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Introduction

This is a phenomenological thesis dealing with fragmentation phenomena
in perturbative QCD.

In the study of large p; phenomena, depending on the kind of variables
or distributions one is interested in, two different approaches are available
for theoretical predictions: one is the analytical calculation of Parton Level
(PL) amplitudes, convoluted with distribution functions describing intial
and final state emission (structure and fragmentation functions) the other
is the so called Parton Shower (PS) which describes in complete fashion
the final state providing observable particles and allowing the generated
events to be interfaced to a detector simulation.

In this thesis we will use in a complementary way both the methods, in
order to study some fragmentation phenomena of interest like the inclusive
single particle production at letpon and hadron colliders, jet fragmentation
at hadron colliders, gluon radiation in jets physics.

The outline of the thesis is the following: after giving some brief re-
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minds on QCD and deep inelastic phenomena in Chapter I we will de-
scribe the formalism of Fragmentation Functions in Chapter IT along
with the procedure used to extract them from ete™ data for light mesons
to next-to-leading order. Two different approaches have been used: the
first one based on NLO fit to data and the other one based on the use of a
Parton Shower MonteCarlo. The agreament between the two approaches
is indeed very good.

In Chapter IIT and Chapter IV we apply the formalism of Frag-
mentation Functions to study the inclusive single particle production at
hadron-hadron and lepton-hadron colliders in a complete NLO formalism,
giving predictions and comparing the results to data when available.

Finally in Chapter V we use the Parton Shower interfaced to a Parton
Level matrix element calculation in order to study the production of Wbb

plus jets.
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Chapter 1

Introduction to QCD

1.1 Introduction

In the Standard Model strong interactions are described by Quantum
Cromo Dynamics (QCD) [1].

In this chapter we will briefly analyze some characteristics of this the-
ory that explains with some accuracy several of the phenomenological
aspects of processes in which we deal with hadron and their elementary
constituents: quarks and gluons.

We will analyze the theoretical frame starting from the parton model
successively improved with QCD corrections. We will consider in partic-

ular the concepts of asymptotic freedom and running coupling constant.
Perturbative QCD (pQCD) will be shown to be a very good theory to

5



6 Chapter 1

describe high transferred momentum processes. In the second part of
the chapter we will consider the phenomenology of some basilar processes
like deep inelastic scattering, e e~ annihilation into hadrons and hadron-

hadron collisions.

1.1.1 Asymptotic freedom

Non abelian gauge theory without spontaneous symmetry breaking are
renormalizable and asymptotically free. !

This property is quite crucial, and for this reason pQCD is a very good
candidate to be the theory describing strong interactions, owing the fact
that it incorporates and extends the description of deep inelastic scattering
phenomena.

In this section we will give a simple introduction to the problem of
scaling and its breaking: we will see renormaliztion group equations and

running coupling constant and define an asymptotically free theory.

Asymptotic scaling and renormalization group equations

We will start considering a renormalizable theory with just one adimen-
sional coupling constant. For large values of the external momenta (p? =
—z;Q*, Q* — 00) one expects that physical observables become indepen-
dent on mass term (in the limit to disregard all the terms of powers of
mass divided by the scale of external momenta and when one is far from
thresholds and all the observables are finite in the infrared limit, or with
the mass going to zero -massless limit-) owing the fact that in the theory

dimensional scale parameters are not left.

'We remember indeed that in the electroweak sector of the Standard Model this is
not true and the running coupling constant grows when the scale is growing, contrary
to what happens in QCD
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As we know our theory is not completely specified by the bare La-
grangian, but we need a renormalization procedure in order to avoid ul-
traviolet divergences. This can be achieved for example via dimensional

regularization, ie the reduction of space-time dimension to n < 4

(;“47’“)4 - (m%(g;% (L1)

where € = 2 — 7. Loop integrals ( of type %) will show poles at

e
€ = 0 and these singularities will be absorbed into the theory parameters.
The p scale is the point where the divergences are subtracted and the way
we subtract them defines the rinormalization scheme.

We can choose to subtract just the pole % and this is the Minimal

Scheme (MS) of subtraction. Or we can subtract the combination:

%Jr In (47) — 75 (1.2)

where v is the Eulero constant, and this defines the modified minimal
subtraction scheme (MS). We will denote this convention as %

When we introduce the new scale g to define a renormalized coupling
constant, renormalized fields and so on, we introduce a different scale
for the momenta, breaking the original scale invariance and making the
physical quantities depending on the ratio @ /g in the asymptotic limit.

Now let us consider in more detail one adimensional physical quantity
S depending on a single parameter ¢) in a massless theory. As we saw
before after the renormalization S will be function of %2 and o (it is itself

function of u). So, if we introduce:

n(2) "

7

we will have in general

S = S(t,a). (1.4)
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The fact that S must not depend on the value of 4 puts some stringent
constraints on the functional form of S. Asking for invariance in respect
to variation of the parameter p is equivalent to establish the following

Renormalization Group Equations (RGE):

[8 0a 0O

(9—,u2 + 7(9111 'u2 a—al S(t,a) =0 (1.5)

that, introducing the B-function

Oa
Bla) = Bin 12 (1.6)
become:
0 0
laln;ﬂ + ﬁ(a)a_al S(t,a)=0 (1.7)
and whom general solution is:
S(t,a) = S(0,a(2)), (18)

where a(t) is the running coupling constant defined by:

a(t) dz
o« PB(=z)
We can say that RGE’s imply that all the Q* dependence of S is

manifested via a(t)

t= (1.9)

For a generic Green function, , , RGE’s are slightly complicated than
(5). The relation between bare Green function (as calculated from the
appropriate Feynman diagrams in terms of bare quantities and some cut-

off M) and the renormalized ones is the following:

9 UNR(MamiaaO) = ZF) REN(;amiaa)a (]‘10)
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where () is the energy scale and z; are fixed ratios of invariants in
respect to variation of the scale, ag(a;) is the bare (renormalized) coupling
constant and Zr is in general the product of renormalization factors for

the fields.
RGE’s for the Green function , are given by:

0 0
B @) s =0
where yp(a) = ZLFB?HZEZ is the anomalous dimension. The solution is
given by:
a(t) ’)’F(m)
, (Ezi,a) =, (0,2, aft ear:p/ de. 1.12
( )= ( (t))ezp | B2) (1.12)

In order to evaluate (12) one needs to know B(a), yr(a) and , (0,z;, a(t))

Actually these quantities are known only in perturbation theory. We
can build an asymptotic expansion for , in the case very important where
a(t) — 0 per t — oo.

This is what we call Asymptotic Freedom, and a theory asymptotically
free is the one where the running coupling constant tends to be zero for

t — oo.

We will now briefly show the perturbative expansion for () and the
corresponding expressions for the running coupling constant.

We have:

Bla) = —bag(l +ba, + O(a?)) (1.13)
with
b— (83 —2Ny) (1.14)
127
Y 153 — 19Ny (1.15)

~ 27(33 — 2N))
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where N is the number of flavors and the coefficients of the S-function
are extracted from higher order corrections to quark-gluon and gluon-
gluon vertices.

From equation (13) we derive

%?2) = —bai(QZ)[l + b,as(QZ) + O(ag(QZ))]. (1.16)

We can solve (16) perturbatively. At first order (leading logarithm

approximation) ay is given by:

2 as(p)
(@)= Ty o ()t (1.17)

while if we include even the second term (next-to-leading logarithm

approximation) ay is given by:

9 b 1ln [In (%
wiet) - —2 (1 Bl ()] (118)

bo In (F) bo In (F)

where " )
bp=—N—-—-N 1.19
0= ¢ 3V (1.19)
17 5 1

N = 3 is the number of colors and N; is the number of flavors with
Cr;= (]\;2]\_,1) and the asymptotically free regime is defined for Q% >> A%

The A parameter defined by:

2

© dg
In % = —/a(t) Sy (1.21)

represents the scale where the coupling becomes strong: it a universal
parameter of QCD and its numerical value depends on the approximation
used to calculate a, from the effective number of flavors and the renor-

malization scheme. From phenomenology of deep inelastic processes we

have A = O(200 Mev) for Ny = 5.
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1.2 Deep inelastic scattering

1.2.1 The naif parton model

Let us consider deep inelastic scattering of a photon of large invariant
mass Q on a hadronic target (ie a proton). If k£ and %’ are the four-
momenta of ongoing and outgoing leptons and ¢ = k— k&’ is the transferred
four-momentum and p is the four-momentum of the proton, we have the

following variables describing the kinematics:
Q2 = _an p2 = MZ, (122)

B QZ B QZ
T %q 2M(E-EY (1.23)

q-p F
_ C 11— 1.24
4 k-p E" ( )

where the energies are defined in the reference frame where the proton is
at rest.
The differential cross section is given by:
do  8mal [y Q*Wi(z, Q)

— 2 J—
dody ~ Q% |2 @ @)Uy ,

(1.25)

where we disregard the initial hadronic mass , and W; and W, are the
structure functions. At large Q?, in the first experiments at SLAC [2], it
was shown that F} and F, can be derived from W; and W, and they were

approximatively independent on Q*:

Wl(m,QZ) — Fi(z), (1.26)

vWo(z,Q%) — Fyz). (1.27)
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This is the so called Bjorken scaling, valid in a simple parton model
where we are not considering internal interactions in the hadron. In this
model if we sit in the frame where the impulse is infinite, and we consider
the photon scattering on a pointlike quark with charge e, and proton
impulse fraction £, we obtain for the effective cross section (we are disre-

garding the masses) the following expression:

do ira 21 €q
g = o L (=P8 - 6 (1.28)

from this we can derive the expressions for the structure functions:

F, = meg(?(m — &) =2zF. (1.29)

If we define ¢({)d{ as the probability for a quark ¢ to have a fraction
of the impulse in the range between ¢ and ¢ 4+ d¢ and assume incoherent

photon scattering on the quark, we obtain:

F, = Z/ d€q(&)ze; 26(z — Ze zq(z (1.30)

1.2.2 QCD corrections

In QCD, the original scale invariance is broken by logarithmic terms of
the type In Q2.
Indeed, if we consider corrections of order a, to the reaction eq — eq,

i.e. the virtual and real emission of a gluon, we obtain in the M S scheme:

©FH(n M%) = €81~ )+ 32000 —)(Pfu)(~ 1)+
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L, M) = X201~ u)(Pyy(u)(2) +

FRy(u)In ) + ey ()], (1.32)

where Fj and F, are the two terms of the structure function corre-
sponding to a electron-quark diffusion and electron-gluon one, u = z/¢
and M will be defined below. P,, P,, c4, ¢4 are calculable in the
frame of perturbative theory and they will be specified below. Integrals
containing infrared and collinear divergences has been regularized and the
singularities appear as poles in 1/e. If we we should not use dimensional
regularization but for examples we should introduce a little mass for the
gluon in order to regularize the singolarities divergencies should appear as
logarithms of the regularizing masses.

Let us now introduce distribution functions for quarks, g(¢), and glu-
ons, g(£). If we choose to define the distribution functions in order they

are independent on the scale M we have:

Fy(z, M?) = Zegmq(m,MZ), (1.33)

and equations (31) and (32) gives rise to the following relations:

1 Q>

ale M7) = (@) + 22 [ g6 P D)%+ In ) e

2w 13
ldf
o [ FIIP,

The € — 0 limit is interpreted in the following way: we absorb the

)+

e 8

2

z
3
1 Q z
( J(=Z +n(57)+ ng(g)](1-34)
collinear singularities into the bare, non measurable, distribution g¢(z) in

order to define a physical quantity g(z, M?), to the factorization scale M,

that is the analogous of the renormalization scale p we saw above. P;;
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have a simple probabilistic meaning and for this we address the reader to
Appendix A.

