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Phase-synchronicity conditions from pulse-front tilted
laser beams on one-dimensional periodic structures and
proposed laser-driven deflection

T. Plettner
E.L. Ginzton Laboratories, Stanford University, Stanford CA 94305

This article explores general particle-to-field phase synchronicity
conditions in one-dimensional periodic phase modulation structures
powered from a pulse front tilted laser beam. The analysis applies to
speed-of-light particles. It is found that the synchronicity condition for the
accelerating force is straightforward to accomplish, whereas synchronicity
from a deflection force in these structures is only possible to attain with
certain geometry conditions. When these conditions are met a synchronous
deflection force that acts on the particle over a distance much greater than
the laser wavelength is introduced. This opens the possibility for an
effective laser-driven deflection microstructure.

PACS numbers: 41.75.Jv, 41.75.Ht, 42.25. Bs

I. INTRODUCTION

One general condition that all practical particle accelerators satisfy is their ability to
provide extended phase synchronicity between the relativistic particle bunch and the
driving electromagnetic field, which allows for the application of a continuous force on
the particle over a distance much greater than the wavelength. Many different methods
have been developed, and common particle accelerator configurations rely on the
electromagnetic wave energy co propagating with the particle and satisfy phase
synchronicity either through the control of the particle’s trajectory or more commonly
through the control of the electromagnetic wave phase velocity with the aid of a medium
or a waveguide structure.

Other particle accelerator architectures that do not rely on guiding of the electromagnetic
field along the particle channel have been analyzed in the past [1,2,3]. In transverse-
pumped accelerator structures such as [4] the EM energy flows at right angles to the
particle beam, and the phase synchronicity is attained by the introduction of a periodic
phase modulation of the field with a period equal to the wavelength of the
electromagnetic wave. These structures have been analyzed by evaluating the average
gradient in one structure period [4], and it has been suggested that a pulse-front tilted
laser beam could deliver extended phase synchronicity ranging over many structure
periods. However to the author’s knowledge no rigorous analysis on this statement has
been made.

Here, a general analytical evaluation of the accelerating and deflecting forces in periodic
one-dimensional structures is presented and a simple criterion for the possibility of
extended phase synchronicity in such systems is derived. First, the question of the
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extended phase synchronicity of the accelerating force in a periodic structure as proposed
in [4] is addressed. In particular, phase-synchronicity from a pulse-front tilted laser beam
is analyzed. Next, it is shown that in this structure the deflection force from the
electromagnetic wave cannot maintain phase synchronicity. Finally, it is shown that
tilting of the periodic structure with respect to the electron beam introduces a phase-
synchronous deflection force.

Il. THE GENERAL STRUCTURE GEOMETRY

Figure 1 shows six examples of conceptual one-dimensional periodic structures. Some of
these, such as c) have been proposed for particle acceleration. All these structures posses
a vacuum channel that runs along the y-axis and extrudes to infinity in the z-direction and
have a repeating shape with a period 1, where A, <A. These structures can be viewed

as multi-layer gratings of various shapes that are powered by an electromagnetic plane
traveling in the x-direction.
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FIG. 1. Examples of possible symmetric (a,b,c) and non-symmetric (d,e,f)
one-dimensional accelerator structures. The dashed line indicates the
particle trajectory through the vacuum channel of the structure.

The examples a,b,c in Figure 1 posses mirror symmetry in the yz-plane while the
examples d,e,f do not. The synchronicity considerations that follow are valid for all the
periodic structures shown in Figure 1. First, a speed-of-light test particle traveling down
the y-axis, such that V(t)=cy and F(t)=y, +cty is considered. In the last section the case

of a speed-of-light particle with a nonzero velocity component in the z-direction is
analyzed.

I11. PHASE SYNCHRONICITY OF THE ACCELERATING FORCE

Assume first a monochromatic plane wave of angular frequency @ that is incident on one
of the structures in Figure 1. Any one of the electric or magnetic field components in the
vacuum channel can be described by a function of the form



F(x,y,t)=A(x,y)e™ (1)

A(x,y) is the spatial field component and €'* is the harmonic time dependence. Since

the structure is infinite in the z-direction the spatial functions depend only on the x- and
the y-coordinates. Because of the periodicity of the structure and the normal incidence
condition of the wave the spatial field components have to satisfy

A(x, y) = Alx, y+n/1p) (2)

