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Abstract

This note gives an overview of the offline simulation software for the ATLAS LVL1
trigger and describes core parts of it, namely the LVL1 configuration, the simulations
of the CTP and the RoIB, the RDO definition, and the byte stream conversion. In
addition, the installation and use of the LVL1 simulation are explained.
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1 Introduction

The ATLAS level 1 (LVL1) trigger [1] is a complex system built from various subsystems,
namely the calorimeter trigger, the muon trigger and the central trigger processor (CTP).
The calorimeter and muon triggers consist of a multitude of different devices themselves; in
the context of the simulation the division of the muon trigger in the RPC barrel part, the
TGC endcap part and the muon-to-CTP interface (MuCTPI) is especially important since
these three components are simulated by different groups. Figure 1 gives a rough overview
of the ATLAS LVL1 trigger. The trigger, timing and control (TTC) part will be neglected in
this document since it has no counterpart in the offline simulation world. In contrast to this
the Region-of-Interest builder (RoIB), which according to the ATLAS product break-down
structure forms part of the high-level trigger (HLT), is treated within the environment of the
LVL1 simulation since its task basically is to combine all partial results of the various LVL1
components to a global LVL1 result; the simulation of the RoIB therefore requires knowledge
of the LVL1 simulation, but not of the HLT. Figure 2 shows a more detailed picture of the
LVL1 trigger system and some of its connections to other ATLAS systems.
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Figure 1: An overview of the ATLAS LVL1 trigger system. Solid lines indicate information
on the latency-critical trigger path, dashed lines RoI information.

The purpose of the offline simulation of the LVL1 trigger is multifold: First, it (or at least
parts of it) may be used for tests of the LVL1 trigger hardware by feeding simulation and
hardware with the same configuration and input data and comparing the outputs. Actually,
parts of the simulation, especially in the muon sector, were originally designed for that
purpose and were first provided as stand-alone programs which had to be, or are still being,
incorporated into the ATLAS offline computing framework Athena and combined with the
other parts of the LVL1 simulation. Second, the simulation is already now used for tests
and developments of the HLT environment, especially for the generation of the LVL1 result
as input data to the development of HLT algorithms and of the HLT test beds. Third, the
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Figure 2: An more detailed overview of the ATLAS LVL1 trigger system and its connections
to other parts of ATLAS.

offline simulation will be part of the ATLAS detector simulation which will be used for the
production of Monte Carlo events, e.g. for physics studies.

The purpose of this note is:

1. to describe basic parts of the LVL1 simulation: The LVL1 configuration, the CTP
simulation, the RoIB simulation, the definition of the LVL1 raw data object (RDO,
see later in this note), and the LVL1 result byte stream (BS, see also later) conversion;

2. to illustrate how to install a LVL1 simulation environment;

3. to explain how to run the LVL1 simulation and how to interprete its results.

The parts of the LVL1 simulation that will not be explained here (the calorimeter and
muon trigger simulation) are, or will be, documented in other places [2]. The HLT Technical
Design Report [3] also contains a section on the LVL1 simulation and additional references.

The note is organised as follows: Section 2 gives a short overview of the LVL1 simulation.
Sections 3 through 8 contain information on the various parts of the LVL1 simulation which
are within the scope of this note. Section 9 is concerned with the various installation options
for the LVL1 simulation, including the stand-alone option and with a demonstration of how
to run the code using a very basic job-options file. Section 10, finally, gives a detailed list
of things which should be done to improve the LVL1 simulation. This list contains rather
general points (like thorough tests of the software for memory leaks) as well as very detailed
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design and implementation issues for which the author did not find time before he had to
leave ATLAS.

2 The LVL1 Trigger

The task of the LVL1 trigger [1] is to select or reject events based on the information
provided by the calorimeters and muon detectors. In order to make its decision, the signals
found in the detectors are compared to the signal expectation for the passage of certain
particles through the detector:

The calorimeter trigger [1] takes care of finding localised energy depositions caused by
electrons or photons, by tau leptons or hadrons, or by hadronic jets. It discriminates the
transverse energies ET of the candidates against a set of programmable thresholds which are
taken from the configuration, and counts the number of candidates that pass each of the
thresholds. There are up to 16 thresholds for electron/photon candidates, up to 8 for tau
leptons or hadrons, 8 for (central) jets and 4 for jets in the forward regions of the detector. In
addition, the calorimeter trigger calculates total energy sums (total transverse energy, total
missing transverse energy) which are also discriminated against thresholds. The numbers of
objects passing each of the thresholds, the so-called trigger threshold multiplicities are sent
to the CTP. See Refs. [1, 4] for an overview on the algorithms used to detect the calorimeter
trigger candidate objects.

The muon triggers in the barrel and in the endcap [1, 5] detect muon candidates based on
the hits in fast muon trigger chambers. The candidates found are discriminated in transverse
momentum pT against six programmable thresholds, and the multiplicities are again sent
to the CTP, via the MuCTPI which combines the information from the RPC and TGC
subsystems.

The calorimeter and muon triggers also deliver more detailed information on the can-
didates, the so-called Regions-of-Interest or RoIs, to the Region-of-Interest builder (RoIB).
The information that is sent comprises bits to indicate the energy threshold(s) that was
(were) passed and bit patterns that characterise the location of the candidate in the detec-
tor in terms of the electronic modules via which it was processed. This information is used
to seed the HLT decision process.

The CTP checks the input trigger threshold multiplicities it receives from the calorimeter
trigger and from the MuCTPI against so-called trigger conditions which it takes from the
trigger menu. These conditions, or rather their logical values, are then combined to complex
trigger items, each of which corresponds to a physics signature LVL1 is supposed to trigger
on (see Section 4 for more information about the trigger menu and its use in the CTP
simulation). The final LVL1 signal is the logical OR of all items – each fulfilled trigger
item is sufficient to trigger the event on LVL1, provided that the item in question is not
masked, the prescale mechanism has not avoided the item to trigger, and the dead-time
logic has not prevented the CTP from triggering. The result of the CTP, together with some
information on its inputs and on the internal data processing, is then sent to the RoIB where
it is concatenated with the RoI information from the calorimeter and muon triggers to give
the LVL1 result1.

1It should be noted that the calorimeter and muon triggers as well as the CTP also deliver data to the
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3 Framework, Environment and Status

The LVL1 trigger simulation is implemented within the ATLAS offline computing framework
Athena [6] using C++. It follows the hardware closely as can be seen from the package view
of the simulation code presented in Fig. 3. The code is divided into the simulations of the
calorimeter trigger (package TrigT1Calo), the muon RPC trigger (indicated by the generic
package name TrigT1RPC), the muon TGC trigger (package TrigT1TGC), of the CTP
(package TrigT1CTP) and of the RoIB (package TrigT1RoIB). The details of the hardware,
however, are not simulated for all hardware components (for example the calorimeter trigger,
for which a separate detailed hardware simulation exists). Omitting the hardware details
allows for higher speed and facilitates the use of the simulation for Monte Carlo event genera-
tion. In addition to these obvious parts of the simulation, further packages contain the LVL1
raw data object (RDO) definition (package TrigT1Result) and the code needed for conver-
sion between RDO and byte stream (BS), and vice versa (package TrigT1ResultByteStream).
One package contains class definitions and implementations for classes that are used by more
than one package (package TrigT1Interfaces); this was introduced to avoid circular inclusions
via CMT ‘use’ statements.

Figure 3: A package view of the LVL1 trigger simulation. Except for the muon RPC simu-
lation the names of the packages given in the figure correspond to their names in the offline
software repository offline/Trigger/TrigT1. In case of the muon RPC simulation, the package
generically labelled ‘TrigT1RPC’ comprises several packages.

Some effort has gone into defining the interfaces between the different components of

read-out system. This data path, which is not yet implemented for all of the LVL1 simulation components,
is however of minor importance for the LVL1 simulation and will not be treated here.
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the simulation. The definitions, which follow very closely the data formats used in the
corresponding trigger hardware parts, are documented in a separate document [7] and are
based on the data formats and interfaces defined for the hardware in Ref. [8].

Since the LVL1 simulation is still evolving, a version of the code has to be singled out
as the reference for this note. For this purpose the code that went into the offline Release
6.0.3 (end of April 2003) is chosen. Users of the LVL1 simulation will need to do the obvious
adaptions to newer versions of the simulation. The status of the simulation for Release 6.0.3
was the following:

+ The LVL1 configuration, following the needs of the existing demonstrator hardware
implementation of the CTP, was ready; the configuration data provided by it were used
for the configurations of the calorimeter trigger and CTP simulations. In addition, the
configuration was used for the interpretation of the LVL1 RoIs within the process of
data conversion from BS to the reconstructed RDOs.

+ The calorimeter trigger simulation was fully functional, with parts of the jet and energy
triggers still to be validated.

+ The simulation of the muon RPC detectors was functional; however it did not yet use
the configuration data provided by the LVL1 configuration process.

+ The simulations of the CTP and of the RoIB were fully functional.

+ The conversion to and from BS was fully functional.

- It was not possible to run the calorimeter trigger and muon RPC trigger simulations
simultaneously, for unknown reasons.

- The muon TGC trigger simulation was not yet integrated in the overall LVL1 simula-
tion effort.

4 Configuration of the LVL1 Simulation

4.1 Overview

The task of the LVL1 trigger configuration is twofold:
First, the trigger menu, i.e. the collection of event signatures LVL1 is supposed to trigger

on, has to be translated into something that the simulation of the CTP can understand and
use in making the event decision based on the inputs provided by the calorimeter and muon
trigger simulations: The LVL1 signatures, or trigger items are combinations of requirements
(or trigger conditions) on the multiplicities of various kinds of candidate objects delivered
by the calorimeter and muon triggers.

A simple example for a trigger item is

one or more electron/photon candidate with ET > 10 GeV
and

one or more muon candidate with pT > 15 GeV.

9



In a frequently used and obvious notation this reduces to

1EM10+1MU15

with the two trigger conditions ‘1EM10’ and ‘1MU15’. The string ‘EM’ (‘MU’) represents
an electron/photon (muon) candidate, and the integer numbers before and after the string
symbolise the required multiplicity and the required transverse energy/momentum, respec-
tively. The combination of a candidate string and a threshold value like ‘EM10’ is called
a trigger threshold’. See Subsection 4.3 for more details on the configuration of the trigger
menu. Besides the ‘EM’ and ‘MU’ string, other strings may be used to signal tau/hadron
candidates (‘HA’), jets or forward jets (‘JT’, ‘FR’, ‘FL’), the total and total missing trans-
verse energy (‘ET’, ‘TM’), and the transverse energy calculated from the sum of all jet ET

(‘SM’).
Second the calorimeter and muon triggers have to be configured such that they deliver the

information required for the event decision by the trigger menu, i.e. that the multiplicities
for the required trigger thresholds are sent to the CTP simulation. For the implementation
of the above example the calorimeter trigger has to be configured such that it delivers to the
CTP the multiplicity count for the threshold ‘EM10’, i.e. the number of electron/photon
candidates with transverse energy above 10 GeV. It is obvious that the trigger menu and
the trigger thresholds for the calorimeter and muon triggers have to be defined consistently.
In particular, all thresholds used in the definition of any trigger condition in any trigger
item must be delivered by the calorimeter and muon trigger simulations and thus need to
be configured. See Subsection 4.2 for more details on the threshold configuration.

In the configuration process for the CTP, the restriction imposed by limited abilities
and resources of the simulated hardware are taken into account; this leads to a limit on the
number of input bits over which the threshold multiplicities are sent to the CTP (currently
2×16 according to the layout of the two LUTs on the CTP demonstrator) and on the number
of trigger items (also 2×16). These restrictions will have to be reconsidered when aiming
for a simulation of the final CTP as it is currently being designed; this device will have
160 input bits and probably 160 or more trigger items. However, the approach chosen is
scalable, and the full functionality should also be available for the final design, as long as
the basic structure involving trigger thresholds, trigger conditions and trigger items remains.
Subsection 4.4 explains the mechanism that is used to take these hardware limitations into
account.

A final piece of configuration software is used to configure details of the MuCTPI sim-
ulation. The MuCTPI has the ability to apply a minimum pT cut on the muon candidate
RoIs that it delivers to the RoIB (actually two different cuts in terms of the threshold that
must be passed are applied to the highest and second-highest pT candidate of each sector).
In addition, the maximum number of RoIs to be delivered to the RoIB is configurable.
Subsection 4.5 shows the details of this configuration step.

