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Abstract. The fusion excitation functions for the fusion of 16O on 144-154Sm have been 
calculated using one dimensional barrier penetration model, taking scattering potential 
as the sum of Coulomb and proximity potential, with considerations to shape degrees of 
freedom. The computed fusion cross sections for the reactions of 16O on 
144,147,148,149,150,152,154Sm are compared with experimental data and coupled channel 
calculations using the code CCFULL. At and above the barrier the computed fusion 
cross sections match well with the experimental data, whereas below the barrier, 
calculations with nuclear surface tension coefficient improved by Reisdorf in the 
proximity potential with considerations to shape degrees of freedom give reasonably 
good fit. The good agreement between theory and experiment in the case of 16O on 
144,147,148,149,150,152,154Sm reactions is equally valid in the prediction of the fusion of 16O 
on 145,146,151,153Sm. Reduced reaction cross sections for the fusion of 16O on 
145,146,152,154Sm have also been described.  

Keywords: heavy-ion reactions, sub-barrier fusion, barrier penetration model. 
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1. INTRODUCTION 

Wide and in-depth experimental and theoretical studies of heavy-ion fusion 
reactions in low energy range at, above and below the Coulomb barrier [1–10] have 
been an area of extensive investigations for many years in Nuclear Physics. The 
observations in heavy-ion systems at the near and the Coulomb barrier energies are 
quite important for the understanding of the complexity of collision processes at 
low energies, especially in the search of super heavy elements (SHE) [11, 12]. In 
the analysis of heavy-ion fusion reactions, the inter-nuclear interaction, consisting 
of repulsive Coulomb and centrifugal potentials and attractive nuclear potential 
which are functions of the distance between center-of mass of the colliding nuclei 
plays a major role. The total potential attains a maximum value at a distance 
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beyond the touching configuration where the repulsive Coulomb force and the 
attractive nuclear forces balance each other and when the energy of relative motion 
overcomes this potential barrier, the nuclei gets captured and fused.  

Even though the simple one dimension barrier penetration model [1] explains 
the fusion reactions of heavy-ions above the barrier, the large enhancement in the 
fusion cross-sections below the barrier in several orders of magnitude over those 
expected from the simple one dimension barrier penetration model can only be 
explained in terms of coupling of relative motion to internal degrees of freedom of 
the colliding nuclei such as deformation [4, 13, 14], vibration [15–18], and nucleon 
transfer channels [19–22] or related to the gross  features of nuclear matter such as 
neck formation [23, 24] between the two colliding nuclei.  

In our previous work [10], the fusion excitation functions for the fusion of 
12C, 16O, 28Si and 35Cl on 92Zr have been calculated using one-dimensional barrier 
penetration model, taking the scattering potential as the sum of Coulomb and 
proximity potential and are compared with experimental data and coupled channel 
calculations using code CCFULL, without considering shape degrees of freedom. 
In the present work, the fusion excitation functions for the fusion of 16O on 144-

154Sm have been calculated using one-dimensional barrier penetration model, 
taking scattering potential as the sum of Coulomb and proximity potential [25] and 
the calculated values of 16O on 144,147,148,149,150,152,154Sm are compared with 
experimental data [26] and coupled channel calculations using the code CCFULL 
[6], with considerations to shape degrees of freedom. In the Coulomb and 
proximity potentials, the quadrupole and the hexadecapole deformation values of 
the projectile and target nuclei, the angular momentum effects and hence the 
vibrational couplings have been considered. In the CCFULL calculations we have 
given considerations to vibrational couplings in the projectile and the target, with 
deformation parameters N C

λ λβ = β . Reduced reaction cross sections for the fusion of 
16O on 145,146,150,152Sm have also been described, by using the usual reduction 
procedure of dividing the cross section by 2

0Rπ , where 0R  is the barrier radius 
and the division of energy by Coulomb barrier. 

In the case of reactions of 16O on 144 -154Sm, it is to be noted that the target Sm 
nuclei are known to exhibit a wide range of deformation from most stable spherical 
semi magic 144Sm to the well deformed 154Sm, where as the projectile 16O is doubly 
magic.  