In the analysis presented here the period of the structure, denoted by A, does not have to

equal the wavelength of the electromagnetic wave A in vacuum. As described in [4], for
this two-dimensional problem there are two independent field solutions, each containing
three of the six field components that are labeled as transverse electric TE and transverse
magnetic TM solutions. Particle acceleration requires a nonzero electric field component
in the y-axis, which is produced by the polarization associated with the TM solution. The
acceleration field component is described as a periodic function that can be expanded as a
Fourier series of the form

,(0,y,1)= ZV e""Vek (3

where kp=27r//1p and k=2z/A. The particle position in the vacuum channel is

y(t)=y, +ct. Therefore the time variable can be expressed as t(y)=y/c-y,/c and
hence the force from the accelerating electric field acting on the particle is

F,(v,t(y)=qRe(g, 0.y, y/c))= qRe[ v, e J (4)

n=-—o0

The average acceleration gradient from this TM wave <Gy>TM is defined as

<GY>TM - <Fy(y:t(y))/q> - Re(lm .T iv e Ikye_ikyodyJ (5)

The term e ™ is a constant that represents the optical phase of the particle with respect to
the field and can be taken out of the path integral. For <Gy> to be nonzero there has to be

a component in the sum of equation 5 that possesses a non-oscillatory term, that is,
nk, +k =0. Since n is integer, to satisfy phase synchronicity for one of the terms in the

sum the structure period has to be an integer multiple of the wavelength of the driving
electromagnetic wave ; that is, 4, =—nA. For periodic structures such as those shown in



Figure 1 the lowest order coefficients, V, or V_,, are the largest and hence the most

desirable to phase-synchronize to. The phase synchronicity condition for the lowest order
term in equation 5 occurs when the structure period is equal to the electromagnetic field
wavelength, A, =1, and hence the average acceleration gradient is

(G, )y, = Rele™ VL) ©)

The fact that in equation 6 the acceleration gradient depends on V _, instead of V_, is only
a consequence of the specific phasor notation that was adopted in equation 3. As with all

particle accelerators the term e ™ describes the phase between the particle and the field,
which can be accelerating or decelerating.

Equation 6 describes the phase synchronicity condition for a CW plane wave at normal
incidence to the structure. On the other hand, a pulse-front tilted laser beam corresponds
to a sum of CW plane waves with different directions of propagation that depend on the
frequency of the particular plane wave component [5]. Hence to verify the possibility of
extended phase-synchronicity from a pulse-front tilted laser beam the synchronicity of
each plane wave component has to be found. Assuming an oblique incidence angle Ag

of a plane wave the field in equation 1 acquires a pseudo-periodicity of the form [6,7]
F(x y,t)= A(x, y )" “e ™ (7)

where A(x,y) is still the same spatial periodic field function that can be expressed as a

discrete Fourier series. The additional obliquity term modifies the accelerating gradient
expression shown in equation 5 to

T B
Gy ) =<Fy(y,t(y))/q>=Re(e " lim [ S,e e ““”dyj (®)

=—

The obliquity angle of the plane wave introduces a new phase synchronicity condition
that relates A to the frequency of the wave. From equation 8 it can be observed that the

synchronicity condition is
nk, +k —kAp =0 9)

Again, utilizing the lowest order nonzero term n=-1, and defining the change in the k-
vector of the electromagnetic wave as Ak =k —k, equation 9 becomes Ak —kAgp =0

which can be rewritten as

Agp
1=k=2 10
& (10)



Hence, for a laser pulse with multiple wavelengths the general phase synchronicity for
each wavelength has to satisfy equation 10, such that each frequency of the
electromagnetic wave is oriented a different obliquity angle. The pulse front tilt angle »

of a laser beam with center wavelength corresponding to k =27/ is given by [5]

do
tany =k —-— 11
V=K (11)

From equations 10 and 11 it can be observed that the phase-synchronicity condition for a
laser pulse on a one-dimensional periodic structure is the same as the expression of a
pulse-front tilted wave with a tilt angle satisfyingtany =1. Not surprisingly, this is equal

to a 45° pulse front tilted wave. The center frequency component has a wavelength
A= 4, and is at normal incidence to the structure while the other frequency components

are oriented at an angle proportional to their frequency offset.