The LVL1 trigger configuration software is currently being adapted to also be able to
configure the LVL1 trigger hardware by deriving the necessary look-up table and FPGA
configuration files from the trigger menu and trigger threshold list. Such a common config-
uration scheme will allow for cross-checks between hardware and software (see Section 9.3
for more details on this issue).
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4.2 XML Definition of Trigger Thresholds

Both the trigger menu and the list of thresholds that have to be configured are defined
using XML and are parsed into instances of C++ classes using the Xerces DOM API [9]. The
notation exploits the facility of XML to define logical structures by introducing self-defined
tags. The tag structure used for the definition of the trigger thresholds is

<TriggerThresholdList>
<TriggerThreshold name="..." type="..." bitnum="...">

<TriggerThresholdValue thresholdval="..." />
</TriggerThreshold>

</TriggerThresholdList>

The important point here is that a trigger threshold consists of one (or more) trigger
threshold values. This concept allows one to assign different threshold values (in GeV) to
various topological regions of the detector, a concept which is foreseen for the calorimeter
and muon trigger hardware but which has not yet been studied in detail.

The <TriggerThreshold> tag has several attributes:

• The ‘name’ attribute serves to give a unique name to the trigger threshold which serves
to connect it to the trigger conditions that use it in the course of the simulation process.
An example for the attribute is ‘name=“EM01”’ note that the threshold value does
not show up in the name since it might vary over the detector.

• The ‘type’ attribute is necessary for the configuration code to know what kind of
threshold it is currently working on. This information has to be present, for example,
because the total number of thresholds of one type is limited and thus has to be
controlled. There exists only a limited amount of types, and the use of other types
than these will lead to an error message: ‘EM’ (electron/photon), ‘HA’ (tau/hadron),
‘MU’ (muon), ‘JT’ (jet), ‘FL’ or ‘FR’ (forward jets), ‘ET’ (transverse energy), ‘SM’
(transverse energy from jets), and ‘TM’ (missing transverse energy). In addition strings
for technical triggers (calibration, random etc.) may be provided.

• The ‘bitnum’ attribute is required for a correct simulation of the CTP hardware which
receives all calorimeter and muon trigger informations, i.e. the trigger threshold signals,
on a fixed number of input lines, typically three: ‘bitnum=“3”’ (2 for the forward jets,
FL and FR, and 1 for all energy triggers).

The <TriggerThresholdValue> tags also have a number of attributes, with the selection
of the attributes used for a given tag depending on the ‘type’ attribute of the embracing
<TriggerThreshold> tag. The attributes that may be used are:

• ‘thresholdval’ – which can be used for all kinds of trigger threshold values, with obvious
meaning;

• ‘emisolation’, ‘haisolation1’ and ‘haisolation2’ – to characterise the isolation properties
of the electron/photon and tau/hadron candidates (actually, the ‘haisolation2’ should
more appropriately be called ‘haveto’ - see Section 10);

11



• ‘phimin’, ‘phimax’, ‘etamin’, ‘etamax’ – in order to give topological constraints to the
trigger threshold value in question;

• ‘window’ – to give the size of the cluster that the calorimeter jet/energy processor
simulation uses to search for jet candidates;

An example of a trigger threshold file is given in Appendix A.2. The required document
type definition (DTD) file trigger2.dtd, which defines the data and their types to be used in
the trigger threshold file, can be found in Appendix A.5.

4.3 XML Definition of the Trigger Menu

The basic structure of the trigger menu XML files is the following:

<TriggerMenu TM_ID="...">
<TriggerItem TI_ID="..." mask="..." priority="..." prescale="...">

<TriggerCondition threshold="..." mult="..."/>
</TriggerItem>

</TriggerMenu>

In addition to the <TriggerMenu>, <TriggerItem> and <TriggerCondition> tags also
tags <AND>, <OR> and <NOT> are available which may serve to make the trigger item
an arbitrary logical function of the trigger conditions involved. For example:

<TriggerMenu ...>
<TriggerItem ...>

<AND>
<TriggerCondition ... />
<OR>

<TriggerCondition ... />
<NOT>

<TriggerCondition ... />
</NOT>

</OR>
</AND>

</TriggerItem>
</TriggerMenu>

The <TriggerMenu> tag has as only attribute ‘TM ID’ – a string which provides a
name for the trigger menu in question. The <TriggerItem> has as attributes ‘TI ID’ (a
name), ‘mask’ (indicating via values “on” or “off” whether or not the item is to be used
in the LVL1 decision), ‘priority’ (“low” or “high”, indicating whether the item should have
priority, i.e.override the CTP dead-time algorithm – not yet used in the CTP simulation),
and ‘prescale’ (an integer indicating the prescale factor to be used in the CTP simulation).
The <TriggerCondition> tag has two attributes: ‘threshold’ must correspond to the ‘name’
attribute of a defined trigger threshold tag – this is the threshold the multiplicity of which will
be compared with the the integer provided in the ‘mult’ (for ‘multiplicity’) attribute of the
<TriggerCondition> tag. The configuration code will generate an error message and force
the program to exit if a trigger threshold required by a trigger condition is not configured.
For the energy triggers the ‘mult’ attribute is always required to be one.

An example of a trigger menu file is given in Appendix A.1. The corresponding DTD
files entities.dtd and trigger.dtd can be found in Appendices A.4 and A.3, respectively.
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4.4 XML Definition of CTP Hardware

An example for a CTP hardware file is given in Appendix A.7 for the case of the CTP
demonstrator layout, with the corresponding DTD file hardware.dtd shown in Appendix A.8:
First, two LUTs (tag <LUT>) are defined with 16 input bits (tag <PIT> and 8 output bits
(tag <MIO>). The attributes ‘range begin’ and ‘range end’) of the <PIT> tag identify the
physical input lines to the LUTs (and hence to the CTP) on which the threshold multiplicities
are encoded, and the corresponding attributes of the <MIO> tag specify the lines on which
the trigger conditions information will be passed on. Then, two programmable devices (tag
<CMB>) are defined with 16 input bits (for the 16 possible trigger conditions – tag <MIO>)
and 16 output bits (for 16 items, tags <TBV>) each2 are given. Again, the ‘range begin’ and
‘range end’ attributes identify the physical lines from which the trigger conditions for the
programmable device in question will be taken (tag <MIO>) or on which the final trigger
items will be output (<TBV>). The example given is designed such that all conditions from
both LUTs are input to both programmable devices.

TrigT1Config

- std::map<int,
   std::pair<std::string,int>>

- std::map<int,
   std::pair<std::string,int>>

- std::map<int,std::string>

<<class>>
CMB

<<class>>
LUT

- std::map<int,
   std::pair<std::string,int>>

- std::map<int,
   std::pair<std::string,int>>

- std::vector<LUT>
- std::vector<CMB>
- std::list< std::map<int,
   std::pair<std::string,int> > >

Hardware
<<class>>

0...* 1...*

Figure 4: A UML class diagram of the classes involved in the CTP hardware configuration.
The data members indicated for the classes are explained in the text.

Figure 4 shows a UML class diagram of the classes involved in the hardware configuration;
they all reside in the TrigT1Config package. A short explanation will be given for the data
members that are indicated; these are filled during the mapHardware method execution of
the Hardware::init step, see Subsection 4.7.

• Hardware: std::vector<LUT> m HardwareLUTVector: A vector containing the look-
up table instances (class LUT) configured for the CTP.

2The acronym TBV stands for ‘trigger before veto’ and reflects the fact that, after the logical combination
of conditions to items, the trigger items are subject to masks and the dead-time vetos (leading to ‘trigger
after veto’ or TAV) and to prescales (leading to ‘trigger after prescale’ or TAP). The final decision is built
from the logical OR of all TAP bits.
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• Hardware: std::vector<CMB> m HardwareCMBVector: A vector containing the in-
stances of the programmable devices (class CMB) configured for the CTP.

• Hardware: std::list<std::map<int,std::pair<std::string, int>>> m HardwareMIOMapList:
A list containing a map for each configured LUT. The maps build a relation between
the number of the MIO (the lines on which the trigger conditions are sent from the
LUTs to the programmable devices) and the pair built from the corresponding trigger
condition name (std::string) and the multiplicity it requires.

• LUT: std::map<int,std::pair<std::string,int>> m LUTMIOMap: The map mentioned
above between the MIO (trigger condition signal line) number and the trigger condition
name and the corresponding multiplicity requirement.

• LUT: std::map<int,std::pair<std::string,int>> m LUTPITMap: A map between the
PIT (input trigger threshold signal line) number and the trigger threshold name and
the corresponding number of bits (PITs) used for this threshold.

• CMB: std::map<int,std::pair<std::string,int>> m CMBMIOMap: A map between the
MIO (trigger condition signal line) number and the trigger condition name and the
corresponding multiplicity requirement.

• CMB: std::map<int,std::pair<std::string,int>> m CMBPITMap: A map between the
PIT (input trigger threshold signal line) number (in case a PIT is directly input to the
programmable devices and not first to the LUTs) and the trigger threshold name and
the corresponding number of bits (PITs) used for this threshold.

• CMB: std::map<int,std::string> m CMBTBVTMap: A map between the TBV (trigger
item signal line) number and the corresponding trigger item name.

4.5 XML Definition of MuCTPI Parameters

The default trigger.muctpi.xml configuration file has the following form:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE MuctpiConfig SYSTEM "muctpi.dtd">
<!-- @version: -->
<MuctpiConfig>

<MUCTPI firstMin="4" secondMin="2" numCand="10" />
</MuctpiConfig>

It defines that the first (second) candidate in each sector must pass at least the threshold
number four (two) in order to be sent to the RoIB. In addition, the ‘numCand’ attribute
of the <MUCTPI> tag defines the maximum number of candidates that can be sent to the
RoIB (default 10).

The corresponding DTD file muctpi.dtd is specified in Appendix A.6.
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4.6 Configuration Class Structure

The LVL1 trigger configuration is implemented in the offline/Trigger/TrigT1/TrigT1Config
package; some classes which are also needed by other packages reside in the TrigT1Interfaces
package in order to avoid circular inclusions (the TriggerThreshold and TriggerThreshold-
Value classes and the classes inheriting from these abstract base classes). Figure 5 shows a
UML class diagram of the classes involved in the configuration – most of them are directly
related to an XML tag already introduced above.

The central class of the configuration is TriggerMenu; the one (and only one) instance
of this class contains or has access to all the information in the trigger menu XML file.
Consequently, the instance has as data member a vector of instances of the TriggerItem
class – a trigger menu basically IS a collection of trigger items. Each item, in turn, contains
a vector of TriggerCondition instances – a trigger item is a logical combination of one or
more trigger conditions.

In addition to the trigger items, the instance of TriggerMenu holds a map which com-
bines std::strings and pointers to the trigger thresholds (class TriggerThreshold) defined
in the trigger thresholds XML file. TriggerThreshold is an abstract class from which sev-
eral subclasses inherit which are adapted to the needs of the various triggers available in
the LVL1 system (muon, electron/photon/tau/hadron, jet, energy). As explained above, a
<TriggerThreshold> contains one or several trigger threshold values (class TriggerThresh-
oldValue), and also this class is abstract and subclassed by various classes. A factory pattern
is used to create the correct TriggerThreshold and TriggerThresholdValue instances according
to the ‘type’ attribute in the <TriggerThreshold> XML tag.

− std::vector<TriggerCondition>

TriggerItem
<<class>>

<<class>>
TriggerCondition

− std::vector <TriggerItem>
− map<std:;string,TriggerThreshold*>

TriggerMenu
<<class>>

TrigT1Config

<<class>>
EMTauTriggerThresholdValue

<<class>>
JetTriggerThresholdValue

<<class>>
EnergyTriggerThresholdValue

<<class>>
MuonTriggerThresholdValue

<<abstract class>>
TriggerThreshold

# std::vector<TriggerThresholdValue*> # int m_Value

TriggerThresholdValue
<<abstract class>>

1...*

1...*

TrigT1Interfaces

EMTauTriggerThreshold
<<class>>

<<class>>

<<class>>

<<class>>

JetTriggerThreshold

EnergyTriggerThreshold

MuonTriggerThreshold

1...*

1...*

Figure 5: UML class diagram of the trigger configuration software.
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The instance of TriggerMenu therefore contains the complete logical structure that was
defined in the trigger menu and trigger thresholds XML files; the connection between the
trigger conditions and the trigger thresholds which are discriminated by the former is made
using string comparisons between the ‘name’ and ‘threshold’ attributes of the TriggerThresh-
old and TriggerCondition instances, respectively.

