency of such methods is related to the

computational cost of the calculations, defining cost as the number of arithmetic operations

required to generate a field configuration [29]. An approximate formula for the computa-

tional cost is given in reference [30] according to

cost ≈ 3.3

(
140 MeV

mπ

)6( L

3 fm

)5(0.1 fm

a

)7

Tflops year (2.7)

which shows clearly the dependence of the cost on the lattice parameters a and L, and on

the value mπ determined for the pion mass (which depends on the specified values of the

quark masses). The units of Tflops year means 1012 floating-point operations per second

performed in a computer in one year of running time.
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Figure 2.3: Scheme of a cubic lattice with the quark fields ψ on the grid points and the
color field (gluons) retained along the links of the lattice. Typical lattice QCD calculations
are performed with a spatial lattice size L of at least 2 fm in order to minimize finite-volume
effects.

In general, lattice QCD is used to test QCD by computing a wide range of hadron

properties like masses, decay constants, form factors and weak transition matrix elements.

In addition to this, given that the only tunable input parameters in the calculations are

the strong coupling constant and the bare masses of the quarks, LQCD allows one to make

detailed predictions of the dependence of quantities on such adjustable parameters. Despite

the important advances and successes of LQCD calculations over the last years, there are still

some challenges or issues present in LQCD. Among them, one can mention the difficulties

in exploring hadronic decays given that the lattice, using Euclidean time, has no concept of

asymptotic states, and the significant high errors associated with the quantities calculated

from LQCD when compared to those in the corresponding experimental measurements [31].

These issues are expected to be improved in the next few years.

2.3 Reaction Models

The extraction of resonance parameters requires an amplitude analysis of reaction processes.

Such an analysis involves the extraction of scattering amplitudes from data (experimental
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observables), and the extraction of resonance parameters from the extracted amplitudes [32].

The determination of the scattering amplitudes forms the basis for the parametrization

of any observable. For the case of scattering of a spinless particle from a central potential,

the complex scattering amplitude fk(θ) is a function of the outgoing momentum k and the

scattered angle θ. The connection between data + amplitude is given by the relation

dσ

dΩ
∼ |fk(θ)|2 = fk(θ)f

∗
k (θ) (2.8)

where the differential cross section dσ/dΩ is the only available observable in the spinless

case. Since any function of θ can be written in terms of Legendre polynomials Pl(cos θ), the

scattering amplitude can be expanded in these polynomials with k-dependent coefficients:

fk(θ) =
1

k

∞∑
l=0

(2l + 1)al(k)Pl(cos θ) (2.9)

where l is the relative orbital angular momentum between the target and the scattered

particle, and al(k) is called the lth partial wave amplitude [33]. The interpretation of

Equation (2.9) is as follows: because the angular momentum is conserved in a reaction

involving central potentials, the scattering amplitude fk can be decomposed into several

amplitude terms al each one related to scattering in a specific angular momentum l sector.

For the case of γN reactions, experimental observables are described in terms of scat-

tering amplitudes based on a spin formalism. Helicity is the standard formalism applicable

to most spectroscopy experiments.5 It offers a uniform description for both massive and

massless particles (being especially suitable for photons) and allows one to take advantage

of the symmetry properties of the interaction. Figure 2.4 shows the coordinate system used

in the helicity representation.

A correct description of γN scattering requires expression (2.9) to be generalized in order

to include spin and isospin for photons and nucleons. The combination of the projection of

the nucleon isospin (µ = ±1
2) and the total isospin of the γ-N system (λ = 1

2 and λ = 3
2)

yields a total of four complex scattering amplitudes instead of one, as in the case of a spinless

particle. These scattering amplitudes correspond to the four complex helicity amplitudes:

5Helicity is defined as the projection of the spin of the particle along the direction of its momentum ~p.
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Figure 2.4: Coordinate system definition in the helicity representation. ~k represents the
incoming photon momentum, ~q the outgoing meson momentum, and ~r the cross product
~k × ~q. The axes are defined by x = y × z, y = ~r/|~r|, x′ = y × z′, and y′ = y. The z and z′

axes point along the direction of ~k and ~q, respectively. Figure taken from [34].

H1, H2, H3, and H4.6 Following the work developed in [36], γN scattering is written as:

Hn =
∑
J

AJµ,λ(2J + 1)dJµ,λ(θ)ei(λ−µ)φ n = 1, 2, 3, 4 (2.10)

which emerges from the fact that helicity amplitudes can be decomposed into partial-wave-

amplitude terms derived by requiring conservation of angular momentum, isospin, and

parity. J , a positive half-integer number, is the spin of the intermediate state, dJµ,λ is pro-

portional to the so-called d-functions, and AJµ,λ represents a partial-wave amplitude in a

specific J, µ, λ sector. In order to fully exploit the symmetry properties of the interaction

(rotational invariance, parity and four-momentum conservation) inherent in the helicity for-

malism, the helicity amplitudes are usually parametrized in terms of electric E and magnetic

M multipoles. These multipoles are the amplitudes conventionally used in a partial-wave

analysis of experimental data [37]. The connection between data and amplitudes for all

the observables available in pseudo-scalar meson photoproduction reactions is shown in

Table 2.1.

Since all observables are bi-linear combinations of the helicity amplitudes, the extrac-

6H1 means spin-flip with photon and initial nucleon having parallel spins; H2, nonspin-flip; H3, double-
spin-flip, and H4, spin-flip with photon and initial nucleon having anti-parallel spins [35].
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Table 2.1: Polarization observables in terms of helicity amplitudes for pseudo-scalar meson
photoproduction reactions [34].

Spin Helicity
observable representation

dσ0/dΩ 1
2 {H1H

?
1 +H2H

?
2 +H3H

?
3 +H4H

?
4}

Σ̂ +Re{H1H
?
4 −H2H

?
3}

T̂ +Im{H1H
?
2 +H3H

?
4}

P̂ −Im{H1H
?
3 +H2H

?
4}

Ĝ −Im{H1H
?
4 +H2H

?
3}

Ĥ −Im{H1H
?
3 −H2H

?
4}

F̂ +Re{H1H
?
2 +H3H

?
4}

Ê 1
2 {−H1H

?
1 +H2H

?
2 −H3H

?
3 +H4H

?
4}

Ôx′ −Im{H1H
?
2 −H3H

?
4}

Ôz′ −Im{H1H
?
4 −H2H

?
3}

Ĉx′ −Re{H1H
?
3 +H2H

?
4}

Ĉz′
1
2 {−H1H

?
1 −H2H

?
2 +H3H

?
3 +H4H

?
4}

T̂x′ +Re{H1H
?
4 +H2H

?
3}

T̂z′ +Re{H1H
?
2 −H3H

?
4}

L̂x′ −Re{H1H
?
3 −H2H

?
4}

L̂z′
1
2 {H1H

?
1 −H2H

?
2 −H3H

?
3 +H4H

?
4}

tion of such amplitudes, as opposed to the spinless-particle case, is a non-trivial problem

to solve. In principle, a solution would imply having high-precision measurements covering

a wide range of kinematics for all of the observables available in meson photoproduction.

Early studies from [34] and later on from [38] showed, however, that not all of them have to

be measured in order to extract the amplitudes to an overall phase and discrete ambiguities.

In such an ideal scenario, known as the “complete measurement”, an unambiguous deter-

mination of the helicity amplitudes in meson photoproduction requires the determination

of only eight observables: four single polarization observables (σ0,Σ, T , and P ) and four

suitably chosen double polarization observables [34, 38].7

A complete measurement is technically difficult to achieve as the measurement of some

observables is extremely challenging in most of the channels opened in the nucleon resonance

region. In other cases, the available measurements for some channels provide a limited kine-

matic coverage and low statistics. Measurements then concern a very few observables in

7This can be thought as solving a system consisting of eight equations (eight observables) and eight
unknowns (the real and imaginary parts of the four complex amplitudes H1, H2, H3, and H4).
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narrow energy and angular regions so that, in general, what can be inferred from the data

available is information about the combination of helicity amplitudes (product of ampli-

tudes) rather than the amplitudes themselves [39]. Therefore, the extraction of amplitudes

from data and, consequently, the extraction of the corresponding resonances requires the

availability of good-quality data as well as the use of theoretical models.

The starting point of most of the theoretical models aimed at extracting amplitudes

and resonance parameters from data is the parametrization of the transition T -matrix in

terms of resonant TR and non-resonant TNR background contributions. The resonant

part refers to the s channel (nucleon) resonances like S11(1650), P11(1710), P13(1720), and

D13(1895). The Born terms, the t channel resonances and the u channel hyperon resonances

all contribute to what is called the background. Resonances in the t and u channels however

do not “resonate” since their poles are beyond the physical plane of the reaction. The T -

matrix of the interaction associated with the transition from the initial state a to the initial

state b can be written as:

Tab = TRab + TNRab (2.11)

allowing one to study both contributions in a separate way, with the details varying from

model to model. Currently, there exist several different models for analyzing pion- and

photon-induced reactions on the nucleon in the resonance region. In general, these models

can be divided into three groups: phase-shift analysis, isobar models, and coupled-channels

models. The first one attempts to make a resonance parameter extraction from a fit-based

determination of multipoles. The other two make assumptions about the set of input

resonances that best describe each partial wave.

2.3.1 Phase-shift analyses

Phase-shift analysis is the attempt to extract the scattering amplitude from fitting pro-

cedures on the experimental cross section and other experimental observables in a model-

independent fashion. It is an example of sort of a “pure” partial-wave analysis because one

does not really include any model in it. The drawback of this method is that it only works

under very limited conditions, essentially when there is only one channel involved in the

analysis (e.g. single-pion production).
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In practice, the scattering amplitude is usually calculated in terms of the phase shifts

and elasticities in each partial wave up to a certain cut-off imposed on the angular mo-

mentum. These two parameters are varied until the resultant calculated cross sections and

polarization observables describe a best fit to the data at a particular energy bin. This

process typically yields a large number of solutions; often several hundred random searches

are made, each giving a different best fit. A complementary method is to expand the cross

section according to Equations (2.9) or (2.10) and fit the coefficients (al or AJµλ) to those

obtained from the calculated amplitudes. An energy-smoothing criterion is then used to

select the solution which fits smoothly to lower energies.

2.3.2 Isobar model

The basis of the calculations within the isobar-model framework is an effective Lagrangian

defined on the basis of a selected set of Feynman diagrams concerning the process of interest.

Such diagrams are grouped into resonant and background diagrams. Resonant diagrams are

related to s-channel diagrams while background is represented, in general, by tree diagrams

known as Born terms.8 At high energies, the contribution of such Born terms can increase

dramatically compared to the corresponding measured data for which is necessary the in-

troduction of form factors in order to reduce the strength of the background contribution.

Gauge invariance is then respected through the inclusion of contact diagrams. In addition to

s-channel diagrams and Born terms, more refined versions of the isobar model incorporate

a particular selection of extra t- and u-channel diagrams in both resonant and background

parts. The inclusion of those additional diagrams constitutes the model dependency of the

model.

The most relevant isobar models for the analysis of pion production and photoproduction

data are SAID and MAID. SAID is a multi-channel model developed by the Center for

Nuclear Studies (CNS) at the George Washington University [35, 40]. Rather than assuming

certain resonances for the description of partial waves, it extracts resonance couplings from

a fit-based determination of multipoles using both an energy-dependent and an energy-

independent parametrization. MAID is a unitary isobar model for partial wave analysis in

8In a typical calculation, a particular reaction is modeled based on the selection of a certain number of
s-diagrams (resonant states) that presumably describe correctly the reaction.
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the resonance region developed by the Mainz group [41]. Based on the effective Lagrangian

approach, the model attempts to link photoproduction observables directly to the degrees of

freedom from various quark models, reducing, in this way, the number of required adjustable

parameters [42].

Although the isobar model has been extensively used because of its simplicity and dom-

inance of resonance excitation in the energy domain under 2 GeV, its main drawback is the

large number of adjustable parameters required in the calculations. Coupling constants as

well as form factors and cut-off masses are adjusted according to fits to experimental data.

Consequently, the results of the isobar model, in general, depend not only on the quality of

the data used to adjust the model parameters but also on the input terms for resonant and

non-resonant contributions.

2.3.3 Coupled-channels analyses

For the case of the isobar model, different sets of resonances used as input can describe

equally well the data. The question is which set of resonances is the correct one? The answer

is provided by a simultaneous analysis over several observables (instead of an independent

analysis of just one observable) measured on further final states (πN , ηN,KΛ,KΣ, or ωN)

for as large an energy range as possible that also consistently uses the same Lagrangian to

describe the reaction mechanism of both the pion- and photon-induced reactions, thereby

generating all non-resonant contributions (background) dynamically from Born, u-, and

t-channel contributions without new parameters. As a consequence, more constraints are

added to the reaction, increasing the probability of selecting the best set of resonance

parameters. This formalism, known as coupled-channels analysis, constitutes a theoretical

approach aimed at improving in a systematic way the decision about which resonances have

to be put in and which resonances have to be ignored in the models, improving in this way

the reliability of the extracted resonance parameters.
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Chapter 3: Previous Measurements

3.1 Previous measurements

Prior to the CLAS g13 run period there have been only a few experiments that measured

the strangeness channels on the neutron in the resonance region, and in particular, the

γn→ K
+

Σ
−

channel. One can find an experiment conducted at Cornell in the late 1950’s,

the CLAS g2 and g10 run periods, and one carried out at SPring-8/LEPS. Among them,

however, the one from SPring-8/LEPS is the only one that used linearly polarized photons,

which are needed to determine the photon beam asymmetry for γn→ K
+

Σ
−

.

3.1.1 Cornell

The experiment at Cornell [43], performed by Anderson et al. in 1961, detected charged

kaons with a magnetic spectrometer, using a 1.170 GeV bremsstrahlung photon beam, and

both liquid hydrogen and liquid deuterium targets. The differential cross section for the

γn→ K
+

Σ
−

reaction was determined in an inclusive way by comparing the K
+

yields from

hydrogen and deuterium at K
+

momenta of 0.405 and 0.455 GeV/c. Only two data points

were extracted from this analysis, with error bars of the order of 50-60%.

3.1.2 CLAS g2

One of the initial goals of the CLAS g2 run period [44] from 1999 was to study the

γn → K
+

Σ
−

channel. The experiment used a 10-cm-long liquid-deuterium target and a

photon beam with some degree of circular polarization covering photon energies from 0.50

to 2.95 GeV. The data-acquisition system was triggered by a single charged particle in

CLAS, in coincidence with the photon tagging system, resulting in a data recording rate of

∼1 kHz. Although this experiment was an important beginning, its results showed insuffi-

cient statistics, allowing only restricted studies of the γn→ K
+

Σ
−

reaction. Both inclusive

and exclusive analyses were performed on this channel, aimed at determining the differential

cross section. As better data came along, however, none of these results were published.
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3.1.3 CLAS g10

The other CLAS data set important for strangeness photoproduction on the neutron is

g10 [45], which ran in 2004. Although originally focused on searching for the Θ+ pen-

taquark, the data from g10 are suitable for studying the regular strangeness-production

channels as well. The experiment used a 24-cm-long liquid-deuterium target with an un-

polarized photon beam. A trigger requiring two charged particles in coincidence with the

tagger was used, giving a rate of ∼2 kHz. This made it possible for g10 to increase the

statistics by a factor of 20 compared with the g2 experiment. An exclusive analysis of γn→

K
+

Σ
−

using the g10 data has been published [46] where the differential cross section was

measured with tagged photons in the energy range 1.0-3.6 GeV and at K
+

center-of-mass

polar angles between 10◦ and 140◦. As expected, for photon energies above the resonance

region, a dominance of t-channel production was observed, but the differential cross section

suggested a significant s-channel contribution in the resonance region. The combined sta-

tistical and systematic uncertainty is below 5% in the central CLAS region, and increases

up to ∼13.5% at forward and backward angles.

3.1.4 LEPS

A series of experiments aimed at studying strangeness photoproduction has also been carried

out in the last decade at the SPring-8/LEPS facility in Japan. LEPS is a forward detector

designed to study φ-meson photoproduction by using linearly polarized photons from an

ultraviolet Ar laser Compton backscattered from 8-GeV electrons, reaching a high degree of

linear photon polarization (∼92% at the maximum photon energy).1 As part of an inclusive

analysis [21], both the differential cross section and the beam asymmetry were measured for

the reaction γn → K
+

Σ
−

.2 The data were taken using liquid hydrogen (LH2) and liquid

deuterium (LD2) targets, each with an effective length of 16 cm, and photon energies ranging

1In contrast with the CLAS, the LEPS acceptance is limited to very forward angles (θ < 30◦), which
is not well suited for exclusive measurements and cannot provide the kinematic coverage needed for N?

physics. The CLAS, however, has limited acceptance at very forward angles (∼20◦). In this sense, the data
from LEPS are complementary to those from CLAS.

2This is currently the only determination existing in the literature of the beam asymmetry for

γn → K
+

Σ
−

, representing the only available data to which the results obtained in this thesis can be
compared.
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from 1.5 to 2.4 GeV. The missing-mass spectra for hydrogen and deuterium, integrated over

all photon energies and all polar angles, are shown in Figure 3.1. The Σ
−

yield was obtained

by subtracting the total Σ yield (Σ
0

and Σ
−

) in LD2 from the Σ
0

yield in LH2. This assumes

that: (i) for the LD2 data, the target mass was MLD2 ≈ (Mp + Mn)/2 with Mp and Mn

being the mass of the proton and neutron, respectively, and (ii) the ratio N(Σ0)/N(Λ) for

LD2 was the same as for LH2, leaving the nuclear effects to be evaluated as systematic

errors.

The photon beam asymmetries for γn→ K
+

Σ
−

extracted in [21] are displayed in panel

(a) of Figure 3.2. They correspond to the four cos θcm bins that could be measured for Eγ

between 1.5 and 2.4 GeV. As can be seen, the asymmetries are positive, and the fact that

their values are close to +1 for cos θcm < 0.9 might indicate the dominance of K
?

exchange

in the t-channel. Conversely, phenomenological models like Kaon-MAID [22] assume the

dominance of K instead of K
?

exchange in the t-channel, predicting therefore negative

asymmetries for the K
+

Σ
−

channel (see panel (b) of Figure 3.2).

In summary, all the previous experiments and analyses discussed above show the need

for a large and high-quality data set that allow to extend kinematically the current mea-

surements of the photon beam asymmetry for γn → K
+

Σ
−

providing in that way better

constraints in the search for missing N? states and contributing to the refinement of some

of the current phenomenological models. The analysis presented in this work will provide

data for the photon beam asymmetry associated with the γn→ K
+

Σ
−

reaction in a photon

energy range between 1.9 and 2.3 GeV and spanning the K
+

azimuthal center-of-mass angle

from 55◦ to 155◦.
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Figure 3.1: Inclusive missing-mass distribution for K
+

off LH2 and LD2 targets from
LEPS/SPring-8. The dashed, dotted, and solid thin curves correspond to Λ, Σ

0
, and

Σ
−

production, respectively, and the dot-dashed curve corresponds to the estimated back-
ground. The thick solid curve is the sum of all contributions [21].
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(a)

(b)

Figure 3.2: (a) The only published data for the photon beam asymmetry of the
γn → K

+
Σ
−

reaction. The data, limited to very forward angles, come from the LEPS
collaboration [21] and were published in 2006. The data were taken from reference [47]. (b)
Predictions from Kaon-MAID [22] of the beam asymmetry for the γn→ K

+
Σ
−

reaction.
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Chapter 4: Experimental Setup

The data used for this analysis were taken as part of the g13 run period in 2007 in Hall B at

the Thomas Jefferson National Accelerator Facility located in Newport News, Virginia. The

g13 period corresponds to experiment E-06-103, “Kaon Photoproduction on the Deuteron

Using Polarized Photons” [48]. This experiment was the only one to run during the g13

period and collected a significant number of events aimed at searching for missing resonances

that couple weakly to pion channels.

General running conditions in g13 included a photon-tagging system, a 40-cm long

liquid-deuterium target, the CEBAF Large Acceptance Spectrometer (CLAS) detector, and

both circularly and linearly polarized photon beams. The photon energy in the circular

polarization part (g13a) ranged from 0.4 GeV to 2.5 GeV, while in the linear polarization

part (g13b), it varied between 1.1 and 2.3 GeV.

This chapter describes the main features of the experimental setup utilized during the

g13 CLAS run period.

4.1 CEBAF Accelerator

At the heart of the Thomas Jefferson National Accelerator Laboratory is the Continuous

Electron Beam Accelerator Facility or CEBAF [49], a five-pass recirculating linac that oper-

ates with superconducting cavities to accelerate high currents of electrons into the few-GeV

range. CEBAF consists of a 56 MeV injector, two superconducting linacs of 0.6 GeV energy

gain, and nine recirculation arcs. To keep the cavities superconducting, CEBAF has the

world’s largest liquid-helium refrigeration plant, which produces temperatures down to 1.8

K. The accelerator is able to deliver beam bunches of electrons to three different experi-

mental end stations simultaneously. The currents delivered to Halls A and C (1− 200 µA)

make it possible to reach luminosities of about 1038 cm−2 s−1. For Hall B, the luminosity is

limited by drift chamber occupancies in CLAS to about 1034 cm−2 s−1, restricting the beam

current to 1− 100 nA. These currents result in beam bunches composed of between 12,500

and 2,500,000 electrons for Halls A and C, and between 12 and 1,250 electrons for Hall B.
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Worthy of mention is the fact that the beam bunches delivered to each Hall are accelerated

together (despite differing significantly in magnitude) along the linacs and the recirculation

paths. Therefore, there can be three different currents coexisting at the same pass. This is

an underlying feature of the accelerator. The schematic of the CEBAF accelerator is shown

in Figure 4.1.