PQCD does not give absolute predictions for the renormalized distri-
butions g(z,Q?), nevertheless we can define the Q? evolution. If we define

t=In ﬁ—z we obtain:

d _a(t) rrdé T T
i@ =57 [Pl PG D

This equation is the analogous of the one describing the evolution of

) + g(f,t)qu(

a, with @? and it has been known as Lipatov-Altarelli-Parisi equation [3].

More in general evolution equations are of the following form:

it (se) = 5 (1.3
L d¢ qu(gaa(t)) qu(gaa(t)) (f,t)
L 3 (qu(%a(t» ngé,a(t))) (3(5,0)'

At Born level kernels have the following perturbative development:

(1.37)

Qs
Pij(z,00) = Pj(z) + 5P (2) + ... (1.38)

Physically P;; rappresent the probability to find a parton of type
inside a parton of type j with impulse fraction z and negligible transverse
momentum in respect to the scale M.

For sake of clarity we should say that the probabilistic interpretation
for splitting functions is valid just at Born level (leading logs approxima-
tion) To this order kernels are given by:

1 — z?

P.(z)=Cr o) + ;5(1 —z)|, (1.39)

N
P°(z)=Trlz* + (1 —2)?] con Tp= TF (1.40)
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P =Cr l#—m)?] , (1.41)
0 B x 1—2 11N — 4Tg
ng(m) =2N l(l . + " + (1l — m)l +6(1 — m)ﬁ:}z)

where +distribution are defined as:

/01 def(z)[g(e)]+ = /01 de[f(z) — f(1)]g(=), (1.43)

Finally ¢;;(u)-functions defined in equations (31) (32) (34) rappresent
finite factors in the parton distributions and they depend on the process

chosen to define the structure functions.

1.3 eTe annihilation into hadrons

Let us consider the inclusive hadron production:

ete” » H+ X. (1.44)

In the naif parton model, if we don’t consider effects due to weak

interactions, the differential cross sections in 6 and FE is given by:

O'H(Z, cosf) = g(l + cos? 0)0'%[(2) + %(1 — cos? H)O'f(z), (1.45)

where in the center of mass frame 6 is the angle of the hadron with
the beam and z is proportional to the energy of the hadron.
If we considering p as the four-momentum of the hadron and ¢ as the
four-momentum of the photon we have:
g’ = Q% z = ?Q%q.
In the parton model, after integration over 6 one has:
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ol(z) =0 (1.46)
and
I
O'IH(Z) = 30y 2_: [Dg‘;a(z) + nga(z)], (1.47)

where Dg‘;a(z) is the type H hadron density inside the quark g, with

fraction z of energy of the quark and

Ao’
3Q)?

is the total ete™ — u*Tu~ cross section.

(1.48)

Og =

If we want to take into account the QCD corrections, to first order in

te~ — ggg and the one-loop

a, we have to consider the tree level reaction e
te™ — qq.

The naif parton model relations are modified and we assist to logarith-

reaction e

mic violation to the original scaling. Defining ¢ = In (MZ) where M is the

fragmentation scale (analogous to the factorization scale) we obtain:

Hp N 4 o L dy / ot mH 2
oy, (2) = 30’055 l/z ?(; ea[DOq ( )"‘ DOqa(y)]
+Z e2DH (2 1_7?/)4) , (1.49)

Y

and

H dy ! 2rH (? H (% Qs
or(z,t) =300 | — Y €i[Dg, (=) + Do (5)][6(1 —y) + ;thq(y)
Y o= Yy Yy ™

+os d ‘|' 2 Z BZDH 271_ qu(y) + asdg(y)(,lﬁﬂ)
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where d, and d, are the subleading finite terms given in Appendix D.
As for the case of deep inelastic scattering, singularities are absorbed
in bare fragmentation functions in order to define a renormalized fragmen-
tation function to the scale M;. In this case too the factorization schemes
can be different. The relation between bare fragmentation functions and

renormalized ones is the following:

D) = [ (Dfbty — 1) + petPule) + et )]+

+0; (2) [22tPato) + oudot)]) . (50

Starting from the previous equation one can demonstrate that the
fragmentation functions evolve with the scale M; in accordance to the

following equations:

an(zaMfZ) _ as(MfZ) /ld_y pr
Oln(M7?) 2r  J: oy
z

+ PgT(y’aS(MfZ))Df(gaMfZ)

q

0Dy (2, M}) _ as(MfZ)/ld_y pr
Oln(M3) 2r J: oy

4 P (y,a(M2)DY (g,M,%)] | (1.53)

We note that the fragmentation functions evolution equations kernels
are different from the ones of structure functions: the equality is valid just

at leading order.

Let us see now how it is possible to maintain a relation of the type of
(47) and how it is possible to relate fragmentation functions to physically

measurable quantity like a cross-section. [4]
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Let us consider equations (49) and (50). From the first one, remem-

bering the sum rules for the momenta, we can deduce:

!

%:/01 dZ%ZUfI(Z) = 300(Y €2) 22, (1.54)

a=1 T

_|_

If we consider that the cross section for eTe~™ — hadrons is given by:

O

!
oToT — 30’0 Z 6(21(1 + - ), (155)

a=1
we can see that the entire correction to the cross section oror is given
totally by o/ and then:

11 !
Z/o dzﬁag(z,t) =300 €, (1.56)
H a=1

without corrections of order a,.

In the same way as for the leptoproduction, where we required that
the relation between structure functions and quark distribution functions
was the same as in the naif parton model, here we will define effective
fragmentation functions in terms of physical measurable quantities. We

adopt the following description:

!
o (z,t) =300 eZ[Dg(z,t) + Dg(z,t)] (1.57)
a=1

without corrections of order .2

2This definition corresponds to interpret the entire transverse cross section as due
to two-jets events. We could indeed choose the effective fragmentation functions in a

different way. If we have:

f
ofl(z,t) = 30’0262[1 +

a=1

as(t)

- (D) (z,t) + D (2,1)) (1.58)

we can see that both the sum rules for charge and momentum conservation are not
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We immediately obtain the formula for o7 in terms of the effective
fragmentation functions, trading the coupling constant with the running
one and the bare fragmentation functions with the renormalized ones,

which depend on t:

_ éas() ld_yfez H (? H (?
ot (2,t) = 30, l/z OIEL AR A EN))

3 27 7

+Z e2DH (2 y 7(1_;/)4) . (1.59)

1.4 Hadron-hadron collisions

Let us consider high transfer momentum reactions, in which we have intial
state hadrons. These kind of reactions give rise to jets production or single
particle production of large momentum and are described by QCD in the
following way.

The effective two hadrons scattering cross section can be written in

this way:

0(P1,P2,9) = Z/dmldmZFi(mlaM)Fj(mZaM)daij(plaPZaa(:u)aQ)a
5,3
(1.60)

P, and P, are the four-momenta of the incoming hadrons; p; = =, P;
and p; = z,P, are the four momenta of the partons participating to the
hard subprocess, F;(z, M) are the distribution functions defined by the

affected by order a; correction (as it was before for the charge sum rule). Nevertheless
from an aestethical point of view the first choice tells us that a fraction of events
to order a; is actually due to three-jets events, and the angular distribution for o

(1 + cos? 8) is more appropriate for gg production.
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factorization scale M, and @ is the characteristic process scale (eg the
transverse momentum of the jet). p is an arbitrary parameter chosen of
order of () scale characterizing the parton parton interaction and o;; is
the cross section for the hard interaction between partons 7 and j.

The latter can be developed as a perturbative series in powers of a,:
at leading log approximation is given by the parton model effective cross
section, while to next-to-leading order it is given by adding corrections
due to real and virtual gluon emission, where the intial state singularities
are factorized in the effective structure functions, while the final state
singularities are factorized in the fragmentation functions, in the case of

high p; single particle hadro-production.

1.4.1 Elementary hard subprocesses in QCD

Cross sections for elementary subprocesses at order o, are given by the
following expression:

dojjm Al

# = .5_2|M zzj—>kl' (1-61)

In Table I we show the matrix elements expressions |M|? as functions

of Mandelstam variables and the values of the matrix element at § = 90

degrees.

We see that for low values of  (z = 0.1) the two subrocesses:

99 — 99, (1.62)

99(3) — 94(3), (1.63)

start to dominate, owing the fact that the gluon distribution functions are
comparable to the quark ones.

In Figure 1, we show the inclusive jet cross section at CDF as function
of p; and the comparison with the theoretical calculations by Ellis, Kunzst

and Soper [6] to next-to-leading order, obtained using MRSDO’ set of



1.4 Hadron-hadron collisions 21

structure functions. As we see the agreement is very good on more than
seven orders of magnitude.

We remind that to order ay is very strong the sensibility to the choices
of scales and to the value of A, and only with the order o corrections this

uncertainty can be reduced to no more than 20-30% [5].

Process | M |? Fy
9q' — q4' Lo 2.22
99’ — a4’

99 — qq s ) - pe 3.26
49 — 49 1040 0.22
g~ | §(TECHTEY) -5 | 289
qq9 — gg %“:’f — %“:—"f 1.04
99 — dq Lul4t? _ SuP4e 0.15
99 — 49 dds? | ulds 6.11
99 — g9 S ) 30.04

Table 1

1.4.2 Inclusive single particle production

The cross section for inclusive single particle production is obtained as a
convolution of partonic cross section, structure and fragmentation func-

tions, evolved in the appropriate way.

For a h particle we have:
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Inclusive Jet Cross Section

CDF Preliminary

. Data 92 (Corrected)
——  NLO QCD MRSDC0’

10

-2
10

1/An J d*c/(dEdn) dn

10

10
16°
Only Statistical Uncertainties are plotted
6 \ \ \ \ \ \ \ \
10 | | | | | | | | | - | - - | - | - - | - | | | | | | | | |
0 50 100 150 200 250 300 350 400 450
GeV

Transverse Energy of the Jet

Figure 1.1: NLO inclusive jet production at CDF compared with the data
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d3c 1 2 2 h 2
Em = Z/dmldmgdzEFa(ml,Q )Fb(mZaQ ) dt DC(Z’Q ) (]‘64)

a,b,c

where D"(z,Q?) is the fragmentation function for the parton c (quark
or gluon) into an hadron h with z fraction of longitudinal momentum of
the particle.

The multiplicity to produce n particles of type A coming form the

fragmentation of c-parton is given by:

1
< N >= / D" (2)dz. (1.65)
0

One can show the validity of the following sum rules:

a. momentum conservation

Eh:/ol 2D"(2)dz = 1; (1.66)

b. charge conservation

ghjeh /01 dz[D"(z) — D(2)] = 1. (1.67)
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Appendix A

1.5 Splitting functions in Altarelli-Parisi equa-

tions

We saw that the evolution equations which describe the evolution of parton

densities with the scale ¢} can be written as follows:

(fg(m,t) /1 dy Zq (y,t P, q] )—I— G(y,t ) (z)], (1.68)

1
Gty o [, a0 () + G 0P (169)
where indexes ¢ and 7 are for different flavors.

The quarks number varies via two principal mechanism: a high energy
quark can loose part of its energy via the emission of a gluon, or a gluon
inside the proton can produce a ¢g pair. In the same way the number
density of gluons inside a proton can change via radiation of a gluon from
quark or because a gluon can split into a gg pair or gg pair.

The latter is typical for non abelian theory where we see triple bosons
vertices.

The P(z) functions that we saw as kernels of the evolution equations
are known as splitting functions and some of their properties are immedi-
ately derived from the fact that flavour and color commute.

