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Summary

The conventional way to calculate hard scattering processeerturbation theory using
Feynman diagrams is not efficient enough to calculate akssary processes — for example
for the Large Hadron Collider — to a sufficient precision. Talternatives to order-by-order
calculations are studied in this thesis.

In the first part we compare the numerical implementation®of different recursive
methods for the efficient computation of Born gluon amplsidBerends—Giele recurrence
relations and recursive calculations with scalar diagramth maximal helicity violating
vertices and with shifted momenta. From the four methodsidened, the Berends—Giele
method performs best, if the number of external partonsghteir bigger. However, for
less than eight external partons, the recursion relatiagh shifted momenta offers the best
performance. When investigating the numerical stabilitg accuracy, we found that all
methods give satisfactory results.

In the second part of this thesis we present an implementafia parton shower algo-
rithm based on the dipole formalism. The formalism treatsailr and final-state partons
on the same footing. The shower algorithm can be used forohadblliders and electron—
positron colliders. Also massive partons in the final stagéeenncluded in the shower algo-
rithm. Finally, we studied numerical results for an elentrpositron collider, the Tevatron
and the Large Hadron Collider.

Zusammenfassung

Die herkdbmmliche Moglichkeit harte Streuprozesse in dérBtgstheorie mittels Feynman-
Diagrammen zu berechnen, ist nicht effizient genug, um atevendigen Prozesse — bei-
spielsweise fur den Large Hadron Collider — mit ausreicleeRiazision zu bestimmen. Zwei
Alternativen zur Berechnung Ordnung fiir Ordnung werdenasel Arbeit untersucht.

Im ersten Teil vergleichen wir die numerische Umsetzung viem verschiedenen re-
kursiven Methoden zur effizienten Berechnung von Gluondog#n auf Born-Niveau: die
Berends-Giele-Rekursionsrelation sowie rekursive Berangen mit skalaren Diagrammen,
mit maximal helizitatsverletzenden Vertices und mit vedzenen Impulsen. Von diesen vier
Methoden liefert die Berends-Giele-Methode die bestetuegs wenn die Anzahl der ex-
ternen Partonen acht oder groRer ist. Fir weniger als atdtnexPartonen ist dagegen die
Rekursionsbeziehung mit verschobenen Impulsen die BBstéJntersuchungen zur nume-
rischen Stabilitat und Genauigkeit fanden wir, dass all¢hidéen gute Resultate liefern.

Im zweiten Teil prasentieren wir eine Implementierung siRartonschaueralgorithmus’,
der auf dem Dipolformalismus basiert. Dieser Formalismeisandelt einlaufende und aus-
laufende Partonen gleich. Der Schaueralgorithmus kanotsidir Hadronencollider als auch
fur Elektron-Positron-Collider verwendet werden. Auchssebehaftete auslaufende Parto-
nen wurden im Algorithmus einbezogen. Auf3erdem studiaviedie numerischen Resultate
fur einen Elektron-Positron-Collider, flr das Tevatromdir den Large Hadron Collider.
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Preface

The Large Hadron Collider (LHC) at&RN, the largest machine in human history and the
experiment the particle physicists community was waitiog was built in the last years in
Geneva, Switzerland. This proton—proton collider has area centre of mass energy of 14
TeV and a design peak luminosity of3f@m-2s-1 which is about two orders of magnitude
bigger than the peak luminosity of the Tevatron at FermiBdiavia, lllinois. The aim of the
LHC is not only to test the Standard Model (SM) in energy ranglere it was not possible
to test it before, but also to finally prove or disprove thesteice of the predicted Higgs
boson. The detection of this boson would be a great succgssticle physics, because it is
hunted since more than 40 years, when the model was firstlunteal. Other SM processes
are also on the agenda, like top-quark physBsphysics, the physics av* and Z°, and
heavy-ion physics. Perhaps the second most prominent aiidGf after the Higgs — is the
search for “new physics”, such as supersymmetnq8 — especially the search for the Sy
Higgs bosons and the lightest supersymmetric particle & aadlitional spatial dimensions,
so-called large extra dimensions. The Standard Model, H@ &nd its physics programme
are presented in section 1.1 of chapter 1.

The conventional way to calculate hard scattering prosessgarticle physics is to look
at all permitted Feynman diagrams and use the Feynman nutgsdin the amplitude. Than
one takes the squared absolute value of the sum of all amdg#ifand sums or averages over
the polarisations (or any other degree of freedom). This wayot feasible for final states
with many particles as they occur in colliders with very hagtergies like the LHC. In fact,
this approach already reaches its limit at Born amplitudesalbout five external partons. The
problems are: there are too many diagrams, there are too teemg in each diagram and
there are too many kinematic variables. It is a drawback efrttethod that intermediate
results in the calculations are orders of magnitude moreptioated than the final one.

In the 1980s, some new methods were developed to avoid tliffisaltes. One is the
spinor-helicity methodanother thecolour decompositian In the spinor-helicity method a
new set of kinematic variables is introduced and the pa#da vectors are written in terms
of these spinor products. The colour decomposition sptiigléudes into a trace over colour
matrices and a so-called partial amplitude which contdiesinematical information. Both
techniques develop their full power when combined with regnce relations that construct
the amplitudes recursively from smaller building blockeeBerends—Giele recurrence rela-
tions were historically the first ones. In the 2000s, new @stfor the calculation of helicity
amplitudes in quantum chromodynamics (QCD) were contrivespired by a relationship of
QCD amplitudes to twistor string theory. The Cachazo€8k#Witten approach constructs
tree-level QCD amplitudes from vertices that are off-shefitinuations of maximal helicity
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2 Preface

violating (MHV) amplitudes connected by scalar propagat@ubsequently, a set of recur-
sion relations has been found that involves only on-sheplaudes with shifted, complex,
external momenta. Schwinn and Weinzierl presented a methbith is close in spirit to
the Berends—Giele recursion relations, but which invotvdyg a set of primitive vertices and
scalar propagators. In section 1.2 of chapter 1 these mefloothe numerical computation
of pure gluonic amplitudes in the Born approximation areadticed and in chapter 2 we
compare the efficiency for different numbers of gluons.

High-energy SM events, as well as “new physics” events, pvilduce final states with
high particle multiplicities. Especially at hadron co#ig one has not only the hard interac-
tion but also the so-called underlying event, which is theriamction of the coloured beam
remnants. Since SM processes are background to “new phy#sics important to make
precise theoretical SM predictions to compare with expental results when they are avail-
able. For these predictions Monte Carlo event generatkesRYTHIA, HERWIG, ISAJET
and S1ERPA were developed. They consist of different steps: at a highggnscale, the
hard interaction of quarks or gluons from each of the incapprotons is taken into account,
with initial momentum of the quarks or gluons given by theusture functions. This par-
ton interaction is calculated in perturbative QCD. Then¢bured initial- and final-state
particles from the scattering process radiate gluons artdrpahowers evolve. The shower
evolution will go on until the energy is of the orderAfcp ~ 200MeV. Afterwards hadroni-
sation will collect the partons to form hadrons, which cabsgguently decay into final-state
particles observable in the detector. On top of that, theaadly mentioned underlying event
is incorporated in event generators. In chapter 3 we presennplementation of a parton
shower algorithm for hadron colliders and electron—positrolliders, based on the dipole
factorisation formulae. Chapters 2 and 3 can be read indepéodeach other.

Chapter 4 summarises the results. Useful formulee are teflan the appendix. The
bibliography and an acknowledgement conclude the thesis.



Chapter 1

Introduction

In the first section of this chapter we review the Standard élloflParticle Physics, some ex-
tensions of the Standard Model, the physics programme dfalge Hadron Collider, the ma-
chine and the detectors. The second section presentshaitur theory, Feynman diagrams
and some more efficient methods that circumvent some of thwliicks of Feynman dia-
grams, namely the colour decomposition, the spinor-tglioethod and the Berends—Giele
recursion relations. The connection from twistor stringdity to Yang—Mills perturbation
theory is mentioned and the proof of the Britto—CachazogF®¥itten recursion relation is
shown. In the last section of this chapter, an introducttoparton showers is given.

1.1 The Standard Model and the Large Hadron Collider

1.1.1 The Standard Model

The Standard Model (SM) of Particle Physics (for a newetieek see for example [1]) is a
relativistic quantum field theory [2] and was developed i@ 1960s and 1970s. It describes
all the interactions (table 1.2) of subatomic particlegept gravity. The SM gauge group is
SW(3) x SU(2) x Uy (1) containing the strong [3—7] as well as the weak and electgoretic
interactions [8—10].SU(n) is the special unitary group consisting of unitary n matrices
with determinant 1 ant (n) the group of unitaryn x n matrices. The subscrigtstands for
colour,L means that only left-handed particles take part in the wetgkactions andt stands
for the weak hyperchargé = 2(Q — I3) [11-13], whereQ is the electric charge and the
third component of the weak isospin. The fundamental dagie quarks [14, 15] and leptons
—are shown in table 1.1. Additionally, quarks carry a colcherge and for all particles there
are corresponding antiparticles. Quarks can be combine@sons, consisting of a quark and
an antiquark, and baryons, made of three quarks. For piep@ftthe fundamental particles
as well as hadrons see the Review of Particle Physics [16].

The Standard Model Lagrangian density

Lsm = L+ Lw + Lt + Ln + Lc + Lrpct+ Lrpw (1.1)

consists of a colour Lagrangian density, describing the gluons of quantum chromody-
namics and their mutual interactions, a weak Lagrangiamsitiei,y, describing the vector
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4 1 Introduction

bosons and their interactions including the interactioith whe Higgs system, a fermion
Lagrangian densityls, describing the interactions of the fermions with the weaktor
bosons, a fermion—Higgs Lagrangian dendity, describing the interactions of fermions
with the Higgs system, a fermion—colour Lagrangian densjty describing the interactions
of fermions with gluons, a Faddeev—Popov ghost [17] LagendensityLgpc of quantum
chromodynamics and a Faddeev—Popov ghost Lagrangiarntylépsi, of the weak interac-
tions. The full Standard Model Lagrangian density is giveappendix A.1.

charge generation 1 generation 2 generation 3

quarks +23 up | u charm| c top |t
—13 down | d strange| s bottom | b

leptons 0 | electron neutring ve | muon neutrino vy, | tau neutrino| v;
-1 electron| e muon | p tau| 1

Table 1.1:The elementary Standard Model fermions (spgig)=

interaction strong electromagnetiq weak gravity

force carrier 8 gluons photony w#, 70 (graviton)
spin 1 1 1 2
massinGeV |0 0 ~80.4,~91.2| 0

relative strength 25 1 0.8 104

acts on colour charge electric charge | flavour mass, energy

Table 1.2: The four fundamental forces. Gravity is not a part of the 8tad Model and
the graviton is not observed, yet. The strength of the faxedative to the strength of the
electromagnetic force for two up quarks at a distancé®fem.

The mixing in the quark sector manifests itself in the Cab#iobayashi-Maskawa
(CKM) matrix [18, 19]:
C12C13 _ S12€13 _ SR
V= | —S12Co3—C1o93%13€° C12C23—S12%3513€°  SpC13 | (1.2)
S12523— C12C23513€°  —C12523 — S12C23513€°  CoaC13

wherecjj = cosBjj andsj = sing;j with the mixing angles)j (612 is the Cabibbo angle). The
phased is responsible for CP violation. The CKM matNktransforms the weak eigenstates
on the right-hand side into the mass eigenstates on thbaeft-side:

d’ Vud Vus Vub d
S, = VCd Vcs VCb S . (13)
b’ Mia Vs Vb b

The corresponding matrix for the lepton sector is the Pam@s-Maki—Nakagawa—Sakata
(PMNS) matrix [20-22U = WK, where},, can be parametrised in the same way as the
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CKM matrix in equation (1.2), and

u/2 0 0
K= 0 é&%/2 g |. (1.4)
0 0 1

The SM has in its simplest version (without neutrino mixidg)free parameters, which
can be chosen as the three coupling constants of the gauge $ith(3) x SU (2) x Uy(1),
the three lepton and six quark masses, the mass df th@son, the four parameters of the
CKM matrix, a CP violating parameter associated with thergjrinteraction and the mass of
the still undiscovered Higgs boson. Three light Majoranatreos would add at least nine
new parameters: three masses, three mixing angles andthaises, resulting in 28 arbitrary
parameters altogether, which have to be measured in expatreind cannot be predicted by
theory — at least not within the Standard Model.

1.1.2 Some Extensions of the Standard Model

The Standard Model explains almost all particle physica aatasured within one or two
standard deviations. In some observables there are bigger deviations, but todd also
be statistical fluctuations. Only future measurements ehiif tfor example, the 2.% dif-
ference [16, p. 134] of the experimental and theoreticaleslof the anomalous magnetic
moment of the muon, = (g, — 2)/2 is a random fluctuation or a hint of “new physics”.

Nevertheless, there are some important questions whicinaranswered by the SM,
like: What is dark matter? What is dark energy? Why are thenaany particles compared
to antiparticles in the universe? What are the masses ofhieinos? What is mass at all? Is
there a Higgs boson? Why is the electroweak scale so mudretiff from the Planck scale
(hierarchy problem)? Why are there three generations addorental particles? Some of
these questions are addressed by extensions of the SM.

In supersymmetric theories [23] there are superpartnemviery particle in the Standard
Model. For SM fermions there are supersymmetric bosonsa(gguand sleptons) and for
bosons there are fermionic superpartners (gluinos andigag)g Additionally, there is not
only one Higgs boson but fivér, H, A, H*. The smallest possible supersymmetric extension
of the Standard Model is calledinimal Supersymmetric Standard Mod®ISSM) [24].

Susy has some nice features: it stabilises the mass of the Higgmlio radiative correc-
tions, that are quadratically divergent in the Standard &@aaturalness). Within this model,
the gauge couplings unite at a high scale, which they do ntitarStandard Model. More-
over, the lightest supersymmetric particle (LSP) is a psimg candidate for dark matter if
R-parity is conservedR is defined in such a way that it #s1 for all particles and-1 for all
supersymmetric particles:

R— (_1>3(BfL)+ZS7 (1.5)

whereB is the baryon numbet, the lepton number anglthe spin. A not so nice feature are
about 100 new parameters (masses, mixing angles and pli2Skdj supersymmetry were
an exact symmetry, particles and their superpartners weaud the same mass. Since there is
so far no experimental evidence for supersymmetric pastisepersymmetry must be broken.
If SUSY exists at the electroweak scale, it will be discovered atth€. A lot of squarks and



6 1 Introduction

gluinos are expected, since their cross section should ke @lh at 1 TeV. Measurements
of the masses of &Y particles and the parameters will show which specifis model is
realised in nature. If nature is not supersymmetric, supegstheories — which incorporate
supersymmetry — cannot be valid.

An alternative to the elementary Higgs mechanism of thed&ahModel is the dynam-
ical electroweak symmetry breaking by a composite field Wwiscbound together by a new
type of strong interaction callechnicolour[26—29]. Technicolour is acting on massless
technifermions at an energy scale/ofc ~ weak= 246 GeV and it is asymptotically free. It
solves the naturalness and the hierarchy problem. At LH@:@ally, the decay of the tech-
nimesonptc — WZis interesting, since is has a very clean final state, namehny3 which
is easier to distinguish from the Standard Model backgrdabad decays containing jets.

In ADD models [30-32], introduced by Arkani-Hamed, Dimopmsiand Dvali, additional
dimensions of space were introduced. The Standard Mods ¢im a four-dimensional brane,
whereas gravity can also propagate into the extra dimesswhich are large compared to
the Planck lengthp ~ 10-3°m. Another group of models with more than four spacetime
dimensions was proposed by Randall and Sundrum [33, 34hdsetmodels all elementary
particles are localised on a four-dimensional brane, dréygraviton can propagate in the fifth
dimension. To solve the hierarchy problem, extra dimerssigith a fundamental scale of
order TeV'! are needed. Thus they should be observable at the LHC: Kefileia [35, 36]
gravitons should show up as heavy resonances in the dhectass spectrum of the Drell-
Yan process [37pp— y/Z — eTe .

1.1.3 Physics Programme of the LHC

The multi purpose detectors at LHCTBAS and the Compact Muon Solenoid (CMS), plan
a very rich physics programme [38, 39]. Both will test therfsk@rd Model (SM) in energy
ranges where it was not tested before and will search for ‘pleysics”. After a few years of
data taking at nominal luminosity and energy they will beealol sieve out realistic models
from the excess of theoretical possibilities.

LHC will be a b-quark factory, a top-quark factory,Zfactory, aw factory and even a
Higgs and sy particle factory if these particles exist in the TeV range.

One of the main goals of the LHC is to understand the mechaafsstectroweak sym-
metry breaking, may it be through the Higgs boson [40-43]oonething else. The Higgs
particle, a neutral scalar boson, spontaneously breakSu2) x U (1) symmetry of elec-
troweak interaction. Since it has a non-zero expectatidmeviyeax = 246 GeV), thew*
andZ bosons acquire mass, while the photon remains masslessietéeaion of the Higgs
boson would be a great success in particle physics — expetairend theoretical. The LHC
will be able to finally answer the question if the predictedrstard Model Higgs boson exists
or not, because in the whole allowed mass range it has a sigmi® well above five stan-
dard deviation® for Higgs signals and 100 fi3 of integrated luminosity. The lower bound
of the allowed region is fixed by the experimental limit of.at 114.4 GeV [44], and the
upper bound of 186 GeV is sourced from radiative effects eMHiggs boson on electroweak
observables [16, p. 452].

At the lower end of the allowed mass range the Higgs bosonydett@aminantly to ha-
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drons. Due to the large QCD background these decay chanmetiifacult to use in the
discovery of the Higgs. Instead of doing so, one prefers ti limr isolated leptons and
photons even though they have much smaller branching rafog of the most promising
channels for low mass Higgs is the deddy— vyy. If the Higgs mass is around twice the
mass of thaV boson, the decaid — WW* — Ivlv is important. One of the cleanest dis-
covery channels for a Standard Model Higgs with a mass up @GV isH — ZZ* — 4,
especially the final state with four muons.

Eight million top quark pairs are expected for an integratedinosity of 10 fo 1. With
this huge number of top quarks a mass measurement with asjoreaf about 2 GeV is pos-
sible. Also cross section measurements and searches fgrrarartop decays are planned at
the LHC. The number of producdath pairs strides the number of top quark pairs by orders of
magnitude: 18 per years are expected even at low luminosity. This allowsrthestigation
of CP violation in theB system as well as measurementE@fnixing and the decays of rare
B mesons such as tii.

Precise constraints on the parton distribution functid?iBKs) are received from Drell—-
Yan productionW andZ boson production, production of direct photons and hghets,
heavy flavour and gauge boson pairs. About 300 million sikglevents will take place in
one year of data taking, which will lower the uncertainty e YW mass to below 20 MeV.
The measurement of the triple gauge boson couplings aregdawith gauge boson pair
production. The determination of the Cabibbo—Kobayaslask&wa matrix elements and
heavy-ion physics are also part of the Standard Model peysimgramme.

