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Summary

The conventional way to calculate hard scattering processes in perturbation theory using
Feynman diagrams is not efficient enough to calculate all necessary processes – for example
for the Large Hadron Collider – to a sufficient precision. Twoalternatives to order-by-order
calculations are studied in this thesis.

In the first part we compare the numerical implementations offour different recursive
methods for the efficient computation of Born gluon amplitudes: Berends–Giele recurrence
relations and recursive calculations with scalar diagrams, with maximal helicity violating
vertices and with shifted momenta. From the four methods considered, the Berends–Giele
method performs best, if the number of external partons is eight or bigger. However, for
less than eight external partons, the recursion relation with shifted momenta offers the best
performance. When investigating the numerical stability and accuracy, we found that all
methods give satisfactory results.

In the second part of this thesis we present an implementation of a parton shower algo-
rithm based on the dipole formalism. The formalism treats initial- and final-state partons
on the same footing. The shower algorithm can be used for hadron colliders and electron–
positron colliders. Also massive partons in the final state were included in the shower algo-
rithm. Finally, we studied numerical results for an electron–positron collider, the Tevatron
and the Large Hadron Collider.

Zusammenfassung

Die herkömmliche Möglichkeit harte Streuprozesse in der Störungstheorie mittels Feynman-
Diagrammen zu berechnen, ist nicht effizient genug, um alle notwendigen Prozesse – bei-
spielsweise für den Large Hadron Collider – mit ausreichender Präzision zu bestimmen. Zwei
Alternativen zur Berechnung Ordnung für Ordnung werden in dieser Arbeit untersucht.

Im ersten Teil vergleichen wir die numerische Umsetzung vonvier verschiedenen re-
kursiven Methoden zur effizienten Berechnung von Gluonamplituden auf Born-Niveau: die
Berends-Giele-Rekursionsrelation sowie rekursive Berechnungen mit skalaren Diagrammen,
mit maximal helizitätsverletzenden Vertices und mit verschobenen Impulsen. Von diesen vier
Methoden liefert die Berends-Giele-Methode die beste Leistung, wenn die Anzahl der ex-
ternen Partonen acht oder größer ist. Für weniger als acht externe Partonen ist dagegen die
Rekursionsbeziehung mit verschobenen Impulsen die Beste.Bei Untersuchungen zur nume-
rischen Stabilität und Genauigkeit fanden wir, dass alle Methoden gute Resultate liefern.

Im zweiten Teil präsentieren wir eine Implementierung eines Partonschaueralgorithmus’,
der auf dem Dipolformalismus basiert. Dieser Formalismus behandelt einlaufende und aus-
laufende Partonen gleich. Der Schaueralgorithmus kann sowohl für Hadronencollider als auch
für Elektron-Positron-Collider verwendet werden. Auch massebehaftete auslaufende Parto-
nen wurden im Algorithmus einbezogen. Außerdem studiertenwir die numerischen Resultate
für einen Elektron-Positron-Collider, für das Tevatron und für den Large Hadron Collider.
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Preface

The Large Hadron Collider (LHC) at CERN, the largest machine in human history and the
experiment the particle physicists community was waiting for, was built in the last years in
Geneva, Switzerland. This proton–proton collider has a planned centre of mass energy of 14
TeV and a design peak luminosity of 1034cm−2s−1 which is about two orders of magnitude
bigger than the peak luminosity of the Tevatron at Fermilab,Batavia, Illinois. The aim of the
LHC is not only to test the Standard Model (SM) in energy ranges where it was not possible
to test it before, but also to finally prove or disprove the existence of the predicted Higgs
boson. The detection of this boson would be a great success inparticle physics, because it is
hunted since more than 40 years, when the model was first introduced. Other SM processes
are also on the agenda, like top-quark physics,B-physics, the physics ofW± andZ0, and
heavy-ion physics. Perhaps the second most prominent aim ofLHC – after the Higgs – is the
search for “new physics”, such as supersymmetry (SUSY) – especially the search for the SUSY

Higgs bosons and the lightest supersymmetric particle –, and additional spatial dimensions,
so-called large extra dimensions. The Standard Model, the LHC and its physics programme
are presented in section 1.1 of chapter 1.

The conventional way to calculate hard scattering processes in particle physics is to look
at all permitted Feynman diagrams and use the Feynman rules to obtain the amplitude. Than
one takes the squared absolute value of the sum of all amplitudes, and sums or averages over
the polarisations (or any other degree of freedom). This wayis not feasible for final states
with many particles as they occur in colliders with very highenergies like the LHC. In fact,
this approach already reaches its limit at Born amplitudes for about five external partons. The
problems are: there are too many diagrams, there are too manyterms in each diagram and
there are too many kinematic variables. It is a drawback of the method that intermediate
results in the calculations are orders of magnitude more complicated than the final one.

In the 1980s, some new methods were developed to avoid these difficulties. One is the
spinor-helicity method, another thecolour decomposition. In the spinor-helicity method a
new set of kinematic variables is introduced and the polarisation vectors are written in terms
of these spinor products. The colour decomposition splits amplitudes into a trace over colour
matrices and a so-called partial amplitude which contains the kinematical information. Both
techniques develop their full power when combined with recurrence relations that construct
the amplitudes recursively from smaller building blocks. The Berends–Giele recurrence rela-
tions were historically the first ones. In the 2000s, new methods for the calculation of helicity
amplitudes in quantum chromodynamics (QCD) were contrived, inspired by a relationship of
QCD amplitudes to twistor string theory. The Cachazo–Svrček–Witten approach constructs
tree-level QCD amplitudes from vertices that are off-shellcontinuations of maximal helicity

1



2 Preface

violating (MHV) amplitudes connected by scalar propagators. Subsequently, a set of recur-
sion relations has been found that involves only on-shell amplitudes with shifted, complex,
external momenta. Schwinn and Weinzierl presented a method, which is close in spirit to
the Berends–Giele recursion relations, but which involvesonly a set of primitive vertices and
scalar propagators. In section 1.2 of chapter 1 these methods for the numerical computation
of pure gluonic amplitudes in the Born approximation are introduced and in chapter 2 we
compare the efficiency for different numbers of gluons.

High-energy SM events, as well as “new physics” events, willproduce final states with
high particle multiplicities. Especially at hadron colliders one has not only the hard interac-
tion but also the so-called underlying event, which is the interaction of the coloured beam
remnants. Since SM processes are background to “new physics”, it is important to make
precise theoretical SM predictions to compare with experimental results when they are avail-
able. For these predictions Monte Carlo event generators like PYTHIA , HERWIG, ISAJET

and SHERPA were developed. They consist of different steps: at a high energy scale, the
hard interaction of quarks or gluons from each of the incoming protons is taken into account,
with initial momentum of the quarks or gluons given by the structure functions. This par-
ton interaction is calculated in perturbative QCD. Then thecoloured initial- and final-state
particles from the scattering process radiate gluons and parton showers evolve. The shower
evolution will go on until the energy is of the order ofΛQCD≈ 200MeV. Afterwards hadroni-
sation will collect the partons to form hadrons, which can subsequently decay into final-state
particles observable in the detector. On top of that, the already mentioned underlying event
is incorporated in event generators. In chapter 3 we presentan implementation of a parton
shower algorithm for hadron colliders and electron–positron colliders, based on the dipole
factorisation formulæ. Chapters 2 and 3 can be read independent of each other.

Chapter 4 summarises the results. Useful formulæ are collected in the appendix. The
bibliography and an acknowledgement conclude the thesis.



Chapter 1

Introduction

In the first section of this chapter we review the Standard Model of Particle Physics, some ex-
tensions of the Standard Model, the physics programme of theLarge Hadron Collider, the ma-
chine and the detectors. The second section presents perturbation theory, Feynman diagrams
and some more efficient methods that circumvent some of the drawbacks of Feynman dia-
grams, namely the colour decomposition, the spinor-helicity method and the Berends–Giele
recursion relations. The connection from twistor string theory to Yang–Mills perturbation
theory is mentioned and the proof of the Britto–Cachazo–Feng–Witten recursion relation is
shown. In the last section of this chapter, an introduction to parton showers is given.

1.1 The Standard Model and the Large Hadron Collider

1.1.1 The Standard Model

The Standard Model (SM) of Particle Physics (for a newer textbook see for example [1]) is a
relativistic quantum field theory [2] and was developed in the 1960s and 1970s. It describes
all the interactions (table 1.2) of subatomic particles, except gravity. The SM gauge group is
SUc(3)×SUL(2)×UY(1) containing the strong [3–7] as well as the weak and electromagnetic
interactions [8–10].SU(n) is the special unitary group consisting of unitaryn×n matrices
with determinant 1 andU(n) the group of unitaryn×n matrices. The subscriptc stands for
colour,L means that only left-handed particles take part in the weak interactions andY stands
for the weak hyperchargeY = 2(Q− I3) [11–13], whereQ is the electric charge andI3 the
third component of the weak isospin. The fundamental particles – quarks [14, 15] and leptons
– are shown in table 1.1. Additionally, quarks carry a colourcharge and for all particles there
are corresponding antiparticles. Quarks can be combined tomesons, consisting of a quark and
an antiquark, and baryons, made of three quarks. For properties of the fundamental particles
as well as hadrons see the Review of Particle Physics [16].