First of all, we have that P, is diagonal in the quark index, owing

the fact that a gluon exchange conserves the flavour.

Phq; = 6iPyq. (1.70)
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Indeed when we disregard the masses, the gluon emission probability

is the same for every flavour:

Pg,, = Pg, (independent on 1) (1.71)

Finally a gluon gives rise to a gq massless pair with equal probability

for every flavour:

P,c =Py (independent on 1) (1.72)

We can rewrite (68) and (69) without indexes 7 and j.

et = o [ P OPu) + 6w (07)
o 1 2f . €T L
o= o [ i 0P+ G 2f P (L7

The matrix

oo (5 )~ )

gives the logarithm exponents for every n as they are given in Litera-
ture [3].

For every value of n the matrix has to be diagonalized in order to

(1.75)

obtain eigenvalues and eigenvectors of evolution equations.

The non diagonal functions ;- Pge(2) and ;- P, (2) may be interpreted
as probability densities: ;-Pg,(2) as the probability to find to order a,
a gluon inside a quark (antiquark) with fraction z of the longitudinal
momentum of the parent parton and ;= P,c(z) as the probability to find
to the same order a quark (antiquark) inside a gluon.

For the diagonal functions the interpretation is not immediate, owing

the fact that we have é-singularities at z = 1.
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The probability densities are given in this case by:

Pyg + dPyq = 5(1 - z) + %qu(z)dt, (1'76)

o
Pog + dPgg = 5(1 — Z) + Epgg(z)dt, (1.77)
so we can see that only for z < 1 we can give a probabilistic interpre-

tation.

Momentum conservation at splitting vertices imposes further constraints

on P: indeed for z < 1 we have:

Pyg(2) = Poe(1 - 2), (1.78)
qu(z) = qu(l — Z) z < 1, (179)
ng(z) = ng(l — Z). (180)

Previous equations are derived from the fact that when a quark ra-
diates a gluon with fraction z of the momentum this is also equivalent
to radiate a quark with fraction 1 — z and so on. The presence of §-
singularities alters the form of these relations. Nevertheless it remains
valid that:

[ de2lPu(z) + Pou(z)] = 0, (1.81)

1
/0 dz2[2f Py (2) + Poo(2)] = 0, (1.82)
in order to guarantee that the total momentum of the proton is con-

served.

1 2f
[ dwely alz,0) + Glest)) = 0. (1:83)

1
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Splitting functions are calculable directly from simple QCD vertices.

We have then:

14 (1—2)?

Pgy(2) = Cpf, (1.84)
14 22
P,(2)=CFr T (z < 1), (1.85)
with Cy(R) = =L,
In the same way:
1, 2
P(z) = 5[2 + (1 - 2)7]. (1.86)
and finally:
1-=2 z
Pse(z) = 2N . + T +2(1—2) (z < 1). (1.87)

These expressions have to be regularized at z = 1 interpreting them in
distributional sense, or better the terms 11: which become ﬁ,where
“plus” distributions are defined as follows:

We can then add to qu(z) and ng(z) the §-terms with coefficients
determined by (78)-(79):

Py(2) = Cp l% + ;5(1 - z)l , (1.89)
Pgo(z) = 2N ll . A 0 _zz)+ +2(1 - 2)

N (% _ %é((lj;))) 5(1— z)l : (1.90)
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Chapter 2

Perturbative fragmentation

functions

2.1 Introduction

In the prevoiuos chapter we have seen how some deep inelastic phenomena
are described by perturbative QCD.

In this chapter we will analyze in more detail the fragmentation phe-
nomenon and see how it is described in the frame of perturbative frag-

mentation functions.

29



30 Chapter 2

2.1.1 (Q? dependence of fragmentation functions

As we saw in the first chapter, pQCD redefines parton model fragmenta-
tion functions introducing a @? evolution [7]. It is possible to technically
calculate the Q? dependence and then the evolution and the method is
clearly based on the evolution equations, as we saw in the previous chap-
ter. In this chapter we will see in more detail how we can solve the

evolution equations via their transformation in momentum space.

We can rewrite, for reader’s convenience, the evolution equations for

FF:

(9D§I(2,Mf2) Oés(MfZ) tdy [, , oz
W o ' /Z ? qu(y’aS(Mf))Dq (;aMf)
z
+ Pgﬂ(y,as(M}))Df(g,M})l (2.1)
ODH(z, M?) a,(M?) 1 d .
g—’f — s f _y T 2 H = 2
8111(MJ3) 2 /z Yy qug( ’ S(Mf))Dq (y’Mf)
z
+ Pfq(yaas(MfZ))Df(g,MfZ)‘l . (22)

A quark can fragment into a hadron directly or it can radiate a gluon
that successively will fragment into hadrons. In the same way a gluon
can fragment into a hadron or it can produce a gq pair , where one of the
quarks will later fragment. Finally it can produce a gg pair, one of them

will fragment.

We can solve the system given by (1) and (2). These can be rewrite

in terms of the momenta of the distribution functions:
dM"? a(t)

i _ n h n h
d—tq(n,t) = ?[Aquqi(n’t) + Ag, Mg(n,t)], (2.3)
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dM? a(t), ., il n
Ye 1) = 2O arg S M) + AgoMlim ), (24
1=1
where
1
M (n,t) = / dzz"" ' DR (2, 1), (2.5)
0
1
AT = /0 dzz"" 1 Byy(2). (2.6)

These equations are easily solved if we introduce the functions: D% ¢(z,¢)

and D%(z,t), which correspond to non-singlet and singlet terms

1

D (z,M?) = 5(Dgg(,z,zu;)—1);;?(2,114;)) (2.7)
1 1

Df(z,M?) = 5(Djj{(,z,zu;)+ng(z,Mf2)) —WDS(Z,MJ?)(2.8)
N

Ds(z,M}) = Y (DI(z,M?) + DI (2, M3)). (2.9)
1=1

In the evolution equations the singlet part Dg is coupled to the gluon
fragmentation function whereas the non-singlet parts D~ and D™ are de-
coupled.

Solutions are complicated by the fact that singlet and non-singlet term
are mixed in the same way as they are for the structure functions. The

resulting expressions for momenta are given by:

My s(n,t) = Mys(n, )i/, (2.10)

eAﬁSI:O-EMSh(n,tO) - Mg(nato)] +

n

(o7 — o)
eAzS[_Ung(natO) — Mg(n,to)]

n

(o7 —o%)

Mg (n,t) =

: (2.11)
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e’ (oo™ Mh(n,to) — o ME(n,to)]
Mg(n,t): * (o™ —0o7) — "
—
—I_e,\_s[_aiaﬁMsh(n,to) + Ung(n’tO)]’ (2.12)
(o2 —o})

where s =In - SOl = [AQZ—A?I—I—\/ (A3, — AY)? + 447, A ]/2A7, and
to=In % A = A;L1+A12a , A7, = AT [2mb, AT, = 2f A%, [27mb , Ap, =
qG/27rb , Abg/2mb b= B2
Given a certain set of input momenta at the scale Q2 equations (3)-(4)
give the momenta at the desired @? scale. Fragmentation functions are
obtained simply applying an inverse Mellin transformation.

Momentum conservation gives rise to the following equations:

Z/dzng(z,t) —1, (2.13)

ZZ/dzzDh z,t) /dzzDh z,t) = 2f, (2.14)

which become for the splitting functions:
[ dz2lPun(2) + Poy(2)] = 0, (2.15)

/ dz2[2f Pyo(z) + Poa(2)] = 0. (2.16)

Fragmentation functions evolution can be done at several orders of the
perturbative series. We know infact that the running coupling constant
and the splitting functions can be developed at different orders of the
perturbative expansion. During our study we used a FORTRAN code
that is able to perform a leading logarithm approximation evolution or a

next-to-leading logarithm one.
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Next-to-leading evolution is performed in the same scheme developed
to study heavy quark fragmentation and production [8]. In this case we
have very large logarithm to all orders in the perturbative expansion and
at first sight the perturbative approximation seems to fail. Nevertheless
it is possible resum all these logarithms to order next-to-leading-log and
the method is based on the factorization theorem which assures that the
cross section for heavy quark production can be written as a convolution
of the fragmentation function and the partonic cross section. This one
is calculable in QCD as an expansion in powers of the running coupling
constant, where the mass of the parton regularize the collinear divergences
coming from gluon emission, while infrared divergences are regularized in

the usual way of summing real and virtual contributions.

We then have:

do

e, Qm) =Y o, um) (%52, (2,17

If we write the cross section at order o,(Q) as

do™ as(Q?)
= (z2,Q.m) = a2) + aV(z,Q,m
o . Qm) = a(e) + 0z, Q) *{ P,

the diagrams contributing are the ones of real and virtual gluon emis-

(2.18)

sion: if one disregards terms of the order of powers of quark mass, then

one has the following contributions:

doW as(Q%)
% (maQam):5(1_m)+ o

a(z,Q,m), (2.19)

where

a(l)(m,Q,m) =Cr+Cr lln% ((1 i m)_|_ (1+ mZ) + ;5(1 — m))

2 —_
+21—|—m lnm—(M) (1—|—m2)
1 l1—=z .

— T
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As we can see a(’) contains logarithms of (2—2) and then in the limit
of high energy it becomes large: this is the manifestation of collinear
singularities due to gluons emission. We can forsee that collinear singu-
larities are due to all orders in perturbation theory and the coefficients
a™(z,Q,m) behave as In (g—z)n for large Q.

Factorization theorem, along with the Altarelli-Parisi equations, al-
lows to extract logarithmic terms from the partonic cross section and use
them to define an effective fragmentation function for quarks and gluons
satisfying Altarelli-Parisi equations, with kernels given by the following

expression:

Py(a,an(u)) = PO@) + (S PD@) 1 0(ed)  (221)
which contains leading e next to leading contributions.
If one solves the evolution equations using the zero-th order for P(z),
then D(z,u) will include the correct of(p)In™ () powers (leading loga-
rithms approximation), while if one uses the o, order expression for P(z)

subleading terms are also considered of the type: a”*!(p)In" (#0)

Now we will see some technical details of the FF calculation at next to
leading order. In momentum space, evolution equation has the following

form (we are considering for sake of simplicity, just the non-singlet part):

db -
AR — a;(:) [P}VO) + “;Sf)P]S)] : (2.23)

where AS\Zf) is the Mellin transformation for the splitting functions, at

next to leading order.
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Of course ay(p) has to be accurate at the same order.

If we introduce

1 s
o L g oslmo) (2.24)
21by  as(p)
after some algebra we have:
A A (0) ]_
Dys(r) = Dns(poezp | Pyt + o 5p-(as(po) — as(p))
27b
(P — :0113};)))] . (2.25)

Kernels in momentum space are given in Appendix B.

Our evolution code is based on the procedure described above and the
result is the evolution of fragmentation functions at every scale we desirer.

During out analysis we used data obtained at @2=30 GeV as input to
evolve at scales of interest covering all the range going from fixed target
experiment to hadron and lepton colliders.

In order to extract the phenomenological input we adopted three dif-
ferent strategies in the case of w° production. Cross checks between the
three showed the intrinsic consistency of the methods, so we choose to use
the method based on use of a parton shower MonteCarlo to extract the

fragmentation functions for all the other light mesons: 7, 7%, K* , K°.