Since the LHC will increase the maximal energy accessilteliitiers by a factor of seven
(compared to Tevatron), new discoveries are expected. éAetiergy frontier, signatures of
physics beyond the Standard Model may be seen, like suparsynig particles, new massive
vector bosons, additional spatial dimensions, and others.

Of the superpartners, especially the searches for tiser $liggs bosons and the lightest
supersymmetric particle (LSP) are interestingRiparity is conserved, decays of supersym-
metric particles contain the lightesuSy particle, which is supposed to interact very weakly
and will lead to a significant missing transverse eneﬁg‘iﬁs in the final state. There are lots
of leptons and jets (particularly and/ort-jets) in decays of supersymmetric particles.

The search for a new massive vector boZ6is focussed on decays e~ andu™ -
with pr in the order of TeV.

The signatures of additional spatial dimensions, so-d#dlige extra dimensionare dif-
ferent, depending on the characteristic energy sb&eof quantum gravity, which is the
analogue of the Planck mass irDadimensional theory. If the enerdy is much less than
Mp, signals involving the emission of gravitons escaping axtva dimensions are expected,
leading toE!™SS. If E ~ Mp, the expectation is model-dependent. In string-theoryivatsd
models there arg-like resonances with separations in the order of TeV in mi&$s > Mp,
mini black holes are produced which decay with equal pradocttes to fundamental parti-
cles like leptons, photons, neutrind¥, Z, etc.

The LHC also searches for more exotic models, like little g¢ignodels, technicolour,
leptoquarks, new quarks and leptons, excited quarks;hghtied neutrinos, magnetic mono-
poles and evidence for composite quarks and leptons.



8 1 Introduction

1.1.4 The Large Hadron Collider

The recently completed Large Hadron Collider (LHC) [45—d7CERN is a superconducting
hadron accelerator and collider. The LHC was built in the’28n long tunnel of the Large
Electron—Positron Collider (P), which was operating from 1989 till 2000. TheERN
Council approved the LHC project in December 1994. At thaietit was clear that, after
completion, the LHC would be the collider with the higheshite of mass energy, since
the construction of the Superconducting Super CollideiQ)S8 the U.S. was stopped one
year before. In the LHC tunnel there are two rings, for pretgning clockwise and anti-
clockwise, respectively. Contrary to the Tevatron, whex@gns and antiprotons are used,
the LHC collides protons, because they are much easier thupeoin the quantities that are
needed to get the planned, extraordinary high luminosity.uAavoidable drawback of the
proton—proton approach is the need of two rings with separatgnetic fields and vacuum
chambers.

The planned centre of mass energy is 14 TeV and the desigrypeaiosity is 16*cm2s1,
which is about two orders of magnitude bigger than the peakrasity of Tevatron at Fer-
milab [48].To be able to detect rare events, one has to magitme number of events per
seconeyen; Which is directly proportional to the luminosity

Nevent= LOevent, (1.6)

wheredevent IS the cross section of the specific event. The luminosityeddp only on the
beam parameters. For a Gaussian beam distribution it camitternas:

NZnp f
L=-be Ve
ATE 3"

(1.7)

whereN, is the number of particles per bunch (LHC nominal valud:5k 10 protons per
bunch),ny the number of bunches per beam (2 8G&he revolution frequency (11 2459, y
the relativistic gamma factor (7 46 E), the normalised transverse beam emittance (Buip
B* the beta function at the collision point (0.55 m) aadhe geometric luminosity reduction
factor (0.836) due to the crossing angle at the interactmntp

1
Fro > (1.8)

2
(%)

with 8. the full crossing angle at the interaction point (28&d), o, the root mean square
(RMS) bunch length (7.55 cm) aral the transverse RMS beam size at the interaction point
(16.7um). The integrated luminosity over one run is:

Lin = Lot (21— ™0/™ ) (1.9)
whereLg is the design peak luminosity after filling the rings, is the so-called luminosity

lifetime of about 15 hours for LHC and, is the total time of the luminosity run. For an
assumed average time of 7 hours between the end of a lunyimositvith an old beam and
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a new beam at top energy, and an operation of 200 days pettlyeaptimum run time with
one beam is 12.5 hours and the accumulated luminosity is 75der year.

After some time of running at the nominal luminosity, an gug to the so-called Super
LHC or SLHC [49, 50] running at 8 cm~2s~1 is planned. Even without the upgrade, the
LHC will be the collider with the highest luminosity and thegdiest energy for the next years.
Other colliders, like the Very Large Hadron Collider (VLH{5)] or the International Linear
Collider (ILC) [52], the Compact Linear Collider (@c) [53] or the muon collider [54], are
unlikely to be realised in the near future.

The other mode of operation of LHC uses ions to study quadergplasma. Lead ions
208piP2t+ collide with a total centre of mass energy of 1150 TeV or 2.@¥ Per nucleon.
This is more than one order of magnitude bigger than the 100 G nucleon that were
reached for gold ions in the Relativistic Heavy lon ColligBHic) at Brookhaven National
Laboratory (BNL) [55].

The machine, together with thee@N share of the detectors and computing sum up to
about 65 x 10° Swiss francs and consumes 120 MW electrical power. The ewpats at the
four interaction points are described in the next subsectio

1.1.5 Experiments at the LHC

At the LHC there are two multi purpose experiments . As [56] and theCompact Muon
Solenoid(CMS) [57] — with the highest luminosity of 26cm~2s~1. The two low lumi-
nosity experiments arearge Hadron Collider beautyl HCb) [58] for B-physics at a peak
luminosity of 1¢?cm~2s~1 and Total Elastic and Diffractive Cross Section Measurement
(ToTEM) [59] at a peak luminosity of 2 10?°°cm~2s~1 with 156 bunches. The experiment
especially dedicated to work with ion beamgikarge lon Collider Experimer{ALICE) [60]

— aiming at a peak luminosity of #0cm~2s~1 for nominal lead—lead ion operation. In addi-
tion, there is the_arge Hadron Collider forward LHCf) [61], which is not resistant to hard
radiation and will thus be removed when the luminosity reschd°cm—2s1.

The principle aim of the multi purpose detectors is to idgrgecondary particles pro-
duced in collisions and to measure their ways through thectiat their charges, momenta
and energies. The basic design is the following: as clos®ssile to the interaction point
there is a radiation-hard tracking chamber measuring tthegd&lectrically charged particles.
A magnetic field bends the trajectories so that it is posdibléetermine the curvature and
hence the momenta. In electromagnetic and hadron cal@istte particles are stopped and
the released energy is measured. The only charged pattieleare able to pass the hadron
calorimeters are muons, so the muon detector is locateahdbehe calorimetry. Neutrinos
and some of the particles of “new physics” theories beyordStandard Model, like the
lightest supersymmetric particle, cannot be detectedtjreéOnly missing transverse energy
EMSS shows that there were some undetected particles. A highulgudty of the detector
components is needed to have a low occupancy rate and toglisth particle paths that are
close to each other.

ALICE is a general purpose heavy-ion experiment to study quaikgkaons under very
high temperature and extreme density. Due to the asymgtetdom [6, 7] there will be
a transition from hadronic matter to a plasma of deconfineatlquand gluons, a so-called
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detector size| weight material cost in. members of the
inm | in tonnes| million Swiss francs|  collaboration
ALICE 26x16x16 10000 115 1500
ATLAS 46x25x 25 7000 540 1900
CMS 21x15x15 12500 500 2000
LHCb 21x10x13 5600 75 650
LHCf 0.3x0.1x0.1 0.04 21
TOTEM 440x5x5 20 6.5 70

Table 1.3:The six experiments at the LHC with their size in m, their Weig tonnes, their
material cost in million Swiss francs and their numbers dfatmration members (as of May
2007)[46].

quark—gluon plasma, a state of matter which existed in thly eaiverse during the first
10°s after the Big Bang. AICE will not only work with heavy ions (Pb—Pb) and lower-
mass ions (to vary the energy density) but also with protopp as well as proton—nucleus
— to obtain reference data for the nucleus—nucleus calésiin additionyy collisions are of
interest. (There is a large flux of virtual photons assodiatéh the Coulomb fields of the
interacting lead nuclei.) The detector itself has to didglkethighest particle multiplicities,
8000 charged particles per unit of pseudorapidity= —Intan(6/2), where® is the angle
of a particle relative to the beam axis).LIKE consists (from inside to outside) of an inner
tracking system with six layers of high-resolution silicobacking detectors, a cylindrical
time projection chamber and a large area particle identidicaletector array of time of flight
counters. Additionally, there is the small area electronedig calorimeter and an array of
counters optimised for high-momentum inclusive particentification, made up of either
ring imaging Cherenkov detectors or time of flight countédsthis is embedded in the large
magnet of the former L3 experiment with a weak solenoidad iél0.2 T. Outside the magnet
there is the forward muon spectrometer covering 2{t0a pseudorapidity af =2.4-4).

ATLAS is a general purpose experiment to detect “new physicsasigas like sy and
large extra dimensions, as well as Higgs decays and Stailiadel processes. It consists
(from inside to outside) of the inner detector, made of higéslution semiconductor pixel
and strip detectors near the interaction point and strdne-ttacking detectors in the outer
parts. The inner detector is optimised to give good momerandvertex measurements as
well as electron identification. It covers a range in pseagulity of |n| < 2.5 and is em-
bedded in a thin superconducting solenoid which produceslddf about 2 T. Outside the
magnet there is the lead/liquid argon electromagneticricagter, which is characterised by
a good energy and position resolution, and the hadron caébeir made of plastic scintillator
plates embedded in an iron absorber. The electromagneati®atronic calorimeters pro-
vide a very good jet- anE%“iSS-performance and cover the pseudorapidity rangglof 3.2
whereas for the region.B< |n| < 4.9 there are special forward calorimeters. The detector
is completed by a muon spectrometer with good momentumutsnolin superconducting
air-core toroids.
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CMS is — like ATLAS — a general purpose detector to explore physics at the Telé¢ sca
and to study the mechanism of electroweak symmetry breakingy it be through the Higgs
boson or another mechanism. It is designed for the searcheiar particles, like 8sy
partners of SM particles, and extra dimensions, as well aprixision tests of the Standard
Model. Close to the interaction point there are three lagépxel detectors to measure the
position of secondary vertices and the impact parametenariyed-particle tracks. Together
with the silicon tracker, consisting of ten layers of silicmicrostrips, they form the inner
detector, which is surrounded by the electromagnetic ca&ier. The EM calorimeter is
made of lead tungstate (PbW)crystals and covers a pseudorapidity rangengf< 3.0.
The same range is covered by the hadronic calorimeter malles$ and scintillators. The
calorimeters are embedded in a huge superconducting sohertb a magnetic field of 4 T
to measure momenta of charged patrticles precisely. Outsédgolenoid there are the muon
detectors up tén| < 2.4. In the very forward regionif| < 5.0) special end-cap calorimeters
are installed.

LHCb is a conical detector to study the CP violatiorBiparticles. The tip of the cone
is the interaction point with a silicon vertex detector talows to reconstruct 8-decay
vertex with a very good resolution. Thed¥ (Ring Imaging Cherenkov) counters next to
it identify charged particles and distinguish pions fronoks, for example. The tracking
system, partially inside a dipole magnet with a maximal nedigrfield of 1.1 T, is used for the
efficient reconstruction and precise momentum measureofiehaarged tracks. The different
trackers are located in front of and behind the first#R detector; in front of, inside and
behind the magnet as well as behind the secoiadiRletector. Then the calorimetry follows,
which can distinguish electrons from hadrons and provideseasurement of energy and
position. The electromagnetic calorimeter consists af lad a polystyrene-based scintillator
whereas the hadronic calorimeter is made of iron and seittrs. The last part of LHCb
is the muon detector. The overall detector covers a range t® mrad to 250 mrad (or
2.1 < |n| £5.3). This geometry has been chosen because at high energibs ahd the
b-hadrons are predominantly produced in the same forward.con

The LHCf experiment consists of two detectors next taAs and covers the very for-
ward region. Its aim is to test models used in estimating tiv@gry energy of ultra high-
energetic cosmic rays. To achieve this goal it uses two ssaalpling and imaging calorime-
ters and measures the forward production spectra of phatwhaeutral pions as well as the
leading particle spectrum.

The TOTEM detector, installed in the forward region of CMS, measuneddtalpp cross
section and studies elastic scattering and diffractiveadimtion. Therefore, tracking detec-
tors are installed inside the end caps of the CMS muon deteckose to the beam pipe, and
behind the CMS end-cap calorimeters covering a pseudatgiderval 3< |n| < 6.8. In
addition, there are two sets of silicon detectat447 m and+220m from the interaction
point.
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1.2 Feynman Rules and Some More Efficient Alternatives

1.2.1 Perturbation Theory

Perturbation theory in general is a method to find an appratersolution to a problem which
is not solvable analytically at all or not solvable analgtig in a reasonable amount of time.
It is only applicable if the problem can be formulated as alsdeviation from a similar but
simpler and exactly solvable problem. The general proaedufi) ignore effects that make
the process complicate(i) calculate the simplified process analyticafly) add the ignored
effects as a small perturbation of the simplified procés$ calculate the solution, order by
order, in terms of a power series in a small parameter whiglerdees the deviation from
the exactly solvable problem. The first term in the powereseis the exact solution of the
simplified problem. Further terms approximate the solutbbthe hard problem better and
better. These terms are usually called Leading Order (L@xt o Leading Order (NLO),
Next to Next to Leading Order (NNLO) and so on. This can fotgnbé written as:

X=Xo+ X1 +gXo+... (1.10)

If gis small and thes, do not grow too fast, the terms in this series become susedgsi
smaller (on the other hand, the calculation of xh@isually becomes successively more com-
plex). So the first few terms are enough to compare theotgtiedictions with experimental
data. As experiments become more and more precise, thestsdwave to calculate more and
more orders.

Perturbation theory is used for example in celestial meickaguantum mechanics and
guantum field theories. Especially in the latter, problemsuo: there are infrared and ultra-
violet divergences. Infrared divergences occur in intisgoaer a momenturk in the case
of vanishing momentunk — 0. These divergences are cancelled if the summation over the
initial and final degenerate states is carried out (Kin@stiee—Nauenberg theorem) [62, 63].
Ultraviolet divergences occur in integrals over a momenkunthe case of momentum going
to infinity, kK — . They can be removed by regularisation and renormalisation

Regularisation is a mathematical method of dealing witls¢héivergences. In dimen-
sional regularisation [64—67] all calculations are dondis 4 — 2 dimensions and not
in d = 4 dimensions, where the integrals are divergent. By thiktiihe singularities are
parametrised in poles likg: and1/s2 and form a Laurent series in the regularisation parame-
ter. One could also avoid the infinities by changing the uppegration boundary to a finite
valuek = kmax, Which is called cutoff regularisation. In Pauli—-Villarsgularisation [68] one
introduces fictitious heavy particles to separate finitenfdivergent terms.

Renormalisation is a formalism of redefinition of physicaaqtities like mass and charge
as well as the fields. For example, in charge renormalisatiwre is a difference between
quantities in the formulee, like the Lagrangian density, phgsical constants measured in
the laboratory. The first one is calldzhre chargeey and the second onghysicalcharge
e = \/Zzep with the renormalisation constast. The physical charge takes into account the
contribution of virtual particle—antiparticle pairs.

The first renormalised perturbation theory was quantuntreldgnamics (QED) [69-74].
Two of the first successful applications were the calcutetiof the Lamb shift by Bethe [75]
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and the anomalous magnetic moment of the electron by Sclew[iig]. Today the anoma-
lous magnetic moment of the electron is one of the best utaEtguantities in nature: the
experimental value [16, p. 515] agrees with the theoretinal within nine significant digits.

Even though perturbation theory gives an amazingly goodltresthis case, the pertur-
bation series is in general divergent [77-81]. The absahagnitude of the first terms of the
series decreases, but the factorial growth of the pertwsebefficientss, in equation (1.10)
overcompensates the additional coupling factors of higheers in perturbation theory, and
the series finally diverges.

1.2.2 Feynman Rules

From the Lagrangian density of a given theory, say QED or QCD, one can derive Feyn-
man rules. For example, every terminwith a product of fieldsp,..., ¢, will lead to a
vertex with these external fields. Some of the Standard MBdghman rules are given in
appendix A.4. Feynman diagrams, also called Feynman graphpictorial representations
of the perturbation series and they are composed accordithg tFeynman rules.

The classical way to calculate hard scattering processpartitles physics is, firstly, to
draw all permitted Feynman diagrams. These are all diagthatsare not forbidden by con-
servation laws and have the required initial and final st&8esondly, one uses the Feynman
rules to get a mathematical expression — called amplituae evfery single graph. Thirdly,
one adds up the amplitudes of all graphs, and, fourthly,regutae absolute value of the sum.
After that one has to sum or average over the polarisatiansnfpother degree of freedom).
To get the cross section one finally integrates over the pdy@esee volume. The cross sections
for virtual and real emissions are both divergent, the digaces cancel when virtual and real
contributions are added to give a physical meaningful tesul

There are computer programs for the different parts of taisutation. For example, for
the generation of Feynman rules in field theory, there is tbgnam LanH:P [82]. Programs
for the automated generation and computation of Feynmagratias are FeynArts [83] and
GEFICOM [84]. A review can be found in reference [85].

1.2.3 Limits of the Feynman Approach

The Feynman diagram approach is not feasible for final statttsmany particles as they
occur in very high-energy colliders. There are too manymdiag and the number of diagrams
increases very fast, as the number of external particles (see table 1.4). There are too many
terms in each diagram. Especially in QCD calculations manys$ appear due to the structure
of non-Abelian vertices. Additionally, many kinematic iales complicate the calculations.

Intermediate results of the calculations tend to be ordensagnitude more complicated
than the final one.

The limits of this approach in numbers of loops and legs aragled in figure 1 in
reference [86]: the technique is well established for twapkup to two legs, for one loop up
to five legs and for zero loops up to eight legs. Partial resuispecial cases were calculated
for three loops up to two legs, for two loops up to four legs,doe loop up to six legs and
for zero loops up to ten legs. To bring the theoretical préolis to the expected precision for
the ILC, even more loops and legs are needed, at least thedesftects of that.
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4 5 6 7 8 9 10

4| 25|220| 2485| 34300| 559405| 10525900
24| 120| 720 | 5040| 40320| 362880 3628800

2 6| 24| 120 720 5040 40320

number of gluons
Feynman diagrams
factorialn!

partial amplitudegn — 2)!

R Ok, WwW

Table 1.4:The number of Feynman diagrams at tree-level contributreygcattering process
with n gluons (gg— (n— 2)g). The number of diagrams grows faster than the factorial,
which is given for comparison. In the last row the number dejpendent partial amplitudes
is shown[87].

1.2.4 More Efficient Methods

In the 1980s new methods were developed to avoid the difiesuttescribed in the preceding
subsection. These methods are the colour decompositiersgimor-helicity method and
recurrence relations.

