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Abstract We present the ultrarelativistic boost of the general global monopole solu-
tion which is parametrized by mass and deficit solid angle. The problem is addressed
from two different perspectives. In the first one the primaryobject for performing the
boost is the metric tensor while in the second one the energy momentum tensor is used.
Since the solution is sourced by a triplet of scalar fields that effectively vanish in the
boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely,
we perform the boosting study of the spherically symmetric solution with a free scalar
field given by Janis, Newman and Winicour. The scalar field is again vanishing in the
limit pointing to a broader pattern of scalar field behaviourduring an ultrarelativistic
boost in highly symmetric situations.

Keywords Global monopole� Black hole� Ultrarelativistic boost� Scalar field

1 Introduction

It is well known that different types of topological objectsmay have formed during
the initial phase of the expansion of Universe, the most interesting ones being domain
walls, cosmic strings and monopoles [1]. These topological defects are assumed to
be created during spontaneous breakdown of local or global gauge symmetries. The
main feature of the global monopole [2] is the presence of a solid deficit angle which is
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sourced by a triplet of scalar fields. This solution has enjoyed continuous interest in the
past 25 years. It was generalized to both positive and negative cosmological constant
[3,4] and modified theories of relativity [5,6]. Its classical stability was proven for
a large class of perturbations [7]. Since it is a potentially important astrophysical
source providing information about the initial phases of our universe its gravitational
lensing features were investigated [8] and the scaling properties of networks of global
monopoles were analyzed [9]. The global monopole solution was also used to study
the possible removal of a classical singularity from the quantum mechanical point
of view—in the case of a Klein-Gordon field [10], Dirac field and from the Loop
Quantum Gravity perspective [11].

Ultrarelativistic limits of solutions to the Einstein equations generally transform
stationary spacetimes into plane wave solutions with a profile function corresponding
to a shock wave. The first such limit was performed by Aichelburg and Sexl [12]
(for a generalization to sources with higher multipole moments, see [13]). Their pro-
cedure of boosting the spacetime to the speed of light consists of taking a proper
distributional limit accompanied by a specific coordinate transformation that provides
a regularization of the result. This fact brings a certain ambiguity which is similar
to the one associated with the renormalization in Quantum Field Theory as noted by
[14]. This led the authors of [14] to propose an alternative route by performing an
ultrarelativistic limit of energy momentum tensor of the given spacetime instead of
the metric. This meant finding a proper distributional source for the given geometry—
for Schwarzschild it is unsurprisingly a density distribution in the form of Dirac’s
Æ -function located at the origin. The geometry is then recovered by solving Einstein
equations for the ultraboost limit of distributional energy momentum tensor.

The ultrarelativistic boost of a global monopole was previously derived in [15] but
our result is different. We will explain where the difference arises and support our
conclusion by comparing the results coming from the above mentioned approaches to
boosting.

Since the triplet of scalar fields and the associated energy momentum tensor is
shown to vanish in the ultraboost limit we try to investigatethe behaviour of the
scalar field during boosting for a simpler case of a single scalar field with spherical
symmetry—namely the so-called Janis–Newman–Winicour (JNW)spacetime. The
aim is to confirm that the scalar fields in these highly symmetric situations generally
tend to vanish and that the result obtained for the global monopole is not surprising.

In 1968 Janis, Newman and Winicour [16] presented the most general spherically
symmetric, static and asymptotically flat solution of Einstein’s field equation mini-
mally coupled to a massless scalar field. They mainly discussed its specific “vacuum”
limit. After dealing with a certain ambiguity in the limiting process they discovered
that their solution tends to the exterior of Schwarzschild but with a pointlike singu-
larity at the horizon position. Later, this solution was rediscovered in a different form
by Wyman [17] (see [18] for an explanation of the coincidence of both solutions). In
fact, although the name of the spacetime is widely used in theliterature, a recent paper
[19] shows that it is just one in the series of rediscoveries of the solution originally
published by Fisher [20].

