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Phase-synchronicity conditions from pulse-front tilted 
laser beams on one-dimensional periodic structures and 

proposed laser-driven deflection 
 

T. Plettner 
E.L. Ginzton Laboratories, Stanford University, Stanford CA 94305 

 
This article explores general particle-to-field phase synchronicity 
conditions in one-dimensional periodic phase modulation structures 
powered from a pulse front tilted laser beam. The analysis applies to 
speed-of-light particles. It is found that the synchronicity condition for the 
accelerating force is straightforward to accomplish, whereas synchronicity 
from a deflection force in these structures is only possible to attain with 
certain geometry conditions. When these conditions are met a synchronous 
deflection force that acts on the particle over a distance much greater than 
the laser wavelength is introduced. This opens the possibility for an 
effective laser-driven deflection microstructure. 

 
PACS numbers: 41.75.Jv, 41.75.Ht, 42.25. Bs 
 
I. INTRODUCTION 
One general condition that all practical particle accelerators satisfy is their ability to 
provide extended phase synchronicity between the relativistic particle bunch and the 
driving electromagnetic field, which allows for the application of a continuous force on 
the particle over a distance much greater than the wavelength. Many different methods 
have been developed, and common particle accelerator configurations rely on the 
electromagnetic wave energy co propagating with the particle and satisfy phase 
synchronicity either through the control of the particle’s trajectory or more commonly 
through the control of the electromagnetic wave phase velocity with the aid of a medium 
or a waveguide structure.  
 
Other particle accelerator architectures that do not rely on guiding of the electromagnetic 
field along the particle channel have been analyzed in the past [1,2,3]. In transverse-
pumped accelerator structures such as [4] the EM energy flows at right angles to the 
particle beam, and the phase synchronicity is attained by the introduction of a periodic 
phase modulation of the field with a period equal to the wavelength of the 
electromagnetic wave. These structures have been analyzed by evaluating the average 
gradient in one structure period [4], and it has been suggested that a pulse-front tilted 
laser beam could deliver extended phase synchronicity ranging over many structure 
periods. However to the author’s knowledge no rigorous analysis on this statement has 
been made.  
 
Here, a general analytical evaluation of the accelerating and deflecting forces in periodic 
one-dimensional structures is presented and a simple criterion for the possibility of 
extended phase synchronicity in such systems is derived. First, the question of the 
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extended phase synchronicity of the accelerating force in a periodic structure as proposed 
in [4] is addressed. In particular, phase-synchronicity from a pulse-front tilted laser beam 
is analyzed. Next, it is shown that in this structure the deflection force from the 
electromagnetic wave cannot maintain phase synchronicity.  Finally, it is shown that 
tilting of the periodic structure with respect to the electron beam introduces a phase-
synchronous deflection force. 
 
II. THE GENERAL STRUCTURE GEOMETRY 
Figure 1 shows six examples of conceptual one-dimensional periodic structures. Some of 
these, such as c) have been proposed for particle acceleration.  All these structures posses 
a vacuum channel that runs along the y-axis and extrudes to infinity in the z-direction and 
have a repeating shape with a period pλ  where  λλ ≤p . These structures can be viewed 
as multi-layer gratings of various shapes that are powered by an electromagnetic plane 
traveling in the x-direction. 
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FIG. 1. Examples of possible symmetric (a,b,c) and non-symmetric (d,e,f) 
one-dimensional accelerator structures. The dashed line indicates the 
particle trajectory through the vacuum channel of the structure. 

 
The examples a,b,c in Figure 1 posses mirror symmetry in the yz-plane while the  
examples d,e,f  do not. The synchronicity considerations that follow are valid for all the 
periodic structures shown in Figure 1. First, a speed-of-light test particle traveling down 
the y-axis, such that  and ( ) yctv ˆ=

r ( ) yctytr ˆ0 +=
r is considered. In the last section the case 

of a speed-of-light particle with a nonzero velocity component in the z-direction is 
analyzed.   
 