Colour Decomposition

The colour decomposition [88, 89] splits Feynman amplisid& a colour part and a Lorentz
part. The former contains a trace over colour matrices amdthtker, called partial amplitude,
contains the kinematical information. For a tree-level Aiage with n external gluons this
reads:

An(KE Ky ) = g“oeg/znz Tr(T 0w T ) Ag (KL

(1.11)

S, is the set of all permutations afobjects and;, is the subset of cyclic permutations, which
preserve the trace. Thus the sum runs over all non-cyclimpitions of the external gluon
legs. In this formulak; denotes the four-momentum of theh gluon and; its helicity, g
stands for the strong coupling constant drfdare the colour matrices, normalised such that
Tr(T2TP) = 1/2 5%, The partial amplituded,, contain the kinematic information. They are
colour-ordered, i. e. only diagrams with a particular aycidering of the gluons contribute.
This way one can reduce the number of diagrams to be calduldtence, the calculation
of partial amplitudes is more efficient than calculatingahventional Feynman diagrams.
In addition, partial amplitudes satisfy several idensitiehich further reduce the number of
independent partial amplitudes, see equation (2.4) antblioging equations.

The proof of the colour decomposition is very simple [90]ahy tree-level purely gluon
Feynman diagram we pick any vertex and replace the colouctstie constants defined in
equation (A.32) byfaP¢ = _2i Tr(TaTPTC — TPTaTC), If a leg attached to this vertex is
external, there are no colour terms. If a leg is internal didke to another vertex, whose
structure constants can be replaced by traces over mafrite$he product of a structure
constant and a matriX? can be replaced using equation (A.32). This procedure can be
continued until all vertices have been treated in this manfteen we have the desired colour
decomposition (1.11).
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Spinor-Helicity Method

The spinor-helicity method [90-96] introduces a new set iokkatic variables and the
polarisation vectors are written in terms of these spinodpcts (for more details see ap-
pendix A.2).

The advantage is, that many terms vanish, kkg (k,q) = 0 ande". (ki q) €% (kj,q) = 0.
To make use of this, it is particularly useful to choose tHerence momenta of gluons with
the same helicity to be identical and equal to the externaherdum of one of the gluons of
opposite helicity. In this way one can reduce the numberrofiseper diagram significantly.
Since different helicity configurations do not interfetasisufficient to sum incoherently over
the squares of all possible helicity amplitudes contrilitio a given process, to obtain the
full cross section. For processes witlFeynman diagrams one classically had to calculate
n(n+1)/2 interference terms. In the spinor-helicity formalism thenber of amplitudes to
calculate is usually much smaller. In the procese™ — ete vy for example there are 80
Feynman diagrams, thus 3240 interference terms, but onhetdity amplitudes. Because
of parity conjugation (equation 2.4), which flips all helies, one has to calculate only 32
(short) expressions, compared to 3240 (long) ones [97]s Bha major step towards more
efficiency.

Berends—Giele Recurrence Relations

The colour decomposition and the spinor-helicity methooholestrate their full power when
combined with recurrence relations that construct the auogas recursively from smaller
building blocks. The Berends—Giele recurrence relati®® §9] were historically the first
ones.

Pure gluonic processes are calculated recursively, bet¢hag play a special role among
all parton processes. In hadron collisions the gluons hlagdargest parton cross section
and when one has techniques to calculate gluon proceseeeldtively easy to add a single
guark—antiquark pair. To calculate the partial amplitutlgesne first removes the polarisation
vector of then-th gluon and multiplies with an off-shell propagator termhis so arisen
auxiliary quantity is calledff-shell current J_1, because the-th leg is off-shell (all other
legs are on-shell). Sincgis an off-shell quantity, it is gauge dependent. For thasoea
reference momenta for the on-shell gluons, whidalkepends on, have to be kept fixed until
after one has extracted an on-shell result. The off-shetbot forn— 1 gluons can then be
related to off-shell currents with less gluons. This remurstep is repeated until we reach
J1, which is defined as the polarisation vector of the gluon.his wvayJ, 1 is constructed
and to get the partial amplitudég we only have to multiply with the inverse propagator as
well as the polarisation vector of tmeth gluon.

The recurrence relations automatically take into accoliifegnman diagrams and allow
to prove certain properties of partial amplitudes.

1.2.5 Twistor Approach

In Penrose’s twistor theory [100-102] the usual backgrapatetime is replaced by a back-
ground space of twistors. The known physical phenomenaydre teinterpreted in this new
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twistor space to gain new insight. This is analogous to duoing momentum space and
using the Fourier transform to change from spacetime to méune space and vice versa.
A twistor spaceT is a four-dimensional complex vector space A twistor is an element
Z% = (20,7%,72,73) in this vector space. Theoretical physicists work in twistpace to
better understand various classical field equations andemotlativistic and gauge field
equations. One of the initial aims of twistor theory was toyile a formalism for the unifi-
cation of general relativity and quantum theory. Howewds also interesting from a purely
mathematical point of view.

In 2003 Witten introduced a string theory in twistor spacg3,1104], later calledwistor
string theory which is dual to a weakly coupled gauge theory. This dualitgd new light
on Yang—Mills perturbation theory and led to new methodscfanputing Yang—Mills scat-
tering amplitudes. The perturbative expansion in the gdlgery is related td-instanton
expansion in string theory (the string theory in questioa ispological open strinB-model
on a Calabi-Yau supermanifoldP34, which is a supersymmetric generalisation of Pen-
rose’s twistor space). The relationship to QCD amplitudepired new methods for the
calculation of helicity amplitudes in field theories. ThedBazo-Swek-Witten (CSW)
approach [105, 106] constructs tree-level QCD amplitudesh fvertices that are off-shell
continuations of maximal helicity violating (MHV) amplities [107], connected by scalar
propagators.

Subsequently, a set of recursion relations has been foudl-[111] that involve only
on-shell amplitudes with shifted, complex, external motaen

1.2.6 The BCFW Recursion Relation

In this subsection we prove the recursion relation withtsdimomenta, following the ideas
of Britto, Cachazo, Feng and Witten [104, 108, 109], becaliseproof is constructive and
the same technique can be, and has been, applied to manypodiems [112-114]. The
idea of the relation is as follows: one holds two gluons fixed aums over products of
subamplitudes withi external gluons on one side, connected by an internal glaaon-tr
external gluons on the other side. The two fixed gluons areppogite sides. The sum is
over all possible decompositions with one fixed gluon on eadb. The momentum of the
internal gluon ik and its helicity is\. The momenta are shifted in such a way that the internal
gluon, as well as the external gluons, are on-shell.

In other words: we prove that any gluonic tree-level amgitean be constructed from
two subamplitudes with fewer gluons times a Feynman prapagahe subamplitudes are
physical, on-shell amplitudes with shifted momenta. Theirsion relation can be written as:

1
An = th @A;fw (1.12)

whereA, is the tree-level scattering amplitude focyclically ordered gluons.

The proof uses the spinor-helicity formalism mentionedubsection 1.2.4. The spinors
of thei-th gluon are callek; andk;. Thus we can writd® = k®k? for the null-vectork;.
Now two gluons’ momenta are changed by introducing a comydeiablez in the following
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manner (without loss of generality these can be choséamdn, if we use cyclic symmetry):
ki(2) =K (KI —=ZKn) , Kkn(2) = (Kn+ 2K ) Kn, (1.13)
which is the transition:
R| —>I2| —len, Kn — Kn+2ZK|, (114)

with fixed Kk} andk,,. The momenta of all the other gluons stay unaltered. Thegdwhmo-
mentak; (z) andkn(z) are on-shell for alk. Using these we can define the auxiliary function:

AZ) = A, ...,k -1,K(2), K41, Kn_1,Kn(2)), (1.15)

which is a physical on-shell amplitude for all All momenta are on-shell and momentum
conservation is fulfilled. Without loss of generality, wesame that the helicities; andAp
are— and-, respectively. The proof for other helicity configuratiara be done in a similar
manner.

Figure 1.1:Pictorial representation of the BCFW recursion relatiorhnefmomenta of gluons
n and | are changed according to equation (1.13). The sum awes all cyclically ordered
gluons with at least two gluons on each side and over the tvaicel of helicity for the
internal gluon connecting the two subamplitudes.

If we can show tha#\(z) is a rational function, that it has only simple poles and that
vanishes foz — o, we are basically done, because it can then be written as:

C
A2) = <Z -, (1.16)
pe{poles p

wherecy is the residue at the pole It will turn out, thatcp is proportional to amplitudes
with fewer legs tham\(z) which leads to the desired recursion relation. Let us stlt thhe
proof of these three statements abaut

Since the original tree-level amplitude is a rational fimctof spinor products and the
z-dependence only enters via equations (1.A4)) is also a rational function ie.

A(2) is constructed out of Feynman diagrams and can only havelsirities from prop-
agator terms. Sincé(z) is colour-ordered, all propagators are of the fornyi?r, where
Kij = ki +ki+1+...+kKj. Kjj isindependent ofif I,n¢ {i,..., j}, butalsoifl,ne {i,..., |},
sincek| (z) + kn(2) = K|K| + KnKp IS z-independent. Fore {i,...,j} andn ¢ {i,..., ]} we
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use momentum conservation to repléce ... +kj by —(kj;1+...+k—1). Then we are left
with the last remaining cadef {i,...,j} andne {i,..., j}. In this case;j () = Kij + zK|Kn.
Using the fact that the shift &4, is a null-vector, we have:

K (2) = K& + z(Ki|Kij|Kn) , (1.17)
where the product is defined ifi|k|K) = —kaak¥k?. Hence, the propagatoy’Kizj(z) has only
one single simple pole at:

L (1.18)
Zi = —. :
P (kalKijRn)
The z; for different pairs ofi and j are distinct and they are the only singularitiesAg¥).
Accordingly,A(z) has only simple poles.
Now we show that ofA(z) vanishes foz — . Any Feynman diagram contributing to

A(2) is linear in the polarisation vectogg; of the external gluons, that can be written as:

_ Kafly + HaKa
- Kaba oy : 1.19
@ KE T (k) (1.19)

wherep andl are fixed reference spinors. The ombgependent polarisation vectors are the
ones of gluong andn. The spinoik; does not depend an andk; is linear inz. Since the
helicity of Aj is negative, it follows that,” goes to zero like/z for z— . The same can
be shown for;l. The other terms in Feynman diagrams are propagators (vangcbonstant
or vanish in the limitz — o) and vertices. Since vertices with four gluons do not hawe an
momentum factors, we only have to show that contributioosfthree-gluon vertices vanish
like 1/zfor z— 0. In a tree diagram the-dependence flows from gludrto gluonn along a
unique path of propagators. Each of them gives a fdgiolf there arer of these propagators
there can be at most+ 1 cubic vertices along the path. Vertices and propagatgsther
give a factor that grows at most linearly afor largez. Since the product of polarisation
vectors vanishes likgl/z)?, A(z) vanishes likel/z for z— oo,

Equation (1.16) can now be rewritten with the residaesf A(z) at the polez = zj as:

A=Y —L (1.20)

where the sum ovarand j runs over all pairs in such a way thats in the range from to |,
whilel is outside this range. To get the recursion relation we ndeutate the residues; . If
there is a pole eKiZj (z) =0, atree diagram is divided into two parts by a propagatoe firt
part, the subamplitude on the right-hand side of figure Iottains all external gluons inside
the range from to j, whereas the second part, the left subamplitude, contaesstternal
gluons outside this range. The connecting internal linerhamentunK;;(z). We have to
sum over the helicities = + at the left-hand side (the helicity of the right-hand sidalvgays
opposite). The contributions of such diagrams near the pelg; are:

Al (2ARN(2)

A

(1.21)
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whereA} (2) andAg)‘(z) are the contributions of the particular sides. The denotn'rrb@ﬁ(z)

is linear inz. To obtain the functiow;; /(z—zj) in equation (1.20), we set= z;j. In doing so,
the internal line becomes on-shell and the numerator besanpeoduct of physical on-shell
scattering amplitudes. Thus we have:

ARM(z) = A=K @) K- k(@) k)
A (z) = AKjst .k (@) ko K] (@) - (1.22)

Using this, we can rewrite equation (1.20) as:

Al (z))AR ()
A(Z) _ L\4] /R J
g ; K& (z)
We setz = 0 in the denominator, without changing the numerator, t@iobthe physical
scattering amplitud@(1,2,...,n):

(1.23)

AL2...N=%Y ”KZR (1.24)
A

which is the BCFW recursion relation.

1.3 Parton Showers

This section gives an introduction to parton showers bagsaeference [115].

With present techniques, our limited ability to calculagtprbative corrections in QCD
allows analytical predictions only for the first few ordensis. Since the size of calculations
grows roughly factorially with the order afs, without new ideas, not many higher orders
results can be expected in the near future. Neverthelegseihorder terms are important for
some regions in phase space, such as collinear parton emiasileep inelastic scattering.
Also at high thrust [116, 117]:

maxy |pi- M
T= | 1 (1.25)

Z|F5i|

in electron—positron annihilation, fixed order predic8are unreliable, since for each power
of as there is an extra factor of #i1 — T) which spoils the calculation.

For these regions in phase space, there is a different agfproat a precise calculation
to some fixed order in the perturbation series, but an apprate result for all orders. This
approach is calleparton showers The shower gives an approximate perturbative result at
scales of momentum-transfer squatepleater than some infra-red cut-&ff typically of the
order of 1 Ge\?. Combined with a non-perturbative hadronisation modetalest < tg, one
obtains two of the main ingredients for a QCD event generatoomputer program to simu-
late interaction and production of hadrons with similar fistates (average and fluctuations)
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as those observed in experiment. To this end, the partonbdison functions of the initial
state, the hard interaction itself, other semi-hard preegsnd beam remnants with colour
connection (the so-called underlying event), as well agldeay of hadrons, have to be taken
into account. Since quantum mechanics is probabilistiereetator has to produce the events
randomly. For this reason, event generators are Monte @eslgrams [118].

generator | latest version | hadronisation references
PYTHIA 6.4 (Fortran) | string model [119]
8.142 (C++) [120]
HERWIG 6.510 (Fortran) cluster model [121]
HERWIG++ | 2.5.1 (C++) cluster model [122, 123]
ISAJET 7.81 (Fortran) | independent fragmentatian[124]
SHERPA 1.3.0 (C++) string & cluster [125, 126]

Table 1.5:The main hadronic event generators. For special purposesethre a lot more
programs available, e. gARIADNE [127] for parton showers o ALPGEN [128] for multi-
parton processes in hadronic collisions.

1.3.1 Splitting Functions

We will now derive the unregularised gluon splitting furectias an example of a splitting
function. Leta be an outgoing gluon, branching into gludmsandc like in the right-hand
side of figure 1.2. This is a time-like branching, sirice p2 > 0. The opening angle is
0 = 6y + 6¢. The energy fractioris defined by:

= Ea—Ec Ec
- P _ =1-— == 1.26
‘" Ea Ea Ea (1.26)
For momenta parametrised as:
2 2
Pa Pa
= (Ea+-=,0,0,E4— =
pa ( a+ 4Ea, ) Yy =a 4Ea) )
Pp = (Eb,+Ebsin9b,O, EbCOSBb) ,
pc - (Ec, —Ecsinec, 0, ECCO$C) (127)

and in the approximation of small angles, we obtain:
t = p2 = (pp+ Pc)? = 2EpEc(1 — cosh) ~ z(1— 2)E202 . (1.28)
Using transverse momentum conservation, we get:

6= ¢ g iz (1.29)
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Figure 1.2: The incoming branching (left) is space—likeg $t < 0, whereas the outgoing
branching (right) is time-like, =t > 0.

For the matrix elemeri¥( there is a factor proportional figt from the propagator of gluoa,
and the vertex of the three gluons gives a factor:

Vggg = i9 fabcsgsﬁs‘c’ (gaB( Pa— Po)y+ 9ey(Pb — Pc)a + Gya (Pc — pa)B) 5 (1.30)

whereai“ is the polarisation vector for gluon All momenta of the gluons are defined as
outgoing, so thap; + pp + pc = 0. Usingg; - p; = 0, we get:

Vggg = —2i9 fabc((sa'sb)(sc‘ Po) — (€b-€c)(€a- Pb) — (Ec-€a)(Ep- pc)) . (1.31)

The gluons are almost on-shell. Hence, we can take theiripateon vectors to be purely
transverse. These can be written as superpositions of agatian vector in the plane, which
is spanned by the three gluons, and a polarisation vectpepdicular to this plane. Polari-
sation states of the first kind are labellectisthe latter ones a&f"". The following relations
are fulfilled:

EEn -Eljn — 8iOUt- E?Ut =1,

g e =¢eM. p; =0. (1.32)
For smallB, when terms of orde? are neglected, one has:
el pp=—Epd = —zE:,
Eian “pp= —EpBp = —2(1—-2)E40,
el. pe=—+EB = (1—2)Es0. (1.33)
We see that every term in the three-gluon vertex is propaatito 8. With the propagator

proportional tol/t ~ 1/g2, it follows that the amplitude has e singularity. The matrix
element is:

1
Mn+1 ~ Vggngn . (134)

SquaringM 1 and insertind from equation (1.29), gives:

4 2
M1/ ~ “ENF (282,86, 80) M 2, (1.35)
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where the colour factoN, = 3 for SU(3) comes from the product of the structure functions
fabC The functionsF (z €4, £, &) are given by:

e 1-z z
F Z;Eln 8If'l 8In — Z l_z
( ar» by Cc ) 7z + 1— Z+ ( ) )
F(zel, eputedh) = 72(1-2),
i 1-z
F(Z;Egm,ﬁg], 88Ut> - 7z
- z
F(zed"epel) = T (1.36)

All other polarisation combinations vanish. Averaging iotree polarisations od and sum-
ming over the polarisations é#fandc lead to:

=53 Y 3 F(z;sga,sgb,sgc):1%2+l%z+z(1—z). (1.37)

Ha=In,0ut py=In,out pe=Iin,out

The unregularised gluon splitting function is defined as:

'399(2) =Nc(F) =Nc (1%2+ 1%ZJrZ(l— z)) ) (1.38)

The branching probabilitif’gg(z) for gluons is related to the corresponding Altarelli-Raris
kernel [129] and diverges far— O (if gluonb is soft) andz — 1 (if gluonc is soft). As can
be seen from equation (1.36) the divergences are corrdiatdee emission of a soft gluon
polarised in the plane of branching. To get the regularigdittiag function we use thelus
prescription also calledplus distribution defined by:

1 1
/f(x) (909)) , dx= /(f(x) (1)) g(x) d, (1.39)
0 0

wheref (x) is a smooth test function arggx) is singular ak = 1. Thus we finally obtain:

P(z2) =P(2)+. (1.40)

1.3.2 Evolution Equations

To get the ELAP evolution equation [129-131] we look at multiple small-Engiluon emis-
sions from a space-like quark (see figure 1.3). The quark fradnonA has, in the beginning,
a low virtual mass-squardg < 0 and a high fractiorxg of the hadron’s momentum. With
every emitted gluon it moves to a more virtual masst;_1 and a lower momentum fraction
X < X_1. After emittingn gluons, the quark takes part in a hard scattering procesarvia
exchange of a photon of virtual mass-squayée: —Q?.

To get a better understanding of the evolution, it is helpfumagine every sequence of
branchings as a path {ih, x)-space, as in figure 1.4. The path startét@txp) and follows a
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—to -t ...~ -ty

i o =

Figure 1.3:Initial-state branching: multiple small-angle gluon emiisns from a space-like
quark.

parallel to thet-axis until a branching occurs ét, xo). Then there is a step downwards from
Xo to x; at constant;, wheret; is equal to the virtual mass-squared after the branching.