The peculiar behaviour of the JNW solution with respect to the Schwarzschild limit
at the horizon position was generalized in [19] to cover all spherically symmetric,
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static and asymptotically flat (or anti-de Sitter) solutions of Einstein’s field equations
minimally coupled to a scalar field with a potential. Specifically, it states that the
global structure of these geometries is Schwarzschild(–anti-de Sitter)-like with naked
singularity potentially shifted to a nonzero radius.

In this paper, we first apply the two boosting methods mentioned above to the
general metric of a global monopole [2], which is determined by two parameters—
one characterizing the “Schwarzschild mass” and the other measuring the deficit solid
angle. More precisely, we use a line element which is valid only outside the core
of the global monopole source (see e.g. [21] for an extensive discussion) but can
as well be interpreted as the exact metric corresponding to aspherically symmetric
cloud of strings [22]. Since even in the context of the cloud of strings the metricis
referred to as the global monopole solution we keep using this name while having
both interpretations (and their limitations) in mind. The considered solution possesses
a singularity which is generally covered by a single horizonbut this two parameter
class of metrics also contains, as a special case, a naked singularity. Finally, we will
review the JNW metric and subsequently perform its boost to the velocity of light
again using both approaches. In both cases we discuss the resulting geometries and
analyze the consequences.

2 Global monopole

The simplest scalar field model with a minimal coupling (see [23] for a generalization
to non-minimal couplings) giving rise to the global monopole is described by the
Lagrangian [2]

L D
1

2
� � � a � � � a �

1

4
� . � a � a � � 2 / 2 ; (1)

where� a is a triplet of scalar fields,a D 1; 2; 3 and� ; � are constants. The model has
a global O . 3/ symmetry, which is spontaneously broken toU . 1/ . The scalar field
triplet corresponding to a monopole has the following form

� a D �
x a

r
f . r / (2)

wherex a x a D r 2. The functionf � 1 outside the monopole core which has the size

� �
� 1
2 � � 1 and we will consider a spacetime given byf D 1 from now on.

We assume that the underlying geometry is described by a general static spherically
symmetric line element

d s 2 D � B . r / d t 2 C
d r 2

A . r /
C r 2

³

d � 2 C sin2 � d � 2
´

; (3)

with a standard relation between spherical,f r ; � ; � g , and cartesian-like coordinates
x a . The Lagrangian for the above given field configuration and geometry takes this
form

L D
1

2

¡

� � � a � � � a C � � � a � � � a ¢

D
� 2

r 2 ; (4)
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giving the following energy momentum tensor

T t
t D T r

r D �
� 2

r 2 ; T �
� D T

�
� D 0: (5)

Solution of the Einstein equations for metric (3) with energy momentum tensor (5) is
described by the following functions

B . r / D A . r / D 1 � 8� G � 2 �
2G M

r
(6)

whereM is a constant of integration. This metric describes a black hole of massM ,
carrying a global monopole charge� which measures the deficit of solid angle. One
can imagine this object being formed when an ordinary black hole swallows a global
monopole [1]. As already mentioned in the introduction, the above interpretation of
metric (3) with (6) is valid only outside the core of the source located at the origin.
An alternative explanation of this line element comes from considering a spherically
symmetric cloud of strings (generalization of a dust cloud)[22] with energy density
equal to tension [10].

The Kretschmann scalar which indicates the presence of a curvature singularity is
given by

K D
48M 2 G 2

r 6 C
128M � G 2 � 2

r 5
C

256� 2 G 2 � 4

r 4 : (7)

Obviously, atr D 0 we have a typical central curvature singularity and the dominant
contribution comes from the Schwarzschild mass.