2.2 7 fragmentation functions

2.2.1 Extraction of 7° fragmentation functions
Selection of experimental data.

We first discuss the experimental data we will use to extract the m°
fragmentation functions. We first consider ete™ collisions. The JADE

collaboration [9] has published data at v/S = 14, 22.5 and 34.4 GeV. We
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use the data at 34.4 GeV, covering mainly the low zy range (up to zy =
0.209). Data from the TPC collaboration [10] at v/S = 29 GeV are given

Uhl y HZZH’ therefore a value of R=4.00 is assumed to bring them to the

usual form %i—”H. Data from the TASSO collaboration [11] at v/S = 34.6
GeV extend up to zy = 0.728. The broadest zj range is covered by data
from the CELLO collaboration, extending from zy; = 0.049 to z; = 0.919
at v/S = 35 GeV [12] and from zy = 0.094 to zy = 0.847 at /S = 22

GeV [13]. Data from experiments at DORIS are not used, as hardly any

as

point survive with the cut on the lower energy of the #° at 2 GeV. Data
obtained at LEP are for the moment not constraining. However, cross
checks have been performed with the 2 points surviving the cut of data
from the Argus collaboration [14] at v/S = 10 GeV and the 4 points from
the L3 collaboration [15] at v/S = 91 GeV.

Fragmentation functions from HERWIG.

_|_

We first consider the 7° inclusive production in eTe™ annihilation at

My = V'8 = 30 GeV, as simulated by the Monte Carlo generator HER-
WIG. As well known, this event generator includes the QCD parton shower
to leading and next to leading accuracy - in particular the kinematical cor-
rections due to the phase space boundaries are summed up to all orders -
as well as the hadronisation of the color singlet clusters into the physical
particles. Furthermore HERWIG has been shown [16] to describe with
good accuracy the observed features of PETRA and LEP data. Then we
will use the 7° distribution generated by each quark flavor which orig-
inates from the photonic vertex, as a realistic description of the quark
fragmentation into 7. Owing to the symmetry of quarks and antiquarks

fragmenting into 7° we extract the quark fragmentation functions from:

doete— — m°

= (21, M2%,) ~ 600 Y €2D7 (217, M2,), (2.26)
H q
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where the pointlike cross section oy is given by:

Ao’

302

. The reaction eTe™ — 7° + X has been therefore decomposed into each

Og =

contribution ete™ — ui, dd, s5, c¢ and bb. The generated distributions

are parameterized as
DT (2, M},) = Niz* (1 — 2)% (2.27)

and analyzed using the minimization procedure MINUIT. The coefficients

N; are constrained by the normalization condition:
1
/ dz Diz, M) = (na)sy (2.28)

where the average values (n.). are given by HERWIG for each quark flavor,
in agreement with the total observed multiplicity (n.). The parameters
N;,a; and f; are extracted from the 7° inclusive distribution generated,
for each flavor, in the x range .025 < zy < .95 and shown in table I. As
can be inferred from this table the statistical error on the parameters is

less than 5%.

As an illustration of the accuracy of the method and also of its limita-
tions, the 7° inclusive cross-section obtained from egs. (2.26) and (2.27),
together with the results of table I , are compared in figure 1 with the
CELLO data [12] at v/S = 35 GeV. The agreement is reasonable in the
range zy < .5. So far we have not included the contribution from the gluon
fragmentation function. Indeed from the analysis of the three jet events it
would be possible, in principle, to extract from HERWIG the appropriate
information. The corresponding accuracy is however unsatisfactory, due

_|_

to the limited sensitivity to hard gluon effects in eTe™ annihilation.
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Figure 2.1: LO inclusive 7° production in ete™ annihilation with the

quarks HERWIG FF



2.2 7° fragmentation functions 39

~ 0%
E F
O B 00 CELLO coll.
5 S
2 10
x F _
@) - e'e - T+X
o i
a
Q 1=
@ -
_17
10 &
.27
10 &
.37
10 &
_47
10
5| \ \ \ \ \ \ \ \ \
10 I I I S [ )y A N S S S ey s I I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

_|_

Figure 2.2: NLO inclusive 7° production in ete™ annihilation with the

evolved HERWIG FF
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For this reason we have followed a different approach. To extract
the gluon fragmentation function from HERWIG we have analyzed the
subprocess gg — gg — 7 + X from pp annihilation at M;, = /s ~ 30
GeV, in analogy to the quark case. In order to eliminate the background
from the fragmentation of the spectator partons we have considered the
pions lying only within a cone of semi aperture § = .35—.40 rad around the
direction of the parent gluons emitted at 90 deg. The value of § is found
by an appropriate angular study of the generated distribution. With a
parameterization of the form (2.27) we find the values of the parameters
N,, o, and B, given in table II. After inclusion of the gluon fragmentation
function and use of NLO evolved fragmentation functions together with
NLO terms in the 7° inclusive cross section the agreement with CELLO

data is improved as can be inferred from figure 2 up to zy ~ 0.7

In the next chapter we will compare our predictions at NLO to exper-
imental data from hadronic colliders, while in the next subsection we will
extract the 7° fragmentation functions at next to leading order using two
different hypotheses at the reference scale M f20 =2 GeV>.

Set I: fragmentation functions with natural scales.

For this set, we take a, as given by:
) J — InIn(p*/A%)
bn(uz/An) |17 In(u?/A7)
and A = 190 MeV, corresponding to the set of structure functions we

will use [17,18].

(2.29)

Definition
We assume for this case an SU(2) symmetry:

Dy (zaMf20) = D3 (Z’Mf20) = Dg (zaMfZO) = DZIE (Z’Mf20) =

U
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Dy (z, MfZO) + Dg(z, MfZO). (2.30)
Then, we take

D;TO(Z’MfZO) = DTO(ZaMfZO) = DZO(ZaMfZO) == Dgo(zaMfZO) = DS(ZaMfZO)a

K]

(2.31)
and
D™ (2, M},) = Dg(z, M},). (2.32)
We parameterize the different functions of z as follows
Dy(z,M},) = N,(1—2z)* (2.33)
Ds(z,Mj,) = N,(1—2z)> (2.34)
Dg(z,M},) = Ng(1—z)%. (2.35)

At the initial scale My, we start with four flavors. The b quark contribu-
tion is taken into account in the evolution. Fixing the threshold at 4 m7,
so we have:

0 if M7 < 4mj

2.36
N, (1—2)% if M} = 4m] (2:36)

TFO
Db (zaMf2) = {
So we are left with six parameters to be determined with the help of ex-

perimental data.

Choice of the scale

We use the standard approach to fix all the scales to the same value

which is some natural scale of the problem. More precisely, for ete™

collisions, we take p = M; = V'S whereas for p p collisions, we set the
three scales equal and proportional to the transverse momentum of the
7

p=M=M;=cP

where c is a constant to be fixed by the fit to experimental data .
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Results for set 1

0

First of all, for ete™ collisions, we limit ourselves to a w° energy greater

than 2 GeV because we don’t trust perturbation theory for low 7°
Therefore for /S ~ 30 GeV, we will only use z values greater than 0.1.

As it can be inferred from eqs (25-27) we have not used a factor z* in the

energies.

input parameterizations since in this z range it does not improve the fit
but only leads to correlations. With six parameters, a big correlation still
occurs between N, and 8,, so we fix 8, = 1. Then N,, N, and 8, remain
slightly correlated. A good fit to CELLO [12], TASSO [11], TPC [10] and
JADE [9] data leading to a x? = 26.3 for 29 points is obtained for values
of the parameters given in table III (systematic errors have been added in

quadrature to statistical errors).

Set II: fragmentation functions with optimized scales.

For this set, we take the numerical solution of the following equation

equation of ay:

() (), e

with:
33 — 2Ny B 153 — 19Ny

b= A
120 2472 ’

which is more appropriate than eq.citeapalfa for small scales p. Indeed for
large p the two definitions agree but for small g they can differ by more
than 20 %. A = 230 MeV, since we will use the ABFOW set of structure

functions [19] .
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Definition
We assume also for this case an SU(2) symmetry:

Dy (Z’MfZO) = D3 (Z’MfZO) = Dg (z,MfZO) = Dg (Z’MfZO) = DU(ZaMfZO)'

(2.38)
Then we take:
D;TO (zaMf20) = Dgo (zaMf20) = DS(ZaMfZO)a (2-39)
DT (z,M%) = D (2, M%) = D.(2, M%), (2.40)
and
Dy (Z’MfZO) = Dg(z,MfZO). (2.41)

We parameterize these different functions of z in the following way:

Du(z,M},) = N,z ' (1L-2)% (2.42)
Dy(z,M},) = N,z7'(1—2)* (2.43)
D.(z,M},) = N.z7'(1—2)" (2.44)
Dy(z,Mj,) = Nyz7'(1—2)% (2.45)

So we are left with eight parameters to be determined with the help of
experimental data. Since we will use the optimized procedure for the de-
termination of the scales, it is much simpler not to change the number of
flavors. So, in this case, we will neglect the b contribution. This assump-
tion is motivated by the fact that o(et e™ — 4* = bb) = 1/4 (et e™ —
¥* — c¢) and in p p collision the b production is suppressed due to the
weak b content of the proton.

A few remarks are in order here. As in the case of set I, the non
singlet part D; is always zero due to our assumptions. We did not take
D;’O = D:O because in this case the sum over the four flavors of D}
weighted by the square electric charge is zero:

> €t (Df(z, M?*) + Df (2, M?)) = 0.

1=u,d,s,c



44 Chapter 2

So, there is no non-singlet contribution to the cross-section. Therefore we
could parameterize directly the singlet and the glue with four parameters
only. The eTe~ data could be correctly described, but the glue is very
constrained and it will not be possible to fit hadronic data in the whole

energy range.

Choice of the scale

For set II, we use optimized scales according to the procedure of
Politzer and Stevenson [20]. Concerning e*e™ collisions, our approach
is the following. Firstly since the scale g does not appear at lowest order,
we cannot optimize with respect to it. Therefore we set ¢ = M; and
perform an optimization only with respect to the scale M;. Therefore,
a priori, our optimized scale depends on the choice made for the input
fragmentation functions. We have not found a way to get rid from this
sensitivity. In practice, the optimized point changes slowly when the input
is modified and in addition, since we are in a stable region, it does not
matter if we are not exactly on the optimized point. The optimized scale
M " is of order of 4/S/8 varying slowly with z. Furthermore, we find no
optimization scale for z < .03 for VS =35 GeV, z < .05 for VS =29
GeV and z < .1 for v/S = 22 GeV. For lower values of \/g, it is not

possible to optimize.

We also use an optimization procedure for hadronic collisions. So we

require that:

(9 dO’ 0
E 22T — g 2.46
O0ln(pu?/A?) d3Po (2:46)
(9 do'p_|_p_>770
0 i = 2.4
a]_n(MZ/AZ) Ky dSPTrO 0 ( 7)
9 Opipome (2.48)

dn(MZ/A?) ™ P,
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The first equation can be computed analytically:

aln(;/m) . dil,?;:o = —al(p?)b {26/ A +3(1 + Va(p?))
x lszh(fé) + Bln(]‘f—;) + Cln(i‘\l—f) + Dl} (2.49)
having used 2
T = b al) (14 o). (2.50)

Note that terms of order of o have been cancelled as it should be. Now,
we determine the scale p in order to cancel the right-hand side of eq (2.49).
This ensures us that the corrective term K will be negative with a mag-
nitude of roughly 10 % of the lowest order. Then we compute numeri-
cally the value of the scales M and M; which have to fulfill the equa-
tions (2.47) (2.48), the scale y being now a function of M, M;. We require
that the factorization scales must be greater than v/2 GeV and that the
renormalization scale is such that the running coupling constant a; is less
than .34. With these constraints it will be impossible to optimize in low
P, range. More precisely, for low center of mass energies (\/§ <63 GeV),
the optimization is not possible for P, < 5 GeV. Therefore these regions

are not appropriate to apply an optimization procedure.