The cross-section of the hard scattering process depernite @ealeQ? and on the mo-
mentum fraction distribution of the partons seen by theuairphoton at this scal®(x, Q?).
We derive an evolution equation for the scale-dependendeftlistribution by the help of
the pictorial representation introduced abovet Attg the paths have a distributid(Xo, to)
characteristic for the hadrof at this scale. The parton distributi@(x,t) at scalet is the
x-distribution of paths at this scale. Wheis increased to+ dt, the change in the distribution
of partons is the number of paths arriving in the elem@htdx) minus the number of paths
leaving, divided bydx. We integrate the branching probability times the partamsdg over
all momentum fractiong’ = ¥/z higher tharx to get the total number of arriving paths:

1
R & [ dzas s
8Din (x,t) /d)(/d D(X,1)3(x— zX) _T0/72_ 2D(Yzt).  (1.41)

The number of leaving paths can be obtained in a similar waptegrating over all momen-
tum fractions< = xzlower thanx:

dDout(X,t) = —D(x,t /d)(/dz O(X —x2) D(xt /d z—P(z (1.42)

The difference of them gives the net change of paths:

8D (X,t) = 8Din (X, t) — BDout(X,t) = ?t/d z*P( )(%D(X/z,t)—D(x,t)) . (1.43)
0

Using this, we can write down thedAP evolution equation with the regularised splitting
function:

;D(x t) = /%Z%P( 2AD(¥t) . (1.44)

X
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1
X0 (t1,X%o)
(t1,%1)
) e —
NG Xn
0 2
to t t+ot Q

Figure 1.4:Parton branching for a space-like parton as a path(inx)-space.

The lower limit of thez-integration can be chosen as zerxdecause the integrand vanishes
for z < x. The functionD(x,t) is the distribution of parton momentum fractions inside the
incoming hadrorA at the scale¢. For more than one type of partons this can be generalised
to:

1
0 dzas "
tH0X) = 3 / SR (2)Dj(¥z1), (1.45)

whereR;j (z) is the regularised— j splitting function andj(x,t) is the distribution of partons
of typei.

1.3.3 Sudakov Form Factors

There is a way to eliminate the plus prescription from thdwan equation by introducing
a so-called Sudakov form factor [132]:

t /
A(t) :exp(—/i—f/dz?—f{ﬁ(z)) : (1.46)
to

With that definition we can rewrite equation (1.43) as:

D(x,t), 0
AT toAt) (1.47)

t%D(x,t):/d;z%P( 2D(Yz,t) +

and

dzag (x
( ) A/;E[P (¥/2t). (1.48)
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This has a form similar to the ®&AP equation (1.44). Integrating gives an equation for
D(x,t) in terms of the initial parton distributioB (X, to):

D(x,t) = AL)D(x,to +/dt O [ aD(g). (1.49)

This equation can be interpreted using the path$,ix)-space from figure 1.4: the first term

on the right-hand side is the contribution of the path frigrantil the first branching occurs
att. Thus the Sudakov factor is the probability of evolving friyrio t without branching.

The second term gives the contribution from all paths whiahehtheir last branching &,
whereas the quotier(t) /A(t") stands for the probability of evolving from to t without
branching. If there is more than one parton, each partoriegidtas its own Sudakov factor
Ai(t). Additionally, if there is more than one possible type ofrmiaing, the sum over all
allowed processes— | has to be taken. In this case we get a generalised Sudakov form

factor:
_eXp< z/dt//d —P,. ) . (1.50)

With the same generalisation, equation (1.48) becomes:

( ) A.Z/dzzg;' Dj(¥/z1). (1.51)

The infrared singularity of the unregularised splittingnétion atz = 1 can be removed by
introducing an infrared cutoff < 1—&(t). Branchings wittz > 1 —¢g(t) involve the emission
of an undetectable soft parton and are not taken into accduma Sudakov factor with this
cutoff gives the probability of evolving frorg to t without any resolvable branching.

The formulation of parton branching in terms of the Sudalamwf factor is suitable for
computer implementation. The task for the program is to gerevaluesty, xo) for a given
virtual mass scalg and a given momentum fraction. The value of, can be obtained from

Alta)

Ay~ (1.52)

wherer; is a uniformly distributed random number in the interf@ll|. Since the left-hand
side of this equation gives the probability of evolving fraqto to without any resolvable
branchingt, can be generated with the correct probability distributiothis way. If thet,
determined in this way is bigger th&¥?, there is no further branching. # is smaller than
Q?, a value of the momentum fraction is generated. This is denerding to a probability
distribution proportional t&(z)as/(2r), by solving the equation:

z 1-¢
Os B as
/ dZ-2P() =2 / dZ-2P(2) (1.53)

€
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for another random numbes € [0, 1], wheree is the infrared cut-off for resolvable branch-
ings. If there are no further constraints, the azimuthalepgf the emitted parton is gen-
erated within the rangf, 2. With the given values of;, z and @ the momentum of the

emitted parton can be calculated.

For branchings of partons with time-like momenturayolves downwards in the direction
of the cut-off valudy, instead of upwards towar@¥ like in the case considered above. Then
the equation to determinig reads:

A1)

Aty rp. (1.54)
SinceA(tp) = 1, this equation has no solution for> tg if r1 < A(t1), which correctly gener-
ates the probability for no resolvable branching. The mdomarfractionz is generated like
in the space-like case. The successive time-like branstorgn a cascade of partons, called
aparton showeruntil the partons generate no additional branchings.

After the parton shower has terminated, we are left with ao$gtartons with virtual
masses squared of the order of the cut-off sgal&€hen perturbation theory is not applicable
any more and hadronisation — also called fragmentations-setonverting the partons into
observable hadrons. For the hadronisation process differedels are used.

The simplest model supposes that each parton fragmentgandently [133, 134]. A
quark, for example, is combined with an antiquark frongaair created out of the vacuum,
to give a meson with energy fractian The remaining quark with energy fraction-1z from
the gq pair fragments in the same way, until the leftover energils faélow some cut-off.
Every gluon is assumed to split intayg pair before the described hadronisation process sets
in.

In the simplest example of tHaund string mode]135-138] a quark—antiquark pair mov-
ing apart in opposite directions losing energy to the cofmld which collapses into a string-
like configuration between them. Since the string has arotmienergy per unit length, the
total energy rises until it eventually breaks apart throsgbntaneougq production. Each
of the separate strings can undergo further break-upsidmtbdel gluons produce kinks on
the string [139] which leads to a different angular disttibo compared to the independent
fragmentation.

In thecluster mode[140, 141] colour-singlet clusters of partons form aftes pfartons in
the shower stop branching. The clusters of typical massés®br three times/to decay
into the observed hadrons.

1.3.4 Backward Evolution and Angular Ordering

In the previous subsections we discussed forward evoluiitee initial momentum fraction
Xo of the emitting parton is known and the final vabggis calculated. This is convenient in
time-like evolution. For space-like showers it is more cament and more efficient to start
with the momentum fractior, of the final parton, because this parton takes part in the hard
scattering. Fronx, the preceding momentum fractiors_1,...,Xp are generated through
backward evolution [142, 143].

An example is Drell-Yan production of a vector boson in hagttadron collisions. A
quark with momentum fractiory and an antiquark witlxg coming from different hadrons
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interact to produce a boson of mags whereM? ~ xgxgs and /s is the hadron—hadron
centre-of-mass energy. The product of the figpd of the two space-like partons should have
the right value to produce this particular boson. If the saiemwvould be generated forwards,
in most cases the product would not have the needed values thieucontributions to the
cross-section would be negligible and the efficiency vew. llm backward evolution we can
choose the&y’s in the region where the contributions to the cross-secie big gaining a
bigger efficiency.
The form factor in the case of backward evolution is modified:

A(ti)

A(ti) — DXt (1.55)
The probability of evolving backwards frofty, X) to (t1,x) reads:
M(t1,t2,X) = Dxt1)A(ty) (1.56)

D(X, tz)A(tl) '

The value oft; can be obtained from equatitigts, tz,X) with a random number uniformly
distributed in the intervd0, 1]. To get the corresponding value for the momentum fraction,
we generate = Xz/X; With a probability distribution proportional to

as P(2)

— ——D(X2/%1,t 1.57

o DXe/Xut), (1.57)
whereP(z) is the appropriate splitting function. The extra factoDgky/xg,t1) will be di-
vided out in the next backward steptinThe generation ok can be done in a similar way
like in forward evolution in equation (1.53).

]

Figure 1.5: Angular ordering: soft gluons from parton i are emitted uhsia cone centred
around the path of i with opening ang?®;; .

An investigation of the angular distribution of emittedtsgiions shows that gluons emit-
ted by partori are confined into a cone centred around the path of pamoth an opening
angle B;j, whereb;; is the angle between the trajectories of partoasd j. The cone of
emitted gluons of partopis centred around ling and has the same opening angle. After the
emission of gluork at angleBik < 6;j the next gluon will be emitted within the anddg. The
property of decreasing anglég > 6y > 6; > ... is calledangular ordering
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The analogue in electrodynamics is called Chudakov effiebt]. The soft photon emis-
sion of an electron—positron pair is suppressed at angigsrithan the opening angle of the
pair. A simple explanation of this effect is that photonsaagjer angles do not see the individ-
ual charges of the electron and the positron, but only thelmatge, which is zero, implying
no emission.



Chapter 2

Born Gluon Amplitudes

In this chapter we compare four different methods for the eical computation of pure glu-
onic amplitudes in the Born approximation [145]. These rodthare Berends—Giele recur-
rence relations, recursive calculations with scalar @iagy, with maximal helicity violating
(MHV) vertices and with shifted momenta. We investigatesfiiiency of these methods for
an increasing number of external particles and the numexacauracy in critical phase space
regions.

2.1 Four Different Methods

Using colour decomposition the tree-level amplitude wigtxternal gluons can be written as

An(kﬁl,...,kﬁn):g”—z )3 2Tr(Tao<1>...Tao<n>)An(k?,?;g),...,kg?gg)), 2.1)
0€S/Zn

where the sum runs over all non-cyclic permutations of thtereal gluon legs. In this for-
mulak; denotes the four-momentum of theth gluon andA; its helicity, while g stands
for the strong coupling constant aii@ the colour matrices, which are normalised such that
Tr(T3TP) = 1/2 . The gauge invariant partial amplitud&scontain the kinematic informa-
tion and are invariant under cyclic permutations. They atewr-ordered, i. e. only diagrams
with a particular cyclic ordering of the gluons contribube.the computation of observables
and cross sections enters the squared amplitude summealldwelicities and colour degrees
of freedom

2 _52-n2n-4 Ao(1) Ao} |2 1

AP =2 S S (k)| o(p) @2
}\1,...,}\[10’631/2[1 C

HereN; = 3 is the number of colours. The interference terms betwegrapamplitudes

of different colour-orderings are colour-suppressed(@4; 2)). In the following we examine
partial amplitude#\, summed over all helicities (but not over the colour struesir

2

(2.3)

29
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M, gives the leading-colour contribution to equation (2.2) depends only on the kine-
matical information. It is used to study the efficiency ofivas methods to calculate the
partial amplitudes\,. Since parity relates a partial amplitude to the one withalicities
reversed, we only have to calculate half of the helicity aquntations:

N(ki‘lkﬁ> — A, (kl’M,...,kn*A“)*. (2.4)

The partial amplitude is also invariant under cyclic peration of its arguments and satisfies
a reflection identity

Aa (K, K) = (—1)"A, (I(}lkﬁ) (2.5)
With the shorthand notation
An(l,z,...,n):An<kﬁl,|(2\2,...,k§n> (2.6)
we can write down the cyclicity property:
An(1,2,...,n) =An(2,3,...,n,1) (2.7)

and the identity:
An(1,2,3,...,n)+An(2,1,3,...,n) +As(2,3,1,....,n) +...+ An(2,3,...,1,n) =0, (2.8)

which is called photon decoupling equation [146] or dual d\Viaentity [90] or subcyclic
property [87]. Partial amplitudes with all helicities plfminus) as well as partial amplitudes
with all helicities plus (minus) and only one minus (plushish:

An (ki kG k) =
An (KK .. k) =0. (2.9)

The first non-vanishing amplitudes are those with all but bivthe same helicity. A closed-
form expression for this was found by Parke and Taylor [107]:

: jk)4
Ao KK KK R ) =l (240)

Kosower gave an expression for an amplitude with three negiaglicities and the remaining
ones positive [99]. The formula would fill half a page.

We also investigate the numerical accuracy of the varioubods in critical phase space
regions, i. e. regions where one or more partons becomealnegls(soft or collinear). In the
limit where gluonj becomes soft, the partial amplitudes behave as:

kj soft <k'_1k' 1)
Ki,....K ..., ’ 2 i s Ka, ..
Ant1(ki , kny1) — (ki 1k;) (Kiki o) An(Ki, - .. Kni1),
Ki ft Kiiqki_
Anea(ke ko k) 2 Bkl gy @i

[Kj+1Kj] [KjKj-1]
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Figure 2.1:Pictorial representation of the Berends—Giele recurrerslation. The gluons 1
to n are on-shell and the others off-shell.

The spinor productgkikj) and[kik;] are defined in appendix A.2. The quantiif, factorises
in the soft limit as:

. kj soft (2Kj—1Kj+1)
Maalka, ool koa) = 2 G i)

Mn(kla"'7kn+1>' (212)

In the collinear limit tree-level partial amplitudes fadse according to:

PoiaeKako, ) S Split (ke KE)A(.... K, ), (2.13)

A=+/—

wherek, andky, are the momenta of two adjacent lefs+ ka + kp, ka = zKandk, = (1—-2z)K.
The corresponding helicities are denoted\b¥, andAp. The splitting functions are listed in
appendix A.3. In the collinear limit the quantily,, behaves as [147-150]:

o 2 (2 2 ) _8
where the spin correlation is given by:
2
8, — s ’EAﬂ(kﬁl,...,Kﬂ...,kﬁn)+E*An(k§1,...,r<*,...,kﬁn) (2.15)
ALy Aa 1. Abs 1y An

and .
£ — % [kalKT) (2.16)

V2[Kk)

2.1.1 Berends—Giele Recurrence Relations

Berends—Giele type recurrence relations [98, 99] wer@dhiced in 1987 by F. A. Berends
and W. T. Giele. Pedagogical introductions can be foundfereaces [90, 151, 152]. These
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kinds of recurrence relations build partial amplitudesrfremaller building blocks, so-called
colour-ordered off-shell currents. Off-shell currentséna on-shell legs and one additional
off-shell leg. They are not gauge-invariant.

Recurrence relations relate off-shell currents witlegs to off-shell currents with fewer
legs. The recursion starts with= 1.:

P(ky) = (ke ) . (2.17)

The variableet is the polarisation vector of the gluon aqds an arbitrary light-like reference
momentum. For positive and negative polarisation thisardobks like:

(aiwk) - g yulk")
g (k.q) = TR L (k, )_7\/§(k+|q—>' (2.18)

A gluon couples to other gluons only via the three- or fouwregl vertices. Therefore the
recursive relation can be written in the following form:

- /n-1
J“(@lw-wkﬁ”):—;(ZVs”Vp(—Kl,mKl,j,KHl,n)Jv(@l, KNI (K LK)

K1,n =1

n-2 n-1 ; i
S5y vrmwia...,k?wp(k?rf,-.-,@'>Jo<@'ﬁf’~"kﬁ”>> |

I=1ll=j+1
(2.19)
where .
j
Ki7j:/Zk|:ki+ki+1+...+kj (2.20)
=l
andVs andV, are the colour-ordered three-gluon and four-gluon vestice
VAP ke, k) = (g (K — B + 0°° (K — ) + 6P (K — D)),
V; P =i (209" — g™ — g*°g"P). (2.21)
Since gluon currend, is conserved:
n
(Zﬁ‘) =K =0, (2.22)
i: )

terms proportional tcb(" and toK?_, —can be dropped in equation (2.19). Using momentum

j+1,n
conservation, we get
VEYP (K, ko, ka) = VAP (ko ka) = i (0"P (ko — ka)" + 204K — 2gVK5)  (2.23)
for the three gluon vertex in equation (2.19). With the shamnd notation

ML,2,....n) :J“(kil,kga...,kgn) (2.24)
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we can write down the decoupling equation for off-shell eatsJ* (similar to equation 2.8):
H1,2,3,...,n)+I42,1,3,...,n) +I*2,3,1,....n)+...+I%2,3,...,n,1) =0 (2.25)
and the reflection identity (similar to equation 2.5):
M1,2,3,...,n) = ()" ¥(n,...,3,2,1). (2.26)

The partial amplitudeﬁ\n(l(ll,...,kﬁ") can be obtained from the gluonic off-shell current

J“(kﬁl,...,l@";ll) by multiplying by the inverse gluon propagator and contracivith the
polarisation vector for gluon:

oKy, k) =€l (kn, @) - (IK2q 1) MK, kY. (2.27)
In some cases it is possible to give a closed form expressiahé current:
(@ IVKynld")

ML, 2t ) (2.28)

~ V2(qL)(12)...(n—1,n)(nq)’
_ 1_ K n 1+ N 1_ mK .m 1+
(L 2b,. 0ty = <f2<"1";> .25.'<n1i m_3< K'lfmllklz'm ) (2.29)

where the reference momenta for equation (2.29)are ko andgz = ... = gn = k. With
the help of equation (A.22) one can show, that the correspgnghrtial amplitude for the
current in equation (2.28) vanishes (see equation 2.9).

In the recursion relation equation (2.19) only the quaeﬂi.ﬂi‘(lq“,...,k?fll) which re-
spect the original order need to be calculated. Therefoedfament implementation stores a
list of four-momenta

K,k ..., ko] (2.30)

and a list of helicities
[)\17)\27-~-7)\n] (231)

in memory and passes to the subroutine just two inteigand |, indicating that the quantity
, A
FN, KT (2.32)

should be computed.

2.1.2 Recursive Calculation with Scalar Diagrams

The recursive calculation with scalar diagrams is a modibcaof the Berends—Giele re-
cursion relation [99, 153, 154]. In this approach all sumaore over Lorentz indices are
replaced by a sum over the two physical polarisations. Tédsices the number of multipli-
cations needed for a contraction from four to two. The r@sgitecurrence relation consists
of scalar propagators and a set of primitive vertices.
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+ — — + — +
— +
+ — — + + —
Figure 2.2:The non-vanishing gluon amplitudes are the building bldoksecursive calcula-
tions with scalar diagrams. The mathematical expressiamsbe found in appendix A.4.3. A

pictorial representation of the recursive calculation vgcalar diagrams would look similar
to the one of the Berends—Giele relation in figure 2.1.