2. THEORY 

2.1. THE POTENTIAL 

Discovering a unique nuclear potential that can be used exclusively for 
probing different reaction mechanisms on a single platform is obviously a tough 
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nut for the last several years in nuclear physics. In order to incorporate the role of 
different colliding nuclei in the nuclear potential, it is commonly accepted that the 
potential can be written as a product of geometrical factor (proportional to the 
reduced radii of colliding nuclei) and a universal function. In this effort, the 
proximity potential of Blocki et al. [27], which is free of adjustable parameters and 
makes use of the measured values of the nuclear surface tension and surface 
diffuseness, provides a simple formula for the nucleus-nucleus interaction energy 
as a function of separation between the surfaces of the approaching nucleus. 

The interaction barrier for two colliding nuclei is given as: 

 
2 2

1 2
2

( 1)( )
2P

Z Z e
V V z

r r
+

= + +
µ

, (1) 

where 1Z  and 2Z  are the atomic numbers of projectile and target, r is the distance 
between the centers of the projectile and target, z is the distance between the near 
surfaces of the projectile and target,  is the angular momentum, µ  is the reduced 
mass of the target and projectile and ( )PV z  is the proximity potential given as: 

 1 2
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,                                        (2) 

with the nuclear surface tension coefficient 

 2 20.9517[1 1.7826( ) / ]N Z Aγ = − − , (3)  

φ , the universal proximity potential is given as: 

 ( ) 4.41exp( / 0.7176)φ ξ = − −ξ ,    for 1.9475ξ ≥  (4) 

 2 3( ) 1.7817 0.9270 0.01696 0.05148φ ξ = − + ξ + ξ − ξ ,   for   0 1.9475≤ ξ ≤   (5) 

 2 3( ) 1.7817 0.9270 0.0143 0.09φ ξ = − + ξ + ξ − ξ ,   for 0ξ ≤ ,  (6)  

with /z bξ = , where the width (diffuseness) of nuclear surface 1b ≈  and 

Siissmann Central radii iC  related to sharp radii iR as 
2

i i
i

bC R
R

= − . For iR , we 

use the semi empirical formula in terms of mass number iA  as: 

 1/ 3 1/ 31.28 0.76 0.8i i iR A A −= − + . (7) 

During the last three decades several attempts have been made to improve the 
proximity potential [28, 29]. In these works an improved version of nuclear surface 
tension co-efficient is presented by Reisdorf as:   



 K. P. Santhosh, V. Bobby Jose 4 

 

942 

 2 21.2496[1 2.3( ) / ]N Z Aγ = − − .  (8) 

The choice of the potential and its form to be adopted is one of the most 
challenging aspects, when one wants to compare the experimental fusion data with 
theory, both below and above the barrier. 

2.2. THE FUSION CROSS SECTION 

To describe the fusion reactions at energies not too much above the barrier 
and at higher energies, the barrier penetration model developed by C. Y. Wong [1] 
has been widely used for the last four decades, which obviously explains the 
experimental result properly. Following Thomas [30], Huizenga and Igo [31] and 
Rasmussen and Sugawara [32], Wong approximated the various barriers for 
different partial waves by inverted harmonic oscillator potentials of height E  and 

frequency ω . For energy E , using the probability for the absorption of th partial 
wave given by Hill-Wheeler formula [33], Wong arrived at the total cross section 
for the fusion of two nuclei by quantum mechanical penetration of simple one-
dimensional potential barrier as: 

 
2

2 1
1 exp[2 ( ) / ]k E E

π +
σ =

+ π − ω∑ ,  (9) 

where 
2

2 Ek µ
= . Here ω  is the curvature of the inverted parabola. Using some 

parameterizations in the region 0=  and replacing the sum in Eq. (9) by an 
integral Wong gave the reaction cross section as: 

 
2
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0
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.  (10) 

For relatively large values of E , the above result reduces to the well-known 
formula: 

 02
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E
R

E
 
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. (11) 

For relatively small values of E , such that 0E E<< :    