The Standard Model Lagrangian density

LSM = Lc +Lw +Lf +LfH +Lfc +LFPc+LFPw (1.1)

consists of a colour Lagrangian densityLc, describing the gluons of quantum chromody-
namics and their mutual interactions, a weak Lagrangian density Lw, describing the vector
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4 1 Introduction

bosons and their interactions including the interactions with the Higgs system, a fermion
Lagrangian densityLf, describing the interactions of the fermions with the weak vector
bosons, a fermion–Higgs Lagrangian densityLfH , describing the interactions of fermions
with the Higgs system, a fermion–colour Lagrangian densityLfc, describing the interactions
of fermions with gluons, a Faddeev–Popov ghost [17] Lagrangian densityLFPc of quantum
chromodynamics and a Faddeev–Popov ghost Lagrangian density LFPw of the weak interac-
tions. The full Standard Model Lagrangian density is given in appendix A.1.

charge generation 1 generation 2 generation 3
quarks +2/3 up u charm c top t

−1/3 down d strange s bottom b
leptons 0 electron neutrino νe muon neutrino νµ tau neutrino ντ

−1 electron e muon µ tau τ

Table 1.1:The elementary Standard Model fermions (spin=1/2).

interaction strong electromagnetic weak gravity
force carrier 8 gluons photonγ W±, Z0 (graviton)
spin 1 1 1 2
mass in GeV 0 0 ≈ 80.4,≈ 91.2 0
relative strength 25 1 0.8 10−41

acts on colour charge electric charge flavour mass, energy

Table 1.2: The four fundamental forces. Gravity is not a part of the Standard Model and
the graviton is not observed, yet. The strength of the forcesis relative to the strength of the
electromagnetic force for two up quarks at a distance of10−18m.

The mixing in the quark sector manifests itself in the Cabibbo–Kobayashi–Maskawa
(CKM) matrix [18, 19]:

V =




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13



 , (1.2)

whereci j = cosθi j andsi j = sinθi j with the mixing anglesθi j (θ12 is the Cabibbo angle). The
phaseδ is responsible for CP violation. The CKM matrixV transforms the weak eigenstates
on the right-hand side into the mass eigenstates on the left-hand side:




d′

s′

b′



=




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








d
s
b



 . (1.3)

The corresponding matrix for the lepton sector is the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix [20–22]U = VνK, whereVν can be parametrised in the same way as the
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CKM matrix in equation (1.2), and

K =




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 . (1.4)

The SM has in its simplest version (without neutrino mixing)19 free parameters, which
can be chosen as the three coupling constants of the gauge group SUc(3)×SUL(2)×UY(1),
the three lepton and six quark masses, the mass of theZ boson, the four parameters of the
CKM matrix, a CP violating parameter associated with the strong interaction and the mass of
the still undiscovered Higgs boson. Three light Majorana neutrinos would add at least nine
new parameters: three masses, three mixing angles and threephases, resulting in 28 arbitrary
parameters altogether, which have to be measured in experiment and cannot be predicted by
theory – at least not within the Standard Model.

1.1.2 Some Extensions of the Standard Model

The Standard Model explains almost all particle physics data measured within one or two
standard deviationsσ. In some observables there are bigger deviations, but thesecould also
be statistical fluctuations. Only future measurements can tell if, for example, the 2.5σ dif-
ference [16, p. 134] of the experimental and theoretical values of the anomalous magnetic
moment of the muonαµ = (gµ−2)/2 is a random fluctuation or a hint of “new physics”.

Nevertheless, there are some important questions which arenot answered by the SM,
like: What is dark matter? What is dark energy? Why are there so many particles compared
to antiparticles in the universe? What are the masses of the neutrinos? What is mass at all? Is
there a Higgs boson? Why is the electroweak scale so much different from the Planck scale
(hierarchy problem)? Why are there three generations of fundamental particles? Some of
these questions are addressed by extensions of the SM.

In supersymmetric theories [23] there are superpartners for every particle in the Standard
Model. For SM fermions there are supersymmetric bosons (squarks and sleptons) and for
bosons there are fermionic superpartners (gluinos and gauginos). Additionally, there is not
only one Higgs boson but five:h, H, A, H±. The smallest possible supersymmetric extension
of the Standard Model is calledMinimal Supersymmetric Standard Model(MSSM) [24].

SUSY has some nice features: it stabilises the mass of the Higgs boson to radiative correc-
tions, that are quadratically divergent in the Standard Model (naturalness). Within this model,
the gauge couplings unite at a high scale, which they do not inthe Standard Model. More-
over, the lightest supersymmetric particle (LSP) is a promising candidate for dark matter if
R-parity is conserved.R is defined in such a way that it is+1 for all particles and−1 for all
supersymmetric particles:

R= (−1)3(B−L)+2s, (1.5)

whereB is the baryon number,L the lepton number ands the spin. A not so nice feature are
about 100 new parameters (masses, mixing angles and phases)[25]. If supersymmetry were
an exact symmetry, particles and their superpartners wouldhave the same mass. Since there is
so far no experimental evidence for supersymmetric partners, supersymmetry must be broken.
If SUSY exists at the electroweak scale, it will be discovered at theLHC. A lot of squarks and
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gluinos are expected, since their cross section should be a few pb at 1 TeV. Measurements
of the masses of SUSY particles and the parameters will show which specific SUSY model is
realised in nature. If nature is not supersymmetric, superstring theories – which incorporate
supersymmetry – cannot be valid.

An alternative to the elementary Higgs mechanism of the Standard Model is the dynam-
ical electroweak symmetry breaking by a composite field which is bound together by a new
type of strong interaction calledtechnicolour[26–29]. Technicolour is acting on massless
technifermions at an energy scale ofΛTC ≈ vweak= 246 GeV and it is asymptotically free. It
solves the naturalness and the hierarchy problem. At LHC, especially, the decay of the tech-
nimesonρTC →WZ is interesting, since is has a very clean final state, namely 3l +ν, which
is easier to distinguish from the Standard Model backgroundthan decays containing jets.

In ADD models [30–32], introduced by Arkani-Hamed, Dimopoulos and Dvali, additional
dimensions of space were introduced. The Standard Model lives on a four-dimensional brane,
whereas gravity can also propagate into the extra dimensions, which are large compared to
the Planck lengthlP ≈ 10−35m. Another group of models with more than four spacetime
dimensions was proposed by Randall and Sundrum [33, 34]. In these models all elementary
particles are localised on a four-dimensional brane, only the graviton can propagate in the fifth
dimension. To solve the hierarchy problem, extra dimensions with a fundamental scale of
order TeV−1 are needed. Thus they should be observable at the LHC: Kaluza–Klein [35, 36]
gravitons should show up as heavy resonances in the dielectron mass spectrum of the Drell–
Yan process [37]pp→ γ/Z → e+e−.

1.1.3 Physics Programme of the LHC

The multi purpose detectors at LHC, ATLAS and the Compact Muon Solenoid (CMS), plan
a very rich physics programme [38, 39]. Both will test the Standard Model (SM) in energy
ranges where it was not tested before and will search for “newphysics”. After a few years of
data taking at nominal luminosity and energy they will be able to sieve out realistic models
from the excess of theoretical possibilities.

LHC will be a b-quark factory, a top-quark factory, aZ factory, aW factory and even a
Higgs and SUSY particle factory if these particles exist in the TeV range.

One of the main goals of the LHC is to understand the mechanismof electroweak sym-
metry breaking, may it be through the Higgs boson [40–43] or something else. The Higgs
particle, a neutral scalar boson, spontaneously breaks theSU(2)×U(1) symmetry of elec-
troweak interaction. Since it has a non-zero expectation value (vweak = 246 GeV), theW±

andZ bosons acquire mass, while the photon remains massless. Thedetection of the Higgs
boson would be a great success in particle physics – experimental and theoretical. The LHC
will be able to finally answer the question if the predicted Standard Model Higgs boson exists
or not, because in the whole allowed mass range it has a significance well above five stan-
dard deviationsσ for Higgs signals and 100 fb−1 of integrated luminosity. The lower bound
of the allowed region is fixed by the experimental limit of LEP at 114.4 GeV [44], and the
upper bound of 186 GeV is sourced from radiative effects of the Higgs boson on electroweak
observables [16, p. 452].

At the lower end of the allowed mass range the Higgs boson decays dominantly to ha-
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drons. Due to the large QCD background these decay channels are difficult to use in the
discovery of the Higgs. Instead of doing so, one prefers to look for isolated leptons and
photons even though they have much smaller branching ratios. One of the most promising
channels for low mass Higgs is the decayH → γγ. If the Higgs mass is around twice the
mass of theW boson, the decayH → WW∗ → lνlν is important. One of the cleanest dis-
covery channels for a Standard Model Higgs with a mass up to 600 GeV isH → ZZ∗ → 4l ,
especially the final state with four muons.

Eight million top quark pairs are expected for an integratedluminosity of 10 fb−1. With
this huge number of top quarks a mass measurement with a precision of about 2 GeV is pos-
sible. Also cross section measurements and searches for many rare top decays are planned at
the LHC. The number of producedbb̄ pairs strides the number of top quark pairs by orders of
magnitude: 1012 per years are expected even at low luminosity. This allows the investigation
of CP violation in theB system as well as measurements ofB0

S mixing and the decays of rare
B mesons such as theBc.