Figure 4.1: The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab.
The explanation of the main components of the accelerator is given in the text.

The CEBAF beam originates (at 100 keV) in an electron gun through photoemission of

electrons from a GaAs photocathode [50, 51]. The photoemission takes place by illuminating

the cathode with three RF gain-switched lasers independently pulsed at 499 MHz and

120◦ out of phase.1 As a result, three independent electron beams, one for each Hall, are

produced. The beams are combined through a rotating disk with three variable-size slits,

into a 1497 MHz pulse train of electrons. The combined electron beam is accelerated to

67 MeV by two cryomodules and then injected into the accelerator. Passing through each

linear accelerator (linac) increases the energy of the electrons by up to 0.6 GeV. Therefore,

a complete loop around the track boosts the electron beam energy up to 1.2 GeV. With the

two linacs connected to each other by nine recirculation arcs, the electron beam is allowed to

make a total of five passes through both linacs for a maximum energy of 6 GeV (a 12-GeV

upgrade is in progress).

1This laser arrangement allows each Hall to have independent control of its beam current.
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The beam for each experimental Hall is extracted using warm sub-harmonic RF separa-

tor cavities (five in total) operating at 499 MHz2 [52, 53]. The phasing of these separators

provides the required extraction: the four separators that are placed on the lower-energy

recirculating arcs are phased in a manner that allows a portion of the beam to be steered

to only one of the experimental Halls, while the remainder is recirculated back into the

linacs. The phasing of the fifth separator on the high-energy leg (the final recirculation

pass) permits splitting the beam into three directions to be driven to the experimental

Halls for simultaneous data taking by three different experiments. Currently, the electron

beam is delivered to Halls A, B, and C. Halls A and C have two-arm spectrometers which

provide high-resolution measurements but limited acceptance. Conversely, Hall B has a

large-acceptance detector for multi-particle detection, but lower resolution compared to

that of the other two Halls. Because our experiment (g13) took place in Hall B, some of

the main Hall B components will be described in the following sections.

4.2 Hall B

Hall B, which is 100 feet across, is the smallest of the three experimental end-stations at

Jefferson Lab. An overview of Hall B is shown in Figure 4.2. It houses the CLAS detector

and its associated electronics as well as some beam-related systems. Although CLAS was

designed for operation with both electron and photon beams, the g13 run period is concerned

only with photoproduction. Therefore, the next sections will provide an overview of the

essential systems used for photoproduction experiments in Hall B. They include the photon

beam, the photon-tagging system, and the CLAS detector.

4.3 Photon Beam Production

In general, high-energy beams of real photons can be produced mainly via two techniques:

Compton back-scattering and bremsstrahlung radiation. In the Compton back-scattering

technique, a high-energy electron beam collides with a polarized photon beam produced

by a laser (few keV). The energy and polarization of the scattered photons depend mainly

on the angle between the incident-electron and the scattered-photon momenta; backward-

2Each Hall receives bunches of electrons once every 2.004 ns.
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Figure 4.2: Schematic layout of Hall B showing the locations of the tagger and the CLAS
detector. In the picture, the photon beam (red line) travels from right to left.

scattered photons, in particular, carry a significant amount of the incident electron-beam

energy with a high degree of linear polarization [54, 55]. By collimation of the scattered

photons along the electron-beam axis, one can produce a photon beam of high energy (from

a high-energy electron beam) and high polarization (from a low-energy laser beam). The

Compton back-scattering technique is usually used at synchrotron light sources.

The bremsstrahlung radiation technique, employed in Hall B, involves a beam of elec-

trons interacting with the electromagnetic field of an atomic nucleus with charge Z (radia-

tor). As a consequence of the interaction, an incoming electron, initially with energy Eo, is

accelerated and emerges with lower energy Ee, hence emitting a photon of energy k. This

process is kinematically possible only if a small amount of momentum ~q is transferred to the

nucleus (recoil momentum). In the relativistic limit, bremsstrahlung is the dominant mode

of energy loss for electrons in a material, and the nucleus recoil energy can usually be ne-

glected. Energy and momentum conservation then give (E0, ~Po) = (Ee+k, ~Pe+~k+~q), with

~Po, ~Pe, and ~k, being the momenta of the incident electron, emerging electron, and emit-

ted bremsstrahlung photon, respectively. The spectrum of bremsstrahlung photons is not

monoenergetic, however. A beam of incident electrons with a fixed energy Eo produces a

beam of photons spread over a range of energies. The energy k of each photon in the beam
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is determined based on Eo, which is provided by the accelerator, and Ee, which is measured

by means of a tagging spectrometer.

The production of polarized bremsstrahlung photons depends mainly on the polarization

state of the electron beam and on the nature of the radiator used (amorphous or crystal

radiator). Circular polarization is induced by a longitudinally polarized electron beam

incident on an amorphous radiator, while linear polarization depends on the crystalline

structure of the radiator. The following subsections describe the production of circularly

and linearly polarized bremsstrahlung photons in more detail.

4.3.1 Circular Polarization

Production of circularly polarized photons requires the incident electron beam to be lon-

gitudinally polarized3. Thin foils of high-Z materials are usually used as a radiator. This

choice has a double purpose: to maximize the probability of the electron-nucleus interac-

tion given that the bremsstrahlung cross section is proportional to Z2 [56], and to minimize

the number of interaction centers such that each electron interacts once, producing only

one photon. The circular polarization production process is quantum mechanical in origin.

From QED calculations, the degree of circular polarization transfer to the photon, Pc, is

seen to depend on the relative photon energy to the bremsstrahlung photon, x:

Pc =

(
4x− x2

4− 4x+ 3x2

)
Pe (4.1)

where x = k/Eo with k and Eo corresponding to the photon and incident electron energies,

respectively, and Pe is the longitudinal polarization of the incident electron beam. As shown

in Figure 4.3, the transfer of circular polarization is maximum at the higher end of the

energy spectrum (k/Eo) and decreases towards the lower end of the spectrum. The circular

polarization of the photon is transferred directly from the polarization of the electron, with

the atomic nucleus or radiator playing no role. Such a transfer is favored when the radiated

photons take up large fractions of the incident electron energy. Coulomb and screening

corrections (due to the atomic electrons) do not significantly affect the polarization of the

emitted photons [56].

3A transversely polarized electron beam does not contribute significantly to the photon polarization [56].
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In g13a, a 10−4 r.l.4 gold foil radiator (placed upstream of the tagger) and two different

electron beam energies were used: a three-pass electron beam (2.0 GeV) and a four-pass

electron beam (2.6 GeV) with polarizations of 84% and 78%, respectively [57].

0k/E
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Figure 4.3: QED calculation for the degree of circular polarization of 50-MeV electrons in
lead. The curve is a Born-approximation calculation neglecting screening corrections. An
exact calculation involving Coulomb and screening corrections (not shown) yields similar
results. The similarity of both curves is evidence for the independence of the circular
polarization with such corrections [56].

4.3.2 Linear Polarization

Linear polarization can be treated both quantum-mechanically and classically. In Hall B,

linearly polarized photons are obtained through the coherent bremsstrahlung technique [58,

59] where an unpolarized electron beam (Eo, ~Po) illuminates a crystal radiator. In this case,

the total bremsstrahlung photon spectrum consists of both coherent (linearly polarized) and

incoherent (unpolarized) radiation. The mechanism of coherent bremsstrahlung is governed

by two conditions imposed on the momentum ~q = ~Po− ~Pe−~k transferred to the crystal [60].

As a first condition, the longitudinal ql and transversal qt components of ~q with respect to

~Po are constrained to values which depend on the relative photon energy x = k/Eo:

qminl ' m2
ec

3δ(x) ≤ ql ≤
m2
ec

3δ(x)

x
and 0 ≤ qt . mec (4.2)

where me is the electron mass and δ(x) =
x

2Eo(1− x)
. The lower limits are of kinematical

4r.l. stands for radiation length. This parameter, given either in g·cm−2 or in cm, is defined as the
distance over which the electron energy is reduced by a factor 1/e due to radiation loss only.
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origin while the upper limits are due to the rapid decrease of the bremsstrahlung cross

section with increasing q. In momentum space, this allowed momentum transfer region

is known as the “pancake”, a shallow volume which is normal to, and centered on, the

~Po direction [61]. The crystal imposes the second condition5. The regular structure of

the crystal, described by the reciprocal lattice basis vectors ~bk, requires ~q to take only

values that coincide with a reciprocal lattice vector ~g (Laue condition). Thus, in order to

have coherent bremsstrahlung production, the momentum transfer ~q has to lie within the

“pancake” and, at the same time, must match with any of the preferential directions ~g of

the lattice.

When any or both of the momentum-transfer conditions fail, the recoil is absorbed in

such a way that the bremsstrahlung process takes place separately on each atom. Therefore,

bremsstrahlung photons are isotropically distributed along the electron beam axis, leading

to an unpolarized beam. Incoherent bremsstrahlung is consequently the sum of contribu-

tions of atoms acting individually in the lattice. The incoherent spectrum obtained with a

crystal radiator can be reproduced using a non-crystalline radiator. In this way, the total

bremsstrahlung spectrum is normalized to the incoherent spectrum such that the coherent

contribution of the crystal can be clearly observed. Panel (a) of Figure 4.4 shows a typical

incoherent spectrum produced by an amorphous radiator.

When both conditions on ~q are fulfilled, the recoil momentum is taken up by several

atoms (a large region within the lattice) acting collectively. In a simplified picture, the

contributions of these atoms add “coherently” in the bremsstrahlung process such that

most of the photons emitted have the same polarization and both electrons and photons

emerge from the crystal at fixed angles. In addition, the fact that ~q remains constant fixes

the polarization plane. As a result, a linearly polarized photon beam is produced for a

specific orientation of the crystal and a specific incident electron beam energy. Figure 4.4

shows the total bremsstrahlung spectrum (panel (b)), the enhancement, obtained as the

ratio between total and incoherent spectra (panel (c)), and the linear polarization spectrum

(panel (d)) as a function of the photon energy for a fixed incident electron beam energy.

The peaks observed at certain energies represent linearly polarized photons, with the most

5Contrary to circular polarization, the crystal structure of the radiator does play a vital role in the linear
polarization production.
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prominent peak (“the primary” coherent peak) corresponding to the highest degree of linear

polarization6. For a fixed electron energy, the position of the coherent peak can be changed

by carefully adjusting the alignment (orientation) of the crystal with respect to the electron

beam.

(a) (b)

2pi

(c) (d)

Figure 4.4: Data from the CLAS g13b run period: (a) Incoherent bremsstrahlung spectrum
with a carbon radiator. (b) Total bremsstrahlung spectrum: coherent + incoherent, (c)
Enhancement ratio of total coherent/incoherent spectra. The relevant reciprocal lattice
vectors are labeled. (d) Linear polarization spectrum calculated using a 5052 MeV electron
beam on a 50 µm diamond radiator. The coherent peak is observed at about 1900 MeV.
The figure was taken from reference [62].

In g13b, linearly polarized photons were produced in a 50 µm (3×10−4 r.l.) diamond ra-

diator mounted on a goniometer [63] located 22 m upstream of the tagger. The goniometer

performs the proper alignment of the diamond by allowing five degrees of freedom: hori-

6Each peak in the energy spectrum is related with a different reciprocal lattice vector ~g.
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zontal and vertical motion of the diamond as well as rotation with high accuracy (between

25-180 µm and 0.7-1.3 µrad) about all three independent axes. Electron beam energies vary-

ing from 3.3 to 5.2 GeV were used in g13b, with six coherent peak positions, each about

200 MeV wide, covering photon energies between 1.1 and 2.3 GeV with the maximum linear

polarization reaching up to 90% [57].

4.3.3 Photon Beam Collimation

The collimation of the photon beam upstream of the CLAS target plays an important role

in photoproduction experiments. For example, collimators can be used to enhance the

level of linear beam polarization. The choice of a specific collimator reflects the type of

observables that can be determined in the experiment. The photon beam collimator is

placed downstream of the tagger and its width depends on the type of photon polarization

used.

Unpolarized and circularly polarized photons are emitted isotropically in φ, describing

a cone-like shape around the incident-beam axis such that when reaching the target, the

photon beam can become sizable relative to the target width. The number of photons

interacting with the target will then be large, but there can be background related to in-

teractions with the target walls. Therefore, the selection of the collimator for unpolarized

or circularly polarized photons is a trade-off between maximizing the photon flux and min-

imizing the potential electromagnetic background. Typically, the collimator width in this

case is selected based on a photon beam profile taken in the proximity of the collimator.

Photons in the beam are distributed according to a gaussian function centered on the beam

axis. A collimator with at least a 3σ width represents a good choice as it cuts sufficient

unwanted events in the tails of the photon distribution but, at the same time, keeps a con-

servative number for the photon transmission. This choice of collimator is appropriate for

high-quality cross-section measurements.

Linearly polarized photons from coherent bremsstrahlung are characterized by hav-

ing an emission angle with respect to the incident beam smaller than that for incoherent

bremsstrahlung. Given that the latter is a background for the former, the level of linear

polarization can be enhanced by employing small-width collimators to reduce the incoherent
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contribution at all photon energies. However, although this enhances the linear polariza-

tion, the photon transmission is significantly reduced. Narrow collimators are therefore

convenient for determination of observables like the photon-beam asymmetry, but not cross

sections.

The produced photons in g13a passed a 6.4 mm collimator, which provided about 90%

transmission on the way to the deuterium target. In g13b, a 2 mm collimator was used,

and polarizations varying between 70% and 90% were obtained.

4.4 Photon Tagging Spectrometer

The polychromatic nature of the bremsstrahlung photons produced by an electron beam

of energy Eo requires the use of a photon-tagging system [64] to find the energy of the

photons interacting in the target. The photon energy k is calculated by energy conservation

(neglecting the recoil energy) from k = Eo − Ee, where Ee is the outgoing electron energy.

After the bremsstrahlung process, the electron and photon beams come out from the

radiator nearly parallel with respect to the incident electron beam direction. The outgoing

beams are separated when passing through the tagger magnet; the electrons are bent down-

wards by the dipole magnet while the photons continue through a hole in the magnet yoke

towards the CLAS target (see Figure 4.5). The tagger magnetic field is properly matched to

the incident electron beam energy (Eo) such that electrons which do not radiate (full-energy

electrons) are directed into a beam dump below the floor of Hall B. Electrons which do gen-

erate a bremsstrahlung photon are deflected more by the tagger magnet, with a radius of

curvature depending on the fraction of incident energy transferred to the photon (k/Eo).

This setting allows the photon-tagging system to tag photons with energies between 20%

and 95% of the incident electron energy [64].

The detection of the electrons is performed in a plastic scintillator hodoscope, a system

composed of two separate arrays of scintillators, similar in construction but differing in

purpose: the “E-counters” and the “T -counters.” The former are used to determine the

energy of the electrons, while the latter record the umbral time, used to match the electron

with the corresponding nuclear interaction in CLAS triggered by the photon (see Figure 4.5).
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The E-counter array contains 384 partially overlapping plastic scintillators, each 20 cm

long and 4 mm thick. The scintillator width varies between 6 and 18 mm in order to have

each cover nearly the same energy fraction of the incident electron beam (0.003Eo). The

E-counters overlap each other by one-third of their respective widths (Figure 4.5), thus

creating 767 E-channels that provide an energy resolution of 0.001Eo per bin.

The T -counter array contains 61 scintillators, each 2 cm thick. To equalize the rate

on each counter, their widths are varied according to the 1/k distribution of incoherent

bremsstrahlung. The T -counters overlap by about 10% of their widths (Figure 4.5), forming

121 T -channels with a timing resolution of 110 ps. The overlap helps eliminate potential

gaps between the counters [64].

Figure 4.5: Layout of the photon tagging system [64].

4.5 The CLAS Detector

The CLAS detector was designed to study photo- and electro-induced nuclear and hadronic

reactions by providing efficient detection of neutral and charged particles over a large frac-

tion of the full solid angle. A picture and a 3-D representation of CLAS are shown in

Figure 4.6. The CLAS design is based on a toroidal magnetic field generated by six coils

centered on the beamline. The coils divide the CLAS into six azimuthal sectors forming
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six independent spectrometers (each with a corresponding coordinate system) that share

the same target, trigger, and data-acquisition (DAQ) system. Each spectrometer is com-

prised of three regions of drift chambers (DC) which are used to determine the trajectories

and momenta of the charged particles produced in the target. In addition, CLAS contains

scintillation counters for time-of-flight measurements (TOF), electromagnetic calorimeters

(EC) and large angle calorimeters (LAC) for detection of electrons, photons, and neutrons.

Together with the EC, Gas Cherenkov counters (CC) are used for electron identification.

In photoproduction experiments, a start-counter scintillator (ST) is placed surrounding the

target to provide with a correct start-time for TOF measurements. The next subsections

will provide an overview of the CLAS subsystems.

(a) (b)

Figure 4.6: CLAS: (a) photograph of CLAS opened up showing the region 3 of the drift
chambers (DC) and some of the time-of-flight (TOF) components. (b) 3-D visualization
illustrating all the subsystems comprising CLAS.

4.5.1 Torus Magnet

The torus magnet consists of six iron-free7 superconducting coils symmetrically arranged in

a toroidal-like shape8 centered on the beamline (see Figure 4.7). Each coil, 5 m long, has

7The lack of iron allows calculating the magnetic field directly from the current in the coils.
8The toroidal shape was chosen in order to maximize the integral field

∫
~B · d~l at forward angles.
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a kidney shape with 216 turns of aluminum-stabilized NbTi/Cu wire. The coils are placed

in between regions 1 and 3 of the drift chambers, as shown in panel (a) of Figure 4.8, and

generate a magnetic field that extends radially up to approximately 2.5 m with respect to

the beamline.

(a) (b)

Figure 4.7: Torus magnet: (a) bare coils. None of the other subsystem detectors have been
assembled in this picture. (b) Schematic view of the torus magnet.

As a consequence of the kidney shape and the location of the coils, the integral magnetic

field generated is high at forward angles (2.5 T·m at maximum current) and low at backward

angles (0.6 T·m at θ= 90◦), and concentrated mostly in region 2 of the drift chambers. The

other two regions are virtually field-free. These features of the CLAS magnetic field optimize

the detection of high-momentum particles (which usually are forward-going) and at the same

time, permit the use of polarized targets. Panel (b) of Figure 4.8 shows the magnetic field

distribution in a plane perpendicular to the beamline. Except for the regions close to the

coils, the magnetic field is nearly a pure azimuthal field. As a result, the trajectory of a

charged particle in CLAS is confined to a single sector. Deflections along the φ-direction

are negligible.

The magnetic field in g13 was set with a negative polarity by passing a current of -1500 A

through the coils. Consequently, positively charged particles bent toward the beamline and

negatively charged particles bent away from the beamline. This setting was chosen in

order to increase the acceptance of low-momentum negative pions coming from the decay

of hyperons like Λ and Σ
−

.
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(a) (b)

Figure 4.8: (a) Schematic cross-sectional view of the CLAS detector, perpendicular to the
beam line. The torus coils are located within DC region 2. (b) Magnetic field distribution
corresponding to the view in (a). The field is purely azimuthal. The six torus coils are
shown in grey.

4.5.2 Drift Chambers

The CLAS Drift Chamber system (DC) is responsible for the tracking of charged parti-

cles. Effective track reconstruction depends on the accuracy with which the drift chambers

determine a particle’s position along its trajectory from the target to the outer detector

systems (TOF, EC, LAC). For the typical momenta of the particles that CLAS is capable

of measuring, the drift chambers allow for position measurements with a precision of a few

microns, resulting in a resolution of 0.5% for the reconstructed momentum at forward angles

and 2 mrad for the reconstructed scattering angles.

4.5.2.1 Design

The drift-chamber system (DC) in each of the six sectors of CLAS consists of three regions

of wires (Region 1, Region 2, and Region 3) radially separated by helium-filled gas bags.

The relative positioning of these regions is shown in Figure 4.9. Region 1 is located closest
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to the target and the beamline in a low magnetic field. This region is used to determine

the initial trajectory of charged particles before entering the ~B field. Region 2 is located

between the torus coils, in the area of high magnetic field, and is used to obtain a second

set of measurements of the particle track in the region of maximum curvature, to achieve

good momentum resolution. Region 3 is outside the torus coils in a low-magnetic field and

serves to further determine the trajectory (in this region, a straight line) of charged particles

headed towards the outer detectors.

Figure 4.9: Schematic view of the CLAS detector showing the relative position of the
three drift chamber regions. Tracking reconstruction of both negative and positive charged
particles is observed along with a representation (inset) of a portion of a region 3 chamber
showing the layout of its two superlayers.

Each region is a separate chamber filled with a 90% Argon and 10% CO2 mixture and

composed of two superlayers of six wire layers each9. There are two types of layers in each

region: one axial to the magnetic field, and the other tilted at a 6◦ stereo angle that provides

azimuthal information. Likewise, there are two types of wires: sense wires and field wires.

The former are maintained at a high positive voltage while the latter are maintained at a

high negative voltage. The voltage on the wires creates an electric field whose direction

causes the negative charged particles to accelerate towards the sense wires. Sense and field

9Because of space constraints, there are only four layers in the second superlayer of Region 1.
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wires are arranged in such a way that each of the sense wires is surrounded by six field wires

forming an hexagonal pattern called “cell” whose size increases uniformly with increasing

radial distance from the target. This hexagonal pattern, besides minimizing the effects of

multiple scattering10, significantly decreases the electric forces on the wires. Figure 4.9

shows a representation of the tracking in a Region 3 chamber clearly showing the layout

of the two superlayers and the corresponding cell-layer structure. In addition to the field

wires that form the cell, there is an extra layer of field wires known as “guard” wires placed

at the edges of each superlayer and kept at a low voltage. These wires correct for the

finite number of cells, making the electric field in each cell roughly independent of the cell’s

position within the chamber.

