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Abstract. In these lectures we will be giving a basic introduction to modern ideas
in cosmology. Beginning with a review of the Standard Big Bang (SBB) scenario,
we will introduce the observed cosmological parameters and indicate the features
that the SBB can not explain, such as the initial conditions. This will lead to an
introduction to the inflationary cosmology, which postulates a period of accelerated
expansion during the Universe’s earliest stages [1, 2, 3, 4, 5]. We will provide some
examples of inflationary solutions and demonstrate how they can be used to make
distinctive predictions which in principle can be tested with current observations. In
particular it provides a possible model for the origin of structure in the Universe.
The state of these observations will also be discussed with particular attention
being given to the most recent experiments which have detected anisotropies in the
cosmic microwave background radiation. We will discuss some of the most exciting
developments that have recently emerged in cosmology, arising from string and M-
theory models. A particular example of inflation arising out of branes will be given
to emphasise the potential new features these solutions have. Finally we will discuss
models of Quintessence, scalar field models used to explain the exciting results that
the Universe is undergoing a period of acceleration today.

1 The Standard Big Bang Model

The standard hot big bang (SBB) theory is an extremely successful one,
and has been around for over 60 years, since Gamow originally proposed it.
Remarkably, for such a simple idea, it provides us with an understanding
of many of the basic features of our Universe. All that you require in the
cooking pot, are initial conditions of an expanding scale factor, gravity, plus
the standard particle physics we are used to, to provide the matter in the
Universe. It can then pass a number of crucial observational tests.

– The expansion of the Universe – tage ∼ 10− 20 Billion years.
– The existence and spectrum of the cosmic microwave background radia-

tion (CBR) – Planck Back Body spectrum with T ∼ 2.73K.
– The abundance of light elements in the Universe (nucleosynthesis).
– Gravitational collapse – responsible for the formation of structure in the

Universe, although it relies on the presence of initial irregularities being
present in the CBR consistent with that detected by the COBE satellite.
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However, as mentioned the hot big bang theory can successfully proceed only
if the initial conditions are very carefully chosen, and even then it only really
works at temperatures low enough, so that the underlying physics can be well
understood. The very early Universe is out of bounds, yet there is a hope that
accurate observations of the present state of the Universe may highlight the
types of process occurring during these early stages, providing an insight
on the nature of physical laws at energies which it would be inconceivable to
explore by other means. Another unresolved issue is the cause of the apparent
acceleration of the Universe today, as seen through the distribution of distant
Type Ia Supernovae.

To begin with we will give a quick review of the big bang cosmology.
Surprisingly, for a theory which is usually associated with solving highly
non-linear Einstein equations, it is possible to obtain the key evolution equa-
tion (the Friedmann equation) simply from Newtonian cosmology. The hot
big bang theory is based on the cosmological principle, which states that the
Universe should look the same to all observers. That tells us that the Uni-
verse must be homogeneous and isotropic. With this in mind, imagine (you
will need a healthy imagination throughout these lectures!) a uniform homo-
geneous ‘dust’ filled Universe of mass M , with a test particle at radius a.
The acceleration experienced by the particle is (ignoring the mass outside of
radius a),

ä = −GM
a2 ,

where G is Newton’s constant and ȧ ≡ da
dt . This can be integrated to give

ȧ2

2
− GM

a
= −k

2
, (2)

where k is an integration constant. Equation (2) is simply the statement that
energy is conserved. Now, for a uniform dust distribution we have

M =
4π
3
ρa3 = constant,

where ρ is the energy density (i.e. mass per unit volume). Substituting for M
in (2) we obtain the Friedmann equation,

H2 ≡ ȧ2

a2 =
8πG

3
ρ− k

a2 , (4)

where H is the Hubble parameter. This derivation is perfectly adequate be-
cause of the assumption of homogeneity. Birkhoff’s theorem allows us to
consider a region of arbitrary small a, where we expect the Newtonian ap-
proximation to be a valid. Homogeneity allows us to then extend this to large
a. The parameter a(t) is an important one, it is the ‘Scale factor’ of the uni-
verse, so called because all length scales grow by the same factor a(t) in a
homogeneous Universe. It measures the physical size of the Universe. The



Inflation – In the Early Universe and Today 55

constant k has a geometrical interpretation (although we need to return to
the full General Relativity to see it), it measures the spatial curvature with
k negative, zero or positive corresponding to open, flat and closed Universes
respectively. The cosmological principle tells us which metric must be used
to describe it. It is the Robertson–Walker metric, which is given by (3) in the
contribution of J.L. Cervantes–Cota in this book.

In cosmology we often use comoving coordinates (r) which are rescaled
to the physical coordinates (x) through x = a(t)r. Comoving coordinates are
so useful, they allow for the expansion of the Universe to be removed from
a problem. The crucial link that Einstein spotted was that the geometry of
the Universe or its expansion is governed by the properties of material within
it. This is specified by the energy density ρ(t) and the pressure p(t), usually
related by an equation of state, ρ = wp which gives p as a function of ρ. The
key examples are

p =
ρ

3
Radiation , (5)

p = 0 Non-relativistic matter , (6)
p = −ρ Vacuum Dominated . (7)

In general though there need not be a simple equation of state for example
when there is a combination of radiation and non-relativistic matter. This
matter satisfies energy momentum conservation, also known as the Fluid
equation,

ρ̇+ 3H(ρ+ p) = 0 (8)

In (8), 3Hρ is the reduction in density due to the increase in volume, and
3Hp is the reduction in energy caused by the thermodynamic work done by
the pressure when this expansion occurs. Combining (4) and (8) we obtain
the useful k-independent Acceleration equation

ä

a
= −4πG

3
(ρ+ 3p) . (9)

1.1 Standard Big Bang Solutions

In most of what follows we will assume a flat Universe (although there will
be exceptions which hopefully will be clear). When k = 0 (4) and (8) can be
solved for the various equations of state to give the cosmological solutions

Matter Domination p = 0 : ρ ∝ a−3 a(t) ∝ t2/3 (10)
Radiation Domination p = ρ/3 : ρ ∝ a−4 a(t) ∝ t1/2 (11)
Vacuum Domination p = −ρ : ρ ∝ ρ0 a(t) ∝ exp(Ht). (12)
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In both radiation and matter cases the density falls as t−2, whereas in the
vacuum (or cosmological constant case it remains constant (in general it will
be constant or decrease less quickly than 1/t2). If there is both matter and
radiation the Friedmann equation can be solved using conformal time τ =∫
dt/a, while, as we shall see, if there is matter and a non-zero curvature

term the solution can be given either in parametric form using normal time
t.

1.2 Characteristic Scales and Density Parameters

When the spatial geometry is flat, for a given H, (4) determines the critical
density

ρc(t) =
3H2

8πG
. (13)

Densities are usually measured as fractions of ρc:

Ω(t) ≡ ρ

ρc
, (14)

where Ω is known as the density parameter, and can be applied either to
individual types of material or to the total density.

The present value of the Hubble parameter is not that well known, so it
is parameterized as

H0 = 100h km s−1 Mpc−1 =
h

3000
Mpc−1 , (15)

where h is normally assumed to lie in the range 0.5 ≤ h ≤ 0.8. The current
most popular value for h is around h � .7 based on a number of different
observations. Note, the subscript ‘0’ refers to the present day and reflects the
value a parameter has today. Having defined the Hubble parameter and cur-
vature scale, it follows that these can be used to define two length scales: The
Hubble time (or length) H−1

0 = 9.8×109h−1 years gives an approximation to
the actual age of the Universe, providing the typical time scale of evolution
for a(t). Of course, the Hubble parameter is not constant, varying in general
as t−1. The second scale is the curvature scale a|k|−1/2 and gives the distance
up to which space can be taken as having a flat (Euclidean) geometry. The
present critical density is

ρc(t0) = 1.88h2 × 10−29 g cm−3, (16)

incredibly small bearing in mind what we are used to dealing with on earth.
Both the Hubble length and curvature length are physical scales; to obtain

the corresponding comoving scale we must divide by a(t). The ratio of these
scales actually gives a measure of Ω; from the Friedmann equation we find

|Ω − 1| = |k|
H2a2 . (17)
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A crucial property of the big bang Universe is that it possesses hori-
zons which arise because light can only have traveled a finite distance since
the start of the Universe t∗. To obtain the horizon, we simply use the fact
that light travels on null geodesics (ds2 = 0), see (3) in the contribution
of J.L. Cervantes–Cota in this book, hence for fixed θ and φ, we obtain
dr = dt/a(t) which integrates to give the physical distance

dH(t) = a(t)
∫ t

t∗

dt

a(t)
. (18)

In a matter dominated Universe dH(t) = 3t = 2H−1; see also Sect. 1 (horizon)
in the contribution of Jorge L. Cervantes–Cota in this book.

1.3 Introducing the Cosmic Background Radiation

The redshift measures the expansion of the Universe via the stretching of
light

1 + z =
a(t0)
a(temit)

. (19)

As a measure of time, the redshift refers to the time at which light would
have to be emitted to have a present redshift z. As a measure of distance, it
refers to the present distance to an object from which light is received with
a redshift z. We can combine (4), (17) and (19) to solve for more general
cosmologies involving the situation k 
= 0 (remember we are assuming that
the cosmological constant vanishes here). Unfortunately it is generally too
difficult to obtain explicit solutions in these cases for a(t), rather we obtain
t(a). For example, in a matter dominated Universe we obtain

t0 = H−1
0

Ω

2(Ω − 1)3/2

[
cos−1(2Ω−1 − 1)− 2

Ω
(Ω − 1)1/2

]
, Ω > 1

= H−1
0

Ω

2(1−Ω)3/2

[
2
Ω

(1−Ω)1/2 − cosh−1(2Ω−1 − 1)
]
, Ω < 1. (20)

Expanding about Ω = 1 we obtain

t0 �
2
3
H−1

0

[
1− 1

5
(Ω − 1) + ·

]
, (21)

implying that for Ω < 1, the Universe is older for a given value of h.
The Universe is full of radiation, a remnant of the big bang. The detection

of this primordial soup in 1965 by Penzias and Wilson provided one of the
major breakthroughs for cosmologists trying to understand the nature of the
Universe. Its existence is a prediction of the model and was first proposed
in the 1940’s by George Gamow. The radiation was emitted at a red shift
z ∼ 1100 the epoch known as the surface of last scattering, corresponding
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to a time t ∼ 180, 000(Ωh2)(−1/2) years, the time when the photons decou-
pled from the the electrons as they found their way into their ground state.
The temperature then was about 2500 K, and was the moment the Universe
went from being opaque to being transparent. Gamow argued that as the
Universe expanded and cooled, the photons would be stretched and would
today have a temperature of order 10 K and be close to a perfect blackbody
spectrum. In 1990, based on just 9 minutes of data, the COsmic microwave
Background Explorer satellite (COBE) detected the radiation and showed
that it was almost perfectly isotropic, with a Planck blackbody spectrum of
T = 2.735 ± 0.01 K. This corresponds to a photon density in the Universe
today of nγ = 422cm−3. The radiation is peaked at wavelength λ = 2 mm
corresponding to a frequency ν = 150GHz (i.e. in the microwave region of the
electromagnetic spectrum). Of course, this temperature is today much lower
than it was in the early Universe. This is because as the Universe expands, it
cools. We can determine the rate that it cools through the following simple
argument. At high density, because of the high interaction rate, any mat-
ter rapidly approaches thermal equilibrium. For radiation, Planck showed us
that a quanta of frequency ν had energy E = hν = h/λ ∝ a(t)−1 where h is
Planck’s constant, and the scaling with the scale factor simply represents the
fact that all length scales are stretched by the expansion of the Universe. The
corresponding energy density in radiation evolves as ργ(t) = Eγ/V ∝ a(t)−4.
From the world of statistical mechanics we have Stefan’s law which tells us1

ργ ∝ T 4, from which we see that the Universe cools as it expands according
to the law

T ∝ 1
a
. (22)

In its earliest stages the Universe may have been arbitrarily hot and dense,
so although matter dominated since nucleosynthesis, far enough in the past
it will have been dominated by radiation.

1.4 The Mass of the Universe

How much mass is there in the Universe and can we determine the answer?
This is a crucial issue in cosmology. Earlier, we defined the density parameter
Ω(t) ≡ ρ/ρc. This is the parameter which is important if we are to determine
the future evolution of the Universe. Current bounds on its value place it
between .3 < Ω < 1.2, but what is it composed of? One of the most signifi-
cant and successful predictions of the SBB is Nucleosynthesis, the formation
of the lightest elements in the Universe. The spectrum of these elements can
be predicted and has been compared to observation through numerous ex-
periments. Basically as the Universe expands and cools, it reaches a critical
temperature (around 1 MeV) when the reversible reaction of the neutron de-
caying into protons ceases and the neutron freezes out. The neutron’s then
1 Compare to (21) in the contribution of J.L. Cervantes–Cota in this book.
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decay solely into protons and the lightest elements begin to form. This is
not the place to discuss nucleosynthesis in detail, it involves analysing rate
equations to determine the net fractions of light elements formed, but it is
worth discussing the main results. The actual fraction of the light elements
formed depends sensitively on the density of ordinary matter (the baryons)
at the time of nucleosynthesis. This can vary from 10−30−10−31gm cc−1. The
light elements formed are Hydrogen (75% by mass), Helium (24% by mass),
Deuterium (10−5 compared to hydrogen), Helium3 (10−5 compared to hy-
drogen), Lithium 7 (10−10 compared to hydrogen). These incredibly small
numbers are crucial as slight variations in the baryon density lead to large
changes in the abundance, changes that can be ruled out by observation.
The key feature though as far as we are concerned are bounds on the total
amount of baryonic matter in the Universe. The current Nucleosynthesis
constraints give

Ωbaryon = (0.019± .0012)h−2. (23)

So the maximum contribution to the total energy density arising from baryons
is bounded by Ωbaryon < 0.08. However, we just saw earlier that the lower
bound on Ω from all sources is Ω > .3. This arises from a number of ob-
servations including analysing the dynamics of clusters of galaxies, from the
gravitational lensing of distant quasars by rich clusters of galaxies and by
determining the baryon abundance in the centres of clusters of galaxies. All
of these long distance observations provide bounds of

Ωmatter = (0.3± .05)h−(1/2). (24)

The conclusion that emerges from comparing (23) and (24) are incredibly
significant and one of the principle reasons why particle physicists should be
interested in cosmology. Clearly, some of the matter in the Universe must be
non-baryonic and it must be dark, we can not see it. This is clear simply
from analysing the rotation curves of light emitted from neighbouring gala-
xies. These can be interpreted as placing constraints on the matter distribu-
tion in our own neighbourhood and points to the existence of large almost
spherical dark halos around our visible galaxy.