Let g be a null-vector, which will be kept fixed throughout the dission. Usingy, any
massive vectok can be written as a sum of two null-vectésandq [155]:

, K
k=K +—-—0. 2.33
+ 20 (2:33)
Obviously, ifk? = 0, we havek = k. Note further that Rq= 2k’q. Using equation (2.33) we
may associate a massless four-ve&tdo any four-vectok. Using the projection ontk’ we
define the off-shell continuation of Weyl spinors as:

k) — k),
(kK| — (KE. (2.34)
We are going to use the following abbreviations:
(i) = (k1K)
i) = (K" 1K),
(K1) = (K™K k|- (2.35)
In spinor products, the projectiokSare always used. Let us define@ffrshell amplitude
On (KL, K52, ..., KkA), (2.36)

depending om external momentk; and helicities\;. The momenta need not to be on-shell,
but momentum conservation is imposed:

n
S k=0. (2.37)
=1

By definition, the off-shell amplitudeS, are calculated from all Feynman diagrams con-
tributing to the cyclic-ordered partial amplitudg, by using the off-shell continuation equa-
tion (2.34) for all external spinors and polarisation vest@nd by using the axial gauge for
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all internal gluon propagators. Compared to off-shell ents, which are used in recurrence
relations of Berends—Giele type, an off-shell amplitude imave more than one leg off-shell.
By construction, if all external particles are on-shelle wif-shell amplitudeO, coincides
with the physical amplitud@,,. We have the following recurrence relation:

n—-1
On(K):,.... k) = ¥ zzvs(K%,,-_l,Kﬁn_l,kén) (2.38)
A=+ |=
[ Ai _ i Ai n Y
XKTOj(kﬁlw"?kjill?(_Kl,j—l) )\)KTOn—Hl(kj]7~-~7l<\|7117(—Kj,n—1) }\)
1,j-1 j,n—1

n—2 n-1 ;

A N " An | A Y

oY ZZ > Va(Kij 1K1, Kl ky )KTOJ'(k?la---’kjj—llv(‘Klvi—l) )
)\7)\/7)\//7i17 |:J+l 17]_1

8 KZ;OI_H_:L(k?j e l{\l—ill’ (_Kj7|_1)_)\/) KZI—OI’I—H—].(K\I IR lén_i]?? (_Kl7n—1)_}\”)7
JI=1 ,n—1

where we define the two-point amplitude to be the inversegator:
= 0.2
Oz (K, —Kj;) = —ikf. (2.39)
The partial amplitudd\, coincides withO,, if all gluons are on-shell:

An(K)L, . KAn) = On (K2, KA. (2.40)

There is only a limited number of non-zero vertices, whiahleted in appendix A.4.3. This
allows for a high degree of optimisation in the calculatidrtteeses vertices. The double
and triple sums over the intermediate helicities in equeti38) reduce in all cases to three
non-vanishing terms.

On the other hand it should be pointed out, that in this apgralae four-valent vertices
depend (as do the three-valent vertices) on the momentehatiao these vertices. This
should be compared to the standard Feynman rules, whichteatBerends—Giele recurrence
relations, where the four-gluon vertex in equation (2.8lipdependent of the momenta.

As in the Berends—Giele recurrence relations, an efficraplementation stores the se-
guence of four-momenta and helicities in a central placejastdpasses two integerand |
to the implementation of the recurrence relation, indi@athe starting and ending points.

2.1.3 Recursive Calculation with MHV Vertices

In the Cachazo—-Sgek—Witten (CSW) construction [105], tree-level QCD armpules are
constructed from vertices that are off-shell continuatiohmaximal helicity violating (MHV)
amplitudes, connected by scalar propagators. In maximlaity-violating amplitudes all
gluons but two have the same helicity. Compact formulee fesehamplitudes have been
known for a long time [107]. Using the off-shell continuatiequation (2.34) the MHV-



36 2 Born Gluon Amplitudes

amplitudes serve as new vertices:

n—2 ik)4
Vil KKK K KK k) =i (V2) <12><éjs>>...<n1>’ (2.41)

- _ _ _ L n-2 [kij]*
Vn(ky - k] 1’kj+’kl+1’ ﬂ717wvﬂ+l’---v% )= <\/§> [1n][n(n—21)]...[24"

Each MHV vertex has exactly two lines carrying negativedigliand at least one line carry-
ing positive helicity.

Bena, Bern and Kosower [156] derived a recursive formutatiwhich allows to obtain
vertices with more gluons of negative helicity from simpbenlding blocks:

Vn(k117-~-7kén)_(nneg 2) Z i % (I1—j+2) modn(k?jw-~7l<\|v(_Ki7|)_)

A A
XV(j—ymodn (KT K 1 (—Kagn-2)T),  (2.42)

wherenneg is the number of negative helicity gluons. The recursiontsifnnegis less than

two. FOrnneg= 0 Ornpeg=1the quantitwn(kil, ey k,);n) vanishes. Fonneg= 2 itis given by
equation (2.41). Again, the partial amplitudg coincides withv,, if all gluons are on-shell:

An(K)t, . KA = Vi (KDL, ... KA. (2.43)

There are two points which should be noted: first of all, thera double sum in equa-
tion (2.42), which over-counts each contributigneg— 2) times. This over-counting is com-
pensated by the explicit factoy (nneg— 2) in front. Secondly, it is no longer possible to work
with a static list of four-vectors and helicities, as it was tase for the first two methods. The
recursion relation equation (2.42) inserts the four-mamerK; | and—K 1) (j—1) into the
cyclic order. Therefore the lists of momenta and helicitiage to be updated at each step of
the recursion. This is best implemented by a double-linlsggwhich allows for the insertion
of the new elements without copying the remaining ones.

2.1.4 Recursive Calculation with Shifted Momenta

Britto, Cachazo and Feng [108] gave a recursion relatiortfercalculation of the-gluon
amplitude, which involves only on-shell amplitudes. Toaése this method it is best to
view the partial amplitudé\, not as a function of the four-momeritg, but to replace each
four-vector by a pair of two-component Weyl spinors. In ddtas is done as follows: each
four-vectorK, has a bispinor representation, given by:

Kag = KHOAB,
1

For null-vectors this bispinor representation factorisés a dyad of Weyl spinors:

Kkt = 0 kyg = kakg. (2.45)
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Figure 2.3:Pictorial representation of the recursive calculation kvghifted momenta.

The equations (2.44) and (2.45) allow us to convert any idgetfour-vector into a dyad of
Weyl spinors and vice versa. Therefore the partial ampdig] being originally a function
of the moment; and helicities\j, can equally be viewed as a function of the Weyl spinors

kh, k. and the helicitied,j:

An(K)L .o k) = Aq (KK, K A, KR KE M) (2.46)

Note that for an arbitrary pair of Weyl spinors, the corrasging four-vector will in general
be complex valued. IfAn, A1) # (+, —) we have the following recurrence relation:

An(Kg, KA1, ... KR KD, Ap) = (2.47)
n—1 . .
Zi Z A] (k]-: ké7A17 k27 kéa)\.Z: e k,JA717 kJB717)\j—17iKA7iKBa _)\)
]=3A==%
i

>< [
2
Kij-1

An_ir2(Ra, Ra A ki kL A, KR KDL A g K RD ).

If (An,A1) = (4, —) we can always cyclic permute the arguments, such(fah1) # (+,—).
This is possible, since on-shell amplitudes, where all giuisave the same helicity, vanish.
In equation (2.47) the shifted spind¢§ kg Ka andKg are given by:

. 5 K gk
klzkl—z , Ka— AB™ ,
A R
A
LN _1n | . anAB
ki =kp+zK, Kg= TR (2.48)

where

Kng = 5 kaky, KEj 1= detKyg, (2.49)



38 2 Born Gluon Amplitudes

and )
Jil
= - 2.
T K (250
The recurrence relation starts with= 3. The only non-vanishing amplitudes are:
: 12)4
P (Kb KL K2 K2, — I3 IG, +) =iV 2
o (K = kg~ Ko ker ) =1V 215 gy
Ag (ki K+, K3, K8, +. K3, k3, —) :i\fzﬂ (2.51)
A By T A By T BRAL gy [32][21][13] .

and the ones with cyclic permutations of the helicities. hibwld be noted that due to our
choice of shifting the spinors, the three point functionh/\ﬁi vanishes, if the helicities are
a cyclic permutation of—, —,+). Similar, the three-point function involvidig vanishes, if
the helicities are a cyclic permutation Gf,+, —). To speed up the computation the Parke—
Taylor formulae in equation (2.41) may be usedrior 4.

As in the previous method we have to update at each step ietiiesion the list of Weyl
spinors and the helicities.

2.2 Comparison

In this section we study numerical implementations of reimer methods for the computa-
tion of Born gluon amplitudes. These amplitudes (togethién worresponding ones, where
additional quarks or vector bosons are involved), are agiefor LHC physics. They enter
numerical NLO or LO program codes. As these calculationdbased on Monte Carlo in-
tegration over the phase space, the efficiency of the coripathas a direct impact on the
running time of the Monte Carlo program.

From the four methods considered, we found the Berendse@iethod performs best,
as the number of external partons increases 8). However, for a not so large number of
external partons(< 8), the on-shell recursion relation (BCFW) offers the bestgrmance.

We also investigated the numerical stability and accurétsre, all methods give satis-
factory results.

2.2.1 Performance

We have implemented all four methods into a numerical prograll methods give identical
results within an accuracy of 18 for randomly chosen non-exceptional phase space points
and up to 12 external particles. To investigate the perfagaan terms of CPU time we study
the quantityM,, defined in equation (2.3):

2

M = M%n )An (kﬁlkﬁ) (2.52)

It is clear from the algorithms that the first two methods @ets—Giele and scalar diagrams)
need a constant amount of CPU time for each helicity conftgurawhereas the last two
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Figure 2.4:CPU time in seconds for the computation of the n-gluon amghditon a standard
PC (Pentium IV with 2 GHz), summed over all helicities.

methods (MHV and BCFW) are very efficient if the helicitieg @aredominately all plus or

all minus, but take more CPU time, if the helicity configuoaticontains roughly the same
number of plus and minus helicities. To compare the differeathods, the quantitj(,
sums over all helicity configurations. This correspondshi® dituation encountered in the
calculation of cross sections and observables. Table 2disthe CPU time needed for the
computation ofM, asn varies from 4 to 12. The test was done on a standard PC with a
Pentium IV processor with 2 GHz.

n 4 5 6 7 8 9 10 11 12
Berends—Giele 0.00005 0.00023 0.0009 0.003 0.011 0.030 0.09 0.27 | 0.7
Scalar 0.00008 0.00046 0.0018 0.006 0.019 0.057 0.16 04| 1
MHV 0.00001 0.00040 0.0042 0.033 024 177 13 81 |—
BCFW 0.00001 0.00007 0.0003 0.001 0.006 0.037 0.19 0.97 | 5.5

Table 2.1:CPU time in seconds for the computation of the n-gluon amnbdéiton a standard
PC (Pentium IV with 2 GHz), summed over all helicities.

As can be seen from the table 2.1 and from figure 2.4, the Ber&3iéle type recurrence
relation is the fastest method, as the number of externahglincreases. In the second place
comes the method with scalar diagrams, which has approgiyiie same slope. As already
discussed in the presentation of the algorithms, these tethods are fast due to the fact
that they can work with a static list of four-momenta and ¢igés. This avoids copying
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large amounts of data at each step of the recursion. Thergtialgram technique allows
for a higher degree of optimisation in the subroutines, big iis out-weighted by the fact,
that in the Berends—Giele method each three- or four-valeriex is called exactly once,
whereas in the scalar diagram method each vertex is called titmes with different helicity
configurations. For smaller up to circa eight the BCFW method is the fastest, but it has a
steeper slope than the Berends—Giele recurrence relatibtiha scalar diagram technique, so
that the latter both overtake the method of BCFW.

n 13 14 15 16 17 18 19 20
Berends—Giele 2 4 11 27 64 149 367 831
Scalar 3 6 15 36 85 195 465 10483

Table 2.2:Continuation of table 2.1 for n in the range frob3 to 20 for the Berends—Giele
method and the scalar diagram method. The settings are abla £.1.

Table 2.2 shows the timings for the Berends—Giele methodlensicalar diagram method
for the computation oM, asn varies from 13 to 20. It should be noted that foe 20 the
results of the two methods agree within1b. It can be seen from table 2.1 and 2.2 that the
CPU time for the scalar diagram method grows slower than teefor the Berends—Giele
method as the numberof external particles increases.

The MHV method is rather slow compared to the other three austh This is related
to the double sum appearing in equation (2.42), which eiiyliover-counts each contri-
bution. In addition, the look-up tables we used to speed epc#iculation are in this case
rather memory-intensive. That is the reason why we were bletta compute the 12-gluon
amplitude within this approach.

The BCFW method is faster than the Berends—Giele methodrasde the number of
external particles is below 9. For applications towardgéhror four-jet rates at LHC the
BCFW recurrence relations are therefore an improvemerttioiescy.

2.2.2 Numerical Stability

We have shown, that all methods give identical results fodoanly chosen non-exceptional
phase space points within an accuracy of #0 In this subsection we study the numerical
stability near exceptional phase space points, e.g. negulsir configurations where one
or more partons become unresolved. We limit ourselves glesumresolved configurations,
where an external momentum becomes soft, or two externalentanbecome collinear. In
these cases the quantiy, exhibits an infrared singularity and factorises into a siag
function and a lower-point amplitude, as described by theaggns (2.12) and (2.14). The
singular behaviour can cause problems with the numeriahllgy of amplitude calculations.
To investigate this problem, we evaluatd@ for configurations approaching each kind of
singular limit. To illustrate the stability, we have pladten figures 2.5 and 2.6 the ratio of a
M7 to its factorised fornﬁvt%f) as given by the right-hand sides of equations (2.12) and)2.1

The soft limit (figure 2.5) is described by— 0 wherex is the fraction of total energy carried
by the soft gluon. The onset of instability issatv 10712, The collinear limit (figure 2.6)
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is described bypr /E — 0 wherepr is the transverse momentum involved in the collinear
splitting (withz= 1/2). Instability occurs when the dimensionless varig¢E ~ 10,

In addition to these physical singularities, spurious slagties might occur. An example
can be found in the on-shell recursion relation. The shifv@spinors introduces sandwiches
of the form(p;” |px+ pi| pj‘) in the denominator. For example, the analytical formulattier

six-gluon partial amplitudég(1™,2%,3",47 5 67) reads:
A(17,27,37,47,57,67) =

4 ( (67]1+2|37)3 N (47|5+6|17)3
(61)(12)[34][49s126(27[1+6[57)  (23)(34)[56][61]s156(2 7|1+ 6/57)

) . (2.53)

wheres jk is defined in equation (A.39). This introduces unphysicagslarities when sums
of external momenta become collinear. Of course, theseetaractly in the final result, but
can lead to problems when the recursion relation is evaduaiemerically. An example of this
is shown in figure 2.7. Here we consider an amplitude of theafeinown in equation (2.53),
in the limit thatp; + ps becomes collinear tp; + ps. We have plotted the fractional error in
the on-shell results by comparing to those of the Berendse@ecursion relation. The onset
of instability occurs when the transverse momentum is obtider of 10 'E.

The other recurrence relations can also exhibit spuricugusarities, as each require an
arbitrary light-like referencevectorq to be specified, and various quantities diverge if this
vector becomes collinear to one of the external momentatheoBerends—Giele recurrence
relations this vector is needed to define the polarisatiatove in equation (2.18), and for
the scalar diagram and MHV vertex approaches it is needed tbdion-shell projection in
equation (2.33). The dependence of our resultsj@s g becomes collinear to an external
momentunk is illustrated in figure 2.8. The scalar and MHV approachabe unstable
wheny/k-q~ 10 'E, whereas the Berends—Giele relation is stable dowyoq ~ 10~ 1°E.
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Figure 2.5: Ratio of the helicity amplitude to its factorised form for et ®f seven-gluon
configurations where one gluon becomes soft. Here x is thgefaction of the soft gluon.
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Figure 2.7:Fractional error in the sum of squared helicity amplitudesnputed with the on-
shell recursion relations for a set of six-gluon configuoas where k+ ko becomes collinear
to ks + ks. Here pr/E is the transverse momentum between the two pairs of glmanms,
malised to the total energy.
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Chapter 3

Shower Algorithm Using the
Dipole Formalism

In this chapter we present an implementation of a parton shalgorithm for hadron collid-
ers and electron—positron colliders based on the dipoterigation formulae [157]. The al-
gorithm treats initial-state partons on equal footing Vitial-state partons. We implemented
the algorithm for massless and massive partons.

3.1 Introduction

Event generators likevAHIA [119, 120], HERWIG [121-123] or SIERPA [125] are a stan-
dard tool in high-energy particle physics. In these tooéshysics of particle collisions is
modelled by a simulation with different stages — hard sdatge parton showering, hadro-
nisation — to name the most important ones. The hard scajt@riocess is calculable in
perturbation theory. The same holds — in theory at least thi®parton showering process,
the relevant scales are still large enough for perturbatieory to be applicable. In practice
however, one is forced into approximations due to the laggéop multiplicities. These ap-
proximations are derived from the behaviour of the matrenents in singular regions. The
matrix elements become singular in phase space regionsspomding to the emission of
collinear or soft particles. The first showering algorithstarted from the collinear factori-
sation of the matrix elements and approximated colour fietence effects through angular
ordering [158, 159]. An exception is the algorithm implernsehin ARIADNE [127, 160—
163], which is based on a dipole cascade picture. Most shalgerithms are accurate to the
leading-logarithmic approximation in the collinear limiExtensions to the next-to-leading
logarithmic approximation have been studied in referefit@4-167].

Recent years have witnessed significant developmentgdeiatshower algorithms, in-
cluding procedures to match parton showers to fixed-oréerlevel matrix elements [168—
172] and methods to combine parton showers with next-tdihgaorder matrix elements
[173—-196]. The shower algorithms inviPHIA, HERWIG and ARIADNE have been improved
[197-199] and new programs like the shower module Apaci@g9] 201] of $IERPA have
become available. Other improvements include the studynoéudainties in parton show-

45
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ers [202—-204], as well as showers in the context of the sufirear effective theory [205].

Of particular importance is the matching of parton showeith wext-to-leading order
matrix elements. The pioneering project MC@NLO [182, 2@Bj2ised an existing shower
program (HERwIG) and adapted the NLO calculation to the shower algorithritheexpense
of sacrificing the correctness in certain soft limits. It isar that a better but more labour-
intensive approach would adapt the shower algorithm to NB@utations. Nowadays in
NLO computations the dipole subtraction method [147, 148-212] is widely used. Nagy
and Soper [186, 187] proposed to build a shower algorithm fitee dipole subtraction terms.

In this chapter we report on an implementation of a showeardlym based on the dipole
formalism as suggested by Nagy and Soper. We take the dipldkeng functions as the split-
ting functions which generate the parton shower. In theldifsymalism, a dipole consists of
an emitter—spectator pair, which emits a third particl& socollinear to the emitter. The for-
malism treats initial- and final-state partons on the saroérig. In contrast to other shower
algorithms, no distinction is made between final- and ik#tate showers. The only differ-
ence between initial- and final-state particles occurserkihematics. In the implementation
we have the four cases final—final, final—initial, initial-imnd initial—initial corresponding
to the possibilities of the particles of the emitter—spextaair to be in the initial or final
state. Because all four cases are included, the shower casedefor hadron colliders and
electron—positron colliders. We implemented the showenfassless and massive partons.
Initial-state partons are however always assumed to bel@sas$Ve use spin-averaged dipole
splitting functions. The shower algorithm is correct in teading-colour approximation. As
the evolution variable we use the transverse momentum imtssless case, and a variable
suggested in references [198, 213] for the massive case varfable for the massive case
reduces to the transverse momentum in the massless linhiun&mnn and Krauss reported
on a similar but separate implementation of a parton sholgerithm based on the dipole
formalism [214, 215].

