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Abstract. The heavy-quark spin symmetry (HQSS) partners of the X(3872) molecule are
investigated in a chiral effective field theory (EFT) approach which incorporates contact
and one-pion exchange interactions. The integral equations of the Lippmann-Schwinger
type are formulated and solved for the coupled-channel problem for the DD, DD*, and
D*D* systems with the quantum numbers J*¢ = 17+, 1¥=, 0**, and 2**. We confirm
that, if the X(3872) is a 17" DD* molecular state then, in the strict heavy-quark limit,
there exist three partner states, with the quantum numbers 1*~, 0**, and 2**, which are
degenerate in mass. At first glance, this result looks natural only for the purely contact
pionless theory since pions contribute differently to different transition potentials and,
therefore, may lift the above degeneracy. Nevertheless, it is shown that, by an appropriate
unitary transformation, the Lippmann-Schwinger equation in each channel still can be
brought to a block-diagonal form, with the same blocks for all quantum numbers, so
that the degeneracy of the bound states in different channels is preserved. We stress that
neglecting some of the coupled-channel transitions in an inconsistent manner leads to a
severe violation of HQSS and yields regulator-dependent results for the partner states.
The effect of HQSS violation in combination with nonperturbative pion dynamics on the
pole positions of the partner states is discussed.

1 Introduction

The nonperturbative dynamics of light quarks in QCD is associated with the intrinsic scale Agcp ~
250 MeV. This scale is significantly smaller than the mass (m¢) of a heavy (c or b) quark which makes
it possible to describe heavy-hadron processes perturbatively by classifying the operators according to
the powers of the ratio Aqcp/mg. Then, in the limit my — oo, which is the leading order (LO) of this
expansion, the terms in the Hamiltonian which depend on the heavy-quark spin vanish, resulting this
way in the phenomenon known as Heavy-Quark Spin Symmetry (HQSS)—see, e.g., Ref. [1]. As a
consequence, for an experimentally observed state with the given spin, its spin partners should exist as
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well. In a recent study [2], it was emphasized that the implications of HQSS for the X(3872), such as
the number of its HQSS partners, their location and decay properties, depend drastically on the nature
of this state. In this contribution, we analyze the implications of HQSS under the assumption that
the X(3872) is a weakly bound DD* molecule.! In the molecular picture a relation between the poles
of the molecular partner states of the isovector resonances Z; (10610) and Z; (10650) was derived in
Refs. [4-6]. Similarly, it was argued in Refs. [7, 8] that one should expect a shallow molecular partner
state for the X(3872) in the D*D* channel with the quantum numbers J PC = 2** while, in Ref. [9],
the width of this state was estimated to be as small as a few MeV using an effective field theory with
perturbative pions (X-EFT).

In the current study we take a fresh look at the predictions for the partner states for the X(3872)
using an EFT consisting of the contact and one-pion exchange (OPE) interactions iterated to all orders,
see Ref. [10] for further details. In particular, we demonstrate that non-perturbative pion dynamics
together with the leading HQSS breaking corrections result in a significant shift of the 2** partner
binding energy and make it as broad as 50 MeV.

The contribution is organized as follows. Following Refs. [6, 8], in Sec. 2 we start from a contact
theory, where analytic predictions for the molecular partner states are possible. We consider first the
strict HQSS limit (m = m.) to demonstrate analytically that in this case the X(3872) has three degen-
erate molecular partners. Then we investigate the impact of the leading HQSS breaking corrections
on the results. In Sec. 3 we include in addition the leading-order OPE potential in the strict HQSS
limit and beyond to study whether the conclusions drawn in Sec. 2 survive. The contribution is ended
with a brief summary.