3 Kerr–Schild form of metric

To arrive at the Kerr–Schild form of metric [24] suitable for both approaches to boosting
we need to perform certain simple coordinate transformations. Let us first transform
the metric to isotropic coordinates. Starting from metric (3) with (6) we can write

d s 2 D A . r /

µ

� d t 2 C
d r 2

A . r / 2

¶

C r 2
³

d � 2 C sin2 � d � 2
´

(8)

and defined � D 1
A . r / d r � d t . The line element will become

d s 2 D � A . r / d � 2 C 2d � d r C r 2 d � 2 D (9)

D � d � 2 C 2d � d r C r 2 d � 2 C T 1 � A . r / U d � 2

By changing the coordinates again usingd � D d r � d t 0 we get the final form of the
metric

d s 2 D � d t 0 2 C d r 2 C r 2 d � 2 C [1 � A . r / ] . d r � d t 0 / 2 ; (10)
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in which A . r / D 1 � 8� G � 2 � 2G M
r . We will rewrite the metric in corresponding

cartesian-like coordinates (which reflect the flat part of the Kerr–Schild form of metric
that one can treat as a background)

d s 2 D � d t 0 2 C d x 2 C d y 2 C d z 2

C
1 � A . r /

r 2

¡

x d x C y d y C z d z � r d t 0 ¢2 ; (11)

wherer 2 D x 2 C y 2 C z 2. So the metric is separated into a Minkowski part and one
additional term encoding the Schwarzschild black hole witha global monopole.

4 Boosting global monopole

The Minkowski part of the Kerr–Schild form of metric provides us with a notion of
boosts as isometries of this background [14] thus acting similarly to gauge transfor-
mations (e.g. in gravitational waves on a background) in this respect. Additionally, an
asymptotic observer moving uniformly relative to the origin of this spherically sym-
metric spacetime will see the metric deformed by a Lorentz transformation [12] if we
have onlyM nonvanishing. We choose a Lorentz transformation in thex � direction

Nt D
. t 0 C v x /
p

1 � v 2
; Ny D y ; Nz D z ; Nx D

. x C v t 0 /
p

1 � v 2
; (12)

wherev is the boost parameter. The Minkowski part of the line element (11) is obvi-
ously invariant under Lorentz transformation so we only study the additional term that
is modified as follows

� . Nr / T . Nx � v Nt / . d Nx � v d Nt / C . 1 � v 2 / . y d y C z d z /

�

√

. Nx � v Nt / 2 C . 1 � v 2 / . y 2 C z 2 / . d Nt � v d Nx / U 2 ; (13)

where

� . Nr / D
8� G � 2 Nr C 2G M

Nr 3 . 1 � v 2 / 2

D
2p G . 1 � v 2 / C 8� G � 2

√

. Nx � v Nt / 2 C . 1 � v 2 / . y 2 C z 2 /

. 1 � v 2 / T . Nx � v Nt / 2 C . 1 � v 2 / . y 2 C z 2 / U 3= 2 (14)

Here we automatically consider the same rescaling of the mass as in the original paper
[12]

M D p
√

1 � v 2 ; (15)

with p being a constant throughout the limiting process.
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Now, we will study the limit of (13) when v ! 1. The limit separates into two
cases in the following way















32� G � 2 j Nx � Nt j C 8G M
p

1� v 2

j Nx � Nt j . 1� v 2 / . d Nx � d Nt / 2 Nx 6 D Nt

8� G � 2 � C 2G M
� . 1� v 2 / . d Nx � d Nt / 2 Nx D Nt

(16)

in which � 2 D . y 2 C z 2 / . It is clear that for a nonvanishing� the two limits are not
finite and cannot be regularized in the manner of [12]. It is interesting to note that
if M D 0, the limits coincide for both cases (up to a numerical factor). However,
generally it is possible to rescale� in the same way as we did for mass, i.e.