This chapter is organised as follows: in section 3.2 we reWasic facts about the colour
decomposition of QCD amplitudes and the dipole formalismsédction 3.3 we discuss the
shower algorithm. In section 3.4 we present numerical tegtdm the parton shower sim-
ulation program. Technical details can be found in the agperAppendix A.5 discusses
the case of a massless final-state emitter and a masslesstétebkpectator in detail. Ap-
pendix A.6 describes the construction of the four-momeiitthe (n+ 1)-particle state in
all cases. This appendix is also useful in the context of a@lspace generator for the real
emission part of NLO computations.

3.2 QCD Amplitudes and the Dipole Formalism

In this section we briefly review the colour decompositioiQ@D amplitudes and the dipole
formalism.

3.2.1 Colour Decomposition

We use the normalisation TT2TP) = 1/282 for the colour matrices. Amplitudes in QCD
may be decomposed into group-theoretical factors (cagryia colour structures) multiplied
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by kinematic functions called partial amplitudes [88, 8861216, 217]. The partial am-
plitudes are gauge-invariant objects. In the pure gluoasedree-level amplitudes with
external gluons may be written in the form:

9
V2
where the sum is over all non-cyclic permutations of the rextiegluon legs. The quanti-
ties An(01,...,0n), called the partial amplitudes, contain the kinematic rinfation. They
are colour-ordered, e.g. only diagrams with a particulaticyordering of the gluons con-
tribute. The choice of the basis for the colour structuresisunique, and several proposals
for bases can be found in the literature [218, 219]. Here veethiscolour-flow decompo-
sition[150, 219]. This basis is obtained by replacing every cativa over an index in the
adjoint representation by two contractions over indicasd j in the fundamental representa-
tion:

n—-2
An(L,2,...,n) = < ) Z 6iolj026i02j03 ~-~6i0nj01An (01,...,0n), (3.1)
0€S/Zn

VAE? = VASPED = VA (2TATP)EP = (V2Tava) (V2TPEP). (3.2)
As a further example we give the colour decomposition forea mmplitude with a pair of

quarks:
g n
-An+2(q7 1727"'7n7q) - <ﬁ) géiqjgléigleZ -~-5ionqun+2(q701,027-~-70n,q>7 (33)

where the sum is over all permutations of the gluon legs. Tée amplitude with a pair
of quarks,n gluons and an additional lepton pair has the same colouctateias in equa-
tion (3.3). In squaring these amplitudes a colour projector
%%}~ Niémﬁn (3.4)
C
has to applied to each gluon. In these examples we have twodmsur structures, a colour
cluster described by th@osed string

6i01j02 6i02j03 Tt 6i0nj01 (35)
and a colour cluster corresponding to tpen string
6iqj016i01j02 "‘6i0njq' (36)

Born amplitudes with additional pairs of quarks have a dgmasition in colour factors, which
are products of the two basic colour clusters above. Theucdéztors in equation (3.1) and
equation (3.3) are orthogonal to leading ordet/ima.

3.2.2 The Dipole Formalism

The starting point in the calculation of an observaBlen hadron—hadron collisions in per-
turbation theory is the following formula:

1 1 1 1
©) :/ dfla) / et ) o G 2H D) 2B+ 1) s

X /d(pn (p17 p21 p37 tey er—Z) O(p17 RS pn+2> |‘AI’H—2|2' (37)
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This equation gives the contribution from theparton final state. The two incoming parti-
cles are labellegh; and p2, while p3 to p,.2 denote the final-state particles. The function
f(x) gives the probability of finding a partawith momentum fractiorx inside the parent
hadronh. A sum over all possible partorass understood implicitly. K(s) is the flux factor,
1/(231+ 1) and 1/(2J,+ 1) correspond to an averaging over the initial helicities apend

ny are the number of colour degrees of the initial-state dagicThe phase space measure
dg, for n final-state particles includes (if appropriate) the ideadtparticle factors. The ma-
trix element|An 2|2 is calculated perturbatively. At leading and next-to-iegdorder one
has the following contributions:

O)Lo— / Ondo®,

(O)NLO / On 1doR + / Onda + / OndaC. (3.8)
n+1

Here we used a rather condensed notatida® denotes the Born contribution, whitkoR
denotes the real emission contribution, whose matrix efensegiven by the square of the

Born amplitudes with(n+ 3) partons\An{,J2 daV gives the virtual contribution, whose

matrix element is given by the interference term of the (Jmlplamplltude>£l§,+)2 with (n+2)

partons with the corresponding Born amplituﬂf&;i)z. do® denotes a collinear subtraction
term, which subtracts the initial-state collinear singiikes. Within the subtraction method
one constructs an approximation tedo” with the same singularity structure de®. The
NLO contribution is rewritten as:

<O>NLO _ / (OanOR _ OndGA) + / (ondoV + Onda® + OndoA), (3.9)
n+1

such that the terms inside the two brackets are separatéh. fithe matrix element corre-
sponding to the approximation tero” is given as a sum over dipoles [147, 148, 210-212]:

@.,H{ +z§@al+z®alb (a—b)l. (3.10)
pa|r5| j 1) pa|r5| j

In equation (3.10) the labeisj andk denote final-state particles, whaeandb denote initial-
state particles. The first term describes dipoles wherethetbmitter and the spectator are in
the final state@ﬁ denotes a dipole where the emitter is in the final state, whéespectator

is in the initial state. The reverse situation is denotedIi§y: here the emitter is in the
initial state and the spectator is in the final state. Findi§!:® denotes a dipole where both
the emitter and the spectator are in the initial state. THefumplexity is only needed for
hadron colliders; for electron—positron annihilation gwbtraction terms inside the square
bracket are absent. The dipole subtraction terms for a $itaé emitter—spectator pair have
the following form:

~

i ~T-Tij)) Vi,
Dijx=A glz(pla p(ij)a---,pk,---)( < Tij) _Vijk A©

Tﬁ. 2pi - pj —O—Z(plw » Pij)o - pk,...) .
(3.11)
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The structure of the dipole subtraction terms with inigédte partons is similar. HerB
denotes the colour charge operator for paitandVj; x is a matrix in the spin space of the
emitter parton(ij). In general, the operatofi§ lead to colour correlations, while thg; \'s
lead to spin correlations. The colour charge operafgifer a quark, gluon and antiquark in
the final state are:

gluon: A*(...g%...)(if@)A(...¢°. ),
quark: A*(...q...)(TA(...qj...),
antiquark: A*(...Gi...)(=T{A(...qj...). (3.12)

The corresponding colour charge operators for a quarkpgina antiquark in the initial state
are:

gluon: A*(...g%...)(if@)A(...¢°. ),
quark: A*(...Gi...)(=THA(...qj...),
antiquark: A*(...qgi...)(THA(...q;...). (3.13)

In the amplitude an incoming quark is denoted as an outgaitiguaark and vice versa.

In this chapter we neglect spin correlations and work toiteadrder inl/n.. Therefore we
replace the splitting functiong; « by the spin-averaged splitting functio¥g xk — (Vij «). In
the leading-colour approximation we only have to take irdcoaint emitter—spectator pairs,
which are adjacent inside a colour cluster. For those pagr®btain for the colour charge
operators

(=Tk-Tij) [ Y2 emitter(ij) is a gluon, (3.14)
Ti2j | 1 emitter(ij) is a quark or antiquark. '
We introduce the notation
(Vij ) MD 1 gy
Piik= ’ 6((Vijk), 2P —-0((V$)),
K (ot py)2— P (Vi) Pia (pi+pj)2—1 X ()
M) 1l (VA0 L ais
Pajk=m——-=-0((\(")), Pajp=2—"7-=-0((V¥")). (3.15)
aj }2pa-pj} X (< k >) aj, }2pa-pj} X (< >)

The functions? will govern the emission of additional particles in the skeovalgorithm.
The spin-averaged dipole splitting functiof\s) can be found in references [147, 212]. The
Heaviside theta-functions [220] ensure that the functi®nagill be non-negative. They are
needed for splittings between an initial- and a final-statdige, since the dipole splitting
functions (V) and (V') may take negative values in certain regions of phase spacd-|
dition, the spin-averaged dipole splitting functions foagaive partons are slightly modified:
terms related to the soft singularity are re-arranged batvike two dipoles forming an an-
tenna, in order to ensure positivity of the individual dsplitting functions in the singular
limit.
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3.3 The Shower Algorithm

In this section we describe the shower algorithm. We firstudis the colour treatment in
subsection 3.3.1. The shower algorithm for massless fiagd-partons is discussed in sub-
section 3.3.2. The necessary modifications for initialespartons are discussed in subsec-
tion 3.3.3. Finally, massive partons are discussed in stiloge3.3.4.

3.3.1 Colour Treatment

Before starting the parton showers, the partons from the hmeatrix element have to be as-
signed to colour clusters. For the simplest matrix elemdiks e" e~ — qq, the choice is
unique: the quark—antiquark pair forms a colour cluster. tRe parton shower we work in
the leading-colour approximation. In the leading-coloppr@ximation we have to take into
account only emitter—spectator pairs, which are adjagesitié a colour cluster. We have
implemented two options: in the first one, which we call giect leading-colour approxi-
mation we take exactly the terms which are leading in an expansiéfni and only those.
As a consequence, all splittings— qq are ignored, as they are colour-suppressed compared
to g — gg. In this approximatiolCr is replaced by/2. For the second option, which we call
the modified leading-colour approximatipwe include the splitting — qq and keeCr as
(N2—1)/(2Nc). Inthis case, if a gluon in a closed string splits into a quarkiquark pair, the
closed string becomes an open string. If a gluon in an opamgsplits into a quark—antiquark
pair, the open string splits into two open strings.

3.3.2 The Shower Algorithm for Massless Final-State Parton s

We first describe the shower algorithm for electron—posi@aonihilation. The extension to
initial-state partons is treated in subsection 3.3.3. Rerghower algorithm we use as an

evolution variable )

t=1In ?ZL (3.16)
whereQ? is a fixed reference scale akd is the transverse momentum of a splitting. During
the shower evolution we move towards smaller (more negatiakeies oft. We start from
a givenn-parton configuration. In the dipole formalism, emissiomadtlitional partons is
described by an emitter—spectator pair. In the leadingto@pproximation emitter and spec-
tator are always adjacent in the cyclic order. The probighit evolve fromt; to tp (with
t1 > tp) without any resolvable branching is given by the Sudakatdia For the algorithm
considered here, the Sudakov factor is given as a produaobbrs corresponding to the
no-emission probabilities for individual dipoles’ emisss:

Aty t2) = []Ak(tas t2)- (3.17)
ik

If parton i can emit different partonam(tl, ty) factorises in turn into different contributions:

Ari(te,t2) = [ Qij k(te t2). (3.18)
j
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An example is the possibility of a gluon to split either int@otgluons or into ajg-pair. We
denote the emitter before the splitting hyvhile the emitter after a splitting is denoted by
This notation takes into account that the emitter might gleats “flavour” due to a splitting,
like in the case of @ — qq splitting. Ajj k(ta,t2) is the probability that the dipole formed by
the emitten and spectatdk does not emit a partop It is given by:

ty
Aij k(t1,t2) :exp<— / dtCr / d%nreé(t—ﬁ,ﬁ)?ij,k), (3.19)
t2

whereC; is a colour factor. In the leading-colour approximatiorsttactor is non-zero only
if i andk are adjacent in a colour cluster. Thery, is obtained from equation (3.14) and given
by:

(Y2 for i=g,
Cik= { 1 for i=0q,q. (3.20)
The dipole phase space is given by:
1 ze(k
(Pr+PR)° / 1 K
— 21
/d(p“nres 16m2 dk dZ42(1 —2) 42(1-2) )’ (3.21)
0 z_(K)
with 1
2:(K) = 5 (1i \/1—K>. (3.22)
The variable is proportional to the transverse momentum of the splitting
(=k1)
(Pr+ pg)? (829

ik depends on the dipole invariant mass + pﬁ)2 and the phase space variakldor the
emission of an additional particle and is given by:

(3.24)

With the help of the delta-function [221] we may perform th&egration ovek, while keep-
ing the integration overandz Then

4Q%
(Pr+PR)?
Pij k is the dipole splitting function. As an example we quote tpktting function for the
g — qgsplitting (others are given in appendix A.5):

K(t) = (3.25)

8ris(P) 1
"o+ pR)2y

(1_22 —(1—1—2)), y— KU 506

Paae = iy 4212
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as is evaluated at the scalé = —k% = ¥ (pr+ pg)2.
The probability that a branching occurgtats given by

Z Z ef,R/d(Punreeé(tz — TT,R) Pij kA(t1,t2). (3.27)

ik ]

We can now state the shower algorithm. Starting from araingtrolution scalé; we proceed
as follows:

1. Select the next dipole to branch and the s¢alat which this occurs. This is done
as follows: for each dipole we generate the sdalgx of the next splitting for this
dipole from a uniformly distributed numbey j; « in [0, 1] by solving (numerically) the
equation

Oj k(tt2j k) = r1ij k- (3.28)
We then set
o= max(tzyijyk) . (3.29)

The dipole which has the maximal valuetgf; i is the one which radiates off an addi-
tional particle.

2. If to is smaller than a cut-off scatgjn, the shower algorithm terminates.

3. Next we have to generate the valuezofAgain, using a uniformly distributed random
numberrz in [0, 1] we solve:

z z.(t2)
/ dZ’J(tz,Z’)?iLk:rz dZ’J(tz,Z’)ﬂDiLk, (3.30)
z (t2)

z (t2)

where the Jacobian factd(ty, z) is given by:

Itp,2) = ZK(t2> (1— 4Z'E§t2_)z)>. (3.31)

4. Select the azimuthal ange Finally we generate the azimuthal angle from a uniformly
distributed numbers in [0, 1] as follows:

Q@=21T13. (3.32)

5. With the three kinematic variablés zand@ and the information, that partaremits
a partonj, with partonR being the spectator, we insert the new parfonThe mo-
mentap; and p;; of the emitter and the spectator are replaced by new monpgiatad
pk.- The details how the new momenpg p; and px are constructed are given in the
appendix A.6.

6. Sett; =t> and go to step 1.
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generate;
No :
4@—» generatel—» selectp—{insert partons—{ sett; =t

Yes
End

Figure 3.1:Flowchart of the shower algorithm.

Remark: step 1 of the algorithm is equivalent to first gemegathe pointt, from a uni-
formly distributed number; in [0, 1] by solving (numerically) the equation for the full Su-
dakov factor

A(tl,t2> =Ty, (3.33)
and then selecting an individual dipole with emitteemitted particlgj and spectatok with
probability [222]:

GT,Rf d%nresﬁ(tz - TER) Pij k

2 nzlef,ﬁ S d(ﬂmresﬁ(tz — Tliﬁ) fP|m7n.
I,

Fijk= (3.34)

=]

3.3.3 The Shower Algorithm with Initial-State Partons

In this subsection we discuss the necessary modificatianthéoinclusion of initial-state
partons. In the presence of initial-state partons there saparation into final-state showers
and initial-state showers. Initial-state radiation isate®l on the same footing as final-state
radiation. The algorithm generates initial-state radiathrough backward evolution, starting
from a hard scale and moving towards softer scales. Ther#fershower evolves in all cases
from a hard scale towards lower scales.

Final-state Emitter and Initial-state Spectator

For an initial-state spectator we modify the Sudakov fast@qguation (3.19) to:

ty
Xaf (Xa,t)
Ajj a(ty, t2) :exp<— / dtC; 5 / d@unred (t—Tr 5 ffPiLa), (3.35)
J ( ) X5 f(x5,t)

wherexs is the momentum fraction of the initial hadron carriedéhyvhile x, is the momen-
tum fraction carried by. The initial parton of tha-particle state is denoted lay While the
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initial parton of the(n+ 1)-particle state is denoted lay We set:

X= X (3.36)
The unresolved phase space is given by:
2Pl [ dx |
/ T / 7/ dz (3-37)
a0

The transverse momentum betweemd | is expressed as:

1-x
& =050 5 (—2ppa) (3.39)
andT; 5 is therefore given by:
—K¢ (~2ppa) (1-X)Z(1—2)

A subtlety occurs for the emission between a final-statetapmcand an initial-state emitter.
We discuss this for the splittingg— qg. The spin-averaged splitting function for tge— qg
splitting is given by:

(Vag) = 8t Cr <#(1_X> —(1+ z)) : (3.40)

In contrast to the final—final case this function is not a pasiunction on the complete phase
space. It can take negative values in certain (non-singdgrons of phase space. This is not
a problem when itis used as a subtraction terms in NLO célouls, but prohibits a straight-
forward interpretation as a splitting probability for a sley algorithm. However, since neg-
ative values occur only in non-singular regions, we can enpasitiveness by modifying the
splitting functions through non-singular terms. The siegplchoice is to set

)_1( B((v). (3.41)

For a final-state emitter we eliminate théntegration with the help of the delta-function:

1

2
/dYX6(t —Tra) = 741(1_2) , X= 71“) . K() = 7(_42&?). (3.42)
%5 I+ = I+ #n— ik

For the boundaries we obtain:

K(t><1;§xa, z () <z<zp(t), z:(t)=

(u 1—K(t) 1iéxé ) . (3.43)

NI =
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The modifications to the shower algorithm are as follows:dipeles for the emission from
a final-state emitter with an initial-state spectator acduded in the Sudakov factor in equa-
tion (3.17). With this modification steps 1 and 2 are as abbeeus define

1, if | andn are final-state particles
finn = EIEXX;’%, if | = ais an initial-state particle
ig;(zi), if n=bis an initial-state particle ands a final-state particle
(3.44)
In step 2 we replace formula (3.30) by:
z Zi(t2)
/ dZJ(tZ,Zl f|] a?” a— r2 dZ’J t2, f|J7a?ij7a, (345)
z (t) z (t2)
with the Jacobian 1
It,2) = —F=—. (3.46)
’ (1-2)
1+5®

Steps 4 to 6 proceed as in subsection 3.3.2.