Precise constraints on the parton distribution functions (PDFs) are received from Drell–
Yan production,W andZ boson production, production of direct photons and highpT jets,
heavy flavour and gauge boson pairs. About 300 million singleW events will take place in
one year of data taking, which will lower the uncertainty in theW mass to below 20 MeV.
The measurement of the triple gauge boson couplings are planned with gauge boson pair
production. The determination of the Cabibbo–Kobayashi–Maskawa matrix elements and
heavy-ion physics are also part of the Standard Model physics programme.

Since the LHC will increase the maximal energy accessible atcolliders by a factor of seven
(compared to Tevatron), new discoveries are expected. At the energy frontier, signatures of
physics beyond the Standard Model may be seen, like supersymmetric particles, new massive
vector bosons, additional spatial dimensions, and others.

Of the superpartners, especially the searches for the SUSY Higgs bosons and the lightest
supersymmetric particle (LSP) are interesting. IfR-parity is conserved, decays of supersym-
metric particles contain the lightest SUSY particle, which is supposed to interact very weakly
and will lead to a significant missing transverse energyEmiss

T in the final state. There are lots
of leptons and jets (particularlyb- and/orτ-jets) in decays of supersymmetric particles.

The search for a new massive vector bosonZ′ is focussed on decays toe+e− andµ+µ−

with pT in the order of TeV.

The signatures of additional spatial dimensions, so-called large extra dimensions, are dif-
ferent, depending on the characteristic energy scaleMD of quantum gravity, which is the
analogue of the Planck mass in aD-dimensional theory. If the energyE is much less than
MD, signals involving the emission of gravitons escaping intoextra dimensions are expected,
leading toEmiss

T . If E ≈ MD, the expectation is model-dependent. In string-theory motivated
models there areZ-like resonances with separations in the order of TeV in mass. If E ≫ MD,
mini black holes are produced which decay with equal production rates to fundamental parti-
cles like leptons, photons, neutrinos,W, Z, etc.

The LHC also searches for more exotic models, like little Higgs models, technicolour,
leptoquarks, new quarks and leptons, excited quarks, right-handed neutrinos, magnetic mono-
poles and evidence for composite quarks and leptons.



8 1 Introduction

1.1.4 The Large Hadron Collider

The recently completed Large Hadron Collider (LHC) [45–47]at CERN is a superconducting
hadron accelerator and collider. The LHC was built in the 26.7 km long tunnel of the Large
Electron–Positron Collider (LEP), which was operating from 1989 till 2000. The CERN

Council approved the LHC project in December 1994. At that time it was clear that, after
completion, the LHC would be the collider with the highest centre of mass energy, since
the construction of the Superconducting Super Collider (SSC) in the U.S. was stopped one
year before. In the LHC tunnel there are two rings, for protons going clockwise and anti-
clockwise, respectively. Contrary to the Tevatron, where protons and antiprotons are used,
the LHC collides protons, because they are much easier to produce in the quantities that are
needed to get the planned, extraordinary high luminosity. An unavoidable drawback of the
proton–proton approach is the need of two rings with separate magnetic fields and vacuum
chambers.
The planned centre of mass energy is 14 TeV and the design peakluminosity is 1034cm−2s−1,
which is about two orders of magnitude bigger than the peak luminosity of Tevatron at Fer-
milab [48].To be able to detect rare events, one has to maximise the number of events per
secondNevent, which is directly proportional to the luminosityL:

Nevent= Lσevent, (1.6)

whereσevent is the cross section of the specific event. The luminosity depends only on the
beam parameters. For a Gaussian beam distribution it can be written as:

L =
N2

bnb f γ
4πεnβ∗ F , (1.7)

whereNb is the number of particles per bunch (LHC nominal value: 1.15×1011 protons per
bunch),nb the number of bunches per beam (2 808),f the revolution frequency (11 245 s−1), γ
the relativistic gamma factor (7 461),εn the normalised transverse beam emittance (3.75µm),
β∗ the beta function at the collision point (0.55 m) andF the geometric luminosity reduction
factor (0.836) due to the crossing angle at the interaction point.

F ≈ 1√
1+
(

θcσz
2σ∗

)2
, (1.8)

with θc the full crossing angle at the interaction point (285µrad), σz the root mean square
(RMS) bunch length (7.55 cm) andσ∗ the transverse RMS beam size at the interaction point
(16.7µm). The integrated luminosity over one run is:

Lint = L0τL

(
1−e−Trun/τL

)
, (1.9)

whereL0 is the design peak luminosity after filling the rings,τL is the so-called luminosity
lifetime of about 15 hours for LHC andTrun is the total time of the luminosity run. For an
assumed average time of 7 hours between the end of a luminosity run with an old beam and
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a new beam at top energy, and an operation of 200 days per year,the optimum run time with
one beam is 12.5 hours and the accumulated luminosity is 75 fb−1 per year.

After some time of running at the nominal luminosity, an upgrade to the so-called Super
LHC or SLHC [49, 50] running at 1035cm−2s−1 is planned. Even without the upgrade, the
LHC will be the collider with the highest luminosity and the largest energy for the next years.
Other colliders, like the Very Large Hadron Collider (VLHC)[51] or the International Linear
Collider (ILC) [52], the Compact Linear Collider (CLIC) [53] or the muon collider [54], are
unlikely to be realised in the near future.

The other mode of operation of LHC uses ions to study quark–gluon plasma. Lead ions
208Pb82+ collide with a total centre of mass energy of 1150 TeV or 2.76 TeV per nucleon.
This is more than one order of magnitude bigger than the 100 GeV per nucleon that were
reached for gold ions in the Relativistic Heavy Ion Collider(RHIC) at Brookhaven National
Laboratory (BNL) [55].

The machine, together with the CERN share of the detectors and computing sum up to
about 6.5×109 Swiss francs and consumes 120 MW electrical power. The experiments at the
four interaction points are described in the next subsection.

1.1.5 Experiments at the LHC

At the LHC there are two multi purpose experiments – ATLAS [56] and theCompact Muon
Solenoid(CMS) [57] – with the highest luminosity of 1034cm−2s−1. The two low lumi-
nosity experiments areLarge Hadron Collider beauty(LHCb) [58] for B-physics at a peak
luminosity of 1032cm−2s−1 andTotal Elastic and Diffractive Cross Section Measurement
(TOTEM) [59] at a peak luminosity of 2×1029cm−2s−1 with 156 bunches. The experiment
especially dedicated to work with ion beams isA Large Ion Collider Experiment(ALICE) [60]
– aiming at a peak luminosity of 1027cm−2s−1 for nominal lead–lead ion operation. In addi-
tion, there is theLarge Hadron Collider forward(LHCf) [61], which is not resistant to hard
radiation and will thus be removed when the luminosity reaches 1030cm−2s−1.

The principle aim of the multi purpose detectors is to identify secondary particles pro-
duced in collisions and to measure their ways through the detector, their charges, momenta
and energies. The basic design is the following: as close as possible to the interaction point
there is a radiation-hard tracking chamber measuring the path of electrically charged particles.
A magnetic field bends the trajectories so that it is possibleto determine the curvature and
hence the momenta. In electromagnetic and hadron calorimeters the particles are stopped and
the released energy is measured. The only charged particlesthat are able to pass the hadron
calorimeters are muons, so the muon detector is located behind the calorimetry. Neutrinos
and some of the particles of “new physics” theories beyond the Standard Model, like the
lightest supersymmetric particle, cannot be detected directly. Only missing transverse energy
Emiss

T shows that there were some undetected particles. A high granularity of the detector
components is needed to have a low occupancy rate and to distinguish particle paths that are
close to each other.

ALICE is a general purpose heavy-ion experiment to study quarks and gluons under very
high temperature and extreme density. Due to the asymptoticfreedom [6, 7] there will be
a transition from hadronic matter to a plasma of deconfined quarks and gluons, a so-called
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detector size weight material cost in members of the
in m in tonnes million Swiss francs collaboration

ALICE 26×16×16 10 000 115 1 500
ATLAS 46×25×25 7 000 540 1 900
CMS 21×15×15 12 500 500 2 000
LHCb 21×10×13 5 600 75 650
LHCf 0.3×0.1×0.1 0.04 21
TOTEM 440×5×5 20 6.5 70

Table 1.3:The six experiments at the LHC with their size in m, their weight in tonnes, their
material cost in million Swiss francs and their numbers of collaboration members (as of May
2007)[46].

quark–gluon plasma, a state of matter which existed in the early universe during the first
10−5 s after the Big Bang. ALICE will not only work with heavy ions (Pb–Pb) and lower-
mass ions (to vary the energy density) but also with protons –pp as well as proton–nucleus
– to obtain reference data for the nucleus–nucleus collisions. In addition,γγ collisions are of
interest. (There is a large flux of virtual photons associated with the Coulomb fields of the
interacting lead nuclei.) The detector itself has to digestthe highest particle multiplicities,
8 000 charged particles per unit of pseudorapidity (η = − ln tan(θ/2), whereθ is the angle
of a particle relative to the beam axis). ALICE consists (from inside to outside) of an inner
tracking system with six layers of high-resolution silicontracking detectors, a cylindrical
time projection chamber and a large area particle identification detector array of time of flight
counters. Additionally, there is the small area electromagnetic calorimeter and an array of
counters optimised for high-momentum inclusive particle identification, made up of either
ring imaging Cherenkov detectors or time of flight counters.All this is embedded in the large
magnet of the former L3 experiment with a weak solenoidal field of 0.2 T. Outside the magnet
there is the forward muon spectrometer covering 2–10◦ (or a pseudorapidity ofη =2.4–4).

