
530 

M a s s l e s s  P a r t i c l e s  i n  d e  S i t t e r  S p a c e  

W . F . H e i d e n r e i c h  
I n s t i t u t  ffir T h e o r e t i s e h e  Phys ik  A 

T U  C l a u s t h a t  
W.  G e r m a n y  

1 Per iod ic  t i m e  and per iod ic  m o t i o n  in de S i t ter  space  

De Sitter space here means the vacuum solution of Einsteins field equation with negative 
cosmological term and maximal  symmetry. Locally it can be embedded by 

r / ~ f l ~ f l  _ ~ + K~ + ~ _ ~2 _ Ks2 = _r2 (1) 

in a 5-dimensional Lorentzian space; its group of motions is the de Sitter group SO0(3, 2). 
Time, which rotates  the u, u6-plane, is chosen as t = r arctan(~4/~6).  Ctearly it lies in the 
range 0 <_ t < 2 r r  for the embedding 1. By extending it to - o c  < t < +oo we get global 
coordinates for de Sitter space. It. is conformal to half of Einstein spaeetime S 3 × R. In 
one possible mapping,  the equator S 3 becomes spatial infinity of de Sitter space. Fig. 1 
also shows a timelike geodesic, i.e. the t ra jectory of a massive free point particle. As can  

be seen, the motion is periodic with period At  = 27rr. Also, after &t = r r  the motion is 
reflected in phase space. In local coordinates this corresponds to a mapping ~ : ~ ,  ~ - ~ .  
Interacting point particles move on periodic trajectories between collisions only. For them 
the world does not repeat after At = 27rr. 

2 Scalar part ic les  in de S i t t er  space  

The unitary irreducible representations of positive energy of the universal covering group 
of S(~0(3,2)can be labelled D(Eo, s), where E0 is the energy and s the spin of their lowest 
weight multiplet.  Angular momenta  and energy are the quantum numbers of SO(3) × 
S(~(2) C S(~o(3,2). For the possible values of E0 and s see Fig. 2. 

We use projective coordinates 

u 2 < 0, u~ =- ~uo, )~ > 0, ~ = u~/~ru~. (2) 

The behavior of fields along the half-rays is fixed by choosing a degree of homogeneity, 
e . g . u . O ~  = - q .  

The Lagrangean for scalar particles with Eo _> 1 is 

L = 0~¢~'0~¢ ÷ M2¢*¢ ,  M 2 = (E0 - 1)(E0 - 2)/y2; (3) 

the Klein-Gordon scalar product is 

i f d~ Y ¢ * "~t 'I,. 
J 

(4) 
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Figure h De Sitter space is conformal to half of Einstein space S 3 x R. The horizontal 
lines represent S 3, lhe solid vertical lines represent spatial infinity of de Sitter space. Also 
shown is the world line of a point particle with speed 0.8c. 
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Figure 2: The lowest weight, multiplets of unitary irreducible representations of S()0(3, 2). 
Circles denote massless representations, dots are representations mentioned in the text.  
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For mass 0 (Eo : 1, 2), the field equation is 

0 2 ~  : 0. (5) 

It has two lowest weight solutions, 

¢1(=) : (u4 + ~=~)-~, #2(~) = ~ (=4 + i ~ )  -~- (6) 

~1 is an odd function under R, <I,2 an even one: 

• 1,2(-u) : ~ , . 2 ( u ) .  (7) 

They are lowest weights of a D(1,0) resp. D(2,0). In general, E0 of D(Eo, O) fixes the 
R-transformation of the scalar field to [1] 

• E0(-~) : (-I)E°~E0(~). (S) 

We have the same situation as for spherical harmonics, where for opposite points on the 

S 2 holds 
~im(-(e, ~) )=  (-1)~m(e,  ~)- 

The two states (6) are not orthogonal when integrating in the scalar product (4) over 
one spacelike hypersurface, say at t = 0. But due to their different behavior under ~, 
they are orthogonal when integrating over two surfaces, say at t = 0 and t = 7rr. So we 
can describe massless scalars either with a disconnected initial value surface and one field 
with arbitrary ~-behavior, or with a connected initial value surface and fields with fixed 

R-behavior [2]. 