The current boom in high precision cosmic microwave background expe-
riments such as BOOMERANG, MAXIMA and DASI have enabled a new
and exciting approach on the matter question. Since these lectures were given
WMAP has come on the scene, and so we should really make use of their
wonderful data (whilst bearing in mind the pioneering work of the other high
precision experiments). Given a particular cosmological model, there is an as-
sociated distribution of peaks and troughs in the power spectrum associated
with the anisotropies in the CBR, the position and height of which depend
on the nature of the cosmological parameters. In particular the location in
�-space of the first ‘doppler’ peak depends on the quantity Ωmatter + ΩΛ,
where ΩΛ is the density parameter associated with a cosmological constant
(and will be discussed later), through � ∼ 220/

√
Ωmatter +ΩΛ. Based on
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parameter fits and combining their data with other astronomical data, the
WMAP team find that the best fits are [6]: Ωmatter +ΩΛ = 1.02± .002, with
Ωmatterh

2 = .135+.008
−.009 and Ωbaryonsh

2 = .0224± .0009.
This all opens up the intriguing question, what could be the source of this

dark matter? There are a number of particle physics candidates including
cold (non-relativistic at decoupling) particles such as Axions, neutralinos,
primordial black holes and supermassive non-thermal relics. There are also
Hot particles possible such as massive neutrinos. At first sight the amazing
discovery by the Super-Kamiokande team of evidence for massive neutrinos
could be thought to point in this direction, however, the proposed masses
for the light neutrinos appear to be too light for them to play a significant
cosmological role. Another fascinating aspect of the matter question is the
fact that even with dark matter present there is still too little matter to cause
the Universe to be flat as can be seen from (17). This amount of matter would
lead to an open Universe but as we shall shortly discuss the Universe appears
to be flat today. Where then is the remaining contribution required to yield
Ω = 1? We shall see that it appears to be coming from an unusual source,
namely something is providing an energy contribution through an effective
cosmological constant which is dominating the Universe today – a dark energy
contribution!

1.5 The Timetable for the Universe

Up until the mid 1990’s, any cosmology book would state with some authority
that the present Universe is dominated by non-relativistic matter which scales
as ρ ∝ a−3. Since we know radiation reduces more quickly with the expansion,
this implies that at earlier times the Universe was radiation dominated. We
can estimate this period by simply relating the two contributions to obtain
1/aeq = 2.4. × 104(Ωh2) where the two energy densities are equal when the
scale factor is aeq. During the radiation era, since a ∝ t1/2, temperature and
time are related by

t

1 sec
�
(

1010 K
T

)2

�
(

MeV
T

)2

. (25)

From this we quickly see that

T ∼ MeV⇐⇒ t ∼ sec
T ∼ GeV⇐⇒ t ∼ 10−6sec
T ∼ 1015GeV⇐⇒ t ∼ 10−35sec. (26)

The highest energies accessible to terrestrial experiment, generated in par-
ticle accelerators, correspond to a temperature of about 1015 K, which was
attained when the Universe was about 10−10 sec old. Earlier times rely on
extrapolation of our known physics and possibly new mathematical insights



Inflation – In the Early Universe and Today 61

(such as string theory may offer). Later times appear to be well understood,
with a possible timetable being:

– 10−34 seconds: Grand unified phase transition, where strong force decou-
ples from electroweak force.

– 10−10 seconds: Electroweak phase transition, where weak force decouples
from electromagnetic force. Possible origin for the observed baryon asym-
metry in the Universe.

– 10−4 seconds: Quarks condense to form protons and neutrons.
– 1 second: The Universe has cooled sufficiently that light nuclei are able

to form – nucleosynthesis.
– 104 years: Matter–radiation equality. Subsequently the Universe is

matter dominated.
– 105 years: Decoupling of radiation from matter leads to the formation

of the microwave background. Similar time to recombination, when the
up-to-now free electrons combine with the nuclei to form atoms.

– 1010 years: The present era where Beckham joins Real Madrid for a bar-
gain of £20M – and the Universe is accelerating!.

We have seen that up to two years ago, this would have been the accepted
folklore. However, it now appears that the Universe, rather than steadily
decelerating is actually accelerating, going faster and faster. The evidence for
this lies in the distribution of Type Ia Supernovae at very large scales, but the
conclusion is dramatic. As we shall shortly discover, an accelerating universe
requires an energy source which effectively has a negative pressure. There is
something out there providing this constant source of energy density, and it is
dominating over everything else present – there appears to be a cosmological
constant present in the Universe today! We will return to this amazing issue
later on.

2 Problems with the Big Bang

There are a number of issues that the SBB simply can not address and have
to adopt as initial conditions. These provided the original motivation for the
inflationary cosmology, and we now turn our attention to these issues.

2.1 The Flatness Problem

In the absence of a cosmological constant contribution, the Friedmann equa-
tion can be written in terms of the density parameter equation (17). During
SBB evolution, a2H2 is decreasing, and so Ω moves away from one, for ex-
ample

Matter domination: |Ω − 1| ∝ t2/3 (27)
Radiation domination: |Ω − 1| ∝ t (28)
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where the solutions apply provided Ω is close to one. So Ω = 1 is an unstable
critical point. However, today Ω is certainly within an order of magnitude of
one, so it must have been much closer in the past. Inserting the appropriate
behaviours for the matter and radiation eras gives for example

nucleosynthesis (t ∼ 1 sec) : |Ω − 1| < O(10−16) (29)

That is, hardly any choices of the initial density lead to a Universe like
our own. Typically, the Universe will either swiftly recollapse, or will rapidly
expand and cool below 3K within its first second of existence.

2.2 The Horizon Problem

The observation by COBE that all cosmic microwave photons appear to be in
thermal equilibrium at almost the same temperature is a puzzle? Why is it so
isotropic? It is not difficult to see that in the SBB the Universe has not had
enough time for different regions to reach a state of thermal equilibrium by
today. The regions could not have interacted before the photons were emitted
because of the finite horizon size,

∫ tdec

t∗

dt

a(t)
�

∫ t0

tdec

dt

a(t)
. (30)

In other words, the distance light could travel before the microwave backgro-
und was released is much smaller than the present horizon distance. In fact,
any regions separated by more than about 2 degrees would be causally sepa-
rated at decoupling in the hot big bang theory. In the big bang theory there
is therefore no explanation of why the Universe appears so homogeneous.

The same argument that prevents the smoothing of the Universe also
prevents the creation of irregularities. The COBE satellite has detected irre-
gularities in the CMB on all large angular scales, too large to be accounted
for as emerging in the period between the big bang and the time of decou-
pling, because the horizon size at decoupling subtends only a degree or so.
Hence these perturbations must have been part of the initial conditions.

2.3 The Monopole Problem

Modern particle theories predict a variety of ‘unwanted relics’, which can not
be present today as they would have dramatically altered the evolution of
the Universe. These include magnetic monopoles, domain walls, gravitinos
and moduli fields associated with the extra dimensions arising in superstring
theories. They are all massive particles created in the very early Universe but
are diluted less rapidly than radiation as the Universe expands. Hence they
would rapidly come to dominate the dynamics, and lead to rapid closure of
the Universe. We must eliminate them, while preserving the rest of the matter
which we like.
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2.4 The Cosmological Constant

When Einstein developed the theory of General Relativity, the consensus was
that the Universe was static, after all there was no apparent movement of the
galaxies in the night sky with respect to one another. However, the Friedmann
equations were unstable to a static solution, not surprising since matter at-
tracts. To resolve the problem, Einstein introduced a constant balancing term
(Λ) which would allow for a static solution to exist. The modified Friedmann
equation now became

H2 =
8πG

3
ρ+

Λ

3
− k

a2 , (31)

with the new cosmological constant appearing as a constant contribution to
the Hubble parameter. As soon as the Universe was discovered to be ex-
panding, the need for this term went away. Unfortunately, the equations
suggested otherwise, there was no apriori reason to set Λ = 0. This term has
haunted cosmologists and particle physicists ever since and could well have
just come back to visit us again today. What is the problem then?

From (31), as we are not dominated by the curvature term and since the
present energy density is close to the critical value, we see that today,

|Λ| ≤ H2
0 . (32)

Thus the length scale �Λ ≡ |Λ|−1/2 associated with the cosmological constant
must be larger than H−1

0 = h−1
0 × 1026 m, a macroscopic distance. In a

classical regime this is fine, it is simply saying the cosmological constant
length scale is larger than the Hubble length. Problems arise when we combine
gravity and quantum mechanics. At the quantum level the natural scales
which emerge at the Planck epoch are the Planck mass and Planck length
given by (where we have reinserted Planck constant and the speed of light)

mP =

√
�c

8πG
= 2.4× 1018 GeV/c2

,

�P =
�

mP c
= 8.1× 10−35 m

The above constraint now reads :

�Λ ≡ |Λ|−1/2 ≥ 1
H0
∼ 1060 �P . (33)

There are more than sixty orders of magnitude between the scale associated
with the cosmological constant and the scale of quantum gravity. We could of
course simply set Λ = 0, indeed this is generally what is done. Unfortunately
when there is matter hanging around this is not such a good idea. The matter
itself experiences quantum fluctuations (called zero-point fluctuations) and
these can act like an effective cosmological constant (Λeff ∼ λ4/m2

P ). In fact
the natural value this constant should then have usually reflects the scale
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associated with these quantum fluctuations. So, λ would be typically of the
order of 100 GeV in the case of the gauge symmetry breaking of the Standard
Model or 1 TeV in the case of supersymmetry breaking. But the constraint
(33) now reads:

λ ≤ 10−30 mP ∼ 10−3 eV. (34)

It is this very unnatural fine-tuning of parameters that is referred to as the
cosmological constant problem, or more accurately the vacuum energy pro-
blem.

3 Enter Inflation

Inflation is defined to be any epoch where ä > 0, an accelerated expansion.
From (9) this corresponds to a negative pressure (p < −ρ3 ) and from the defi-

nition H = ȧ
a , we see that it also corresponds to d(H−1/a)

dt < 0, i.e. the Hubble
length as measured in comoving coordinates, decreases during inflation. At
any other time, the comoving Hubble length increases. This is the key pro-
perty of inflation; although typically the expansion of the Universe is very
rapid, the crucial characteristic scale of the Universe is actually becoming
smaller, when measured relative to that expansion.

We have already seen an example of an inflationary solution, the vacuum
dominated regime p = −ρ, has a solution is

a(t) ∝ exp (Ht) . (35)

There are many many more! Of course, we know the SBB has many successes,
and it is none inflating, so inflation can not last for ever, it must terminate
and enter the SBB regime smoothly at some epoch.

3.1 The Flatness Problem

Inflation solves the flatness problem by rapidly forcing Ω towards unity rather
than away from it. This is clear from the fact that the comoving Hubble length
H−1/a is decreasing. We require enough inflation to force Ω extremely close
to unity to ensure that it will remain close to it today. Remember, as soon
as we enter the SBB phase, Ω = 1 is an unstable point. Including a possible
cosmological constant contribution, modifies the Friedmann equation to

|Ω +ΩΛ − 1| = |k|
a2H2 , (36)

and so it is Ω + ΩΛ which is forced to one. In general, it is spatial flatness
(k � 0) that we are driven towards, not a critical matter density.
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3.2 Relic Abundances

The rapid expansion of the inflationary stage rapidly dilutes the unwanted
relic particles, because the energy density during inflation falls off more slowly
than the relic particle density. Very quickly their density becomes negligible.
Of course they do not disappear totally and will one day re-enter the horizon
– the ultimate in sweeping something under the carpet.

We need to ensure that after inflation, the energy density of the Universe
can be turned into conventional matter without recreating the unwanted
relics. This reheating period must have a temperature that never gets hot
enough to allow their thermal recreation. It will then allow for the particles
we want to create and lead naturally into the SSB period, vital for the success
of nucleosynthesis and the CMB.

3.3 The Horizon Problem and Homogeneity

Inflation rapidly increases the size of any region of the Universe, but it keeps
its characteristic scale, the Hubble scale fixed. So, a small patch of the Uni-
verse, small enough for thermalisation before inflation, can expand to a patch
much larger than the size of our presently observable Universe. This ensures
that all the cosmic microwave radiation are in thermal equilibrium. Moreo-
ver, it also allows for irregularities to be generated in the CMB, irregularities
which would then evolve to form structures. We can rephrase the horizon
solution by saying that because of inflation, light can travel much further
before decoupling than it can afterwards.

3.4 The Cosmological Constant

Unfortunately, a period of inflation says nothing about why the present value
of the cosmological constant should be so small. In fact it should now be clear
that inflation effectively relies on such a constant if only for a finite period
of time.