IV. THE CANCELATION OF SYNCHRONOUS DEFLECTION FORCES

In [4] it was predicted that for a plane wave powering a periodic one-dimensional
structure there exists an optical phase where the speed-of-light particle experiences a
nonzero deflection force. Here it is shown that the residual deflection force of the
geometry calculated by FDTD methods in a single structure period in [4] does not
maintain extended phase synchronicity over a larger number of structure periods and
hence is not usable for an effective particle deflection. To analyze this problem
analytically the same argument as in the previous section can be applied. The deflection
force is composed of the lateral components of the total Lorentz force acting on the
speed-of-light particle. For the TM solution

E,) (0 0 E, +CB,
F=qRe E, [+q/c|xRe 0 |=qRe E, (12)
0 0 B 0

z

The deflection force is F, = Re(E, +¢B, ). As before, for a normal-incidence plane wave
E,and B, are periodic in the y-direction, and for a tilted plane wave they acquire the
same phase slippage term e ™% . Hence E and B, have the same form as that of
E, described in equation 3.

0 Y, t ZU elk ny iket —|kA(py
(13)
O Y, t ZW elk ny |kct —ikAgy

In the vacuum the time harmonic fields E, and B, can be shown to be related by



cd, B, = ikE, (14)

This establishes the relation between the Fourier coefficients in equation 13 that satisfy

k

W =
nk, —kAgp

n

(15)

n

Hence the average deflection gradient can be described in terms of the Fourier
coefficients

_i0+00 k . lLipn+—A¢)
(G} =Re[e "3 H“rmp——kmp}u"m(d el )ydym (16)

Once again, the extended phase synchronicity is satisfied for the coefficient for which the
oscillatory term in the path-integral is constant, that is, when nk +k —kA@ =0, which
not surprisingly is the same condition as in the previous section, shown in equation 9.

However, when this condition is satisfied the factor in the curly brackets in equation 16
also becomes zero. Hence for any k,n or A the average extended deflection gradient

from this structure experienced by speed-of-light particle is zero;(GX>TM =0. The same

calculation can be carried out for the average defection gradient from the TE solution;
(G,),. =(Re(E, —¢cB, )), and it is found that no extended phase synchronicity can exist

for this deflection component either.

V. GEOMETRY FOR A NONZERO SYNCHRONOUS DEFLECTION FORCE

As a means to introduce a nonzero deflection force the particle is allowed to acquire a
velocity component in the z-direction, such that the particle’s velocity vector is described
by V(t)=c(Jcosa+2Zsina), where « represents a tilt angle between the particle
trajectory and the extruded structure dimension. A perspective view of the new geometry
is shown in Figure 2.
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FIG. 2. Perspective view of an oblique particle trajectory with angle « in
the one-dimensional periodic structure.



The Lorentz force from the TM wave acting on such a particle is

E, +cB,cosa
F=qRe E (17)

y

0

The cosa term, which can be made to be different from unity, allows for an imbalance
between the opposing electric and magnetic force components whose average produces a

residual net deflection. The deflection gradients are given by (G,) = =(F,/a),
<Gy>TM :<Fy/q>, and (G, )., =(F,/q) evaluated along the particle path y’=y/cosa .

In terms of the Fourier expansions of the field components of equations 3 and 13 the
average gradients are

+00 L ’
<Gx> - Re e—iky0 z 1+M Un lim ijel(kpn—kmwk/cosa)y(y)dy,
™ nk, —kAg | "= Ly

n=-—ow

—iky, R A 1 < i(kpn—k +k/cosa) () 4o ,r
<GZ>TM :0

Equation 18 shows that the phase synchronicity condition is k n+k/cosa—kAg =0,
and for the lowest order component

—k, +kcosa=kAgp (19)

when synchronicity of the lowest order coefficient is satisfied the average gradients of
equation 18 read

(Gy)ry = Rele U, Jsin’ &
<GV>TM - Re(e_ikyov—l) (20)
<GZ >TM - O

These are the average gradient components in the xyz coordinate system that is aligned to
the structure shown in Figure 2. In the particle’s x’y’z’ coordinate system the gradients
from the TM wave read



(G.0)., = Rele U, Jsin’ &
(Gyy )., =Rel+e™V, Joosar (22)
(G.,)., = Re(-e ™V, sina

For the TE wave, which includes the B,, B, and E, components, a similar analysis can be
performed. The Lorentz force from a TE wave in the xyz coordinate system is

—CcB, sina
- =qRe| +CB, sina (22)
E, —cB, cosa

Proceeding with the same type of analysis as that for the TM wave B,,B and E, are
expressed as a Fourier expansions of the form