� D � 0

√

1 � v 2 ; (17)

then the limit becomes trivial















[

32� G � 2
0 C

8G p
j Nx � Nt j

]

. d Nx � d Nt / 2 Nx 6 D Nt

[

8� G � 2
0 C

2G M p
�

p
1� v 2

]

. d Nx � d Nt / 2 Nx D Nt

(18)

When � D 0, we will retrieve the Schwarzschild case which is finite when Nx 6 D Nt and
leads to a flat space. In the case ofNx D Nt one can perform the same regularization
trick (first a singular transformation and then a boost parameter limit) that one can
find in [12] and it ensures the resulting metric might be expressed in terms of Dirac’s
delta distribution (multiplied by ln� ) corresponding to a shock wave located on the

Nx D Nt null surface. Alternatively, one can first perform a distributional limit of metric
functions using the Hotta and Tanaka identity [25]

lim
v ! 1

1
p

1 � v 2
f . Nx / D Æ . x � t /

∫ 1

� 1
f . � / d� (19)

and then regularize the infinities resulting from the unbounded integral (that are of the
form ln. � / for � ! 1 in the case of Schwarzschild) using renormalization techniques
from Quantum Field Theory.

A different solution to the problem of ultrarelativistic limit when � 6 D 0 was pro-
posed in [15] where the suggested scaling for the monopole charge is� D � 0 . 1� v 2 / 1= 4.
In that case, however, the limits still remain infinite both inside and outside the null
hyperplaneNx D Nt . On the other hand, performing the limit according to (19) leads to
a shock wave profileÆ . x � t / � . But here one needs to remove the terms linear in�

(for � ! 1 ) by a suitable regularization in all spacetime points.
From the physical perspective one can also study the behavior of volume during

boosting since it is directly related to the interpretationof � as a parameter describing
the deficit of solid angle. For this purpose we shall considerthe essential part of the
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spatial volume three-form3 ! D
√

3g dx ^ dy ^ dz for the spatial metric3g i j (with
3g D det3g i j ) induced from (11), namely the scalar density

√

3g D
√

2 � A . r / D

√

1 C 8� G � 2 C
2G M

r
: (20)

Concentrating solely on the influence of� (by putting M D 0) we see that in the
ultraboost limit both scalings lead to a vanishing contribution of � to the volume.
Now, let us consider the behavior of the volume element whichgains an additional

 -factor when boosted and set general scaling� D � 0 . 1 � v 2 / s

3 ! � 


√

1 C 8� G � 2
0 . 1 � v 2 / 2s D

√

1

1 � v 2 C 8� G � 2
0 . 1 � v 2 / 2s � 1 : (21)

For s D 1= 2 one can interpret� 0 as giving fixed contribution to volume during boosting
process. This value coresponds to proposed scaling (17).

Note that the scalar field triplet, its Lagrangian and energymomentum tensor are
all going to zero for both scalings. In the next section we present alternative approach
to the problem to help us with deciding which scaling should be preferred.

5 Regularized energy momentum tensor limit

Different approach to boosting provides a method developedby Balasin and Nachba-
gauer [14]. It is based on the analysis of the energy momentum tensor asthe primary
object describing the spacetime rather than the metric. Note that the energy momentum
tensor is considered here to be defined by the left-hand side of the Einstein equations.
Since the Schwarzschild solution is without a source in the standard sense this would
not reproduce the previous results [12]. First, one has to define a correct energy momen-
tum tensor of a given solution in terms of distributions [26] (making the connection
between the gravitational and the electrostatic field of a particle even more explicit).
Next, one performs an ultrarelativistic boost of such an energy momentum tensor and
takes the result as a source for a new spacetime corresponding to the boosted geometry.

Let us review the construction of the distributional energymomentum tensor for the
Kerr–Schild class of spacetimes as introduced in [26]. The metric for such a solution
can be given in the following form

g a b D � a b C f k a k b ; (22)

where� a b is the Minkowski metric,f is a function andk a is a covector which is null
with respect to both metrics. The metric of a global monopolecan be given in this
form as explicitly derived in Sect.3. Importantly, the covector fieldk a satisfies the field
equationG a b k a k b D 0 even in the presence of the scalar field supporting the global
monopole thus maintaining the geodetic property discovered by Kerr and Schild [24].
Using metric� a b for raising/lowering indices and its associated derivative � a the Ricci
tensor and scalar can be expressed in the following way
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R a
b D

1

2
. � a � 
 . f k 
 k b / C � b � 
 . f k 
 k a / � � 2 . f k a k b / / ; (23)

R D � a � b . f k a k b / : (24)

Both expressions are linear inf which is useful in combining effects of different terms
appearing inf.