4 Inflation out of Particle Physics

The most common framework in which inflation is obtained is based on the
existence of scalar fields, in particular scalar field potentials. Needless to say,
as far as particle physics is concerned they remain elusive – yet we really need
them! They represent spin zero particles, transforming as a scalar (that is, it
is unchanged) under coordinate transformations. In a homogeneous Universe,
the scalar field is a function of time alone.

The traditional starting point for particle physics models is the action,
which is an integral of the Lagrange density over space and time and from
which the equations of motion can be obtained. A scalar field Lagrangian
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is like one for a particle, the difference between the kinetic energy and the
potential energy of the field

L =
1
2
(∂µφ)(∂µφ)− V (φ). (37)

The stress energy tensor is defined in terms of the Lagrangian

Tµν = (∂µφ)(∂νφ)− Lgµν , (38)

where gµν is the metric tensor. If φ represents an isotropic fluid then we can
write down the pressure and energy density from the definition

Tµν = diag(−ρ, p, p, p), (39)

from which we obtain for a homogeneous field

ρφ =
1
2
φ̇2 + V (φ) (40)

pφ =
1
2
φ̇2 − V (φ) . (41)

The potential energy V (φ) measures how much internal energy is associated
with a particular field value. Normally, like all systems, scalar fields try to
minimize this energy; however, a crucial ingredient which allows inflation is
that scalar fields are not always very efficient at reaching this minimum energy
state. In a given theory, there would be a specific form for the potential V (φ).
However, we are not presently in a position where there is a well established
fundamental theory that one can use, so, in the absence of such a theory,
inflation workers tend to regard V (φ) as a function to be chosen arbitrarily,
with different choices corresponding to different models of inflation. Some
example potentials are

V (φ) = λ
(
φ2 −M2

)2 Higgs potential (42)
V (φ) = 1

2m
2φ2 Massive scalar field (43)

V (φ) = λφ4 Self-interacting scalar field (44)

4.1 Inflation Dynamics

The equations for an expanding Universe containing a homogeneous scalar
field are easily obtained by substituting (40) and (41) into the Friedmann
and fluid equations, giving

H2 =
8πG

3

[
V (φ) +

1
2
φ̇2
]
, (45)

φ̈+ 3Hφ̇ = −V ′(φ) , (46)
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where prime indicates d/dφ. Here we have ignored the curvature term k, since
we know that by definition it will quickly become negligible once inflation
starts. Since

ä > 0⇐⇒ p < −ρ
3
⇐⇒ φ̇2 < V (φ) (47)

we will have inflation whenever the potential energy dominates. This should
be possible provided the potential is flat enough, as the scalar field would
then be expected to roll slowly. The potential should also have a minimum
or some other feature which would allow inflation to end.

To solve these equations we use the slow-roll approximation (SRA),
which assumes that a term can be neglected in each of the equations of motion
to leave the simpler set

H2 � 8πG
3

V (48)

3Hφ̇ � −V ′ (49)

The slow-roll parameters fist introduced by Liddle and Lyth [14]

ε(φ) ≡ 1
16πG

(
V ′

V

)2

; η(φ) ≡ 1
8πG

V ′′

V
, (50)

measures the slope of the potential (ε), and the curvature (η), and the neces-
sary conditions for the slow-roll approximation to hold are

ε� 1 ; |η| � 1 . (51)

4.2 The Amount of Inflation

The amount of inflation is normally specified by the the number of e-foldings
N , given by

N ≡ ln
a(tend)
a(tinitial)

=
∫ te

ti

H dt , (52)

� −8πG
∫ φe

φi

V

V ′ dφ , (53)

where the final step uses the SRA. Notice that the amount of inflation bet-
ween two scalar field values can be calculated without needing to solve the
equations of motion, and also that it is unchanged if one multiplies V (φ) by
a constant. We can estimate the amount of inflation required to solve the va-
rious cosmological problems. Consider the flatness problem. First we make a
few plausible assumptions to ease the situation: inflation is of the exponential
form ending at t = 10−34 sec, with the Universe immediately entering a radia-
tion era which persists until today some 3× 1017 sec later. Imagine also that
today |Ω − 1| ≤ 0.01, a reasonable constraint on the value of Ω. Now during
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the radiation era, from (17), |Ω−1| ∝ t, hence |Ω(10−34 sec)−1| ≤ 3×10−54.
During inflation H is constant, so |Ω − 1| ∝ 1

a2 . From this it follows that in
order to satisfy the constraint by the end of inflation, the scale factor has to
grow during inflation by an amount

atend

atbegin
∼ 1027 ∼ exp(62), (54)

corresponding to around 62 e-foldings. Although this looks large, inflation is
typically so rapid that most inflation models give much more.

4.3 Some Examples of Inflation: Polynomial Chaotic Inflation

A particularly nice example of an inflaton potential is a simple polynomial
potential first introduced by Linde (for a review see [7]). It could be a massive
non-interacting field, V (φ) = m2φ2/2 where m is the mass of the scalar field,
or it could be a massless self-interacting field, V (φ) = λφ4, where λ is the
self coupling of the field. Consider the first case. The slow-roll equations are

3Hφ̇+m2φ = 0 ; H2 =
4πGm2φ2

3
, (55)

and the slow-roll parameters are

ε = η =
1

4πGφ2 , (56)

implying that inflation can proceed provided |φ| > 1/
√

4πG, i.e. away from
the minimum.

The solutions to the equations give

φ(t) = φi −
m√

12πG
t , (57)

a(t) = ai exp

[√
4πG

3
m

(
φit−

m√
48πG

t2
)]

, (58)

(where φ = φi and a = ai at t = 0) and the total amount of inflation is

Ntot = 2πGφ2
i −

1
2
. (59)

An important thing to bear in mind is that we need to ensure that we
are in a position where classical physics remains a valid approximation. This
is simply the requirement V � G−2, but it is still easy to get enough in-
flation provided m is small enough. In fact, m is required to be small from
observational limits on the size of density perturbations produced.

As an exercise the reader may want to try and repeat the exercise for
potential V (φ) = λφ4, assuming the field starts at t = 0 from rest rolling
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towards φ = 0 from the positive side of the potential. Show that the SR
equations give

φ(t) = φi exp

(
−
√

2λ
3πG

t

)
, (60)

a(t) = ai exp

{
φ2

i πG

[
1− exp

(
−
√

4λ
3πG

t

)]}
, (61)

(where φ = φi and a = ai at t = 0) and the total amount of inflation is

Ntot = πGφ2
i − 1 . (62)

Since these lectures were given, the WMAP results are now beginning to place
constraints on the viability of polynomial inflation models, and it appears that
the λφ4 marks the boundary between viable models (powers less than 4) and
un-viable models (powers greater than 4)[8]. However, a word of caution. The
‘real’ inflaton potential is likely to be a bit more complicated than a simple
single scalar field power law model, so lets not get too excited yet about
ruling out large classes of potentials.

4.4 From Inflation to the SBB – Reheating

During inflation, all matter except the inflaton scalar field is redshifted to
extremely low densities. Reheating is the process whereby the inflaton’s
energy density is converted back into conventional matter after inflation, re-
entering the standard big bang theory.

As the slow-roll conditions break down, φ evolves from being overdamped
to being underdamped, moving rapidly on the Hubble timescale and oscilla-
ting at the bottom of the potential, where it decays into conventional matter.
This is an active and technically demanding area of research and there has
recently been something of a revolution in the way we think reheating ta-
kes place. Traditional treatments (e.g. as given in Kolb & Turner[9]) added
a phenomenological decay term; this was constrained to be very small with
reheating being inefficient. In particular there was a long time delay (reds-
hifting) between the end of inflation and the Universe returning to thermal
equilibrium; hence a low reheat temperature compared to the energy density
at the end of inflation.

In preheating [10], this picture is turned on its head. Kofman et al
have shown that the decay can initially proceed through broad parametric
resonance, with extremely efficient transfer of energy from the coherent os-
cillations of the inflaton field. The result is a very short reheating period,
with most of the inflaton energy density at the end of inflation available for
conversion into thermalized form. A higher reheat temperature is possible
with some amazing possibilities, such as non-thermal phase transitions [11]
and baryogenesis occurring at the electroweak scale[12, 13].
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4.5 Inflation Models

There are a number of models on offer, some better motivated than others.
Chaotic inflation models are the generic type found in a number of si-
tuations because they just require a single scalar field, rolling in a potential
V (φ), which in some regions satisfies the slow-roll conditions, while also pos-
sessing a minimum with zero potential in which inflation is to end. the initial
conditions place the field well up the potential, and could be due to large
fluctuations at the Planck era. Examples include (see [14])

Polynomial chaotic inflation V (φ) = 1
2m

2φ2

V (φ) = λφ4

Power-law inflation V (φ) = V0 exp(
√

16πG
p φ)

‘Natural’ inflation V (φ) = V0[1 + cos φf ]
Intermediate inflation V (φ) ∝ φ−β

Hybrid inflation models are a very interesting class as they have more
than one scalar field and appear to offer the possibility of occurring in particle
physics contexts. An example is one with a potential

V (φ, ψ) =
λ

4
(
ψ2 −M2)2 +

1
2
m2φ2 +

1
2
λ′φ2ψ2 . (63)

When φ2 is large, the minimum of the potential is in the ψ-direction is at
ψ = 0. The field rolls down this ‘valley’ until it reaches φ2

inst = λM2/λ′,
where ψ = 0 becomes unstable and the field rolls into one of the true minima
at φ = 0 and ψ = ±M . Note for suitable choices of the potential, topological
defects could form at the end of a period of inflation.

While in the ‘valley’, it is like a single field model with an effective po-
tential for φ of the form

Veff(φ) =
λ

4
M4 +

1
2
m2φ2 . (64)

The constant term would not normally be allowed as it would give a present-
day cosmological constant. When it dominates, it allows both for the energy
density during inflation to be much lower than normal while still giving sui-
tably large density perturbations, and for φ to roll very slowly.

Models of inflation can also be found in scalar-tensor theories of gravity
where the gravitational constant may vary. One interesting case arises from
the low energy string action, where two scalar fields, the dilaton and moduli
field lead to a period of inflation driven not by the potential energy of the
fields (in fact the potential vanishes), rather by the kinetic energy of the
fields. This interesting possibility is known as the pre big bang model, so
called because this evolution occurs before the usual big bang singularity is
met. These will be discussed in Sect. 5. There are also fascinating models
which lead to Open universes, but likewise we do not have time to discuss
them here.
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4.6 Density Perturbations and Gravitational Waves

Perhaps the most important property of inflationary cosmology is that it
produces spectra of both density perturbations and gravitational waves. The
former would be responsible for the formation and clustering of galaxies, as
well as creating anisotropies in the microwave background radiation. The
gravitational waves do not affect the formation of galaxies, but may contri-
bute extra microwave anisotropies on the large angular scales sampled by the
COBE satellite.

The beauty of having models like inflation, or topological defects (which
we do not discuss here) is that they are predictive. We can predict the form of
the initial perturbation spectra, as opposed to simply assuming it as is often
done in studies of large-scale structure. For example, the gravitational waves
may be assumed not to be present, and the density perturbations to take on
a simple form such as the scale-invariant Harrison–Zel’dovich spectrum, or a
scale-free power-law spectrum. In his lectures Robert Brandenberger has gone
into a great deal of detail describing the cosmological perturbations theory
[15]. Here we will just be picking out the bits useful for inflation without
deriving any of the formalism.

4.7 Perturbations Produced During Inflation

Inflation generates perturbations on large scales because the comoving Hub-
ble length decreases during inflation, where as in the SBB the comoving
Hubble length is always increasing, all scales are initially much larger than
it, and hence unable to be affected by causal physics. Once they become smal-
ler than the Hubble length, they remain so for all time. The fact that COBE
sees perturbations on large scales at a time when they were much bigger than
the Hubble length, means that in the standard picture no mechanism could
have created them.

During inflation a given comoving scale could be well inside the Hubble
length, and hence be affected by causal physics, thereby enabling it to ge-
nerate homogeneity to solve the horizon problem and to superimpose small
quantum perturbations. Before inflation ends, as the comoving Hubble length
decreases, the given scale crosses outside the Hubble radius rendering causal
physics ineffective. Any perturbations generated become imprinted, or, ‘fro-
zen in’. Long after inflation is over, as the comoving Hubble length increases
the scales cross inside the Hubble radius again. Perturbations are created on
a very wide range of scales, but the most readily observed ones range from
about the size of the present Hubble radius (i.e. the size of the presently
observable Universe) down to a few orders of magnitude less. Thus inflation
allows perturbations to be generated causally. These quantum fluctuations
are present simply from the Uncertainty principle, they have to be and can
explain the initial inhomogeneities that later grow by gravitational collapse
to the structures we see today.
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The size of the irregularities depends on the energy scale at which inflation
takes place. It is outside the scope of these lectures to describe in detail how
this calculation is performed. We will just briefly outline the necessary steps
and then quote the result, which we can go on to apply (see Liddle and Lyth
[14] for details).

(a) Perturb the scalar field φ = φ(t) + δφ(x, t)
(b) Expand in comoving wavenumbers δφ =

∑
(δφ)keik.x

(c) Linearized equation for classical evolution
(d) Quantize theory
(e) Find solution with initial condition giving

flat space quantum theory (k 	 aH)
(f) Find asymptotic value for k � aH 〈|δφk|2〉 = H2/2k3

(g) Relate field perturbation to metric Rk = H δφk/φ̇
or curvature perturbation

Unfortunately, analytic results are not known for general inflation models.
The results given below are lowest-order in the SRA. There are results known
to second-order in slow-roll for arbitrary inflaton potentials. Power-law infla-
tion is the only standard model for which exact results are known.