4.5.2.2 Track reconstruction

When a charged particle goes through the drift chambers, each of the 34 layers is tra-

versed. Particles passing through the drift chambers ionize the gas and create free electrons

along their path. Due to the electric field present inside the chambers, these free electrons

drift toward the sense wires at a low and roughly constant velocity (due to collisions with

molecules in the gas). As each electron is accelerated very near the sense wire, it ionizes

additional gas molecules, creating an avalanche of electrons moving toward the sense wires

which produces a strong signal and therefore much easier to detect than would have been

the case if only one electron reached the sense wire. The time it takes for ions created by

the particle to drift to the sense wire is known as the drift time Tdrift [65].

Each hit detected in the drift chamber is used to determine the particle’s track by

means of a least squares fit performed in the CLAS reconstruction software program. The

reconstruction of charged-particle tracks in CLAS is performed in two stages. In the first

stage, individual tracks are fit only to hit-wire positions in a procedure known as “hit-

based” tracking. In this procedure, data are combined into track segments within individual

superlayers; these segments are then grouped together using a “link table” to form tracks

(within one sector) across the three DC regions. Due to the small size of the drift cells and

10A cylindrical symmetry pattern between field and sense wires produces a cylindrical electric field. Such
a field configuration leads to a one-to-one relationship between the distance field-sense wire and the drift
time.
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the large number of wire layers, the track momenta can be reconstructed with a resolution of

3% to 5%. In the second stage of the reconstruction, the measured drift times are corrected

by using flight-time information of the particles from the target to the outer scintillators [65].

An example of a particle’s track in the drift chambers is shown in Figure 4.13.

Figure 4.10: An example of a particle’s track reconstructed in the drift chambers.

A look-up table is used to convert the corrected drift time in the calculated distance of

closest approach (CALCDOCA). Within a given superlayer, a second method to determine

the distance of closest approach consists of fitting a track to all hits except those in a specific

layer. This produces the fitted distance of closest approach (FITDOCA). The difference

between CALDOCA and FITDOCA, known as the residual, is the primary method for

calibrating and measuring the resolution of the drift chambers.

4.5.2.3 Calibration

As part of my work in g13, I was in charge of the calibration of the DC system for both the

g13a and g13b run periods. The calibration of the drift chambers in CLAS starts by setting

the minimum and maximum values of the drift time distribution (See Figure 4.11). The

minimum value T0 (primarily related by cable delays) of the drift time is found by fitting

the leading edge of the time distribution. The maximum value Tmax represents physically
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the maximum time it would take ions created at the edge of a cell in the drift chambers to

drift to the sense wire in the center of the cell. Tmax is determined by looking for the point

where the fraction of the total integral of the drift time distribution is equal to some value

(typically 99% for region 1 and 97% for regions 2 and 3). Once these limits are fixed, the

procedure follows with an initial selection of the calibration parameters based on the fitting

of the drift-velocity function 11 for every superlayer in every sector. The functional form

of the fitting function depends on the DC region: polynomials forms are used for regions 1

and 2 while for region 3 a power form works better. The corresponding parameters of the

fitting functions are determined by fits to the FITDOCA vs drift time plots. An example

of the FITDOCA vs drift time relationship is illustrated in Figure 4.12.

Figure 4.11: (left) Drift time distribution for region 3. (top right) Determination of T0.
(bottom right) Determination of Tmax.

The final step of the calibration consists of the fine-tuning of the calibration parameters

obtained from the above procedure. This is achieved by fitting the residuals vs drift time

distribution. The way of understanding the resolution provided by tracking and so the

quality of the DC calibration is through the distribution of residuals as a function of the

run number. Figure 4.13 shows the final residuals obtained for superlayer 2 (all sectors) for

11The drift velocity function is defined as the ratio between the CALCDOCA of a particle track to the
drift time.
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Figure 4.12: An example of the relation between FITDOCA and the drift time. Blue points
represent the FITDOCA vs drift time distribution produced from CLAS data. The black
solid line is the fit to the red crosses which represent a profile histogram of the blue points.

the whole g13b run period. Worthy of mention is the fact that all the residuals in g13 after

the DC calibration were left to be roughly below 100 µm which is equivalent to 0.01 cm.

4.5.3 Start Counter

The start counter (ST) is the first subsystem triggered by a hadronic event produced in the

target. Based on a coincidence with the tagger, the start counter is used to determine (at the

level of data processing) which photon bunch was responsible for generating a hadronic reac-

tion in the target12. Given that the photon bunches have the same 2 ns time structure as the

electron bunches, the tagger-ST coincidence must be determined within less than ±2 ns.

12At the level of data analysis, the determination of which photon, within a specific bunch, was the most
likely for having produced the reaction is explained in section 5.9.
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Figure 4.13: Residuals (superlayer 2, all sectors) as a function of the run number for the
g13b period. Notice the residuals are roughly below 100 µm.

A basic layout of the start counter is shown in Figure 4.14. The start counter, centered

about 10 cm around the target cell, consists of 24 scintillator paddles equally distributed

into six identical sectors and coupled to an acrylic light guide. Each scintillator, 29 mm

wide and 2.15 mm thick, constitutes a two-piece structure: a leg and a nose. The leg is

the straight section of the paddle 502 mm in length; the nose is the semi-triangular section

increasing the forward-angle coverage. The length of the nose paddles in each sector varies

azimuthally. The two outer paddles are 30 mm long while the middle paddles are 93 mm

long: 52 mm for the rectangular section and 41 mm for the truncated triangular section [66].

The efficiency of the start counter paddles for detection of charged particles is close to

100%. The time resolution varies between 292±1 ps (for leg paddles) and 324±2 ps (for

nose paddles). These resolutions are sufficient to differentiate in time between neighboring

photon bunches [66].
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(a) (b)

Figure 4.14: Start counter: (a) Schematic view of the start counter showing the leg and
nose regions. (b) Cross-sectional view.

4.5.4 Time-of-Flight System

The time-of-flight system (TOF) is used to determine the time it takes a charged particle to

traverse CLAS (from the interaction vertex in the target to the TOF counters). Combining

this timing information with tracking information allows one to determine the velocity of

final-state particles inside the CLAS detector and, consequently, to reconstruct the mass of

the particles [67].

The TOF system is a six-sector arrangement with double-ended scintillators located

between the Cherenkov counters and the electromagnetic calorimeter; it covers the CLAS

detector in the entire operational azimuthal region with a θ range between 8◦ and 142◦.

A diagram of a TOF sector is shown in Figure 4.15. Each TOF sector consists of 57

scintillator paddles distributed over 4 panels13. The scintillators all have the same thickness,

roughly 5.1 cm, but with a width and length that vary according to the polar-angle location:

forward paddles (θ < 45◦) are 15 cm wide and 32-376 cm long, while large-angle paddles

(45◦ < θ < 142◦) are 22 cm wide and 371-445 cm long. The time resolution of the TOF

counters varies between 60-160 ps for the forward counters and between 100-160 ps for the

large-angle counters [66].

13Due to space limitations, sectors 3, 5, and 6 have apportioned only 56 scintillator paddles.
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Figure 4.15: Time-of-flight system for a particular sector showing 56 paddles distributed
into backward angles (12 paddles), central angles (22 paddles), and forward angles (22
paddles).

4.5.5 Cherenkov Counters

The Cherenkov counters (CC) are used in electroproduction experiments to separate elec-

trons from pions and to trigger on electrons. This system is usually not used in photopro-

duction experiments since no lepton-meson separation is required.

The Cherenkov counters are positioned in the forward direction right after the outer DC

region and consist of six sectors covering polar angles θ up to 45◦. Each region is divided

into 18 θ-segments, with each segment separated into two symmetric modules containing

a Cherenkov radiator gas, perfluorobutane (C4F10). This makes a total of 36 modules per

sector [67]. In a module, the Cherenkov radiation is transported using shaped-mirrors, and

gathered in Winston light collectors located behind the torus magnet coils. This collector

location accounts for the maximum angular coverage of 45◦. The gas filling the modules has

an index of refraction of 1.00153, which results in a high photon yield and a high momentum

radiation threshold which prevents pions from emitting Cherenkov light in the module. The

electron efficiency detection within the fiducial acceptance is very close to 100% [68].
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4.5.6 Electromagnetic Calorimeter

The forward Electromagnetic Calorimeter (EC) has three main purposes in CLAS: detection

and triggering of electrons at energies above 0.5 GeV, detection of photons at energies

above 0.2 GeV (for Deeply Virtual Compton Scattering (DVCS) or reconstruction of neutral

mesons like the π0 and the η), and detection of neutrons. For the work presented in this

thesis, the calorimeter plays a key role since the complete identification of the reaction

channel of interest requires the detection of a neutron in the final state.

At the typical energies handled in CLAS, the detection of neutral particles (photons

and neutrons) is carried out using thick samples of high-Z materials which enhance the

probability of interaction. The interaction of these high-energy neutral particles with the

high-Z material results in the production of showers of particles (either electromagnetic or

hadronic). The detection of those showers permits the reconstruction of the original photon

or neutron that generated them. Therefore, the detection of high-energy neutrals must

include the presence of both high-Z materials (to produce the showers) and scintillators

(to measure position, energy, and timing of the showers). This is the main idea behind

the design and functioning of a sampling calorimeter. The CLAS electromagnetic sampling

calorimeter [69] consists of six sectors distributed azimuthally according to the CLAS ge-

ometry and covering only the forward-angle region (8 < θ < 45◦). Each sector contains a

triangular EC module, ∼ 47.5 cm thick, formed by 39 alternating layers of lead (Z = 82)

and scintillator sheets. Each layer has a lead sheet 2 mm thick and a plastic scintillator 10

mm thick. For readout purposes, each scintillator is divided into 36 strips parallel to one

side of the triangle, each approximately 100 mm wide with lengths varying between 0.15

and 4.2 m. The strips are rotated 120◦ in each successive layer such that three succesive

layers form a group of U, V, and W “views” (Figure 4.16, panel (a)) for a total of 13 of

these groups. To improve hadron identification, the groups are separated into inner and

outer stacks, containing 5 and 8 groups, respectively.

The reconstruction of a hit requires energy deposition in all three views (U, V, W) of the

inner and/or outer stacks of an EC module. Groups of fired scintillator strips are identified

in each view. The groups from each view (120◦ out of phase) intersect, and the corresponding
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(a) (b)

Figure 4.16: Forward Electromagnetic Calorimeter: (a) One of the six CLAS EC modules
showing the U, V, W views. (b) Example of an event reconstruction in EC where five
sectors are hit.

crossing points represent the “hit” (Figure 4.16, panel (b)). This procedure allows the hit

position to be found in the plane containing the views (x-y plane) with a resolution not

greater than 3 cm, but does not give much information about the hit coordinate along the

axis perpendicular to that plane (z-axis). For calibration purposes, the z-value is usually

taken as the average length of the calorimeter. For analysis purposes, this z-value has to

be corrected, as shown later in Section 5.6.2.1. The path length from the hit position to

the readout edge is used to determine the energy and the time of the hit. For neutrons,

in particular, the detection efficiency rises linearly from 5% at 0.6 GeV/c to 50% at 1.8

GeV/c, and levels off toward a plateau value of ∼55% for neutrons with momenta above 2.0

GeV/c. The discrimination between photons and neutrons for momenta up to 2.5 GeV/c

is made by means of time-of-flight measurements. In this case, the time-of-flight resolution

associated with the EC is about 1 ns [67].
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4.5.7 Large Angle Calorimeter

The Large Angle Calorimeter (LAC) is a complement to the CLAS forward Electromagnetic

Calorimeter mentioned above. The LAC covers only the first two CLAS sectors (-30◦ <

φ <90◦) in a θ range between 45◦ and 75◦. The LAC design is similar to the electromagnetic

calorimeter. Each sector contains a module, ∼56 cm thick, with 33 rectangular layers of lead

and plastic scintillator split into inner (17 layers) and outer (16 layers) stacks with individual

light readouts; each layer is composed of a lead foil 0.2 cm thick and a scintillator bar 1.5

cm thick. At momenta higher than 0.5 GeV/c2, neutron detection efficiencies greater than

30% can be obtained with a time resolution as low as 260 ps [67, 70].

4.6 Target Cell

Unpolarized targets used for photoproduction experiments in CLAS consist of cylindrical

cells made of kapton with thin aluminum windows. They are designed to hold mainly liquid

hydrogen or deuterium which is maintained by means of a cryogenic system.

Most of the g13 period was run using a liquid deuterium LD2 target14 positioned with

its center 20 cm upstream of the nominal CLAS center to maximize acceptance. The target

was 40 cm in length with a maximum diameter of 4 cm and a density of 0.1625 g/cm3 [48].

A schematic view of the target utilized for the g13 run period is shown in Figure 4.17.

Figure 4.17: g13 target: a 40-cm-long liquid deuterium target.

14For purposes of testing and detector alignment, about 1 billion triggers were taken with a LH2 target.
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4.7 Data Acquisition Rate and Trigger

Physics events were recorded in g13 at a rate of about 10 kHz (a very high rate compared

to earlier run periods), with a dead time around 15%. Approximately 50 billion events were

collected during the g13 run period, 20 billion in g13a and 30 billion in g13b, resulting in a

130 TB set of raw data [57].

In g13a, the trigger was set to record charged-track events with a coincidence between

ST and TOF systems in two of the six CLAS sectors. In g13b, the coincidence between

the ST and TOF was required in at least one of the sectors. These trigger requirements

were chosen to minimize the background from accidental detector hits, while maximizing

the data acquisition rate for the desired physics events [57]. The photon trigger was not

part of the g13 trigger.

4.8 Summary of g13 Running Conditions

As mentioned above, the g13 CLAS run period consisted of two parts: g13a and g13b. The

former used circularly polarized photons; the latter used linearly polarized photons. The

running conditions of each period are summarized in Table 4.1.

Table 4.1: Table summarizing the g13 running conditions.

Running conditions g13a g13b

Electron beam current 33− 45 nA 5− 12 nA
Electron beam energy 1.99 GeV and 2.65 GeV 3.30− 5.16 GeV
Radiator Gold foil (10−4 r.l.) Diamond (3·10−4 r.l.)
Tagged photon energy range 0.3− 2.5 GeV 1.1− 2.3 GeV
Photon polarization Circular Linear
Photon beam collimator width 6.4 mm 2 mm
Target LD2 LD2

Target length 40 cm 40 cm
Target max. diameter 4 cm 4 cm
Target position −20 cm −20 cm
Main torus current −1500 A −1500 A
Trigger setting Two-sector, no tagger One-sector, no tagger
DAQ rate ∼ 10 kHz ∼ 10 kHz
Physics events ∼ 20 billion ∼ 30 billion
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Chapter 5: Particle Reconstruction and Analysis

5.1 Overview

After the detector calibration stage, data were processed (“cooked”) using the CLAS re-

construction and analysis package RECSIS [71]. Processing the data involves taking the

original files, in BOS format [72], produced during the experiment by the various detec-

tor subsystems and creating new BOS files containing higher-level information (such as

four-vectors) suitable for physics analysis1.

The processed data were analyzed using the ROOTBEER (ROOT Bank Event Extrac-

tion Routine) package developed by Ken Livingston [73]. This package consists of a set of

routines that allows one to convert CLAS BOS data to the more compact DST format and

analyze them within a ROOT framework [74].

This chapter is aimed at describing in detail the analysis performed on the processed

data to identify, in an exclusive manner, the quasi-free reaction associated with the channel

γd→ K
+

Σ
−

(p)→ K
+
π−n (p),

where the box represents the decaying particle (Σ
−

) and the corresponding decay products

of it (π− and n), and (p) is a spectator proton. The data utilized for this analysis correspond

to the second part of the g13 run period (g13b), which made use of a liquid-deuterium target,

a linearly polarized photon beam, and had a negative polarity for the torus magnet (i.e., a

field in which negative particles were outbending). The running conditions for g13b were

described in detail in Chapter 4. The data were taken with six different photon energy

settings: 1.1-1.3, 1.3-1.5, 1.5-1.7, 1.7-1.9, 1.9-2.1, and 2.1-2.3 GeV. These settings were

produced using unpolarized electron beams with energies ranging between 3.3 GeV (for the

lower photon energy settings) and 5.2 GeV (for the higher photon energy settings). The

strategy and cuts applied to each photon energy setting were similar; therefore, only the

analysis of one particular bin (2.1-2.3 GeV) is described in the following sections.

1The information is organized into BOS Banks (EVNT, TAGR, MVRT, ECPB, among others). These
banks will be mentioned throughout this chapter.

66



5.2 Event Reconstruction

The Σ
−

produced in the reaction γd → K
+

Σ
−

(p) decays into nπ− with a branching ratio

of 99.8% [75]. In order to carry out an exclusive analysis of this reaction, it is necessary to

detect all particles but one. In the case of a quasi-free reaction on the neutron, the spectator

proton is a low-momentum particle, making it hard to detect since CLAS was designed to

track charged particles with momenta above 200 MeV/c [76]. One thus needs to detect the

Σ
−

decay products (π− and n) and the K
+

. For the spectator proton (p) and the Σ
−

, the

missing mass MM(K
+
nπ−) and the invariant mass M(nπ−) are reconstructed.

5.3 Data Exclusion

To reduce the systematic uncertainty, some parts of the data2 set were removed from the

analysis. The selection criteria were based on the overall stability of the systems and the

quality of the calibration of the CLAS subsystems. Some runs taken for diagnostic purposes

rather than for physics analysis purposes also had different running conditions and were

therefore excluded from the analysis.

5.3.1 Excluded Runs

A list of good runs for g13b data analysis was defined based on a combination of information

from the logbook comments recorded during the data taking, the run list compiled using the

database, and the runlist obtained from the analysis of the EPIC bank information using

a single pion channel (γn→ pπ−). In the list, which can be found in Ref. [77], the criteria

for labeling runs as “bad” included unstable beam conditions, runs taken for normalization

purposes, runs with unknown radiator or unknown polarization plane, wrong position of

the coherent edge and trigger problems.

2The CLAS data are usually structured in terms of runs. In the case of g13b, each corresponded to about
two hours of data taking.
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5.3.2 Excluded Files

Files to be excluded from the analysis were selected based on the quality of the DC calibra-

tion. In g13b, each run consists of 40 files on average. Within particular runs, it was found

that there were files showing very large residuals (residuals are discussed in Section 4.5.2)

compared to those for the rest of the files comprising the run. This was observed mostly

with files taken either at the beginning or at the end of those particular runs. Given that

the DC calibration constants are handled on a run-by-run basis, recovering those problem-

atic files (by recalibration of DC) for a particular run would result in calibration constants

unsuitable for the other files of the run. Therefore, instead of losing a complete run, the

files with relatively large residuals (within a run) were discarded from the analysis. The

study was done run by run and the list of 58 excluded files in g13b is shown in Table 5.1.

Table 5.1: List of runs that have some files with very large residuals. Such bad files were
excluded from the analysis.

Run No. Bad files No. Run No. Bad files No. Run No. Bad files No.

54072 A15 54453 A32 54734 A45
54091 A20 54463 A38 54747 A41
54101 A04, A05 54507 A42 54764 A48
54102 A02, A09, A12 54513 A21 54798 A44
54127 A20 54525 A33, A34, A35 54811 A38
54182 A43 54538 A23 54818 A44
54198 A43 54564 A29 54915 A01
54221 A42 54596 A22 54941 A42
54222 A42 54607 A40 54972 A44
54287 A31 54617 A03 54973 A42
54291 A26 54629 A13 55047 A41
54295 A39 54636 A55 55054 A30
54296 A15 54638 A53 55068 A40
54313 A42 54645 A16 55073 A47
54334 A03 54652 A45 55107 A45
54360 A43 54690 A44 55115 A50
54399 A17 54703 A14 55137 A42
54452 A54 54720 A45
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5.3.3 Excluded Events

During the g13 experiment, there were some periods in which the beam delivered by the

accelerator showed unstable conditions. Given the short duration of these periods (normally

no more than a few minutes), the data acquisition system was not interrupted and the bad-

quality-beam events were being recorded. In order to ensure a proper determination of the

photon beam asymmetry, which could be affected by the collimation of an unstable beam,

the events taken during such periods were cut out from the analysis using the standard sync

utility package [78]. In this routine, the intervals containing beam trips are determined by

taking the first interval between scaler events injected into the data stream of each file as the

reference by assuming it to contain no beam trips. Intervals in a data file with a number

of events different from that of the reference interval are associated with unstable-beam

events and are therefore removed from the analysis3. In this analysis, about 18% of the

total number of events were rejected by the beam-trip cut.

5.4 Data Reduction

The huge amount of events collected during the g13 run period makes it convenient to filter

(skim) the data as an intermediate step. The two filters used in this analysis are discussed

in the next subsections. The first one was produced at the level of “cooking”. The other

one was utilized as part of the analysis.

5.4.1 The First-Level Skim

During the processing (“cooking”) stage, various filters were created in parallel according

to three event topologies: at least 1pos1neg1neu, at least 2pos1neg, and at least 2pos2neg.

The first-level filter used for this analysis only included events with at least one positively

charged track, one negatively charged track, and one neutral track (1pos1neg1neu). This

reduced the data to roughly 6% of its original size. Using these filtered data files significantly

reduced the CPU and disk space requirements for the analysis.