The distributional evaluation of these expressions then proceeds in the following
way [14] (we give an illustration in the case of a scalar curvature and a test function
� 2 C 1

0 . R3 / , due to the stationarity of the solution we consider only thespatial
distributions)

. R ; � / D . � a � b . f k a k b / ; � / D . f k a k b ; � a � b � /

D lim
� ! 0

∫

R3 � B �
f k i k j � i � j � dV : (25)

In the last equality the regularization of the integral at origin was used (B � is a ball of
radius� ). In our case we havef D 8� G � 2 C 2G M

r andk D dr � dt when we use the
Eq. (10) and leave out the prime sign on the time coordinate for simplicity. Here we
can use the linearity of expressions (23, 24) because the results for the second term
in f are already known from [14]. The first term produces a regular distribution and
can be calculated straightforwardly. Adding both togetherwe get the following energy
momentum tensor in the Kerr–Schild coordinates

8� G T a
b D R a

b � 1
2 Æ a

b R

D � 8� G

µ

M Æ . 3/ . x / C
� 2

r 2

¶

. � t / a . d t / b (26)

�
8� G � 2

r 4 . x � x C y � y C z � z / a . x d x C y d y C z d z / b

Now we write the above result in a general Lorentz frame with momentum of the
global monopole denoted byP a (whereP a P a D � M 2) and the spatial direction in
which we perform the boost byQ a (Q a Q a D M 2). Using the following expressions
in terms of the Lorentz invariants

M 2 r 2 D M 2x � x C . P � x / 2

Æ . 3/ . x / D M Æ . Q � x / Æ . 2/ . x T / (27)

M 2xdx D M 2x � dx C . P � x / . P � dx /

and the corresponding relation for vectors (dot means a scalar product via� , bold
letters stand for four-vectors andx T spans the spatial coordinate plane orthogonal to
Q) we can perform an ultrarelativistic boost (in which bothP andQ turn into the null
vectorp). We obtain the limiting energy momentum tensor (with the distributional
term coming from [14])

T a
b D

·

Æ . p � x / Æ . 2/ . x T / C
� 2

. p � x / 2

¸

p a p b �
� 2

. p � x / 2. p � � x/ a . p � dx / b (28)

1 2 3



Ultrarelativistic boost with scalar field Page 9 of 14 _####_

Evidently, this expression has, apart from delta distribution, singular behavior on
the hypersurfacep � x D 0. When one carefully considers the relation (27) for the
expressionM 2 r 2 one immediately concludes that the asymptotic behavior towards
the limiting form is governed byM 2 � . 1 � v 2 / (appearing in the termM 2x � x). It
means that rescaling the solid angle according to the relation (17) cures the singular
behavior, thus confirming the result of the previous section. On the other hand, the
scaling considered in [15] is not sufficient to remove the singular behavior of the
energy momentum tensor on the whole null hypersurfacep � x D 0.

Finally, one could recover the result for the metric by solving Einstein equations
for (28). When only the delta function term remains this reduces to solving a two-
dimensional Poisson equation with source proportional toÆ . 2/ . x T / which leads to the
logarithmic solution of [12].