The curvature perturbation Rk is so important because it provides the
vital bridge which allows us to link the primordial fluctuations in φ to the
physically observed matter fluctuations present today. The reason is that
it remains effectively constant for scales much greater than the co-moving
Hubble length, hence the scales that ‘freeze-in’ as they leave the Hubble
length during inflation, remain unaffected (apart from stretching due to the
Universe expanding) until they re-enter the Hubble radius much later in the
standard big bang era. Given the definition of the power spectra

Pg(k) =
k3

2π2 |δgk|
2 , (65)

then the amplitude of the density perturbation δ2H(k) = 4
25PR is given by

δ2H(k) =
4
25

k3

2π2

(
Hδφk

φ̇

)2

=

∣∣∣∣∣.
4
25

(
H

φ̇

)(
H

2π

)2
∣∣∣∣∣
k=aH

. (66)

Using the SRA this then gives

δH(k) =

√
512π
75

V 3/2G3/2

|V ′|

∣∣∣∣∣
k=aH

. (67)
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A similar calculation gives the amplitude of the gravitational waves

AG(k) =

√
32
75

V 1/2G

∣∣∣∣∣
k=aH

, (68)

where A2
G(k) = 1

25Pg(k).
The right-hand sides of the above equations are to be evaluated at the time

when the comoving wave number k = aH during inflation, which for a given
k corresponds to some particular value of φ. We see that the amplitude of
perturbations depends on the properties of the inflaton potential at the time
the scale crossed the Hubble radius during inflation. The relevant number of
e-foldings from the end of inflation is approximately given by

N � 62− ln
k

a0H0
(69)

Approximating this to to say that the scales of interest to us crossed outside
the Hubble radius 60 e-foldings before the end of inflation then gives

N � −8πG
∫ φend

φ

V

V ′ dφ , (70)

which tells us the value of φ to be substituted into (67) and (68).
We can apply this formalism to the specific example of the m2φ2/2 po-

tential. Inflation ends when ε = 1, so φend � 1/
√

4πG. 60 e-foldings before
this, gives φ60 � 3√

G
from (59), which in turn upon substitution yields

δH � 12m
√
G ; AG � 1.4m

√
G.

The COBE result corresponds to δH � 2× 10−5 (provided AG � δH), hence
m
√
G � 10−6 and we have an inflaton mass of m = 1013 GeV. Such a small

mass satisfies the condition V G2 < 1, which implies that φ < 1/(mG) �
106(1/

√
G). Since Ntot � 2πφ2G, we can get up to about 1013 e-foldings in

principle, compared with the 70 or so actually required.

4.8 Observational Consequences

The current high precision CMB experiments like BOOMERANG, MAXIMA
I and now WMAP are beginning to probe key features of the spectra, such
as the scale-dependence and the relative size of the two spectra. Again the
slow-roll parameters ε and η can be used to estimate these quantities for any
given inflation potential. The standard approximation used to describe the
spectra is the power-law approximation, where we take2

δ2H(k) ∝ kn−1 ; A2
G(k) ∝ knG , (71)

2 Cf. (53) in the contribution of J.L. Cervantes–Cota in this book.
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where the spectral indices3 n and nG are given by

n− 1 =
d ln δ2H
d ln k

; nG =
d lnA2

G

d ln k
. (72)

The power-law approximation is usually valid because only a limited range
of scales are observable, with the range 1 Mpc to 104 Mpc corresponding to
∆ ln k � 9.

The crucial equation we need is that relating φ values to when a scale k
crosses the Hubble radius,

d ln k
dφ

= 8πG
V

V ′ . (73)

This comes from the noticing the right hand side of the amplitude equations
are evaluated when k = aH, and during inflation Ḣ is very small compared to
the rate of change of a. Hence we can take d ln k = Hdt, from which it follows
k � expN . Then make use of (70). Direct differentiation then yields[14]

n = 1− 6ε+ 2η , (74)
nG = −2ε , (75)

where now ε and η are to be evaluated on the appropriate part of the potential.
A measure of the relevant importance of density perturbations and gra-

vitational waves is seen in the microwave background which gives gives

R ≡ CGW
�

CDP
�

� 4πε . (76)

where the C� are the contributions to the microwave multipoles. Briefly, the
temperature difference between two regions of the sky separated by (θ, φ) is
given in terms of spherical harmonics Y �m as ∆T/T =

∑
a�mY

�
m(θ, φ) where

C� = 〈|a�m|2〉; see (56) in the contribution of Jorge L. Cervantes–Cota in this
book.

From n, nG and R, it follows that if and only if ε � 1 and |η| � 1 do
we get n � 1 and R � 0 whereas gravitational waves can have a significant
effect even if ε is quite a bit smaller than one.

Different models predict different things which implies that large-scale
structure observations, and especially microwave background observations,
can strongly discriminate between inflationary models. When they are made,
most existing inflation models will be ruled out. As an example the recent
WMAP data appears to be placing the λφ4 model under some pressure [8].
Fortunately, inflation as an idea has one very useful and hopefully unique test,
which will allow it to be verified or ruled out, independent of the particular

3 The scalar spectral index, n, is sometimes referred as ns.
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Table 1. The spectral index and gravitational wave contribution for a range of
inflation models – taken from Liddle - astro-ph/9910110.

MODEL POTENTIAL n R

Polynomial φ2 0.97 0.1
chaotic inflation φ4 0.95 0.2
Power-law inflation exp(−λφ) any n < 1 2π(1 − n)
‘Natural’ inflation 1 + cos(φ/f) any n < 1 0
Hybrid inflation (standard) 1 + Bφ2 1 0
Hybrid inflation (extreme) 1 + Bφ2 1 < n < 1.15 ∼ 0

model being investigated. There exists a consistency equation

R = −2πnG , (77)

independent of the choice of inflationary model (though it does rely on the
slow-roll and power-law approximations). There are no other models that
produce such a relation, unfortunately as we have already seen it may turn
out that the gravitational wave contribution is so small that the consistency
equation can never be verified!

4.9 The Cosmological Parameters

Cosmologists are aiming to fully understand and explain the origin and con-
tents of our Universe, and this includes all the parameters that make it up.
So far, we have discussed three primordial ones, δH , n and R which describe
the initial perturbations laid down in the first 10−34 sec or so. Most of the
perturbations except the largest ones just re-entering the horizon today, have
been heavily processed by real astrophysics to give the non-linear features we
observe. We can break the parameters up into cosmological and inflationary:

Inflationary parameters: δH , n , nG , R , dn/d ln k ·

Cosmological parameters: h ,Ωbaryon , ΩCDM , ΩHDM , ΩLambda , k , g∗ , τ ·,

where g∗ is the number of massless species of particles and τ is the reionisation
optical depth. As we mentioned earlier, through a combination of observa-
tions and parameter fitting techniques these parameters are already being
constrained The recent WMAP data coupled with other astronomical data
have led to the following published constraints: n = 1.13± 0.08, dn/d ln k =
−0.055+0.028

−0.029, Ωmatter + ΩΛ = 1.02 ± .002, with Ωmatterh
2 = .135+.008

−.009 and
Ωbaryonsh

2 = .0224± .0009[6, 8]. Note there may be tentative evidence for a
running of the spectral index, something that would be highly significant if
it holds.

The COBE normalization allows the energy scale associated with inflation
to be determined, since it is probing perturbations still in their primordial
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form, dependent only on the initial seed perturbations. Using the present
Hubble scale, δH ≡ δH(k = a0H0), to be given by the COBE normalisation

δH � 2× 10−5 , (78)

then since
δ2H =

32
75
G2 V

1
ε
, (79)

this implies
V 1/4 � 10−3/

√
G � 1016 GeV , (80)

at the time when observable scales crossed outside the horizon. A scale con-
sistent with many GUT models.

5 String Cosmology

String theory, and its most recent incarnation, that of M-theory, has been
accepted by many as the most likely candidate theory to unify the forces of
nature as it includes General Relativity in a consistent quantum theory. If
it is to play such a pivotal role in particle physics, it should also include in
it all of cosmology. It should provide the initial conditions for the Universe,
perhaps even explain away the singularity associated with the standard big
bang. It should also provide a mechanism for explaining the observed density
fluctuations, perhaps by providing the inflaton field or some other mechanism
which would lead to inflation. Should the observations survive the test of
time, string theory should be able to provide a mechanism to explain the
current accelerated expansion of the Universe. In other words, even though
it is strictly a theory which can unify gravity with the other forces in the
very early Universe, for consistency, as a theory of everything it will have
a great deal more to explain. In this article, we will introduce some of the
developments that have occurred in string cosmology over the past decade
or so, initially basing the discussion on an analyse of the low energy limit
of string theory, and then later extending it to include branes arising in
Heterotic M-theory.

5.1 Dilaton-Moduli Cosmology (Pre-Big Bang)

Strings live in 4+d spacetime dimensions, with the extra d dimensions
being compactified. For homogeneous, four–dimensional cosmologies, where
all fields are uniform on the surfaces of homogeneity, we can consider the
compactification of the (4 + d)–dimensional theory on an isotropic d–torus.
The radius, or ‘breathing mode’ of the internal space, is then parameterized
by a modulus field, β, and determines the volume of the internal dimensions.
We can then assume that the (4 + d)–dimensional metric is of the form
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ds2 = −dt2 + gijdx
idxj + e

√
2/dβδabdX

adXb (81)

where indices run from (i, j) = (1, 2, 3) and (a, b) = (4, . . . , 3 + d) and δab is
the d–dimensional Kronecker delta. The modulus field β is normalized in such
a way that it becomes minimally coupled to gravity in the Einstein frame.

The low energy action that is commonly used as a starting point for string
cosmology is the four dimensional effective Neveu-Schwarz- Neveu-Schwarz
(NS-NS) action given by:

S∗ =
∫
d4x

√
|g|e−ϕ

[
R+ (∇ϕ)2 − 1

2
(∇β)2 − 1

2
e2ϕ (∇σ)2

]
, (82)

where ϕ is the effective dilaton in four dimensions, and σ is the pseudo–scalar
axion field which is dual to the fundamental NS–NS three–form field strength
present in string theory, the duality being given by

Hµνλ = εµνλκ eϕ∇κσ. (83)

The dimensionally reduced action (82) may be viewed as the prototype
action for string cosmology because it contains many of the key features
common to more general actions. Cosmological solutions to these actions
have been extensively discussed in the literature – for a review see [16]. Some
of them play a central role in the pre–big bang inflationary scenario, first
proposed by Veneziano [17, 18]. An important point can be seen immediately
in (82) where there is a non-trivial coupling of the dilaton to the axion field,
a coupling which will play a key role later on when we are investigating the
density perturbations arising in this scenario.

All homogeneous and isotropic external four–dimensional spacetimes can
be described by the Friedmann-Robertson-Walker (FRW) metric. The general
line element in the string frame can be written as

ds24 = a2(η)
{
−dη2 + dΩ2

κ

}
, (84)

where a(η) is the scale factor of the universe, η is the conformal time and
dΩ2

κ is the line element on a 3-space with constant curvature κ:

dΩ2
κ = dψ2 +

(
sin
√
κψ√
κ

)2 (
dθ2 + sin2 θdϕ2) (85)

To be compatible with a homogeneous and isotropic metric, all fields, inclu-
ding the pseudo–scalar axion field, must be spatially homogeneous.

The models with vanishing form fields, but time-dependent dilaton and
moduli fields, are known as dilaton-moduli-vacuum solutions. In the Einstein–
frame, these solutions may be interpreted as FRW cosmologies for a stiff
perfect fluid, where the speed of sound equals the speed of light. The dilaton
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and moduli fields behave collectively as a massless, minimally coupled scalar
field, and the scale factor in the Einstein frame is given by

ã = ã∗

√
τ

1 + κτ2 (86)

where ã ≡ e−ϕ/2a, ã∗ is a constant and we have defined a new time variable:

τ ≡



κ−1/2| tan(κ1/2η)| for κ > 0
|η| for κ = 0
|κ|−1/2| tanh(|κ|1/2η)| for κ < 0

. (87)

The time coordinate τ diverges at both early and late times in models which
have κ ≥ 0, but τ → |κ|−1/2 in negatively curved models. There is a curvature
singularity at η = 0 with ã = 0 and the model expands away from it for η > 0
or collapses towards it for η < 0. The expanding, closed models recollapse at
η = ±π/2 and there are no bouncing solutions in this frame.

The corresponding string frame scale factor, dilaton and modulus fields
are given by the ‘rolling radii’ solutions [19]

a = a∗

√
τ1+

√
3 cos ξ∗

1 + κτ2 , (88)

eϕ = eϕ∗τ
√

3 cos ξ∗ , (89)

eβ = eβ∗τ
√

3 sin ξ∗ (90)

The integration constant ξ∗ determines the rate of change of the effective
dilaton relative to the volume of the internal dimensions. Figures 1 and 2
show the dilaton-vacuum solutions in flat FRW models when stable compac-
tification has occurred, so that the volume of the internal space is fixed, with
ξ∗ mod π = 0.