Initial-state Emitter and Final-state Spectator

For an initial-state emittea With a final-state spectatothe Sudakov factor is given by:

tg
N e . o efCat),
Najity,t2) = eXp( tz/dtea,| /d(Punresé(t Tﬁ,l) xaf (xa1) 'J’a“) . (3.47)

The unresolved phase space is again given by equation (3138 transverse momentum
betweera andj is given by:

=T X2 (2 (3.48)

andTy is given by:

(—2p;pa) (1-x)(1—-2)
T&IN = In ! XQ2 .
For a initial-state emitter we eliminate taentegration with the help of the delta-function:

(3.49)

LK) x . Kl x 4%
For the boundaries we obtain:
1—Xx5 1
4 = 3.51
K(t) < w ' *< X (1), X (t) 130 (3.51)
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There are no new modifications to the shower algorithms coadp# the case for a final-
state emitter and an initial-state spectator, except thsttep 3 we now generate the value of
x according to:

X X+ (t2)
/d)(J(tz,X/) fajiPaji=r2 / d)(J(tz,X’) fajiPaj,i, (3.52)
Xa Xa
with the Jacobian
Itx = KO (3.53)
’ 4(1—x)

Initial-state Emitter and Initial-state Spectator

For an initial-state emitteat With an initial-state spectatd?rthe Sudakov factor is given by:
/ f ()
Xal(Xa,
Aaj,b(t17t2> = eXp(-/dteé’B/d%nreé(t — Tﬁ,f)) mipaj’b> . (354)
2

In this case we do not rescale the momentum of the spectatbtramsform all final-state
momenta. Therefore no factor

X5 f (%5, 1)
appears in the Sudakov factor. The unresolved phase spgiversby:
‘Zp 0 1d 1-x
aPp| [ dX
/ dunres= 7 5rp / X / dv (3.56)
Xa 0
The transverse momentum betweeand j is given by:
1-x
k2 = (7)(>V(2p§p5) (3.57)
andTj is given by:
(2papp) (1 —x)v
Tsp=In o (3.58)
We integrate ovev with the help of the delta-function:
s K(t) X K(t) X 4Q%
dw(t—Tsp) = —= , V=—2 , Kt)=——. 3.59
0/ (t=Tap) 4 (1-x) 4 (1-x) (t) (2papg) (3:59)

For the boundaries we obtain:

(1—xa)? 1
K(t) <4 v X< Xy (1), X+(t)—§

<2+@— K(t)+w>. (3.60)
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In step 3 of the shower algorithm we again sebeatcording to:

X X4 (t2)
/d)(J(tz,X’) faj,bﬂ)aj,b =TI / d)(J(tz,X/) faj,bﬂ)aj,ba (3.61)
a Xa
with the Jacobian
Itx = KO (3.62)
’ 4(1—x)

3.3.4 The Shower Algorithm for Massive Partons

In this subsection we discuss the modifications of the shalggrithms due to the presence
of massive partons. We first address the issue of a splitfirrggluon into a heavy quark
pair. This mainly concerns the splitting of a gluon itkguarks. We will always require that
initial-state particles are massless. Therefore for meee with initial-state hadrons we do
not considelg — qq splittings. Calculations for initial-state hadrons shibbe done in the
approximation of a masslebsquark. In the case of electron—positron annihilation thegn
shower affects only the final state. Here we can consistafidy splittings of a gluon into a
pair of massive quarks. As evolution variable we use in thesiwa case:

—Kk? +(1—2)%m¢ +22n?
t=In—= o2 L (3.63)
This choice reduces to equation (3.16) in the massless dindtis suggested by dispersion
relations for the running coupling [198, 213].

Final-state Emitter and Final-state Spectator

The unresolved phase space is given by:

zi(y)

+
+ _1
/d(Punres p'16T2"> (11—~ 1)° (AL ,1D) Z/dy(l—y) / dz  (3.64)
z(y)

where the reduced massgsand the boundaries on the integrations are defined in equa-
tions (A.67)—(A.69) in appendix A.6l; i is given by:

((pr+ pp)2 — ¢ —m? —ng)yz(1—2)
Q? '

Again, we have to ensure that the splitting functions arétpes The original spin-averaged
dipole splitting functions can take negative values inaiartegions of phase space. In the
massive case the negative region can extend into the smggji@n. The problem is related
to the soft behaviour of the dipole splitting functions. &ra squared Born matrix element is
positive in the soft gluon limit, the negative contributitsom a particular dipole is compen-
sated by the contribution from the dipole, where emitter spelctator are exchanged. The

Tri= In

(3.65)
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sum of the two contributions is positive in the singular cegi Therefore we can cut out the
negative region from the first dipole and add it to the secdpdld. The second dipole will
stay positive.

As in the massless case we eliminateyhetegration:

Zmax

/dyl y) /dzﬁt—TrR /dzy(l y),

Zmin

(3.66)

The physical region is defined by:

(1- @f (; ~(1-2Pme - 2mE) - <4Z<1K_ Z))Zmiumszmi >0, (3.67)

with

Py ny .
”f_(pi~+pg)2—nf—rrwj-2—m§ for | e {i,j,k}. (3.68)

This equation is solved numerically fapin andznax. Thenzis generated according to:

z Zmax(tz)
/ dZ’J(tz,Z’)'Pij’k:rz / dZ’J(tz,Z’)'Pij’k, (3.69)
Zmin(t2) Zmin(t2)
with the Jacobian
(12 2 2)\2 > o3 K(t) _K(Y)
W62 = (A== =) ML) * 5 (1 gn g ) @70
Final-state Emitter and Initial-state Spectator
The unresolved phase space is given by:
1 X (2)
|25 dX / _ |2prpsl / / dx
/ dQunres= = e | dz= P00 [ dz [ 2 (3.71)
z(xa) %
The integration boundary is given by:
~2
X z PR 113
Z(X)=————, )= 5——sr, =—. 3.72
R S D= aw " |25l 8.72)
Tr 5 is given by:
k2 +(1—2)2 —20:0x) (1 — _
T~=In L—i_( Z) n‘z _ |n< 2pl pa) (1 X)Z(l Z)‘ (373)

A @
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For a final-state emitter we eliminate théntegration with the help of the delta-function:

1

2
/d?x5(t—Tr,a>=%’ X:%a)’ K“):%' (874
o 1+ ® 1+ zn— i-a

For the boundaries we obtain:

L(t):max<L2_}(l— 1 k()2 ),1— @> (3.75)

The boundary om(t) is given for|2 < (1—xg) /X5 by:

1- x5
K(t) < . 3.76
(t) v (3.76)
For (1—xa)/xa < fi# we have:
1-x5\ 2 .
1_ ~ 1— v 4 2
K(t) < — 2 (1 (%‘i) ) - (3.77)
a T (1+ 392
zis generated according to:
z Zi(t2)
/ dZJ(tZ,Zl f|] a?” a— r2 dZ’J t2, f|J7a?ij7a, (378)
z (tp) z (tp)
with the Jacobian 1
It,2) = — (3.79)
’ (1-2)
1+
Initial-state Emitter and Final-state Spectator
T 7 is given by:
Tar=In (=2prpa) (1 -X)(1-2) (3.80)

xQ?

For an initial-state emitter we eliminate teéntegration with the help of the delta-function:

1 2é
/dzes(t—Ta;):@uix), z:1—@<lix), K(t):égw. (3.81)

z_(x)
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For the boundaries we obtain:

4(1—x5)? 24+ 50—\ /5EE k()

K<t)<Xg(l—Xg(l—ﬂ2))’ X< X (1), Xu(t) = » . (3.82)

The value ofx is generated according to:

N X¢(t2)
/d)(J(tz,X/) fajiPaji=r2 / d)(J(tz,X’) fajiPaj,i, (3.83)
Xa Xa
with the Jacobian
Itx = KO (3.84)
’ 4(1—x)

3.4 Numerical Results

In this section we show numerical results obtained from #mom shower. We first discuss
observables related to electron—positron annihilaticsuinsection 3.4.1 and then the shower
in hadron collisions in subsection 3.4.2. The shower algoridepends on two parameters,
the strong couplings and the scal®in. For the strong coupling we use the leading-order

formula 4 5
T
=——7. Bo=11-2Nr. (3.85)
Bo|n ﬁ

The cut-off scal€min gives the scale at which the shower terminates. As our shisveer-
rect in the leading-colour approximation, we also studydfiects of different treatments of
subleading colour contributions. As described in subeadi3.1 we have implemented two
options: the strict leading-colour approximation and thedified leading-colour approxima-
tion. Numerical differences from these two options willgan estimate of uncertainties due
to subleading colour effects.

as()

3.4.1 Electron—Positron Annihilation

For electron—positron annihilation we ugg(mz) = 0.118 corresponding tds = 88 MeV.
We start the shower from the-2 2 hard matrix elemeng™e~ — qg. We first study the
event shape variables thrust, tGgarameter and thB-parameter. The distributions of the
first moments of these observables are shown in figure 3.2Morchoices of the cut-off
parameterQmin = 1 GeV andQmin = 2 GeV. The distributions are normalised to unity. The
different prescriptions for the colour-treatment do nadfe the distributions significantly.

In figure 3.3 we show the distributions for the four-jet asglé\gain we start from the
2 — 2 hard matrix element. The particles in an event are firsttetad into jets, defined
according to the Durham algorithm [223] witla,: = 0.008 and theE-scheme for the re-
combination. Then events with exactly four jets are setecté/e consider the modified
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Nachtmann—Reiter angle [224], the Kérner—Schierholziddt angle [225], the Bengtsson—
Zerwas angle [226] and the anglgs between the jets with the smallest energy [227]. In the
plots we show the results from the different options for thiear treatment foQpin = 1 GeV.

A variation of the cut-off scale does not change the distidns significantly.

3.4.2 Hadron Colliders

For the Tevatron and the LHC we studyy*-production. We start from the 2> 2 hard
matrix elemengq — Z/y* — | 71~. As parton distribution functions we use the CTEQ 6L1
set [228, 229]. For consistency we use hegenz) = 0.130 corresponding tds = 165 MeV.
The centre-of-mass energy we set\fs = 1.96 TeV for the Tevatron and t¢/s = 14 TeV
for the LHC. We require a cut on the invariant mass of the legtair of m-+,- > 80 GeV.
As cut-off parameter for the parton shower we kg, = 1 GeV. In figure 3.4 we show
the transverse momentum distribution and the rapidityridigion of the lepton pair for the
Tevatron and the LHC.
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Figure 3.2:The first moments of the thrust distribution, the C-paraméigribution and the
D-parameter distribution. The results are from the parttwower for two different values of
the cut-off scale Qjn.
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Chapter 4

Summary and Conclusion

The classical way to calculate hard scattering processpsrinrbation theory using Feyn-
man diagrams is not efficient enough to calculate all necggsacesses — for example for
the Large Hadron Collider — to sufficient precision. Two adtgives to order-by-order calcu-
lations were investigated in this thesis.

We studied the numerical implementations of four differegtursive methods for the
computation of Born gluon amplitudes: Berends—Giele nemae relations, recursive calcu-
lations with scalar diagrams, with MHV vertices (Cachaza€8k—Witten), and with shifted
momenta (Britto—Cachazo—Feng—Witten). From the four watlconsidered, we found the
Berends—Giele method performs best, as the number of exgeantons increases (> 8).
However, for a not so large number of external partans @), the on-shell recursion relation
(BCFW) offers the best performance. These amplitudes hegetith corresponding ones,
where additional quarks or vector bosons are involved, @lsant for LHC physics. They
enter numerical NLO or LO program codes. As these calculataoe based on Monte Carlo
integration over the phase space, the efficiency of the ctatipn has a direct impact on the
running time of the Monte Carlo program. We also investigdtee numerical stability and
accuracy and found that all methods give satisfactory tesul

Duhr, Hoche and Maltoni observed exactly the same growtlomputation time and
improved the CSW calculation [230, 231], to bring it on thensdevel of complexity as the
BCFW calculation. In their implementation the Berends{&recurrence relations perform
best for the procesgg — ngfor 3 < n < 10. Gleisberg, Hoche, Krauss and Matyszkiewicz
addressed the issue of efficiency of the CSW technique whalimdewith full cross sections,
including summation over colours and helicities, rathantkingle amplitudes [232].

One possible extension of the tree-level calculations dlottgs thesis are calculations of
loop amplitudes. Some of the methods used in this thesisimitady useful at loop-level,
like the spinor helicity technique, others were generdlitssone-loop amplitudes, like colour
decomposition [146] and the BCFW recurrence relations][288other approach is the OPP
reduction method to compute one-loop amplitudes numéyif2z84—236].

In the second part of this thesis we presented an implementat a shower algorithm
based on the dipole formalism. The formalism treats initeld final-state partons on the
same footing. The shower can be used for hadron colliderskutron—positron colliders.
We also included in the shower algorithm massive partonkerfinal state. We studied nu-

65
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merical results for electron—positron annihilation, tleedtron and the LHC. An independent
implementation of this shower algorithm is now used in thent\generator SERPA.



Appendix

A.1 Standard Model Lagrangian Density
The most general Standard Model Lagrangian density cansishe following parts: [237]

Lsm = Le+Lw + Lt + Lic + Lrpe+ Lrpw+ LfH - (A.1)

The colour Lagrangian density, describing the gluons ohtjua chromodynamics and their
mutual interactions

1 1
Le = —50ug00v0f — 0sf 0050005 — ;65 F*°1*"gabefias. (A-2)

The weak Lagrangian density, describing the vector bosondgteeir interactions including
the interactions with the Higgs system

Lw = —0W OW, — MPW W, — %avzﬁa\,zg - %MZZSZS - %%A\,GUAV - %GUH oyH
1 _ 1 1
_ EW%HZ _ au(p—b—au(p N MZ(p—O—(p o Eap'q)Oauq-)O o ﬁMch(po
2M2 2M 1., oo .. ] 2m?
B | g A e 2070 4= 5an
— i [0vZy (Wi W —WG'WE) — 29 (W OV — W auWg)
N 1 _ _
28 (WG O WG O )] — SGW W W
g (30 (W WG — W W) — Ay (W WA — Wi 0 )
1
+ A (WG =W W) ]+ S WG W
+ 0% (ZW ZWG — ZiZIWo W) + gPs (AT AN — AAMGW)
+ 07Sww [AUZD (W WG~ —WGH W) — 28 Z0W W, ]
—gopM [H3+ He " +2H oponl
1 _ _ _
— 5900 [H*+ () +4(079)* +4(@) %079 +4H%0" g™ +2(¢")°H7]
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— gMW W, H

1 M 0-0 11 0 0 0
— 2gq%zuzuH + Eg—zu (Hou@” — @oyH)

—_'9[ C(Poe — 0 0u0”) —W (000" — 970y ]

+§g[WJ (Houo — @ oyH) +W,; (Houe" — @ oyH)]
—igcs‘?’vMZS(Wﬂp ~W, ¢ )+igsWMAu(chp*—Wu*(p+)

2C\%l —+ - 0 ; +a ~ — @ 0 +
2o Z, (9" 0.9 — ¢ 0,9") +igswA (70,0 — @ 0u0")

1—
—ig
—ZQZWJWJ [H2+ (¢°)% + 29 ¢~ }——g QZOZO [H2+ (¢”)? +2(255, — 1)%@" o]
1, B B S _ _

- T2 (W W o) - io S ZH (W W o)
1 . _ _
+ ST (W0 W 9°) + oA (W o™ W ")
- gz% (22— 1) 270" 0 — PLAMNG G (A.3)

The fermion Lagrangian density, describing the interaxstiof the fermions with the weak
vector bosons

Li=—@ (ya-i—er) e — Vv —J}‘ (ya-i—rr(\,) u)j‘ —d_jx (ya-i—er) d]?‘
s {_ (Bve) + 2 (@v)) - 3 (d?-y“dj?‘)}
B[ (100)) P (-0)9)

40,

')
@r(a)e) (v 320

+ﬁ2W*[( M (1) @)+ (@ (1477) Cueet)

2\@ i [(@ (1+°) V) + (dich o (1+v7) ) ] (A.4)
The fermion—colour Lagrangian density, describing therattions of fermions with gluons
Lo = + 510V (A5)
The Faddeev—Popov ghost Lagrangian density of quantunmgdypnamics

Lepe= +G?0°G? + g f abcauéaebgﬁ : (A.6)
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The Faddeev—Popov ghost Lagrangian density of the weatastiens
_ _ _ 2 _
Lepw= +XT (02— M?) X"+ X (82— M?) X~ +X° (62 —~ %) X% +Yo?Y
+igeanW (0XOX ™ — 3uXTXO) +igsyW (8Y X~ — 0pXTY)
+igeaW, (8 X X0 — 3uXXT) +igswW, (8, XY — 8y XT)
+igenZl (XX T — 08X X ) +igswAu (0X TXT — 3 XX ")

1 [ " 1
— >gM [ XTXTH 4 X" X" H + 5 XX H
2 G

1—20\%/- YO0t _ X —XO0— i Oy — it _ XOx+en
- 5, igM [X "X @™ — X ch]+20W|g|v|[xx " —XX"q]
+igMsy [X Y@ —XTY@'] + %igM (XX —X"X"¢] . (A7)

The fermion—Higgs Lagrangian density, describing theradgons of fermions with the
Higgs system

e =1 ST [ (9 (1-18) @) o (@ (1448) )] »8)
- g% H(@¢) +i¢f (8ve)]

509 [0 (7)) e s (1))
|

el pet
5 [ (S, (1) ) -t (A, (1) )]
S 9Mh (a9 () L 9 o (s a9 o X 5
omh (”J”J) omh (dldl)+ om? (”JV5”J> 2m? (dly5d1> :
A.2 Spinors
For the metric we use
+41 0 O O
. O -1 0 O
Ow =diag(+1,-1,-1,-1) = 0 0 -1 0 (A.9)
O 0O 0 -1
We define the light-cone coordinates as:
Py =Ppo+P3, P-=Po—P3, PL=PpP1+ip2, Ppr+=pPL—ip2. (A.10)

In terms of the light-cone components of a null-vector, the@sponding massless spinors
(p*| and|p*) can be chosen as:

(p*| = exp(—i3) exp(—i3)

(0707_p P )7 p_ :7(p P *7070>7
VIp] P = P
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fi9) [ 119 [ o
exXp—I3 (o _ exp(—iz 0
pr)= =2 , p)=—r=2 , (A.11)
’ ) VP4 0 ‘ ) VP4 P+
0 PL
where the phaseis given by:
P+ = |p+|exp(i). (A.12)
Spinor products are denoted as:
(pd)=(pla*) =p"da,  [ap=(a*[p") =0ap™ (A.13)

Here the Weyl-van der Waerden spinor notation was used R2B3-—From the definition in
equation (A.11) one immediately sees that products of spwwih the same sign vanish:

(@’ p")={(a"lp")=0. (A.14)
The polarisation vectors for positive and negative potdiisns are:
FIyulk")
£ (kq) = + 0 M) (A.15)
(k9 V2(gF (k)

wherek is the momentum of the vector boson ands an auxiliary massless vector called
reference momentum.
Here the Dirac matriceg are used. They are defined by the following anticommutation

relation:
(VY =y +y'y =297 (A.16)
One specific choice of them is:
0 o* -1 0
with
o= (1,0%,0%,0%), (A.18)

where the Pauli matrices [241]

1 (01 2 [0 —i 3 (1 O
0_<10 0= o) o= 1 (A.19)
are used.