ATLAS is a general purpose experiment to detect “new physics” signatures like SUSY and
large extra dimensions, as well as Higgs decays and StandardModel processes. It consists
(from inside to outside) of the inner detector, made of high-resolution semiconductor pixel
and strip detectors near the interaction point and straw-tube tracking detectors in the outer
parts. The inner detector is optimised to give good momentumand vertex measurements as
well as electron identification. It covers a range in pseudorapidity of |η| ≤ 2.5 and is em-
bedded in a thin superconducting solenoid which produces a field of about 2 T. Outside the
magnet there is the lead/liquid argon electromagnetic calorimeter, which is characterised by
a good energy and position resolution, and the hadron calorimeter made of plastic scintillator
plates embedded in an iron absorber. The electromagnetic and hadronic calorimeters pro-
vide a very good jet- andEmiss

T -performance and cover the pseudorapidity range of|η| ≤ 3.2
whereas for the region 3.1≤ |η| ≤ 4.9 there are special forward calorimeters. The detector
is completed by a muon spectrometer with good momentum resolution in superconducting
air-core toroids.
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CMS is – like ATLAS – a general purpose detector to explore physics at the TeV scale
and to study the mechanism of electroweak symmetry breaking– may it be through the Higgs
boson or another mechanism. It is designed for the search fornew particles, like SUSY

partners of SM particles, and extra dimensions, as well as for precision tests of the Standard
Model. Close to the interaction point there are three layersof pixel detectors to measure the
position of secondary vertices and the impact parameter of charged-particle tracks. Together
with the silicon tracker, consisting of ten layers of silicon microstrips, they form the inner
detector, which is surrounded by the electromagnetic calorimeter. The EM calorimeter is
made of lead tungstate (PbWO4) crystals and covers a pseudorapidity range of|η| ≤ 3.0.
The same range is covered by the hadronic calorimeter made ofbrass and scintillators. The
calorimeters are embedded in a huge superconducting solenoid with a magnetic field of 4 T
to measure momenta of charged particles precisely. Outsidethe solenoid there are the muon
detectors up to|η| ≤ 2.4. In the very forward region (|η| ≤ 5.0) special end-cap calorimeters
are installed.

LHCb is a conical detector to study the CP violation inB-particles. The tip of the cone
is the interaction point with a silicon vertex detector thatallows to reconstruct aB-decay
vertex with a very good resolution. The RICH (Ring Imaging Cherenkov) counters next to
it identify charged particles and distinguish pions from kaons, for example. The tracking
system, partially inside a dipole magnet with a maximal magnetic field of 1.1 T, is used for the
efficient reconstruction and precise momentum measurementof charged tracks. The different
trackers are located in front of and behind the first RICH detector; in front of, inside and
behind the magnet as well as behind the second RICH detector. Then the calorimetry follows,
which can distinguish electrons from hadrons and provides ameasurement of energy and
position. The electromagnetic calorimeter consists of lead and a polystyrene-based scintillator
whereas the hadronic calorimeter is made of iron and scintillators. The last part of LHCb
is the muon detector. The overall detector covers a range from 10 mrad to 250 mrad (or
2.1 ≤ |η| ≤ 5.3). This geometry has been chosen because at high energies the b- and the
b̄-hadrons are predominantly produced in the same forward cone.

The LHCf experiment consists of two detectors next to ATLAS and covers the very for-
ward region. Its aim is to test models used in estimating the primary energy of ultra high-
energetic cosmic rays. To achieve this goal it uses two smallsampling and imaging calorime-
ters and measures the forward production spectra of photonsand neutral pions as well as the
leading particle spectrum.

The TOTEM detector, installed in the forward region of CMS, measures the totalppcross
section and studies elastic scattering and diffractive dissociation. Therefore, tracking detec-
tors are installed inside the end caps of the CMS muon detectors close to the beam pipe, and
behind the CMS end-cap calorimeters covering a pseudorapidity interval 3≤ |η| ≤ 6.8. In
addition, there are two sets of silicon detectors,±147 m and±220 m from the interaction
point.
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1.2 Feynman Rules and Some More Efficient Alternatives

1.2.1 Perturbation Theory

Perturbation theory in general is a method to find an approximate solution to a problem which
is not solvable analytically at all or not solvable analytically in a reasonable amount of time.
It is only applicable if the problem can be formulated as a small deviation from a similar but
simpler and exactly solvable problem. The general procedure is: (i) ignore effects that make
the process complicated,(ii) calculate the simplified process analytically,(iii) add the ignored
effects as a small perturbation of the simplified process,(iv) calculate the solution, order by
order, in terms of a power series in a small parameter which describes the deviation from
the exactly solvable problem. The first term in the power series is the exact solution of the
simplified problem. Further terms approximate the solutionof the hard problem better and
better. These terms are usually called Leading Order (LO), Next to Leading Order (NLO),
Next to Next to Leading Order (NNLO) and so on. This can formally be written as:

x = x0+gx1 +g2x2+ . . . (1.10)

If g is small and thexn do not grow too fast, the terms in this series become successively
smaller (on the other hand, the calculation of thexn usually becomes successively more com-
plex). So the first few terms are enough to compare theoretical predictions with experimental
data. As experiments become more and more precise, the theorists have to calculate more and
more orders.

Perturbation theory is used for example in celestial mechanics, quantum mechanics and
quantum field theories. Especially in the latter, problems occur: there are infrared and ultra-
violet divergences. Infrared divergences occur in integrals over a momentumk in the case
of vanishing momentum,k → 0. These divergences are cancelled if the summation over the
initial and final degenerate states is carried out (Kinoshita–Lee–Nauenberg theorem) [62, 63].
Ultraviolet divergences occur in integrals over a momentumk in the case of momentum going
to infinity, k→ ∞. They can be removed by regularisation and renormalisation.

Regularisation is a mathematical method of dealing with these divergences. In dimen-
sional regularisation [64–67] all calculations are done ind = 4− 2ε dimensions and not
in d = 4 dimensions, where the integrals are divergent. By this trick, the singularities are
parametrised in poles like1/ε and1/ε2 and form a Laurent series in the regularisation parame-
ter. One could also avoid the infinities by changing the upperintegration boundary to a finite
valuek = kmax, which is called cutoff regularisation. In Pauli–Villars regularisation [68] one
introduces fictitious heavy particles to separate finite from divergent terms.

Renormalisation is a formalism of redefinition of physical quantities like mass and charge
as well as the fields. For example, in charge renormalisation, there is a difference between
quantities in the formulæ, like the Lagrangian density, andphysical constants measured in
the laboratory. The first one is calledbare chargee0 and the second onephysicalcharge
e=

√
Z3e0 with the renormalisation constantZ3. The physical charge takes into account the

contribution of virtual particle–antiparticle pairs.
The first renormalised perturbation theory was quantum electrodynamics (QED) [69–74].

Two of the first successful applications were the calculations of the Lamb shift by Bethe [75]
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and the anomalous magnetic moment of the electron by Schwinger [76]. Today the anoma-
lous magnetic moment of the electron is one of the best understood quantities in nature: the
experimental value [16, p. 515] agrees with the theoreticalone within nine significant digits.

Even though perturbation theory gives an amazingly good result in this case, the pertur-
bation series is in general divergent [77–81]. The absolutemagnitude of the first terms of the
series decreases, but the factorial growth of the perturbative coefficientsxn in equation (1.10)
overcompensates the additional coupling factors of higherorders in perturbation theory, and
the series finally diverges.

1.2.2 Feynman Rules

From the Lagrangian densityL of a given theory, say QED or QCD, one can derive Feyn-
man rules. For example, every term inL with a product of fieldsφ1, . . . ,φn will lead to a
vertex with these external fields. Some of the Standard ModelFeynman rules are given in
appendix A.4. Feynman diagrams, also called Feynman graphs, are pictorial representations
of the perturbation series and they are composed according to the Feynman rules.

The classical way to calculate hard scattering processes inparticles physics is, firstly, to
draw all permitted Feynman diagrams. These are all diagramsthat are not forbidden by con-
servation laws and have the required initial and final states. Secondly, one uses the Feynman
rules to get a mathematical expression – called amplitude – for every single graph. Thirdly,
one adds up the amplitudes of all graphs, and, fourthly, squares the absolute value of the sum.
After that one has to sum or average over the polarisations (or any other degree of freedom).
To get the cross section one finally integrates over the phasespace volume. The cross sections
for virtual and real emissions are both divergent, the divergences cancel when virtual and real
contributions are added to give a physical meaningful result.