The solutions just presented have a scale factor duality which when ap-
plied simultaneously with time reversal implies that the Hubble expansion
parameter H ≡ d(ln a)/dt remains invariant, H(−t) → H(t), whilst its first
derivative changes sign, Ḣ(−t) → −Ḣ(t). A decelerating, post–big bang so-
lution – characterized by ȧ > 0, ä < 0 and Ḣ < 0 – is mapped onto a pre–big
bang phase of inflationary expansion, since ä/a = Ḣ +H2 > 0. The Hubble
radius H−1 decreases with increasing time and the expansion is therefore
super-inflationary. Thus, the pre-big bang cosmology (κ = 0 case in (88–
90)) is one that has a period of super-inflation driven simply by the kinetic
energy of the dilaton and moduli fields [17, 18]. This is related by duality to
the usual FRW post–big bang phase. The two branches are separated by a
curvature singularity, however, and it is not clear how the transition between
the pre– and post–big bang phases might proceed. This will be the focus of
attention in Sect. 5.
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Fig. 1. String frame scale factor, a, as a function of conformal time, η, for flat
κ = 0 FRW cosmology in dilaton-vacuum solution in (88) with ξ∗ = 0 (dashed-
line), ξ∗ = π (dotted line) and dilaton-axion solution in (93) with r =

√
3 (solid

line). The (+) and (−) branches are defined in the text.

Fig. 2. Dilaton, eϕ, as a function of conformal time, η, for flat κ = 0 FRW cosmo-
logy in dilaton-vacuum solution in (89) with ξ∗ = 0 (dashed-line), ξ∗ = π (dotted
line) and dilaton-axion solution in (92) with r =

√
3 (solid line).

The solution for a flat (κ = 0) FRW universe corresponds to the well–
known monotonic power-law, or ‘rolling radii’, solutions. For cos ξ∗ < −1/

√
3

there is accelerated expansion, i.e., inflation, in the string frame for η < 0
and eϕ → 0 as t → −∞, corresponding to the weak coupling regime. The
expansion is an example of ‘pole–law’ inflation [20, 21].

The solutions have semi-infinite proper lifetimes. Those starting from a
singularity at t = 0 for t ≥ 0 are denoted as the (–) branch in [22], while those
which approach a singularity at t = 0 for t ≤ 0 are referred to as the (+)
branch (see Figs. 1–2). These (+/−) branches do not refer to the choice of sign
for cos ξ∗. On either the (+) or (−) branches of the dilaton-moduli-vacuum
cosmologies we have a one-parameter family of solutions corresponding to the
choice of ξ∗, which determines whether eϕ goes to zero or infinity as t → 0.
These solutions become singular as the conformally invariant time parameter
η ≡

∫
dt/a(t)→ 0 and there is no way of naively connecting the two branches

based simply on these solutions [22].
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In the Einstein frame, where the dilaton field is minimally coupled to
gravity, the scale factor given in (86), becomes

ã = ã∗ |η|1/2 (91)

As η → 0 on the (+) branch, the universe is collapsing with ã → 0, and
the comoving Hubble length |d(ln ã)/dη|−1 = 2|η| is decreasing with time.
Thus, in both frames there is inflation taking place in the sense that a given
comoving scale, which starts arbitrarily far within the Hubble radius in either
conformal frame as η → −∞, inevitably becomes larger than the Hubble
radius in that frame as η → 0. The significance of this is that it means that
perturbations can be produced in the dilaton, graviton and other matter
fields on scales much larger than the present Hubble radius from quantum
fluctuations in flat spacetime at earlier times – this is a vital property of any
inflationary scenario.

For completeness, it is worth mentioning that these solutions can be exten-
ded to include a time-dependent axion field, σ(t), by exploiting the SL(2, R)
S-duality invariance of the four–dimensional, NS-NS action [19]. We now turn
our attention to this fascinating case.

5.2 Dilaton-Moduli-Axion Cosmologies

The cosmologies containing a non–trivial axion field can be generated imme-
diately due to the global SL(2, R) symmetry of the action (82). The resultant
solutions are [19]:

eϕ =
eϕ∗

2

{(
τ

τ∗

)−r
+
(
τ

τ∗

)r}
, (92)

a2 =
a2

∗
2(1 + κτ2)

{(
τ

τ∗

)1−r
+
(
τ

τ∗

)1+r
}
, (93)

eβ = eβ∗τ s , (94)

σ = σ∗ ± e−ϕ∗

{
(τ/τ∗)−r − (τ/τ∗)r

(τ/τ∗)−r + (τ/τ∗)r

}
, (95)

where the exponents are related via

r2 + s2 = 3 , (96)

and without loss of generality we may take r ≥ 0.
In all cases, the dynamics of the axion field places a lower bound on the

value of the dilaton field, ϕ ≥ ϕ∗. In so doing, the axion smoothly inter-
polates between two dilaton–moduli–vacuum solutions, where its dynamical
influence asymptotically becomes negligible. The effects of time–dependent
axion solutions for the scale-factor and dilaton are plotted in Figs. 1 and 2
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for the flat FRW model when the modulus field is trivial (s = 0). When the
internal space is static, it is seen that the string frame scale factors exhibit a
bounce. However we still have a curvature singularity in the Einstein frame
as τ → 0. The actual time-dependent axion solutions is shown in Fig. 3.

Fig. 3. Axion, σ, as a function of conformal time, η, for flat κ = 0 FRW cosmology
in dilaton-axion solution in (95) with r =

√
3 (solid line).

The spatially flat solutions reduce to the power law, dilaton–moduli–
vacuum solution given in (88–90) at early and late times. When η → ±∞
the solution approaches the vacuum solution with

√
3 cos ξ∗ = +r, while as

η → 0 the solution approaches the
√

3 cos ξ∗ = −r solution. Thus, the axion
solution interpolates between two vacuum solutions related by an S-duality
transformation ϕ → −ϕ. When the internal space is static the scale factor
in the string frame is of the form a ∝ t1/

√
3 as η → ±∞, while as η → 0 the

solution becomes a ∝ t−1/
√

3. These two vacuum solutions are thus related
by a scale factor duality that inverts the spatial volume of the universe. This
asymptotic approach to dilaton–moduli–vacuum solutions at early and late
times will lead to a particularly simple form for the semi-classical pertur-
bation spectra that is independent of the intermediate evolution. However,
there is a down side to these solutions from the standpoint of pre big bang
cosmologies. As η → ±∞ and as η → 0 the solution approaches the strong
coupling regime where eϕ → ∞. Thus there is no weak coupling limit, the
axion interpolates between two strong coupling vacuum solutions. We will
shortly see how a similar affect arises when we include a moving brane in the
dilaton-moduli picture, as it too mimics the behaviour of a non-minimally
coupled axion field.

The overall dynamical effect of the axion field is negligible except near
τ ≈ τ∗, when it leads to a bounce in the dilaton field. Within the context of
M–theory cosmology, the radius of the eleventh dimension is related to the
dilaton by r11 ∝ eϕ/3 when the modulus field is fixed. This bound on the
dilaton may therefore be reinterpreted as a lower bound on the size of the
eleventh dimension.
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5.3 Fine Tuning Issues

The question over the viability of the initial conditions required in the pre
Big Bang scenario has been a cause for many an argument both in print and
in person. Since both Ḣ and ϕ̇ are positive in the pre–big bang phase, the
initial values for these parameters must be very small. This raises a number
of important issues concerning fine–tuning in the pre–big bang scenario [23,
24, 25, 26, 27, 28, 29]. There needs to be enough inflation in a homogeneous
patch in order to solve the horizon and flatness problems which means that
the dilaton driven inflation must survive for a sufficiently long period of time.
This is not as trivial as it may appear, however, since the period of inflation
is limited by a number of factors.

The fundamental postulate of the scenario is that the initial data for in-
flation lies well within the perturbative regime of string theory, where the
curvature and coupling are very small [18]. Inflation then proceeds for suf-
ficiently homogeneous initial conditions [27, 28], where time derivatives are
dominant with respect to spatial gradients, and the universe evolves into a
high curvature and strongly–coupled regime. Thus, the pre–big bang initial
state should correspond to a cold, empty and flat vacuum state. Initial the
universe would have been huge relative to the quantum scale and hence should
have been well described by classical solutions to the string effective action.
This should be compared to the initial state which describes the standard hot
big bang, namely a dense, hot, and highly curved region of spacetime. This
is quite a contrast and a primary goal of pre–big bang cosmology must be
to develop a mechanism for smoothly connecting these two regions, since we
believe that the standard big bang model provides a very good representation
of the current evolution of the universe.

Our present observable universe appears very nearly homogeneous on suf-
ficiently large scales. In the standard, hot big bang model, it corresponded
to a region at the Planck time that was 1030 times larger than the horizon
size, lPl. This may be viewed as an initial condition in the big bang model or
as a final condition for inflation. It implies that the comoving Hubble radius,
1/(aH), must decrease during inflation by a factor of at least 1030 if the
horizon problem is to be solved. For a power law expansion, this implies that∣∣∣∣ηfηi

∣∣∣∣ ≤ 10−30 (97)

where subscripts i and f denote values at the onset and end of inflation,
respectively. In the pre–big bang scenario, (89) implies that the dilaton grows
as eϕ ∝ |η|−

√
3, and since at the start of the post–big bang epoch, the string

coupling, gs = eϕ/2, should be of order unity, the bound (97) implies that
the initial value of the string coupling is strongly constrained, gs,i ≤ 10−26.
Turner and Weinberg interpret this constraint as a severe fine–tuning problem
in the scenario, because inflation in the string frame can be delayed by the
effects of spatial curvature [23]. It was shown by Clancy, Lidsey and Tavakol
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that the bounds are further tightened when spatial anisotropy is introduced,
actually preventing pre–big bang inflation from occurring [24]. Moreover, as
we have seen the dynamics of the NS–NS axion field also places a lower bound
on the allowed range of values that the string coupling may take [19]. In
the standard inflationary scenario, where the expansion is quasi–exponential,
the Hubble radius is approximately constant and a ∝ (−η)−1. Thus, the
homogeneous region grows by a factor of |ηi/ηf | as inflation proceeds. During
a pre–big bang epoch, however, a ∝ (−η)−1/1+

√
3 and the increase in the size

of a homogeneous region is reduced by a factor of at least 1030
√

3/(1+
√

3) ≈
1019 relative to that of the standard inflation scenario. This implies that the
initial size of the homogeneous region should exceed 1019 in string units if
pre–big bang inflation is to be successful in solving the problems of the big
bang model [17, 25]. The occurrence of such a large number was cited by
Kaloper, Linde and Bousso as a serious problem of the pre–big bang scenario,
because it implies that the universe must already have been large and smooth
by the time inflation began [25].

On the other hand, Gasperini has emphasized that the initial homoge-
neous region of the pre–big bang universe is not larger than the horizon even
though it is large relative to the string/Planck scale [30]. The question that
then arises when discussing the naturalness, or otherwise, of the above initial
conditions is what is the basic unit of length that should be employed. At
present, this question has not been addressed in detail.

Veneziano and collaborators conjectured that pre–big bang inflation ge-
nerically evolves out of an initial state that approaches the Milne universe in
the semi–infinite past, t→ −∞ [27, 28]. The Milne universe may be mapped
onto the future (or past) light cone of the origin of Minkowski spacetime and
therefore corresponds to a non–standard representation of the string pertur-
bative vacuum. The proposal was that the Milne background represents an
early time attractor, with a large measure in the space of initial data. If so,
this would provide strong justification for the postulate that inflation begins
in the weak coupling and curvature regimes and would render the pre-big
bang assumptions regarding the initial states as ‘natural’. However, Clancy
et al. took a critical look at this conjecture and argued that the Milne uni-
verse is an unlikely past attractor for the pre–big bang scenario [31]. They
suggested that plane wave backgrounds represent a more generic initial state
for the universe [24]. Buonanno, Damour and Veneziano have subsequently
proposed that the initial state of the pre–big bang universe should correspond
to an ensemble of gravitational and dilatonic waves [29]. They refer to this as
the state of ‘asymptotic past triviality’. When viewed in the Einstein frame
these waves undergo collapse when certain conditions are satisfied. In the
string frame, these gravitationally unstable areas expand into homogeneous
regions on large scales.
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To conclude this section, it is clear that the question of initial conditions
in the pre–big bang scenario is currently unresolved. We turn our attention
now to another unresolved problem for the scenario – the Graceful Exit.

5.4 The Graceful Exit

We have seen how in the pre Big Bang scenario, the Universe expands from a
weak coupling, low curvature regime in the infinite past, enters a period of in-
flation driven by the kinetic energy associated with the massless fields present,
before approaching the strong coupling regime as the string scale is reached.
There is then a branch change to a new class of solutions, corresponding to a
post big bang decelerating Friedman-Robertson-Walker era. In such a scena-
rio, the Universe appears to emerge because of the gravitational instability
of the generic string vacua – a very appealing picture, the weak coupling, low
curvature regime is a natural starting point to use the low energy string effec-
tive action. However, how is the branch change achieved without hitting the
inevitable looking curvature singularity associated with the strong coupling
regime? The simplest version of the evolution of the Universe in the pre-big
bang scenario inevitably leads to a period characterised by an unbounded
curvature. The current philosophy is to include higher-order corrections to
the string effective action. These include both classical finite size effects of
the strings (α′ corrections arising in higher order derivatives), and quantum
string loop corrections (gs corrections). The list of authors who have worked
in this area is too great to mention here, for a detailed list see [16, 32]. A
series of key papers were written by Brustein and Madden, in which they
demonstrated that it is possible to include such terms and successfully have
an exit from one branch to the other [33, 34]. More recently this approach has
been generalised by including combinations of classical and quantum correc-
tions [35]. Brustein and Madden [33, 34] made use of the result that classical
corrections can stabilize a high curvature string phase while the evolution is
still in the weakly coupled regime[36]. The crucial new ingredient that they
added was the inclusion of terms of the type that may result from quan-
tum corrections to the string effective action and which induce violation of
the null energy condition (NEC – The Null Energy Condition is satisfied if
ρ+ p ≥ 0, where ρ and p represent the effective energy density and pressure
of the additional sources). Such extra terms mean that evolution towards a
decelerated FRW phase is possible. Of course this violation of the null energy
condition can not continue indefinitely, and eventually it needs to be turned
off in order to stabilise the dilaton at a fixed value, perhaps by capture in a
potential minimum or by radiation production – another problem for string
theory!