 [ ]
2
0 0

0 0exp 2 ( ) /
2

R
E E

E
ω

σ = π − ω .            (12)          



5 Heavy-ion fusion reactions of 16O on 144-154Sm targets 

 

943 

Below the barrier, the tunneling through the barrier has to occur in order to 
allow the fusion of the two nuclei and in terms of partial wave; the fusion cross 
section is given as: 

 
2

0

(2 1)
C

P
k

=

=

π
σ = +∑ , (13) 

where . ( , , 0)2 ( )
a inC a c m RR E V η == µ − , aR  is the first turning point and inη  is 

the entrance channel asymmetry. Here, P is the WKB penetration probability given 
as: 

 2exp 2 ( )d
b

a

P V E z
  = − µ − 
  
∫ , (14) 

where a  and b  are the inner and outer turning points defined as ( ) ( )V a V b E= = .  
In the case of deformed nuclei the penetration probability is different in 

different directions. The averaging of penetrability over different directions is done 
using the expression  

 
0

1 ( , , )sin( )d
2

P P E
π

= θ θ θ∫ , (15)   

where ( , , )P E θ  is the penetrability in the direction of θ from the symmetry axis of 
the axially symmetric deformed nuclei. 

The Coulomb interaction between the two deformed and oriented nuclei [1] 
with higher multipole deformation included [34–36] is given as,  
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where 1/ 3 1/ 3
0 1.28 0.76 0.8i i iR A A−= − + . Here αi is the angle between the radius 

vector and symmetry axis of the ith nuclei.   
Fusion reactions at energies near and below the Coulomb barrier are strongly 

influenced by couplings of the relative motion of the colliding nuclei to several 
nuclear intrinsic motions; quantum tunneling in the presence of couplings has to be 
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considered. The FORTRAN77 program CCFULL solves the coupled channel 
equations in computing the fusion cross sections, taking into account the coupling 
between the relative motion and the intrinsic degrees of freedom.      

2.3. THE REDUCED REACTION CROSS SECTION 

In order to compare the excitation functions of different reaction mechanisms 
induced by different projectiles on the same target nucleus, the procedure of 
eliminating the geometrical factors  concerning different systems by ‘reducing’ the 
cross section and the centre-of-mass energy has extensively been used in recent 
years [26, 37, 38]. The normal procedure consists of the division of the cross 
section by 2

0Rπ , where 0R is the barrier radius and the division of energy by 
Coulomb barrier 0E .  

3. RESULTS AND DISCUSSIONS 

Interaction barrier for the fusion of 16O on 144Sm has been plotted in Fig.1, 
against the distance between the centers of the projectile and target while taking the 
scattering potential as the sum of Coulomb and proximity potentials. The dotted 
lines in Fig.1 represent the interaction barrier calculated using nuclear surface 
tension coefficient given by Eq.(3), denoted as γ-old and the dashed line represents 
the result while using Eq.(8), denoted as γ-new without considering the shape 
degrees of freedom of the projectile and target. The dash-dotted line and the solid 
line represent the barrier calculations using nuclear surface tension co-efficient 
given by Eq.(3) and Eq.(8) respectively with considerations to deformations, using 
Eq.(16) for 0= . It should be noted that the barrier height 0E  increases and the 
barrier radius 0R  shifts towards smaller value, while considering the shape degrees 
of freedom for both normal and improved values surface tension coefficients given 
by Eq.(3) and Eq.(8) respectively. In the both cases of with and without 
deformations  the barrier height 0E  decreases and the barrier radius 0R  shifts 
towards larger value with improved value of surface tension coefficient given by 
Eq. (8) than the normal value given by Eq.(3). Moreover, Eq. (8) gives deeper 
potential compared to Eq. (3).  

