Gen Relativ Gravit _ #HH#HH#HHHIHIHIHRHHHHE
DOI 10.1007/s10714-016-2021-x

EDITOR’S CHOICE (RESEARCH ARTICLE)

Ultrarelativistic boost with scalar field

O. Svitek!  T. Tahamtan?

Received: 9 December 2015 / Accepted: 19 January 2016
© Springer Science+Business Media New York 2016

Abstract We present the ultrarelativistic boost of the general dlal@nopole solu-
tion which is parametrized by mass and deficit solid angle. filoblem is addressed
from two different perspectives. In the first one the primalpject for performing the
boost is the metric tensor while in the second one the eneogyantum tensor is used.
Since the solution is sourced by a triplet of scalar fields ¢ffectively vanish in the
boosting limit we investigate the behavior of a scalar fiald simpler setup. Namely,
we perform the boosting study of the spherically symmeulation with a free scalar
field given by Janis, Newman and Winicour. The scalar fieldj@mvanishing in the
limit pointing to a broader pattern of scalar field behaviduring an ultrarelativistic
boost in highly symmetric situations.

Keywords Global monopole Black hole Ultrarelativistic boost Scalar field

1 Introduction

It is well known that different types of topological objectgy have formed during
the initial phase of the expansion of Universe, the mostéstiing ones being domain
walls, cosmic strings and monopoleq.[These topological defects are assumed to
be created during spontaneous breakdown of local or glahaje symmetries. The
main feature of the global monopoMd |s the presence of a solid deficit angle which is
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sourced by atriplet of scalar fields. This solution has esjlogyontinuous interest in the
past 25 years. It was generalized to both positive and negadismological constant
[3,4] and modified theories of relativity5[6]. Its classical stability was proven for
a large class of perturbationg][ Since it is a potentially important astrophysical
source providing information about the initial phases af aniverse its gravitational
lensing features were investigatéjl¢nd the scaling properties of networks of global
monopoles were analyzef][ The global monopole solution was also used to study
the possible removal of a classical singularity from themjuan mechanical point
of view—in the case of a Klein-Gordon field (], Dirac field and from the Loop
Quantum Gravity perspectiva]].

Ultrarelativistic limits of solutions to the Einstein edioms generally transform
stationary spacetimes into plane wave solutions with alpriafinction corresponding
to a shock wave. The first such limit was performed by Aichejband Sexl| 12]
(for a generalization to sources with higher multipole mategsee 13]). Their pro-
cedure of boosting the spacetime to the speed of light dsnsfstaking a proper
distributional limit accompanied by a specific coordinatasformation that provides
a regularization of the result. This fact brings a certairbauity which is similar
to the one associated with the renormalization in QuantwtdHiheory as noted by
[14]. This led the authors ofl{4] to propose an alternative route by performing an
ultrarelativistic limit of energy momentum tensor of the/gi spacetime instead of
the metric. This meant finding a proper distributional seuor the given geometry—
for Schwarzschild it is unsurprisingly a density distribut in the form of Dirac’s

-function located at the origin. The geometry is then recedédy solving Einstein
equations for the ultraboost limit of distributional engrgomentum tensor.

The ultrarelativistic boost of a global monopole was preasly derived in 15] but
our result is different. We will explain where the differenarises and support our
conclusion by comparing the results coming from the abowvetimieed approaches to
boosting.

Since the triplet of scalar fields and the associated enegyentum tensor is
shown to vanish in the ultraboost limit we try to investig#te behaviour of the
scalar field during boosting for a simpler case of a singléasdeeld with spherical
symmetry—namely the so-called Janis—Newman—Winicour (JNp#cetime. The
aim is to confirm that the scalar fields in these highly symimsituations generally
tend to vanish and that the result obtained for the globalapole is not surprising.

In 1968 Janis, Newman and Winicourd] presented the most general spherically
symmetric, static and asymptotically flat solution of E@ists field equation mini-
mally coupled to a massless scalar field. They mainly diszligs specific “vacuum”
limit. After dealing with a certain ambiguity in the limitinprocess they discovered
that their solution tends to the exterior of Schwarzschiltlwith a pointlike singu-
larity at the horizon position. Later, this solution wasisedvered in a different form
by Wyman [L7] (see [Lg] for an explanation of the coincidence of both solutions). |
fact, although the name of the spacetime is widely used ilitdrature, a recent paper
[19] shows that it is just one in the series of rediscoveries efgblution originally
published by FisherQ].