The DOM3 parser translates or ‘parses’ the XML information into a logical tree structure
as shown in a simplified manner in Fig. 6 for the trigger menu XML file. Using this structure,
which resides in memory, together with values of the data members of the corresponding C++
instances (which are translations of the XML attributes of the respective tags) it is possible to
derive a logical value for the trigger menu instance given certain logical values for the trigger
condition instances (there are no class counterparts for the <AND>, <OR>, <NOT> tags
– this logical information is taken only from the XML tree). The conditions in turn get their
logical values from the discrimination process in which the multiplicity delivered for a given
trigger threshold is compared to the multiplicity required by the conditions which relate to
the trigger threshold in question4.

TriggerItem TriggerItemTriggerItem

TriggCondition ANDNOT

TriggerCondition TriggerConditionTriggerCondition

TriggerMenu

Figure 6: Schematic overview of a simple XML tree built from a trigger-menu file.

The configuration process also comprises configuration of the calorimeter and muon trig-
ger simulations. For this purpose the classes indicated in Fig. 7 have been introduced into
the package offline/Trigger/TrigT1/TrigT1Interfaces. There is one instance for each of the
classes in the left half of this figure: The CTPCaloConfig instance contains the trigger
thresholds to be delivered by the calorimeter electron/photon/tau/hadron trigger, the CT-
PJetEnergyConfig instance contains the thresholds for the jet and energy triggers, and the
CTPMuonConfig contains the thresholds configuring the muon RPC and TGC triggers.

A last bit of simulation is needed to provide configuration data for the MuCTPI; this is
achieved using a MuctpiConfig object which is created using the information provided in the
trigger.muctpi.xml file (see above).

3DOM is, besides SAX, the most important API to handle XML documents.
4This little excursion into the simulation, rather than configuration, world shows that the configuration

of the CTP cannot easily be separated from the simulation of the device: Simulating the CTP response to a
given event simply means having certain numbers, namely the input threshold multiplicities, ‘run’ through
the logical tree defined by the XML trigger menu file.
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CTPCaloConfig

std::vector<TriggerThreshold*>

std::vector<TriggerThreshold*>

std::vector<TriggerThreshold*>

<<class>>

<<class>>

<<class>>
CTPMuonConfig

CTPJetEnergyConfig
TriggerThreshold

<<class>>

TrigT1Interfaces

0...*

0...*

0...*

Figure 7: UML class diagram of the configuration for muon and calorimeter triggers.

4.7 Implementation

4.7.1 The L1Config Algorithm

Figure 8 shows a sequence diagram for the action of the L1Config algorithm from the
TrigT1Config package. The algorithm first creates a TriggerMenu object and calls its init
method. In this method, first the XML parsing setup is performed (not shown in the figure),
then in three steps mapThresholds, mapThresholdValues and mapTriggerMenu the thresholds
and trigger menu XML files are parsed into instances of C++ objects of the classes shown
in Fig. 5.

TriggerMenu::mapThresholds creates, for each <TriggerThreshold> XML tag, a Trig-
gerThreshold object. A factory pattern involving the TriggerMenu::createThreshold method,
is used to create the kind of TriggerThreshold fitting the ‘type’ attribute of the XML tag
(EMTau-, Jet-, Energy-, MuonTriggerThreshold). A pair made from the ‘name’ attribute of
the <TriggerThreshold> tag and a pointer to the TriggerThreshold object is pushed back
into a data member map<std::string,TriggerThreshold*> m TriggerMenuThresholdMap of
the TriggerMenu object. Fig. 9 shows, as an example, a sequence diagram for the creation
of a EMTauTriggerThreshold object.

In a next step, in method TriggerMenu::mapThresholdValues, a loop over the member
map<std::string,TriggerThreshold*> of the TriggerMenu class is implemented, calling for
each TriggerThreshold a method mapValues in which the TriggerThresholdValue objects of
the correct type (again depending on the ‘type’ attribute of the <TriggerThreshold> tag) are
created, again using a factory pattern in the method TriggerThreshold::createThresholdValue,
see Fig. 10. The TriggerThresholdValue pointers are inserted into the TriggerThreshold::-
m TriggerThresholdValueVector data member.

In a next step of the L1Config algorithm, the TriggerMenu::mapTriggerMenu method is
used to parse the trigger menu XML file into class instances of TriggerItem and TriggerCon-
dition objects. For each <TriggerItem> tag encountered, a TriggerItem object is created,
and it is inserted into the TriggerMenu::m TriggerMenuItemVector data member of the Trig-
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checkTriggerMenu

init

<<algorithm>>

L1Config

<<class>>

TriggerMenu

mapThresholds

mapThresholdValues

mapTriggerMenu

new

(TriggerMenu)

record

Detector-
Store

<<Svc>>

Figure 8: Sequence diagram for the main LVL1 configuration step which sets up the Trig-
gerMenu instance. See text for explanations.

gerMenu object. Similarly, for each <TriggerCondition> tag encountered, a TriggerCondi-
tion object is created and inserted into the TriggerItem::m TriggerItemConditionVector data
member of the corresponding TriggerItem object.

Finally, some checks will be performed on the TriggerMenu object in order to check its
completeness and consistency. This is done in the method TriggerMenu::checkTriggerMenu
which will not be discussed in detail here.

4.7.2 The CTPHardware Algorithm

The task of this algorithm is to introduce into the configuration knowledge about the
hardware of the CTP. Figure 11 shows a sequence diagram of the algorithm. In a first step,
it retrieves the TriggerMenu object that was created by the L1Config algorithm from the
DetectorStore. Next, the Hardware::init method is called which performs several actions:

• It sets all input lines to zero (method Hardware::resetHardware).

• It parses the CTP hardware XML file in the usual recursive way, creating LUT and
CMB objects for the corresponding XML tags, and filling the respective data members
(method Hardware::mapHardware).

• It sets the m TriggerThresholdPITStart member of the TriggerThreshold objects con-
tained in (or pointed to by) the TriggerMenu::m TriggerMenuThresholdMap member
of the TriggerMenu instance. This is achieved by looping over all LUT objects and
all TriggerThreshold pointers and checking whether the number of bits required for
the TriggerThreshold in question is smaller or at maximum equal to the number of
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EMTauTrigger−
Threshold

<<class>>

<<class>>

TriggerMenu

createThreshold(std::string)

mapThresholds

new

return TriggerThreshold*

thresholdMap().insert
(make_pair(std::string,TriggerThreshold*))

return bool

here a factory
pattern is used

Figure 9: Sequence diagram for the TriggerMenu::mapThresholds method, showing the cre-
ation of an EMTauTriggerThreshold object.

input lines (PITs) not yet occupied by other thresholds on this LUT (method Hard-
ware::buildLUTPITMaps).

• According to the limited number of input lines to the LUT objects, it may happen
that not all TriggerThreshold objects can be placed on one of the input lines to one of
the LUT objects. This is checked in the Hardware::checkConsistencyWithTM method.
For each TriggerThreshold not placed on of the LUT input lines, an error message is
issued which also states the TriggerItem objects that contain TriggerCondition objects
which refer to the affected TriggerThreshold objects.

• Finally, the configuration files for the hardware LUTs and programmable devices are
calculated and printed in the methods buildLUTconfigs, buildMIOMapList and build-
CMBconfigs of the Hardware class. These steps will not be treated in detail here,
instead a sequence diagram is shown in Fig. 12.

4.8 Job-Options Fragment

The standard job-options fragment for the LVL1 trigger configuration that is included by
higher-level job-options files looks like the following:

//--------------------------------------------------------------
// TrigT1Config Algorithms Private Options
//--------------------------------------------------------------
ApplicationMgr.DLLs += { "TrigT1Config" };
ApplicationMgr.TopAlg += {"LVL1CTP::L1Config/L1Config"};
ApplicationMgr.TopAlg += {"LVL1CTP::CTPHardware/CTPHardware"};

//--------------------------------------------------------------
// Set output level threshold (1=VERBOSE to 6=FATAL )
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<<class>>

TriggerMenu

new

return bool

<<class>>

TriggerThreshold

mapValues

EMTauTrigger-
<<class>>

ThresholdValue

createThresholdValue
(std::string)

return TriggerThresholdValue*

mapValues

thresholdValueVector
push_back(TriggerThresholdValue*)

Figure 10: Sequence diagram for the TriggerThreshold::mapValues method, showing the
creation of an EMTauTriggerThresholdValue object.

//--------------------------------------------------------------
L1Config.triggerMenuFileLocation = "triggermenu.looseLVL1.low.xml";
L1Config.thresholdListFileLocation = "triggerthresholds.looseLVL1.low.xml";
CTPHardware.hardwareXMLFile = "hardware.ctpd.xml";
L1Config.muctpiConfigLocation = "trigger.muctpi.xml";
CTPHardware.printoutLUT = "no";

The library for the package (TrigT1Config) is loaded, and the top-level Athena algo-
rithms L1Config and CTPHardware are declared (see Subsection 4.7). Then the locations
for the various XML configuration files are set; the triggermenu.looseLVL1.low.xml and trig-
gerthresholds.looseLVL1.low.xml are the standard trigger menu and trigger thresholds files
chosen for Data Challenge 1. The hardware.ctpd.xml file actually contains a configuration
that is slightly more complicated then what is allowed by the CTP demonstrator hardware.
The file trigger.muctpi.xml was introduced above. The flag CTPHardware.printoutLUT,
which may have values “yes” and “no” indicates whether or not the LUT files which are
needed to configure the CTP demonstrator hardware should be printed or not. This flag
is not yet fully functional, but it should nevertheless be set only if necessary – for each
configured LUT (with 16 input lines and 8 outputs) 65536 lines will be printed.

5 The Central Trigger Processor Simulation

5.1 Overview

The CTP combines the input multiplicities provided by the muon and calorimeter triggers
and makes the final LVL1 trigger decision. The Decision process is split in several steps:

1. First, the trigger threshold multiplicities are discriminated against the multiplicity
requirements (conditions) as implemented in the trigger menu.

2. Then, the conditions are logically combined to trigger items.
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buildLUTconfigs

buildCMBconfigs

buildMIOMapList

checkConsistencyWithTM

Could all
thresholds
be placed?

mapHardware

init

resetHardware

buildLUTPITMaps

setThresholdPITStart

all PIT
values 0

see UML
diagram

new

<TriggerThreshold*>
std::vector

push_back(TriggerThreshold*)

new(std::vector<TriggerThreshold*>)

record

(CTPMuonConfig)

retrieve

(TriggerMenu)

Detector-
Store

<<Svc>>

CTP-
Hardware

<<algorithm>>

Hardware
<<class>>

CTPMuon-
Config

<<class>>

Trigger-
Threshold

<<class>>

Figure 11: Sequence diagram for the hardware configuration step. The classes involved in
the Hardware::mapHardware method are visible in the UML class diagram of Fig. 4. Shown
is only the configuration step for the muon triggers, involving the CTPMuonConfig object,
but the principle is the same for the CTPCaloConfig and CTPJetEnergyConfig objects. See
also the text for more explanations.

3. These items are subject to masks, vetos and dead-time algorithms before they are
prescaled.

4. The final CTP decision is the logical OR of the logical values of all configured trigger
items.

5. The CTP Slink information is built and sent to the RoIB and also to the read-out data
path.

The simulation of the CTP follows this scheme closely, with only two minor deviations from
the hardware implementation:

• There exists, in the simulation, no implementation of the complex hardware CTP dead-
time algorithm which allows to trigger on only N events in a time interval of M µs,
with N and M adjustable.

21



Hardware
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CMB::printCMBconfig

print config files
all LUTs

looping over

Figure 12: Sequence diagram highlighting the steps taken to get the hardware LUT and
CMB configuration files. Please refer to the code for further information.

• The output of the CTP to the read-out is not simulated because the CTP hardware
delivers the information from 31 time slices around the one that triggered, which is not
feasible in a simulation which does not take into account the full timing information.
However, the implementation for the triggering time slice should be straight forward
since the information equals the information sent to the RoIB in content and format.

5.2 CTP Simulation

The simulation of the CTP is implemented using the CTPSim algorithm of the TrigT1CTP
package and the TriggerMenu class from the TrigT1Config package. The sequence diagram
in Fig. 13 gives a rough overview of the simulation process, highlighting only the data rel-
evant for the MuCTPI simulation as inputs. The inputs and configuration data from the
calorimeter trigger simulation are treated completely in parallel. First, the main algorithm,
CTPSim, retrieves the trigger menu object and the CTPMuonConfig object from Detec-
torStore. Then, the event related data from the muon and calorimeter trigger systems are
retrieved from StoreGate. The MuCTPI data come as an object of type MuCTPICTP,
and the calorimeter trigger data are encoded as objects of type EMTauCTP, EnergyCTP
and JetCTP for the cluster processor, and the energy and jet triggers from the jet/energy
processor, respectively. Figure 14 summarises the various inputs to the CTP simulation.