0 yt ZX elk ny iket —IkA(py
0 Y, t ZY elk ny iket —lkA:py (23)

0 yt ZZ elk ny iket —|kA¢y

The gradients are the average values of the force components of equation 22. Inspection
of the terms in equation 23 reveals that the same phase synchronicity as that for the TM
wave given in equation 19 applies, and hence the average gradients are

(Gy)re = Re(— e cY_l)sin a
G,)  =Rele™cX_ Jsina (24)
(6,),. =Rele e ,)

Y/TE

(G.)re =0
In the x’y’z’ coordinate system these gradient components from the TE wave are
(GLu) = Re(-e™ecy , Jsina
(Gyy).. = Re(+e™cX , Jsinacosa (25)
(G..).. = Re(—e™°cX , Jsin? &

The synchronicity condition in equation 19 describes a different pulse-front tilt angle than
the 45° found for the simple accelerating structure described earlier. Using the relation



Ak =k—k, equation 19 becomes —(k—Ak)/cosa +k/cosa=kAg, which can be
rewritten as

1 _ K Ap (26)
cosa Ak

This is still a pulse front tilt condition for an electromagnetic wave where the new pulse
front tilt angle w is steeper and is given bytany =1/cosa . The steeper pulse front tilt

angle condition is a consequence of the oblique trajectory of the speed-of-light particle
with respect to the structure and field coordinates.

VI. EVALUATION OF THE AVERAGE GRADIENTS AT SYNCHRONICITY

If the input electromagnetic wave satisfies the phase synchronicity condition of equation
20 it is possible to evaluate the average deflection from the path integral of the field
components within a single structure period. As seen for the specific gradient
components in equation 18 for either the TE or the TM solution the average gradient
components have a general form

L—>o
0 N=—x

L 4w
<G > Re(llm[ J‘ZP k a, A(o)e |kyoe i(kpnk—Ag-+k/cosa )y( Y')dyer (27)

where Pn(k,a,Ago) is polynomial that depends on the field components and on the
particular geometry. At phase synchronicity for the lowest order equation 19 is satisfied.
Hence the complex exponent k n—KkAg+k/cosa becomes kp(n +1) and <Gj>

simplifies to

L—w
0 N=-o

<G > Re[llm(ﬂ' i P (K, cr, A "0 "V gy D (28)

Since n is integer and kenforces a periodicity of 2, or an integer fraction of it all the

terms of the sum in the path integral (0, L) be expressed in terms of a path integral within
a single structure period which corresponds to (0,1).

(G,)= Re(e"m j‘ip K, o, Ap ™" y')oly'J (29)

n=-ow

Since y'=y/cosa equation 29 can be expressed as



<Gj> /1 inP K,a,Apl~ o ks (M1 gy
p 0=

(30)

nN=-—o0

The expression ZPn(k,a,Ago)e "‘y°eik"(””)ycorresponds to the instantaneous gradient
component G, (y)=

( )/q at location y when phase synchronicity for n=-1 is
satisfied. Therefore when this condition is met the average gradient is

A

1 p
_/1—ij (0, y.t(y))/ady
p o

(31)

Applying equation 31 for the gradient components froma TM wave

(Gri) =
<GM>TM -

Re(E, +cB,cosa )dy

h=}

N|,_\
ot—3

Ax|,4
oc_’t}:

Re(Ey cosa)dy

p
A

(G.,)., = % | Re(-E, sina)dy
p

0

(32)

°

Similarly, the gradient components from the TE wave are

1
<Gix '>TE :_p

<ley'>TE

ﬂp
IR (—cBysina)dy
/1 0
1%
j Re(cB, sina cosa )dy (33)
/lp 0
AP

(GL.).. = ;Li | Re(~cB, sin® a )dy

p o

For a linear superposition of TE and TM polarizations the total transverse deflection
gradient is the vector sum of the total x and z components

(o) = (Guy ) e + (G )y -
(G| = (B )se + (B f + (6o + (), S

10



The total deflection gradient has an orientation that may not align with the coordinate
axes

tno=(G,,) _+(G,)_J(G.,) +G.).,) (35)

Equations 34 and 35 indicate that a given input electromagnetic wave may produce an
acceleration and a deflection gradient simultaneously. The value of the individual
components depends on the polarization state, on the optical phase and on the structure
geometry, and their evaluation can be performed through direct numerical integration
with equations 32 and 33. It is also possible to gain a qualitative insight on the phase
relation between the individual gradient components by realizing, for example, that the
Fourier coefficients U,,V, and W, of the TM wave are not independent. Since the

particle was assumed to travel at x =0 these were treated as constants. However, it can
be shown that in the vacuum channel the fields satisfy Helmholtz equation [6] and since
A, <4 and n=0 the propagation constant is complex. Hence U ,V, and W, are

amplitudes of an evanescent order and have a dependence on the x-axis of the form that is
a linear superposition of exponential decay factors [8].