The peculiar behaviour of the INW solution with respect &Skhwarzschild limit
at the horizon position was generalized 9] to cover all spherically symmetric,
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static and asymptotically flat (or anti-de Sitter) solusaf Einstein’s field equations
minimally coupled to a scalar field with a potential. Speaillig it states that the
global structure of these geometries is SchwarzschildiceanSitter)-like with naked

singularity potentially shifted to a nonzero radius.

In this paper, we first apply the two boosting methods meetioabove to the
general metric of a global monopol2]] which is determined by two parameters—
one characterizing the “Schwarzschild mass” and the otleasoring the deficit solid
angle. More precisely, we use a line element which is valily outside the core
of the global monopole source (see e@l][for an extensive discussion) but can
as well be interpreted as the exact metric correspondingsgzharically symmetric
cloud of strings 22]. Since even in the context of the cloud of strings the masric
referred to as the global monopole solution we keep usirgyrthime while having
both interpretations (and their limitations) in mind. Tlemsidered solution possesses
a singularity which is generally covered by a single horiboi this two parameter
class of metrics also contains, as a special case, a nalgdagity. Finally, we will
review the JINW metric and subsequently perform its booshéovelocity of light
again using both approaches. In both cases we discuss thignggeometries and
analyze the consequences.

2 Global monopole

The simplest scalar field model with a minimal coupling (s2% for a generalization
to non-minimal couplings) giving rise to the global monapdd described by the
Lagrangian ]

1

1
2 4
where  isatripletof scalarfields, 1 2 3and are constants. The model has
a global 3 symmetry, which is spontaneously broken to1 . The scalar field
triplet corresponding to a monopole has the following form

22 (1)

— )

where 2, The function 1 outside the monopole core which has the size

7 1 and we will consider a spacetime given by 1 from now on.
We assume that the underlying geometry is described by agjestatic spherically
symmetric line element

2 2 2 2 S|n2 2 (3)

with a standard relation between spherical, , and cartesian-like coordinates
. The Lagrangian for the above given field configuration anohggtry takes this
form

2
; - @
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giving the following energy momentum tensor

2
—~ 0 (5)

Solution of the Einstein equations for metrB) (vith energy momentum tensads)(is
described by the following functions

1 8 -— (6)

where is a constant of integration. This metric describes a blatk bf mass ,
carrying a global monopole chargevhich measures the deficit of solid angle. One
can imagine this object being formed when an ordinary blaxt& bwallows a global
monopole 1]. As already mentioned in the introduction, the above prtetation of
metric ) with (6) is valid only outside the core of the source located at thgirar
An alternative explanation of this line element comes framsidering a spherically
symmetric cloud of strings (generalization of a dust cloj&#] with energy density
equal to tensionl[Q].

The Kretschmann scalar which indicates the presence ofvattue singularity is
given by
48 2 2 128 22 2562 24

5 5 7 )

Obviously, at =~ 0 we have a typical central curvature singularity and theidant
contribution comes from the Schwarzschild mass.

K

3 Kerr-=Schild form of metric

To arrive at the Kerr—Schild form of metri24] suitable for both approaches to boosting
we need to perform certain simple coordinate transformatibet us first transform
the metric to isotropic coordinates. Starting from met8cwith (6) we can write

2

2 2 . 2 2 S|n2 2 (8)
and define L . The line element will become
2 2 2 2 2 (9)
2 5 2 2 1 2
By changing the coordinates again using we get the final form of the

metric
2 2 2 2 2 [1 ] 2 (10)
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in which 1 8 2 2 We will rewrite the metric in corresponding
cartesian-like coordinates (which reflect the flat part eflerr—Schild form of metric
that one can treat as a background)

2 2 2 2 2

(11)

where 2 2 2 2 50 the metric is separated into a Minkowski part and one
additional term encoding the Schwarzschild black hole witobal monopole.