3In case the first scaler interval contained a beam trip, this routine failed to correctly determine the bad
scaler intervals. This issue was corrected by Paul Mattione with the “tripfixer” routine [79].
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5.4.2 The Second-Level Skim

From the general 1pos1neg1neu skim (after exclusion of bad runs, bad files, and beam trips),

only events with at least three good entries in the EVNT bank (at least one positive, one neg-

ative, and one neutral) and at least one good entry in the TAGR bank were accepted. Good

entries were selected based on the charge q and the quality flags in the EVNT bank. For

charged tracks, the conditions |q| >0, DCstat>0, SCstat>0, and Status>0 were imposed.

For neutrals, defined as clusters in the calorimeter that do not match a charged track in

the drift chambers, the flags q=0, DCstat=0, ECstat>0, and Status>0 were required.

The strategy in the analysis was to initially accept as many candidate events as possible

by assuming during skimming all good positives to be kaons (K
+

), all good negatives to be

pions (π−), and all good neutrals to be neutrons (n). This means that the 4-momentum

vector for each particle was calculated using the momentum measured by the drift chambers

and the PDG mass [75], not the mass obtained from the time-of-flight that is found in the

EVNT bank. In this scheme, all possible track combinations for the γd → K
+

Σ
−

(p)

reaction (including all photons in the TAGR bank) were taken into account. The number

of combinations was constrained by applying loose cuts on the vertex time of each track,

the MM(K
+
nπ−), and M(nπ−) in the following way:

• Track vertex times TK+ and Tπ− were determined (see procedure in Section 5.9) for

all K
+

and π− candidates.

• Photon vertex times Tγ were determined (see procedure in Section 5.9) for each good

photon in the TAGR bank4.

• All γ,K
+

combinations with ∆Tγ,K+ = |Tγ − TK+ | > 3.0 ns were rejected.

• All K
+
, π− combinations with |TK+ − Tπ− | > 6.0 ns were rejected.

• Remaining photons, kaons, and pions were combined with all the neutrons into sets5

with missing mass MM(K
+
nπ−) and invariant mass M(nπ−).

4Good photons in the TAGR bank correspond to hits with status = 7 or 15. Status 7 means that one
unambiguous hit was reconstructed in the tagger; status 15 means more than one unambiguous hit was
reconstructed.

5Here, the momenta of kaons and pions were processed through the momentum and energy-loss correction
procedures described in Section 5.7.
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• A 5σ cut on the MM(K
+
nπ−) was applied (0.7< MM <1.4 GeV/c2).

• A 5σ cut on the M(nπ−) was applied (1.160< M <1.234 GeV/c2).

The effect of these cuts on the invariant mass, plotted for the sum of all combinations,

is shown in Figure 5.1. The surviving events were saved into a new skim file which reduced

the 333 MB first-level file to about 15 MB. The analysis steps described below are applied

to this second-level skim file. As a reference, all the analysis cuts along with the events

remaining after each cut are summarized in Table 5.3 at the end of this chapter.

Figure 5.1: Effect of ∆Tγ,K+ (top left), ∆TK+,π− (top right), and MM(K+nπ−) (bottom)
cuts on the invariant mass M(nπ−) in the initial skim. As can be seen, the cuts applied
are conservative enough to avoid loss of good events.

5.5 Charged Particle Identification

The identification of a charged track in CLAS is based upon four fundamental quantities:

momentum p, charge q, path length l, and time T . The momentum is determined from the
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radius of curvature of the reconstructed track when passing through the toroidal magnetic

field, implemented in the tracking in the form of a field map. The sign of the charge is

deduced from the track deflection in the field. The path is found by intersecting the track

recorded by the drift chambers (DC) with a series of planes related to the beam line and to

the other subsystems (ST, TOF, EC, LAC), thus defining various path lengths lST , lTOF ,

lEC , and lLAC . The times for each subsystem (TTagger, TST , TTOF , TEC , and TLAC) are all

relative quantities measured with respect to an arbitrary reference time without physical

meaning. From the above information, derived quantities such as the particle’s velocity and

mass can be determined.

5.5.1 Velocity

The velocity cβmeas is calculated from a combination of tracking (l) and timing (T ) infor-

mation according to the relation 6

cβmeas =
l

T − Tev
(5.1)

where c is the speed of light and Tev is the time of the particle at the event vertex, which

is related to the event start time7 by an arbitrary offset. Figure 5.2 shows the (EVNT)

β distribution (from Equation 5.1) as a function of momentum for negative and positive

particles at an early stage of the analysis. Dashed lines correspond to βcalc calculated from

the momentum and PDG mass [75]. On the left plot, the upper dashed line corresponds

to π− and the lower one to K
−

. On the right plot, the upper line is for π
+

, the middle for

K
+

, and the lower for protons. The crossing bands seen in both plots arise from out-of-time

particles from different beam buckets.

5.5.2 Mass

A particle’s rest mass Mmeas in the EVNT bank is computed from its reconstructed mo-

mentum p and reconstructed velocity cβmeas following the expression:

6In the scheme of the EVNT bank, βmeas is determined from the path length and time measured by the
TOF subsystem.

7Tev is determined by the SEB (Simple Event Builder of RECSIS).
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Figure 5.2: Measured βmeas as a function of momentum for negatives (a) and positives (b).
These plots were taken from an early stage of the analysis and show events containing at
least one positive, one negative, and one neutral particle in the EVNT bank. Explanation
in the text.

M2
meas =

(
1

β2
meas

− 1

)
p2 (5.2)

Figure 5.3 shows the mass-squared distribution from Equation 5.2 for negatively and

positively charged particles produced at a very early stage of the analysis. The main peak

in the left plot corresponds to the π−; the small peak observed in the right plot at about

0.25 (GeV/c2)2 represents K
+

candidates. Since the yields for pions are much higher than

for kaons, the K− contamination to the π− peak is small, as can be seen in Figure 5.3(a)

near 0.24 (GeV/c2)2. In contrast, K
+

identification is more complicated, since both the π+

and proton distributions extend under the kaon peak (as seen in Figure 5.3(b)), which could

lead to a significant amount of pions being misidentified as kaons. This is, in particular, an

issue at higher momenta (>1.5 GeV/c), where β approaches unity and the TOF resolution

is no longer sufficient for π/K discrimination.

5.5.3 π− Identification

The π− was identified from momentum-dependent ∆β cuts. In this case, ∆β was determined

according to the relation:

∆β = βmeas − βcalc = βmeas −
p√

p2 +m2
(5.3)
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Figure 5.3: Mass-squared distribution for negatives (left) and positives (right). The plots
show events containing at least one positive, one negative, and one neutral with good flags
in the EVNT bank. Note the logarithmic scale on the vertical axis on both plots and the
different mass ranges on the horizontal axis.

where βmeas is the particle’s velocity reconstructed in the EVNT bank (Equation 5.1) and

βcalc is the particle’s velocity calculated from the measured momentum p and the PDG

mass m for a charged pion [75].

The cuts on ∆β were determined by slicing the ∆β vs. p distribution into 20 MeV/c

bins along the momentum axis. Each slice was fitted with a Gaussian function. The fit-

ting parameters (mean and sigma) associated with each slice were then used to construct

±3σ functions around the ∆β mean value. An eighth-order polynomial fit (for π− mo-

mentum below 1.2 GeV/c) and a zeroth-order polynomial fit (for π− momentum greater

than 1.2 GeV/c) performed on each of the ±3σ functions defines the functional momentum-

dependent form of the ∆β cuts used for π− identification. The ∆β vs. p distribution, along

with the corresponding mean and sigma values, is shown in Figure 5.4. Since, neglecting

non-gaussian tails, the ±3σ cut contains 99.7% of the events expected to be negative pions,

the events beyond this limit were neglected as they had small impact on the overall statis-

tics. The stability of these ∆β cuts throughout the analysis can be observed in Figure 5.5

where the ∆β vs. p distribution is plotted at an initial stage of the analysis with just the

initial skimming cut applied, and at a final stage after applying all of the cuts except the

∆βπ− cut. As can be seen, the fit parameter (sigma) does not vary significantly between

the two stages of the analysis. Similarly, the effectiveness of such cuts can be appreciated
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in Figure 5.6 where the correlation of the invariant mass, the missing mass, and the missing

momentum with ∆β is presented. The ∆β cuts lie between -0.050 and 0.050, and clearly

improve the selection of K
+

Σ
−

events.

Figure 5.4: (Top left) ∆β distribution as a function of π− momentum. The red lines define
the ±3σ momentum-dependent functions used to select π− candidates. (Top right) Mean
value associated with the momentum-dependent functions. (Bottom left and right) +3σ
and -3σ momentum-dependent functions. Explanation given in the text.

The final distribution for mass, momentum, polar angle, and azimuthal angle for the

π− are presented in Figure 5.7. All the cuts, including background subtraction, are applied

in this plot.

5.5.4 K
+

Identification

As discussed in Section 5.5.2, the selection of K
+

is more complicated than for π− due to:

• events related to out-of-time particles leaking into the K
+

signal, and

• the large amount of in-time pions and protons contaminating the K
+

signal.

The former source is significantly reduced by the ∆β cuts applied to negative particles

(see Section 5.5.3), and slightly improved through the use of cuts on the |TK+ − Tπ− | time
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Figure 5.5: ∆β distribution as a function of π− momentum taken at two different stages
of the analysis. On the left, the resulting distribution after applying only the cuts from
the initial skimming is shown. In the middle, the distribution is shown (before background
subtraction) after applying all the analysis cuts except the ∆βπ− cut. The plot on the right
compares the ±3σ values obtained in both stages. The red and blue lines define the ±3σ
momentum-dependent functions.

Figure 5.6: Correlation between ∆βπ− and the distributions of the invariant mass M(nπ−),
the missing mass MM(K

+
nπ−), and the missing momentum. The ∆β cuts, which lie on

average between ±0.050 (black dashed lines), help in cutting out background events without
throwing out good events. The histograms were filled at a final stage of the analysis.
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Figure 5.7: Mass, momentum, θ, and φ distributions for the final π− sample after all the
cuts are applied.

difference. The latter source is primarily suppressed by means of momentum-dependent

cuts applied on the ∆β vs. p distribution for positive particles. As a consequence of the

TOF resolution, however, this cut fails at high-momentum values (p >∼1.5 GeV/c) when

discriminating kaons from pions. This leaking of pions misidentified as kaons is dealt with in

this analysis by defining a contour region within which the K
+

sample is selected. Figure 5.8

shows (before applying any PID cut) the scenario for the K
+

identification. The horizontal

red lines represent the average region where the kaons lie; the two most prominent bands

of out-of-time particles are delineated by polygons and the leaking of pions is delineated by

an oval. The procedures for the K
+

identification are explained in the following subsections.

5.5.4.1 |TK+ − Tπ−| cuts

The out-of-time particles are predominantly pions coming from beam buckets that are

different from the one that produced the event of interest. These appear as bands crossing

through the K
+

signal at momentum values below ∼1.2 GeV/c (see Figure 5.8). Although

this contamination is greatly reduced after applying a ∆β cut on the π−, there are still some

events remaining. In order to have a cleaner K
+

sample, one can study the events allocated
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Figure 5.8: The scenario for K
+

identification before applying any PID cut. Kaons are
found, on average, in the region ±0.025 along the ∆β axis. Explanation given in the text.

within each one of the white dashed-line polygons defined in Figure 5.8. The top panel of

Figure 5.9 corresponds to the leftmost polygon; the bottom panel, to the other one.

Figure 5.9: (left side) |TK+ − Tπ− | vs. ∆β distribution for out-of-time particles. (right
side) ∆β distribution for out-of-time particles. The top panel corresponds to the leftmost
polygon of out-of-time particles observed in Figure 5.8. The bottom panel coincides with
the other polygon. Explanation is given in the text.

The plots on the left side show the track vertex time difference |TK+ − Tπ− | vs. ∆βK+

distribution for the events remaining in each polygon after applying the ∆βπ− cut. Events
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within the high-density region are mainly kaons while the rest are related to out-of-time

pions. The distribution for each polygon was sliced along ∆βK+ into equal-width bins

and each slice was fitted with a gaussian function. In each case, a ±3σ function (diagonal

yellow lines) was defined using a first-order polynomial. Since both functions do not differ

significantly from one another, we used a global cut on |TK+−Tπ− | between -1.6 and +1.5 ns

such that the amount of discarded kaons (those within the red vertical lines) is negligible.

The local effect of this timing cut on the events in each polygon can be appreciated in

the right-side plots of Figure 5.9. White, blue, and yellow histograms represent the ∆βK+

distribution before any PID cut, after the ∆βπ− cut, and after the ∆βπ− plus the timing cut,

respectively. The events rejected by the timing cut are represented by the red points; such

events correspond mainly to out-of-time pions. The global impact of this timing cut on the

general K
+

sample (the whole p and ∆βK+ range) is shown in Figure 5.10. Left and middle

panels show the ∆βK+ vs. p distribution after applying the ∆βπ− cut, and the ∆βπ− plus

the |TK+ − Tπ− | cuts respectively; the panel on the right shows the corresponding ∆βK+

projections, in blue and yellow color, respectively. As can be noticed from Figures 5.9 and

5.10, this timing cut does not considerably affect the selection of K
+

within the region where

most of them fall. What this cut does is to improve the shape of the K
+

sample such that

subsequent distributions will be easier to fit, allowing a better set of variable-dependent

cuts to be obtained. Therefore, the |TK+ − Tπ− | cut is to be understood in this analysis as

a complement to the ∆βπ− cut.

5.5.4.2 ∆βK+ cut and K
+
contour

The initial strategy to get rid of the pion and proton contamination (after the ∆βπ− and

|TK+−Tπ− | cuts) was to follow a similar procedure as the one used for the π−: momentum-

dependent ∆β cuts. The bin size chosen for the projections was the same as that for pions

(20 MeV/c). A single Gaussian function was used to fit the projections. The momentum-

dependence of ∆β was obtained from a zeroth-order polynomial. The ∆β vs. p distribution

along with the corresponding mean and sigma distributions and polynomial functions used in

the cuts are presented in Figure 5.11. Only events within ±3σ were accepted. The procedure

was tested at two different stages of the analysis in order to check if any correlation between
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Figure 5.10: Global effect of the |TK+ − Tπ− | cut on the K
+

sample. Explanation is given
in the text.

the ∆β and the other cuts applied in the analysis were observed. Figure 5.12 shows that

there is no a significant difference in the 3σ values extracted when the projections are fitted

either right after applying only the initial skimming cut, or after applying all the cuts

including background subtraction. The slight difference observed is due to the reduction

(in the final stage) of out-of-time particles contaminating the K
+

signal.

Any attempt to fit the ∆βK+ vs. p distribution leads to momentum-dependent functions

(within ±3σ) that are not very successful in separating kaons from pions above momentum

values of ∼1.2 GeV/c, since a non-negligible leaking of pions into the kaon sample is inherent

to these functions. On the other hand, tighter functions (defined within ±2σ or ±σ) have

the effect of throwing out too many good kaons. In order to improve the K
+

selection for

momentum values above ∼1.2 GeV/c, we defined a contour region greatly reducing the pion

leakage. This contour is obtained from the correlation plot between the mass of positive

particles and the time difference |TK+−Tπ− |. Figure 5.13 shows this correlation taken at two

different stages of the analysis: after applying ∆βπ− cuts (left panel) and after applying all

the analysis cuts except the ∆βK+ (middle panel). A time-dependent function was defined

in each case by slicing the TK+ − Tπ− axis into equal-width bins and fitting them with a

gaussian function. The resulting functions are linear and compared for each stage in the

right side panel where it can be seen there is no a significant difference in both functions.
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Figure 5.11: ∆β distribution split into 20-MeV bins of K
+

momentum. The red lines define
the ±3σ momentum-dependent functions used to select K

+
candidates. (Top right) Mean

value and ±3σ (Bottom left and right) momentum-dependent functions.

Figure 5.12: ∆β distribution as a function of K
+

momentum taken at two different stages
of the analysis. On the left, the resulting distribution after applying only the cuts from
the initial skimming is shown. In the middle, the distribution is shown before background
subtraction but after applying all the analysis cuts except the ∆βK+ cut. The plot on the
right compares the ±3σ values obtained in both stages. The blue and red lines define the
±3σ momentum-dependent functions.
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Figure 5.13: Mass for K
+

vs. |TK+ − Tπ− | distribution at two different stages: (left plot)
after applying the ∆βπ− cut, and (middle plot) after applying all the cuts except the ∆βK+

cut. (right plot) Comparison of the ±3σ functions obtained in both stages and used for the
contour selection.

The impact of the contour selection on the ∆βK+ vs. p distribution is presented in

Figure 5.14 before applying the ∆βK+ cut. The distribution with ∆βπ− and |TK+ − Tπ− |

cuts imposed is shown in the left side. The middle and right side plots show the result-

ing distribution for accepted and rejected events, respectively, after applying, in addition,

the contour cut. Figure 5.15 shows the ∆β, momentum p, and mass m distributions for

K
+

obtained after the contour cut are shown, with the accepted and rejected events being

represented by light yellow and light blue histograms, respectively. Based on these plots,

it seems the leaking of pions into the K
+

signal is greatly reduced but accounting for the

efectiveness of this contour cut in terms of the number of K
+

events thrown out is some-

thing that will be done in a precise way for the publication. The final selection of K
+

in

this analysis corresponds to a combination of the ∆βK+ vs. p cut plus the contour cut.

The final mass, momentum, polar angle, and azimuthal angle distributions for K
+

after

applying all the analysis cuts are shown in Figure 5.16.
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Figure 5.14: Impact of the contour cut on the selection of K
+

. The point to notice is that
the contour cut rejects a significant portion of misidentified pions. Explanation is given in
the text.

Figure 5.15: ∆β, p, and m distributions after applying the contour cut. Accepted and
rejected events are represented by light yellow and light blue histograms, respectively. Ex-
planation is given in the text.
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Figure 5.16: Mass, momentum, θ, and φ distributions for the final K
+

sample after all the
cuts are applied. Note that kaons are mostly forward-peaked.

5.5.5 Vertex Cuts

The way the vertex of a single track is found in the standard CLAS software is by looking

for intersections of the track, reconstructed inside the target, with the beam stop planes

− planes which go through the beam line and cut perpendicularly the mid-plane of each

sector. The intersection coordinates are used as the vertex coordinates for the track. In this

analysis, the vertex position for each charged particle was instead determined by calculating

the coordinates of the closest point along the track path to an idealized beam line defined by

(0, 0, z). The closest point is determined by finding the line segment that is perpendicular

to both the track path and the idealized beam line.

In the γd→ K
+

Σ
−

(p) reaction, of the two charged particles detected, the K
+

is the only

one coming directly from the primary reaction vertex. The π−, on the other hand, comes

from a secondary vertex, that is, the decay vertex of the Σ
−

after it has moved away from

the reaction vertex. As will be shown below in Appendix D, the probability of a Σ
−

decaying

outside the target is not negligible. More importantly, the extrapolation of the π− track to

the beamline may not coincide with the true vertex. This means that for the purpose of
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analyzing the K
+

Σ
−

channel, one should avoid rejecting pions for which the vertex position

along the beamline (z-vertex) is outside the target boundaries since they might be related

to good K
+

Σ
−

events. Thus, in this analysis, z-vertex cuts were applied only to kaons.

These cuts (-39.0< z
K+ <-1.0 cm) were defined in such a way as to exclude interactions in

the target windows. The resulting vertex distributions for π− and for K
+

, after applying

all the analysis cuts except the zK+-vertex cut, are depicted in Figures 5.17 and 5.18,

respectively. One can notice how the beam stop planes are clearly visible in the form of

black, crossing strips. For the case of π−, it is clear that a significant number of events orig-

inate outside the target walls, which is related to the fact that the π− comes from the decay

of the Σ
−

. For K
+

the small amount of events outside the target is simply a resolution issue.

Figure 5.17: (top) x vs. y vertex distribution for π−. The distribution in color represents
the vertex distribution calculated in this analysis. The black crossing strips represent the x
vs. y vertex distribution as obtained from the EVNT bank. (bottom) z-vertex distribution
for π−. The significant amount of events outside the target length boundaries (-40.0 and
0.0 cm) is a consequence of that the π− comes from the decay vertex of the Σ

−
.
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Figure 5.18: (top) x vs. y vertex distribution for K
+

. The distribution in color represents
the vertex distribution calculated in this analysis. The black crossing strips represent the x
vs. y vertex distribution as obtained from the EVNT bank. (bottom) z-vertex distribution
for K

+
. The black vertical lines represent the K

+
z-vertex cut between -39.0 cm and -1.0

cm.

5.6 Neutral Particle Identification

The identification of neutral tracks in CLAS is based upon the velocity cβn determined

according to the expression:

cβn =
lEC

TEC − Tγ
(5.4)

with lEC and TEC being the path length and timing information from the electromagnetic

calorimeter, and Tγ the vertex time of the incident photon (see Section 5.9).

In CLAS, neutrals are tagged as neutrons or photons depending on their βn. In the

EVNT scheme, if βn < 0.95 then the neutral is labeled as a neutron and its momentum is
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calculated from the relation p = mnβn/
√

1− β2
n. Otherwise the neutral is considered to

be a photon with momentum p = Etot/0.272, where Etot is the total energy deposited in

the calorimeter by the particle, and 0.272 corresponds to the sampling fraction, i.e., the

energy fraction deposited in the active part of the calorimeter obtained from simulation

studies [69]. The βn distribution for neutrals at a very early stage of the analysis is shown

in Figure 5.19.