2 Pionless (contact) theory
2.1 Strict heavy-quark limit

At leading order (LO) the contact Hamiltonian describing the interactions between the D and D*
mesons contains derivativeless interactions only [11]. Hence, only S -wave interactions survive at this
order and the relevant basis states composed of D and D* mesons read

0 : {DD('So).D*D'('So)}, 177 : {DD(S1,-),D*D'CS 1)},

17 {DD*(Sy,+)}, 2 D' D*Csy)), W

where the individual partial waves are labelled as >*'L; with S, L, and J denoting the total spin, the
angular momentum, and the total momentum of the two-meson system, respectively. Furthermore,
the C-parity eigenstates are defined as DD*(+) = (DD* + D* D) In this basis and for a given set
of quantum numbers {JPC}, the leading-order EFT potentlals VIE{)PC)
symmetry, read [7, 11, 12]

, which respect heavy-quark spin

YO0+ _ Coa ~V3Co v+ = Cos — Cop 2Co 2
Lo -V3Co, Coa—2Cp)° 1° 2Co» Coa — Cop)’
Vig” = Vg™ = Cou+ Con, 3)
where Cy, and Cy, are two independent low-energy constants.
The integral equations for the scattering amplitude can be written as
al" . p) = Vi) - ) f dkiPV"(p, )G j(ay" k. p'), )
J

IThe possible impact of genuine quarkonium states on the formation of the molecular spin multiplets is addressed in Ref. [3].
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where i, j and k label the basis vectors in the order they appear in Eq. (1). Here G (k) denotes the
matrix of the propagators of the heavy meson-antimeson pair in the intermediate state. For coupled
channels (see Eq. (2)) G(k) is a 2 x 2 diagonal matrix with both nonzero elements given by G(k) =
(k*/m — E — i0)~! while in the single-channel case (see Eq. (3)) G j = G(k). Here we used that in the
strict HQSS limit the D*- and D-meson masses m.. and m, respectively, coincide, m = m, = m. The
poles appear at the energies where the inverse amplitude, aEI{PC)( D, p’)fl, vanishes. For the quantum
numbers 17" and 2**, the pole position of the 2** state coincides with that of the X(3872), since the
corresponding potentials are the same.

As shown in Refs. [4-6, 10, 13, 14], in the heavy-quark limit, one can predict more states with the
same binding energy. To this end, for both quantum numbers 0** and 1*~, one can apply a unitary
transformation to the coupled-channel equations (4) to arrive at the diagonalised potential

~ - C 0 cos¢ sing
(JPC) (JPC) 77 0
V =UV U' = ( 6) U= ( G cos ) )

where Cy = Co,+Cop, Cy = Coa—3Cop, and ¢ = —1/6 (¢ = n/4) for the 0** (177) potential. Therefore,
the poles in both channels are now determined from the equation det [1 + f dk k* VP C)G(k)] =0,

where the propagator matrix is unchanged under rotations, UG(k)U" = G(k). This equation has two
solutions corresponding to the two different linear combinations of the low-energy constants; one of
them, Cy, is the same for all quantum numbers. Therefore the coupled-channel problem defined by
Egs. (1)-(4) in the strict HQSS limit splits into disentangled equations which possess two decoupled
solutions,

EY = Ey =Ex =Ey and Eyp =Ey), (6)
where Egg)) , Eg?l), and Eg?z) stand for the binding energies of the spin-0, spin-1, and spin-2 partners of
the X(3872) in the strict heavy-quark limit, respectively, defined by the combination of the low-energy
constants Cy while E;O(,)) and Eg?;) label the binding energies of the two additional partner states defined

by the low-energy constant Cy—see Eq. (5). These findings are in line with those in Ref. [13].

2.2 Partner states beyond strict HQSS limit

Corrections to the HQSS limit at leading order in Aqcp/m,. give rise to the D*-D mass splitting
0 = m,—m = 141 MeV which is to be compared to the average mass in the multiplet i = (3m..+m)/4 =
1973 MeV.

Since the contact interactions in the 1** and 2** channels coincide exactly (see Eq. (3)), it can be
shown (see Ref. [10] for details) that the binding momenta for these states are related as

0 o
7x2=(1—2—_))’x+—_/\+-~-, )
m nim
where the sharp cutoff A was introduced to regularise the divergent integrals and the ellipsis stands
for the small corrections of higher order. Rewriting this in terms of the masses of these states, My and
My,, one gets
2

: 2yxA
My, =2m, + % =Mx+06+ %_(2
- m, mm

S+... . ®)

We therefore see that at order O(d) an additional counter term is necessary to render the result for the
mass of the J = 2 partner of the X(3872) well defined. Nevertheless, the leading effect from HQSS
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breaking reveals itself in bringing each spin partner state close to the corresponding heavy meson-
antimeson threshold (DD, DD*, or D*D*). Indeed, the second term on the r.h.s. of Eq. (8) lifts the
degeneracy between the 17 and 2** states by shifting the latter state close to the D*D* threshold,
while the third (cutoff-dependent) contribution is strongly suppressed, at least as yx/m. As will be
discussed later, the coupled-channel effects governed by OPE introduce new soft scales much larger
than yx thus leading to a larger cutoff dependence of the results and in a more important role of the
HQSS breaking contact interaction.