Once all the input objects to the CTP simulation are collected from StoreGate, methods
TriggerMenu::fillInputsFromXYZ are called which put the input multiplicities delivered by
the muon and calorimeter trigger simulations into the integer data members TriggerThresh-
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old::m TriggerThresholdMultiplicity of the corresponding TriggerThreshold objects. Then
the CTP logic simulation is executed in the call to the TriggerMenu::exec method. In this
step, which is explained below, all the constituents of the Slink the CTP sends to the RoIB
are built and put into a newly created CTPSLink object which is stored in StoreGate.

Detector-
Store

<<Svc>>

CTPSim

<<algorithm>>
Trigger-

Menu

<<class>>

Trigger-
Threshold

<<class>>

For each configured
threshold get its 
multiplicity from the
input to the CTP -
e.g. from object
MuCTPICTP for the 
MuCTPI input.

CTPSLink

<<class>>

<<Svc>>

fillInputsFromMuon

<TriggerThreshold*>) putThreshold-

Multiplicity(int)

(uint,std::vector

exec

zeroAllInputs

new(std::vector<uint>)

retrieve

(TriggerMenu)

retrieve

(CTPMuonConfig)

(MuCTPICTP)

retrieve

record

(CTPSLink)

Gate
Store-

Figure 13: Sequence diagram for the simulation of the CTP. See text for details.

The TriggerMenu::exec methods wraps all steps of the CTP logic simulation, which are
shown in Fig. 15. The figure does not show the full algorithmic content, but with the
exception of the TriggerMenu::calculateAndSetItemValues method the methods are pretty
simple and understandable.

• The calculateAndSetItemValues method loops over all TriggerItem objects in the vec-
tor of trigger items held by the TriggerMenu object and, for each of the items, calls
its TriggerItem::calculateItemValue method. In this method, the logical value of the
trigger item is calculated by calculating recursively the logical values of all constituting
trigger conditions from the trigger threshold input multiplicities, and then calculating
the item value taking into account the logical operations dictated by the trigger menu.
The final item values is stored as data member of the TriggerItem objects. The calcu-
lateTBVWord derives the three 32-bit words required in the CTP Slink for encoding
the trigger values before masks and vetos (words 15 to 17 of the CTP Slink).

• The evaluateMasks method checks whether the ‘mask’ attribute of the <TriggerItem>
tags is set to “on” or “off”; if “off” is chosen, the item value is set to zero. Then, the
calculateMaskWord derives words 25 to 27 which contain a bit pattern indicating the
masks that were set.

• The evaluateVetoAndDeadTime method checks whether dead time should be applied
(which would result in setting all trigger item values to zero). The method calculate-
TAVWord is then used to derive the words 18 to 20 of the CTP Slink which contain
the trigger decision after the application of masks, veto and dead-time.
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− unsigned int

TrigT1Interfaces

Figure 14: UML class diagram for the inputs to the CTP simulation. See text for details.

• Finally, the prescale mechanism is applied in the method evaluatePrescales, setting
item values to zero if necessary. The result of this operation is encoded in words 21 to
23 of the CTP Slink using the calculateTAPWord method.

5.3 Job-Options Fragment

The standard job-options fragment for the CTP simulation that is included by higher-level
job-options files looks like the following:

//-------------------------------------------------------
// TrigT1CTP Algo
//-------------------------------------------------------
ApplicationMgr.DLLs += { "TrigT1CTP" };
ApplicationMgr.TopAlg += { "LVL1CTP::CTPSim/CTPSim" };
//ApplicationMgr.TopAlg += { "LVL1CTP::CTPTester/CTPTester" };
CTPSim.ApplyDeadtime = "no";
CTPSim.RandomVersusZero = "zero";

After the library declaration and the declaration of the CTPSim algorithm an additional
CTPTester algorithm can be included which has not been treated in detail so far. The task
of this algorithm is to extract from StoreGate the result of the CTP simulation, to perform
simple tests on it and to print it. It is commented out because it is not foreseen for the usual
CTP simulation running, but rather for debugging purposes.

There are two flags for the CTPSim algorithm: ApplyDeadTime (“yes” or “no”) steers
whether or not the CTP simulation masks out four events after each accepted event. This
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Figure 15: Sequence diagram for the TriggerMenu::exec step of the CTP simulation. See
text for details.

is the simple dead-time mechanism implemented in the CTP demonstrator hardware5. The
RandomVersusZero flag (“random” or “zero”) decides whether missing input information to
the CTP simulation is replaced with zeros or with random numbers. Default is “zero”.

6 The LVL1 RDO

The raw data object (RDO) is the object view of the LVL1 result – as opposed to the
bytestream format which cannot easily be interpreted by the human observer. There exist
two versions of the RDO. The chronologically first RDO implementation was that of the
raw RDO (the doubling-up of the word ‘raw’ is rather unfortunate), see Section 6.1. The
newer implementation, and the one that is currently used for the seeding of the HLT, is the
reconstructed (or interpreted) RDO, see Section 6.2.

6.1 The Raw RDO

The raw RDO is implemented using the classes of the TrigT1Result package, see Fig. 16, and
follows closely the Slink structure connecting the different parts of the LVL1 trigger to the
RoIB. There is a top-level class RoIBResult which contains the objects that correspond to the
Slinks: one object MuCTPIResult for the MuCTPI result, one object CTPResult for the CTP

5There exists also a more complex dead-time algorithm which introduces dead-time as soon as there are
more then N triggered events in an interval of M µs, with N and M programmable. This algorithm however
cannot be implemented in the CTP simulation software.
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Slink, four EMTauResult objects for the four Slinks from the calorimeter cluster processor to
the RoIB, and two JetEnergyResult objects for the two Slinks from the jet/energy processor
to the RoIB. In order to follow the data format of the hardware as closely as possible, the
XXXResult objects have as members Header and Trailer objects which contain the data
passed in the headers and trailers of the Slinks. The data format version chosen for the
implementation is v2.2 [10].

- Header
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<<class>>

- std::vector<MuCTPIRoI>
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- Header
- Trailer
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Figure 16: UML class diagram of the classes involved in the LVL1 raw RDO.

The actual data content of the RoIBResult object is in the XXXRoI classes (XXX=MuCTPI,
CTP, EMTau, or JetEnergy) which contain (in case of the calorimeter and muon triggers)
the 32-bit RoI words or (in case of the CTP) the corresponding information of the CTP
processing. The number of RoIs clearly is not constant but depends on the event properties;
only in case of the CTP is the RoI number defined and fixed to 19 32-bit words containing
input bit patterns, masks, the LVL1 result and some more information.

The primary purpose of the RoIBResult class is to represent the LVL1 result after its
assembly by the RoIB simulation (see Section 7). In this simulation, the various partial
results from the muon and calorimeter triggers and from the CTP are mapped onto the
XXXResult members of the RoIBResult instance created by the RoIBuilder algorithm (pack-
age TrigT1RoIB).

The raw RDO as implemented in the RoIBResult class was initially also used in the
implementation of the HLT steering code. The steering code retrieved the RDO from Store-
Gate (where it had been stored by the RoIBuilder algorithm of the TrigT1RoIB package)
and accessed the RoIs. However, the (raw) RoIs contain only 32-bit words indicating with
bit patterns the thresholds that were passed or the location in the detector, whereas the
steering code requires the RoI to be present in terms of the η and φ coordinates and the
threshold value (in GeV). Therefore, some reconstruction code had to be run within the
HLT steering code which also had to access the LVL1 configuration in order to give the
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necessary interpretations of the RoIs. This approach seemed inelegant and introduced un-
necessary dependencies of the HLT code on the LVL1 trigger code. In order to remove these
dependencies, the reconstructed RDO was introduced.

6.2 The Reconstructed RDO

The idea behind the reconstructed RDO as implemented in the RecRoIBResult class of the
TrigT1Result package is that the interpretation of the RoIs necessary for the HLT steering
code can more elegantly be done in the conversion step from bytestream, assuming that the
input to the HLT process will always be bytestream, be it transient or persistent:

RecCTPRoI
- TriggerMenu

<<class>>

- LVL1CTP::CTPMuonConfig*
- const RPCCablingCvs*
- const RPCgeometrySvc*

<<class>>

RecMuonRoI

<<class>>
RecEmTauRoI

- DataLink
<LVL1CTP::CTPCaloConfig>

- DataLink
<LVL1CTP::CTPJetEnergyConfig>

<<class>>
RecEnergyRoI

- DataLink
<LVL1CTP::CTPJetEnergyConfig>

<<class>>
RecJetEtRoI

- DataLink
<LVL1CTP::CTPJetEnergyConfig>

<<class>>
RecJetRoI

TrigT1InterfacesTrigT1Result

0...*

o...*

0...*

0...*
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<<class>>
RecRoIBResult

- std::vector<RecMuonRoI>
- std::vector<RecCTPRoI>
- std::vector<RecJetRoI>
- std::vector<RecEmTauRoI>
- std::vector<RecJetEtRoI>
- std::vector<RecEnergyRoI>

Figure 17: UML class diagram of the classes involved in the LVL1 reconstructed RDO.

The important difference to the RoIBResult class is that that the various RoIs contained
in the RecRoIBResult object have access to configuration data, which in most cases is used
during the construction of the object to fill data members representing η, φ and the thresh-
old value or to calculate these quantities later on during program execution. In case of the
calorimeter RoIs, the configuration is accessed through the CTPCaloConfig or CTPJetEn-
ergyConfig objects which are a result of the configuration process. In case of the muon RoIs,
the CTPMuonConfig object together with the relevant RPC services (cabling and geometry)
have to be provided. The configuration data are used to give values to data members which
represent the threshold value (in GeV), and the coordinates of the RoI in η–φ space.

It should be noted that currently (offline version 6.0.3) the class RecRPCRoI is not yet
implemented, and that the RecRoIBResult only consists of vectors of RecMuonRoI, RecEm-
TauRoI and RecJetRoI class instances – the use of the RecEnergyRoI and RecJetEtRoI classes
still has to be implemented.
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7 The RoIB Simulation

7.1 The RoIBuilder Algorithm

The RoIBuilder algorithm collects the various pieces of LVL1 results from the calorimeter
and muon trigger simulations and from the CTP simulation and creates an instance of the
RoIBResult class from them. A detail of the process, taking into account only the MuCTPI
part and neglecting the calorimeter and CTP Slinks, is shown in Fig. 18. It can be seen that
first the object corresponding to the MuCTPI-to-RoIB Slink is retrieved from StoreGate
(class MuCTPIToRoIBSLink), the constituting vector of unsigned integers is extracted and
looped over, and for each integer corresponding to a muon RoI a MuCTPIRoI is created and
pushed back into a vector. This vector, together with instances of the Header and Trailer
class shown in Fig. 16, is used to create a MuCTPIResult object, which in turn is used to
create the RoIBResult object.

Store-
Gate

<<Svc>>

MuCTPITo-
RoIBSLink->

getMuCTPITo-
RoIBWords()

std::vector
<uint>

std::vector
<MuCTPIRoI>

RoI-
Builder

<<algorithm>>

Loop over all
32-bit words
and push back
those which are
neither header
nor trailer words.

record

(RoIBResult)

retrieve

(MuCTPITo-
RoIBSLink)

push_back(MuCTPIRoI)

loop

<<class>>

Result
MuCTPI-

<<class>>

Result
RoIB-

(std::vector<MuCTPIRoI>)

new(MuCTPIResult)

Figure 18: Sequence diagram for the RoIBuilder algorithm, specifying only the part which
handles the MuCTPI part of the LVL1 result. The calorimeter and CTP results are treated
in very similar ways.

In order to really build the RoIBResult object, also the partial LVL1 results for the six
calorimeter Slinks and the one CTP Slink have to be created from objects which are similar,
but not completely equal, to the MuCTPIToRoIBSLink object used for the MuCTPI Slink.
Since the differences are only in naming conventions and data member names, only these
other names will be given here (the corresponding classes are also shown in the UML diagram
of Fig. 19):

• The CTP Slink comes through an object of type CTPSLink. From this, RoIs of type
CTPRoI are filled, which in turn serve to create an object CTPResult.
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• The calorimeter cluster processor information is transmitted on four Slinks which are
simulated using four DataVector<SlinkWord> objects. From these, EMTauRoI objects
are filled which serve to fill four EMTauResult objects.