At, above and below the barrier, the total fusion cross-sections for the reactions 
of 16O on 144-154Sm have been calculated by using the values of barrier height 0E  
and barrier radius 0R  taken from the respective figures corresponding to Fig.1 and 
using Eqs. (9) to (16). The calculated fusion cross sections for the reactions of 16O 
on 144,147,148,149,150,152,154Sm are compared with experimental data [24] and CCFULL 
calculations. In all CCFULL calculations the dotted lines represent calculations 
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using no channel couplings and the solid lines represent the vibrational couplings 
in projectile and target, while using the code CCFULL with deformation 
parameters, N C

λ λβ = β . The depth parameter V0 and the surface diffuseness 
parameter a0 (of the Wood-Saxon potentials) have been computed [39], with r0 
fixed at 1.20 fm and the values are shown in Table 1. While using the vibrational 
couplings in projectile, the single phonon excitation in 16O with 3 0.353Nβ =  and 
excitation energy 3 6.13ε = MeV of 3− state is used, whereas pair transfer channel 
is not included.   
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Fig.1 – Scattering potential (color online) for the projectile 16O on 144Sm target consisting  

of repulsive Coulomb and centrifugal potentials and attractive nuclear potential. 

In Fig. 2a, in the case of reaction of doubly magic 16O on most stable 
spherical semi magic 144Sm target, the fusion cross sections (up triangles) 
computed using Wong’s formula given by Eq. (9) with Coulomb and proximity 
potential and nuclear surface tension coefficient given by Eq. (3), denoted as γ-old, 
fit very well with the experimental data (circles) above the barrier, whereas below 
the barrier show some disagreement. Above the barrier, it is to be noted that no 
appreciable change in the fusion cross sections (open diamonds) have been 
observed while recalculating the fusion cross sections, with considerations to shape 
degrees of freedom as per Eq.(16) and using Eq.(11). Below the barrier, we have 
considered the fusion process as a tunneling process and the cross sections (open 
diamonds) calculated using Eqs. (3), (13) and (16) show good agreement with the 
experimental data (circles), while using Coulomb and proximity potential. Here in 
the CCFULL calculations (Coupled) the single phonon excitation with 

3 0.0881Nβ =  and excitation energy 1.81MeV of 3− state in 144Sm is used.  
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Using a similar procedure, we have calculated the fusion cross sections for 
the reactions of 16O projectile on 145Sm target and the corresponding excitation 
functions are shown in Fig. 2b. In Fig. 2b, the up triangles represent the fusion 
cross sections calculated using Wong’s formula given by Eq.(9) and the open 
diamonds represent the calculations using Eqs.(11), (13) and (16). In both cases 
nuclear surface coefficient given by Eq.(3) has been used, in the proximity 
potential. Fig. 2c represents the excitation functions for the reactions of 16O 
projectile on 146Sm target with surface tension coefficient given by Eq. (3).   

In the case of reaction of 16O projectile on 147Sm target, which is the closest 
stable isotope to semi magic 144Sm, for getting a better result, we have changed the 
nuclear surface tension co-efficient given by Eq. (3) in the proximity potential by 
Eq. (8), denoted as γ -new and recalculated all the cross sections, following a 
similar procedure. The computed results with Eq.(8) show better agreement with 
the experimental data than the results while using the surface tension coefficient 
given by Eq. (3). While using γ -new, the computed cross sections with Wong’s 
formula given by Eq.(9) (up triangles), cross sections computed with Eqs.(11), (13) 
and (16) (open diamonds), the CCFULL calculations (solid line and dotted line) 
and the experimental cross sections (circles) are shown in Fig.2d. In the coupled 
channel calculations the single phonon excitation with 2 0.143Nβ =  and excitation 
energy of 0.121MeV of 147Sm has been used. In Fig. 2d, the computed cross 
sections with Eqs.(11), (13) and (16) (open diamonds) show good agreement with 
experimental data (circles). 
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Fig. 2 – Fusion excitation functions (color online) for the reactions of 16O projectile on 144 -147Sm 

targets. In Figs. 2a and 2d, the comparison of the computed fusion cross sections with experiment and 
CCFULL calculations are shown.  
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Figs. 3a, 3b, 3c, 4a and Fig. 5 show the comparison of experimental fusion 
cross sections with calculations while using Wong’s formula given by Eq.(9), 
calculations with Eqs.(10), (13) to (16) and the CCFULL calculations, in the case 
of reactions of 16O on 148,149,150,152Sm and well deformed 154Sm targets. In all the 
cases the nuclear surface tension coefficients given by Eq.(8) has been used, in the 
proximity potential. In the CCFULL calculations (Coupled), for single phonon 
couplings in 148Sm,150Sm, 152Sm and 154Sm, the 3

Nβ values and the corresponding  
excitation energies of 3− state are shown in Table 2. In the case of 149Sm target the 
single phonon excitation with 2 0.180Nβ =  and excitation energy of 0.022MeV has 
been used.    