4 Boosting global monopole

The Minkowski part of the Kerr—Schild form of metric proviles with a notion of
boosts as isometries of this backgroutd][thus acting similarly to gauge transfor-
mations (e.g. in gravitational waves on a background) sdspect. Additionally, an
asymptotic observer moving uniformly relative to the amigif this spherically sym-
metric spacetime will see the metric deformed by a Loremtzsformation12] if we
have only nonvanishing. We choose a Lorentz transformation in thairection

(12)

1 2 1 2

where is the boost parameter. The Minkowski part of the line elen(&l) is obvi-
ously invariant under Lorentz transformation so we onlylgtilne additional term that
is modified as follows

1 2
\/ 2 1 2 2 2 2 (13)
where
8 2 2
31 2 2
2 1 2 8 2 2 1 2 2 2
v (14)
1 2 2 1 2 2 2 32

Here we automatically consider the same rescaling of the amm the original paper

[12
N (15)

with  being a constant throughout the limiting process.
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Now, we will study the limit of (3) when = 1. The limit separates into two
cases in the following way

32 2 8 12 2
1 2
(16)
8 2 2 2
1 2
in which 2 2 2 ltis clear that for a nonvanishingthe two limits are not
finite and cannot be regularized in the mannerId[It is interesting to note that
if 0, the limits coincide for both cases (up to a numerical fgctdowever,
generally it is possible to rescalén the same way as we did for mass, i.e.
ovl 2 17
then the limit becomes trivial
32 3 ] 2
(18)
2 2 2
B &8 2]

When 0, we will retrieve the Schwarzschild case which is finite whe and
leads to a flat space. In the case of one can perform the same regularization
trick (first a singular transformation and then a boost patamlimit) that one can
find in [12] and it ensures the resulting metric might be expressedingef Dirac’s
delta distribution (multiplied by In ) corresponding to a shock wave located on the

null surface. Alternatively, one can first perform a diattibnal limit of metric
functions using the Hotta and Tanaka identg|[

% / d (19)

and then regularize the infinities resulting from the unlmdintegral (that are of the
formin  for in the case of Schwarzschild) using renormalization teqines
from Quantum Field Theory.

A different solution to the problem of ultrarelativistieiit when 0 was pro-
posed in 5] where the suggested scaling forthe monopole chargeig 1 2 1 4
In that case, however, the limits still remain infinite batiside and outside the null
hyperplane . On the other hand, performing the limit according 18)(leads to
a shock wave profile . But here one needs to remove the terms linear in
(for ) by a suitable regularization in all spacetime points.

From the physical perspective one can also study the bahaiimlume during
boosting since it is directly related to the interpretatidn as a parameter describing
the deficit of solid angle. For this purpose we shall consideressential part of the

lim
1
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spatial volume three-ford /3 d d d for the spatial metrié¢  (with
8  det® )induced from (1), namely the scalar density

Soovr T Jie 2 2o (20

Concentrating solely on the influence ofby putting 0) we see that in the

ultraboost limit both scalings lead to a vanishing contiiitou of to the volume.

Now, let us consider the behavior of the volume element wigiins an additional
-factor when boosted and set general scalingg1 2

1
3
J1 8 21 22 \/1 - 8 21 221 1)

For 1 2onecaninterpreg as giving fixed contribution to volume during boosting
process. This value coresponds to proposed scdling (

Note that the scalar field triplet, its Lagrangian and enengynentum tensor are
all going to zero for both scalings. In the next section weserg alternative approach
to the problem to help us with deciding which scaling showdgteferred.

5 Regularized energy momentum tensor limit

Different approach to boosting provides a method develtyydslalasin and Nachba-
gauer [L4]. It is based on the analysis of the energy momentum tensthiegsrimary
object describing the spacetime rather than the metrie et the energy momentum
tensor is considered here to be defined by the left-hand $itle &instein equations.
Since the Schwarzschild solution is without a source in taedard sense this would
notreproduce the previous resultg]. First, one has to define a correct energy momen-
tum tensor of a given solution in terms of distributio2§][(making the connection
between the gravitational and the electrostatic field ofréigda even more explicit).
Next, one performs an ultrarelativistic boost of such argyneomentum tensor and
takes the result as a source for a new spacetime correspdndire boosted geometry.