There are computer programs for the different parts of this calculation. For example, for
the generation of Feynman rules in field theory, there is the program LanHEP [82]. Programs
for the automated generation and computation of Feynman diagrams are FeynArts [83] and
GEFICOM [84]. A review can be found in reference [85].

1.2.3 Limits of the Feynman Approach

The Feynman diagram approach is not feasible for final stateswith many particles as they
occur in very high-energy colliders. There are too many diagrams and the number of diagrams
increases very fast, as the number of external particles rises (see table 1.4). There are too many
terms in each diagram. Especially in QCD calculations many terms appear due to the structure
of non-Abelian vertices. Additionally, many kinematic variables complicate the calculations.

Intermediate results of the calculations tend to be orders of magnitude more complicated
than the final one.

The limits of this approach in numbers of loops and legs are compiled in figure 1 in
reference [86]: the technique is well established for two loops up to two legs, for one loop up
to five legs and for zero loops up to eight legs. Partial results or special cases were calculated
for three loops up to two legs, for two loops up to four legs, for one loop up to six legs and
for zero loops up to ten legs. To bring the theoretical predictions to the expected precision for
the ILC, even more loops and legs are needed, at least the leading effects of that.
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number of gluonsn 3 4 5 6 7 8 9 10
Feynman diagrams 1 4 25 220 2 485 34 300 559 405 10 525 900
factorialn! 6 24 120 720 5 040 40 320 362 880 3 628 800
partial amplitudes(n−2)! 1 2 6 24 120 720 5 040 40 320

Table 1.4:The number of Feynman diagrams at tree-level contributing to a scattering process
with n gluons (gg→ (n− 2)g). The number of diagrams grows faster than the factorial,
which is given for comparison. In the last row the number of independent partial amplitudes
is shown[87].

1.2.4 More Efficient Methods

In the 1980s new methods were developed to avoid the difficulties described in the preceding
subsection. These methods are the colour decomposition, the spinor-helicity method and
recurrence relations.

Colour Decomposition

The colour decomposition [88, 89] splits Feynman amplitudes into a colour part and a Lorentz
part. The former contains a trace over colour matrices and the latter, called partial amplitude,
contains the kinematical information. For a tree-level amplitude with n external gluons this
reads:

An

(
kλ1

1 , . . . ,kλn
n

)
= gn−2 ∑

σ∈Sn/Zn

2 Tr
(

Taσ(1) . . .Taσ(n)

)
An

(
k

λσ(1)

σ(1) , . . . ,k
λσ(n)

σ(n)

)
. (1.11)

Sn is the set of all permutations ofn objects andZn is the subset of cyclic permutations, which
preserve the trace. Thus the sum runs over all non-cyclic permutations of the external gluon
legs. In this formula,k j denotes the four-momentum of thej-th gluon andλ j its helicity, g
stands for the strong coupling constant andTa are the colour matrices, normalised such that
Tr(TaTb) = 1/2 δab. The partial amplitudesAn contain the kinematic information. They are
colour-ordered, i. e. only diagrams with a particular cyclic ordering of the gluons contribute.
This way one can reduce the number of diagrams to be calculated. Hence, the calculation
of partial amplitudes is more efficient than calculating allconventional Feynman diagrams.
In addition, partial amplitudes satisfy several identities which further reduce the number of
independent partial amplitudes, see equation (2.4) and thefollowing equations.

The proof of the colour decomposition is very simple [90]. Inany tree-level purely gluon
Feynman diagram we pick any vertex and replace the colour structure constants defined in
equation (A.32) byf abc = −2i Tr(TaTbTc − TbTaTc). If a leg attached to this vertex is
external, there are no colour terms. If a leg is internal it leads to another vertex, whose
structure constants can be replaced by traces over matricesTa. The product of a structure
constant and a matrixTa can be replaced using equation (A.32). This procedure can be
continued until all vertices have been treated in this manner. Then we have the desired colour
decomposition (1.11).
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Spinor-Helicity Method

The spinor-helicity method [90–96] introduces a new set of kinematic variables and the
polarisation vectors are written in terms of these spinor products (for more details see ap-
pendix A.2).

The advantage is, that many terms vanish, likekεµ
±(k,q) = 0 andεµ

±(ki ,q)εµ
±(k j ,q) = 0.

To make use of this, it is particularly useful to choose the reference momenta of gluons with
the same helicity to be identical and equal to the external momentum of one of the gluons of
opposite helicity. In this way one can reduce the number of terms per diagram significantly.
Since different helicity configurations do not interfere, it is sufficient to sum incoherently over
the squares of all possible helicity amplitudes contributing to a given process, to obtain the
full cross section. For processes withn Feynman diagrams one classically had to calculate
n(n+1)/2 interference terms. In the spinor-helicity formalism thenumber of amplitudes to
calculate is usually much smaller. In the processe+e− → e+e−γγ for example there are 80
Feynman diagrams, thus 3240 interference terms, but only 64helicity amplitudes. Because
of parity conjugation (equation 2.4), which flips all helicities, one has to calculate only 32
(short) expressions, compared to 3240 (long) ones [97]. This is a major step towards more
efficiency.

Berends–Giele Recurrence Relations

The colour decomposition and the spinor-helicity method demonstrate their full power when
combined with recurrence relations that construct the amplitudes recursively from smaller
building blocks. The Berends–Giele recurrence relations [98, 99] were historically the first
ones.

Pure gluonic processes are calculated recursively, because they play a special role among
all parton processes. In hadron collisions the gluons have the largest parton cross section
and when one has techniques to calculate gluon processes, itis relatively easy to add a single
quark–antiquark pair. To calculate the partial amplitudesAn one first removes the polarisation
vector of then-th gluon and multiplies with an off-shell propagator term.This so arisen
auxiliary quantity is calledoff-shell current Jn−1, because then-th leg is off-shell (all other
legs are on-shell). SinceJ is an off-shell quantity, it is gauge dependent. For that reason,
reference momenta for the on-shell gluons, whichJ depends on, have to be kept fixed until
after one has extracted an on-shell result. The off-shell current forn−1 gluons can then be
related to off-shell currents with less gluons. This recursion step is repeated until we reach
J1, which is defined as the polarisation vector of the gluon. In this wayJn−1 is constructed
and to get the partial amplitudesAn we only have to multiply with the inverse propagator as
well as the polarisation vector of then-th gluon.

The recurrence relations automatically take into account all Feynman diagrams and allow
to prove certain properties of partial amplitudes.

1.2.5 Twistor Approach

In Penrose’s twistor theory [100–102] the usual backgroundspacetime is replaced by a back-
ground space of twistors. The known physical phenomena are to be reinterpreted in this new
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twistor space to gain new insight. This is analogous to introducing momentum space and
using the Fourier transform to change from spacetime to momentum space and vice versa.
A twistor spaceT is a four-dimensional complex vector spaceC4. A twistor is an element
Zα = (Z0,Z1,Z2,Z3) in this vector space. Theoretical physicists work in twistor space to
better understand various classical field equations and modern relativistic and gauge field
equations. One of the initial aims of twistor theory was to provide a formalism for the unifi-
cation of general relativity and quantum theory. However, it is also interesting from a purely
mathematical point of view.

In 2003 Witten introduced a string theory in twistor space [103, 104], later calledtwistor
string theory, which is dual to a weakly coupled gauge theory. This dualityshed new light
on Yang–Mills perturbation theory and led to new methods forcomputing Yang–Mills scat-
tering amplitudes. The perturbative expansion in the gaugetheory is related toD-instanton
expansion in string theory (the string theory in question isa topological open stringB-model
on a Calabi–Yau supermanifoldCP3|4, which is a supersymmetric generalisation of Pen-
rose’s twistor space). The relationship to QCD amplitudes inspired new methods for the
calculation of helicity amplitudes in field theories. The Cachazo–Svřcek–Witten (CSW)
approach [105, 106] constructs tree-level QCD amplitudes from vertices that are off-shell
continuations of maximal helicity violating (MHV) amplitudes [107], connected by scalar
propagators.

Subsequently, a set of recursion relations has been found [108–111] that involve only
on-shell amplitudes with shifted, complex, external momenta.

1.2.6 The BCFW Recursion Relation

In this subsection we prove the recursion relation with shifted momenta, following the ideas
of Britto, Cachazo, Feng and Witten [104, 108, 109], becausethis proof is constructive and
the same technique can be, and has been, applied to many otherproblems [112–114]. The
idea of the relation is as follows: one holds two gluons fixed and sums over products of
subamplitudes withr external gluons on one side, connected by an internal gluon to n− r
external gluons on the other side. The two fixed gluons are on opposite sides. The sum is
over all possible decompositions with one fixed gluon on eachside. The momentum of the
internal gluon isk and its helicity isλ. The momenta are shifted in such a way that the internal
gluon, as well as the external gluons, are on-shell.

In other words: we prove that any gluonic tree-level amplitude can be constructed from
two subamplitudes with fewer gluons times a Feynman propagator. The subamplitudes are
physical, on-shell amplitudes with shifted momenta. The recursion relation can be written as:

An = ∑
r,λ

Aλ
r+1

1
k2

r
A−λ

n−r+1 , (1.12)

whereAn is the tree-level scattering amplitude forn cyclically ordered gluons.
The proof uses the spinor-helicity formalism mentioned in subsection 1.2.4. The spinors

of the i-th gluon are calledκi and κ̃i. Thus we can writekaȧ
i = κa

i κ̃ȧ
i for the null-vectorki .