U,(x)=u,.e"™ +u, e

V,(x)=v, e +v, e (36)

W, (x)=w, "™ +w, e

With equation 14 and the additional condition cd, B, = —ikE, the coefficients u, .,v, .
and w, , are related by

i
k v, ;Fnuw (37)

CWn,i =——U + n+ — +
nk, —kAg nk, —kAg

Therefore in terms of u, , the gradient components for the TM wave at x =0 are

<GLX,>TM = Re(e‘ikyo (u,,+ u_l'_))sin2 a
(Gyy )., = Re(+ie™*(u, —u,., )T, Jlk, + kAg))cosa (38)
<G M>TM = Re(— ie ™o, —u,. )r, / (kp + kAgo))sin a

Equation 38 reveals that there is an optical phase shift between the maximum of

(G, ), and the maximum of (G, ) and (G,,) that depends on the coefficients

u,, and u_, _. For the TE mode a similar set of relations for the gradient coefficients is
found

11



(Giy),. = Relie ™ (x_, . — X, )T, /(k, +kAg)ksina
G,, ). =Rele™"(x,_+x_, )ksinacosa (39)
< Iy >TE ( ( : , )):

G ) =Rel-e™(x, +x,. )esin®a
< 1.z >TE ( ( 1, 1+ )k

Figure 3a shows the cross-section of a specific structure example where the particle
trajectory is assumed to lie at & = 20° in the yz plane. Figure 3b shows a diagram of the
directions of the gradient components relative to the particle trajectory. Figures 3c and 3d
show the magnitude of the gradient components with respect to the optical phase of a TE
and a TM polarized electromagnetic wave. The gradients were evaluated by numerical
path integration of the fields as indicated by equations 32 and 33. The incoming laser

wave is assumed to have an electric field amplitude of |E,,, | =1.

)

particle
trajectory

normalized gradient
normalized gradient
o
o

TM polarization
04z 0 7 -7 0 r
optical phase () optical phase ()

TE polarization

FIG. 3. Example of a periodic grating structure where the grating lines
have a tilt angle of « = 20° to the particle trajectory. (a) Top view of the
structure example. (b) Diagram of the gradient components. (c) The
gradient components from the TE mode as a function of the optical phase.
(d) The gradient components of the TM incoming wave as a function of
the optical phase.
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As predicted by equations 39 and 40 <G”1y,>and <Gi,z'> have opposite sign and have an

optical phase offset to<leX,>. Figure 3 shows that for both the TE and the TM wave the
acceleration gradient is larger than either deflection gradient.

VII. APROPOSED LASER-DEFLECTION STRUCTURE
As seen in Figure 3 the magnitude of the average deflection components <GM>and

<GLX,> represents a significant fraction of the incoming laser plane wave amplitude. This

is a motivation to explore the possibility of employing the synchronous deflection force
to steer the particle beam with a laser. However as shown in Figure 3 the all three
deflection force components occur from the TE and the TM wave and for a practical
deflection unit it will be desirable to have the ability to apply the desired deflections in
the x and z directions independently. Linear superposition of the incoming waves can be
applied to accomplish this functionality. For example, applying two electromagnetic

waves from the opposite sides of the structure can provide for a means to cancel <G||,y'> .

Assuming the structure is symmetric about the y-axis a TM plane wave with the same
amplitude as in equation 36 but incident from the opposite side of the structure has
coefficients

U!=u,.e" ™ +u, e’
V/=v, ey, e (40)

-\ x +I,x
W, =w, e "+w, e
For this wave v, , and cw, , are related to u, , by

k Fil, 0, (41)

CWn,i :—un,i ’ Vn,i = ,+
nk, —kAg nk, —kAg

And hence at x =0 the gradient components are
<GM,>ITM =Rele™(u,, +u, )sin’a
<G”'y,>’m =Re(-ie™*(u, -u,.)r, J(k, + kAg))cosa (42)

!