• Similarly, the two jet/energy processor Slinks arrive at the RoIB simulation via two
DataVector<SlinkWord> objects from which JetEnergyRoI are created which enter the
two JetEnergyResult objects.

<<class>>

<<class>>

<<class>>
CTPResult
<<class>>

EMTauResult
<<class>>

JetEnergyResult
<<class>>

<<class>>
RoIBResult

TrigT1Result

1

1

MuCTPIResult
<<class>>

CTPSLink

MuCTPIToRoIBSLink

SlinkWord

TrigT1Interfaces

4

2

Figure 19: UML class diagram for the inputs to the RoIB simulation and the creation of the
LVL1 RDO. See text for more details.

7.2 The Tester Algorithms

The two algorithms RoIBTester and RecRoIBTester, which are not included during normal
LVL1 simulation, serve for debugging and testing purposes and for tests of the byte-stream
(BS) conversion mechanism via the ReadTrigT1BSExample jobOptions.txt file explained in
detail in Section 9.4. Since the algorithms are fairly simple, they will not be explained
explicitly here.

7.3 Job-Options Fragment

The standard job-options fragment for the RoIB simulation that is included by higher-level
job-options files looks like the following:

//--------------------------------------------------
// Trigt1RoIB Algo
//-------------------------------------------------
ApplicationMgr.DLLs += { "TrigT1RoIB" };
ApplicationMgr.TopAlg += { "ROIB::RoIBuilder/RoIBuilder" };
//ApplicationMgr.TopAlg += { "ROIB::RoIBTester/RoIBTester" };

It consists of the library include statement (‘ApplicationMgr.DLLs’) and declarations
of the RoIBuilder and RoIBTester algorithms. The latter algorithm retrieves the LVL1
RDO that is built by the RoIBuilder algorithm from StoreGate, performs tests and prints
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it. For usual, non-debugging running it is not used, except for the job-options file Read-
TrigT1BSExample jobOptions.txt which exercises the reading of bytestream and is explained
in Section 9.4.

8 The Bytestream Conversion

Figure 20 shows a schematic overview of the conversion process involved in transferring
the LVL1 result to LVL2. The LVL1 result (object of type RoIBResult) is stored in Store-
Gate. From there it is retrieved by the AlgTool RoIBResultByteStreamTool of the package
TrigT1ResultByteStream. The tool has two convert methods, one to convert the raw RDO
object to bytestream (implemented in the RoIBResultByteStreamTool.h file), and one to con-
vert the BS back to the object of type RoIBResult (file RoIBResultByteStreamTool.cxx). The
converters, the fragments of which were provided by H. Ma6, use the eformat library and
the definition of data formats version 2.2.0 [10].
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LVL1
simulation

Byte−
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LVL2

using AlgTool
RoIBResultByteStreamTool

using AlgTool
RecRoIBResultByteStreamTool
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B
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conversion

conversion

conversion

preparation on demand
and dataRecRoIBResult

transient or persistent

Figure 20: Overview of the conversion steps needed for the LVL1-LVL2 communication. See
the text for details.

The second of the converters mentioned can be used to translate the BS (be it transient –
in memory – or persistent – as a file on a disk) back to the raw LVL1 RDO. This is, however,
not to be used anymore in the future, although it found wide use in the preparation phase
towards the HLT Technical Design Report [3], where the recreated raw LVL1 RDO of type
RoIBResult was used to seed the HLT steering process. In doing so, the raw RoIs (32-bit

6In case of questions of change requests concerning the converter package TrigT1ResultByteStream, please
contact H. Ma or G. Comune who also has experience with conversion packages, in his case for the LVL2
result. The author of this note admits to never really have fully understood the concepts of the converters
and the AlgTools used for implementing them.
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words) had to be interpreted during the HLT steering process one by one – a procedure that
was considered inelegant and time-consuming. In addition, it was felt that this way of doing
it led to too much dependence of the HLT trigger software on LVL1 software.

The approach that was chosen instead is also shown in Fig. 20. It consists in a direct con-
version of the BS to the reconstructed, instead of the raw, RDO. This conversion step is im-
plemented in the RecRoIBResultByteStreamTool AlgTool in package TrigT1ResultByteStream.
It requires the creation of reconstructed, rather than raw, RoIs (classes RecMuonRoI etc.),
and therefore the use of LVL1 configuration data in the construction phase of the RDO (see
Fig. 17 for an overview of the reconstructed RDO).

Section 9.4 will explain how to run a job that creates and reads back BS.

9 Installation and Running

In this section, various methods to use (parts of) the LVL1 simulation code are introduced.

9.1 Installation using an Offline Release

The simplest way to the make use of the LVL1 simulation, or of parts of it, is to not check out
any specific packages from the CVS repository, but to completely rely on an offline release.
The following explains this option, assuming running of the simulation chain

configuration → calorimeter trigger → CTP simulation → RoIB simulation → BS creation
→ reading of BS and RDO (re)creation.

Also the reading of the BS and its interpretation are discussed. The offline release used is
6.0.3, and we are using the TestRelease package to build the code.

First, the user has to make sure to use the correct offline release. This is achieved by two
lines in the main requirements file:

macro ATLAS_DIST_AREA "/afs/cern.ch/atlas/software/dist"
macro ATLAS_RELEASE "6.0.3"

Doing (in the home directory)

%> source setup.sh

configures CMT and prepares the user to check out packages, to compile, and to run.
The TestRelease package has to be checked out in the private working area (which is

assumed to be a directory ‘athena’ directly below the home directory of the user):

%> cd athena
%> cmt co TestRelease

The requirements file of the TestRelease package should contain the following ‘use’ state-
ments, in addition to the usual content of the file:

use AtlasPolicy AtlasPolicy-*
use TrigT1Calo TrigT1Calo-* Trigger/TrigT1
use TrigT1Config TrigT1Config-* Trigger/TrigT1
use TrigT1CTP TrigT1CTP-* Trigger/TrigT1
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use TrigT1RoIB TrigT1RoIB-* Trigger/TrigT1
use TrigT1Result TrigT1Result-* Trigger/TrigT1
use TrigT1ResultByteStream TrigT1ResultByteStream-* Trigger/TrigT1
use TrigT1Muctpi TrigT1Muctpi-* Trigger/TrigT1
use MagneticFieldAthena MagneticFieldAthena-* MagneticField
use xKalmanppAthena xKalmanppAthena-* Reconstruction/xKalmanpp
use RecExCommon RecExCommon-* Reconstruction/RecExample
use GeneratorModules GeneratorModules-* Generators

Change to the ‘cmt’ subdirectory of the TestRelease package, configure it, and compile
everything:

%> cd ~/athena/TestRelease/TestRelease-*/cmt
%> cmt broadcast cmt config
%> source setup.sh
%> cmt broadcast "rm -rf ../i686*"
%> cmt broadcast gmake clean
%> cmt broadcast gmake

Section 9.4 will explain in more detail how to run the compiled code.

9.2 Installation using Single Packages

In many cases the user might want to develop a certain package and for this reason has to
check out its HEAD version from the CVS repository (not specifying a specific version):

%> cmt co TrigT1CTP Trigger/TrigT1/TrigT1CTP

In case the user wants to edit a package that is not explicitely mentioned in the require-
ments file presented in the section above, it should be included via a use statement.

It may also happen that the user wants a specific version of a given package, but not the
one that is used in the release. In this case, the version in question needs to be checked out
using the ‘-r’ option:

cmt co -r TrigT1CTP-AB-CD-XY Trigger/TrigT1/TrigT1CTP

where AB-CD-XY represents the specific tag the user is requiring. In this case the specific
tag in question should also be entered into the requirements file to make sure CMT picks up
the correct version of the code:

use TrigT1CTP TrigT1CTP-AB-CD-XY Trigger/TrigT1

In both cases mentioned above, the same steps as in the foregoing subsection are required
to compile the code.
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9.3 Installation as a Stand-Alone Program

At the time of offline release 6.0.3 there was no functioning stand-alone version of the LVL1
configuration and CTP simulation code. Nevertheless in this section the principles of getting
a stand-alone version of the code will be demonstrated.

The makefile (under construction!) that is supposed to result in a stand-alone version
of the trigger configuration and CTP simulation code is contained in the ‘misc’ directory of
the TrigT1CTP package, together with main.cxx file needed for the stand-alone code. The
important point about the makefile is that it does not try to use CMT and its facilities,
but rather expects a checked-out version of the packages TrigT1Interfaces, TrigT1CTP and
TrigT1Config. From these checked-out versions it tries to build an executable. In doing
so, the use of the ‘STANDALONE’ compilation flag activates the use of other include files
and different code sections in the implementation files than is the case for standard Athena
running. As an example, an extract from the header file of the TriggerCondition class from
the TrigT1Config package is shown:

#ifndef TRIGGERCONDITION H

#define TRIGGERCONDITION H

#include <vector>

#include <string>

#ifndef StandAlone

#include "dom/DOM.hpp"

#include <iostream>

#include <strstream>

#include "TrigStore/MessageSvcProvider.h"

#else

#include <dom/DOM.hpp>

#endif

namespace LVL1CTP

{
class TriggerCondition

{
public:

/* Constructor takes name and the XML DOM node */

TriggerCondition(std::string,int,DOM Node&);
~TriggerCondition();

...

#ifndef StandAlone

MessageSvcProvider m messageSvcProvider;

std::string m thisName;

#endif

};
} // End of namespace LVL1CTP bracket

#endif

33



The main point in having the compilation flag ‘STANDALONE’ is that the Athena
concept of the MessageSvc cannot be used in stand-alone running and has to be replaced
by standard ‘cout’ statements. In addition, the path to many include files, for example
those needed for the XML parsing parts of the code, is different for Athena and stand-alone
running.

In order to be able to use the stand-alone code, therefore, the packages mentioned above
have to be checked out, and the makefile has to be adapted to the specific situation of the
user in question. The required changes should be obvious. Before the makefile can be run
with the usual ‘gmake’ command, the running environment has to be set up properly. The
aim is to use the gcc compiler version used for the offline release 6.0.3, namely 2.95. The
following script may be used to achieve the correct setup7:

#!/bin/zsh
echo ‘‘Running runscript to set up for DOM examples.’’
export XERCESCROOT= /4xml
export LD LIBRARY PATH=$XERCESCROOT/lib:$LD LIBRARY PATH
export PATH=$PATH:$XERCESCROOT/bin:$XERCESCROOT/standalone/bin
echo ‘‘XERCESCROOT = ‘‘ $XERCESCROOT
echo ‘‘LD LIBRARY PATH = ‘‘ $LD LIBRARY PATH
echo ‘‘PATH = ‘‘ $PATH
echo ‘‘Runscript to set up for DOM examples ready.’’
Here, only the XERCESCROOT variable has to be adapted to the specific situation. In
addition, a complete XERCESC setup in terms of the required XML XERCESC libraries
has to be provided, see [9]. After running the makefile successfully, the stand-alone code can
be run doing

%> CTPSim [menufilename] [thresholdsfilename] [muctpiconfigfile]

The program will then start using XML configuration files specified in the arguments to the
‘CTPSim’ command. These files have to be provided in the ‘run’ directory.

The goal of running the configuration and CTP simulation stand-alone, outside of the
computing framework Athena, clearly is to provide a possibility for thorough tests of the
CTP hardware and to run the simulation and the hardware with the same configuration and
input data and thus cross-check the two against each other. This is not yet achieved. The
steps to be taken in order to arrive at this goal are the following:

1. Get the configuration and CTP simulation running in stand-alone mode as described
above on lxplus.

2. Port the code to the Dsy-Srv on which the code running and steering the CTP hardware
can be found (contact: R. Spiwoks).

3. Use the LUT configuration files and the VHDL code files generated by the configuration
step of the stand-alone running to configure the CTP hardware. This step also involves
translating the VHDL code into CPLD configuration files, a step which has to be done
very carefully in order to avoid later hardware damages due to faulty configurations.

7The correct compiler version gcc-2.95 can be selected by executing the ‘source setup.sh’ in the home
directory with offline release 6.0.3 selected in the requirements file.
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4. Provide, for example via plain asci files, input data to the simulation and to the CTP
hardware.

5. Compare the outputs of the simulation and of the hardware.

None of the above mentioned steps is trivial, and they all have to be done in close collabo-
ration with the people working on the CTP or CTPD hardware, especially R. Spiwoks.

9.4 Running the Simulation

In this section, various simple job-option files that exercise the LVL1 simulation are discussed.
In all cases, only the calorimeter branch of the LVL1 trigger is considered, with the extensions
necessary to include also the muon RPC (and later TGC) simulations being straightforward
and obvious.