Now two gluons’ momenta are changed by introducing a complexvariablez in the following
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manner (without loss of generality these can be chosen asl andn, if we use cyclic symmetry):

kl (z) = κl (κ̃l −zκ̃n) , kn(z) = (κn+zκl) κ̃n , (1.13)

which is the transition:
κ̃l → κ̃l −zκ̃n , κn → κn+zκl , (1.14)

with fixed κl andκ̃n. The momenta of all the other gluons stay unaltered. The changed mo-
mentakl (z) andkn(z) are on-shell for allz. Using these we can define the auxiliary function:

A(z) = A
(
k1, . . . ,kl−1,kl (z),kl+1, . . . ,kn−1,kn(z)

)
, (1.15)

which is a physical on-shell amplitude for allz. All momenta are on-shell and momentum
conservation is fulfilled. Without loss of generality, we assume that the helicitiesλl andλn

are− and+, respectively. The proof for other helicity configurationscan be done in a similar
manner.

1l −1

l n−1

n

= ∑

1
jj +1

l −1

l

l +1

i −1 i

n−1

n

Figure 1.1:Pictorial representation of the BCFW recursion relation. The momenta of gluons
n and l are changed according to equation (1.13). The sum runsover all cyclically ordered
gluons with at least two gluons on each side and over the two choices of helicity for the
internal gluon connecting the two subamplitudes.

If we can show thatA(z) is a rational function, that it has only simple poles and thatit
vanishes forz→ ∞, we are basically done, because it can then be written as:

A(z) = ∑
p∈{poles}

cp

z−zp
, (1.16)

wherecp is the residue at the polep. It will turn out, thatcp is proportional to amplitudes
with fewer legs thanA(z) which leads to the desired recursion relation. Let us start with the
proof of these three statements aboutA.

Since the original tree-level amplitude is a rational function of spinor products and the
z-dependence only enters via equations (1.14),A(z) is also a rational function inz.

A(z) is constructed out of Feynman diagrams and can only have singularities from prop-
agator terms. SinceA(z) is colour-ordered, all propagators are of the form 1/K2

i j , where
Ki j = ki +ki+1+ . . .+k j . Ki j is independent ofz if l ,n /∈ {i, . . . , j}, but also ifl ,n∈ {i, . . . , j},
sincekl (z)+ kn(z) = κl κ̃l + κnκ̃n is z-independent. Forl ∈ {i, . . . , j} andn /∈ {i, . . . , j} we



18 1 Introduction

use momentum conservation to replaceki + . . .+k j by−(k j+1+ . . .+ki−1). Then we are left
with the last remaining casel /∈ {i, . . . , j} andn∈ {i, . . . , j}. In this caseKi j (z) = Ki j +zκl κ̃n.
Using the fact that the shift ofkn is a null-vector, we have:

K2
i j (z) = K2

i j +z〈κl |Ki j |κ̃n〉 , (1.17)

where the product is defined by〈κ|k|κ̃〉=−kaȧκaκ̃ȧ. Hence, the propagator 1/K2
i j (z) has only

one single simple pole at:

zi j =
K2

i j

〈κl |Ki j |κ̃n〉
. (1.18)

The zi j for different pairs ofi and j are distinct and they are the only singularities ofA(z).
Accordingly,A(z) has only simple poles.

Now we show that ofA(z) vanishes forz→ ∞. Any Feynman diagram contributing to
A(z) is linear in the polarisation vectorsεaȧ of the external gluons, that can be written as:

ε−aȧ =
κaµ̃ȧ

[κ̃, µ̃]
, ε+

aȧ =
µaκ̃ȧ

〈µ,κ〉, (1.19)

whereµ andµ̃ are fixed reference spinors. The onlyz-dependent polarisation vectors are the
ones of gluonsl andn. The spinorκl does not depend onz, andκ̃l is linear inz. Since the
helicity of λl is negative, it follows thatε−l goes to zero like1/z for z→ ∞. The same can
be shown forε+

n . The other terms in Feynman diagrams are propagators (whichare constant
or vanish in the limitz→ ∞) and vertices. Since vertices with four gluons do not have any
momentum factors, we only have to show that contributions from three-gluon vertices vanish
like 1/z for z→ ∞. In a tree diagram thez-dependence flows from gluonl to gluonn along a
unique path of propagators. Each of them gives a factor1/z. If there arer of these propagators
there can be at mostr + 1 cubic vertices along the path. Vertices and propagators together
give a factor that grows at most linearly inz for largez. Since the product of polarisation
vectors vanishes like(1/z)2, A(z) vanishes like1/z for z→ ∞.

Equation (1.16) can now be rewritten with the residuesci j of A(z) at the polez= zi j as:

A(z) = ∑
i, j

ci j

z−zi j
, (1.20)

where the sum overi and j runs over all pairs in such a way thatn is in the range fromi to j,
while l is outside this range. To get the recursion relation we now calculate the residuesci j . If
there is a pole atK2

i j (z) = 0, a tree diagram is divided into two parts by a propagator. The first
part, the subamplitude on the right-hand side of figure 1.1, contains all external gluons inside
the range fromi to j, whereas the second part, the left subamplitude, contains the external
gluons outside this range. The connecting internal line hasmomentumKi j (z). We have to
sum over the helicitiesλ =± at the left-hand side (the helicity of the right-hand side isalways
opposite). The contributions of such diagrams near the polez= zi j are:

∑
λ

Aλ
L(z)A

−λ
R (z)

K2
i j (z)

, (1.21)
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whereAλ
L(z) andA−λ

R (z) are the contributions of the particular sides. The denominator K2
i j (z)

is linear inz. To obtain the functionci j /(z−zi j ) in equation (1.20), we setz= zi j . In doing so,
the internal line becomes on-shell and the numerator becomes a product of physical on-shell
scattering amplitudes. Thus we have:

A−λ
R

(
zi j
)

= A
(
−K−λ

i j (zi j ),ki , . . . ,kn(zi j ), . . . ,k j
)
,

Aλ
L

(
zi j
)

= A
(
k j+1, . . . ,kl (zi j ), . . . ,ki−1,K

λ
i j (zi j )

)
. (1.22)

Using this, we can rewrite equation (1.20) as:

A(z) = ∑
i, j

∑
λ

Aλ
L(zi j )A

−λ
R (zi j )

K2
i j (zi j )

. (1.23)

We setz = 0 in the denominator, without changing the numerator, to obtain the physical
scattering amplitudeA(1,2, . . . ,n):

A(1,2, . . . ,n) = ∑
i, j

∑
λ

Aλ
L(zi j )A

−λ
R (zi j )

K2
i j

, (1.24)

which is the BCFW recursion relation.

1.3 Parton Showers

This section gives an introduction to parton showers based on reference [115].
With present techniques, our limited ability to calculate perturbative corrections in QCD

allows analytical predictions only for the first few orders in αs. Since the size of calculations
grows roughly factorially with the order ofαs, without new ideas, not many higher orders
results can be expected in the near future. Nevertheless, higher order terms are important for
some regions in phase space, such as collinear parton emission in deep inelastic scattering.
Also at high thrust [116, 117]:

T =

max
~n

∑
i
|~pi ·~n|

∑
i
|~pi |

→ 1 (1.25)

in electron–positron annihilation, fixed order predictions are unreliable, since for each power
of αs there is an extra factor of ln2(1−T) which spoils the calculation.

For these regions in phase space, there is a different approach: not a precise calculation
to some fixed order in the perturbation series, but an approximate result for all orders. This
approach is calledparton showers. The shower gives an approximate perturbative result at
scales of momentum-transfer squaredt greater than some infra-red cut-offt0, typically of the
order of 1 GeV2. Combined with a non-perturbative hadronisation model at scalest < t0, one
obtains two of the main ingredients for a QCD event generator, a computer program to simu-
late interaction and production of hadrons with similar final states (average and fluctuations)
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as those observed in experiment. To this end, the parton distribution functions of the initial
state, the hard interaction itself, other semi-hard processes and beam remnants with colour
connection (the so-called underlying event), as well as thedecay of hadrons, have to be taken
into account. Since quantum mechanics is probabilistic, a generator has to produce the events
randomly. For this reason, event generators are Monte Carloprograms [118].

generator latest version hadronisation references
PYTHIA 6.4 (Fortran) string model [119]

8.142 (C++) [120]
HERWIG 6.510 (Fortran) cluster model [121]
HERWIG++ 2.5.1 (C++) cluster model [122, 123]
ISAJET 7.81 (Fortran) independent fragmentation[124]
SHERPA 1.3.0 (C++) string & cluster [125, 126]

Table 1.5:The main hadronic event generators. For special purposes there are a lot more
programs available, e. g.ARIADNE [127] for parton showers orALPGEN [128] for multi-
parton processes in hadronic collisions.