Table 1 

Depth parameter V0 and the surface diffuseness parameter a0  
for the reaction of 16O on various Sm targets 

 

Reaction V0 (MeV)  a0 (fm) 
16O+144Sm 61.98 0.6517 
16O+147Sm 62.15 0.6520 
16O+148Sm 62.20 0.6521 
16O+149Sm 62.26 0.6522 
16O+150Sm 62.32 0.6524 
16O+152Sm 62.42 0.6526 
16O+154Sm 62.53 0.6528 
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Fig. 3 – Fusion excitation functions (color online) for the reactions of 16O projectile on 148-151Sm 

targets, where a), b), c) show the comparison of the computed fusion cross sections  
with experiment and CCFULL calculations are shown. 
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Table 2 

3
Nβ values and the corresponding  excitation energies of 3− states  

of 148Sm, 150Sm, 152Sm and 154Sm targets 

Target 
3
Nβ value Excitation energy 

(MeV) 
148Sm 0.142 1.161 
150Sm 0.193 1.071 
152Sm 0.307 1.041 
154Sm 0.339 1.012 
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Fig. 4 – Fusion excitation functions (color online) for the reactions of 16O projectile on 152Sm  

and 153Sm targets. In Fig. 4a, the comparison of the computed fusion cross sections with experiment 
and CCFULL calculations is shown.  
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Fig. 5 – The comparison (color online) of the computed fusion cross sections of 16O + 154Sm  

with experiment and CCFULL calculations. 
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Fig. 6 – Reduced reaction (color online) cross sections for 16O + 145,146,150,152Sm systems. 

The good agreement between theory and experiment in the case of 16O on 
144,147,148,149,150,152,154Sm reactions be equally valid in the case of 16O on 
145,146,151,153Sm reactions as shown in Figs. 2b,c, 3d and 4b, that predict those fusion 
reactions easily.  

Fig. 6 represents reduced reaction cross sections for the systems 16O + 
145,146,150,152Sm by the reduction procedure of dividing the cross section by 2

0Rπ and 
the energy by 0E . It should be noted that the reduced reaction cross sections 
compare the fusion reactions easily in the same figure. Well above the barrier the 
reactions cross section almost matches for all the reactions, whereas below the 
barrier the reaction cross section is largest for 16O + 152Sm system followed by16O + 
150,146,145Sm systems. 

4. CONCLUSIONS 

At and above the barrier, the simple one dimension barrier penetration model 
developed by Wong explains the fusion reactions of heavy ions very well, while 
using the scattering potential as the sum of Coulomb and proximity potentials, 
irrespective of even-even or even-odd nuclei. The enhancements in fusion cross 
sections below the Coulomb barrier orders of magnitude larger than the predictions 
of one dimension barrier penetration model reveals the important role played by 
nuclear structure of the colliding nuclei. Below the barrier larger deformations 
corresponds to large sub barrier enhancement of fusion cross sections. 
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Below the barrier the fusion process can be considered as a tunneling process 
and in the quantum mechanical tunneling of one dimension barrier penetration 
model the inclusion of nuclear deformation parameters in Coulomb and proximity 
potential model explains the nuclear fusion cross sections of both even-even and 
even-odd nuclei very well, irrespective of other structural effects like zero point 
oscillations of nuclear shape, the presence of unpaired neutron in the nuclei etc. In 
the calculation of interaction barrier of deformed nuclei, the nuclear surface tension 
coefficient given by Reisdorf shows better results than the usual surface tension co-
efficient of proximity potential. The reduced cross sections compare different 
fusion reaction mechanisms induced by different targets with the same projectiles 
in the same figure.   
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