The analysis of [33] resulted in a set of necessary conditions on the evolu-
tion in terms of the Hubble parameters HS in the string frame, HE in the Ein-
stein frame and the dilaton ϕ, where they are related byHE = eϕ/2(HS− 1

2 ϕ̇).
The conditions were:
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– Initial conditions of a (+) branch and HS , ϕ̇ > 0 require HE < 0.
– A branch change from (+) to (−) has to occur while HE < 0.
– A successful escape and exit completion requires NEC violation accom-

panied by a bounce in the Einstein frame after the branch change has
occurred, ending up with HE > 0.

– Further evolution is required to bring about a radiation dominated era in
which the dilaton effectively decouples from the “matter” sources.

There is as yet no definitive calculation of the full loop expansion of string
theory. This is of course a big problem if we want to try and include quantum
effects in analysing the graceful exit issue. The best we can do, is to propose
plausible terms that we hope are representative of the actual terms that will
eventually make up the loop corrections. We believe that the string coupling
gS actually controls the importance of string-loop corrections, so as a first
approximation to the loop corrections we multiplied each term of the classical
correction by a suitable power of the string coupling [33, 34].

Not surprisingly the field equations need to be solved numerically, but this
can be done and the solutions are very encouraging as they show there exists
a large class of parameters for which successful graceful exits are obtained
[35]. One such example is shown in Fig. 4.
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Fig. 4. Hubble expansion in the S-frame as a function of the dilaton for a successful
exit. The y-axis corresponds to H, and the x-axis to 2ϕ̇/3. The initial conditions for
the simulations have been set with respect to the lowest-order analytical solutions
at tS = −1000. For details see [35]

We should point out though, that although it is possible to have a suc-
cessful exit, it is not so easy to ensure that the exit takes place in a weakly
coupled regime, and typically we found that as the exit was approached
ϕfinal ∼ 0.1 − −0.3. Thus it is fair to say that although great progress has
been made on the question of Graceful Exit in string cosmology, it remains
a problem in search of the full solution. It is a fascinating problem, and not
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surprisingly alternative prescriptions which aim to address this issue have
recently been proposed, involving colliding branes [37] and Cyclic universes
[39]. We now turn our attention to the observational consequences of string
cosmology, in particular the generation of the observed cosmic microwave
background radiation.

5.5 Density Perturbations in String Cosmology

We have to consider inhomogeneous perturbations that may be generated due
to vacuum fluctuations, and follow the formalism pioneered by Mukhanov and
collaborators [40, 41]. During a period of accelerated expansion the comoving
Hubble length, |d(ln a)/dη|−1, decreases and vacuum fluctuations which are
assumed to start in the flat-spacetime vacuum state may be stretched up
to exponentially large scales. The precise form of the spectrum depends on
the expansion of the homogeneous background and the couplings between
the fields. The comoving Hubble length, |d(ln ã)/dη|−1 = 2|η|, does indeed
decrease in the Einstein frame during the contracting phase when η < 0.
Because the dilaton, moduli fields and graviton are minimally coupled to this
metric, this ensures that small-scale vacuum fluctuations will eventually be
stretched beyond the comoving Hubble scale during this epoch.

As we remarked earlier, the axion field is taken to be a constant in the
classical pre-big bang solutions. However, even when the background axion
field is set to a constant, there will inevitably be quantum fluctuations in this
field. We will see that these fluctuations can not be neglected and, moreover,
that they are vital if the pre-big bang scenario is to have any chance of
generating the observed density perturbations.

In the Einstein frame, the first-order perturbed line element can be written
as

ds̃2 = ã2(η)
{
−(1 + 2Ã)dη2 + 2B̃,idηdxi + [δij + hij ] dxidxj

}
, (98)

where Ã and B̃ are scalar perturbations and hij is a tensor perturbation.

5.6 Scalar Metric Perturbations

First of all we consider the evolution of linear metric perturbations about
the four-dimensional spatially flat dilaton-moduli-vacuum solutions given in
(88–90). Considering a single Fourier mode, with comoving wavenumber k,
the perturbed Einstein equations yield the evolution equation

Ã′′ + 2h̃Ã′ + k2Ã = 0 , (99)

plus the constraint
Ã = −(B̃′ + 2h̃B̃) , (100)
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where h̃ is the Hubble parameter in the Einstein frame derived from (91),
and Ã′ ≡ dÃ

dη . In the spatially flat gauge we have the simplification that the
evolution equation for the scalar metric perturbation, (99), is independent
of the evolution of the different massless scalar fields (dilaton, axion and
moduli), although they will still be related by the constraint

Ã =
ϕ′

4h̃
δϕ+

β′

4h̃
δβ , (101)

where δϕ and δβ are the perturbations in ϕ and β respectively. To first-
order, the metric perturbation, Ã, is determined solely by the dilaton and
moduli field perturbations, although its evolution is dependent only upon the
Einstein frame scale factor, ã(η), given by (91), which in turn is determined
solely by the stiff fluid equation of state for the homogeneous fields in the
Einstein frame.

One of the most useful quantities we can calculate is the curvature pertur-
bation on uniform energy density hypersurfaces (as kη → 0). It is commonly
denoted by ζ [42]and in the Einstein frame, we obtain

ζ =
Ã

3
, (102)

in any dilaton–moduli–vacuum or dilaton–moduli–axion cosmology [43, 46].
The significance of ζ is that in an expanding universe it becomes constant

on scales much larger than the Hubble scale (|kη| � 1) for purely adiabatic
perturbations. In single-field inflation models this allows one to compute the
density perturbation at late times, during the matter or radiation dominated
eras, by equating ζ at “re-entry” (k = ãH̃) with that at horizon crossing
during inflation. To calculate ζ, hence the density perturbations induced in
the pre-big bang scenario we can either use the vacuum fluctuations for the
canonically normalised field at early times/small scales (as kη → −∞) or
use the amplitude of the scalar field perturbation spectra to normalise the
solution for Ã. This yields, (after some work), the curvature perturbation
spectrum on large scales/late times (as kη → 0):

Pζ =
8
π2 l

2
PlH̃

2(−kη)3[ln(−kη)]2 , (103)

where lPl is the Planck length in the Einstein frame and remains fixed throug-
hout. The scalar metric perturbations become large on superhorizon scales
(|kη| < 1) only near the Planck era, H̃2 ∼ l−2

Pl .
The spectral index of the curvature perturbation spectrum is conventio-

nally given as [44]

n ≡ 1 +
d lnPζ
d ln k

(104)

where n = 1 corresponds to the classic Harrison-Zel’dovich spectrum for
adiabatic density perturbations favoured by most models of structure forma-
tion in our universe. By contrast the pre–big bang era leads to a spectrum of
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curvature perturbations with n = 4. Such a steeply tilted spectrum of metric
perturbations implies that there would be effectively no primordial metric
perturbations on large (super-galactic) scales in our present universe if the
post-Big bang era began close to the Planck scale. Fortunately, as we shall
see later, the presence of the axion field could provide an alternative spec-
trum of perturbations more suitable as a source of large-scale structure. The
pre-big bang scenario is not so straightforward as in the single field inflation
case, because the full low-energy string effective action possesses many fields
which can lead to non-adiabatic perturbations. This implies that density per-
turbations at late times may not be simply related to ζ alone, but may also
be dependent upon fluctuations in other fields.

5.7 Tensor Metric Perturbations

The gravitational wave perturbations, hij , are both gauge and conformally
invariant. They decouple from the scalar perturbations in the Einstein frame
to give a simple evolution equation for each Fourier mode

h′′
k + 2h̃ h′

k + k2hk = 0 . (105)

This is exactly the same as the equation of motion for the scalar perturbation
given in (99) and has the same growing mode in the long wavelength (|kη| →
0) limit given by (103). The spectrum depends solely on the dynamics of
the scale factor in the Einstein frame given in (91), which remains the same
regardless of the time-dependence of the different dilaton, moduli or axion
fields. It leads to a spectrum of primordial gravitational waves steeply growing
on short scales, with a spectral index nT = 3 [18], in contrast to conventional
inflation models which require nT < 0 [44]. The graviton spectrum appears
to be a robust and distinctive prediction of any pre-big bang type evolution
based on the low-energy string effective action, although recently in the non-
singular model of Sect. 5, we have demonstrated how passing through the
string phase could lead to a slight shift in the tilt closer to nT ∼ 2 [45]

5.8 Dilaton–Moduli–Axion Perturbation Spectra

We will now consider inhomogeneous linear perturbations in the fields about
a homogeneous background given by [46, 47]

ϕ = ϕ(η) + δϕ(x, η), σ = σ(η) + δσ(x, η), β = β(η) + δβ(x, η) . (106)

The perturbations can be re-expressed as a Fourier series in terms of Fourier
modes with comoving wavenumber k. Considering the production of dilaton,
moduli and axion perturbations during a pre-big bang evolution where the
background axion field is constant, σ′ = 0, the evolution of the homogeneous
background fields are given in (89–90). The dilaton and moduli fields both
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evolve as minimally coupled massless fields in the Einstein frame. In parti-
cular, the dilaton perturbations are decoupled from the axion perturbations
and the equations of motion in the spatially flat gauge become

δϕ′′ + 2h̃δϕ′ + k2δϕ = 0 , (107)

δβ′′ + 2h̃δβ′ + k2δβ = 0 , (108)

δσ′′ + 2h̃δσ′ + k2δσ = −2ϕ′δσ′ , (109)

Note that these evolution equations for the scalar field perturbations defined
in the spatially flat gauge are automatically decoupled from the metric per-
turbations, although as we have said they are still related to the scalar metric
perturbation, Ã through (101).

On the (+) branch, i.e., when η < 0, we can normalise modes at early
times, η → −∞, where all the modes are far inside the Hubble scale, k 	
|η|−1, and can be assumed to be in the flat-spacetime vacuum. Whereas in
conventional inflation where we have to assume that this result for a quantum
field in a classical background holds at the Planck scale, in this case the
normalisation is done in the zero-curvature limit in the infinite past. Just as
in conventional inflation, this produces perturbations on scales far outside
the horizon, k � |η|−1, at late times, η → 0−.

Conversely, the solution for the (−) branch with η > 0 is dependent upon
the initial state of modes far outside the horizon, k � |η|−1, at early times
where η → 0. The role of a period of inflation, or of the pre-big bang (+)
branch, is precisely to set up this initial state which otherwise appears as a
mysterious initial condition in the conventional (non-inflationary) big bang
model.

The power spectrum for perturbations is commonly denoted by

Pδx ≡
k3

2π2 |δx|
2 , (110)

and thus for modes far outside the horizon (kη → 0) we have

Pδϕ =
32
π2 l

2
PlH̃

2(−kη)3[ln(−kη)]2 , (111)

Pδβ =
32
π2 l

2
PlH̃

2(−kη)3[ln(−kη)]2 , (112)

where H̃ ≡ ã′/ã2 = 1/(2ãη) is the Hubble rate in the Einstein frame. The
amplitude of the perturbations grows towards small scales, but only becomes
large for modes outside the horizon (|kη| < 1) when H̃2 ∼ l−2

Pl , i.e., the Planck
scale in the Einstein frame. The spectral tilt of the perturbation spectra is
given by

n− 1 ≡ ∆nx =
d lnPδx
d ln k

(113)

which from (111) and (112) gives ∆nϕ = ∆nβ = 3 (where we neglect the
logarithmic dependence). This of course is the same steep blue spectra we
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obtained earlier for the metric perturbations, which of course is far from the
observed near H-Z scale invariant spectrum. We have recently examined the
case of the evolution of the field perturbations in the non-singular cosmologies
of Sect. 5 and as with the metric-perturbation case, amongst a number of new
features that emerge there is a slight shift produced in the spectral index [48].

While the dilaton and moduli fields evolve as massless minimally coupled
scalar fields in the Einstein frame, the axion field’s kinetic term still has a
non-minimal coupling to the dilaton field. This is evident in the equation of
motion, (109), for the axion field perturbations δσ. The non-minimal coupling
of the axion to the dilaton leads to a significantly different evolution to that
of the dilaton and moduli perturbations.

After some algebra, we find that the late time evolution in this case is
logarithmic with respect to −kη, (for µ 
= 0)

Pδσ = 64πl2PlC
2(µ)

(
e−ϕH̃

2π

)2

(−kη)3−2µ , (114)

where µ ≡ |
√

3 cos ξ∗| and the numerical coefficient

C(µ) ≡ 2µΓ (µ)
23/2Γ (3/2)

, (115)

approaches unity for µ→ 3/2.
The key result is that the spectral index can differ significantly from

the steep blue spectra obtained for the dilaton and moduli fields that are
minimally coupled in the Einstein frame. The spectral index for the axion
perturbations is given by [46, 47]

∆nσ = 3− 2
√

3| cos ξ∗| (116)

and depends crucially upon the evolution of the dilaton, parameterised by the
value of the integration constant ξ∗. The spectrum becomes scale-invariant as√

3| cos ξ∗| → 3/2, which if we return to the higher-dimensional underlying
theory corresponds to a fixed dilaton field in ten-dimensions. The lowest
possible value of the spectral tilt ∆nσ is 3− 2

√
3 � −0.46 which is obtained

when stable compactification has occurred and the moduli field β is fixed.
The more rapidly the internal dimensions evolve, the steeper the resulting
axion spectrum until for cos ξ∗ = 0 we have ∆nσ = 3 just like the dilaton
and moduli spectra.