Letus review the construction of the distributional enargymentum tensor for the
Kerr—Schild class of spacetimes as introduce®#j.[The metric for such a solution
can be given in the following form

(22)

where is the Minkowski metric, is a function and is a covector which is null
with respect to both metrics. The metric of a global monopale be given in this
form as explicitly derived in SecB. Importantly, the covector field satisfies the field
equation 0 even in the presence of the scalar field supporting the bloba
monopole thus maintaining the geodetic property discal/byeKerr and SchildZ4].
Using metric  for raising/lowering indices and its associated deriativ the Ricci
tensor and scalar can be expressed in the following way
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2 (23)
(24)

NI =

Both expressions are linear invhich is useful in combining effects of different terms
appearing irf.
The distributional evaluation of these expressions thecgeds in the following
way [14] (we give an illustration in the case of a scalar curvature amest function
0 R3 |, due to the stationarity of the solution we consider only shatial
distributions)

lim /R 3 d (25)

In the last equality the regularization of the integral agjiorwas used ( is a ball of
radius ).Inourcasewehave 8 2 2Z—_andk d d whenwe usethe
Eqg. (10) and leave out the prime sign on the time coordinate for Sgitpl Here we
can use the linearity of expressiorZ3(24) because the results for the second term
in are already known fromlH]. The first term produces a regular distribution and
can be calculated straightforwardly. Adding both togetireget the following energy
momentum tensor in the Kerr—Schild coordinates

1
8 3
2
8 s — (26)
8 2
8.2

Now we write the above result in a general Lorentz frame witthmantum of the
global monopole denoted by (where 2) and the spatial direction in
which we perform the boost by ( 2. Using the following expressions
in terms of the Lorentz invariants

3 Q x °? (27)
xdx 2x dx P x P dx

and the corresponding relation for vectors (dot means aispabduct via, bold
letters stand for four-vectors and spans the spatial coordinate plane orthogonal to
Q) we can perform an ultrarelativistic boost (in which b&tandQ turn into the null
vectorp). We obtain the limiting energy momentum tensor (with thstritbutional
term coming from 14])

p X X}) x P dx (28)
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Evidently, this expression has, apart from delta distidytsingular behavior on
the hypersurfac@ x 0. When one carefully considers the relati@T)(for the
expression 2 2 one immediately concludes that the asymptotic behavioatds
the limiting form is governed by 2 1 2 (appearing in the term 2x  x). It
means that rescaling the solid angle according to the oel4ti7) cures the singular
behavior, thus confirming the result of the previous section the other hand, the
scaling considered inlp] is not sufficient to remove the singular behavior of the
energy momentum tensor on the whole null hypersurfacex 0.

Finally, one could recover the result for the metric by salvEinstein equations
for (28). When only the delta function term remains this reduces bargpa two-
dimensional Poisson equation with source proportional fo which leads to the
logarithmic solution of 12].

6 Janis—Newman-Winicour spacetime

Now, we would like to understand if the behaviour noted atthe of Sect4 (effective
disappearance of the scalar fields and their influence indbsting process) is natural
for scalar fields at least in a highly symmetric situations.aAsimple candidate for
investigation we use a spherically symmetric, static aryanasotically flat solution
of Einstein’s field equations minimally coupled to a massiesalar field which can
be described by the following line elemedf]

2 2 1 2 } 2 02 22 2
— 2 0
2 2 g 2
with .
2 0 1
In 29
> P (29)
and
1 42 21 (30)

InwhichAand g 2 are two parameters.

Our aim now is to find a form of the metric suitable for boostingmely, the
isotropic form. First, by choosing the following transfation we will bring the
metric functions into a simpler form

(31)
Then the line element becomes

2 2 L{ 2 2 2 2} (32)
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—]

To get a conformally flat spatial part of the metric we applye anore change of
variables

in which

2

— 34
Z (34)
to finally get the desired form
2 2 { 2 2 2 2 } (35)
1 2 ° L 2 2
1 2 42
This metric has a singularity at 2 as one can check from Kretschmann scalar.