9.4.1 Running the LVL1 Simulation without BS

The file General jobOptions.txt (from the ‘share’ directory of the TrigT1Config package) is
given in Appendix 10.1. This file, after some initialisation and setting up Athena for reading
LVL1 TDR data in Zebra format, includes the three lines:
#include "$TRIGT1CONFIGROOT/share/TrigT1ConfigJobOptions.txt"

#include "$TRIGT1CONFIGROOT/share/L1Sim CaloSetup jobOptions.txt"

#include "$TRIGT1CONFIGROOT/share/L1Sim jobOptions.txt"

The first line includes the job options for the setup of the LVL1 trigger configuration.
The second file is included in order to prepare the calorimeter trigger simulation, and the
third line calls the algorithms that actually perform the simulations of the calorimeter (and
later also muon) trigger, and of the CTP and RoIB simulations:
//--------------------------------------------------------------

// RPC stuff

//--------------------------------------------------------------

//#include "$TRIGT1RPCSTEERINGROOT/share/TrigT1RpcJobOptions.txt"

//--------------------------------------------------------------

// TrigT1Muctpi Algorithms Private Options

//--------------------------------------------------------------

//#include "$TRIGT1MUCTPIROOT/share/TrigT1Muctpi jobOptions.txt"

//-------------------------------------------------------

// TrigT1Calo Algos

//-------------------------------------------------------

#include "$TRIGT1CALOROOT/share/TrigT1CaloJobOptions.txt"

//-------------------------------------------------------

// TrigT1CTP Algos

//-------------------------------------------------------
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#include "$TRIGT1CTPROOT/share/TrigT1CTPJobOptions.txt"

//-------------------------------------------------------

// TrigT1RoIB Algos

//-------------------------------------------------------

#include "$TRIGT1ROIBROOT/share/TrigT1RoIBJobOptions.txt"

The command to start the simulation is simply:

%> athena General_jobOptions.txt

9.4.2 Running the LVL1 Simulation and Creating the LVL1 Result BS

A more complicated exercise is to produce the LVL1 bytestream (BS) and write it out
to a file (which is typically called RawEvent.re). This can be achieved using the follow-
ing job-options file WriteTrigT1BSExample jobOptions.txt from the ‘share’ directory of the
TrigT1ResultByteStream package:
#include "$ATHENACOMMONROOT/share/Atlas ZebraTDR.UnixStandardJob.txt"

#include "$BYTESTREAMCNVSVCROOT/share/WriteByteStream jobOptions.txt"

#include "$TRIGT1RESULTBYTESTREAMROOT/share/WriteTrigT1ResultBS jobOptions.txt"

EventSelector.directConversion = true;

EventSelector.readHits = false;

EventSelector.readDigits = false;

EventSelector.calos = false;

EventSelector.muons = false;

EventSelector.trt = false;

EventSelector.sct = false;

EventSelector.pixel = false;

EventSelector.mdt = false;

EventSelector.rpc = false;

EventSelector.tgc = false;

ApplicationMgr.DLLs += "GaudiAud" ;

AuditorSvc.Auditors += "ChronoAuditor" ;

AuditorSvc.Auditors += "MemStatAuditor" ;

MemStatAuditor.OutputLevel = 4;

MessageSvc.OutputLevel = 2;

ApplicationMgr.EvtMax = 10;

ApplicationMgr.EvtSel = "FILE ZEBRA.P";

This in turn calls the file WriteTrigT1Result jobOptions.txt:
#include "$TRIGT1CONFIGROOT/share/TrigT1ConfigJobOptions.txt"

#include "$TRIGT1CONFIGROOT/share/L1Sim CaloSetup jobOptions.txt"

#include "$TRIGT1CONFIGROOT/share/L1Sim jobOptions.txt"

ApplicationMgr.DLLs += "TrigT1ResultByteStream" ;

StreamBS.ItemList += "6000#*" ;
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StreamBS.RequireAlgs += "RoIBuilder";

The command to start the simulation now is:

%> athena WriteTrigT1BSExample_jobOptions.txt

9.4.3 Reading back the BS

In order to check and test the content of the BS file RawEvent.re that was written using the
job options given in the preceeding section, the following piece of job options can be used (file
ReadTrigT1BSExample jobOptions.txt from the TrigT1ResultByteStream/share directory):
#include "$BYTESTREAMCNVSVCROOT/share/ByteStreamSelector jobOptions.txt"

#include "$TRIGT1RESULTBYTESTREAMROOT/share/ReadTrigT1ResultBS jobOptions.txt"

#include "$TRIGT1RESULTBYTESTREAMROOT/share/ReadRecTrigT1ResultBS jobOptions.txt"

MessageSvc.OutputLevel = 2;

ApplicationMgr.EvtMax = 20;

The included file ReadTrigT1ResultBS jobOptions.txt recreates the raw RDO from the BS
(see Section 6.1), and the second file ReadRecTrigT1ResultBS jobOptions.txt aims at creating
the reconstructed RDO (Section 6.2) which serves to seed the HLT steering software.

The result of recreating the raw RDO from BS is tested in the above job options via the
running of the RoIBTester algorithm. An example for the output of this algorithm is shown
in Appendix C (taking into account the fact that the actual data content of the RoIBResult
structure depends on the configuration and on the data file that were used in creating the
BS file). The output provided by the creation of the reconstructed RDO depends very much
on the kind of RoIs found in the BS file and will not be shown here explicitly.

9.5 Typical Configuration and Simulation Output

Depending on the output level chosen for the Athena MessageSvc, more or less output will be
given for the LVL1 configuration and the simulations of the CTP and the RoIB. Moreover,
the output clearly depends on the configuration chosen and (for the simulation) on the data
file used. However, a typical job should always produce lines similar to the ones shown in
Appendix D for the LVL1 configuration step during the initialisation phase of the job. Also
shown should be the initialisation messages of the CTPSim and RoIBuilder algorithms:

CTPSim INFO ========================================
CTPSim INFO Initialisation for CTPSim algorithm.
CTPSim INFO ========================================
CTPSim INFO
RoIBuilder INFO
RoIBuilder INFO ========================================
RoIBuilder INFO Initialisation for RoIBuilder algorithm.
RoIBuilder INFO ========================================
RoIBuilder INFO

In addition, a typical event with output level lower than default should show lines corre-
sponding to the ones shown in Appendix E, where of course the numbers given there again
depend on the actual configuration and data file that was chosen.
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10 Things To Do

This section contains several lists of things to be done in order to improve the overall LVL1
trigger simulation or the parts of it which are treated in this note. First, Subsection 10.1 as-
sembles points of general importance to the simulation. Then, Subsections 10.2 through 10.7
concentrate on the various single packages of the simulation and things to be done for them.

10.1 General issues

• Adapt LVL1 simulation to offline release 6.1.0 and following, taking into account change
of compiler from gcc 2.95 to 3.2. This also implies use of a different Xerces-C version
2.2.0. Note: There was a discussion recently in ATLAS about the need of DOM and
about replacing it by other parsers such as SAX, etc. C. Arnault is the right person
to ask.

• Introduce use of secondary RoIs in trigger configuration and CTP simulation. A first
simple implementation might be achieved by setting the required multiplicity of the
supposed secondary RoI to a very high number (say 9999). In the future, a flag
in the <TriggerThreshold> XML tag (an attribute ‘RoI’ with values “primary” or
“secondary” might be necessary. This would then require asking the trigger thresholds
in the CTP simulation whether they are primary or not, and taking only the primary
ones into account in the trigger decision.

• In close collaboration with the calorimeter and muon trigger software developers the
complete simulation should be tested for the complete data flow chain. This has
happened for most parts of the calorimeter trigger, and the test procedure showed
several bugs which were then repaired. However, especially the jet and energy triggers
and all of the muon trigger simulation is not yet fully tested in the combination with
the CTP and RoIB simulations.

• Strict rule checking, at least for the ‘required’ ATLAS coding rules, should be applied.
This has not been done thoroughly so far, and lots of rule violations are present. In
addition to this a number of compilation warnings (mainly of the ‘discards qualifier’
type are present in most of the packages, possibly hinting at design flaws.

• The core parts of the LVL1 simulation have been tested for memory leaks only using
the ‘top’ method – i.e. running over 100 or 200 events and looking whether the mem-
ory consumption is rising. This gave satisfactory results. However, a more thorough
investigation using a tool like valgrind is necessary.

• The whole simulation suffers from the use of hardcoded numbers in a lot of places. It
would be very valuable to go through the code and replace them by static variables
that are defined in one common location, probably in the TrigT1Interfaces package.

• The code does not use exceptions, and also return codes are not used broadly through-
out the simulation. This might be changed in order to get a better error control.
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• The combined running of the calorimeter and muon RPC trigger simulations still has
to be achieved, as has the integration of the muon TGC simulation.

• The standalone version of the configuration and CTP simulation code is not finished
yet, see Section 9.3.

• The use of the MessageSvcProvider as provided by the TrigStore package is not fully
understood; in particular it seems difficult or impossible to set the output level. Discuss
with Simon George, the author of the thing. The MessageSvcProvider is currently used
in the TrigT1Config package. There are some places in classes of the TrigT1Interfaces
package where its use might also be appropriate.

10.2 Details for TrigT1Interfaces

• The data member ‘thresholdHA2Isol’ of the EMTauTriggerThresholdValue class should
be renamed to something like ‘thresholdHAVeto’ (see Section 10.3).

• The naming convention for the trigger threshold types (data member ‘thresholdType’
of the TriggerThreshold class and attribute ‘type’ of the <TriggerThreshold> tags) do
not follow the scheme adopted in the LVL1 TDR [1].

• The TMUtil class should be checked thoroughly for uncatched errors, etc. In addition,
it should be synchronised with the TMUtil class in the TrigSteer/TrigConfig package
(the better version of the code is probably in TrigT1/TrigT1interfaces).

• In analogy to the RecMuonRoI etc. a class RecCTPRoI is needed in order to have the
energy and CTP information available for the reconstructed RDO. For the RecCTPRoI
class methods should be provided that extract, using the LVL1 configuration, a list of
fired triggers items, the multiplicities of all trigger thresholds, and the LVL1 accept
signal.

10.3 Details for TrigT1Config

• The attribute ‘haisol2’ of the <TriggerThresholdValue> tag in the trigger thresholds
XML file should rather be named ‘haveto’ since it defines the maximum amount of en-
ergy allowed in the hadronic section of the calorimeters behind an electromagnetic can-
didate. This change would have to be reflected in the TriggerMenu::mapThresholds()
method. Consequently, also the corresponding data member of the EMTauTriggerThresh-
oldValue class should be renamed from ‘thresholdHA2Isol’ to something like ‘thresh-
oldHAVeto’.

• The naming convention for the trigger threshold types (data member ‘thresholdType’
of the TriggerThreshold class and attribute ‘type’ of the <TriggerThreshold> tags) do
not follow the scheme adopted in the LVL1 TDR [1]. Changing this would affect also
several methods of the TriggerMenu, CTPHardware and Hardware classes.
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• In the TriggerMenu::checkTriggerMenu method, make sure that

– the up to six muon thresholds that are defined in the trigger thresholds XML
file really have monotonically rising threshold values (this is necessary for the
interpretation of the data);

– the multiplicity delivered for energy thresholds is less than two (an energy thresh-
old is either passed or not);

– the number of bits used for forward jet thresholds (‘FL’, ‘FR’) is 2, and the number
of bits used for energy thresholds is one (this test might also go somewhere in the
Hardware class).

• From a design point of view one might want to consider creating classes for the <PIT>,
<MIO> and <TBV> tags of the CTP hardware configuration XML file. This might
possibly make the code cleaner, especially the internal algorithmic part of the LUT
and CMB classes.

• The ‘priority’ attribute of the <TriggerItem> tag in the trigger menu XML files is
currently not yet used. The purpose of this flag, if set to ‘high’ instead of ‘low’, would
be to override, under certain circumstances, the CTP dead-time algorithms. Such an
override mechanism would have to be implemented in the TriggerMenu class. This has,
however, no high priority since the simple dead-time mechanism that is built into the
CTP simulation is usually not used (see Section 5.3 for a discussion of this mechanism).

• For some purposes it might be helpful to have somewhere (maybe in TriggerMenu?)
a map that relates the integer number of a trigger threshold (one to six for the muon
trigger, one to 16 for the electron/photon trigger, etc.) to the trigger threshold objects.
This would facilitate the translation of the bits indicating the number of the passed
threshold in the RoIs to the threshold value, which is accessible via the trigger threshold
object.