III. PHASE SYNCHRONICITY OF THE ACCELERATING FORCE 
Assume first a monochromatic plane wave of angular frequency ω  that is incident on one 
of the structures in Figure 1. Any one of the electric or magnetic field components in the 
vacuum channel can be described by a function of the form 
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( ) ( ) tieyxAtyxF ω,,, =          (1) 

  
( yxA , )  is the spatial field component and  is the harmonic time dependence. Since 

the structure is infinite in the z-direction the spatial functions depend only on the x- and 
the y-coordinates. Because of the periodicity of the structure and the normal incidence 
condition of the wave the spatial field components have to satisfy 

tie ω

 
( ) ( )pnyxAyxA λ+= ,,         (2) 

 
In the analysis presented here the period of the structure, denoted by pλ , does not have to 
equal the wavelength of the electromagnetic wave λ  in vacuum. As described in [4], for 
this two-dimensional problem there are two independent field solutions, each containing 
three of the six field components that are labeled as transverse electric TE and transverse 
magnetic TM solutions.  Particle acceleration requires a nonzero electric field component 
in the y-axis, which is produced by the polarization associated with the TM solution. The 
acceleration field component is described as a periodic function that can be expanded as a 
Fourier series of the form 
 

( ) ikctnyik

n
ny eeVtyE p∑
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−∞=

=,,0         (3) 

 
where ppk λπ2=  and λπ2=k . The particle position in the vacuum channel is 

. Therefore the time variable can be expressed as ( ) ctyty += 0 ( ) cycyyt 0−=  and 
hence the force from the accelerating electric field acting on the particle is 
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The average acceleration gradient from this TM wave 

TMyG  is defined as 
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The term is a constant that represents the optical phase of the particle with respect to 
the field and can be taken out of the path integral. For 

0ikye−

yG  to be nonzero there has to be 
a component in the sum of equation 5 that possesses a non-oscillatory term, that is, 

. Since n is integer, to satisfy phase synchronicity for one of the terms in the 
sum the structure period has to be an integer multiple of the wavelength of the driving 
electromagnetic wave ; that is, 

0=+ knk p

λλ np −= . For periodic structures such as those shown in 
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Figure 1 the lowest order coefficients, or , are the largest and hence the most 
desirable to phase-synchronize to. The phase synchronicity condition for the lowest order 
term in equation 5 occurs when the structure period is equal to the electromagnetic field 
wavelength, 

1+V 1−V

λλ =p , and hence the average acceleration gradient is 
 

( 1TM
0Re −

−= VeG iky
y )        (6) 

 
The fact that in equation 6 the acceleration gradient depends on instead of is only 
a consequence of the specific phasor notation that was adopted in equation 3. As with all 
particle accelerators the term describes the phase between the particle and the field, 
which can be accelerating or decelerating.   

1−V 1+V

0ikye−

 
Equation 6 describes the phase synchronicity condition for a CW plane wave at normal 
incidence to the structure. On the other hand, a pulse-front tilted laser beam corresponds 
to a sum of CW plane waves with different directions of propagation that depend on the 
frequency of the particular plane wave component [5]. Hence to verify the possibility of 
extended phase-synchronicity from a pulse-front tilted laser beam the synchronicity of 
each plane wave component has to be found. Assuming an oblique incidence angle ϕΔ  
of a plane wave the field in equation 1 acquires a pseudo-periodicity of the form [6,7]  
 

( ) ( ) yikti eeyxAtyxF ϕω Δ−= ,,,         (7) 
 
where  is still the same spatial periodic field function that can be expressed as a 
discrete Fourier series. The additional obliquity term modifies the accelerating gradient 
expression shown in equation 5 to 

( yxA , )
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The obliquity angle of the plane wave introduces a new phase synchronicity condition 
that relates ϕΔ  to the frequency of the wave. From equation 8 it can be observed that the 
synchronicity condition is 
 

0=Δ−+ ϕkknkp          (9) 
 
Again, utilizing the lowest order nonzero term 1−=n , and defining the change in the k-
vector of the electromagnetic wave as pkkk −=Δ  equation 9 becomes 0=Δ−Δ ϕkk  
which can be rewritten as 
 

k
k

Δ
Δ

=
ϕ1           (10) 
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Hence, for a laser pulse with multiple wavelengths the general phase synchronicity for 
each wavelength has to satisfy equation 10, such that each frequency of the 
electromagnetic wave is oriented a different obliquity angle. The pulse front tilt angle γ  
of a laser beam with center wavelength corresponding to λπ2=k is given by [5] 
 

dk
dk ϕψ =tan           (11) 

 
From equations 10 and 11 it can be observed that the phase-synchronicity condition for a 
laser pulse on a one-dimensional periodic structure is the same as the expression of a 
pulse-front tilted wave with a tilt angle satisfying 1tan =ψ . Not surprisingly, this is equal 
to a 45° pulse front tilted wave. The center frequency component has a wavelength 

pλλ =  and is at normal incidence to the structure while the other frequency components 
are oriented at an angle proportional to their frequency offset.  
 