Results for set 11

First we freeze 8,, 8. and (B, according to the counting rules. There
are still too many parameters, so we fix N, and fit to e*e™ data with four
parameters N,, 8,, N, and N.. The fragmentation functions extracted are
then used to evaluate hadronic cross sections. Then we vary N, refitting
ete” data and apply the new input to pp data.This procedure is repeated
until a reasonable description of hadronic data is reached. Good fits of
ete” data (CELLO [13,12], TASSO [11], TPC [10] and JADE [9]) leading

to a x? ~ 1 per d.o.f. are obtained for the two sets - hereafter denoted as
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set ITa and set IIb - displayed in Table IV and Table V (see figures 3 and

4 using set IIb). The two sets differ mainly for the gluon normalization.

In the following chapter we will analyze the results for colliders.

Process a I} N, <. >
ete™ > ui —0.95 £ 0.02 3.67 +£0.19 1.20 2.95
ete - dd —0.95 + 0.02 3.67 £0.15 1.24 2.87
ete” — 55 —0.88 £ 0.02 5.32 +£0.23 1.68 2.73
ete” — ce —0.82 £ 0.02 8.02 +£0.24 3.09 3.42
ete” — bb —0.95 4 0.02 10.94 + 0.29 2.92 4.20
Table I.
) o B8 N, <Ny >
0.35 rad —0.28 £ 0.04 6.71 + 0.39 14.49 3.65
0.4 rad —0.37 £ 0.04 5.79 +0.36 12.93 4.55
Table II.
Parton a; Bi N;
valence 0. 1. 0.19
sea 0. 5.2 3.5
gluon 0. 2.03 4.9

Table III.
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Parton oy Bi N;
up —1. 0.94 0.11
strange —1. 3.0 0.55
charm -1 4. 2.7
gluon -1 2. 0.55
Table IV.
Parton Q; Bi N;
up —1. 1.11 0.15
strange —1. 3.0 0.18
charm -1 4. 2.5
gluon -1 2. 0.75
Table V.

We are now quite confident of the reliability of the three different

methods ( for this see also below in chapter 3) and so we can choose one

of them to perform the extraction of the fragmentation functions for light

mesons.

2.2.2 Fragmentation functions for 7+, 5, K*, K?

In this section we report the parameterizations at Qo= 30 GeV of 7%, 7,
K#*, K? and the results on NLO fit to the ete™ data.
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i

In Table VI we report the parameterization for 5 fragmentation functions.
We show in Figure 5 our results at /S = 35 GeV, compared with JADE [9]
and CELLO [12] data. The agreement is satisfactory as can be inferred

from the figure. The difference between Sets I and II is negligeable .

After

evolution to v/S = 91.2 GeV, we also obtain good agreement with L3 [15]
LEP data as shown in Figure 6.

Process o B N, < ny, >

ete” — uu —0.91 + 0.02 2.09 +0.07 0.24 0.35

ete” — dd —0.88 + 0.02 2.14 +0.08 0.26 0.36

ete” — s5 —0.72 + 0.02 2.73+0.08 0.37 0.42

ete” — ce 0.14 + 0.03 7.10 +£0.14 8.73 0.57

ete™ — bb —0.20 + 0.05 11.24 +0.31 9.92 0.69
Table VI.

) o B8 N, <ny, >

I 0.35 rad —0.18 + 0.06 4.58 + 0.25 2.52 0.51

11 0.4 rad —0.43 + 0.06 3.47+0.26 1.48 0.62
Table VII.

+

™

In Table VIII we report the parameterizations for charge pions. As we

can easily see these parameterizations differs from 7" FF just for a nor-
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malization factor, owing the fact that we can apply a full SU(2) isospin

symmetry operation.

Parton a I} N;, | <n; >
u —1.18 =0.01 | 2.32 4+-0.05 | 0.53 2.83
d —1.17 £0.01 | 2.41 4+ 0.05 | 0.55 2.82
s —0.94 £0.01 | 5.83 4+-0.08 | 1.46 2.66
c —0.81 =0.01 | 9.014+0.14 | 3.5 3.41
b —1.35+0.01 | 7.16 &-0.07 | 1.25 | 4.19
g —0.59 £0.01 | 4.434-0.10 | 4.57 | 3.52
Table VIII
K* and K°

In Table IX e X we report the parameterizations for charge and neutral

kaons fragmentation

functions.

Even in this case we can apply a full

SU(2) symmetry operation to the tow sets. In table XIa, b we compare
with data from 29 GeV to 90 GeV in the center of mass [21]. As usual the

theoretical prediction is affected by an uncertainty of order 30% coming

from the factorization/renormalization scales, parton densities, etc.

Parton a I} N, | <mn; >
u —1.42 +£0.03 | 1.48 £0.13 | 0.1 0.59
d —1.10 £0.03 | 4.32+0.05 | 0.34 | 0.55
s —0.83 £0.03 | 254+0.03 [ 0.79 | 0.95
c —0.70 £0.03 | 3.78 £0.08 | 1.41 | 1.01
b —0.77£0.03 | 7.74+0.18 | 2.82 | 1.24
g —0.39 £0.03 | 4.74 +£0.08 | 1.97 | 0.62

Table IX
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Parton a I} N, | <n; >
u —1.06 £0.03 | 4.37 £0.13 | 0.19 | 0.27
d —1.39+£0.03 | 1.46 £0.05 | 0.05 | 0.28
s —0.84 £0.03 | 2.454+0.03 | 0.40 | 0.45
c —0.80 £0.03 | 3.31 £ 0.08 | 0.50 | 0.49
b —0.63 £0.03 | 8.154+0.18 | 2.02 | 0.62
g —0.56 £0.03 | 4.26 £ 0.08 | 0.61 | 0.30

Table X

z data our fit
0.105 | 6.32 £0.92 6.5
0.115 | 5.13 +£0.61 5.87
0.125 | 5.13 £0.49 5.30
0.135 | 5.00 £+ 038 4.81
0170 | — — — — — 3.56
0190 | — — — — — 3.05
0210 | ————— 2.64
0235 | ————— 2.22
0.275 | 1.73 +£0.11 1.71
0.325 | 1.16 +0.073 1.26
0.375 | 0.842 £ 0.055 | 0.93
0.425 | 0.470 £ 0.030 | 0.69
0.550 | 0.249 +0.020 | 0.33
0.650 | 0.090 +£0.012 | 0.16

0.8 |0.023 +0.005 | 0.04

Table XI a
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z data our fit
0.035 | 18.1 +£0.8 | 24.5
0.055 | 13.1 £ 0.6 | 14.7
0.075 | 10.1 £ 0.5 | 10.2
0.095 | 7.54+05 7.6
0.115 | 6.4£0.5 5.9
0.135 | 4.4+£0.5 4.8
0.155 | 4.5+0.5 | 3.98
0.175 | 3.4+05 | 3.34
0.195 | 2.7+0.4 | 2.84
0.215 | 25+0.5 | 2.44
0.235 | 2.2+£0.5 2.1
0.255 | 1.6 £0.5 1.8
0.275 | 1.5+1.1 1.6
0.295 | 0.8 +£0.6 1.4
0.355 | 0.8+£0.5 0.9

Table XIIb

2.3 Check with other sets of fragmentation

functions

Recently we assist to an increased interest for fragmentation processes
and their description via the formalism of fragmentation functions. In
particular the DESY group of G. Kramer et al. in some recent papers
gave several interesting results regarding the fragmentation functions of
light mesons. Their fragmentation functions are extracted performing LO
and NLO fit to ete™ data in a way very similar to the one described in
section 2.1.3 and 2.1.7.
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In order to better describe the theoretical uncertainty on FF, we per-
formed a detailed check between our sets and the ones from Kramer et al.
and in Figure 7 we report the two sets of charged pions and kaons evolved
at @2=900 GeV?2. As we can infer from the figures the agreement is quite
good, if we exclude the region of high # where nevertheless the partonic

cross sections fall down.
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Appendix B

2.4 Splitting functions in momentum space

We saw that P;;(z) momenta are given by the so called anomalous dimen-

sions A7 (4,7 = q,G) given by the following expressions:

. /0 " 422 Py (2) (2.51)
A%:%ll—ﬁ—lﬁlg% , (2.52)
2f AL, = —g—i% (2.53)

Ay =~ ik (2.54)

CArn(n+ 1)(n+2)’

4
Al == |2 — - F4Y S+ 52| (2:55)

f as usual is the number of flavours.

At next to leading order the splitting functions Pq(;)(m) and its Mellin

transformation is given by:

1
Pq(;)(m) = C%PF(iI?) + §CFCGpg(iI:) -+ CFNFTFPNF(m), (256)
where
2
Pe(z) = _211+  nln(l—2)— 3 ( + 21:) (2.57)
— —
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x1lnx — %(1 + z)ln 2 — 5(1 — z) (2.58)
1 2 11 1 4
Ps(z) = 1—&&; [lan—l—?lnm—l—Gg—'?—gﬂ'Z] —|—2(1—|—af:)lnm—|—?0(1—m)
(2.59)
2 [1+ 22 5

Py (z) = 3 [ . (—lnz — 5) —-2(1 - m)l , (2.60)

1422 pt/0+2)dz 1 — 2
Py(z) =2 / g 21+ z)lnz +4(1 — z). (2.61
i) =2 [ R L s e 4 - 2). (260

In momentum space, if we define:

Pr(N) = (251(N) - m) 25,(N) — a2 - %&(z\r)
(2.62)
+4S53(N) — 35,(N) + %H + % — %3 (2.63)
Pur(N) = GSi(N) = 3SuN) — g — 2t (260

134 2N +1
(2.65)
13 2 43 151N* 4+ 263N° +97N? + 3N + 9
NYy|[=2 - —= =
+5:(N) l 3 N(N+ 1)] Tt 9N3(N +1)3

(2.66)
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1, 2N +1
| [0 5 ~ woy
(2.67)

A(N)=2|-25(N) + ; + m

we obtain:
1
Py = Cp(Pr(N) + A(N)) + §CFCAPG(N) + CpNpTpPyr(N), (2.68)
where, as usual Cp = %, Ca=3, Tr = % and Ny is the number of flavors.

51,23 are particular combinations of the poligamma functions, defined by:

B d™log, (z)

dz™

P (2.69)
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One particle inclusive
production to next-to-leading

order

3.1 Introduction

Let us consider the inclusive production of a hadron H via the generic
reaction A + B — H where A and B stand for hadrons and/or leptons.
The cross-section can be written as a convolution of the fragmentation

functions DY (z, MfZ) with the partonic cross-section:

doaiBH Ldz o dostBo1,2H
By 0Bl / %2 pH (5, M2) BB g o (u?), M2, - ),
H B, El: i 22 1 ( f) l 7y ( s (1) f )
(3.1)

where zj7 is the reduced energy of the hadron H: zy = 2E'H/\/§ and 6 is

the scattered angle of the parton 1. The inclusive production of the parton

61
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] via the reaction A + B — [ has the following perturbative development:

doaiB_i

l d?’ﬁl

zZy ZH
(7) 0) aS(/LZ)a MfZa e ) = O-SH—B—J(?’ 0)

+%"2) om0, M) + - (3.2)
T z
Finally D} (z, MfZ) represents the number of hadrons H inside the parton 1
carrying the fraction of impulsion z from H, evolved at the scale M f2 These
fragmentation functions satisfy Altarelli-Parisi type evolution equations as
we saw in the previous chapter.