We can try to obtain the Kerr—Schild form of metric in this eas well. For the
line element 85) we would need to introduce a new radial coordinate
Since the boosting would then be performed in this new coatdione can analyze
the behaviour of the geometry only if one knows the explieppehdence of the metric
functions on this new coordinate. However, inverting thatien " isnot
possible (for a general) and although one might still attempt to draw conclusions
based on an implicit relation the process would be extreroetygbersome and non-
transparent. Another motivation to use the line elem@gjtgtems from the possibility
to exactly follow the steps of the original work?).

The scalar field acting as a source of this geometry is givethbyfollowing
prescription in the coordinates @%)

In (36)

By putting 1 and 0, we obtain the Schwarzschild solution in isotropic
coordinates. We will rewrite35) in the corresponding cartesian coordinates

2 { 2 2 2 2} 2 37)

where 2 2 2 2 Spthe metric is separated into a conformally Minkowski
part and one additional term which (together with the camirfactor) encodes the
influence of the scalar field.

7 Boosting JNW solution

Now we apply the Lorentz transformatiod?) with to the JNW solution
described by the line elemer87). Here, we again consider the scaling of the mass
parameter15). So the line elemenB() is in the following form after boosting
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2 2 e (38)

where

The Minkowski part in the line elemen87) is obviously invariant under the Lorentz
transformation. So the nontrivial computation consistsrof/iding the boosting limits
of the metric functions and . First, we check the limiting behaviour of the function

2 1

5 2

T2 (39)
1

[ o
N
=

lim lim 1
1 1

N
=

4

This means that the conformally Minkowski part becomes tixa&dinkowski every-
where in the limit. Now, we study the limit of the crucial part

2

2
lim lim 1 _—
I1 I1 [ 42 1 2

2 0
T ] (40)
0

Considering the additionalll—2 factor in the line elemenBg) the limit is undefined.

Expanding  in — [which approaches zero fot§)] we get the following approx-
imation 4
— (41)

if we use the definition31) for , we obtain exactly the same result as in the Schwarz-
schild case which is moreover independent o8o the limit of the whole last term
in line element 88) turns out to be

2 4 1 2 2
lim _ lim
1 1 2 1 1 2
4 2
(42)
||m 1 TT
where 2 2 2 Forthe case we obtain a flat spacetime which can be

checked by computing the Riemann tensor. For either a singular transformation
is needed1?] followed by a limiting procedure to obtain the well-knowlapar shock
wave with the profile In . Oralternatively, one performs a distributional limit
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immediately and regularizes the result subsequently @mtanner of renormalization
techniques of the Quantum Field Theory). Either way one emdsvith the well-
known shock wave which was originally obtained for Schwelngl solution upon
ultrarelativistic boost12].

Since . 1 in the limit [as seen by combinin@9) and @0)] and using 86)
the scalar field vanishes after boosting (everywhere exatapée singularity 2
of the metric) and because 0 its energy momentum tensor vanishes as well
confirming the consistency of the above limit of the metric.ifSone would like to
apply the alternative boosting strated] where the left-hand side of the Einstein
equations (considered as a definition of the energy mometansor) is boosted one
immediately concludes that the regular part (correspanatiscalar field contribution
outside of the singularity) does not contribute. Howeverstill have the singularity at
the horizon position which gives a distributional conttibua as in the Schwarzschild
case 14].

To make this qualitative statement more precise we can ctabe distributional
Einstein tensor for the line elemer35). We do not have a Kerr—Schild form of
the metric but we can use procedure for Schwarzschild matstandard coordinates
described in27]. This procedure is based on a regularization of the matrictions by
introducing an arbitrary function (dependent on a parar#tiat vanishes at singular
point with subsequent removal of the regularization fumcthfluence on the Einstein
tensor via limit in the parameter. In the case of our me®k) (ve can introduce the
following regularized metric functions (inspired b37])) parametrized by 0

1 5 2 . 2
1 2

| N

1 43)