6 Janis–Newman–Winicour spacetime

Now, we would like to understand if the behaviour noted at theend of Sect.4 (effective
disappearance of the scalar fields and their influence in the boosting process) is natural
for scalar fields at least in a highly symmetric situations. As a simple candidate for
investigation we use a spherically symmetric, static and asymptotically flat solution
of Einstein’s field equations minimally coupled to a massless scalar field which can
be described by the following line element [16]

d s 2 D � f . R / d t 2 C
1

f . R /

½

d R 2 C
1

4
T . 2R C r 0 / 2 � � 2 r 2

0 U d � 2
¾

;

d � 2 D d � 2 C sin2 � d � 2

with

f . R / D

·

2R � r 0 . � � 1/

2R C r 0 . � C 1/

¸ 1
�

; � D A ln f . R / (29)

and

� �

√

1 C 4A 2 = r 2
0 � 1: (30)

In which A andr 0 D 2m are two parameters.
Our aim now is to find a form of the metric suitable for boosting, namely, the

isotropic form. First, by choosing the following transformation we will bring the
metric functions into a simpler form

QR D R C m ; M D m � (31)

Then the line element becomes

d s 2 D � f . QR / d t 2 C
1

f . QR /

{

d QR 2 C . QR 2 � M 2 / d � 2
}

; (32)
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in which

f . QR / D

[

QR � M

QR C M

] 1
�

: (33)

To get a conformally flat spatial part of the metric we apply one more change of
variables

QR D

µ

r C
M 2

4r

¶

(34)

to finally get the desired form

d s 2 D T g . r / � f . r / U d t 2 C g . r /
{

� d t 2 C d r 2 C r 2 d � 2
}

; (35)

f . r / D

·

1 � M = 2r

1 C M = 2r

¸ 2
�

; g . r / D

µ

1 �
M 2

4r 2

¶ 2
1

f . r /
:

This metric has a singularity atr D M = 2 as one can check from Kretschmann scalar.
We can try to obtain the Kerr–Schild form of metric in this case as well. For the

line element (35) we would need to introduce a new radial coordinateQr D
p

g . r / r .
Since the boosting would then be performed in this new coordinate one can analyze
the behaviour of the geometry only if one knows the explicit dependence of the metric
functions on this new coordinate. However, inverting the relation Qr D

p
g . r / r is not

possible (for a general� ) and although one might still attempt to draw conclusions
based on an implicit relation the process would be extremelycumbersome and non-
transparent. Another motivation to use the line element (35) stems from the possibility
to exactly follow the steps of the original work [12].

The scalar field acting as a source of this geometry is given bythe following
prescription in the coordinates of (35)

� D A ln f . r / : (36)

By putting � D 1 and A D 0, we obtain the Schwarzschild solution in isotropic
coordinates. We will rewrite (35) in the corresponding cartesian coordinates

d s 2 D g . r /
{

� d t 2 C d x 2 C d y 2 C d z 2
}

C T g . r / � f . r / U d t 2 (37)

wherer 2 D x 2 C y 2 C z 2. So the metric is separated into a conformally Minkowski
part and one additional term which (together with the conformal factor) encodes the
influence of the scalar field.

7 Boosting JNW solution

Now we apply the Lorentz transformation (12) with t D t 0 to the JNW solution
described by the line element (37). Here, we again consider the scaling of the mass
parameter (15). So the line element (37) is in the following form after boosting

1 2 3
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d s 2 D g . Nr / d s 2
M i n k C � . Nr /

. d Nt � v d Nx / 2

1 � v 2 (38)

where

� . Nr / D g . Nr / � f . Nr /

The Minkowski part in the line element (37) is obviously invariant under the Lorentz
transformation. So the nontrivial computation consists ofproviding the boosting limits
of the metric functionsg and� . First, we check the limiting behaviour of the function
g . Nr /

lim
v ! 1

g . Nr / D lim
v ! 1

µ

1 �
M 2

4 Nr 2

¶ 2 ·

1 C M = 2 Nr

1 � M = 2 Nr

¸ 2
�

D











1 Nx 6 D Nt

1 Nx D Nt

(39)

This means that the conformally Minkowski part becomes exactly Minkowski every-
where in the limit. Now, we study the limit of the crucial part, � . Nr / ,

lim
v ! 1

� . Nr / D lim
v ! 1

{

µ

1 �
M 2

4 Nr 2

¶ 2 ·

1 C M = 2 Nr

1 � M = 2 Nr

¸ 2
�

�

·

1 � M = 2 Nr

1 C M = 2 Nr

¸ 2
�
}

D











0 Nx 6 D Nt

0 Nx D Nt

(40)

Considering the additional 1
1� v 2 factor in the line element (38) the limit is undefined.