In the LO approximation one keeps only the first order in the perturba-
tive development of the partonic cross-section and in the evolution kernels
whereas at NLO one keeps the first and second terms in the perturbative
expansion for both partonic cross-section and evolution kernels. Once in-
put fragmentation functions have been specified at some reference scale
M, the evolution equations are solved using an inverse Mellin transform

technique.

We will perform an exact NLO calculation valid in the P; range where
perturbative QCD applies. We have not taken into account non pertur-
bative intrinsic transverse momentum effects. Since an extra parton is
emitted either from initial or from final parton legs a perturbative con-
tribution to intrinsic transverse momentum due to soft gluon effects is
partially included. In addition the inclusion of a non perturbative com-
ponent would act as an extra parameter and weaken the predictive power

of our calculation.

Let us consider now in detail the partonic cross-sections.

3.1.1 efe —7°

_|_

The partonic cross sections from e*e™ collisions read at next-to-leading



3.1 Introduction 63

order:
d0'6+_|_e—_>q, ) )
i 7_)1 ’H’as ,M =
% 43P, (y (#°) f)
6 og 3 as(,uZ) Q2 .,
Q% e? {g(l * cos” 0) l6(1 a y) + 2w quq(y) In ﬁfZ + Kq (y)
3 a, ,u2
F gt eosh) 2(71' )Kf(y)} (3.3)
d0-€+ e —
g—gﬁji@ﬂﬂAM%Mp:
12 oy 5 |3 ) as(,u2) . ) .,
@y {5“ eosd) [ o [ gz ) H W)
3 as(,u2)
A= Ol £ (3.4
where oy is the usual point like cross-section
Ao’
0o = TC)Q’

a is the QED coupling constant and Q2 is the invariant mass of the ete™

pair. The functions K;[, KqL, KgT and KgL have been extracted from the
reference [4] (see also [22]).
3 1 1+ 22

K;‘r(m) = Cr {;(1_m)_§(1—m)++21—m1n(m)

-+u+m%(E%5§g++(%?—%)&1—@}4&@

K'(z) = Cr {M(ln(l—m)—l—2ln(m))—2l_m} (3.6)

T T

Kl(z) = Cr (3.7)
1—2

Kiz) = 2Cp : (3.8)

T

In the above equations two scales are involved: the renormalization scale
g at which the running coupling constant a; is evaluated and the frag-

mentation scale M; at which fragmentation functions are evolved. The
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choice for these scales is rather arbitrary. Note that for every y, KgT(y) is
negative, so the choice M? = @Q? leads to a negative contribution to the

-
partonic cross-section Ey doo+.-_,/d’P,.

The running coupling of QCD a, is defined at the next-to-leading

logarithm approximation by the approximate analytical formula:

" 1 b Inln(p?/A?)
as(ﬂ)—m ll_EWl

As we saw in Chapter 2 we also used for a, as given by the numerical

(3.9)

solution of the equation:

L v (L"Z))) ! m(X—Z) , (3.10)

a,(p?) 1+ Vo (p?

with:
33 — 2Ny B 153 — 19Ny

120 7 24m?
which is more appropriate than eq.3.9 for small scales p. Indeed for large

b=

i the two definitions agree but for small g they can differ by more than
20 %.

3.1.2 pp—o

The partonic cross-sections for hadronic collisions are given by [23]:

dopip 1 Vo dv 1 dw
Eli(yaeaas(ﬂZ)aMfZ) = ﬁ;/‘/ / o

d3131 wl—vJvwmw w

0
< | P, M) 2 (0, 1) (1 (%) wsa—w)
15—l

v

a,(p?)
2

The variables V, W are defined by

_|_

Kiqu(s,v,w;,uZ;MZ,MfZ)) + (21 < m2)l . (3.11)

B y(1 + cos 6)
~ 2—y(1—cosh)’

Vzl—%(l—cos@), w
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and we also have

VW 1-V
ml = 5 mZ =
vw 1—wv
and s = zjz2,S. At NLO sixteen subprocesses contribute to the cross-

O correspond to the lowest order 2 — 2 parton scat-

section. The terms o
tering subprocesses whereas the terms K contain the one loop corrections
to these subprocesses. In the hadronic case, we have three scales: the
renormalization scale u, the factorization scale for the initial state M (
the scale of the distribution functions) and the factorization scale for final
state M; (the scale of the fragmentation functions). Schematically, the
hadronic cross-section can be written as:

Ao o p M?
E 7dﬁ)’+l’; = = a2(p?)A + ad(p?) lzbf“n(p) T BIH(F)

+01n(]‘A4—2f2) + Dl . (3.12)

We show explicitly the dependence of the hadronic cross-section upon the
three scales y, M and M;. The four functions A, B, C and D depend on
the scales M and M; via the structure and fragmentation functions. In
addition, A, B and C are scheme independent. We always use the M S
scheme for final factorization whereas the initial factorization scheme is

fixed by the set of structure functions used.

Let us discuss now the partonic cross-sections. In order to determine
the kinematical region where each partonic reaction dominates we have
plotted in figures 1, 2, 3, 4 the partonic cross-sections E; d0p+pql/d3]5}
forl=g,u+u+d+ E, s+ 5+ ¢+ ¢ against P; at the leading log level
for various center of mass energies (WAT70, ISR, UA2, LHC). We think
it is meaningless to use next-to-leading formulae since the dependence on
In(M7) is not balanced. We have used ABFOW structure functions [19].
We see that for the low center-of-mass energy experiments WAT0 [24]
(v/S = 23 GeV) and E706 [25] (v/S = 31 GeV) the gluon and the valence
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quarks contributions are of the same order at low P;;, whereas when Py
becomes larger, the valence quarks dominate. For ISR experiments [26],
[27] (v/S = 63 GeV) the glue contribution dominates up to Py ~ 10 GeV.
For the UA2 experiment [28], when the pseudo rapidity 5 = 1.4, the glue
contribution is important up to Py ~ 35 GeV. Finally for LHC, in the Py
range between 30 and 1000 GeV the glue contribution represents (60 - 80)
% of the partonic cross-section. In all cases the ”sea” contribution (s,c) is

always negligible.

In order to estimate the z range we are sensitive to we will study in
table I the integrand of eq. (3.1), i.e.:

[ &5, DF (2, M3) E; “riz=t
- d P F (3.13)

d 0 dopross
[ % ¥, D (2, M3) By izt

with z varying between 2E,0/+/S and 1. Note that the partonic cross-
sections reach their maximum for z = 1 while the fragmentation functions
decrease with z. As we can infer from Table I the large z region is kine-
matically favored. We have used set I of fragmentation functions which

have been discussed before.

\/§:23GeVandn:0. \/§:63GeVandn:0. \/§:630GeVandn:1.4
P’ <z> P <z> P <z>
4.11 0.81 5.25 0.67 13 0.55
4.61 0.82 6.73 0.70 21 0.60
5.69 0.86 8.23 0.73 29.8 0.65
6.69 0.89 10.4 0.77 43.7 0.74

Table I
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3.2 7 production at hadron colliders

Let us first discuss experimental data from hadronic colliders. Data in
hadronic reactions have been selected for this study taking into account
statistical and systematic accuracy. Whenever possible, reconstructed =°
are preferred. For SPS fixed target energies, the available data in pp
reactions are in reasonable agreement and we will use the data in the
central rapidity range at v/S = 23 GeV, from the WA70 collaboration [24].
The FNAL fixed target range overlaps with the lower ISR energy range.
The recent data at v/S = 31 GeV from pBe reactions obtained by the
E706 collaboration [25] are in agreement with some of the ISR results.
Resolved 7° at v/S = 62.8 GeV taken from table 5 ( more precisely data
corresponding to the super-retracted geometry) of Kourkoumelis et al. [27]
are used. They will be compared with other data available at this energy.
We will use also the more recent data from the AFS collaboration [26],
which however show a different P, dependence. At collider energies, the
latest data from the UA2 experiment at /S = 630 GeV with average
pseudo rapidity 7 = 1.4 will be used [28]. Cross checks have been made
with data at /S = 540 GeV with average pseudo rapidity 7 = 0 although

7¥ are not disentangled from direct photons.

3.2.1 FF from HERWIG

We compare now our predictions at NLO to experimental data from
hadronic colliders. We first consider the data from CERN ISR [26,27],
for v/S = 63 GeV, compared in figures 5 with our predictions for p =
M =M; =P and p = M = M; = P,/2 using the quark fragmentation
functions from table I and the two gluon sets from table II of the previous
chapter, with § = 0.35 and § = 0.40. The agreement is satisfactory within

the theoretical and experimental uncertainties.



72 Chapter 3
g\ L
LIJ [
Q 1021
[a)] =
A
&
o 10 - ™
= g pp - T+ X
8 F
Lu [
e
_17
10 ? R R
10 E \\ ~
E NS
: \\\\\\\\\#
-3 \\\iaf \‘\\
10 = M=p=M_=P, , 3=0.35 f
- M=p=M_=P,, 5=0.4 AN
4 \\
0 = M=p=M_=P,, 8=0.35 ~
- I M=p=M=P,, 0=0.4
5| \ \ \ \ \ \ \ \
10 | I | I L L1 L L1 L1 L L1 L L1 L1 L L1 L | I | I
3 4 5 6 7 8 9 10 11 12
Pt(Gev)

Figure 3.5: 7° production at ISR at 63 GeV



3.2 7Y production at hadron colliders 73

Let us focus now on the UA2 data at the SppS collider [28]. We will
use two sets of quite precise data, for P, < 15 GeV and 5 ~ 0 and, for
15 < P, < 45 GeV and 5 ~ 1.4. The comparison with the theoretical
predictions is shown in figures 6 and 7 for p = M = M; = P,/2, P,
and for the two gluon sets of fragmentation functions. The agreement
is quite good, and slightly favors the set corresponding to § = 0.35. The
dependence on the renormalization, factorization and fragmentation scales

at NLO will be discussed later.

HERWIG fragmentation functions have been used to describe hadronic
data at energies higher than ISR one since for fixed target experiments

the sensitive z range is above the region where ete™ data are correctly

fitted.

Furthermore, as can be inferred from fig.2, the glue is already impor-
tant at v/S = 63 GeV and its contribution increases with energy. The
ete” data constrain essentially quark fragmentation functions in the high
z region. This explains why in most of the P; range (except in high P,
one) HERWIG fragmentation functions describe collider data.

3.2.2 Setl

Using set I of fragmentation functions we will now evaluate the NLO cross-
sections for inclusive w° production in hadronic collisions and compare
them to experimental data from low center of mass energies up to the
CERN collider one. Here, the situation is less clear. First, if we keep
constant the value of the parameter ¢ it is impossible to obtain a good
fit in the whole energy domain. For example, setting ¢ ~ 1.5, the ISR
data can be described but the theoretical predictions are by far too low
for WA70 and E706 and too high for UA2. A simple solution to this

problem is to allow ¢ to vary with the hadronic kinematical variables, in
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particular v/S. A correct description of the data requires ¢ ~ 0.39 for
WATO0 [24] (see figure 8), ¢ ~ 0.5 for E706 [25](see figure 9), ¢ ~ 1.5 for
ISR experiment [26,27] (see figure 10) and ¢ ~ 5.5 for UA2 [28] (see figure
11).

In particular for the ISR energy range, the data from AFS collab-
oration [26] are marginally consistent with those of reference [27] since
the transverse momentum dependence in the two experiments is different.
Therefore it is very difficult to describe both ISR data with high precision.
We get rather good fits of data of Kourkoumelis et al. [27] with x* = 20.6
for 14 points using p = M = M; = 1.3P, and of the AFS collaboration [26]
with x? = 12.2 for 11 points using g = M = M; = 1.6 P,. Notice that the
slope of the UA2 data is not correctly reproduced, with a x* = 50.2 for 11
points. The x* have been calculated with statistical errors, allowing the
overall normalization to vary within the systematic error.