1.3.1 Splitting Functions

We will now derive the unregularised gluon splitting function as an example of a splitting
function. Leta be an outgoing gluon, branching into gluonsb andc like in the right-hand
side of figure 1.2. This is a time-like branching, sincet = p2

a > 0. The opening angle is
θ = θb +θc. The energy fractionz is defined by:

z=
Eb

Ea
=

Ea−Ec

Ea
= 1− Ec

Ea
. (1.26)

For momenta parametrised as:

pa =
(
Ea+

p2
a

4Ea
,0,0,Ea−

p2
a

4Ea

)
,

pb =
(
Eb,+Ebsinθb,0,Ebcosθb

)
,

pc =
(
Ec,−Ecsinθc,0,Eccosθc

)
(1.27)

and in the approximation of small angles, we obtain:

t = p2
a = (pb+ pc)

2 = 2EbEc(1−cosθ) ≈ z(1−z)E2
aθ2 . (1.28)

Using transverse momentum conservation, we get:

θ =
1
Ea

√
t

z(1−z)
=

θb

1−z
=

θc

z
. (1.29)
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a

θb

θc

b

c

Mn

a

θb

θc

b

c

Mn

Figure 1.2:The incoming branching (left) is space-like, p2
b = t < 0, whereas the outgoing

branching (right) is time-like, p2a = t > 0.

For the matrix elementM there is a factor proportional to1/t from the propagator of gluona,
and the vertex of the three gluons gives a factor:

Vggg = ig f abcεα
aεβ

bεγ
c

(
gαβ(pa− pb)γ +gβγ(pb− pc)α +gγα(pc− pa)β

)
, (1.30)

whereεµ
i is the polarisation vector for gluoni. All momenta of the gluons are defined as

outgoing, so thatpa + pb + pc = 0. Usingεi · pi = 0, we get:

Vggg = −2ig f abc((εa · εb)(εc · pb)− (εb · εc)(εa · pb)− (εc · εa)(εb · pc)
)

. (1.31)

The gluons are almost on-shell. Hence, we can take their polarisation vectors to be purely
transverse. These can be written as superpositions of a polarisation vector in the plane, which
is spanned by the three gluons, and a polarisation vector perpendicular to this plane. Polari-
sation states of the first kind are labelled asεin

i , the latter ones asεout
i . The following relations

are fulfilled:

εin
i · εin

j = εout
i · εout

j = −1,

εin
i · εout

j = εout
i · p j = 0. (1.32)

For smallθ, when terms of orderθ2 are neglected, one has:

εin
c · pb = −Ebθ = −zEaθ ,

εin
a · pb = −Ebθb = −z(1−z)Eaθ ,

εin
b · pc = +Ecθ = (1−z)Eaθ . (1.33)

We see that every term in the three-gluon vertex is proportional to θ. With the propagator
proportional to1/t ∼ 1/θ2, it follows that the amplitude has a1/θ singularity. The matrix
element is:

Mn+1 ∼Vggg
1
t
Mn . (1.34)

SquaringMn+1 and insertingθ from equation (1.29), gives:

|Mn+1|2 ∼
4g2

t
NcF(z;εa,εb,εc)|Mn|2 , (1.35)



22 1 Introduction

where the colour factorNc = 3 for SU(3) comes from the product of the structure functions
f abc. The functionsF(z;εa,εb,εc) are given by:

F(z;εin
a , εin

b , εin
c ) =

1−z
z

+
z

1−z
+z(1−z) ,

F(z;εin
a , εout

b ,εout
c ) = z(1−z) ,

F(z;εout
a ,εin

b , εout
c ) =

1−z
z

,

F(z;εout
a ,εout

b ,εin
c ) =

z
1−z

. (1.36)

All other polarisation combinations vanish. Averaging over the polarisations ofa and sum-
ming over the polarisations ofb andc lead to:

〈F〉 =
1
2 ∑

µa=in,out
∑

µb=in,out
∑

µc=in,out
F(z;εµa

a ,εµb
b ,εµc

c ) =
1−z

z
+

z
1−z

+z(1−z) . (1.37)

The unregularised gluon splitting function is defined as:

P̂gg(z) = Nc〈F〉 = Nc

(
1−z

z
+

z
1−z

+z(1−z)

)
. (1.38)

The branching probabilitŷPgg(z) for gluons is related to the corresponding Altarelli–Parisi
kernel [129] and diverges forz→ 0 (if gluon b is soft) andz→ 1 (if gluonc is soft). As can
be seen from equation (1.36) the divergences are correlatedto the emission of a soft gluon
polarised in the plane of branching. To get the regularised splitting function we use theplus
prescription, also calledplus distribution, defined by:

1
Z

0

f (x)
(
g(x)

)
+

dx =

1
Z

0

(
f (x)− f (1)

)
g(x)dx, (1.39)

where f (x) is a smooth test function andg(x) is singular atx = 1. Thus we finally obtain:

P(z) = P̂(z)+ . (1.40)

1.3.2 Evolution Equations

To get the DGLAP evolution equation [129–131] we look at multiple small-angle gluon emis-
sions from a space-like quark (see figure 1.3). The quark fromhadronA has, in the beginning,
a low virtual mass-squaredt0 < 0 and a high fractionx0 of the hadron’s momentum. With
every emitted gluon it moves to a more virtual massti < ti−1 and a lower momentum fraction
xi < xi−1. After emittingn gluons, the quark takes part in a hard scattering process viaan
exchange of a photon of virtual mass-squaredq2 = −Q2.

To get a better understanding of the evolution, it is helpfulto imagine every sequence of
branchings as a path in(t,x)-space, as in figure 1.4. The path starts at(t0,x0) and follows a
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A

q

−t0 −t1 −tn−1 −tn. . .

. . .x0 x1 xn−1 xn

Figure 1.3:Initial-state branching: multiple small-angle gluon emissions from a space-like
quark.

parallel to thet-axis until a branching occurs at(t1,x0). Then there is a step downwards from
x0 to x1 at constantt1, wheret1 is equal to the virtual mass-squared after the branching.

The cross-section of the hard scattering process depends onthe scaleQ2 and on the mo-
mentum fraction distribution of the partons seen by the virtual photon at this scale,D(x,Q2).
We derive an evolution equation for the scale-dependence ofthis distribution by the help of
the pictorial representation introduced above. Att = t0 the paths have a distributionD(x0, t0)
characteristic for the hadronA at this scale. The parton distributionD(x, t) at scalet is the
x-distribution of paths at this scale. Whent is increased tot +δt, the change in the distribution
of partons is the number of paths arriving in the element(δt,δx) minus the number of paths
leaving, divided byδx. We integrate the branching probability times the parton density over
all momentum fractionsx′ = x/z higher thanx to get the total number of arriving paths:

δDin(x, t) =
δt
t

1
Z

x

dx′
1

Z

0

dz
αs

2π
P̂(z)D(x′, t)δ(x−zx′) =

δt
t

1
Z

0

dz
z

αs

2π
P̂(z)D(x/z, t) . (1.41)

The number of leaving paths can be obtained in a similar way byintegrating over all momen-
tum fractionsx′ = xz lower thanx:

δDout(x, t) =
δt
t

D(x, t)

x
Z

0

dx′
1

Z

0

dz
αs

2π
P̂(z)δ(x′−xz) =

δt
t

D(x, t)

1
Z

0

dz
αs

2π
P̂(z) . (1.42)

The difference of them gives the net change of paths:

δD(x, t) = δDin(x, t)−δDout(x, t) =
δt
t

1
Z

0

dz
αs

2π
P̂(z)

(
1
z
D(x/z, t)−D(x, t)

)
. (1.43)

Using this, we can write down the DGLAP evolution equation with the regularised splitting
function:

t
∂
∂t

D(x, t) =

1
Z

x

dz
z

αs

2π
P(z)D(x/z, t) . (1.44)
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t0

(t1,x0)

(t1,x1)

t t +δt Q20

x+δx

x

x0

1

xn

Figure 1.4:Parton branching for a space-like parton as a path in(t,x)-space.

The lower limit of thez-integration can be chosen as zero orx because the integrand vanishes
for z < x. The functionD(x, t) is the distribution of parton momentum fractions inside the
incoming hadronA at the scalet. For more than one type of partons this can be generalised
to:

t
∂
∂t

Di(x, t) = ∑
j

1
Z

x

dz
z

αs

2π
Pi j (z)D j(x/z, t) , (1.45)

wherePi j (z) is the regularisedi → j splitting function andDi(x, t) is the distribution of partons
of type i.