Expanding� . Nr / in M
Nr [which approaches zero for (15)] we get the following approx-

imation

� . Nr / '
4M

� Nr
(41)

if we use the definition (31) for M , we obtain exactly the same result as in the Schwarz-
schild case which is moreover independent of� . So the limit of the whole last term
in line element (38) turns out to be

lim
v ! 1

� . Nr /
. d Nt � v d Nx / 2

1 � v 2 D lim
v ! 1

4p
p

1 � v 2

Nr

. d Nt � v d Nx / 2

1 � v 2

D











4p
j Nx � Nt j . d Nt � d Nx / 2 Nx 6 D Nt

lim v ! 1
4p

� . 1� v 2 / . d Nt � d Nx / 2 Nx D Nt

(42)

where� 2 D . y 2 C z 2 / . For the caseNx 6 D Nt we obtain a flat spacetime which can be
checked by computing the Riemann tensor. ForNx D Nt either a singular transformation
is needed [12] followed by a limiting procedure to obtain the well-known planar shock
wave with the profile ln. � / Æ . Nx � Nt / . Or alternatively, one performs a distributional limit
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immediately and regularizes the result subsequently (in the manner of renormalization
techniques of the Quantum Field Theory). Either way one endsup with the well-
known shock wave which was originally obtained for Schwarzschild solution upon
ultrarelativistic boost [12].

Sincef . Nr / ! 1 in the limit [as seen by combining (39) and (40)] and using (36)
the scalar field vanishes after boosting (everywhere exceptat the singularityr D M = 2
of the metric) and because� ; r ! 0 its energy momentum tensor vanishes as well
confirming the consistency of the above limit of the metric. So if one would like to
apply the alternative boosting strategy [14] where the left-hand side of the Einstein
equations (considered as a definition of the energy momentumtensor) is boosted one
immediately concludes that the regular part (corresponding to scalar field contribution
outside of the singularity) does not contribute. However, we still have the singularity at
the horizon position which gives a distributional contribution as in the Schwarzschild
case [14].

To make this qualitative statement more precise we can compute the distributional
Einstein tensor for the line element (35). We do not have a Kerr–Schild form of
the metric but we can use procedure for Schwarzschild metricin standard coordinates
described in [27]. This procedure is based on a regularization of the metric functions by
introducing an arbitrary function (dependent on a parameter) that vanishes at singular
point with subsequent removal of the regularization function influence on the Einstein
tensor via limit in the parameter. In the case of our metric (35) we can introduce the
following regularized metric functions (inspired by [27]) parametrized by� > 0

f . r / D

·

1 � M = 2r

1 C M = 2r

¸ 2
� C �

; g . r / D

µ

1 �
M 2

4r 2

¶ 2� �
1

f . r /
: (43)

As proved in [27] the regularization result does not depend on the specific regulariza-
tion function provided it is smooth and vanishes at the singular point. We will show
the explicit computation in the case of Ricci scalar since the nontrivial components
of the Ricci tensor (in mixed components form) have the same behaviour near the
singularity r D M = 2

R D
32M 2

4� � 2

. 2r � M /
2� C 2

� � 4

. 2r C M /
2

� C 4
r 2� 2� K . r / ; (44)

whereK . r / is a regular and nonzero quadratic function in the vicinity of the singularity
r D M = 2. Now, we concentrate on the singular part of (44) and consider it as a distri-
bution on the space of smooth test functions with compact support. As in the case of
the global monopole we investigate just the spatial distributions and due to a spherical
symmetry we are only concerned with the radial dependence ofour test functions. We
note that the two-dimensional spheres atr D M = 2 have vanishing area so it is use-
ful (and geometrically reasonable) to simplify calculations by introducing the shifted
radial coordinate� D r � M = 2 and having the test functions� . � / 2 C 1