Since the contact terms Cy and Cj) are mixed in the integral equations beyond the HQSS limit,
predictions for the other partner states with J°¢ = 17~ and 0** are possible only if both contact terms
are extracted from experimental data, which requires two experimental quantities as input. Assuming
that the mass of the 1*~ partner state near the DD* threshold, hereinafter referred to as X, is known,
for the binding momentum of its heavier (D*D*) partner (X7) one gets

5 AS - vx)? - vx)?
yX{:(1——)yXl+—_—(7X‘ LA T 2 ©)

2m i 5 o

Due to the mixing of two contact terms, the binding energy of the 17~ D*D* state X | depends now
on both input parameters yx and yx,. It should be noted that the binding momentum yy: acquires
an imaginary part and so does the binding momentum yy; of the X state (the spin-0 state near the
D*D* threshold). This is a reflection of the fact that beyond the strict HQSS limit in the systems with
the quantum numbers 0** and 1*~ transitions D*D* — DD™ are possible due to coupled channels
already in the pionless theory.

3 Contact + OPE interactions
3.1 Strict HQSS limit

Unlike the leading-order contact interactions, as long as OPE is included, transitions to the heavy-
meson states in higher partial waves emerge in addition to the S-wave contributions. The extended
set of the basis states therefore reads

0*": {DD('S¢),D*D*('Sy),D*D*(Dy)},

1"~ {DD*(’Sy,-),DD*(Dy,-),D"D*(S 1), D*D*(Dy)},

1**: {DD*(S,,+),DD*(’Dy,+), D*D*(’D;)},

2" {DD('D,),DD*(*D,), D*D*(’S>), D" D*(' D), D*D*(D,), D*D*(CG)},

(10)

where, as before, the C-parity of the state is indicated explicitly in parentheses whenever necessary.
The leading-order OPE potentials connecting the isopin-0 D® D™ states in the initial and final
states read

_C(ei* - q)(€)" - 9 (e1-9)€" - q)

VDDHD*D*(pvp’) = q2 +m,2r ’ VDD*HDD*(P’P,) =-C q2 +m72r (11)
, (A1 -9)(e-q) , (A1 -9(A2- q)
Voo @ p) = V20— Vi (pop) = 2022 (12)
q> +m2 q° +my

where C = 6g2/(4nf;)*, ¢ = p+p/, €; and e;.* stand for the polarization vectors of the initial and final
D particles, and A; = "/;i[ej X 6}*] with j = 1,2. To arrive at these results, we used that 7 - T, gives
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a factors of 3 for isospin-0 and that the D*Drr and D*D*r vertices are

v'(D* — Dn) = Zg—;ra(e -q), V(D" —> D'm) = —%T“(A - q), (13)

with g, = 0.57 and f; = 92.2 MeV. The partial-wave-projected OPE potentials entering the integral
equations (4) for the given (JPC) are obtained as

1 dQ, dQ,
2J +1 dr  4n

where i, k label the basis vectors in the order they appear in Eq. (10), n = p/p (' = p’/p’), and the
list of relevant projection operators is given in the Appendix. When solving the integral equations the
partial-wave-projected OPE potentials are supplemented by the leading-order S -wave contact inter-
actions considered in the previous section.