A comment is in order here. The approach followed so far is rather
simple. When the energy grows up the scales needed to describe data have
also to increase. As stated above an acceptable fit of UA2 data [28] in the
forward direction can be obtained for the choice of scales p = M = M; =
5.5P; which is a priori a large scale. The compensation occurring between
the leading and next-to-leading terms concerning the scale dependence is
much more effective at high energies. At low energy, since we prevent
the scale to be less than My, = /2 GeV, this compensation does not
occur and the behavior of the leading and next-to-leading cross-sections
is quite the same. In other words, we are not in a good region to perform

perturbation theory.

A simple scaling form of the type A(1—zg)™P; ", where zr = 2P, cosh(n)/v/S
yields for data in the fixed target and ISR energy range (22 GeV < /S <
63 GeV) n ~ 8 while for data in the collider energy range (540 GeV
< /5§ < 630 GeV) n ~ 6.5. Such a simple form fails to describe si-

multaneously data in the ISR and collider energy range and theoretical
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predictions in the whole energy range if the scales are independent of v/S.

Although some care has to be taken on the extraction of the power
values due to their sensitivity to the choice of parameterization, the power
dependence is difficult to predict analytically in QCD since besides the P,*
parton subprocesses dependance, factorization and renormalization scales
are involved. In addition, since we have arbitrarily set these scales equal,

the physical meaning of the increase of the scales with v/S is unclear.

This approach might be criticized. Indeed it is not very predictive,
since the scales change with the energy. In other words one adds a new
parameter which acts as an overall normalization for each experiment.
Notice that the normalization of the glue fragmentation function N, is
strongly correlated to the choice made for the scale. More precisely, we
could perfectly find a value for N, which describes the UA2 data with
¢ = 0.5. But in this case we couldn’t describe the other data at lower

energies.

3.2.3 SetlIl

The two sets differ mainly for the gluon normalization. As can be seen
from inspection of figures 12, 13, 14 and 15 a rather good fit of the latest
UA2 data at v/S = 630 GeV [28], AFS [26] and Kourkoumelis et al data
[27] can be obtained leading to a x? ~ 50 for 31 points.

Kourkoumelis et al. data favor the set characterized by the largest
glue (set IIb) whereas UA2 data are better fitted by the other set (set
ITa). Notice that we have taken into account the systematic errors of the
data which affect the overall normalization. The x? are 3.46 (4.28) for the
11 AFS points, 31.54 (23.52) for the 9 Kourkoumelis et al. points and 14.91
(20.00) for the 11 UA2 points with the parameters of set Ila (IIb). Inside
the systematic errors we can also describe UA2 data at v/S = 540 GeV
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UAZ2: SET Ila OF FRAGMENTATION FUNCTIONS
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and 7 = 1.4. On the other hand we are not able to describe WA70 and
E706 data with the values of N, found before. This is not very surprising
since the corrective term is found to be huge, and although we can find
an optimization point this is not very stable suggesting that we are not in

the appropriate region to trust perturbation theory.

3.2.4 Predictions at LHC

To our knowledge no global comparison of inclusive 7° production at
hadronic colliders to parton shower MONTE CARLO has been performed.
These MONTE CARLO, although based on a leading order calculation,
include angular ordering in parton radiation whereas our NLO evaluation
does not take into account resummation of large logarithms of kinematical
origin. Therefore a comparison of our approach with MONTE CARLO
would be interesting for 7° production at future colliders.

As we have seen present data do not allow to extract the 7° fragmen-
tation functions unequivocally. To this aim the forthcoming information
from ep HERA collider should be very helpful. With these limitations we
will now estimate the 7° rates at LHC using the various sets of fragmen-

tation functions previously derived.

Let us consider first set I of fragmentation functions. In order to
describe hadronic data we had to increase the scales p = M = M/ from
% at /S =~ 20 GeV up to 5P, at v/S = 630 GeV. An extrapolation to
LHC energy would lead to p = M = M; ~ 50P, which seems by far an
unnatural scale. To estimate the sensitivity to scales we show in figure 16
the ratio of cross sections at LHC for the two scales 50P; and P; at n = 0.
As can be inferred from the figure the rates differ by at most a factor
of three. To estimate the uncertainty due to structure functions we have
taken the set of structure functions of HMRS [18] using the MS scheme
and the set of Morfing-Tung [17] using the DIS scheme. The predictions
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differ by at most 20%. Similarly the ratio of predictions using set II is
displayed in figure 17.

The situation is summarized in figure 18 where we show the absolute
rates at LHC for = 0 from the most plausible sets in the three ap-
proaches: HERWIG with § = 0.35 (full line), set I with p = M = M; =
100P; (dot-dashed curve) and set II with N, = 0.75 (dashed curve). This
gives an estimate of the theoretical uncertainty which is of the order of a
factor two. The uncertainty on structure functions is marginal compared
to the poor determination of fragmentation functions.

To show the stability of the NLO corrections we display the cross
section as a function of the scales p and M = M; compared to the LO
result for P, = 50 GeV (figures 19-20). We vary the scales between P;/5
and 5P;. The NLO cross sections exhibit a saddle point whereas the LO
cross sections decrease monotonically when the scales increase.

The uncertainty due to factorization scheme, especially coming from
fragmentation functions is expected to be tiny for the two following rea-
sons. Firstly the evaluation done for one jet inclusive cross section has
shown[2] that at collider energies its magnitude is of the order of 5% -if
done correctly - and we can reasonably expect a same order of magni-
tude for one hadron inclusive cross section. Secondly a precise estimate
doesn’t seem mandatory compared to the large uncertainty coming from

fragmentation functions.

3.3 n production at hadron colliders

In this section we will show some results regarding the inclusive % pro-
duction at hadron colliders comparing, whenever possible, the results to
experimental data.

We consider now our predictions for inclusive production in hadronic
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n = 0. LO prediction
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colliders. We first compare with data from CERN ISR [26], for v/S = 52.7
GeV and v/S = 62.4 GeV, as shown in Figures 21 and 22 for p = M =
M; = P, and p = M = M; = P,/2 using the quark fragmentation
functions from Table VI and the two gluon solutions from Table VII, for
8 = 0.35 (Set I) and § = 0.40 (Set II). In doing so, in absence of direct
data on 7 production, we have inferred the cross section from 7° data
assuming the experimental [26] 7/7° ratio R of 0.58 +£0.05 and 0.55 +0.06
respectively, independent from p;. The agreement is satisfactory within

the theoretical and experimental uncertainties.

Let us focus now on the UA2 data at the SppS collider [28]. We will
use two sets of quite precise 7° data, for P, < 15 GeV and pseudorapidity
y ~ 0 and for 15 < P, < 45 GeV and y ~ 1.4, and an experimental
ratio n/7° of 0.5 as obtained from ISR data [26]. The comparison with
the theoretical predictions is shown in Figures 23 and 24 for p = M =
M; = P,/2, P, and for the two gluon sets of fragmentation functions. The
agreement is quite good at low p;, and slightly favours set I.

On the other hand we note that at higher p; the comparison with data
suggests a larger value for the ratio /7%, and therefore a p; dependence
for this ratio. Indeed from the result of our previous study on inclusive

7° production, we show in Figure 25 the predicted p;, dependence of R =

n/m at v/S =630 GeV, which indeed rises with p,.

Finally we proceed to the predictions for LHC /S = 16 TeV. The
cross sections are calculated at LO (Born) and NLO and using HMRS Set
of structure functions [18] and are displayed in Fig. 26."

To estimate the theoretical uncertainty we study in Fig. 27 the ratio of

the two predictions from the two different choices of gluon fragmentation

IThe discontinuities in the curves are simply due to CPU time limitation on the

number of the data points.
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functions, evolved to NLO accuracy, at v/.S = 16 TeV.

We then calculate the theoretical ratio n/7° as evaluated from the =°
results of the previous subsection. The ratio increases with respect to ISR
energies, and shows a dependence on p; similar to what found at SppS
energies.

The uncertainty due to factorization scheme, especially coming from
fragmentation functions is expected to be tiny because the evaluation done
for one jet inclusive cross section has shown [23] that at collider energies
its magnitude is of the order of 5% and we can reasonably expect the
same order of magnitude for one hadron inclusive cross section. Finally,
the theoretical uncertainty from the structure functions is much smaller

than that coming from fragmentation function.

3.4 Light mesons production at Tevatron

In this section we will show the prediction for light meson production at
Tevatron.

In Fig.28 we show the p; distribution for inclusive single particle pro-
duction for 7°, 5, 7%, K¥*, integrated in the region of pseudorapidity
n = —In(tan(%)) between -0.7 and 0.7 and using the Set B-1 of Morfin
and Tung [17]. We set all the scales equal to the pr of the produced
hadron.

In Figs. 29-30 we compare our predictions for charged kaons and pions
production to those of reference [29]. The difference is seen to be of order
of a factor 2 for the kaons.

Finally, in order to disentangle the fragmentation properties and the
hadronization mechanism of high p; jets, we consider the ratio between
the single hadron and jet cross sections, for fixed values of the variable

2 = Epadr [ Ejer. Then, using the jet algorithm of ref. [6,?] and the NLO
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evaluation of the jet cross sections of ref. [5], we present in Fig.31 result
on jet fragmentation in charged and neutral pions, with the energy of the
jet varying between 40 and 70 GeV, and a jet cone radius R=0.7 centered
around the n = 0 direction. The overall theoretical uncertainty -which
is not reported in figure- can be estimated to be of order 50%. We also
show the analogous experimental result on jet fragmentation in charged
hadrons [31], in reasonable agreement with the theoretical prediction.

As a final result we give a mean value for the ratio R=n/7" = 1.154.30,
in the range 20 Gev < p; < 200 GeV which agrees with the recent exper-
imental value of R=1.02 + 0.15 4+ 0.23 [32]. The theoretical uncertainty is
related to the variation of the scales in parton distributions and fragmen-

tation functions.
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Appendix C

3.5 Mass divergences factorization in single

particle inclusive production

Let us consider the following reaction:
H,(Ky)+ Hy(K2) — Hs(K3) + X, (3.14)
at parton level it is described by:
pitpi—p+X, (3.15)

and the inclusive cross section is given by:

- Z/dmldmz—F (21, M?)F22 (25, M) D5 (24, M)
7-]7

d3K3

[1({;1-) )Pipj—wl(‘sav)(s(l - w) + aS(lﬂ)

v

Kpipj—>pl (8,v,w, /LZ, MZ,(MiGD

where s = z12,5 and v e w are given in terms of z;,z, and hadronic
momenta K, K, e K3. F and D are respectively structure and fragmen-
tation functions at factorization scale M and fragmentation scale my; do®
is the Born cross section at order a?(pu?) and K;;_; are the order a,(u)
corrections.

In the naif parton model the inclusive cross section for reaction () is
simply given by:

07 0(ni J !

d3k3 = Z/dmdmz—F(f (ml)Fé;I-Z(mz)Dg‘“‘ (mg)Png' (Zézz )

7.]7

(3.17)
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As we can see no scale dependence is present in structure and fragmen-
tation functions. If we add QCD corrections we obtain a dependence on
the scale for D and F, which we can choose of order of p; of the scat-
tered parton. The great uncertainty in the choice of the scale (almost a
factor two at LO) is greatly reduced if we add order o corrections. We
can perform this task in the following fashion: we start from the squared
matrix elements in n dimensions for the parton subprocesses (2 — 3) and
we integrate on the phase space. The divergences of type }2 are cancelled
by adding virtual contributions, while terms of order % due to mass singu-
larities are absorbed into effective fragmentation and structure functions
beyond the leading order.