0 . 0; 1 / .
The singular part of (44) when considered as a distribution can be decomposed in the
following way [27]
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³

�
2� C 2

� � 4
; �

´

D 4�

∫ 1

0
�

2� C 2
� � 2 [ � � � . 0/ 2 . 1 � � / ]d � C

4� � . 0/

2� C 2
� � 1

D
³ [

�
2� C 2

� � 4
]

; �
´

C
4�

2� C 2
� � 1

. Æ ; � / (45)

where we have divided the integration into a regular part (where the test function is
shifted to vanish at� D 0) and a singular part which gives rise toÆ -function. The
specific regularization chosen above is valid for 2� C 2

� � 1 > 0 which implies� < 2
upon taking the limit� ! 0. Applying the procedure to the whole Einstein tensor
one recovers the singular part identical to the Schwarzschild solution and the regular
part coming from the scalar field presence. Upon boosting theregular part trivially
vanishes and the delta function generates a standard Aichelburg-Sexl shock wave when
one solves back for the metric that is giving rise to such a boosted energy momentum
tensor (as is the case for the global monopole or more explicitly in [14]). So the above
result is confirmed even when using the second approach to boosting.

Note that if we want to keep� D 
 o n s t : in the limiting process we have to scale
parameterA like the mass because of (30) and (31).

Finally, let us add that for the original line element (29) the range of coordinateR

is . 1
2 r 0 . � � 1/ ; 1 / which translates intor 2 . M

2 ; 1 / for the line element (35) used
for boosting. Due to the scaling of the mass (15) the range of bothr and Nr becomes
. 0; 1 / making the Schwarzschild limit correct even from this pointof view.

8 Conclusion

We have derived a consistent ultrarelativistic limit of a general global monopole solu-
tion (with the monopole charge sourced either by a triplet ofscalar fields or by a cloud
of strings) using two approaches. The main result is the necessary rescaling of the
deficit solid angle in order to obtain a well defined solution resulting from boosting
the original static metric. Both methods give the same scaling relation. We have also
commented on a previous result [15] suggesting a different scaling of the solid deficit
angle and argued what are the benefits of considering the above derived prescrip-
tion and its consistency with the behavior of the source fields. Additionally, we have
analysed the scaling with respect to the behavior of the spatial volume element which
gave us a possible interpretation for the constant� 0 appearing in the scaling relation.

From the physical point of view the vanishing of the solid deficit angle might be
considered natural for an observer moving infinitely close to the speed of light due to
the relativistic contraction which effectively squeezes the transversal directions thus
making the solid deficit angle irrelevant.

Since the triplet of scalar fields acting as a source of the global monopole
effectively vanishes in the boosting limit we have tried to investigate whether this
suggests a general behavior of scalar fields in highly symmetric situations. As a good
candidate we selected the well-known spherically symmetric solution—the Janis–
Newman–Winicour spacetime. The ultraboost limit of this geometry approaches the
Schwarzschild solution (which is at the same time the vacuumlimit as shown in [16])
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with no trace of the scalar field left. This result is confirmedby checking the behaviour
of the scalar field itself or applying the alternative approach to boost. Interestingly,
the ultrarelativistic boost washes away any trace of the scalar field and always recov-
ers the Aichelburg–Sexl geometry irrespective of the field strength. This behavior is
analogous to the one noted in [28] for the ultrarelativistic boost of a curved space-
time coupled to an electromagnetic field, namely that the necessary rescaling of the
charge leads to the weak-field regime which is insensitive tothe potential nonlinear
dynamics of the electromagnetic field (while the boost in theflat case is influenced
by a specific nonlinear theory of electromagnetic field). However, one should confirm
this observation by really calculating the ultrarelativistic boost of such models.

So it seems that scalar-field sources in static, highly symmetric geometries tend to
vanish in the ultraboost limit.
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