As already discussed above, OPE allows for transitions to heavy-meson states in D and even in
G waves which have therefore to be included into the extended set of basis states, see Ref. [10] for
more details. Nevertheless, similarly to the contact case, with the help of unitary transformations, the
corresponding potentials can be brought to the block-diagonal form,

Vi(p, p') = Tr{PY(JLS ; n)Vi(p, p)PJL'S"; ')}, (14)

VO3 x3) = A2 x2) @ B(1 x 1),
VI U x4) = A2 x2)@B(1x )& C(1 x 1),
VI3 x3) = A2 x2)® D(1 x 1),
VA6 x6)=A2%x2)®D(1 X 1)® E(3 X 3).

s)

The OPE contributes to all five submatrices, A, B, C, D, and E, while the contact interaction con-
tributes only to matrix A (in the form of the linear combination Cy = Cy, + C) and to matrix B (as
the linear combination Cjj = Co, —3Cop). Since matrix A enters all four potentials in Eq. (15) simulta-
neously, the degenerate bound states controlled by the contact potential Cy appear in all four channels
as before and, again as before, two additional degenerate bound states from the contact interaction Cjj
may exist in the channels 0** and 1.

It should be stressed that the irreducible decomposition discussed above leads to degenerate states
only if the basis vectors are included consistently. Specifically, neglecting D waves can only be done
altogether in all particle channels, while any inconsistent inclusion of the D waves or neglecting the
particle coupled-channel dynamics, as advocated e.g. in Ref. [7], leads to cutoff-dependent results and
therefore to a HQSS violation already in the strict HQ limit. This message is illustrated in Fig. 1, where
using the X(3872) as input, the binding energy of its 2** spin partner is shown to be strongly cutoff
dependent, as long as the coupled-channel transitions in the potentials DD* — DD* and D*D* —
D*D* driven by the OPE interaction are neglected.

Figure 1. The binding energy of the 2** spin partner of the

% o0 X(3872) in the strict heavy-quark limit: Red solid line—all
= L coupled-channel transitions are included, Ex, = Ex = 4.2 MeV,
'aﬁ =30 black dashed line— particle coupled-channel transitions in the

potentials DD* — DD* and D*D* — D*D* driven by the OPE
interaction are neglected.

600 800 1000 1200 1400
A [MeV]
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3.2 Beyond HQSS limit

As already discussed in Sec. 2.2, due to HQSS breaking the degeneracy of the states found in the
strict HQSS limit is lifted and the molecular states reside in the vicinity of their respective thresholds.
Furthermore, using the X(3872) as the single input quantity, beyond the HQSS limit predictions are
possible only for the 2** D*D* molecular partner while the partner states in the other channels require
one more experimental input [7, 10].

The probably most spectacular new effect that comes into the system when both OPE and the
leading corrections in § are taken into account simultaneously is the finite width of the 2** D*D* state
that can now decay into the DD and DD* pairs in D waves. Within a theory with perturbative pions,
in Ref. [9], the width of the 2** state was estimated to lie in the range from just a few units to about
a dozen MeV, depending on a particular model used for the pion form factor—see Table I of Ref. [9].
However, we expect the nonperturbative pion dynamics to be especially relevant for the transitions at
hand since the momenta of the DD and DD* pairs, g and ¢, are much larger than the other soft scales
in the problem: gq; = +/2u(26) =~ 700 MeV and ¢, = /2u.6 = 500 MeV. A direct consequence of
this is that D waves fed by the OPE are not subject to a kinematic suppression relative to the § waves
and therefore also require resummation.

80

—20}™

[MeV]

—40

Tx, [MeV]

—Ex,

—60 20+

-80 0
800 900 1000 1100 1200 1300 1400 1500 800 900 1000 1100 1200 1300 1400 1500
A [MeV] A [MeV]

Figure 2. The energy and the width of the 2** bound D*D* state extracted from the nonperturbative solutions of
the integral equations with the contact and OPE interactions as functions of the cutoff A using two different regu-
larisation schemes: i) sharp cutoff (solid lines), ii) the exponential regularisation of the form f(p) = exp(—p®/A®)
(dashed lines).

To verify this claim, in Ref. [10], we extracted the binding energy and the width of the 2** state
from the nonperturbative solutions of the integral equation (4) calculated with the contact and (static)
OPE interactions. These quantities are shown in Fig. 2 as functions of the cutoff used to regularise the
Lippmann-Schwinger equations. From the results presented in Fig. 2 for two different regularisation
schemes one is led to conclude that the nonperturbative treatment of the pions generates a significant
shift of the 2** spin partner of the X(3872) and makes it as broad as 50 + 10 MeV, which is much
larger than in the perturbative treatment of Ref. [9]. The width is largely controlled by unitarity and
coupled-channel dynamics revealing only a rather mild cutoff dependence. On the contrary, the cutoff
dependence of the binding energy is quite substantial which calls for the presence of an additional
HQSS breaking counter term in order to absorb the dependence of the results on the regulator. It
should be stressed, however, that the largest difference corresponds to the region of smaller cutoffs
where the separation of the soft and hard scales is less pronounced. Given a relatively small separation
of scales in the problem, further efforts should be devoted to studying the convergence pattern of the
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approach and especially to estimating the role of higher-order contact interactions. Also the role of
ultrasoft scales from the three-body effects in the OPE potential, neglected in the current study, needs
to be examined along the lines of Refs. [15-17].