N

4

As proved in R7] the regularization result does not depend on the speciidaeiza-
tion function provided it is smooth and vanishes at the degpoint. We will show
the explicit computation in the case of Ricci scalar sineerbntrivial components
of the Ricci tensor (in mixed components form) have the saet@Wour near the
singularity 2

2
32 22 SR . (44
2 2
4 2 4
where is aregular and nonzero quadratic function in the vicinftyre singularity

2. Now, we concentrate on the singular part4f)(and consider it as a distri-
bution on the space of smooth test functions with compag@pAs in the case of
the global monopole we investigate just the spatial digtiiims and due to a spherical
symmetry we are only concerned with the radial dependencerdést functions. We
note that the two-dimensional spheres at 2 have vanishing area so it is use-
ful (and geometrically reasonable) to simplify calculaBdy introducing the shifted
radial coordinate 2 and having the test functions 0o O
The singular part of44) when considered as a distribution can be decomposed in the
following way [27]
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4 0
2 24 4/222[ 01 ]
0

2 2 13

[* ] 4—2 (45)

where we have divided the integration into a regular partefetthe test function is
shifted to vanish at 0) and a singular part which gives rise tofunction. The
specific regularization chosen above is valid for 22 1 0 whichimplies 2
upon taking the limit 0. Applying the procedure to the whole Einstein tensor
one recovers the singular part identical to the Schwarlssbiution and the regular
part coming from the scalar field presence. Upon boostingebelar part trivially
vanishes and the delta function generates a standard AigigeGex| shock wave when
one solves back for the metric that is giving rise to such atebenergy momentum
tensor (as is the case for the global monopole or more ettplici[ 14]). So the above
result is confirmed even when using the second approach &iibgo

Note that if we want to keep in the limiting process we have to scale
parameter like the mass because &) and @1).

Finally, let us add that for the original line eleme@8) the range of coordinate
is % 0 1 which translates into - for the line element35) used
for boosting. Due to the scaling of the ma4d$)(the range of both and becomes
0  making the Schwarzschild limit correct even from this paihview.

8 Conclusion

We have derived a consistent ultrarelativistic limit of ageal global monopole solu-
tion (with the monopole charge sourced either by a triplsioaar fields or by a cloud
of strings) using two approaches. The main result is thessacg rescaling of the
deficit solid angle in order to obtain a well defined solutiesulting from boosting
the original static metric. Both methods give the same sgatlation. We have also
commented on a previous resulf] suggesting a different scaling of the solid deficit
angle and argued what are the benefits of considering thesatenived prescrip-
tion and its consistency with the behavior of the source sieddiditionally, we have
analysed the scaling with respect to the behavior of theadpalume element which
gave us a possible interpretation for the constgappearing in the scaling relation.

From the physical point of view the vanishing of the solid diéfangle might be
considered natural for an observer moving infinitely clasthe speed of light due to
the relativistic contraction which effectively squeezes transversal directions thus
making the solid deficit angle irrelevant.

Since the triplet of scalar fields acting as a source of thdajlanonopole
effectively vanishes in the boosting limit we have tried nodstigate whether this
suggests a general behavior of scalar fields in highly symcr&tuations. As a good
candidate we selected the well-known spherically symmestoiution—the Janis—
Newman—Winicour spacetime. The ultraboost limit of thismetry approaches the
Schwarzschild solution (which is at the same time the vaclimihas shown in 16])
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with no trace of the scalar field left. This result is confirnbgcthecking the behaviour
of the scalar field itself or applying the alternative appio#o boost. Interestingly,
the ultrarelativistic boost washes away any trace of thiaséald and always recov-
ers the Aichelburg—Sex!| geometry irrespective of the fiéldrgth. This behavior is
analogous to the one noted g for the ultrarelativistic boost of a curved space-
time coupled to an electromagnetic field, namely that thessary rescaling of the
charge leads to the weak-field regime which is insensitiviégpotential nonlinear
dynamics of the electromagnetic field (while the boost inftaecase is influenced
by a specific nonlinear theory of electromagnetic field). ideer, one should confirm
this observation by really calculating the ultrarelatid$oost of such models.

So it seems that scalar-field sources in static, highly symegeometries tend to
vanish in the ultraboost limit.
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