When the background axion field is constant these perturbations, unlike
the dilaton or moduli perturbations, do not affect the scalar metric per-
turbations. Axion fluctuations correspond to isocurvature perturbations to
first-order. However, if the axion field does affect the energy density of the
universe at later times (for instance, by acquiring a mass) then the spectrum
of density perturbations need not have a steeply tilted blue spectrum such
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as that exhibited by the dilaton or moduli perturbations. Rather, it could
have a nearly scale-invariant spectrum as required for large-scale structure
formation. Such an exciting possibility has received a great deal of attention
recently, notably in [49, 50, 51, 52, 53], and could be a source for the ‘cur-
vaton’ field recently introduced by Lyth and Wands as a way of converting
isocurvature into adiabatic perturbations [54]. Time will tell if the axion has
any role to play in cosmological density perturbations although already it is
beginning to look as the curvaton route is an interesting one to follow in this
context [55, 56].

5.9 Smoking Guns?

Are there any distinctive features that we should be looking out for which
would act as an indicator that the early Universe underwent a period of
kinetic driven inflation? We have already mentioned the possibility of obser-
ving the presence of axion fluctuations in the cosmic microwave background
anisotropies. Some of the other smoking guns include:

– The spectrum of primordial gravitational waves steeply growing on short
scales, with a spectral index nT = 3, although of no interest on large
scales, such a spectrum could be observed by the next generation of gra-
vitational wave detectors such as the Laser Interferometric Gravitational
Wave Observatory (LIGO) if they are on the right scale [57, 58, 45]. The
current frequency of these waves depends on the cosmological model, and
in general we would require either an intermediate epoch of stringy in-
flation, or a low re-heating temperature at the start of the post-big bang
era [59] to place the peak of the gravitational wave spectrum at the right
scale. Nonetheless, the possible production of high amplitude gravitatio-
nal waves on detector scales in the pre–big bang scenario is in marked
contrast to conventional inflation models in which the Hubble parameter
decreases during inflation.

– Because the scalar and tensor metric perturbations obey the same evolu-
tion equation, their amplitude is directly related. The amplitude of gravi-
tational waves with a given wavelength is commonly described in terms of
their energy density at the present epoch. For the simplest pre–big bang
models this is given in terms of the amplitude of the scalar perturbations
as

Ωgw =
2
zeq
Pζ (117)

where zeq = 24000Ωoh2 is the red-shift of matter-radiation equality. The
advanced LIGO configuration will be sensitive to Ωgw ≈ 10−9 over a range
of scales around 100Hz. However, the maximum amplitude of gravitatio-
nal waves on these scales is constrained by limits on the amplitude of
primordial scalar metric perturbations on the same scale [59]. In particu-
lar, if the fractional over-density when a scalar mode re-enters the horizon
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during the radiation dominated era is greater than about 1/3, then that
horizon volume is liable to collapse to form a black hole with a lifetime
of the order the Hubble time and this would be evaporating today! If we
find PBH’s and gravitational waves together then this would indeed be
an exciting result for string cosmology!

– Evidence of a primordial magnetic field could have an interpretation in
terms of string cosmology. In string theory the dilaton is automatically
coupled to the electromagnetic field strength, for example in the heterotic
string effective action the photon field Lagrangian is of the form

L = e−ϕFµνFµν , (118)

where the field strength is derived from the vector potential, Fµν =
∇[µAν].
Now in an isotropic FRW cosmology the magnetic field must vanish to
zeroth-order, and thus the vector field perturbations are gauge-invariant
and we can neglect the metric back-reaction to first-order. In the radiation
gauge (A0 = 0, Ai|i = 0) then the field perturbations can be treated as
vector perturbations on the spatial hypersurfaces. The field perturbation
Ai turns out to have a clear unique dependence on the dilaton field. In fact
the time dependence of the dilaton (rather than the scale factor) leads
to particle production during the pre–big bang from an initial vacuum
state [60, 61, 62]. Using the pre–big bang solutions given in (88)–(90),
we find that the associated Power spectrum of the gauge fields have a
minimum tilt for the spectral index for ξ∗ = 0 when µ = (1 +

√
3)/2 with

a spectral tilt ∆nem = 4−
√

3 ≈ 2.3. This is still strongly tilted towards
smaller scales, which currently is too steep to be observably acceptable.

6 Dilaton-Moduli Cosmology
Including a Moving Five Brane

We turn our attention briefly to M-theory, and in particular to cosmologi-
cal solutions of four-dimensional effective heterotic M-theory with a moving
five-brane, evolving dilaton and T modulus [63]. It turns out that the five-
brane generates a transition between two asymptotic rolling-radii solutions,
in a manner analogous to the case of the NS-NS axion discussed in Sect. 3.
Moreover, the five-brane motion generally drives the solutions towards strong
coupling asymptotically. The analogous solutions to those presented in the
pre-big-bang involves a negative-time branch solution which ends in a brane
collision accompanied by a small-instanton transition. Such an exact solution
should be of interest bearing in mind the recent excitement that has been
generated over the Ekpyrotic Universe scenario, which involves solving for
the collision of two branes [37, 38].
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The four-dimensional low-energy effective theory we will be using is re-
lated to the underlying heterotic M-theory. Of particular importance for the
interpretation of the results is the relation to heterotic M-theory in five
dimensions, obtained from the 11-dimensional theory by compactification
on a Calabi-Yau three-fold. This five-dimensional theory provides an ex-
plicit realisation of a brane-world. The compactification of 11 dimensional
Horava-Witten theory, that is 11-dimensional supergravity on the orbifold
S1/Z2 × M10, to five dimensions on a Calabi-Yau three fold, leads to the
appearance of extra three-branes in the five-dimensional effective theory. Un-
like the “boundary” three-branes which are stuck to the orbifold fix points,
however, these three-branes are free to move in the orbifold direction, and
this leads to a fascinating new cosmology.

Our starting point is the four dimensional action

S = − 1
2κ2

P

∫
d4x
√
−g

[
1
2
R+

1
4
(∇ϕ)2 +

3
4
(∇β)2 +

q5
2
e(β−ϕ)(∇z)2

]
,

(119)
where ϕ is the effective dilaton in four dimensions, β is the size of the orbifold,
z is the modulus representing the position of the five brane and satisfies
0 < z < 1, and q5 is the five brane charge. Due to the non-trivial kinetic term
for z, solutions with exactly constant ϕ or β do not exist as soon as the five-
brane moves. Therefore, the evolution of all three fields is linked and (except
for setting z = const) cannot be truncated consistently any further. Looking
for cosmological solutions for simplicity, we assume the three-dimensional
spatial space to be flat. Our Ansatz then reads

ds2 = −e2νdτ2 + e2αdx2 (120)
ϕ = ϕ(τ) (121)
α = α(τ) (122)
β = β(τ) (123)
z = z(τ) (124)

The cosmological solutions are given by [63]

α =
1
3

ln
∣∣∣∣ t− t0T

∣∣∣∣ + α0 (125)

β = pβ,i ln
∣∣∣∣ t− t0T

∣∣∣∣ + (pβ,f − pβ,i) ln

(∣∣∣∣ t− t0T

∣∣∣∣
−δ

+ 1

)− 1
δ

+ β0 (126)

ϕ = pϕ,i ln
∣∣∣∣ t− t0T

∣∣∣∣ + (pϕ,f − pϕ,i) ln

(∣∣∣∣ t− t0T

∣∣∣∣
−δ

+ 1

)− 1
δ

+ ϕ0 (127)

z = d

(
1 +

∣∣∣∣ T

t− t0

∣∣∣∣
−δ)−1

+ z0 . (128)
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where t is the proper time, the time-scales t0 and T are arbitrary constants as
are the constants d and z0 which parameterise the motion of the five-brane.
For −∞ < t < t0 we are in the positive branch of the solutions and for
t0 < t <∞ we are in the negative branch.

We see that both expansion powers for the scale factor α are given by 1/3,
a fact which is expected in the Einstein frame. The initial and final expansion
powers for β and ϕ are less trivial and are subject to the constraint

3p2
β,n + p2

ϕ,n =
4
3

(129)

for n = i, f . These are mapped into one another by
(
pβ,f
pϕ,f

)
= P

(
pβ,i
pϕ,i

)
, P =

1
2

(
1 1
3 −1

)
. (130)

This map is its own inverse, that is P 2 = 1, which is a simple consequence of
time reversal symmetry. The power δ is explicitly given by

δ = pβ,i − pϕ,i . (131)

For δ < 0 we are in the negative branch and for δ > 0 we are in the positive
time branch. Finally, we have

ϕ0 − β0 = ln
(

2q5d2

3

)
. (132)

The solutions have the following interpretation: at early times, the system
starts in the rolling radii solution characterised by the initial expansion po-
wers pi while the five-brane is practically at rest. When the time approaches
|t − t0| ∼ |T | the five-brane starts to move significantly which leads to an
intermediate period with a more complicated evolution of the system. Then,
after a finite comoving time, in the late asymptotic region, the five-brane
comes to a rest and the scale factors evolve according to another rolling radii
solution with final expansion powers pf . Hence the five-brane generates a
transition from one rolling radii solution into another one. While there are
perfectly viable rolling radii solutions which become weakly coupled in at
least one of the asymptotic regions, the presence of a moving five-brane al-
ways leads to strong coupling asymptotically, a phenomenon similar to what
we observed in the dilaton-moduli-axion dynamics (see Fig. 2).

These general results can be illustrated by an explicit example. Focusing
on the negative-time branch and considering the solutions with an approxi-
mately static orbifold at early time, Fig. 5 shows the evolution of β and ϕ,
whereas Fig. 6 shows the evolution of the dynamical brane.

At early times, |t− t0| 	 |T |, the evolution is basically of power-law type
with powers pi, because at early time the five-brane is effectively frozen at
z � d + z0 and does not contribute a substantial amount of kinetic energy.
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Fig. 5. Time-behaviour of β (upper curve) and ϕ (lower curve).

This changes dramatically once we approach the time |t − t0| ∼ |T |. In a
transition period around this time, the brane moves from its original position
by a total distance d and ends up at z � z0. At the same time, this changes
the behaviour of the moduli β and ϕ until, at late time |t| � |T |, they
correspond to another rolling radii solution with powers controlled by pf .
Concretely, the orbifold size described by β turns from being approximately
constant at early time to expanding at late time, while the Calabi-Yau size
controlled by ϕ undergoes a transition from expansion to contraction. We
also find that as with the axion case discussed earlier, the solution runs into
strong coupling in both asymptotic regions t − t0 → −∞ and t − t0 → 0
which illustrates our general result.

In Fig. 6 we have shown a particular case which leads to brane collision.
The five-brane is initially located at d+ z0 � 0.9 and moves a total distance
of d = 1.5 colliding with the boundary at z = 0 at the time |t− t0|/|T | � 1.

This represents an explicit example of a negative-time branch solution
which ends in a small-instanton brane-collision. Solving for these systems has
only just the begun, but already interesting features have emerged including
a new mechanism for baryogenesis arising from the collision of two branes
[64], and a more detailed understanding of the vacuum transitions associated
with brane collisions [65].

7 Inflation Today – Quintessence

Now we will look at the general form Quintessence scenarios take. They
are of course attempts to account for the observed accelerated expansion of
the universe [66, 67], but are based on the evolution of as yet unobserved
time dependent scalar fields. In particular they are not: a true cosmological
constant; a time-dependent cosmological constant or solid dark energy such
as arising from frustrated network of domain walls.
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Fig. 6. Time-behaviour of the five-brane position modulus z for the example spe-
cified in the text. The boundaries are located at z = 0, 1 and the five-brane collides
with the z = 0 boundary at |t/T | � 1.

In Quintessence, the time dependent solutions arising out of scalar field
potentials usually involves some form of tracking behaviour, where the energy
density in the scalar field evolves so as to mimic that of the background fluid
density for a period of time [68]. As we approach a redshift between 0.5 <
z < 1 the potential energy of the Quintessence field becomes the dominant
contribution to the energy density and the Universe begins to accelerate
[69, 70]. We will not go into details of the solutions in these lectures, rather we
will discuss the general behaviour one expects from Quintessence scenarios.
A nice review of the rich structure present in these models is presented in
[71, 72], and Axel de la Macorra has given some detailed lectures here at the
meeting [73].

Using a particular potential V (φ) = exp(0.3e0.3φ) as an example, Fig. 7
shows the generic behaviour that is expected to be followed in Quintessence
models.

Region 1 corresponds to the period where the initial potential energy in
the scalar field is converted into kinetic energy as the field begins to roll
down its potential. This scalar field kinetic energy soon comes to dominate
the energy density of the scalar field as ρφ ∝ a(t)−6 where a(t) is the scale
factor [region 2]. As the kinetic energy decreases rapidly, the system slows
down again [region 3] leading to a constant field regime. This is then followed
by the crucial period where the kinetic energy in the scalar field scales in
proportion to its potential energy [region 4]. This is an attractor regime and
as can be seen from Fig. 7 it corresponds to an extended period in which the
energy density tracks that of the background energy density. These attractor
properties are very useful because they make the reliance on initial conditions
of the scalar field less important. Finally in region 5, we see the specific
property of the scalar field potential coming into its own, as it determines
when the scalar field potential energy density comes to dominate over the
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Fig. 7. Typical scaling properties of Quintessence potentials. ρB , ρφ are the energy
densities in the background fluid and scalar field respectively[72].

background fluid energy density leading to the observed acceleration of the
Universe. Fig. 7 gives a flavour for some of the fine tuning issues that arises
in Quintessence. There are two obvious ones, the first is that the value of
the energy density today must be very close to the critical density 10−3eV 4,
the second is that domination had to occur very recently z ≤ 1 in order to
account for the fact that galaxy formation is not affected too much by the
Quintessence field. There are also tight constraints on the energy density in
the Quintessence field at the time of nucleosynthesis, as the field acts like
an extra light degree of freedom and we already know that there are tight
constraints on the number of families from nucleosynthesis. We will now go
on to look at some individual models.