IV. THE CANCELATION OF SYNCHRONOUS DEFLECTION FORCES 
In [4] it was predicted that for a plane wave powering a periodic one-dimensional 
structure there exists an optical phase where the speed-of-light particle experiences a 
nonzero deflection force.  Here it is shown that the residual deflection force of the 
geometry calculated by FDTD methods in a single structure period in [4] does not 
maintain extended phase synchronicity over a larger number of structure periods and 
hence is not usable for an effective particle deflection. To analyze this problem 
analytically the same argument as in the previous section can be applied. The deflection 
force is composed of the lateral components of the total Lorentz force acting on the 
speed-of-light particle. For the TM solution 
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The deflection force is ( zxx cBEF )+= Re . As before, for a normal-incidence plane wave  

and  are periodic in the y-direction, and for a tilted plane wave they acquire the 
same phase slippage term . Hence and   have the same form as that of 

described in equation 3. 

xE zB
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In the vacuum the time harmonic fields and can be shown to be related by     xE zB
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xzy ikEBcd =           (14) 
 
This establishes the relation between the Fourier coefficients in equation 13 that satisfy 
 

n
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Hence the average deflection gradient can be described in terms of the Fourier 
coefficients 
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Once again, the extended phase synchronicity is satisfied for the coefficient for which the 
oscillatory term in the path-integral is constant, that is, when 0=Δ−+ ϕkknkp , which 
not surprisingly is the same condition as in the previous section, shown in equation 9. 
However, when this condition is satisfied the factor in the curly brackets in equation 16  
also becomes zero. Hence for any ,  or k n ϕΔ  the average extended deflection gradient 
from this structure experienced by speed-of-light particle is zero; 0

TM
=xG . The same 

calculation can be carried out for the average defection gradient from the TE solution; 
( )xzz cBEG −= Re

TE
, and it is found that no extended phase synchronicity can exist 

for this deflection component either.  
 
V. GEOMETRY FOR A NONZERO SYNCHRONOUS DEFLECTION FORCE  
As a means to introduce a nonzero deflection force the particle is allowed to acquire a 
velocity component in the z-direction, such that the particle’s velocity vector is described 
by ( ) ( )αα sinˆcosˆ zyctv +=

r , where α  represents a tilt angle between the particle 
trajectory and the extruded structure dimension. A perspective view of the new geometry 
is shown in Figure 2.  
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FIG. 2. Perspective view of an oblique particle trajectory with angle α  in 
the one-dimensional periodic structure. 
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The Lorentz force from the TM wave acting on such a particle is 
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The αcos  term, which can be made to be different from unity, allows for an imbalance 
between the opposing electric and magnetic force components whose average produces a 
residual net deflection.  The deflection gradients are given by qFG xx =

TM
, 

qFG yy =
TM

,  and qFG zz =
TM

 evaluated along the particle path αcosyy =′ . 

In terms of the Fourier expansions of the field components of equations 3 and 13 the 
average gradients are 
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Equation 18 shows that the phase synchronicity condition is 0cos =Δ−+ ϕα kknkp , 
and for the lowest order component  
 

ϕα Δ=+− kkkp cos          (19) 
 
when synchronicity of the lowest order coefficient is satisfied the average gradients of 
equation 18 read 
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These are the average gradient components in the xyz coordinate system that is aligned to 
the structure shown in Figure 2. In the particle’s x’y’z’ coordinate system the gradients 
from the TM wave read 
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For the TE wave, which includes the , and  components, a similar analysis can be 
performed. The Lorentz force from a TE wave in the xyz coordinate system is 

xB yB zE
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Proceeding with the same type of analysis as that for the TM wave , and  are 
expressed as a Fourier expansions of the form 

xB yB zE
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The gradients are the average values of the force components of equation 22. Inspection 
of the terms in equation 23 reveals that the same phase synchronicity as that for the TM 
wave given in equation 19 applies, and hence the average gradients are 
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In the x’y’z’ coordinate system these gradient components from the TE wave are 
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The synchronicity condition in equation 19 describes a different pulse-front tilt angle than 
the 45° found for the simple accelerating structure described earlier.  Using the relation 
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pkkk −=Δ  equation 19 becomes ( ) ϕαα Δ=+Δ−− kkkk coscos , which can be 
rewritten as 
 

k
k

Δ
Δ

=
ϕ

αcos
1            (26) 

 
This is still a pulse front tilt condition for an electromagnetic wave where the new pulse 
front tilt angle ψ  is steeper and is given by αψ cos1tan = . The steeper pulse front tilt 
angle condition is a consequence of the oblique trajectory of the speed-of-light particle 
with respect to the structure and field coordinates. 
 