• Another design change would be to avoid the double definition of <TriggerCondition>
tags in the trigger menu XML files by having in the <TriggerItem> tags not the
<TriggerCondition> tags, but only references to them, and only after the definition of
all trigger items define all trigger conditions. This, however, probably makes it more
complicated to define complex logical structures because it is not a priori clear how to
introduce tags for the logical operations AND, OR, NOT.

• It would be cleaner to try to get rid of the third argument in the call to the method
TriggerItem::calculateItemValue. This third argument is a reference to the trigger
conditions vector, but this clearly is a member of the trigger item anyhow and might
always be accessed recursively by walking the XML tree. The proposed change would
affect the TriggerMenu.cxx and TriggerItem.cxx files in the TrigT1Config package.

• In analogy to the RecMuonRoI class (and other similar classes, classes RecCTPRoI and
RecEnergyRoI are needed in order to have the energy and CTP information available for
the reconstructed RDO. These classes should be implemented in the TrigT1Interfaces
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package, and it has to be agreed with the calorimeter trigger people who is responsible
for the RecEnergyRoI class and its content. See also Section 10.5.

• Currently the connection between TriggerMenu and the various TriggerThresholds
and between TriggerThresholds and the various TriggerThresholdValues is done us-
ing pointer. On the other hand, the TriggerMenu holds the TriggerItems directly, as
does a TriggerItem with the respective TriggerConditions. One might consider using
DataLinks here – I never bothered about these, and things work, but I guess they
would be safer and more elegant. E. Moyse has some experience with them from his
TrigT1Calo work.

• There is currently no real connection implemented between instances of the Trigger-
Condition class and the TriggerThreshold instances that it is supposed to discriminate -
the connection runs, using many for-loops, over the one TriggerMenu instance. Maybe
this is not the best way to do it. On the other hand, introducing additional dependen-
cies and links makes the thing even more complicated ...

• In order to use the code in a stand-alone version and together with the CTP or CTPD
hardware, the configuration code needs to generate the hardware configuration files
(LUT files and VHDL code for the programmable devices). This should be achieved
using the ‘ofstream’ command.

• Currently, in order to get the threshold value for a given threshold bit, a loop over all
thresholds in the trigger menu threshold map or in the vector of trigger thresholds in
the CTPCaloConfig and the other configuration objects has to be performed. This is
time-consuming, so it might be better to provide objects which contain only threshold
of one class (say, only forward-jet thresholds).

10.4 Details for TrigT1CTP

• I had once the impression that the first bit of the jet words delivered from the the
calorimeter trigger simulation to the CTP is wrong, having a ‘1’ where it should have
a ‘0’. Check with the TrigT1Calo responsible!

• Simulation of the read-out data path, and provision of the respective BS conversion.
Simple because the data content and format is exactly that of the data that the CTP
sends also to the RoIB.

10.5 Details for TrigT1Result

• In order for the LVL2 code to run properly, the L1ID must be contained in the RDO
or equivalent data. This is already the case for the raw RDO (class RoIBResult), but
not for the reconstructed RDO, class RecRoIBResult. In this class the L1ID has to be
introduced as a data member somehow.
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• In order to allow the use of the CTP and energy information in LVL2, additional
members have to be introduced. See also Sections 10.3 and 10.2.

• The use of the RecCTPRoI, RecEnergyRoI and RecJetEtRoI classes in the RecRoIBRe-
sult object has to be implemented.

10.6 Details for TrigT1RoIB

• In order to have a successful test of the reconstructed RDO in the class RecRoIBTester
all necessary methods to extract threshold values (in GeV) and similar information
from the RecXXXRoI classes have to be defined. This is the responsibility of the
TrigT1Calo and TrigT1RPC/TGC authors, but one should check with them and try
to use the newest and most complete version of these methods to do the tests in
RecRoIBTester (currently the concern is mainly about extracting the energy threshold
for the total (missing) ET and for the summed jet ET ).

• In the RecRoIBTester method (and in general in any method that aims at using the
reconstructed RDO) it has to be made sure that the configuration used for interpre-
tation is the same as the one used for creating of the BS. In particular one has to be
careful not to try to access trigger thresholds that are not provided by the interpreting
configuration – this leads to a crash. Therefore, a test should be introduced – some-
thing like (if(passedThreshold.size() > CTPJetEnergyConfif.size()) then warning (and
no crash) or similar.

10.7 Details for TrigT1ResultByteStream

• Provide a RMS byte stream converter for the use in the test beds. Contact Werner
Wiedenmann about this.

10.8 Details for the Stand-alone Version of the Code

See Subsection 9.3.
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A Examples for XML Configuration Files

In this appendix, a consistent set of trigger menu and trigger threshold files for the very
simple case of only two EM thresholds defined is shown, together with the corresponding
DTD files.

A.1 Example for a trigger menu file

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE TriggerMenu SYSTEM "trigger.dtd" [
<!ENTITY % entities SYSTEM "entities.dtd">
%entities;

]>

<TriggerMenu TM_ID="lowlumi">

<TriggerItem TI_ID="iEM1" mask="on" priority="low" prescale="1">
<TriggerCondition triggerthreshold="EM01" mult="2" />

</TriggerItem>

<TriggerItem TI_ID="iEM2" mask="on" priority="low" prescale="1">
<TriggerCondition triggerthreshold="EM02" mult="1" />

</TriggerItem>

</TriggerMenu>

A.2 Example for a trigger threshold file

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE TriggerThresholdList SYSTEM "trigger2.dtd">

<!-- @version: -->

<TriggerThresholdList>

<TriggerThreshold name="EM01" type="EM" bitnum="3">
<TriggerThresholdValue thresholdval="10" emisolation="4"

haisolation1="2" haisolation2="2"
phimin="0" phimax="360" etamin="-5" etamax="5" />

</TriggerThreshold>
<TriggerThreshold name="EM02" type="EM" bitnum="3">

<TriggerThresholdValue thresholdval="15" emisolation="4"
haisolation1="2" haisolation2="2"
phimin="0" phimax="360" etamin="-5" etamax="5" />

</TriggerThreshold>

</TriggerThresholdList>
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A.3 The trigger.dtd file

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT TriggerMenu (TriggerItem)+>
<!ATTLIST TriggerMenu

TM_ID %menu_ID;>

<!ELEMENT TriggerItem (AND|OR|NOT|TriggerCondition)>
<!ATTLIST TriggerItem

TI_ID %item_ID;
priority %priority_value;
mask %mask_value;
prescale %prescale_value;>

<!ELEMENT AND (AND|OR|NOT|TriggerCondition)+>

<!ELEMENT OR (AND|OR|NOT|TriggerCondition)+>

<!ELEMENT NOT (AND|OR|NOT|TriggerCondition)>

<!ELEMENT TriggerCondition EMPTY>
<!ATTLIST TriggerCondition

triggerthreshold %threshold_choice;
mult %multiplicity_value;>

A.4 The entities.dtd file

<?xml version="1.0" encoding="UTF-8"?>

<!ENTITY % priority value ’(low | high) "low"’>

<!ENTITY % mask value ’(on | off) "off"’>

<!ENTITY % prescale value ’CDATA "10000"’>

<!ENTITY % threshold choice ’CDATA #REQUIRED’>

<!ENTITY % multiplicity value ’CDATA #REQUIRED’>

<!ENTITY % menu ID ’ID #REQUIRED’>

<!ENTITY % item ID ’ID #REQUIRED’>

A.5 The trigger2.dtd file

<?xml version="1.0" encoding="UTF-8"?>
<!-- @version: -->

<!ELEMENT TriggerThresholdList (TriggerThreshold)+>

<!ELEMENT TriggerThreshold (TriggerThresholdValue)*>
<!ATTLIST TriggerThreshold

name ID #REQUIRED
type CDATA #REQUIRED
bitnum CDATA #REQUIRED
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OPL CDATA "NO"
confirm CDATA "0" >

<!ELEMENT TriggerThresholdValue EMPTY>
<!ATTLIST TriggerThresholdValue

thresholdval CDATA #REQUIRED
emisolation CDATA "5"
haisolation1 CDATA "10"
haisolation2 CDATA "20"
window CDATA "2"
phimin CDATA #REQUIRED
phimax CDATA #REQUIRED
etamin CDATA #REQUIRED
etamax CDATA #REQUIRED >

A.6 The muctpi.dtd file

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT MuctpiConfig (MUCTPI)>

<!ELEMENT MUCTPI EMPTY>
<!ATTLIST MUCTPI

firstMin CDATA #REQUIRED
secondMin CDATA #REQUIRED
numCand CDATA #REQUIRED

>

A.7 The CTP hardware XML files

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE HARDWARE SYSTEM "hardware.dtd" >

<HARDWARE configuration_id="TEST_1">

<LUT lut_id="LUT_1">
<PIT range_begin="0" range_end="17" />
<MIO range_begin="0" range_end="7" />

</LUT>

<LUT lut_id="LUT_2">
<PIT range_begin="18" range_end="35" />
<MIO range_begin="8" range_end="15" />

</LUT>

<CMB cmb_id="CMB_1">
<MIO range_begin="0" range_end="15" />
<TBV range_begin="0" range_end="15"/>

</CMB>

<CMB cmb_id="CMB_2">
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<MIO range_begin="0" range_end="15" />
<TBV range_begin="16" range_end="31"/>

</CMB>

</HARDWARE>

A.8 The hardware.dtd file

<?xml version="1.0" encoding="UTF-8"?>

<!-- The global element is the hardware itself. -->
<!ELEMENT HARDWARE (LUT*,CMB+)>
<!ATTLIST HARDWARE

configuration_id ID #REQUIRED >

<!-- These are the physical lines (cables etc.).
We take ranges to which we assign several MULTIPLICITYs. -->

<!ELEMENT PIT EMPTY>
<!ATTLIST PIT

range_begin CDATA #REQUIRED
range_end CDATA #REQUIRED >

<!-- We need LUTs. -->
<!ELEMENT LUT (PIT+,MIO)>
<!ATTLIST LUT

lut_id ID #REQUIRED >

<!-- We need lines connecting LUTs and CMBs. -->
<!ELEMENT MIO EMPTY>
<!ATTLIST MIO

range_begin CDATA #REQUIRED
range_end CDATA #REQUIRED >

<!-- We need combinational devices. -->
<!ELEMENT CMB ((PIT|MIO)+,TBV+)>
<!ATTLIST CMB

cmb_id ID #REQUIRED >

<!-- We need output lines from the CMBs. -->
<!ELEMENT TBV EMPTY>
<!ATTLIST TBV

range_begin CDATA #REQUIRED
range_end CDATA #REQUIRED >

B The General jobOptions.txt file

#include "$ATHENACOMMONROOT/share/Atlas ZebraTDR.UnixStandardJob.txt"

ApplicationMgr.EvtSel = "FILE ZEBRA.P";

EventSelector.runs = 1, 30000;

EventSelector.calos = false;

EventSelector.muons = false;
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EventSelector.trt = false;

EventSelector.sct = false;

EventSelector.pixel = false;

// Use auditors ApplicationMgr.DLLs += "GaudiAud" ;

AuditorSvc.Auditors += "ChronoAuditor";

AuditorSvc.Auditors += "MemStatAuditor" ;

MemStatAuditor.OutputLevel = 4 ;

MessageSvc.OutputLevel = 2;

ApplicationMgr.EvtMax = 10;

// Include the L1 simulation

#include "$TRIGT1CONFIGROOT/share/TrigT1ConfigJobOptions.txt"

#include "$TRIGT1CONFIGROOT/share/L1Sim CaloSetup jobOptions.txt"

#include "$TRIGT1CONFIGROOT/share/L1Sim jobOptions.txt"

C Output of the RoIBTester Algorithm

In this section an example is given for the output created by the RoIBTester method in
recreating the raw RDO (class RoIBResult) from a BS file. In the example given here,
a single electromagnetic RoI a30003 is found which caused the event to be triggered. In
addition, in the first of the two jet/energy Slinks, some transverse energy is reported (RoIs
30000007, 3400000e, 38000051, see [7] for an interpretation of the RoIs):