7.1 Specific Quintessence Models

The original Quintessence model [69, 70] has an inverse power law type of
potential,

V (φ) =
M4+α

φα
, (133)

where α is thought of as a positive number (it could actually also be negative)
and M is constant.

Most models of Quintessence are analysed through their effective equation
of state,

wφρφ,

where pφ is the pressure in the field and ρφ is the energy density in the field.
We know from Einstein’s acceleration equation that for the Quintessence field
to lead to acceleration of the Universe we require ρφ + 3pφ < 0 or wφ < − 1

3 .
Applying this to the inverse power case we find
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wφ =
αwB − 2

2 + α
,

where wB is the background fluid equation of state. Where does the fine
tuning arise in these models? Recall we need to match the energy density in
the Quintessence field to the current critical energy density, which in terms
of the Hubble parameter today H0 and the Planck mass Mpl is given by

ρφ < M2
plH

2
0 ∼ 10−47GeV 4.

It turns out that during the tracking regime, H2 ∼ V (φ)
φ2 ∼ ρφ

M2
pl

, hence it
follows that at the time the scalar field is dominating the energy density and
leading to acceleration today, we must have φ0 ∼Mpl, the value of the scalar
field today has to be of order the Planck scale. This is typical of virtually all
Quintessence models. The real fine tuning now becomes clear, substituting
for the value of φ0 in to the bound on the energy density today ρ0

φ, we see:

M = (ρ0
φM

α
pl)

1
4+α .

This then constrains the allowed combination of α,M . For example for α =
2 the constraint implies M = 1GeV etc... Within the class of parameters
which satisfy the coincidence problem the inverse power law potentials suffer
in that their predicted equation of state wφ is only marginally compatible
with the values emerging from observations. At the 1σ confidence level in
the ΩM − wφ plane, the data prefer wφ < −0.8 with possibly a favoured
cosmological constant wQ = −1 whereas the values permitted by these tracker
potentials (for α ≥ 1, have wQ > −0.8. A general problem we will always
have to tackle is finding such Quintessence models in particle physics. For an
interesting attempt at this in the context of Supersymmetric QCD see the
model proposed by Binetruy [74].

Multiple exponential potentials also offer interesting possibilities for a
successful Quintessence scenario [75]. Such potentials are expected to arise as
a result of compactifications in superstring models, hence are well motivated.
Unfortunately we still have not obtained what one would call a ‘natural’
model for reasons we will discuss below. Nevertheless it remains a model
with some potential for success in it as it delivers Quintessence scenarios for
a wide range of initial conditions.

It has been known for some time that single exponential potentials lead to
scaling solutions[68, 76, 77]. Consider the case of V (φ) = V0 exp(ακφ), where
κ2 ≡ 8π/M2

pl. The two late time attractor solutions depend on the values of
α and the background’s equation of state wB :

(1) α2 > 3(wB+1) : the scalar field mimics the evolution of the barotropic
fluid with wφ = wB , and the relation Ωφ = 3(wB + 1)/α2 holds.

(2) α2 < 3(wB + 1). The late time attractor is the scalar field dominated
solution (Ωφ = 1) with wQ = −1 + α2/3.
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By including two exponential terms it allows for the possibility of the
system entering two scaling regimes which depend on the value of the slope
of the two terms: one tracks radiation and matter, while the second one
dominates at end. To be specific we can consider

V (φ) = V0
(
eακφ + eβκφ

)
, (134)

where for convenience we assume α to be positive (the case α < 0 can always
be obtained taking φ→ −φ). Figures 8 and 9 show the results of a typical run
with such a potential leading to potential domination today and acceleration.
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Fig. 8. Plot of the energy density, ρQ, for the 2EXP model with α = 20, β = 0.5
and several initial conditions admitting an ΩQ = 0.7 flat universe today. The line
labeled by ργ+M is the evolution of radiation and matter.[72].
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Fig. 9. The late time evolution of the equation of state, in the 2EXP model, for
parameters (α, β) = (20,0.5) dashed line; (20,−20) solid line for ΩQ = 0.7.[72].
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It is clear from Fig. 9, where the evolution of the equation of state is
shown and compared to the case with β/α > 0, that the field mimics the
radiation (wQ = 1/3) and matter (wQ = 0) evolution before settling in an
accelerating (wQ < −1/3) expansion. As a result of the scaling behaviour of
attractor (1), it is clear that there exists a wide range of initial conditions
that provide realistic results.

Where in this case is the fine tuning to be found then? Demanding the
energy density in the field matches the critical density today, places the bound
V0 ∼ ρ0

φ ∼ 10−47GeV 4 ∼ (10−3eV )4. This very low energy density converts
into an extremely light scalar field, in particular its mass is given by

m �
√

V0

M2
pl

∼ 10−33eV.

Such a tiny mass is very difficult to reconcile with fifth force experiments,
unless there is a mechanism to prevent φ from having interactions with the
other matter fields!

A model which can be related to the two exponential case has been sug-
gested by Sahni and Wang [78]. The potential can be written as:

V (φ) = V0 [cosh(ακφ)− 1]n . (135)

It behaves as an exponential potential V → exp(nακφ) for |ακφ| 	 1 and as
a power law type of potential V → (ακφ)2n for |ακφ| � 1. It follows that the
evolution scales as radiation and matter when dominated by the exponential
form and later enters into an oscillatory regime when the minimum is reached.
In this regime the time average equation of state is

〈wφ〉 =
n− 1
n+ 1

. (136)

We see that for n < 1/2 then wφ < −1/3, implying late times accelerated
expansion driven by the scalar field. The fine tuning in this case is similar to
that of the two exponential potential discussed earlier.

Albrecht and Skiordis [79] have developed an interesting model which
they have argued can be derived from String theory, in that they claim the
parameters are all of order one in the underlying string theory. The potential
has a local minimum which can be adjusted to have today’s critical energy
density value (this is where the fine tuning is to be found by the way). The
actual potential is a combination of exponential and power-law terms:

V (φ) = V0e
−ακφ [A+ (κφ−B)2

]
. (137)

In Fig. 10 we show the evolution of the equation of state. For early times
the exponential term dominates the dynamics, with the energy density of φ
scaling as radiation and matter. For suitable choices of the parameters the
field gets trapped in the local minimum because the kinetic energy during
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Fig. 10. The evolution of the equation of state of quintessence when the Albrecht-
Skiordis potential has a local minimum (solid) and when it does not (dashed). In
this case α = 10, V0 = κ−4, A = 0.9/α2 and B = 27.2, for the former case and
α = 6, V0 = κ−4, A = 1.1/α2 and B = 45.5, for the latter.[72].

scaling is small. The field then enters a regime of damped oscillations leading
to wφ → −1 and an eternally expanding universe.

There are many other models which we could describe: coupled quin-
tessence, extended quintessence, tracking oscillatory quintessence to name
but three. They all have similar properties to those described above, but
rather than concentrate on them we will turn our attention finally to the
case of Quintessential Inflation, developed by Peebles and Vilenkin [80]. One
of the major drawbacks often used to attack models of Quintessence is that it
introduces yet another weakly interacting scalar field. Why can’t we use one of
those scalars already ‘existing’ in cosmology, to also act as the Quintessence
field? This is precisely what Peebles and Vilenkin set about doing. They
introduced a potential for the field φ which allowed it to play the role of the
inflaton in the early Universe and later to play the role of the Quintessence
field. To do this it was important that the potential did not have a minimum
in which the inflaton field would completely decay at the end of the initial
period of inflation. The potential they proposed was:

V (φ) = λ(φ4 +M4) for φ < 0

=
λM4

(1 + ( φM )α)
for φ ≥ 0

For φ < 0 we have ordinary chaotic inflation. When this ends the Universe
is reheated via gravitational particle production. Much later on, for φ > 0
the Universe once again begins to inflate but this time at the lower energy
scale associated with Quintessence. Needless to say, Quintessential Inflation
also requires a degree of fine tuning, in fact perhaps even more than before
as there are no tracker solutions we can rely on for the initial conditions. The
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initial period of inflation must produce the observed density fluctuations,
hence constrains λ ∼ 10−14. Demanding that Ω0

φ ∼ 0.7, we find we can
constrain the parameter space of (α, M). For example, for α = 4, we have
M = 105 GeV. Time does not permit us to elaborate further on this aspect of
Quintessence, but it is worth at least mentioning that there are some very nice
resolutions of Quintessential Inflation in Brane world scenarios (for details see
[81, 82, 83]. Neither have we time to go into the wealth of Quintessence models
that have been proposed within the context of supergravity, apart from giving
a brief flavour of the general idea. Brax and Martin [84] demonstrated that a
supergravity model with Superpotential W = Λ3+αΦα and Kahlar potential
K = ΦΦ∗ (where Φ is the Chiral scalar field) leads to an associated scalar
potential

V (φ) =
Λ6+α

φ2α+2 e
κ2
2 φ

2
,

under the rather strict assumption that < W >= 0. A working example
is the case α = 11 which has an associated equation of state w0

φ = −0.8.
There are more models that have been investigated [85, 86, 87]. A word of
caution though about Quintessence in supergravity. Kolda and Lyth [88],
have argued that all current supergravity inspired models suffer from the
fact that loop corrections will always couple the Quintessence field to other
sources of matter so as to lift the potential thereby breaking the flatness
criteria required for Quintessence today.

7.2 Evidence for Quintessence?

If there is a scalar field responsible for the current acceleration of the Universe
how might we see it? In this conference there have been many talks addressing
this issue, so we will not go into great details here, other than remind the
reader of some of the attempts that are under way and have been proposed
recently. Ideally we would look for evidence of evolution in the equation of
state, wφ as a function of redshift. These include

– Precision CMB anisotropies – lots of models are currently compatible.
– Combined LSS, SN1a and CMB data tend to give wφ < −0.8, which is

difficult to tell from a true cosmological constant.
– Look for more supernova of the type SN1a. The proposed satellite, SNAP

will find over 2000 which may then enable us to start constraining the
equation of state.

– Constraining the equation of state with Sunayaev-Zeldovich cluster sur-
veys from which we can compute the number of clusters for a given set of
cosmological parameters.

– Probing the Dark Energy with Quasar clustering in which redshift distor-
tions constrain cosmological parameters.
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– Reconstruct the equation of state from observations – this approach at
least offers the hope of developing a method independent of potentials –
an example is the Statefinder method developed by Sahni et al. [89].

– Look for evidence in the variation of the fine structure constant.

We finish off the lectures by discussing in a bit more detail one of the items
just mentioned. Finding a suitable parameterisation of the equation of state
an issue of importance for those interested in reconstructing wφ from obser-
vation, such as those working on SNAP [90, 91]. Two approaches suggested
to date involve a polynomial expansion either in terms of the red-shift, z (i.e.
wφ(z) =

∑N
i=0 wiz

i) [92] or in terms of the logarithm of the red-shift (i.e.
wφ(z) =

∑N
i=0 wi ln(1 + z)i) [93]. A third approach has recently been develo-

ped by Corasaniti and Copeland [94]. It allows for tracker solutions in which
there is a rapid evolution in the equation of state, something that the more
conventional power-law behaviour can not accommodate. This has has some
nice features in that it allows for a broad class of Quintessence models to
be accurately reconstructed and it opens up the possibility finding evidence
of quintessence in the CMB both through its contribution to the Integra-
ted Sachs Wolfe Effect [95] and as a way of using the normalisation of the
dark energy power spectrum on cluster scales, σ8, to discriminate between
dynamical models of dark energy (Quintessence models) and a conventional
cosmological constant model[96].

8 Summary

In these lectures we have addressed a number of issues relating to inflatio-
nary cosmology, both in the early Universe and today. We have seen how
inflation arises in both potential dominated cases and as a result of rolling
radii solutions associated with the low energy string action. We have also seen
how hard it is to relate inflation to realistic particle physics inspired models.
This area is one of intense interest at the moment. In our attempt to bridge
this gap, we have related these solutions to the exciting new solutions arising
in M-theory cosmology, and showed how a moving five brane could act in a
manner similar to the axion field in the pre Big Bang case. This is an exciting
time for string and M-theory cosmology, the subject is developing at a very
fast rate, and no doubt there will be new breakthroughs emerging over the
next few years. Hopefully out of these we will be in a position to address a
number of the issues we have raised in this article, as well as other key ones
such as stabilising the dilaton and explaining the current observation of an
accelerating Universe. We have investigated a number of Quintessence mo-
dels and tried to argue why Quintessence offers a plausible explanation for the
observational fact that the Universe is accelerating today. We have also tried
to emphasise the issues that Quintessence as a model simply fails to answer
naturally, requiring some form of fine tuning in order to do so. These include:
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– Why is there a Λ type term dominating today?
– Why are the matter and Λ contributions comparable today – ‘coincidence’

problem?
– Why is Λ so small compared to typical particle physics scale?
– Is there any need for a quintessence field? Is it simply a cosmological

constant?

There is little doubt that this very exciting field is being driven by ob-
servations, especially in the CMBR and LSS. They are constraining the cos-
mological parameters, even before Map or Planck arrives on the scene. Yet
we do not know why the universe inflating today and through Quintessence
we are hoping that particle physics provides an answer. The existence of sca-
ling solutions and tracker behaviour may yet show up through time varying
constants [97]. There is much going on in Brane inspired cosmology and it
may provide important clues to the nature of dark energy. In general as we
have seen, there are many models of Quintessence but they may yet prove
too difficult to separate from a cosmological constant. We need to try though
– it is too exciting a prospect not to!
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