3 H e l i c i t y  i n  d e  S i t t e r  s p a c e  

Massless representations of the Poincar6 group with helicity A can be mapped one to 
one on conformal massless representations. When restricting these to the de Sitter group 
S()o(3,2) ,  the scalar representation gives the direct sum D ( 1 , 0 ) q ) D ( 2 , 0 ) ,  while the 
helicity A and -A representations give the same D ( I +  [ A I, I A t)- We want to show for 
low spins, that this degeneracy can be resolved in de Sitter field theory. 

Photons in de Sitter space can be described by a field potential  A~,(u) with degree of 

homogeneity (-1) and the field equation 

c9:Ao : 0. (9) 

The tensor products of the massless scalar representations and the five-dimensional one 
give us two positive energy solution spaces 

n ( 1 , 0 ) ®  Ds = [D(1,1) -~  {D(2,1)@ D(0,0)} -~ D ( 1 , 1 ) ] ~  D(1,0) ,  (10) 

D(2,0)® D5 = [D(3,0) -~ D(2,1)-~ D(3,0)] ~ D(2,0). (11) 

The arrows denote leaks in the indecomposable representations. The photons D(2,1) have 

gauge freedom carrying a D(1,1) resp. a D(3,0) [3]. 
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We can decompose the vector potential in sylmmnetric and antisymmetric functions 
under ~: 

A~(-u) = ±A~(u). (12) 

From the syu~netry of the scalar fields (7) we conclude that  A + describes the (3,0)- 
gauge theory and A- describes the (1,1)-gauge theory. Explicit calculation shows that  the 
ground states of de Sitter electrodynamics are linear combinations of the ground states of 
conformal electrodynamics [4] with fixed helicities: 

~=-1 (13) Ao : AU Ao 

For massless spin 2 fields in de Sitter space there are two possible potentials, a sym- 
metric 2-1ensor and a 3-tensor with nfixed symmetry. In each case, there are two possible 
gauge theories, in which the pure gauge fields carry a D(0,2) resp. a D(4,1). The first 
gauge field is syrmnetric under ~, the second one is antisymmetric [5]. 

The spin 1/2 representations D(E0, 1/2) with E0 > 3/2 can he realized by 4-spinor 
fields with degree of homogeity (-2) and field equations [6,7] 

(~'u)(7'0)q'~.2 = ±(E0 - 3/2)¢/1.2. (14) 

The 4 × 4 matrices ]3,,, 7,, satisfy 

~o7~ + ~aTo = 2~=~. 

The two fields are related by 

___ 2 - 1  
~2 V -/~-2u 2 (fl- u)Ts~l. (15) 

The situation is as in fiat spacetime, where the Dirac equation (3'-0+ m)~  = 0 is equivalent 
to (3'.0 - m ) 7 ~  = O. 

For the massless case E0 = 3/2 there is only one field equation and we have chiral 
invariance 

¢2 - '  e xp ( ia -~ /~ -u~- l ( f l ' u )Ts )@.  (lfi) 

~x=±1/2 of conformal spinors with helicity ±1/2 and ground Comparing ground states ~0 
states @0 i of ~-eigenstates gives 

~0 ~ = -o~=+1/2 ± ~o~=-1/2" {17) 

Locally each of the fields q~:, A :~ has enough states to describe both local "helicities", 
e.g. left- and right-polarized light. But if only one type of photons would be excited, the 
background radiation would have only half the intensity, as the density of states would be 
halfed as compared to the conformal electrodynamics [8]. 