VI. EVALUATION OF THE AVERAGE GRADIENTS AT SYNCHRONICITY 
If the input electromagnetic wave satisfies the phase synchronicity condition of equation 
20 it is possible to evaluate the average deflection from the path integral of the field 
components within a single structure period. As seen for the specific gradient 
components in equation 18 for either the TE or the TM solution the average gradient 
components have a general form 
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where ( )ϕα Δ,,kPn  is polynomial that depends on the field components and on the 
particular geometry. At phase synchronicity for the lowest order equation 19 is satisfied. 
Hence the complex exponent αϕ coskknk p +Δ−  becomes  and ( 1+nk p ) jG  
simplifies to 
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Since  is integer and enforces a periodicity of n pk pλ  or an integer fraction of it all the 
terms of the sum in the path integral ( )L,0  be expressed in terms of a path integral within 
a single structure period which corresponds to ( )λ,0 . 
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Since αcosyy =′  equation 29 can be expressed as  
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The expression corresponds to the instantaneous gradient 

component 
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Applying equation 31 for the gradient components from a  TM wave 
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Similarly, the gradient components from the TE wave are  
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For a linear superposition of TE and TM polarizations the total transverse deflection 
gradient is the vector sum of the total  x and z components 
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The total deflection gradient has an orientation that may not align with the coordinate 
axes 
 

( ) ( )
TM,TE,TM,TE,tan zzxx GGGG ′⊥′⊥′⊥′⊥ ++=θ     (35) 

 
Equations 34 and 35 indicate that a given input electromagnetic wave may produce an 
acceleration and a deflection gradient simultaneously. The value of the individual 
components depends on the polarization state, on the optical phase and on the structure 
geometry, and their evaluation can be performed through direct numerical integration 
with equations 32 and 33. It is also possible to gain a qualitative insight on the phase 
relation between the individual gradient components by realizing, for example, that the 
Fourier coefficients ,  and  of the TM wave are not independent. Since the 
particle was assumed to travel at 
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be shown that in the vacuum channel the fields satisfy Helmholtz equation [6] and since 
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amplitudes of an evanescent order and have a dependence on the x-axis of the form that is 
a linear superposition of exponential decay factors [8].  
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With equation 14 and the additional condition yzx ikEBcd −=  the coefficients ,  
and are related by 
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Therefore in terms of  the gradient components for the TM wave at  are ±,nu 0=x
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Equation 38 reveals that there is an optical phase shift between the maximum of 

TM,xG ′⊥ and the maximum of 
TM||,yG ′ and 

TM,zG ′⊥ that depends on the coefficients 

 and . For the TE mode a similar set of relations for the gradient coefficients is 
found 
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Figure 3a shows the cross-section of a specific structure example where the particle 
trajectory is assumed to lie at α = 20° in the yz plane. Figure 3b shows a diagram of the 
directions of the gradient components relative to the particle trajectory. Figures 3c and 3d 
show the magnitude of the gradient components with respect to the optical phase of a TE 
and a TM polarized electromagnetic wave. The gradients were evaluated by numerical 
path integration of the fields as indicated by equations 32 and 33. The incoming laser 
wave is assumed to have an electric field amplitude of 1=laserE .  
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ŷẑ
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ŷẑ
x̂

ŷẑ
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FIG. 3. Example of a periodic grating structure where the grating lines 
have a tilt angle of α = 20° to the particle trajectory. (a) Top view of the 
structure example. (b)  Diagram of the gradient components. (c) The 
gradient components from the TE mode as a function of the optical phase. 
(d) The gradient components of the TM incoming wave as a function of 
the optical phase.  
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As predicted by equations 39 and 40 yG ′||, and zG ′⊥, have opposite sign and have an 

optical phase offset to xG ′⊥, . Figure 3 shows that for both the TE and the TM wave the 
acceleration gradient is larger than either deflection gradient.  
 