Figure 5.19: β distribution for neutrals obtained after requesting good flags on events with
at least one positive, one negative, and one neutral. The broad peak around 0.8 is associated
with neutrons, while the large peak centered at 1.0 corresponds to photons. The fact that
β is greater than 1.0 is related to the resolution of the detector and with problems on the
reconstruction of the path for neutrals.

5.6.1 Neutron Identification

The strategy followed in this analysis allowed us to relax the standard β cut used to dis-

tinguish between neutrons and photons. In general, the idea was to assume all neutrals to

be neutrons and use them throughout the analysis code without cutting on their velocity.

Figure 5.20 displays the βn distribution for all the neutral hits at two different stages of the

analysis. In the left plot, only the cuts included in the initial skimming are applied. On

the right, all analysis cuts (except background subtraction) are included. After the initial

skimming, the number of photons is reduced significantly, clearly showing the distribution

of neutrons. After applying fiducial, PID, and timing cuts, the photons are virtually elimi-
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nated and the distribution of fast neutrals is observed to die off naturally around β=0.97.

This demonstrates the effectiveness of the procedure used to reject background from final

states that are not K
+
π−n (see Section 5.4.2). Figure 5.21 shows the final β, p, θ, and φ

distributions for neutrons after all cuts and all corrections are applied.

Figure 5.20: β distribution for detected neutrals. (left) after initial skimming cuts. (right)
after fiducial, PID, and timing cuts. The β distribution dies off around 0.97 and no photon
contamination is observed.

Figure 5.21: β, momentum, θ, and φ for the final neutron sample after all cuts (including
background) are applied. All the neutron corrections have been applied in these plots.
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5.6.2 Path Corrections

The calculation of β (and also p, θ, and φ) is sensitive to the determination of the path length

for neutrals |~lEC | relative to the reaction vertex. This path, as depicted in Figure 5.22, is

calculated from the vectorial sum:

~lEC = ~REC + (−~Vn) (5.5)

where |~REC | is the interaction vertex in the calorimeter and |~Vn| represents the vertex posi-

tion in the target. Both are given relative to the center of CLAS. These two quantities are

determined by the CLAS software in a very general way, which does not always represent

the best choice. Therefore, in order to obtain the most accurate value for β (as well as

p, θ, and φ), one needs to apply corrections on the values for both |~REC | and |~Vn|. Such

corrections are described in the next subsections.

Center Center

   of

CLASTarget

REC

l
EC

TARGET

Reaction

  vertex

   of

EC

Vn

Figure 5.22: The neutral path is reconstructed in CLAS based on the vertex coordinates
~Vn, associated with the fastest particle in the event, and the EC hit coordinates ~REC .
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5.6.2.1 Correction to the Interaction Vertex in the EC

Due to their large interaction length, neutrons can interact anywhere inside the calorime-

ter, making it difficult to precisely determine the EC hit coordinates along the neutron

momentum vector. However, any systematic shift in the reconstruction of ~REC can be

corrected from the analysis of γd → π+π−p n events. This channel has the advantage of

having all the four particles generated at a common primary reaction vertex8, eliminating

the necessity of “guessing” a vertex position for the neutron in the target. The π+π−p n

analysis consisted of comparing the missing momentum, after applying cuts on the missing

mass MM(π+π−p), to the momentum of the neutron detected in CLAS. The correction

obtained was applied as a global factor with a different value for each EC layer. A detailed

description of the procedure followed to define this correction is presented in Appendix C.

5.6.2.2 Correction to the Vertex Position in the Target

During the data processing stage (“cooking”), a vertex position ~Vn is assigned to neutrals

according to the vertex of the fastest particle in the event (in most of the cases, a charged

pion). For channels with neutrons coming directly from the reaction vertex, this is a good

choice. However, when the neutron comes from a secondary vertex, as in the case of the Σ
−

,

it is less obvious where the neutron was produced, causing an uncertainty in the neutron path

length. Therefore, taking into account that the K
+

is the only detected particle originating

from the vertex of the K
+

Σ
−

reaction, we assumed, as a starting point, the neutron to

come from the same vertex as the kaon. This is a reasonable approximation for ~Vn as in

many cases the Σ
−

decays right after being created. Nevertheless, the non-negligible mean

decay path of the Σ
−

requires an algorithm to correct for the decay vertex location. Such

an algorithm is explained in Appendix D.

5.6.3 Deposited Neutron Energy

When interacting in the calorimeter, the deposited energy Edep cannot exceed the kinetic

energy Ekin of the neutron. Therefore, the condition Ekin −Edep ≥ 0 was always required.

8The common primary vertex is extracted from the MVRT bank.
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The deposited energy was extracted from the ECPB bank, while the kinetic energy was

calculated as

Ekin =
√
P 2
n +M2

n −Mn (5.6)

where Pn is the reconstructed neutron momentum after applying path corrections, and Mn

is the PDG neutron mass [75]. The Ekin−Edep distribution can be seen in Figure 5.23, where

the black line corresponds to the applied cut. Although the rejected events fall within the

experimental resolution, they can be ignored when determining the photon beam asymmetry

without a significant loss of statistics.

Figure 5.23: Difference between the neutron kinetic energy and the deposited energy in the
calorimeter. Only events with a positive difference are accepted (above the vertical black
line). The histogram is taken after applying fiducial and PID cuts.

5.7 Momentum and Energy Corrections

Uncertainties in the magnetic field map, misalignment of the drift chambers, and energy

lost when moving through different regions of CLAS make it necessary to apply empirical

corrections to the reconstructed momenta of charged particles.

5.7.1 Momentum Corrections

Due to the fact that the momentum reconstruction in CLAS is based on the magnetic

field, an incomplete knowledge of the torus field map, as well as any geometric misalign-
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ment of the drift chambers, can lead to inaccuracies in the reconstructed momentum. The

momentum thus has to be corrected to take into account such inaccuracies. The cor-

rection was determined by studying sector-by-sector the reaction γd → ppπ− [80] under

three possible scenarios: γd → pp(π−), γd → p(p)π−, and γd → (p)pπ−, where (X) is

the reconstructed particle. In each case, the average difference between the reconstructed

momentum of this particle and the momentum obtained from a kinematic fit [81, 82] de-

fined the correction function for positively and negatively charged particles (the corrections

only depend on charge and are independent of mass). Figure 5.24 shows the corrections

on the momentum distributions of pions and kaons. In neither case does the correction

exceed 2%.

Figure 5.24: Momentum correction where pcorr is the corrected momentum and pmeas, the
measured momentum. (top left) ratio and (bottom left) ratio as a function of momentum
for π−. (top right) ratio and (bottom right) ratio as a function of momentum for K

+
. Plots

taken after applying fiducial, PID, and timing cuts.

5.7.2 Energy-Loss Corrections

Before their momentum is determined in the drift chambers, charged particles lose en-

ergy as they pass through the target material, the target cell walls, the beam pipe, the
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start counter, and the air gap between the start counter and the first region of the drift

chambers. To obtain the particle momentum at the interaction vertex rather than in

the drift chambers, corrections for these energy losses were applied using the eloss pack-

age [83]. Figure 5.25 displays the energy-loss correction on the momentum distributions

of π− and K
+

.

Figure 5.25: Eloss correction where peloss is the eloss-corrected momentum and pmeas, the
measured momentum. (top left) ratio and (bottom left) ratio as a function of momentum
for π−. (top right) ratio and (bottom right) ratio as a function of momentum for K

+
. Plots

taken after applying fiducial, PID, and timing cuts.

5.8 Fiducial Cuts

Fiducial cuts are implemented with the main goal of removing regions of the detector that

are not well reproduced by Monte Carlo simulations. This is of particular importance for

cross-section measurements, but might also be relevant to optimize the φ-binning used in

the determination of the beam asymmetry. In this analysis, two types of fiducial cuts are

implemented: angular cuts, and bad TOF paddle cuts. The first type eliminates particles

passing near the edges of the drift chambers (for charged particles) and particles passing
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near the edges of the calorimeter (for neutral particles) in each sector. The second type

(used only for charged particles) rejects particles that hit either malfunctioning or inefficient

TOF paddles.

5.8.1 Angular Cuts for charged particles

The toroidal magnetic field near the coil regions (edges of the drift chambers) varies non-

uniformly with the position. Due to imperfections in the field maps used, any charged

particle passing close to those regions will have a larger uncertainty in the measured mo-

mentum. Particles interacting with either the magnet coils or the cryostats may also end

up not being detected in the outer subsystems, causing the reconstruction to fail. Conse-

quently, these regions are difficult to model and should be removed from the analysis. The

removal (fiducial cuts) in this analysis consisted of a cut of ±5◦ on the azimuthal angle

at the edge of each sector chosen to remove the region around the coil. Figure 5.26 shows

the azimuthal vs. polar angle distribution for negatively and positively charged particles.

The angular cuts are represented by red vertical lines. About 5% of the events passing the

initial skimming are rejected by these angular cuts.

Figure 5.26: φ vs. θ distribution for negative (left) and positive (right) particles. The
red vertical lines show the angular cuts. The histograms were filled right after the initial
skimming and before any PID cuts.

5.8.2 Angular Cuts for neutral particles

For neutrals, a ±5◦ cut around the edges of each sector was also used. In addition, keeping

in mind that neutrals are only detected with the electromagnetic calorimeter, reconstructed
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neutrons were required to be within the fiducial EC volume. This volume is defined as

10◦ < θn < 43◦, where θn is the neutron polar angle. Figure 5.27 shows the angular cuts

applied to candidate neutrons. The poor reconstruction in sector 5 (between -150◦ and

-100◦) is a consequence of the fact that the EC pedestals were never updated after the

replacement of an ADC board for sector 5 at the beginning of g13b.

Figure 5.27: φ vs. θ distribution for neutral particles. The red lines show the angular
cuts. Only initial skimming and charged particle angular cuts were applied here. The low
statistics observed in sector 5 are explained in the text.

5.8.3 Bad Time-Of-Flight Scintillator Paddles

Inefficient paddles in the TOF subsystem were rejected from the analysis according to stud-

ies performed during calibration. Since paddles above No40 are coupled pairwise, it is very

hard to make them both work at the same time. Therefore, those paddles were removed

from all sectors. The list of bad paddles in each CLAS sector is shown in Table 5.2. The

resulting φ, θ, and momentum distributions of negatively and positively charged particles

after cutting out bad SC paddles are shown in Figure 5.28.
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Table 5.2: List of scintillator paddles removed from the analysis.

Sector Paddle No Problem Sector Paddle No Problem

1 6, 10 Dead 6 10 Dead

2 8, 42 Dead All > 40 Pairwise

3 11 Dead

Figure 5.28: φ, θ, and momentum distributions for negative (top panel) and positive
(bottom panel) particles. White and yellow histograms correspond to events before and
after removing bad SC paddles, respectively. All plots include angular cuts.

5.9 Incident Photon Identification

In contrast to electron scattering experiments, where the electron causing the interaction

and the produced hadrons form a coincidence inside the CLAS detector, photoproduction

experiments require the photon tagger to tag all electrons that radiated a photon. Among

these, the correct photon (the one that initiated the reaction) has to be identified by match-

ing its vertex time (Tγ) to the vertex times of the hadrons (Th) in CLAS. The time of arrival

at the reaction vertex for each “good” photon in the TAGR bank is calculated from the

relation:

Tγ = TTagger +
z
h
− z

Off

c
(5.7)
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where TTagger is the time of photon arrival (after RF correction) at the center of the target,

z
h

is the z-vertex coordinate for the hadron, measured with respect to the center of CLAS,

and z
Off

is the offset along the beam axis between the center of the target and the center of

CLAS (in g13, the target was moved 20 cm upstream from the center of CLAS).

The vertex time for a hadron can be determined based on either the start counter (ST)

or the time-of-flight (TOF) subsystems. The timing information for a charged particle

provided by either subsystem can be traced back to the instant at which the event took

place. The calculation is as follows:

Th = T
Sub
− l

Sub

cβcalc
(5.8)

where T
sub

and l
Sub

are the particle time and the path length, and βcalc is the particle’s

velocity calculated from the momentum as measured in the DC (not corrected for energy

loss before the drift chambers) and the nominal PDG mass [75]. The high luminosity of the

g13 run period increases the chance of having events with multiple hits in the same sector

of the start counter which can be incorrectly associated with a particle track. The TOF

not only has a higher segmentation but also a better time resolution when compared to the

ST. Therefore, only the information from the TOF subsystem (TTOF and lTOF ) was used to

determine the hadron vertex time.

In this analysis, the matching hadron corresponds to the K
+

(see Section 5.6). The

distribution ∆T = TK+ − Tγ vs. K
+

momentum and its projection along the ∆T -axis for

all good photons are shown in Figure 5.29. The correct photon was selected by applying

a momentum-dependent ∆T cut. The cut was set by slicing the ∆T vs. K
+

momentum

axis into 20 MeV/c bins along the momentum axis and fitting each slice with a gaussian

function. The ±3σ momentum-dependent functions are defined by a combination of a

third-order polynomial and a zeroth-order polynomial. These functions can be seen in the

right panel of Figure 5.29. Of the total number of events that passed the fiducial, bad SC,

and PID cuts, it was found that in approximately 3% of the cases, more than one good

photon survived the ∆T cut (Figure 5.30). Due to the ambiguity presented by such events,

those multi-photon events were rejected from the analysis. Since this thesis determines an

asymmetry and not an absolute cross section, no correction is needed to account for these

rejected events.
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Figure 5.29: (left) Vertex time difference ∆T = TK+ − Tγ between all the good photons in

the TAGR bank and the kaon as a function of K
+

momentum. (middle) ∆T distribution.
(right) Momentum-dependent cuts applied on ∆T . Red lines represent the functional form
applied in the analysis. These histograms were filled after fiducial, bad SC and PID cuts.

Figure 5.30: Number of good photons per event passing the ∆T cut. The histogram was
filled based on the total number of events that survived the fiducial+bad SC paddles+PID
set of cuts. Approximately 2.80% of that total have two good photons while 0.05% registered
three good photons. These multi-photon events were discarded from the analysis.
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5.10 The Quasi-free Reaction: γn→ K
+

Σ
−

After PID and photon selection, the following step in the analysis is to do the event selection

for the quasi-free reaction of interest: γn → K
+

Σ
−

. However, the reaction studied exper-

imentally corresponds to γd → K
+

Σ
−

(p) rather than to γn → K
+

Σ
−

. As a consequence,

there are two contributions related to the kinematics of the proton (p). One contribution

corresponds to the case when the proton (p) does not participate in the interaction and the

other, when it does. The former is the quasi-free reaction where the momentum distribution

of (p) is mainly dominated by Fermi motion; the latter represents rescattering in which (p)

is hit either by the K
+

or the Σ
−

and so, gains momentum.

The selection of quasi-free events in this analysis was made by restricting the momen-

tum of the missing particle (p) to low values. The cut value was defined as 0.15 GeV/c.

This cut can be justified by looking at the top right panel of Figure 5.31 where the miss-

ing mass is plotted as a function of the missing momentum. This momentum cut rep-

resents a physical cut that allows one to understand better the reaction by separating

rescattering events. In addition, it has implications on the background since it helps to

eliminate a significant amount of non-K
+

Σ
−

events observed beyond missing-mass values

of ∼1.1 GeV/c2. The bottom panels of Figure 5.31 show the missing momentum distribu-

tion and the correlation of the cos θlab
p with the missing momentum distribution. These plots

show the missing momentum cut and make evident the tendency of the missing momentum

to be distributed isotropically in the lab frame at low-momentum values, as expected when

Fermi motion dominates. The distribution of events is seen to be basically flat below 0.15

GeV/c, but above roughly 0.2 GeV/c, the distribution tends to peak in the forward direc-

tion which can be interpreted as a sign of the final-state interactions being the dominant

process.

5.11 Background Subtraction

After applying the missing momentum cut, the remaining background is studied from the

invariant and missing mass distributions shown in Figure 5.32. Based on the top panel of

Figure 5.32 one can infer that the background is comprised of mainly two sources:
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Figure 5.31: (top) Missing mass vs. missing momentum. (bottom left) Missing mo-
mentum distribution for low- (cyan) and high-momentum protons (blue). (bottom right)
cos θlab

p vs. momentum distribution of the missing proton. The horizontal line at 0.15
GeV/c represents the momentum cut applied. Events below this cut define the quasi-free
γn→ K

+
Σ
−

reaction.

• background correlated with the Σ
−

, and

• background uncorrelated with the Σ
−

Both sources of background can be recognized in the bottom left and bottom right

panels of Figure 5.32 where the missing and invariant mass distributions are shown, respec-

tively. The correlated background appears as a bump peaking around 1.1 GeV/c2 on the

100



missing mass distribution. This background comes from the reactions γd→ K
+?

Σ
−

(p) and

γd → K
+

Σ
−?

(p) with K
+?

and Σ
−?

decaying into K
+
π0 and Σ

−
π0, respectively. Each of

these reactions therefore contribute to γd → K
+

Σ
−

(p) with an extra π0 and so, they also

contribute with the Σ
−

peak; consequently, the correlated background cannot be easily iden-

tified in the invariant mass distribution. On the other hand, the uncorrelated background,

barely noticeable as a shoulder below 0.85 GeV/c2 in the missing mass distribution, can

be clearly appreciated as a flat distribution sitting underneath the Σ
−

peak in the invariant

mass distribution. This background is related to particle misidentification in the analysis

and the predominant reactions, uniformly distributed (phase space), are γd → π+π−n(p)

and γd→ π+π−n(p)π0 where the π+ is the misidentified particle.

The strategy followed in this analysis to subtract the background from the Σ
−

mass

distribution consists on “cutting” the correlated background and then “fitting” the uncor-

related background.

5.11.1 Correlated Background

Events passing the spectator momentum cut are seen in the invariant mass distribution (Σ
−

)

to come from the K
+

Σ
−

and K
+

Σ
−
π0 final states, with the former (K

+
Σ
−

) contributing the

most and the latter (K
+

Σ
−
π0) representing the correlated background. One can reduce such

a background without significantly throwing out good K
+

Σ
−

events by using the correlation

between the missing mass of the π−n system (which should correspond to the mass of the

K+ (p) system) and the momentum of the K
+

; the correlation shows a clear separation

of the K
+

Σ
−

from the K
+

Σ
−
π0 final state (see Figure 5.33). The right panel shows an

alternative view where the correlation is clockwise rotated in order to make the separation

more clear.

The projection along the vertical axis of the rotated correlation is observed in Figure 5.34

(top panel). Because of the rotation, this projection contains information about both the

MM(π−n) and the K+ momentum and therefore, a cut on it can be thought as a two-

dimensional cut. The cut applied to subtract the correlated background was chosen based on

the fit of the projection with two gaussian functions: a double gaussian (blue) representing

mainly the K
+

Σ
−

final state and a single gaussian (red) representing the K
+

Σ
−
π0 final
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Figure 5.32: (top) Correlation between the invariant mass (π−n) and the missing mass
(K

+
π−n) distributions. (bottom left) Missing mass distribution showing a bump peaking

about 1.1 GeV/c2. (bottom right) Invariant mass distribution showing a flat background
underneath the Σ

−
peak. Squared boxes are just an indication of the average regions where

the background sources are supposed to lie. All the three histograms were taken right after
applying the missing momentum cut.

states. The numerical value of the cut imposed is a trade-off between rejecting the majority

of the K
+

Σ
−
π0 events while simultaneously keeping the majority of good K

+
Σ
−

events

located below the missing mass peak. Integrating the single-gaussian function (red color),

one can determine that the cut eliminates about 91% of the total of K
+

Σ
−
π0 events lying

within the Σ
−

signal. The bottom panel of Figure 5.34 shows the corresponding distributions

for the missing and invariant mass events passing the cut (yellow histograms) as well as

those being rejected by the cut (red histograms).
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Figure 5.33: (left) Distribution of MM(π−n) vs. K+ momentum. (right) Distribution of
MM(π−n) vs. K+ momentum clockwise rotated. Events below the black line corresponds
mainly to K

+
Σ
−

events while those above the black line are related to K
+

Σ
−
π0 events.

5.11.2 Photon Energy Cut

There is an extra background cut that plays a very important role in the determination of the

beam asymmetry. This cut, referred to as the Eγ cut and described in detail in Section 6.2,

helps reduce potential polarized background events that might affect in a significant way

the values obtained for the photon beam asymmetry. The Eγ cut is applied in this analysis

right after applying the correlated background cut and before subtracting the uncorrelated

background. As a cross check, this cut was also applied before the correlated background

cut and no significant difference between the two scenarios was noticed.

5.11.3 Signal-Background Subtraction

The remaining background in the invariant mass is related to contamination of π+ misiden-

tified as K
+

. Since this background is not correlated with the invariant mass and is barely

distinguishable in the missing mass, we dealt with it by fitting the invariant mass. The fit

function prototype consists of a Voigtian function (V) plus a first-order polynomial (L). A

Voigtian function is used in this case because it seems to describe well the non-gaussian
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Figure 5.34: (top) Projection along the vertical axis of the right panel of Figure 5.33.
The total function (black) is composed of a double-gaussian function (blue) and a single-
gaussian function (red) representing K

+
Σ
−
π0 events. Such events (correlated background)

are eliminated by the black vertical line. Missing mass (left bottom panel) and invariant
mass (right bottom panel) distributions before (cyan) and after (yellow and red) applying
the correlated background cut. Yellow (red) histograms represent the remaining (thrown)
events after applying the cut.

tails observed in the invariant mass distribution. This fact might be justified by considering

the fact that the Σ
−

, being reconstructed from a neutron and a negative pion, involves an

experimental resolution which is a combination of the resolution of different detectors: the
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electromagnetic calorimeter for neutral particles and the time-of-flight and drift-chamber

subsystems for charged particles.