Singularities associated to initial state partons are factorized into the
structure functions evolved at scale M? while divergencies associated to
final state partons are absorbed into a redefinition of fragmentation func-
tions at scale M;. For every process we add a term proportional to:

Oy
EHPipj(y)do}o)ipjapl(yS)z) (3.18)

to the sum of Born cross section (order ag) and corrections of order ag’.
In the previous equation H(y) has singularities in € and can be rewrit-

ten as:

Hpipj(y) = _%Ppipj(y)(4]7‘;l§2 )6”((11__263) + fpipj(y) =
= ijpi(y)(_%) + Ppipj(y) In (]LJ—;) + fpipj(y) (3.19)

where P,.,.(y) and f,,,,(y) are respectively Altarelli-Parisi evolution equa-
tions kernels and finite corrections of order O(a;) to structure functions.
In the same way divergencies associated to final state partons are cured

adding terms of type:

Qg - vw

Elepl(y)do-jo)ipj—q)l(‘s’ ?) (320)
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with y = 1 — v — wv and where, as before:

Y Pyt ) (321)

Eplpl(y) = Ppipj(y)(_g P

Until now only f,, and d,, have been explicitly calculated and imposing

momenta conservation rules we obtain:

B In(1-—2) zlnz 5Nrp 1, 1)
fgg_lem( 1—z )+_1—m+(24N_67r —3)8-a)

(3.22)
_ In(1-—2) z2lnz "TNp 1, 17
dog = 2N [ (ﬁ); o (e 5 —1)5(1”)]
. , (3.23)
foul®) = 5[0 + (1= )] ln (—=) (3.24)
do#) = 3[a* + (1~ 2] In[a°(1 — 2] (3.25)
Foal®) = Cr l# In[(1-— m)mZ] — 2] (3.26)
For reader’s convinience we report the following expressions::
In(1—=z 3 1 1+ z?
+
+2z — (g + 71;)5(1 — m)l (3.27)
In(1—= 1+ z? 3 1
dufe) = Cr (=) (M)l S
+
3 2 9
+2 (=) + (G - )8(1 o) (3.28)
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Chapter 4

Inclusive particle
photoproduction at HERA

4.1 Introduction

In this chapter we study the inclusive photoproduction of neutral and
charged pions and n at HERA, via the resolved photon mechanism, in
QCD to next-to-leading order. We present various distributions of phe-
nomenological interest and study the theoretical uncertainties due to the

mass scales, and to photon and proton sets of structure functions.

Inclusive production of high p; particles and jets at HERA plays an
important role in testing QCD, providing a detailed source of information

on the hadron-like structure of the photon.
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For this purpose leading order (LO) perturbative QCD predictions -
based on evaluations of partonic cross sections at tree level and evolu-
tion of structure and fragmentation functions at one loop level- are not
accurate enough, being plagued by the usual theoretical uncertainties as-
sociated to the large scale dependence of O(a.mas) terms. A consistent
calculation at next-to-leading order (NLO) needs two loop evolved struc-
ture and fragmentation functions and a NLO evaluation of parton-parton
subprocesses. As well known, two mechanisms contribute to the inclusive
photoproduction of particles or jets at high energies: the photon can inter-
act directly with the partons originating from the proton (direct process),
or via its quark and gluon content (resolved process). Previous theoretical
analyses have considered both direct photoproduction to NLO, Aurenche
et al. [33], and resolved photoproduction, Borzumati et al. [34], the latter
having used the NLO corrections to all contributing parton-parton scat-
tering processes of Aversa et al. [5] and LO fragmentation functions for
the final hadron. Those results show the dominance of the resolved com-
ponent at low p; (p; < 10 Gev), which is the region firstly explored at
HERA, the role played by the direct contributions being shifted at higher
pi. The separation of the cross section in two components induces an
artificial dependence on the photon factorization mass scale M., which
should cancel when the two terms are added up. Indeed this mechanism
has been explicitly shown [35] to apply in the inclusive photoproduction
of jets, which has been recently studied to NLO accuracy.

Motivated by these results, the photoproduction of single hadrons in
electron-proton collisions at HERA energies, based on the NLO fragmen-
tation functions of second chapter, limiting ourselves to the study of the
resolved component only. In particular we present a detailed quantitative
evaluation of 7°, 7% and 5 photoproduction at HERA at moderate p;,
using the hard scattering cross sections of ref. [5], and two loop structure

and fragmentation functions.
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4.2 Theoretical framework

We give now the relevant formulae for the cross sections. The inclusive

cross section for ep — h+ X in an improved next-to-leading-order approx-

imation is:

d*o(ep — b+ X)
d*pp

. d&*6(yp - h+ X)
d3p

h (z) (4.1)

1
= [ defyle) By
where z,,;, is given in terms of the transverse momentum p; and of the

center-of-mass pseudorapidity 7., of the produced hadron as:

o ptencm
mn —
\/_ — pte_ncm

The rapidity 7, measured in the laboratory frame is related to 7., as:

(4.2)

1. E
a:cm__l_p 4.
Mhas = Nem — 510 — (4.3)

where E and E, are the energies of the electron and the proton respectively
(E =27 GeV and E, = 820 GeV, for the present HERA conditions).
The distribution in the longitudinal momentum fraction y of the out-

going photon has in the NLO approximation the following form [36]:

o;e:{z(l )lEZ( 1?29?/2+mey ﬂ

1 1 — 2 EZ 1 — 202 2,,2
N +(1-y) log (1—9)*0; + mly
Y mzy®

+ o me )|

(4.4)
where 0. = 5° is the maximum value of the electron scattering angle and
m, 1s the electron mass.

Finally the vp inclusive cross section is given by:

d0'7p dmg . , . ) . 2
Ewp wSZ/ / / dmldm?_F (21, M) F} (22, M) Dy (25, M) x
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2
as(,lLZ) 1 OéS(ILZ)
X ( ' ) l;dgjl(S,v)5(1 —w) + Tor Kijl(-sa'U,’lU;Mg,Mj,,uZ,MfZ)
(4.5)
z9—14+V w =

x2

% and V =1+ %, W = T_TUS’ with S,T,U the hadronic Man-

delstam variables. O'?jl are the partonic Born cross sections O(a%), while

where s,v and w are the partonic variables s = 12,5, v =

K;; are the finite higher order corrections O(a?) [5],with 4, j, [ run-
ning on all kinds of partons. As usual, the photon structure functions
are expressed in terms of the hadronic and the pointlike contributions as
F(2,Q%) = Fy4(z,Q*) + F,;,,(z,Q%), and obey the appropriate evolu-
tion equation with the inhomogeneous term related to F,,,, [37].

As already stated above a consistent calculation to next-to-leading or-
der needs two-loop evolved structure and fragmentation functions and a
NLO evaluation of parton-parton subprocesses. In the partonic cross sec-
tions to one loop [5], calculated from the squared matrix elements O(a%)
of Ellis et Sexton [38], the initial state collinear divergences have been

factorized and absorbed into the dressed structure functions in the MS
scheme. Coherently with this choice, we have used for the proton struc-
ture functions set B1 of Morfin & Tung, [17] (set A), set MRS SO of Mar-
tins Roberts & Stirling [18] (set B), and set GRV HO of Gliick, Reya &
Vogt [39] (set C) and three different NLO parameterizations of the photon
structure functions, namely the set of Aurenche et al. [40] with massless
charm (set I), that of Gliick, Reya and Vogt [41] (set II) (mode=272 in the
PDFLIB library) and that of Gordon and Storrow [42] (set III). Sets I and

IT have been also used in the previous analysis of Borzumati et al. [34].

We have used ag calculated at 2-loop, with 4 flavors and with Agep =
200 MeV. Set A of the proton structure functions has been indeed evolved
with Agep = 194 MeV, but the error induced by this different choice is
negligible. We have also considered 5 flavors in the proton, in the photon
and in the final state, but the contribution given by the bottom is clearly

negligible in the range of p; values studied.
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We have used the improved expression (4) for the Weiszaecher- Williams
photon density in the electron [36]. When comparing our results with those
obtained with the usual leading order formula (e.g. see eq.l in ref. [43])

we found a negative correction which is no larger than 5%.

4.3 Results

We present now various numerical results for the three sets of photon
structure functions, studying in particular the uncertainties of the theo-
retical predictions. We always use set A for the proton and set I for the
photon structure functions, except when explicitly mentioned.

Let us consider 7° photoproduction first. The dependence of the cross
section on the various mass scales involved in (5) is shown in figs. 1. As
expected, the dependence is very strong at the Born level, as shown in
fig.1a for pr = 5 GeV, for nq = —2.

The introduction of higher orders reduces the effect, although the de-
pendence on the photon factorization scale only is still important (figs.1b-
lc), unlike to what is observed in the case of hadron-hadron collisions
[6,44]. This behaviour has been also observed in the photoproduction of
jets at HERA [42,45,35] and the photon mass scale dependence is reduced
when the direct and resolved terms are both considered [35]. The above
effect is similar for the three sets of photon structure functions.

More explicitly we have isolated in the K factor in (5) the terms de-
pending on M from those depending on M?, with the following method.
We split each term of the K-factors calculated in [5], which is propor-
tional to log (%), where in [5] M? = M} = M2, in two pieces and assign
a weight factor which takes into account the splitting vertex (¢ — qg, g —
gg) present in the collinear emission. For the subprocesses g¢ — H+X and
g9 — H + X the weight is %, due to the symmetry of all possible collinear
emission. In the subprocess q(p)g(y) — H + X and ¢(v)g(p) > H+ X we
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__ O 2C 4 +np
20 iy O the quark and repaTe el 1Y the gluon (Cp

and C, are the usual color factors). Moreover for each subprocess one has

give a weight

to multiply the partonic cross-section for the appropriate combination of

structure function.
do
 dndpr

is plotted in figs. 2 and fig. 3 for different values of nip, p = M, = M, =

In order to show the general p; behaviour of the cross section

M; = pr, and for the three sets.

Comparing to the previous analyses of ref [34], we have found differ-
ences which we believe are essentially due to the use of out set of frag-
mentation functions evolved to NLO. On the other hand we are able to
reproduce fig.9 of [34], using the same inputs, within a 15% of accuracy
but with an almost identical shape. For convenience we show in fig. 4 the
comparison between the old set of fragmentation functions [46] and the
one used in this thesis.

In figs.5 we present the 74, distribution for fixed p; = 5 GeV. In fig.

5a the contributions is shown by the various partonic subprocesses, while
do

dndpr

functions are compared in fig. 5b. Comparing with ref. [34], as for the case

the differential cross-sections for the three sets of photon structure
of p; distributions, the different shapes shown in fig. 5a can be understood
firstly because of the different set of fragmentation functions (see fig. 4);
furthermore the regions 7, < —3 and 745 > 1 lye at the edge of phase
space and therefore the numerical convolution of the ¥ — p cross-section
with the Weiszaecher- Williams formula is sensitive to slight variations of
the parameters.

As in the case of inclusive jet photoproduction [35] the contribution
from the gluon content of the photon is too tiny to be observed in most
of the phase space available. Indeed from Fig. 5, if one considers the two
subpreocesses initiated by the gluon in the photon: g¢(p)g(y) — jet + X
and gg — jet+ X, the first one is clearly dominated by all other reactions,
while the second one could be of interest in the region of very negative

rapidities (map < —3), where it is however quite difficult to disentangle
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the small-z behaviour of the photon structure function in the actual cross
section.