Complex conjugation reverses the helicity:
(e5) =€7. (A.20)
Polarisation vectors are normalised:

e (e%) =efeT =1,

e (e7) =eFeT =0. (A.21)
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There are some properties that make the calculations wistipation vectors especially easy:

e* (k) k=0,
e"(k,a)-q=0,
e"(ki,q)-€"(kj,q) =€ (k,q)-& (kj,q) =0,
€' (ki,kj) €7 (kj,q) =€" (ki) - € (kj, k) =0,
£ (k. kj)Ik") = ¢ (k. kj)lkj) =0,
(ki 1g (ki kj) = (ky[g7 (ki kj) =0 (A.22)
Convenient abbreviations for spinor products are:
(1) = (kjk) = (K [K"),
[i1] = [kiki] = [k K. (A.23)
The spinor products are antisymmetric:
(i) = =),
[ =—101], (A.24)
they fulfil the Schouten identity [242]:
(12)(34) = (14)(32) 4 (13)(24), (A.25)
and the Fierz identity [243, 244]:
(17 1W127) (3" yul4") = 2(14) [32). (A.26)
In addition there is charge conjugation of current:
(LTy127) = (27 IW[17) (A.27)
and the following property:
(jiy=1liil=0. (A.28)

A.3 Splitting Functions

In the collinear limit the all-gluon tree-level partial alitpdes factorise according to:

Poia(e. kaks ) 5 Split (KA. KAL), (A29)

=T/~



72

Appendix

wherek, andky, are the momenta of two adjacent lefs+ ka + kp, ka = zKandk, = (1—-2z)K.
A, Aq andAy, denote the corresponding helicities. The splitting fumcsiare:
Splity-(g",9") = Splity-(97,97) =
Spity (gg7) — V22! Spity (g.9") — —v22= 2
n Vz(ab) ’ VZab]’
2 £
Splity-(97,97) = \/5—, Splity (97,97) = —vV2——re—
k V2@ k VA-2ab
1 1
Spli g )=—V2——on Split,- (g*,g") =v2—————. (A.30
A.4 Feynman Rules
A.4.1 Feynman Rules in the Standard Model
The Feynman rules for external lines:
incoming photon AVAVAVAVAVAVL B MY O\
outgoing photon AVAVAVAVAVAVA gi(M)
incoming gluon 7000000  gu(A)
outgoing gluon 000000 gi(A)
incoming fermion —— u(p,s)
outgoing fermion — u(p,s)
incoming antifermion —<+——  v(p,9)
outgoing antifermion = ~——=— v(p,s)
The Feynman rules for internal lines (propagators) in Feymgauge:
M Y g
Photon 4\/\/\/q\/\/\/» —i q—“;
a, b,v 9
Gluon m@%@m —i6ab$
| - _ i j q
massless Fermion 3 7
Here the Feynman slash was used
A=q-y=gway" . (A.31)

The Feynman rules for vertices:
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photon-fermion —ieeryu

a,M
gluon-quark —igsyuT

The conventional three- and four-point Feynman vertices ar

tki,pa

= —g g (K —K5) + 9" (K, —K5) + g™ (kg —KY)] ,

o,d Ha —ig? [fabefcde<gupgvo — ghogUP)
— 4 facef bde(guv gpo _ guogvp)

+ fadefbce(guvgpo _ gngVG)] 7
p.C V,b

where thefa0¢ gre the structure constants defined by
[T TP =ifabere, (A.32)
The only non-zero elements (up to permutations) of theljo#aitisymmetric tensor are:

1="F103=2f147 = 2fo46 = 2f257 = 2135

2 2
=—2f155 = —2f357 = — fy55 = — fg7s. A.33
156 367 = 5 fase = = Ters (A.33)
The Gell-Mann matrices [245] are the generators of the Lgelada of the grougU(3):
010 0 —-i O 1 0 O
AN = 1 00], A=|1i 0 0], N3=|10-10],
00O 0O 0 O 0 0 O
001 0 0 —i 00O
ANy = 000}, As=(0O0 O], A¢=(00O01],
1 00 i 0 0 010
00 O 1 10 O
)\7 = 0 0 —i R )\8:— 01 O . (A.34)
0Oi O V3 0 0 -2
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They are correlated to tHE? by:
)\a
a
= — . A.
T > (A.35)
A.4.2 Colour-Ordered Feynman Rules
The Feynman rules for colour-ordered partial amplitudesire
tke,pt
=1 [g" (K — k) +9" (ky — kg) + g™ (K3 —K1)]
P A
kg,p k2,V
i;gfgi =i[29%g"° — g™ — g"°g"]. (A.36)
A.4.3 Scalar Diagrammatic Rules
The non-vanishing primitive vertices involving only gluare:
2 12>4
V3K, Ky k) =iv2(12 B _gp AT :
e k) = V22 g1aq = V2 (12 23,31
. [21]4
'\/5[32] 2113’

:V4(ki_._7 k;_i_a kgv k;)

3-9-&2
1+
=\3(ki ki, ks ) =iv2[2]] (39)°
. L (10)(2q)
3 2+
e

_;[1a)[20]{3q) {49) (1 (a"[2-3lq7){q" [4—1q")

~ (19)(29)[3q][4q]

(@ [2+3/g7) (g |4+ 1|Q>) ’



A.5 Sudakov Factors for Massless Final-State Partons 75

4- 1+

ig;gi =Va(l by k5 Ky
_;[1a)(20)[3q] (4q) (<q‘ 1-2[q7){q” [3—4q")

3 27 (1g)[2)(3a)[4q] \ (g~ |1+2[q-) (a~ [3+4q)
(0" [2-3[q7)(a [4-1[q")
@ 2430 ) a4+ 1) 2)‘ (A-37)

_|_

A.5 Sudakov Factors for Massless Final-State Partons

In this appendix we discuss in more detail the Sudakov fadtymassless final-state partons.
This case is simple enough that one integration can be dagtizally. The spin-averaged
dipole splitting functions in four dimensions are:

8mog(p?) 1 < 2 )
Pooga=GC — — (142 |,
=gy iTzaaoy) (1+2)
8mos(P?) 1 < 2 2 )
Py—gg=C — + —4422(1—-2) |,
=g vty T1magay Y
2
1
Py ar=TromsB) L g 5y1_g)), (A.38)
ik Y
where )
sk = (pi+pj+pe)” = (pr+ pp)? (A.39)
The dipole phase space measure is:
s 1 zi(x) 1 «
_ ik _ -
/ Aunres= 16Tr2/ d | 20 (1 42(1—2))’ (A40)
0 z_(K)
where 1
Zi(K)ZE(l:I:\/l—K). (A.41)
The strong coupling is evaluated at the sq&le= —k3 :
2 1
as(K) =as 2S5k |- (A.42)

The Sudakov factor is given by:

ty
D it to) = exp(— / dte;; / dunred(t — T-1) P, ,—,k> . (A43)
t2
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For the splittingg — qgwe obtain:

/dKKO(s /dzl y) (ﬁ (1—1—2))), (A.44)

K_

Ajj k(t,t2) = exp( riCr

where

Q2 2 — mi Q2 1 _ K 2_} .
_4sjket’ K4 = min 143 ¢ y_4z(1—z)’“ = 7XSijk- (A.45)

The integration ovez can be done analytically:

/dz(l—y) (ﬁ —(1-1—2)) = —%zz—z—i—;(lnz—ZIn(l—z))

44k

The same holds for the other splittings. Therefore we olftaithe Sudakov factors:

(%Klnz+ln(K+4(l—z)2)+\/Rar0tar(\/— (1- Z)) (A.46)

Aij,k(tLtZ):eXp( C/dKO(S S (Vij,k(K,A)—Vij,k(K,L))>, (A.47)

whereC is a colour factor and equal to:

Ce for g—qg
C=<¢ Ca for g—gg, (A.48)
TR for g— qq.

The functionsVjj « (K, z) are given by:
1 K
Vagk (K,2) =— EZZ —2ty (Inz—2In(1-2))

4 (}K|nz+|n(x+4<1—z>2)—ﬁafctar(f (1= Z>)

-

\799,,|<(K,z)———23’+z2 42—%Kz+Kln—+4;LK<%KIn1?Z
+'“% - \/Earctar<ﬁ) i \/EarCtar<2(i/EZ)>) |

Vgak (K,2) = 23 Z4z+ ZZ_ZInliz (A.49)

A.6 Insertion of Emitted Particles

In this appendix we list the relevant formulae for the insgrtof one additional four-vector
into a set ofn four-vectors. This insertion satisfies momentum consemwatnd can be con-
sidered as the inverse of t(le+ 1) — n phase space mapping of Catani and Seymour. These
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insertion mappings are also useful for an efficient phaseespdegration of the real emis-

sion contribution in NLO calculations. Therefore we quateaddition the relevant phase
space weights. For the shower algorithm, these weightsaneeeded, as they are taken into
account through the generation of the shower.

A.6.1 Insertion for Final-State Particles

The Massless Case

We start with the simplest case, where both the emitter aadspiectator are in the final
state and all particles involved in the dipole splitting arassless. The insertion procedure is
identical to the one used in references [149]. Given the-featorspi; and px together with
the three variableg, zandgs we would like to construcp;, p; and pg, such that

pi+pj+pc=Bij+P. PP=pi=pi=0. (A.50)

In four dimensions we have for the phase space measure:

Aurres= 5o / dy (1-y / dz / o, (A51)

wheresijk = (fij + Bk)? = (pi + pj + p)> It is convenient to work in the rest frame of
P = fij + Pk = pi + pj + px- We shall orient the frame in such a way, that the spatial @@mp
nents ofpy are along the-direction. When used as a phase space generator we set:

y=u, zZ=Up, =273, (A.52)

whereus, uz andus are three uniformly distributed random numbergQri]. From
Sij Sk

y=———+— z= (A.53)
Sj + Sk + Sk Sk + Sk
we obtain:
si=YP%, sk=21-y)P? si=(1-2)(1-y)P> (A.54)
If 5; < sjk we want to havey, — py assjj — 0. Define
. . , . . S. 3 S.
Ei:SIJ+Sk, Ej:SIJ+ ]k, Ek:Sk+ jk7 (A.55)
2, /Sijk 2, /Sijk 2, /Sijk
Sk Sik
Bk = arccoy 1— B = arccoy 1— ) A.56
k S( 2E.Ek) Jk S( 2E; Ek) (A.56)

In our coordinate system we have:

pi = Ei (1, sinBjx cog s+ 1), SinBj Sin(¢s -+ 11), coBik ),
pi = Ej(1,sin6jx cosps, sinBjk sings, cosBjk ),
Pl = Ex(1,0,0,1) . (A.57)
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The momeqtap{, p’j andp, are rglgted to the momenpg p; andpy by a sequence of Lorentz
transformations back to the original frame:

Pi = Aboost\xy(P)\xz(0) pil (A.58)

and analogously for the other two momenta. The explicit idemfor the Lorentz transfor-
mations are obtained as follows: I& = /(fij + fix)? and denote by the coordinates of
the hard momentumyin the centre of mass systempf + fk. P is given by:

. Ep -~ [_ﬁ~)’|(|3 = [?))kl3 Ek _,
bk=| Bk Pk+ | === |P|- (A.59)
<|P| P <|P|<Ep+|P|> |P|> )
The angles are then given by:
2E(Ey — 2Pk - Py P
0 = arcco = , @=arctan| — |. (A.60)
2|/ |k P
For the case considered here particle massless and the formula fdreduces to:
20k - P,
0 = arccos| 1— pft E)," . (A.61)
20, Py
The explicit form of the rotations is:
1 0 0O O 1 0 0 0
| O coB8 O sinb | 0 cosp —sing O
Nl 8) = O 0 1 o0 |’ Ny(@) = 0 sinp cosp O (A.62)
0 —sin@ 0 coP 0O O 0 1

The boostp = Apoos iS given by:

Ep_  G-P q-P Eq ) <
= —Ey+ — ——+—|P]. A.63
P <|P| at |P|’q+<|P|<Ep+|P|>+|P|> ) (A69)

The weight is given by: s
_ 2k
W= 16 5(1-y). (A.64)

The Massive Case

We now consider the case of final-state particles with ahjitmasses:
pi=mé, pf=nf, pi=m?, PE=pi=ni (A.65)
The dipole phase space reads [212]:

Y+ Zy 2n
Sij 2 _1
d%nres=3—2‘,'f[3(l—m2—u,2—uﬁ) (ML M, 1) 2/dy(l—y)/dZ/dcps, (A.66)
y- z 0
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where
~ <\ 2 m 2
= (Pi + B, W=—, AXY,2)=X+Y+Z—2xy—2yz—2zy  (A.67
siik = (Bij + Px) M= e (%,Y,2) Y y-2yz—2zy. (A7)
The integration boundaries are given by:
2 (1 — ) 21l
y+_l_ y Y-= ;
11— 1 — 1 1— 4% — 1 — 1§

A8+ (1-w -1 -y
2 (212 + (11212~ 1)y)

The general formula for the relative velocitiesvisq = v/1— pg?/(pq). In our case the
relative velocities are given by:

7y = (1iVij,iVij,k) . (A.68)

J (s - -E 8 1) - a2

Vij k = ;
! (11— 18 —1) (1-y)
2
- h - 48 6o
Viji = 12212 2 (A.69)
(1= 1 — 1 — )Y+ 218
For the phase space generation we set:
y=(+-y-)ur+y-, z=(zt—z)+z, @¢=2ms (A.70)

We again work in the rest frame &= [iij + px = pi + pj + Pk, such that the spatial compo-
nents ofpy are along the-direction:

Bii = (Ej.0.0,— [B[), = (Ex.0.0,|Bx]). (A.71)
For the invariants we have:

2pip; =y (P> —mf —me —nx)

2pipk = z(1-y) (P? lﬁ my —ng)

2pjpc= (1-2)(1~y) (P —nf —mf — ). (A.72)
The invariants are related yoandz as follows:
2pi pj 2pi Pk
oy , Z: D —— A73
Y 2pi pj + 2pi Pk + 2P Pk 2pi Pk + 2Pj Pk (A-73)

In our chosen frame

o =1l (o

“51’(

—~ | <||5 0.0 1) (A.74)

|If5| , SinBjk cog s + 1), SiNBj SIN(@s + TT), cose.k>

, SiNBjK COSPs, SiNB i SiNgs, coselk>
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The energies are obtained from the invariants as follows:

E— Sijk — 2P} pc+ 1Y — M — g
2/Sik

£ _ Sijk — 2Pi Pk — MY + M5 — g
= 2 /5

£ — Sjk—zpipj—”\z—m,'zﬂL”f
2./Sik

b

)

(A.75)

For the angles we have:

2EiEx — 2pi pk) S<ZEj Ex — 2p; pk)
Bk = arccos(— , Bj=arccog ————— |. (A.76)
| 2|@i| | pul J 2|Bj| Pl

The momentay, pj apd P are relateq to the momenpg, P; anq px by the same sequence of
Lorentz transformations as in equation (A.58). The weight i
Sijk

2 _

NIl

L=y (yr—y-)(zy —z). (A.77)

A.6.2 Insertion for an Antenna Between an Initial State and a Final State

The Massless Case

Here the(n+ 1)-particle phase space is given by a convolution:

1
dns1 = [ X dn(xPa) dipote (A78)
0

The dipole phase space reads:

1 2n
2~..
dipole = | ;;rga’ / dz / das, (A.79)
0 0

The angleps parametrises the solid angle perpendiculapjoaindxps. Therefore we can
treat the case of a final-state emitter with an initial-stgectator as well as the case of an
initial-state emitter with a final-state spectator at thenedime. x andz are related to the
invariants as follows:

(_ “2PiPa—2pjPa—2pipj _  —2piPa
—2piPa—2pPjPa —2piPa—2PjPa’

(A.80)

For the phase space generation we set:

X=1—u1, zZ=uUy, @ =2TU3. (A.82)
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We denoteQ = fiij + Xpa = Pi + Pj + Pa- It is convenient to work in the rest frame Bf=
pi + Pj = Q— pa and to orient the frame such thpyg is along thez-axis. For the invariants
we have:

20 = () 20pa= Q% 2ppa= Q% (AB2)
In this frame
pi = Ei (1, sinBja cosps, Sinbja sings, cosbia ),
pi =E (1, — sinBja cosps, — SinGja sings, — cosBia)
Pa= (—IEal,0,0.|E4[sign(py)) - (A.83)
We have

1 _ 15 - - (1., 2PiPa
E = > |IP|, Ea= P (P-pa), Ba= arccos(5|gr1(pa)< 1+—2EiEa>). (A.84)

The momentg,, p’j are again related to the momema p; by a sequence of Lorentz trans-
formations as in equation (A.58). The weight is given by:

_ <
_— m. (A-85)
The Massive Case
The dipole phase space now reads:
’2}3 p Zy 2n
d@uipole = 2 / /d(Ps- (A.86)
z 0
The integration boundaries are given by:
2
_ _ H
where
W2 = mwo_ ZX”]Z . (A.88)
2B pal  |Q?—n¥|

We consider only the case wherg = m = mand all other masses are zero. For the phase
space generation we set:

X=1-uj, z=(2y—-7Z )U+z., @=2Tus. (A.89)

For the invariants we have now:

1- 1-
2ppj = (~QP+1f) =2, 2ppa=2 (QP-1P), 2pjpa="(QP—1P). (A90)
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We parametrise the momenta as:

Pl = |Bi] (%,sineia COS(Ps, SiNBjz SINs, coseia>,
|
p’j = |Gi (1,—sineiacoscps,—sineiasin(ps, —coseia>,
i = (—|Eal,0,0,[Ea[sign(p2)) (A.91)
Then
P?+ ¥ 1 S( . (2EiEa—2p; pa>)
Ei = ., Ea=-—=(P-pa), 6ia=arccoq sign p? . (A.92
| 2‘P| a ‘P| ( pa) 1a gr(pa> 2‘ﬁ|‘(—Ea) ( )

The momenta,, p’j are again related to the momeiia pj by a sequence of Lorentz trans-
formations as in equation (A.58). The weight is given by:

2_
W:%(A—L). (A.93)

A.6.3 Insertion for an Initial-State Antenna

Here we only have to consider the case where all particlesassless. In this case we trans-
form all the final-state momenta. Tkie+ 1)-particle phase space is given by a convolution:

1
dani2 = | dX don(XPa) dRspote (A.94)
0
The dipole phase space reads:
‘2 | 1-x 2m
~_ |4PaPo
dipole = / dv / da (A.95)
0 0
The variablev is given by:
—2Papi
V= . A.96
2PaPo ( )
For the phase space generation we set:
X=1-u;, v=(1-x)(1-uw), @=21us. (A.97)
We denote .
K=—pa—pPo—pPi;, K=—Pai— Po (A.98)
We have
pa - )_( pah

Pi = AboosEi (1, SiNBja COSPs, SiNBja Sings, OBy ),
Pb = Po, (A.99)
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with Ej and®j given in the rest frame gb, + pp by:

1
Ea: _E V 2papb7

E = K2 — 2papy 7
4E,
LA 2piPa
Bia = arccos(5|gn( 0z) < 1+ 2E Ea)) . (A.100)

Pa denotesp; in the rest frame opa + pp. NAboosttransforms from the rest frame o + pp
to the lab frame. All other final-state momenta are transéatmvith:
K+KM(K+K)  _KHRY

(K+R)* (< +R)"

Nt=gV-2 .
J (K+K)? K2

(A.101)

The weight is given by: N
K7
161X

W= (1—Xx). (A.102)
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