The procedure employed to study this background is the Q-factors method described

in reference [84]. Such a method allows one to separate (event by event) the signal from

the background on a probabilistic basis. The main reason for using this procedure instead

of the traditional side-band subtraction method has to do with the multiple decays and

independent decay angles involved in the γn →K+
Σ
−

reaction, each of these angles being

associated with a different phase space region. The background will depend on each phase

space region and so, a method where one basically attempts to estimate the background

under the signal by examining the side-band regions where there is presumably no signal

and only background (the side-band method) is not a very suitable choice for the type of

reaction studied in this analysis since only a specific phase-space region is studied. The

Q-factors method, on the contrary, represents a technique where the relevant decay phase

space regions can be incorporated in a simultaneous way.

5.11.3.1 Q-factors method

The Q-factors method is defined [84] as a probabilistic event-weighting method aimed at

separating signal from background on an event-by-event basis. The main idea of the method

is to choose a representative distribution ξ (in this analysis, the Σ
−

mass distribution) and

define, for each event, a group of closest neighbors to it. The neighbors are determined

calculating the closest “distance” between the event (or rather, the ξi value associated with

the event) and the other events in the distribution. For this reaction, the nearest distance

dij between the i and j events is calculated based on the angular variables cos θ?K+ and φ
K+

according to the expression

dij =
∑
k

[
(xk)i − (xk)j

rij

]2

(5.9)

where the sum runs over k, the number of variables used, (xk)i represents the value of

cos θ?K+ and φ
K+ for the i-th event, and rij is the maximum difference between any pair of

events for each of the variables (in this case, it can be either 2 or 2π). Usually a group of

100, 200, 500, or 1000 closest neighbors are used. Each group of closest neighbors (which
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includes the event itself) is fitted by means of a signal S(ξ) + background B(ξ) function

previously defined by the user. Based on the resulting fit parameters, the pre-defined signal

and background functions are evaluated at the ξi value of the event and the probability Qi

that the i-th event corresponds to the signal is calculated as S(ξi)/(S(ξi) + B(ξi)). Signal

and background can thus be separated for any distribution (e.g., Σ
−

, cos θ?K+ , φ
K+ ) by

weighting it with either Qi (signal) or 1−Qi (background). Figure 5.35 shows the signal

and background separation of the invariant mass distribution using four different numbers

of neighbors: 100, 200, 500, and 1000. The left panel of Figure 5.36 compares the number

of total and signal events in each case. The right panel shows the signal-to-background

ratio evaluated between 1.18 and 1.215 GeV/c2. As can be seen, there is roughly 5% of

background sitting beneath the Σ
−

peak and the values obtained in the different neighbors

scenarios differ by no more than 0.5%. Based on such a small difference, N=200 was chosen

as the reference for further systematic studies since it provides enough events to get reliable

fits and also requires low-computational time compared to N=500 or 1000.

Figure 5.35: Q-factors method using four different number of neighbors. The invariant
mass distribution (black crosses) is separated into signal (blue histogram) and background
(red histogram) using a Voigtian + 1st order polynomial function.
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Figure 5.36: (left) Comparison between total (black) and signal (blue) number of events
obtained in each neighbor scenario. (right) Signal-to-background ratio defined within a 3Γ
region with Γ being the Voigtian width of about 6 MeV. The estimated background accounts
for about 5% of the total number of events.

5.11.3.2 Error estimation on the background subtraction

Following Reference [84], the fit error (σQi
) of a given Qi weighting factor can be computed

using the functional forms for the signal S and background B defined as

S(ξi) = N V (ξi) (5.10)

B(ξi) = a0 + a1ξi

fi(ξi, η) =
S(ξi)

S(ξi) +B(ξi)
,

and the inverse of the covariance matrix of the fit parameters Cη where ~η represents the

adjustable parameters N , a0, and a1. The error in Qi is thus written as

σ2
Qi

=
∑
j,k

∂fi
∂ηj

(Cη)
−1
jk

∂fi
∂ηk

(5.11)

Since the algorithm used to obtain the values of Qi leads to highly correlated results between

each event, the resulting error on extracting the number of signal events in a specific bin is

calculated assuming 100% correlation (overestimation):

σ2
Q

=

(∑
i

σQi

)2

(5.12)
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with the index i running over the number of events in the bin. For any distribution (i.e.,

the Σ
−

distribution), the total error per bin σT is obtained by adding in quadrature the

statistical error on the number of events in the bin
√
Nsignal to Equation (5.12):

σ2
T

= Nsignal + σ2
Q

=
∑
i

Qi +

(∑
i

σQi

)2

(5.13)

5.12 Summary of Cuts

All the cumulative cuts applied in the analysis are shown in Table 5.3. The remaining

events are referred to the percentage of events left (respect to the initial number of events)

after applying each cut.

Table 5.3: List of all cuts used in the exclusive analysis of the reaction γd→ K
+

Σ
−

(p).

Section Subsection Cut applied
Surviving Remaining

events events (%)

Initial number of events 28562731 100.00%

Initial skim

5.4.2 Beam trips 23260668 81.44%

5.4.2 1pos&1neg&1neu in EVNT 22766733 79.70%
5.4.2 |TK+ − Tγ | < 3.0 ns 16489815 57.73%
5.4.2 |TK+ − Tπ− | < 6.0 ns 9786136 34.26%
5.4.2 Missing mass (5σ) 4483394 15.70%
5.4.2 Invariant mass (5σ) 3049055 10.67%

Fiducial cuts
5.8.1 Angular cuts 2572970 9.00%

5.8.3 Bad SC paddles 2434332 8.52%

Depos. energy 5.6.3 Ekin − Etot ≥ 0 2408665 8.43%

Charge PID
5.5.3 π− identification 1717872 6.01%

5.5.4 K
+

identification 202630 0.71%

Vertex cut 5.5.5 z-vertex K
+

191205 0.67%

Photon select.
5.9 |TK+ − Tγ | < 3σ ns 184983 0.65%

5.9 Nγ =1 174540 0.61%

Event select. 5.10 Pmissing < 0.150 GeV/c 56962 0.20%

Background 5.11.1 Correlated background 49237 0.17%

Background 5.11.2 Photon Energy Cut 14398 0.05%
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Chapter 6: Beam Asymmetry

This chapter outlines the steps followed in this analysis to determine the photon beam

asymmetry Σ for the quasi-free reaction γ d→ K+Σ−(p).

6.1 General definitions

The kinematics of reactions with a two-body final-state can be completely described by two

parameters. Typical choices are the Mandelstam variables s and t, or the photon energy

Eγ and the polar angle θ. In this analysis, the photon beam asymmetry was determined as

a function of Eγ (lab frame) and cos θ?K+ (c.m. frame). Figure B.1 depicts the kinematics

of the γ n→ K+Σ− reaction.

n

P

k

q
K+

*
K+

−

x
y

z

y’
x’

z’

Figure 6.1: Kinematic variables for the reaction γn→ K+Σ− in the center-of-mass frame.
The reaction plane (red rectangle) is defined by the normalized vector ~k × ~q, where ~k is
the momentum of the incoming photon (along the z-axis) and ~q is the momentum of the
outgoing kaon. θ∗K+ is the scattering angle, ϕ is the angle between the photon polarization

vector ~Pγ (along the y-axis) and the reaction plane, and φ is the azimuthal angle between
the x-axis and the reaction plane. The x′ and y′ axes are parallel and perpendicular to the
reaction plane, respectively.

In g13b, two types of radiators were used: amorphous carbon and diamond. Unpolarized

data taken with the carbon radiator are labeled as AMOrphous (a). For the diamond, the

linearly polarized data are labeled as either PARAllel (‖) or PERPendicular (⊥), depending

on whether the electric field vector ~E was parallel or perpendicular to the Hall B floor.

109



For the AMO data, the events produced on the target are uniformly distributed over the

azimuthal angle φ1 (defined in Figure B.1). The only φ-dependence in the recorded sample

thus comes from the detector acceptance. In contrast, for the polarized data sets (PARA

or PERP) the distribution is intrinsically non-uniform over φ. The functional form of these

distributions can be expressed as [85, 86]:

N(φ)a ∼ A(φ)Fa (6.1)

N(φ)‖ ∼ A(φ)F‖(1− P‖Σ cos 2(φ+ φ0)) (6.2)

N(φ)⊥ ∼ A(φ)F⊥(1 + P⊥Σ cos 2(φ+ φ0)) (6.3)

where A(φ) is the acceptance function, Fa, F‖ , and F⊥ represent the photon fluxes for each

data set, P‖ and P⊥ are the parallel and perpendicular photon beam polarizations, and

φ0 gives information about how closely the spatial orientation of the photon polarization

vector coincides with the nominal orientation with respect to the floor (PARA or PERP).

Due to the difficulties in accurately determining A(φ), it is more effective to extract the

beam asymmetry from the ratio between distributions of events from the different data sets

rather than directly from one particular distribution. If the flux ratio is known, taking such

ratios also has the advantage of canceling out the effects of the acceptance. Using the ratio

of polarized to unpolarized distributions (N(φ)⊥/N(φ)a or N(φ)‖/N(φ)a), however, does

not provide an optimal method to extract Σ as the lower statistics taken for amorphous

data (∼10% of the total g13b data) significantly increases the statistical uncertainties. A

better choice is to determine Σ by calculating the asymmetry of the number of polarized

events in each φ-bin
(
N(φ)‖ −N(φ)⊥

)
/
(
N(φ)‖ +N(φ)⊥

)
.

6.2 Binning

As mentioned above, the photon beam asymmetry is extracted for different bins of photon

energy Eγ and cosine of the polar angle θ?K+ . One can think of two extreme strategies for

binning, either equal statistics or equal spacing of the bin centers. The former leads to

1The angle φ is the same in the lab and the center-of-mass frames since the difference is only a boost
along the photon direction (z-axis).
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asymmetric bins (large and small intervals), and loss of information when integrating over

the large intervals. In the latter case, one faces the problem of low statistics and large error

bars in some bins. Therefore, it can sometimes be advantageous to select a binning that

produces a compromise between small errors and small intervals.

For Eγ , the chosen bin size was 200 MeV, corresponding to the spacing between the

experimental settings. The reason for this binning is that the figure of merit (FOM) goes

as NP 2 where N is the number of photons at a certain photon energy and P = P (Eγ) is

the polarization of that photon. Therefore, although a wider photon energy bin improves

statistics it does not have a significant impact on the FOM since the polarization decreases

when moving away from the coherent edge position2 (E′γ). At the same time, having a wider

energy bin will increase the background (some of it may even be polarized), and increase the

systematic uncertainty in the polarization. The Eγ binning was implemented by selecting a

200-MeV region below the coherent edge in the photon energy distribution for the polarized

data. As shown in Figure 6.2, the upper limit of the region was defined to be 50 MeV away

from E′γ to avoid issues with the stability of the coherent peak.

For cos θ?K+ a total of 11 asymmetric bins (per Eγ bin) were used. Figure 6.3 shows the

cos θ?K+ distributions for polarized data in the center-of-mass frame for the photon energy

setting 2.1-2.3 GeV. The poor statistics at very forward angles is a consequence of the

reversed torus field, optimized for low-momentum π− from hyperon decay, which bends

the K+ towards the beam pipe. Those angles, however, have been measured before (see

Chapter 3) and are not as important for N? physics since they are usually dominated by

t-channel and not s-channel where the N? resonances live. On the other hand, this field

setting in g13 made it possible to collect significant statistics over a wide angular range,

and in particular at backward angles. The percentage of events per cos θ?K+ bin is presented

in Table 6.1.

2The coherent edge is defined as the part of the slope of the photon energy peak with the most negative
gradient. Usually the midpoint of the slope is taken as the value for the coherent edge position.

111



hEnergy_perp
Entries  15051

Mean    2.094
RMS     0.411

 (GeV)γE
1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
o

u
n

ts

0

200

400

600

800

1000

1200

hEnergy_perp
Entries  15051

Mean    2.094
RMS     0.411

Photon energy distribution for polarized data

Coherent Edge

 b
in

γ
E

Figure 6.2: Photon energy distribution for the 2.1-2.3 GeV photon energy setting. The
main coherent peak located at around 2.3 GeV corresponds to the highest degree of linear
polarization obtained for the energy setting. The red dashed line represents the coherent
edge position (E′γ) and the blue vertical lines, the photon energy range selected (between
approximately E′γ−0.2 GeV and E′γ) to determine the photon beam asymmetry Σ.
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Figure 6.3: K+ cos θ distributions (C.M. frame) for the 2.1-2.3 GeV energy setting. The
red vertical lines represent the binning used for the determination of the photon beam
asymmetry Σ. Notice the significant statistics at backward angles. The histogram was
filled after applying all the analysis cuts discussed in the previous chapter.

6.3 Parameters for Σ extraction

The photon beam asymmetry extraction depends strongly on three parameters: the photon

polarization, the φ0 offset, and the photon flux ratio. All of these are independent of
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Table 6.1: Binning in cos θ∗K+ used to determine the photon beam asymmetry for the
2.1-2.3 GeV energy setting. The binning is the same for PARA and PERP data sets. The
percentage of the total number of events in each bin is shown in the rightmost column.
Due to the very low statistics, the very forward angle bin (0.8-0.95) was discarded from the
analysis.

Bin No. Angular range Events (%)

1 −0.92 ≤ cos θ∗K+ < −0.40 2.6

2 −0.40 ≤ cos θ∗K+ < −0.08 4.0

3 −0.08 ≤ cos θ∗K+ < 0.10 12.5

4 0.10 ≤ cos θ∗K+ < 0.20 12.9

5 0.20 ≤ cos θ∗K+ < 0.30 12.4

6 0.30 ≤ cos θ∗K+ < 0.40 12.4

7 0.40 ≤ cos θ∗K+ < 0.50 12.6

8 0.50 ≤ cos θ∗K+ < 0.60 13.5

9 0.60 ≤ cos θ∗K+ < 0.70 11.5

10 0.70 ≤ cos θ∗K+ < 0.80 5.0

11 0.80 ≤ cos θ∗K+ ≤ 0.95 0.3

kinematic and final-state parameters, so they do not necessarily have to be obtained from

the reaction of interest. The first one can be determined from Bremsstrahlung calculations,

and the other two from high-statistics channels (single-π channels) where one is limited by

systematics and not by statistics. The way they are determined in this analysis is shown

below.

6.3.1 Photon polarization

As explained in Section 4.3.2, the position of the coherent peak E′γ depends on the orienta-

tion of the diamond with respect to the incident electron beam, and the degree of photon

linear polarization depends on the electron beam energy Ee and on the ratio (E′γ/Ee).

Therefore one can obtain the same coherent peak with different Ee. However, the degree of

linear polarization will be different in each case.

For a fixed value of E′γ and Ee, the photon polarization is determined based on the

ANalytic Bremsstrahlung calculation code (ANB)3 [87]. This code implements realistic

3The ANB code is an analytical calculation of bremsstrahlung spectra with an approximate treatment of
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theoretical functions for both the enhancement (defined as the ratio between polarized and

unpolarized spectra) and the beam polarization through the incorporation of smearing due

to beam collimation and beam divergence, coherent bremsstrahlung contributions from dif-

ferent reciprocal lattice vectors of the crystal, and incoherent contributions from the crystal.

Such features are included in the theoretical functions in the form of five adjustable param-

eters. The main idea of the procedure employed to calculate the photon beam polarization

is based on the determination of these five parameters. The best set of values is obtained by

fitting the experimental enhancement with the corresponding theoretical function defined

in the ANB code. The five extracted fitting parameters are then input in the theoreti-

cal expression for the polarization, producing as a final output the polarization for each

crystal plane (PARA or PERP) as a function of the photon energy (see Figure 6.4). As

a result, a look-up polarization table is produced for each photon energy (or each 9 MeV

wide E-counter) and for each coherent-edge position (in steps of 1 MeV).

Due to instabilities in the position of the electron beam, the coherent-edge position can

drift significantly during a run, leading to have not one single coherent edge position but a

distribution of them. This requires several polarization tables for a specific photon-energy

setting, and so what is determined for each photon-energy setting is actually a photon

polarization averaged over all the look-up polarization tables. Two different methods can

be used to determine the average polarization: an analysis-independent method and an

analysis-related method. The former takes all the coherent edges and weights the polariza-

tion in each E-counter Pi(Ej) according to the number of events Ni in the corresponding

coherent edge distribution. For a total of M coherent edges, the weighted polarization

Pw(Ej) for the j-th E-counter can be expressed as:

Pw(Ej) =

M∑
i=1

Pi(Ej)Ni

M∑
i=1

Ni

(6.4)

where the index i runs over the coherent edge distribution and index j over the E-counters.

This reduces the polarization tables to only one table per plane per photon energy set-

ting per electron energy beam in which each E-counter has an average polarization given

beam divergence, multiple scattering, and finite beam spot size.
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Figure 6.4: Enhancement (top panel) for Para event-by-event data (red squares) with
the coherent-edge positioned at about 1.501 GeV. Degree of photon polarization (bottom
panel) determined from the corresponding enhancement fit. The blue line in the upper
panel corresponds to the fitted enhancement function implemented in the ANB code. The
magenta lines represent just a visualization guide to compare the enhancement and the
photon polarization plots. Figure taken from [88].

by (6.4). A single mean polarization number P̄ for each plane can be obtained by weight-

ing the polarization in each E-counter Pw(Ek) with the number of photons N(Ek) in the

corresponding E-counter:

P̄ =

∑
k

Pw(Ek)N(Ek)∑
k

N(Ek)
(6.5)
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with k running over the E-counters. This method is completely general in the sense that

no relation to a specific analysis reaction is needed.

An alternative method calculates the average polarization directly from the events of

interest (the yields) of the reaction under study. For each event passing all the selection

criteria, the polarization of the associated photon is retrieved from the look-up tables de-

pending on the event’s coherent-edge position and on the photon energy. An accumulated

polarization (for each plane) is obtained by adding up the polarization of each good event.

When this sum is divided by the total number of good events, an average photon po-

larization over the corresponding photon-energy setting is obtained. The simplicity and

analysis-dependent character of this method makes it more reliable, which is the reason for

which it was chosen in this analysis to determine the average photon beam polarization.

Table 6.2 shows the polarization values obtained.

Table 6.2: Mean polarization values for g13b data determined in this analysis.

Coherent peak Electron energy Mean polarization P̄
[GeV] beam [GeV] PARA (%) PERP (%)

2.1 5.057 76 76

2.3 5.157 72 72

6.3.2 φ0 offset

Being a mechanical parameter, φ0 can be assumed to have remained fixed at least between

realignments of the diamond radiator. This parameter was determined from an independent

analysis [89] using a channel with high statistics (γn→ pπ−) for the photon energy setting

1.1-1.3 GeV, integrating over all cos θ bins with a positive beam asymmetry. As displayed

in Figure 6.5, the corresponding φ distributions were fitted based on the asymmetry of

(not normalized) polarized events (N‖ −N⊥)/(N‖ +N⊥). The φ0 value obtained from this

analysis was 0.125◦ ± 0.172◦. This is the value used for the extraction of the Σ− beam

asymmetry.
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Figure 6.5: Asymmetry distribution of polarized events for the γn→ pπ− reaction for the
photon energy setting 1.1-1.3 GeV. Only cos θ bins with a positive beam asymmetry (-0.7<
cos θ? <-0.1, and 0.6< cos θ? <0.8) were taken into account in the fit of the distribution.
The plot was taken from reference [89].

6.3.3 Photon flux ratio FR

The photon flux ratio should ideally be determined from a reaction offering good statistics

and systematics. Since the γn → K
+

Σ
−

is a low-statistics channel, the final values of the

flux ratio used in this work were taken from the analysis of the high-statistical channel

γd → pn studied with the g13b data [88]. Table 6.3 shows such average flux ratios. The

main idea behind the procedure followed to obtain the average flux ratio values consists of

fixing the polarization ratio and the φ0 parameters, and extract the flux ratio from the fit

of (N‖ −N⊥)/(N‖ +N⊥) by integrating over all the polar angle. In this way, the sensitivity

of the fits to any statistical fluctuations is greatly reduced.
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Table 6.3: Average photon-flux ratios FR obtained from a high-statistical channel [88].

Coherent peak
FR ∆FR[GeV]

2.1 1.233 0.038

2.3 0.944 0.039

6.4 Photon beam asymmetry extraction

In this analysis the photon beam asymmetry was extracted using two different approaches:

the φ-bin method and method of moments. These methods, along with the corresponding

asymmetries, are presented in the following subsections.