<GM,> ™ = Re(+ e (U, — uflﬁ)lil/(kp + kAgo))sin a

If the two incident TM waves have the same optical phase ¢=0 the total gradient
components are

13



!

G,,). +(G, ) =2Rele™ (u,, +u, )sin?a
(Ou (G =2Rele ™ 0, 40, )

<G||,y'>TM +<G||,y'> ™ =0 (43)

And when the incident TM waves have opposite optical phase, such that ¢ =+

!

<lex'>TM + <Glxx'> ™ =0
<G||,y'>TM + <G||,y'>’TM = 2Re(+ ie " (u, - U_1,+)F-1/ (kp + kA(”))COS“ (44)
<GM,>TM + <GM>'TM =2 Re(— ie ™o u, - u_lv+)l“_1/(kp + kAgo))sin a

The same analysis can be performed for the TE waves, and with a similar result. When
the optical phase between the two TE waves is opposite only the transverse deflection
gradient in the x-direction is nonzero and when their optical phase is equal the other two
components are nonzero. As can be appreciated from Figure 3 the TE wave provides the

larger deflection oriented in the x-direction and has a maximum of <GLX,>maX ~0.13E

laser *

Notice that for both the TE and TM polarizations a net deflection in the z’ direction is
always accompanied by a net acceleration or deceleration component. This is shown in
equation 44 for the TM wave. However as shown in Figure 1 for the structures in
question the critical dimension where steering is important is the x-direction. Since these
planar structures are two-dimensional the precise beam position in the z’ axis is less
critical and therefore steering in this direction is likely to be required less frequently than
steering in the critical x-direction.

If only a single laser beam is available to power the deflection structure a possible
approach to provide a net deflection with no net acceleration is to employ linear
superposition of a TE and a TM wave incident from the same side of the structure. For
the example shown in Figure 3, choice of the amplitude of the TM wave to be 1.34 times
the amplitude of the TE wave and lagging by an optical phase of 0.16x produces a

cancellation of <G”’y,>and <GM,>. This combination of TE and TM modes corresponds
to an elliptically polarized input wave with a Jones vector of the form

J=;(aﬁj 1( ! J; ¢~0.167 (45)

/aTE2+aTM2 an, ) 1.67\1.34xe"

Figure 4a shows the resulting deflection gradient in the x-direction having a maximum
value of (G,,) ~0.13E The maximum deflection gradient is the same as that

laser *
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resulting from the application of two opposite TE waves considered earlier. Both
schemes for cancelling the acceleration component present advantages and difficulties.
While the first method relies on linearly polarized light it requires the superposition of
two separate laser beams which typically increases the complexity of the optical system
that powers the structure. The second approach, while only employing one laser beam,
requires a set of polarization components to produce the elliptically polarized wave.

If residual acceleration or deceleration in the deflection structure has no significant
impact on the electron beam no superposition of TE or TM modes is required, and as
shown in Figure 4b a TE wave produces a total maximum deflection gradient

<let°tal>max ~0.16E,,, . At the optical phase of maximum deflection the orientation of
the deflection in the x’z” plane, indicated by the angle &, is approximately 40° and the

laser

acceleration gradlentKG”'y' >‘ ~0.3E,,, .
a) b)
RN (G,,) yd 0.3 (Gy) 1.
£ \\\ / = 0.2+ <GL,totaI > : .
% \ / % 0.1p> 2
5 (Gyy) (6.0) / 5> — - - 5
g 0o BN : —— 3 00t \ q0 g
N \ / N \ 2
g \ / € 04} 8
S \ / 5 5
c \\\ / € go2b 1
o \\\W// ] -0.3f
I 6 t7 -7 0 +7
optical phase (¢) optical phase (¢)

FIG. 4. (a) Use of elliptically polarized light to provide a net deflection
with no acceleration. (b) The total deflection from a single TE wave. The
dashed line @ is the orientation angle of the deflection in the x’z’ plane
(see Figure 3b)

VIII. CONCLUSIONS

Pulse-front tilted waves can maintain extended phase synchronicity with a speed-of-light
particle traveling inside a periodic structure. An oblique orientation between the periodic
structure and the particle trajectory introduces a nonzero synchronous deflection force,
and the choice of polarization and optical phase provide control for the direction of the
deflection force. This allows for the possibility of laser-driven steering elements for
relativistic charged particles. The means to provide a laser-driven deflection was briefly
analyzed here. Other interesting applications such as the possibility of laser-driven
undulators will be explored in further depth in an upcoming article.
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