RoIBTester DEBUG ---- new CTP slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7400
RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG RoI = 9
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 2
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 2
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 2
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 0
RoIBTester DEBUG RoI = 1
RoIBTester DEBUG RoI = 3
RoIBTester DEBUG RoI = 0
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RoIBTester DEBUG RoI = 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 19
RoIBTester DEBUG 1
RoIBTester DEBUG ---- new egamma slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7200
RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG RoI = a30003
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 1
RoIBTester DEBUG 1
RoIBTester DEBUG ---- new egamma slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7201
RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 0
RoIBTester DEBUG 1
RoIBTester DEBUG ---- new egamma slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7202
RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 0
RoIBTester DEBUG 1
RoIBTester DEBUG ---- new egamma slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7203
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RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 0
RoIBTester DEBUG 1
RoIBTester DEBUG ---- new jetenergy slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7300
RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG RoI = 30000007
RoIBTester DEBUG RoI = 3400000e
RoIBTester DEBUG RoI = 38000051
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 3
RoIBTester DEBUG 1
RoIBTester DEBUG ---- new jetenergy slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7301
RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 0
RoIBTester DEBUG 1
RoIBTester DEBUG ---- new MuCTPI slink ----
RoIBTester DEBUG ee1234ee
RoIBTester DEBUG 8
RoIBTester DEBUG 2020000
RoIBTester DEBUG 7500
RoIBTester DEBUG 4
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 0
RoIBTester DEBUG 2
RoIBTester DEBUG 0
RoIBTester DEBUG 1
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D Typical Output of the LVL1 Configuration Step

L1Config INFO ========================================
L1Config INFO Initialisation for L1Config algorithm.
L1Config INFO ========================================
L1Config INFO
TriggerMenu INFO
TriggerMenu INFO ================================
TriggerMenu INFO Initialising TriggerMenu stuff.
TriggerMenu INFO ================================
TriggerMenu INFO --------------------------------------------------
TriggerMenu INFO XML file parsing in TriggerMenu.cxx successful !
TriggerMenu INFO --------------------------------------------------
TriggerMenu INFO
TriggerMenu INFO ===============================================
TriggerMenu INFO The threshold map has the following entries :
TriggerMenu INFO ===============================================
TriggerMenu INFO
TriggerMenu INFO ========================
TriggerMenu INFO Mapping trigger menu !
TriggerMenu INFO ========================
TriggerMenu INFO Creating trigger item iEM1 with prescale 1, priority l
ow and mask on.
TriggerMenu INFO Creating trigger condition EM01 which requires a mul
tiplicity of 2.
TriggerMenu INFO Creating trigger item iEM2 with prescale 1, priority l
ow and mask on.
TriggerMenu INFO Creating trigger condition EM02 which requires a mul
tiplicity of 1.
TriggerMenu INFO
TriggerMenu INFO ----------------------------
TriggerMenu INFO Starting trigger menu checks!
TriggerMenu INFO ----------------------------
TriggerMenu INFO Number of trigger items test:
TriggerMenu INFO PASSED. Number of trigger items: 2.
TriggerMenu INFO Threshold number tests:
TriggerMenu INFO PASSED! Number of transverse energy thresholds: 0.
TriggerMenu INFO PASSED! Number of missing transverse energy threshold
s: 0.
TriggerMenu INFO PASSED! Number of jet sum thresholds: 0.
TriggerMenu INFO PASSED! Number of jet thresholds: 0.
TriggerMenu INFO PASSED! Number of muon thresholds: 0.
TriggerMenu INFO PASSED! Number of EM thresholds: 2.
TriggerMenu INFO PASSED! Number of HA thresholds: 0.
TriggerMenu INFO PASSED! Number of forward left jet thresholds: 0.
TriggerMenu INFO PASSED! Number of forward right jet thresholds: 0.
TriggerMenu INFO Trigger threshold existence test:
TriggerMenu INFO PASSED! All necessary thresholds defined.
DetectorStore DEBUG Recorded object 1
of type LVL1CTP::MuctpiConfig(CLID 6027)

object modifiable when retrieved
DetectorStore DEBUG retrieve(default): Retrieved const handle to default o
bject
of type LVL1CTP::MuctpiConfig(CLID 6027)
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L1Config INFO The MuctpiConfig object has values 4 2 10
DetectorStore DEBUG Recorded object /Run/L1TriggerMenuLocation
of type LVL1CTP::TriggerMenu(CLID 6020)

object modifiable when retrieved
CTPHardware INFO ========================================
CTPHardware INFO Initialisation for CTPHardware algorithm.
CTPHardware INFO ========================================
CTPHardware INFO
DetectorStore DEBUG Retrieved const handle to object /Run/L1TriggerMenuLoc
ation of type LVL1CTP::TriggerMenu(CLID 6020)
Hardware INFO Distributing EM thresholds over PITs.
Hardware INFO - placing threshold EM01 on PITs starting at 0.
Hardware INFO - placing threshold EM02 on PITs starting at 3.
Hardware INFO Distributing MU thresholds over PITs.
Hardware INFO Distributing HA thresholds over PITs.
Hardware INFO Distributing JT thresholds over PITs.
Hardware INFO Distributing FL thresholds over PITs.
Hardware INFO Distributing FR thresholds over PITs.
Hardware INFO Distributing SM thresholds over PITs.
Hardware INFO Distributing ET thresholds over PITs.
Hardware INFO Distributing TM thresholds over PITs.
Hardware INFO
Hardware INFO ------------------------------------
Hardware INFO Checking consistency hardware - TM
Hardware INFO ------------------------------------
Hardware INFO Threshold / item on PIT test
Hardware INFO
Hardware INFO -------------------------------
Hardware INFO Building LUT config files.
Hardware INFO -------------------------------
Hardware INFO
Hardware INFO ------------------------------------------
Hardware INFO Re-arranging MIOMap for use in CMBs.
Hardware INFO ------------------------------------------
Hardware INFO
Hardware INFO -------------------------------
Hardware INFO Building CMB config files.
Hardware INFO -------------------------------
CTPHardware INFO =================================
CTPHardware INFO Starting trigger configuration.
CTPHardware INFO =================================
CTPHardware INFO
CTPHardware INFO
CTPHardware INFO ================================
CTPHardware INFO Printing egamma configuration.
CTPHardware INFO ================================
CTPHardware INFO
CTPHardware INFO 3 PITs from 0: 3 PITs from 3:
CTPHardware INFO ==============================
CTPHardware INFO Printing muon configuration.
CTPHardware INFO ==============================
CTPHardware INFO
CTPHardware INFO
CTPHardware INFO
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CTPHardware INFO ======================================
CTPHardware INFO Printing jet / energy configuration.
CTPHardware INFO ======================================
CTPHardware INFO
CTPHardware INFO
DetectorStore DEBUG Recorded object /Run/CaloTrigConfig
of type LVL1CTP::CTPCaloConfig(CLID 6010)

object modifiable when retrieved
DetectorStore DEBUG Recorded object /Run/MuonTrigConfig
of type LVL1CTP::CTPMuonConfig(CLID 6011)

object modifiable when retrieved
DetectorStore DEBUG Recorded object /Run/JetEnergyTrigConfig
of type LVL1CTP::CTPJetEnergyConfig(CLID 6012)

object modifiable when retrieved

E Typical Output of the CTP and RoIB Simulations

CTPSim DEBUG ==============================
CTPSim DEBUG Execution of CTPSim algorithm.
CTPSim DEBUG ==============================
CTPSim DEBUG
DetectorStore DEBUG Retrieved const handle to object /Run/L1TriggerMenuLoc
ation of type LVL1CTP::TriggerMenu(CLID 6020)
CTPSim DEBUG ==========================
CTPSim DEBUG Filling of threshold bits.
CTPSim DEBUG ==========================
CTPSim DEBUG
DetectorStore DEBUG Retrieved const handle to object /Run/MuonTrigConfig
of type LVL1CTP::CTPMuonConfig(CLID 6011)
StoreGateSvc ERROR retrieve(default): No valid proxy for default object
of type LVL1::MuCTPICTP(CLID 6070)

CTPSim DEBUG WARNING retrieving MuCTPICTP object from StoreGate !
CTPSim DEBUG Setting muon inputs to CTP to zero !
DetectorStore DEBUG Retrieved const handle to object /Run/CaloTrigConfig
of type LVL1CTP::CTPCaloConfig(CLID 6010)
StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/EmTauCTP of type LVL1::EmTauCTP(CLID 6253)
CTPSim DEBUG EMTauCTP object has cable word 0 = 2 and cable word 1
= 33554432
DetectorStore DEBUG retrieve(default): Retrieved const handle to default o
bject
of type LVL1CTP::CTPJetEnergyConfig(CLID 6012)

StoreGateSvc DEBUG retrieve(default): Retrieved const handle to default o
bject
of type LVL1::JetCTP(CLID 6252)

CTPSim DEBUG JetCTP object has cable word 0 = 536870912 and cable w
ord 1 = 536870912
StoreGateSvc DEBUG retrieve(default): Retrieved const handle to default o
bject
of type LVL1::EnergyCTP(CLID 6254)

CTPSim DEBUG EnergyCTP object has cable word 0 = 0
CTPSim DEBUG ==========================
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CTPSim DEBUG Evaluation of L1 decision.
CTPSim DEBUG ==========================
CTPSim DEBUG
CTPSim DEBUG ==============================
CTPSim DEBUG Creation/storage of CTP slink.
CTPSim DEBUG ==============================
CTPSim DEBUG
StoreGateSvc DEBUG Recorded object /Event/CTPSLinkLocation
of type LVL1CTP::CTPSLink(CLID 6013)

object modifiable when retrieved
RoIBuilder DEBUG
RoIBuilder DEBUG ============================
RoIBuilder DEBUG Execution of RoIB algorithm.
RoIBuilder DEBUG ============================
RoIBuilder DEBUG
StoreGateSvc DEBUG retrieve(default): Retrieved const handle to default o
bject
of type EventInfo(CLID 2101)

StoreGateSvc DEBUG Retrieved const handle to object /Event/CTPSLinkLocati
on of type LVL1CTP::CTPSLink(CLID 6013)
RoIBuilder DEBUG CTP RoI = 9 1 0
RoIBuilder DEBUG CTP RoI = 10 0 0
RoIBuilder DEBUG CTP RoI = 11 0 0
RoIBuilder DEBUG CTP RoI = 12 0 0
RoIBuilder DEBUG CTP RoI = 13 0 0
RoIBuilder DEBUG CTP RoI = 14 0 0
RoIBuilder DEBUG CTP RoI = 15 0 0
RoIBuilder DEBUG CTP RoI = 16 0 0
RoIBuilder DEBUG CTP RoI = 17 0 0
RoIBuilder DEBUG CTP RoI = 18 0 0
RoIBuilder DEBUG CTP RoI = 19 0 0
RoIBuilder DEBUG CTP RoI = 20 0 0
RoIBuilder DEBUG CTP RoI = 21 0 0
RoIBuilder DEBUG CTP RoI = 22 0 0
RoIBuilder DEBUG CTP RoI = 23 0 0
RoIBuilder DEBUG CTP RoI = 24 0 0
RoIBuilder DEBUG CTP RoI = 25 3 0
RoIBuilder DEBUG CTP RoI = 26 0 0
RoIBuilder DEBUG CTP RoI = 27 0 0
RoIBuilder DEBUG L1 Accept = 0
StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/EmTauSlink0 of type DataVector<LVL1CTP::SlinkWord>(CLID 6250)
StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/EmTauSlink1 of type DataVector<LVL1CTP::SlinkWord>(CLID 6250)
StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/EmTauSlink2 of type DataVector<LVL1CTP::SlinkWord>(CLID 6250)
RoIBuilder DEBUG Found EmTau RoI in slink 2 with value a650001and again
a650001

StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/EmTauSlink3 of type DataVector<LVL1CTP::SlinkWord>(CLID 6250)
StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/JEPSlink0 of type DataVector<LVL1CTP::SlinkWord>(CLID 6250)
StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/JEPEnergySlink of type DataVector<LVL1CTP::SlinkWord>(CLID 6250)
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RoIBuilder DEBUG energy RoI word = 805339148
RoIBuilder DEBUG energy RoI word = 872448019
RoIBuilder DEBUG energy RoI word = 939524164
StoreGateSvc DEBUG Retrieved const handle to object CaloTriggerDataLocati
on/JEPSlink1 of type DataVector<LVL1CTP::SlinkWord>(CLID 6250)
StoreGateSvc ERROR retrieve(default): No valid proxy for default object
of type L1MUINT::MuCTPIToRoIBSLink(CLID 6103)

RoIBuilder DEBUG Problem retrieving MuCTPI result from store!
RoIBuilder DEBUG Creating empty MuCTPI RDO part!
StoreGateSvc DEBUG Recorded object RoIBResult
of type ROIB::RoIBResult(CLID 6000)

object modifiable when retrieved
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