6.4.1 The φ-bin method

In this approach, for each Eγ and cos θ∗K+ bin, the photon beam asymmetry is extracted

by fitting the corresponding azimuthal distribution. The functional form of the fit function

can be derived by taking the asymmetry of the distribution of polarized events N(φ)‖ and

N(φ)⊥ (Equations 6.2 and 6.3, respectively) as follows:

N(φ)⊥ −N(φ)‖
N(φ)⊥ +N(φ)‖

=
F⊥(1 + P⊥Σ cos 2(φ+ φ0))− F‖(1− P‖Σ cos 2(φ+ φ0))

F⊥(1 + P⊥Σ cos 2(φ+ φ0)) + F‖(1− P‖Σ cos 2(φ+ φ0))
(6.6)

which can be written in a more suitable fitting form as:

N(φ)⊥ −N(φ)‖
N(φ)⊥ +N(φ)‖

=

(1−A) +

(
1 +AB

1 +B

)
2C cos[2(φ+D)]

(1 +A) +

(
1−AB
1 +B

)
2C cos 2[(φ+D)]

(6.7)

where A = FR is the flux ratio F‖/F⊥ , B = PR is the polarization ratio P̄‖/P̄⊥ , C = P̄Σ

with P̄ corresponding to the average polarization (P̄‖ + P̄⊥)/2, and D = φ0. Hence, by

obtaining C from the fit and knowing P̄ , it is possible to extract the beam asymmetry Σ.
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Since this method requires binning in the azimuthal angle, and K+Σ− is a relatively

low-statistics channel, one runs into the problem of finding the best φ binning. On one

hand, having many bins means that one is not integrating out any of the dependence on φ;

on the other hand, the systematic uncertainty in the signal extraction gets worse for bins

with low statistics. Thus, the ideal scenario would be to be in a plateau between these two

extremes where there is sufficient statistics but the integration over φ does not produce a

significant loss of information.

Different binning of constant width for φ (∆φ =12.5, 16.67, and 25◦) was tried in order

to choose the one where as much of the angular information per bin is retained without

picking up too much systematic uncertainty. The ∆φ bin sizes were selected following

the angular fiducial cuts (Section 5.8.1) in which 5◦ are removed from the edge of each

sector. Except at very forward angles, this cuts out the coil regions, reducing the azimuthal

coverage of each sector from 60◦ to 50◦. Therefore, ∆φ=12.5◦, for instance, means dividing

the 50◦ region of each sector into four equal parts. In addition, the lower and upper limits

of φ were set between -35◦ and +325◦ in order to avoid the usual separation of sector 4

when the limits are set between -180 and +180◦. These two conditions prevent data from

migrating towards the coil regions. Figures 6.6 and 6.7 show an example of the azimuthal

angular distribution for ∆φ =12.5, and 25◦, respectively, for the 2.1-2.3 GeV photon energy

setting and for all cos θ?K+ bins. The bad fit observed in the very forward angular bin is

caused by its very low statistics. For this reason, that bin was not taken into account in

the determination of the beam asymmetry.

Each fit is performed by fixing the FR, PR, and φ0 parameters with the values defined

above (Section 6.3). This leaves Equation (6.7) as a function of a single parameter, C, from

which the beam asymmetry can be extracted. The fit to each (Eγ , cos θ?K+) bin therefore

produces a unique beam asymmetry point. Figure 6.8 shows the photon beam asymmetries

as a function of cos θK+ in the center-of-mass frame for the 2.1-2.3 GeV photon energy bin

and for different ∆φ widths. The systematic uncertainty due to the choice of binning is

significant compared with the statistical uncertainty in each bin, but there is no obvious

trend. This fact makes it difficult to select the optimal ∆φ bin.

A study concerned with the sensitivity of the beam asymmetry Σ on different parameters
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Figure 6.6: Asymmetry distribution for the photon energy setting 2.1-2.3 GeV and
∆φ=12.5◦. The bottom right corner plot shows the corresponding χ2 of each fit.

Figure 6.7: Asymmetry distribution for the photon energy setting 2.1-2.3 GeV and ∆φ=25◦.
The bottom right corner plot shows the χ2 associated with each fit.

has been carried out recently by Zachariou and Ilieva [90]. From these studies, the authors

developed a correction factor related to the sensitivity of Σ on the φ-bin width. In the
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Figure 6.8: Photon beam asymmetry as a function of cos θ?K+ extracted using the φ-bin
method through Equation (6.7) for different ∆φ widths: 12.5, 16.67, and 25◦ for the 2.1-2.3
GeV photon energy setting. The asymmetry Σ is obtained from the fit parameter C = P̄Σ.
Only statistical uncertainties are shown.

general case of a φ-bin width of size ∆φ, Equation (6.7) would actually determine the

parameter C = P̄Σ
sin[∆φ]

∆φ
rather than C = P̄Σ. The term sin[∆φ]/∆φ represents a

correction factor which in the limit of infinitely small bin width

(
lim

∆φ→0
(sin[∆φ]/∆φ) = 1

)
reproduces C = P̄Σ. The photon beam asymmetries resulting after applying the correction

factor are shown in Figure 6.9. It can be seen that the systematic uncertainties on the

asymmetries due to the φ binning choice seem to be reduced. The effect of the ∆φ correction

can be observed more clearly in Figure 6.10 where the differences between the asymmetries

obtained with ∆φ=25◦ and those obtained with the other two ∆φ=12.5, and 16.67◦ are

calculated. As can be seen, the correction factor makes the differences approach more

closely to zero, indicating the validity of the correction. The differences, however, tend to

be significantly larger in the case of small ∆φ widths. Without the correction, the highest

difference obtained [Σ(25◦) − Σ(12.5◦)] accounts, on average, for about 2.9%; with the

correction in place, such a difference does not scale, on average, over about 0.82%. For the

case of [Σ(25◦)−Σ(16.67◦)], the correction reduces the difference from roughly 1.2% to 0.3%

while for [Σ(25◦)− Σ(16.67◦)], the difference is reduced from about 1.7% to 1.2%.
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Figure 6.9: Photon beam asymmetry as a function of cos θ?K+ extracted using the φ-bin
method through Equation (6.7) for different ∆φ widths: 12.5, 16.67, and 25◦ for the 2.1-
2.3 GeV photon energy setting. The asymmetry Σ is obtained from the fit parameter
C = P̄Σ(sin[∆φ]/∆φ). Only statistical uncertainties are shown.

6.4.1.1 Uncertainty in the φ-bin method

The statistical uncertainty σR of the ratio R =
N(φ)⊥ −N(φ)‖
N(φ)⊥ +N(φ)‖

is calculated by propagating

the uncertainties related to N⊥ and N‖ [91]. σR is then given by

σR =
2
√
N(φ)⊥N(φ)‖

(N(φ)⊥ +N(φ)‖)
3/2

(6.8)

By assuming that F⊥ = F‖, P⊥ = P‖ = P , and by neglecting the uncertainty in P , an

estimate of the statistical error associated with the determination of the beam asymmetry

via the φ-bin method is obtained according to:

σΣ =
σR
P

=
2
√
N(φ)⊥N(φ)‖

P [N(φ)⊥ +N(φ)‖ ]
3/2

(6.9)
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Figure 6.10: Difference between the photon beam asymmetries as a function of cos θ?K+

determined by using different ∆φ widths for the 2.1-2.3 GeV photon energy setting. (left)
Σ(25◦)-Σ(12.5◦), (middle) Σ(25◦)-Σ(16.67◦), and (right) Σ(16.67◦)-Σ(12.5◦). Top panels
show the asymmetries without the ∆φ correction factor. Bottom panels include the correc-
tion factor.
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6.4.2 Method of moments

Another approach to extract the photon beam asymmetry is the method of moments, which

is based on a Fourier moment extraction algorithm. This is the first time this approach is

applied to a low-statistics channel in CLAS. The method of moments, derived in Ref. [92],

consists of constructing moment-n histograms for a relevant distribution (in this case, the

Σ
−

invariant mass distribution). The moments (either for ‖ or ⊥) are calculated as:

Y0 =
N∑
i=1

1×Qi

Ym =

N∑
i=1

cos[m(φi + φ0)]×Qi

where m can be any positive integer, φi is the azimuthal angle corresponding to the ith-

event, φ0 is the azimuthal offset (Section 6.3.2), N the total number of Σ
−

events, and Qi

is the corresponding Q-factor value. Examples of some of those moments histograms are

shown in Figure 6.11.

Figure 6.11: 0, 2, and 4th moments histograms for the invariant mass distribution: on
the left, para data; on the right, perp data. In the method of moments, the photon beam
asymmetry is calculated based on these histograms.
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The histograms for different moments are combined to calculate the beam asymmetry

Σ according to the relation:

Σ =
2
(
FR Y⊥2

− Y‖2
)

FRP̄‖(Y⊥0
+ Y⊥4

) + P̄⊥(Y‖0 + Y‖4)
(6.10)

where FR is the photon flux ratio, P̄‖ and P̄⊥ are the mean polarizations, and Y‖,⊥0
, Y‖,⊥2

,

and Y‖,⊥4
are the 0, 2, and 4th moments for both polarization orientations. The values used

for FR, and P̄‖ and P̄⊥ are the same used in the φ-bin method. An example of the numerator

and denominator of Equation (6.10) is shown in Figure 6.12 for the 0.6< cos θ?K+ <0.7 bin

and the 2.1-2.3 GeV photon-energy setting.

Figure 6.12: Histograms for the numerator and denominator of Equation (6.10) projected on
the invariant mass distribution for the 0.6< cos θ?K+ <0.7 bin. The distribution correspond
to the 2.1-2.3 GeV photon-energy setting.

The advantage of the method of moments is that instead of partitioning the data for a

given Eγ and cos θ?K+ into various φ bins, all the data are used simultaneously to determine

the beam asymmetry Σ. This avoids losing information when integrating over the bin in

the azimuthal angle as is the case for the φ-bin method. It has been argued that this

should make the method of moments more reliable for bins with low statistics. Figure 6.13
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shows the photon beam asymmetries obtained with the method of moments for the 2.1-2.3

photon-energy bin.

Figure 6.13: Photon beam asymmetry as a function of cos θ?K+ extracted using the method
of moments through Equation (6.10) for the 2.1-2.3 GeV photon energy setting. Only
statistical uncertainties are shown.

6.4.2.1 Uncertainties in the method of moments

According to Ref. [92], the variance σ2
Σ associated with the method of moments is calculated

from the relation:

σ2
Σ = Σ2

(
σ2
num

num2
+
σ2
den

den2
− 2Cov(num, den)

num× den

)
(6.11)

with

σ2
num =

1

2

(
F 2

R
(Y⊥0

+ Y⊥4
) + (Y‖0 + Y‖4)

)
,

σ2
den =

1

8

(
F 2

R
P̄ 2
‖

(3Y⊥0
+ 4Y⊥4

+ Y⊥8
) + P̄ 2

⊥
(3Y‖0 + 4Y‖4 + Y‖8)

)
,

and

Cov(num, den) =
1

4

(
F 2

R
P̄ 2
‖

(3Y⊥2
+ Y⊥6

)− P̄ 2
⊥

(3Y‖2 + Y‖6)
)
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where num, den, and Cov(num, den) represent the numerator, denominator, and covariance

of the Equation 6.10, respectively. The statistical error associated with the determination

of the beam asymmetry via the method of moments corresponds then to the square root of

the variance
√
σ2

Σ.

In summary, the photon beam asymmetries for the quasi-free reaction γn→ K
+

Σ
−

were

determined from an exclusive analysis using two different methods: the φ-bin method and

the method of moments. A detailed study of the systematic uncertainties related to the

determination of the beam asymmetry using these two methods as well as to kinematical

cuts and parameters involved in the determination of Σ is carried out in the next Chapter.
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Chapter 7: Systematics on the Beam Asymmetry

Determination

The estimation of systematic errors associated with the determination of the photon beam

asymmetry is performed based on three main factors:

• the method employed to determine the photon beam asymmetry,

• the kinematical cuts used to extract the Σ
−

yields, and

• the sensitivity of the asymmetry with the parameters P̄‖ , P̄⊥ , φ0, and FR.

7.1 Systematics Related to the Extraction Method

In the previous Chapter the photon beam asymmetry was determined by using two different

methods: the φ-bin method and the method of moments. Since the fitting uncertainties

will be large once the data are sliced up into φ bins, the method of moments is expected to

produce more reliable results in low statistics bins. Based on this, the method of moments is

chosen as the reference method from which all the systematics are calculated. This section

investigates the systematic errors on the beam asymmetry associated with the use of both

methods.

Given that the method of moments [Equation (6.10)] requires the perpendicular and

parallel yields to be balanced, it is more convenient for comparison purposes to require a

similar balancing act for the φ-bin method. Equation (6.7) can then be rewritten in the

short form

FRPRN⊥ − PRN‖
FRPRN⊥ +N‖

= D cos 2(φ+ φ0) (7.1)

such that the fit is restricted to depend only on one free parameter: D = P‖Σ(sin[∆φ]/∆φ).

This should more tightly constrain the fit to be more comparable to the method of moments.

Figure 7.1 shows the photon beam asymmetry obtained with each method. As can be

noticed, the systematic errors are more significant at backward and forward angles where

the statistics is limited compared to the central bins.
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Figure 7.1: Photon beam asymmetry as a function of cos θ?K+ determined using the φ-
bin method (solid blue triangles) and the method of moments (open black circles) for the
2.1-2.3 GeV (left) and 1.9-2.1 GeV (right) photon energy settings.

The difference of such asymmetries as a function of cos θ?K+ is presented in Figure 7.2.

Since there is not an obvious dependence of the difference with cos θ?K+ , the points were

fitted using a 0th-order polynomial to determine the mean value. The mean values ∆Σ, along

with their uncertainties, are indicated by horizontal lines. On average, these differences

correspond to about -0.02 ± 0.02 (2.1-2.3 GeV set) and -0.03 ± 0.02 (1.9-2.1 GeV set) of

the photon beam asymmetry Σ.

Figure 7.2: Difference between the photon beam asymmetry determined from the method
of moments and from the φ-bin method as a function of cos θ?K+ for the 2.1-2.3 GeV (left)
and 1.9-2.1 GeV (right) photon energy settings.

7.2 Systematics Related to the Σ
−
Yields

The estimation of systematic errors related to the Σ
−

yield extraction are evaluated by

exploring the quality of the numerical values used to define the standard cuts. The variation
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of the standard cuts (one by one) can show the impact of each one on the final results for

the beam asymmetry. Among all the kinematical cuts utilized for the extraction of the

Σ
−

yields, a set of five cuts were chosen which might have an impact on the event selection.

This set of cuts comprises: ∆βπ− cut, contour cut, ∆βK+ cut, ∆Tγ cut, and correlated

background cut.

When evaluating the effect of each cut, it is assumed that there is no correlation between

the cuts; this eliminates the need for optimizing the other cuts when one of them is varied.

Given that the background underneath the invariant mass is small (less than 5%), the

selected cuts are explored only by loosening them in order to investigate if their numerical

values are good enough or, on the contrary, are throwing out too many good events. The

effect of each cut on the asymmetry extraction is then determined by taking the difference

between the asymmetry obtained with a loose cut (4σ value) and that obtained with the

standard cut (3σ value). Since this clearly assumes the 4-σ and 3-σ data are independent,

one really ends up inferring from these studies an upper limit on the estimated systematic

uncertainties using the mean and RMS values of the difference between the corresponding

beam asymmetries.

7.2.1 ∆βπ− cut

The sensitivity of the beam asymmetry with the ∆βπ− cut is studied by varying the cut

from 3σ to 4σ. The asymmetries obtained after applying a 3σ and a 4σ cut on ∆βπ− are

shown in Figure 7.3 for the 2.1-2.3 GeV and 1.9-2.1 GeV photon energy settings. Figure 7.4

shows the corresponding difference between both asymmetries as a function of cos θ?K+ .

Since there is not a clear angular dependence, the mean difference, determined by fitting

the difference with a 0th-order polynomial, is used as a means to estimate the systematic

uncertainty of the ∆βπ− cut. The values obtained are consistent with zero: 0.00± 0.02 (for

the 2.1-2.3 GeV set) and 0.00 ± 0.02 (for 1.9-2.1 GeV set).
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Figure 7.3: Photon beam asymmetry as a function of cos θ?K+ determined using a 3σ (black
points) and a 4σ (red points) cut on ∆βπ− for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV (right)
photon energy settings.

Figure 7.4: Difference between the photon beam asymmetry as a function of cos θ?K+

determined using a 3σ and a 4σ cut on ∆βπ− for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV
(right) photon energy settings.

7.2.2 Contour Cut

The systematic uncertainty on Σ associated with the contour cut is determined by loosening

this cut from 3σ to 4σ. The corresponding photon beam asymmetries as a function of

cos θ?K+ for the 2.1-2.3 GeV and 1.9-2.1 GeV photon energy settings are shown in Figure 7.5.

The difference between both asymmetries as a function of cos θ?K+ are shown in Figure 7.6.

Given that there is not an evident dependence with the polar angle, the mean difference

(taken as an estimate of the systematic uncertainty of the contour cut) is calculated from

a fit with a constant function. On average, it is found 0.01 ± 0.02 (for the 2.1-2.3 GeV

photon energy bin) and 0.00 ± 0.02 (for the 1.9-2.1 GeV photon energy bin) of systematic

uncertainty on Σ due to the contour cut.
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Figure 7.5: Photon beam asymmetry as a function of cos θ?K+ determined by applying
a 3σ (black points) and a 4σ (red points) contour cut for the 2.1-2.3 GeV (left) and
1.9-2.1 GeV (right) photon energy settings.

Figure 7.6: Difference between the photon beam asymmetry as a function of cos θ?K+

determined by applying a 3σ and a 4σ contour cut for the 2.1-2.3 GeV (left) and 1.9-2.1
GeV (right) photon energy settings.

7.2.3 ∆βK+ cut

The effect of the ∆βK+ cut on the photon beam asymmetry is determined by comparing

the results obtained with the standard 3σ cut and with a 4σ cut. Figure 7.7 shows the

corresponding photon beam asymmetries for the 2.1-2.3 GeV and 1.9-2.1 GeV photon energy

settings. The difference between both asymmetries is shown as a function of cos θ?K+ in

Figure 7.8. The systematic uncertainty on Σ related to the ∆βK+ cut is estimated from

the corresponding mean difference since there is not an obvious trend with cos θ?K+ . This

difference is seen to be about 0.00 ± 0.02 (for the 2.1-2.3 GeV photon energy bin) and 0.00

± 0.02 (for the 1.9-2.1 GeV photon energy bin).
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Figure 7.7: Photon beam asymmetry as a function of cos θ?K+ determined using a 3σ (black
points) and a 4σ (red points) cut on ∆βK+ for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV
(right) photon energy settings.

Figure 7.8: Difference between the photon beam asymmetry as a function of cos θ?K+

determined using a 3σ and a 4σ cut on ∆βK+ for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV
(right) photon energy settings.

7.2.4 ∆Tγ cut

The photon beam asymmetries determined with a 3σ and a 4σ ∆Tγ cut are superimposed

in Figure 7.9 as a function of cos θ?K+ for the 2.1-2.3 GeV and 1.9-2.1 GeV photon energy

settings. The difference ∆Σ between the asymmetries can be seen in Figure 7.10. Since

there is not an evident dependence of ∆Σ with cos θ?K+ , the systematic uncertainty on the

asymmetry associated with the ∆Tγ cut is estimated based on the mean difference. Such a

mean value along with its uncertainty, determined with a 0th-order polynomial, are obtained

to be about 0.00 ± 0.02 (for the 2.1-2.3 GeV set) and 0.00 ± 0.02 (for the 1.9-2.1 GeV set).
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Figure 7.9: Photon beam asymmetry as a function of cos θ?K+ determined using a 3σ (black
points) and a 4σ (red points) cut on ∆Tγ for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV (right)
photon energy settings.

Figure 7.10: Difference between the photon beam asymmetry as a function of cos θ?K+

determined using a 3σ and a 4σ cut on ∆Tγ for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV
(right) photon energy settings.

7.2.5 Correlated background cut

The sensitivity of Σ with the correlated background cut is studied by comparing the pho-

ton beam asymmetries determined with 3σ and 4σ cuts. Figures 7.11 and 7.12 show the

photon beam asymmetries and the corresponding difference ∆Σ, respectively, as a function

of cos θ?K+ for the 2.1-2.3 GeV and 1.9-2.1 GeV photon energy settings. Since there is

not a clear cos θ?K+ dependence observed in ∆Σ, the mean difference is calculated using a

polynomial of order zero. The systematic uncertainty on Σ associated with the correlated

background cut is therefore estimated to be, on average, 0.00 ± 0.02 (for the 2.1-2.3 GeV

photon energy bin) and 0.00 ± 0.02 (for the 1.9-2.1 GeV photon energy bin), with the very

backward angular bin showing the maximum effect.
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Figure 7.11: Photon beam asymmetry as a function of cos θ?K+ using a 3σ (black points)
and a 4σ (red points) correlated background cut for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV
(right) photon energy settings.

Figure 7.12: Difference between the photon beam asymmetry as a function of cos θ?K+

determined using a 3σ and a 4σ correlated background cut for the 2.1-2.3 GeV (left) and
1.9-2.1 GeV (right) photon energy settings.

7.3 Systematics Related to the Parameters P̄‖, P̄⊥, φ0, and FR

The dependency of the photon beam asymmetry with the parameters P̄‖ , P̄⊥ , φ0, and FR

is given by Equation (6.10). The systematic uncertainties on Σ related to these parameters

can be estimated (as an upper limit) by varying the parameters between their minimum

and maximum value and comparing the corresponding photon beam asymmetries.

7.3.1 P̄‖ and P̄⊥ parameters

According to studies of a high-statistical channel (γp→ pπ0) using g8 data [93], the determi-

nation of the photon beam polarization in CLAS has associated a 7% uncertainty. Although

neither polarization ratios PR nor mean polarizations P̄ are involved in the method of mo-

135



ments, the propagation of errors of Equation (6.10) shows the upper limit in the uncertainty

on Σ due to the photon beam polarization can be estimated (for all the photon energy bins)

in about 5%.