 
VII. A PROPOSED LASER-DEFLECTION STRUCTURE 
As seen in Figure 3 the magnitude of the average deflection components zG ′⊥, and 

xG ′⊥, represents a significant fraction of the incoming laser plane wave amplitude. This 
is a motivation to explore the possibility of employing the synchronous deflection force 
to steer the particle beam with a laser. However as shown in Figure 3 the all three 
deflection force components occur from the TE and the TM wave and for a practical 
deflection unit it will be desirable to have the ability to apply the desired deflections in 
the x and z directions independently.  Linear superposition of the incoming waves can be 
applied to accomplish this functionality. For example, applying two electromagnetic 
waves from the opposite sides of the structure can provide for a means to cancel yG ′||, . 
Assuming the structure is symmetric about the y-axis a TM plane wave with the same 
amplitude as in equation 36 but incident from the opposite side of the structure has 
coefficients 
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For this wave  and  are related to by ±,nv ±,ncw ±,nu
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And hence at  the gradient components are 0=x
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If the two incident TM waves have the same optical phase 0=φ   the total gradient 
components are 
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And when the incident TM waves have opposite optical phase, such that πφ ±=  
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The same analysis can be performed for the TE waves, and with a similar result.  When 
the optical phase between the two TE waves is opposite only the transverse deflection 
gradient in the x-direction is nonzero and when their optical phase is equal the other two 
components are nonzero. As can be appreciated from Figure 3 the TE wave provides the 
larger deflection oriented in the x-direction and has a maximum of laserx EG 13.0~

max, ′⊥ .  
 
Notice that for both the TE and TM polarizations a net deflection in the z’ direction is 
always accompanied by a net acceleration or deceleration component. This is shown in 
equation 44 for the TM wave. However as shown in Figure 1 for the structures in 
question the critical dimension where steering is important is the x-direction. Since these 
planar structures are two-dimensional the precise beam position in the z’ axis is less 
critical and therefore steering in this direction is likely to be required less frequently than 
steering in the critical x-direction. 
 
If only a single laser beam is available to power the deflection structure a possible 
approach to provide a net deflection with no net acceleration is to employ linear 
superposition of a TE and a TM wave incident from the same side of the structure. For 
the example shown in Figure 3, choice of the amplitude of the TM wave to be 1.34 times 
the amplitude of the TE wave and lagging by an optical phase of 0.16π produces a 
cancellation of yG ′||, and zG ′⊥, . This combination of TE and TM modes corresponds 
to an elliptically polarized input wave with a Jones vector of the form 
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Figure 4a shows the resulting deflection gradient in the x-direction having a maximum 
value of laserx EG 13.0~

max, ′⊥ .  The maximum deflection gradient is the same as that 
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resulting from the application of two opposite TE waves considered earlier. Both 
schemes for cancelling the acceleration component present advantages and difficulties. 
While the first method relies on linearly polarized light it requires the superposition of 
two separate laser beams which typically increases the complexity of the optical system 
that powers the structure. The second approach, while only employing one laser beam, 
requires a set of polarization components to produce the elliptically polarized wave.   
 
If residual acceleration or deceleration in the deflection structure has no significant 
impact on the electron beam no superposition of TE or TM modes is required, and as 
shown in Figure 4b a TE wave produces a total maximum deflection gradient 

laserEG 16.0~
maxtotal,⊥  . At the optical phase of maximum deflection the orientation of 

the deflection in the x’z’ plane, indicated by the angle θ, is approximately 40° and the 
acceleration gradient lasery EG 3.0~||, ′ .  
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FIG. 4. (a) Use of elliptically polarized light to provide a net deflection 
with no acceleration. (b) The total deflection from a single TE wave. The 
dashed line θ is the orientation angle of the deflection in the x’z’ plane 
(see Figure 3b) 

 
VIII. CONCLUSIONS 
Pulse-front tilted waves can maintain extended phase synchronicity with a speed-of-light 
particle traveling inside a periodic structure. An oblique orientation between the periodic 
structure and the particle trajectory introduces a nonzero synchronous deflection force, 
and the choice of polarization and optical phase provide control for the direction of the 
deflection force. This allows for the possibility of laser-driven steering elements for 
relativistic charged particles. The means to provide a laser-driven deflection was briefly 
analyzed here. Other interesting applications such as the possibility of laser-driven 
undulators will be explored in further depth in an upcoming article. 
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