4 M i n i m a l  c o u p l i n g  

Milaimal coupling of the massive spinor field gives a current 

ic--  
j ;  = -~ , [~ , ( -~ . ,~ ) -  (~.u)3'~]¢, (18) 
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which is antisymmetric as the (1,1)-electrodynamies is. For massless spinors there is due 
to chiral invariance also a conserved current 

ie ~+ J~+ = -~-{ I/3a(7.u)- (3.u)-/,:,)q j- + @-[/3c,(7.u)- (/3.u)%~]qw+} -, (19) 

which is symmetric under ~ like the (3,0)-electrodynamics. In conformal electrodynamics 
both currents J~ appear, but in massive  de Sitter electrodynamics J+  is not conserved. 

For interacting theories we should not expect ~-symmetry of the fields. So it is possible 
to contemplate couplings which are not ~-invariant. But their free limit would be non- 
continuous. 

In perturbation theory the (in)- and (out)-states are described by free fields with ~- 
synunetry. As we use the universal covering space, the Feynman propagators should be 
globally causal, i.e. 

D r  = O(t  - t ' )D  + + O(t '  - t ) D - ,  (20) 

where D ~ is the sum over normalized positive resp. negative energy eigenstates [9]. Al- 
though physical states must have integer E0 for integer spin and half-integer E0 for half- 
integer spin [10], virtual states can have all energies E0 E R; they do not have to be 
continuous on the hyperbola (1). 

The appearance of the trivial spurion state with gauge freedom, D(0,0)  --+ D(1 ,1)  irt 
the Gupta-Bleuler-triplet (10) may justify some remarks. It does not satisfy the LorentZ" 
condition, has negative norm and can be written as a gradient 

u4 + iu6 : SO ln ). (2t) 

Minimal coupling of a classical spurion field to mat ter  is equivalent to the gauge transfot" 
marion (+++ + - +  ] +; (22) 

it shifts all energies by A E  = e S / r .  So il fixes the origin of the energy scale and shouldn't 
cause any infrared problems. 

5 The massless Higgs model  in de Si t ter  space 

In fiat space the Higgs potential Ill) 

V ( ¢ )  = ,.2@2 ÷ A¢4 (23) 

requires an imaginary mass 'to allow a non-zero minimum. The second order Casifffir 
operator of the de Sitter group has for scalar representations the eigenvalues 

C2 : E o ( E o -  3), (24) 

which are negative for the conformal massless case E0 = 1,2. This suggests that ,  due 
to the negative curvature, spontaneous sytmnetry breaking may be possible for massless 
scalar fields with self-coupling. 



535 

To test this idea we consider the classical massless Goldstone model of two real massless 
fields with self-coupling, 

02¢1 2 2 - - z¢1 ,~  + I¢~ + ¢~)¢1,~ = 0. (25) 

We have chosen the degree (u.O)@ = 0 here; there is a constant solution, around which 
we can expand: 

~I'1 = 0 + ~, 4'2 = 2 / f  + 7t'. (26) 

In linear approximation we obtain 

02r~ = O, (27) 

02x + 4x ::: o .  (28) 

So the "Go]dstone-particle" q carries a unitary D(3,0), while the "Higgs-particle" X carries 
a unitary D(4,0). 

When coupling minimally to electrodynamics, 

0o01 ~ 0¢,0~ - eA,~02, 

O,~q2 ~ 0t,02 + eA~O1. 

We get the massless Higgs model. Expanding again around the constant solution we obtain 
after the gauge transformation 

in linear approximation a massive vector field 

4e ~ 
02Bo - B~ (29) /2u2 

whith mass 2 e / ( f r ) ,  and - as above - a Higgs-particle with mass 4/r .  
Experimentally this Higgs mass would be zero~ so the massless Higgs-model cannot 

he used for syIrm~etry breaking in the standard models. Yet we want to stress that both, 
the kinetic and the interaction term are conformally invariant. The scale in the effective 
theory is entirely due to the curvature of de Sitter space. 
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