7.3.2 φ0 parameter

The uncertainty due to the φ0 parameter is studied by determining the difference in the

photon beam asymmetry when the minimum and maximum values of φ0 are used in the

determination of the moments and so, in Equation (6.10). These values are calculated as:

φmin0 = φ0 −∆φ0 (7.2)

φmax0 = φ0 + ∆φ0

The photon beam asymmetries Σ obtained in both cases are shown in Figure 7.13 as

a function of cos θ?K+ for the 2.1-2.3 GeV and 1.9-2.1 GeV photon energy settings. The

corresponding difference ∆Σ is illustrated in Figure 7.14. As can be noticed, the systematic

uncertainty of the φ0 parameter on the photon beam asymmetry is consistent with zero for

both the 2.1-2.3 GeV set and the 1.9-2.1 GeV set. In both cases, there is not a clear signal

of a significant difference in the very backward and forward angular bins.

Figure 7.13: Photon beam asymmetry as a function of cos θ?K+ using the minimum (red
points) and maximum (black points) values of φ0 for the 2.1-2.3 GeV (left) and 1.9-2.1 GeV
(right) photon energy settings.
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Figure 7.14: Difference between the photon beam asymmetry as a function of cos θ?K+

determined using the minimum and maximum values of φ0 for the 2.1-2.3 GeV (left) and
1.9-2.1 GeV (right) photon energy settings.

7.3.3 FR parameter

The effect the FR parameter has on the beam asymmetry is evaluated following the same

procedure as for φ0. The minimum and maximum values of FR are calculated according to

the uncertainties determined in Reference [88]:

FminR = FR −∆FR (7.3)

FmaxR = FR + ∆FR

Figures 7.15 and 7.16 show the photon beam asymmetries associated with FminR and

FmaxR and the corresponding difference, respectively, as a function of cos θ?K+ . Without an

evident dependence of the difference with the polar angle, the systematic uncertainty on

Σ due to the variation of FR is estimated based on the mean value of the difference. The

difference and its uncertainty are obtained to be about 0.00 ± 0.02 for the 2.1-2.3 GeV

photon energy bin, and 0.00 ± 0.02 for the 1.9-2.1 GeV photon energy bin.

In summary, the systematic uncertainties on the photon beam asymmetry due to the

methods, kinematical cuts and parameters used in its determination were evaluated. The

highest impact is related to the photon beam polarization uncertainty (∼ 5%) and with the

method employed in the determination of the beam asymmetry (2−3%). These studies were

carried out after subtracting the background through the Q-factors technique and with the

method of moments as the reference extraction method. Assuming there is no correlation

between the different sources of uncertainties, the total systematic uncertainty was obtained
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Figure 7.15: Photon beam asymmetry as a function of cos θ?K+ using the minimum (red
points) and maximum (black points) values of FR for the 2.1-2.3 GeV (left) and 1.9-2.1
GeV (right) photon energy settings.

Figure 7.16: Difference between the photon beam asymmetry as a function of cos θ?K+

determined using the minimum and maximum values of FR for the 2.1-2.3 GeV (left) and
1.9-2.1 GeV (right) photon energy settings.

by adding in quadrature the individual uncertainties, resulting in a total of about 5.7% for

the 1.9-2.1 GeV photon energy setting and 5.4% for the 2.1-2.3 GeV photon energy setting.

Tables 7.1 and 7.2 show the systematic uncertainties related to each source and each photon

energy setting.
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Table 7.1: Summary of the systematic uncertainties ∆Σ associated with the determination
of the photon beam asymmetry for the quasi-free reaction γn→ K

+
Σ
−

for the 1.9-2.1 GeV
photon-energy setting.

Photon Energy Electron Energy Source of |∆Σ| σ∆Σ[GeV] [GeV] systematic errors

1.9-2.1 5.057

Σ extraction method 0.03 0.02
∆βπ− cut 0.00 0.02
Contour cut 0.00 0.02
∆βK+ cut 0.00 0.02
∆Tγ cut 0.00 0.02
Correlated bg cut 0.00 0.02
Polarization 0.05 −−
φ0 parameter 0.00 0.02
FR parameter 0.00 0.02

Table 7.2: Summary of the systematic uncertainties ∆Σ associated with the determination
of the photon beam asymmetry for the quasi-free reaction γn→ K

+
Σ
−

for the 2.1-2.3 GeV
photon-energy setting.

Photon Energy Electron Energy Source of |∆Σ| σ∆Σ[GeV] [GeV] systematic errors

2.1-2.3 5.157

Σ extraction method 0.02 0.02
∆βπ− cut 0.00 0.02
Contour cut 0.01 0.02
∆βK+ cut 0.00 0.02
∆Tγ cut 0.00 0.02
Correlated bg cut 0.00 0.02
Polarization 0.05 −−
φ0 parameter 0.00 0.02
FR parameter 0.00 0.02
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Chapter 8: Final Results

The methods followed to select the Σ
−

yields and to determine the photon beam asymmetry

as well as their corresponding systematic uncertainties have been discussed in the previous

chapters. The goal of this chapter is to show the final results for the photon beam asymmetry

determined in this work as well as their comparison with the current existing asymmetries

and predictions found in the literature.

8.1 Comparison CLAS and LEPS Data

As mentioned in Chapter 3, the only published results currently existing on the photon

beam asymmetry Σ for the reaction γn → K
+

Σ
−

come from the inclusive analysis of data

from the SPring-8/LEPS facility. Figures 8.1 and 8.2 show the comparison as a function of

cos θ?K+ between the photon beam asymmetry determined in this work (using the method of

moments) for the 1.9-2.1 GeV and 2.1-2.3 GeV photon energy settings and those determined

in [21] from LEPS data. Since the two detectors complement each other, there are only two

experimental points to compare with, the points centered at 0.6 and 0.7 in cos θ?K+ . The

asymmetries obtained in this work (red points in Figures 8.1 and 8.2) were determined with

a photon energy width of 200 MeV and cover an angular range from about 38◦ to 155◦ in

the center of mass of the reaction; the results from LEPS correspond (black triangles for

2.05 GeV and magenta triangles for 2.15 GeV in Figures 8.1 and 8.2) were obtained with a

photon energy width of 100 MeV and cover a 5◦ to 55◦ angular range in the center of mass

frame. It is evident then that the results determined in this work represent a significant

increment in the kinematic coverage of the data currently existing in the literature for the

beam asymmetry of K
+

Σ
−

. The tabulated data are presented in Appendix A.

The photon beam asymmetry Σ is seen to be positive at all angles and at both photon

energy bins, showing a mild polar angle dependence and reaching a maximum value of about

0.99 at cos θK
+

CM ≈ 0.55 (θK
+

CM ≈ 56◦). The results from both data sets (CLAS and LEPS)

agree well within the error bars at the photon energy bins studied. For CLAS data both

statistical and systematics errors are shown. The statistical errors are in general smaller
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Figure 8.1: Comparison of the photon beam asymmetry as a function of cos θ?K+ determined
in this work (open red circles) for the 1.9-2.1 GeV photon energy setting. LEPS results are
shown for the 2.05 GeV (black triangles) and the 2.15 GeV (magenta triangles) photon-
energy bins. Both statistical (red points) and systematics (gray band) uncertainties for the
asymmetries determined in this work are shown.

Figure 8.2: Comparison of the photon beam asymmetry as a function of cos θ?K+ determined
in this work (open red circles) for the 2.1-2.3 GeV photon energy setting. LEPS results are
shown for the 2.25 GeV (black triangles) and the 2.35 GeV (magenta triangles) photon-
energy bins. Both statistical (red points) and systematics (gray band) uncertainties for the
asymmetries determined in this work are shown.

than the systematic errors except at the very backward and the very forward angles where

the statistics is low and the systematic error bars are smaller by about 10%. For LEPS
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data only the statistical errors are shown. When comparing both data sets, the statistical

error bars are of the same magnitude.

8.2 Comparison CLAS Data and Kaon-MAID Predictions

Kaon photoproduction is usually described theoretically from the scheme of hadron ex-

changes. In the s-channel, N , N? and ∆? are the exchanged particles; ground-state and

excited hyperons are exchanged in the u-channel while K and K? mesons are the ones

contributing in the t-channel, being this last meson-exchange contribution expected to be

dominant at forward angles. At this point, the photon beam asymmetry Σ plays a key role

to identify the type of meson exchanged since at small values of |t| and at high energies,

Σ tends to reach the value +1 or −1 depending on whether it is the K? or the K the me-

son being exchanged [21]. As discussed in Chapter 3, the Kaon-MAID model assumes the

dominance of the K meson in the t-channel leading then to predictions of negative beam

asymmetries for the K
+

Σ
−

channel. On the contrary, the data obtained in this analysis

show that the beam asymmetries have positive values indicating the t-channel should be

dominated by the exchange of the K? meson. Figure 8.3 shows the comparison between the

Kaon-MAID predictions and the CLAS results determined in this work for the photon beam

asymmetry of K
+

Σ
−

at the 2.1 GeV photon energy bin. Predictions from Kaon-MAID at

higher photon energies (> 2.1 GeV) are not available. These experimental results indicate

therefore the need for an improvement in the current Kaon-MAID-like phenomenological

models.

8.3 Conclusions

In this work, the azimuthal photon beam asymmetry Σ has been determined for the

quasi-free reaction γn→K+
Σ
−

for two different photon energy bins: Eγ=1.9-2.1 GeV with

Ee=5.057 GeV, and Eγ=2.1-2.3 GeV with Ee=5.157 GeV using CLAS data from the g13b

run period. The determination of Σ was carried out by doing an exclusive analysis of the

reaction γd→K+
Σ
−
K

+
(p) where the K

+
as well as the decay products of the Σ

−
, π− and n,

were detected. The quasi-free reaction γn →K+
Σ
−

was defined by imposing the condition

for the momentum of the proton (p) to be less than 150 MeV. The results obtained in this
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Figure 8.3: Comparison of the photon beam asymmetry as a function of cos θ?K+ deter-
mined in this work (open red circles) for the 1.9-2.1 GeV photon energy setting with the
Kaon-MAID predictions (black triangles) at 2.1 GeV. Both statistical (red points) and sys-
tematics (gray band) uncertainties for the asymmetries determined in this work are shown.

work provide the only data of Σ available for the reaction γn →K+
Σ
−

covering the range

between 55◦ and 155◦ in the kaon azimuthal center-of-mass angle in the 1.9-2.3 GeV energy

range. The clear discrepancy with the predictions of the Kaon-MAID model illustrate that

these data provide important constraints in the search for missing N? states, and will be

a valuable input for theoretical efforts, for instance at the new Physics Analysis Center at

JLab.
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Appendix A: Tabulated Results

This appendix presents the results determined in this work for the photon beam asymmetry

associated with the quasi-free reaction γn→K+
Σ
−

for the 1.9 - 2.1 GeV and 2.1 - 2.3 GeV

photon energy bins.

Table A.1: Photon beam asymmetry for Eγ=1.9-2.1 GeV.

cos θK
+

CM
Σ ∆Σstat ∆Σsyst

-0.66 0.694 0.079 0.057
-0.24 0.834 0.038 0.057
0.01 0.774 0.039 0.057
0.15 0.811 0.041 0.057
0.25 0.871 0.040 0.057
0.35 0.945 0.039 0.057
0.45 0.857 0.040 0.057
0.55 0.986 0.042 0.057
0.65 0.947 0.049 0.057
0.75 0.860 0.080 0.057

Table A.2: Photon beam asymmetry for Eγ=2.1-2.3 GeV.

cos θK
+

CM
Σ ∆Σstat ∆Σsyst

-0.66 0.638 0.092 0.054
-0.24 0.740 0.053 0.054
0.01 0.805 0.045 0.054
0.15 0.823 0.044 0.054
0.25 0.953 0.039 0.054
0.35 0.840 0.037 0.054
0.45 0.882 0.038 0.054
0.55 0.987 0.038 0.054
0.65 0.932 0.044 0.054
0.75 0.883 0.073 0.054
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Appendix B: CLAS Coordinate Systems

Two coordinate systems are used in CLAS: the laboratory coordinate system and the sector

coordinate system. Both systems are shown in Figure B.1. In the lab coordinate system,

zlab is collinear with the beam line, ylab points in the opposite direction to gravity, and xlab

goes from the center of CLAS to the middle of sector 1 (parallel to the floor). The polar

angle θ is the angle measured between the beam line and the track path, and the azimuthal

angle φ is the angle measured between the xlab axis and the projection of the track path on

the xlab−ylab plane.

The separation of CLAS into six independent sectors makes it convenient to also use a

coordinate system for each sector (six sector coordinate systems). For a given sector, xsec

coincides with zlab, ysec goes from the center of CLAS to the middle of the sector, and zsec

is perpendicular to the xsec−ysec plane forming a right-hand system. The transformation

from lab coordinates to sector coordinates is given by: xsec
ysec
zsec

 =

 zlab
xlab cosα+ ylab sinα
−xlab sinα+ ylab cosα


where α =

π

3
(msector − 1) and msector is the sector number (1, 2, 3, 4, 5, or 6).

Tracks are reconstructed in CLAS based on the sector coordinate systems. The reconstruc-

tion, as seen in Figure B.1, defines a set of five tracking parameters: q/p, λ, φsec, D0, and

Z0. The first parameter, q/p, is the ratio between the charge q of the particle and its mo-

mentum p measured in CLAS; λ is the angle between the track and the sector’s xsec−ysec
plane; φsec corresponds to the projection of the angle between the track and the beam line

in the sector’s xsec−ysec plane (in sector 1, φsec coincides with φ); D0 is defined as the

distance of closest approach from the track to the beam line, and Z0 is the zsec coordinate

of the track in the sector’s xsec−zsec plane [94]. Based on the cartesian components of p (px,

py, and pz) in the laboratory system, the track reconstruction parameters are determined
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(a) (b)

Figure B.1: Laboratory and sector coordinate systems used in the CLAS detector. (a) A
cut through the CLAS perpendicular to the beam line. (b) Top view of the CLAS detector
cut along the beam line. Figure taken from [94].

according to:
λ
φsec
D0

Z0

 =


sin−1((py cosα− px sinα)/p)

tan−1((px cosα+ py sinα)/pz)
cosφsec(xlab cosα+ ylab sinα)− zlab sinα

y
lab

cosα− xlab sinα− (xlab cosα+ ylab sinα) tanλ/ sinφsec


The reconstruction of the Σ

−
decay vertex is carried out using some of these tracking

parameters.
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Appendix C: Analysis of γd→ π+π−np for

corrections in the EC interaction vertex

A global correction factor to the interaction vertex in the electromagnetic calorimeter is

required to improve the neutron identification. The correction factor was obtained in this

work by analyzing the reaction π+π−p n. The analysis began by selecting events with

exactly two positives, one negative, and one neutral. Pions and protons were identified

from tight cuts on the mass from time-of-flight: 0.005< M2
π <0.04 GeV/c2 and 0.81<

M2
p <0.97 GeV/c2, respectively. A condition on the vertex time difference between the

various charged tracks was set to be less than 2.0 ns, and the incident photon was selected

from |Tγ − Tπ− | <1.0 ns. In addition, bad SC paddles were removed, and fiducial cuts as

well as momentum and energy loss corrections were applied (using similar routines as those

described for kaons and pions).

The procedure to obtain the correction consists of comparing the missing particle (X)

in the reaction γd → π+π−p(X), identified from a 3-σ cut around MM(π−π+p), to the

neutron detected in CLAS (βn < 0.95 was used) in the reaction γd→ π+π−pn. In order to

ensure that the neutron was really detected in the expected EC region, the angle α between

the missing 3-momentum ~Pmiss and the detected 3-momentum ~Pn was required to fulfill the

condition cosα > 0.995. With all the above conditions in place, the difference between the

calculated missing path (lmiss = cβmiss(Tn − Tγ)) and the reconstructed path (from Equa-

tion 5.5) was plotted and fitted with a Gaussian function, as shown in Figure C.1, for four

different scenarios: with no distinction in the EC layer hit and distinguishing between hits

in the inner, outer, or both EC layers. In the first scenario, the path difference distribution

peaks around zero making evident the overall good quality of the data. However, the mean

values obtained in the other three scenarios correspond to 15.0, 7.5, and -8.5 cm for both,

inner, and outer layers, respectively. Those values were taken as average correction terms

applied in an EC-layer dependent manner to improve the calculated neutron path lEC .
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Figure C.1: Neutron path difference lmiss − lEC obtained by comparing information from
a missing neutron and from a detected neutron. The plots are organized in the following
way: (top left) all the EC hits are plotted, (top right) only hits that occurred on both EC
layers (inner and outer) are included. (bottom left) Hits when only the inner EC layer was
fired. (bottom right) Only outer layer was hit. The Gaussian fit in each case provides a
global correction used to improve the neutron path length determination.
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Appendix D: Reconstruction of the Σ
−

Decay

Vertex

The non-negligible mean decay path of the Σ
−

requires an algorithm to correct for the decay

vertex location. The algorithm, shown schematically in Figure D.1, was developed as an

iterative procedure aimed at finding the Σ
−

decay vertex. The algorithm is based on the fact

the Σ
−

should have decayed somewhere along the π− path (lπ−), even though the tracking

extrapolates the π− path to the beamline. The search for the Σ
−

decay vertex is performed

by moving along lπ− (on a “binary search” basis) in steps si. This requires the decay to occur

within the straight region of the pion path, meaning that the algorithm is not valid beyond

the first drift chamber region (R1). This is, however, a very large distance in comparison

with the Σ
−

decay path. The lower and upper limits (the initial values for the binary search)

were defined as the nominal vertex position of the π− and the front face of R1, respectively.

The latter was calculated from a piecewise function [94] depending on whether the pion

struck the flat or circular portion of R1. Using the sector coordinate system with tracking

parameters D0, λ, and φ 1, the flat portion corresponds to the condition D0 ≥ 57.88 cosφ.

In that case, the upper limit L′ for the pion path is given by

L′ =
57.88

cosλ sinφ
(D.1)

If D0 < 57.88 cosφ, the upper limit for the circular portion is given by:

L′ =
1

cosλ

(√
12306− (53 cosφ−D0)2 −D0 cosφ− 53 sinφ

)
. (D.2)

Taking into account that the n and π− originate at the same vertex, one can calculate

the neutron path length2 at each step ~ln(si) (see Equation 5.5) as well as the neutron

time-of-flight to the calorimeter T ′n(si). Based on those two quantities, the velocity and

momentum are derived. The latter, ~Pn(si), is combined with the (uncorrected) measured

1D0 is defined as the distance of closest approach from the track to the beam line; λ is the angle between
the track and the sector’s x− y plane; φ is the angle in the sector’s x− y plane between the track and the
beam line. The sector coordinate system and the tracking parameters are defined in Appendix B.

2The calculation of the neutron path length at each step takes into account only the path correction
associated with the uncertainty in the EC hit coordinates.
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momentum of the pion, ~Pπ− , to determine the direction the Σ
−

would have had (green

arrows in Figure D.1) if it had decayed at that particular point si. Likewise, one can define

the four-momentum vector for the neutron pn(si) and pion pπ− to determine the invariant

mass M(π− n(si)). To find the point si corresponding to the decay vertex, a reference vector

from the production vertex (known from the K+) to si is drawn (black dashed arrows in

Figure D.1). As a first condition, if the cos θi function (where θi is the angle between the

momentum of the Σ
−

and the reference vector) is maximized at that point, si is assumed

to be a potential candidate for the decay vertex. A second condition requires checking if

the invariant mass M(π− n(si)) calculated at si has improved (if it is closer to the Σ
−

PDG

mass of 1.197 GeV/c2 [75]) compared to the invariant mass M calculated before starting

the algorithm. If so, then the iteration stops and si is saved as the decay vertex. If not, the

iteration stops and no correction at all is applied to the decay vertex. From preliminary

studies, it was found that just 12% of the events are corrected by the algorithm. For the

other 88%, no good si point is found and therefore no correction is applied. In this situation,

the interpretation is that most (88%) of the Σ
−

decay close to where they were produced,

and so within the experimental uncertainty, the production vertex ends up being a good

choice for the decay vertex. Figures D.2 and D.3 show some results obtained only for the

events corrected by the algorithm. Figure D.4 displays the effect of the correction on the

invariant mass, M(π−n), distribution. The effect on the missing mass MM(K+π−n) is

negligible.
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Figure D.1: Schematic view of the Σ
−

decay vertex correction. The algorithm consists on
moving in different steps along the π− path (red solid arrow) and try at each step a possible
trajectory, beta and momentum for the neutron (red dashed vectors). The vector momen-
tum for Σ

−
calculated at each iteration (green arrows) is compared to a reference vector

(black arrows) drawn from the production vertex to the vector position associated with
each step. The iteration ends when, at certain step, the angle between the Σ

−
momentum

and the reference vector is found to be the closest to zero.

(a) (b)

Figure D.2: Σ
−

path length (a) and lifetime (b) reconstructed by the algorithm. In the range
0.4-0.8 ns, the lifetime fit (0.610 ns−1) agrees well with the PDG value (0.676 ns−1) [75].
This indicates that the algorithm successfully reconstructs the Σ

−
decay vertex. In the code,

the algorithm was implemented right after applying fiducial, PID, and timing cuts. Notice
the logarithmic scale on the right plot.
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(a) (b)

Figure D.3: (a) x vs y distribution for the Σ
−

decay vertex reconstructed by the algorithm.
(b) z-coordinates for the Σ

−
decay vertex. Note the significant amount of Σ

−
decaying be-

yond the target wall at z=0 cm. In the code, the algorithm was implemented right after
applying fiducial, PID, and timing cuts. The histograms show only the events corrected by
the algorithm (∼ 12%).

Figure D.4: Invariant-mass distribution M(π−n) before (dashed histogram) and after
(yellow-solid histogram) applying the Σ

−
decay vertex correction. Histograms were filled

after fiducial, PID, and timing cuts.
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