4 Summary

Assuming the X(3872) with the quantum numbers J¥¢ = 1** to be an isosinglet molecule state, in this
contribution, we discussed the implications of heavy-quark spin symmetry (HQSS) for the molecular
partners of the X(3872). Using an EFT approach with contact interactions in the DD, DD*, and D*D*
channels in the strict HQSS limit the X(3872) is shown to have three degenerate partner states with
the 1*,0%* and 2** quantum numbers. This conclusion holds also when one-pion exchange (OPE)
interactions are included but only if all allowed coupled-channel transitions between the DD, DD*,
and D*D* channels governed by the one-pion exchange potential are taken into account. In particular,
neglecting some of the coupled-channel transitions leads to a severe violation of HQSS as well as
to regulator-dependent results for the partner states. Using the binding energy of the X(3872) as the
single input quantity, beyond the HQSS limit predictions are possible only for the 2** D* D* molecular
partner while the partner states in the other channels require one more experimental input. As long
as the HQSS breaking terms and the OPE interactions are included simultaneously, the pole of the
D*D* 2+ state in the scattering amplitudes experiences a sizeable shift from the vicinity of the D*D*
threshold deeper to the complex plain. The main effect of OPE in this problem is that it allows for
new coupled-channel transitions to on-mass-shell states, thus resulting in the finite width of the 2**
partner. Our estimate based on the nonperturbative solutions of the integral equations yields the width
which is as large as 50 MeV. We stress that the coupled-channel effects induced by the resummation
of OPE to all orders lead to a significant increase of this width, as compared to the approach with the
pions treated perturbatively.

The collaboration with U.-G. Meiiner on the topic presented in this contribution is greatly ac-
knowledged. This work is supported in part by the DFG and the NSFC through funds provided to
the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No.
11261130311). A. N. acknowledges support from the Russian Science Foundation (Grant No. 15-12-
30014). Work of V. B. is supported by the DFG (Grant No. GZ: BA 5443/1-1 ). Further, this research
was supported in part by the National Science Foundation under Grant No. NSF PHY11- 25915.

5 Appendix

In order to arrive at partial wave projections of the potentials derived above, we introduce the following
set of normalized projectors:

P(DD(IDZ))U = - gvly, (16)
P(DD*CSV). = s, (7
P(DD*(%DI))I = —%gjvij, (18)
P(DD*(SDz))U = —§3k(i8ik1vlj+i8jklvli), (19)

(20)
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P(D*D*(3sl)), = A, @21
3
P(D'D'CDy)) = -—Au, (22)
( ) \/5 JY
. 1
P(D D*( ) = ESU, (23)
5
P( ) L= Ty zla e (24)
_ 3
P(D’D'CDy) = _TV_isiij Vs 25
_ 45 2
* * 5 _— —_— . . . ¢ —— .
P(D D*( Dz))ij = —4 356 (Slkvkj + 8 ki 36uSklUkl)» (26)
_ 175
% 7k S _ .
P(D D*( Gz))ij = £ S k1 ik 27
where
1
vij = ninj= 30ij (28)
1
Vijki = Nnjngnp — 7(}1,'}1]'(5/(1 + n,-nkéjl + n,-n,éjk + njnkéil + I’ljl’llé,'k + nknlé,-j)
+ 35 (5,15“ + 6lk6ﬂ + 61[61k) (29)
i
A = —&iiE1Exu, (30
\/z J J
2
Sij = &uesj+ee2 — z0ij(€ - €). (31

3

The normalization condition for the projector operators reads

P/LS (n)PJLS”k () =27 + 1. (32)

ijk..nm
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