1.3.3 Sudakov Form Factors

There is a way to eliminate the plus prescription from the evolution equation by introducing
a so-called Sudakov form factor [132]:

∆(t) = exp

(
−

t
Z

t0

dt′

t ′

Z

dz
αs

2π
P̂(z)

)
. (1.46)

With that definition we can rewrite equation (1.43) as:

t
∂
∂t

D(x, t) =
Z

dz
z

αs

2π
P̂(z)D(x/z, t)+

D(x, t)
∆(t)

t
∂
∂t

∆(t) (1.47)

and

t
∂
∂t

(
D
∆

)
=

1
∆

Z

dz
z

αs

2π
P̂(z)D(x/z, t) . (1.48)
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This has a form similar to the DGLAP equation (1.44). Integrating gives an equation for
D(x, t) in terms of the initial parton distributionD(x, t0):

D(x, t) = ∆(t)D(x, t0)+

t
Z

t0

dt′

t ′
∆(t)
∆(t ′)

Z

dz
z

αs

2π
P̂(z)D(x/z, t) . (1.49)

This equation can be interpreted using the paths in(t,x)-space from figure 1.4: the first term
on the right-hand side is the contribution of the path fromt0 until the first branching occurs
at t. Thus the Sudakov factor is the probability of evolving fromt0 to t without branching.
The second term gives the contribution from all paths which have their last branching att ′,
whereas the quotient∆(t)/∆(t ′) stands for the probability of evolving fromt ′ to t without
branching. If there is more than one parton, each parton species i has its own Sudakov factor
∆i(t). Additionally, if there is more than one possible type of branching, the sum over all
allowed processesi → j has to be taken. In this case we get a generalised Sudakov form
factor:

∆i(t) = exp

(

−∑
j

t
Z

t0

dt′

t ′

Z

dz
αs

2π
P̂ji (z)

)

. (1.50)

With the same generalisation, equation (1.48) becomes:

t
∂
∂t

(
Di

∆i

)
=

1
∆i

∑
j

Z

dz
z

αs

2π
P̂i j (z)D j(x/z, t) . (1.51)

The infrared singularity of the unregularised splitting function atz = 1 can be removed by
introducing an infrared cutoffz< 1−ε(t). Branchings withz> 1−ε(t) involve the emission
of an undetectable soft parton and are not taken into account. The Sudakov factor with this
cutoff gives the probability of evolving fromt0 to t without any resolvable branching.

The formulation of parton branching in terms of the Sudakov form factor is suitable for
computer implementation. The task for the program is to generate values(t2,x2) for a given
virtual mass scalet1 and a given momentum fractionx1. The value oft2 can be obtained from

∆(t2)
∆(t1)

= r1 , (1.52)

wherer1 is a uniformly distributed random number in the interval[0,1]. Since the left-hand
side of this equation gives the probability of evolving fromt1 to t2 without any resolvable
branching,t2 can be generated with the correct probability distributionin this way. If thet2
determined in this way is bigger thanQ2, there is no further branching. Ift2 is smaller than
Q2, a value of the momentum fraction is generated. This is done according to a probability
distribution proportional toP(z)αs/(2π), by solving the equation:

z
Z

ε

dz′
αs

2π
P(z′) = r2

1−ε
Z

ε

dz′
αs

2π
P(z′) (1.53)
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for another random numberr2 ∈ [0,1], whereε is the infrared cut-off for resolvable branch-
ings. If there are no further constraints, the azimuthal angle φ of the emitted parton is gen-
erated within the range[0,2π]. With the given values oft2, z andφ the momentum of the
emitted parton can be calculated.

For branchings of partons with time-like momentum,t evolves downwards in the direction
of the cut-off valuet0, instead of upwards towardsQ2 like in the case considered above. Then
the equation to determinet2 reads:

∆(t1)
∆(t2)

= r1 . (1.54)

Since∆(t0) = 1, this equation has no solution fort2 > t0 if r1 < ∆(t1), which correctly gener-
ates the probability for no resolvable branching. The momentum fractionz is generated like
in the space-like case. The successive time-like branchings form a cascade of partons, called
aparton shower, until the partons generate no additional branchings.

After the parton shower has terminated, we are left with a setof partons with virtual
masses squared of the order of the cut-off scalet0. Then perturbation theory is not applicable
any more and hadronisation – also called fragmentation – sets in, converting the partons into
observable hadrons. For the hadronisation process different models are used.

The simplest model supposes that each parton fragments independently [133, 134]. A
quark, for example, is combined with an antiquark from aqq̄ pair created out of the vacuum,
to give a meson with energy fractionz. The remaining quark with energy fraction 1−z from
the qq̄ pair fragments in the same way, until the leftover energy falls below some cut-off.
Every gluon is assumed to split into aqq̄ pair before the described hadronisation process sets
in.

In the simplest example of theLund string model[135–138] a quark–antiquark pair mov-
ing apart in opposite directions losing energy to the colourfield which collapses into a string-
like configuration between them. Since the string has an uniform energy per unit length, the
total energy rises until it eventually breaks apart throughspontaneousqq̄ production. Each
of the separate strings can undergo further break-ups. In this model gluons produce kinks on
the string [139] which leads to a different angular distribution compared to the independent
fragmentation.

In thecluster model[140, 141] colour-singlet clusters of partons form after the partons in
the shower stop branching. The clusters of typical masses oftwo or three times

√
t0 decay

into the observed hadrons.

1.3.4 Backward Evolution and Angular Ordering

In the previous subsections we discussed forward evolution. The initial momentum fraction
x0 of the emitting parton is known and the final valuexn is calculated. This is convenient in
time-like evolution. For space-like showers it is more convenient and more efficient to start
with the momentum fractionxn of the final parton, because this parton takes part in the hard
scattering. Fromxn the preceding momentum fractionsxn−1, . . . ,x0 are generated through
backward evolution [142, 143].

An example is Drell–Yan production of a vector boson in hadron–hadron collisions. A
quark with momentum fractionxq and an antiquark withxq̄ coming from different hadrons
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interact to produce a boson of massM, whereM2 ≈ xqxq̄s and
√

s is the hadron–hadron
centre-of-mass energy. The product of the finalxn’s of the two space-like partons should have
the right value to produce this particular boson. If the showers would be generated forwards,
in most cases the product would not have the needed value. Thus the contributions to the
cross-section would be negligible and the efficiency very low. In backward evolution we can
choose thexn’s in the region where the contributions to the cross-section are big gaining a
bigger efficiency.

The form factor in the case of backward evolution is modified:

∆(ti) →
∆(ti)

D(x, ti)
. (1.55)

The probability of evolving backwards from(t2,x) to (t1,x) reads:

Π(t1, t2,x) =
D(x, t1)∆(t2)
D(x, t2)∆(t1)

. (1.56)

The value oft1 can be obtained from equatingΠ(t1, t2,x) with a random number uniformly
distributed in the interval[0,1]. To get the corresponding value for the momentum fraction,
we generatez= x2/x1 with a probability distribution proportional to

αs

2π
P(z)

z
D(x2/x1, t1) , (1.57)

whereP(z) is the appropriate splitting function. The extra factor ofD(x2/x1, t1) will be di-
vided out in the next backward step int. The generation ofx can be done in a similar way
like in forward evolution in equation (1.53).

θi j

θi j i

j

Figure 1.5:Angular ordering: soft gluons from parton i are emitted inside a cone centred
around the path of i with opening angle2θi j .

An investigation of the angular distribution of emitted soft gluons shows that gluons emit-
ted by partoni are confined into a cone centred around the path of partoni with an opening
angle 2θi j , whereθi j is the angle between the trajectories of partonsi and j. The cone of
emitted gluons of partonj is centred around linej and has the same opening angle. After the
emission of gluonk at angleθik < θi j the next gluon will be emitted within the angleθik. The
property of decreasing anglesθi j > θik > θil > ... is calledangular ordering.
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The analogue in electrodynamics is called Chudakov effect [144]. The soft photon emis-
sion of an electron–positron pair is suppressed at angles larger than the opening angle of the
pair. A simple explanation of this effect is that photons at larger angles do not see the individ-
ual charges of the electron and the positron, but only the netcharge, which is zero, implying
no emission.



Chapter 2

Born Gluon Amplitudes

In this chapter we compare four different methods for the numerical computation of pure glu-
onic amplitudes in the Born approximation [145]. These methods are Berends–Giele recur-
rence relations, recursive calculations with scalar diagrams, with maximal helicity violating
(MHV) vertices and with shifted momenta. We investigate theefficiency of these methods for
an increasing number of external particles and the numerical accuracy in critical phase space
regions.

2.1 Four Different Methods

Using colour decomposition the tree-level amplitude withn external gluons can be written as

An

(
kλ1

1 , . . . ,kλn
n

)
= gn−2 ∑

σ∈Sn/Zn

2 Tr
(

Taσ(1) . . .Taσ(n)

)
An

(
k

λσ(1)

σ(1) , . . . ,k
λσ(n)

σ(n)

)
, (2.1)

where the sum runs over all non-cyclic permutations of the external gluon legs. In this for-
mula k j denotes the four-momentum of thej-th gluon andλ j its helicity, while g stands
for the strong coupling constant andTa the colour matrices, which are normalised such that
Tr(TaTb) = 1/2 δab. The gauge invariant partial amplitudesAn contain the kinematic informa-
tion and are invariant under cyclic permutations. They are colour-ordered, i. e. only diagrams
with a particular cyclic ordering of the gluons contribute.In the computation of observables
and cross sections enters the squared amplitude summed overall helicities and colour degrees
of freedom

|An|2 = 22−ng2n−4Nn
c ∑

λ1,...,λn

∑
σ∈Sn/Zn

∣∣∣An

(
k

λσ(1)

σ(1) , . . . ,k
λσ(n)

σ(n)

)∣∣∣
2
+O

( 1
N2

c

)
. (2.2)

HereNc = 3 is the number of colours. The interference terms between partial amplitudes
of different colour-orderings are colour-suppressed (ofO(N−2

c )). In the following we examine
partial amplitudesAn summed over all helicities (but not over the colour structures)

Mn = ∑
λ1,...,λn

∣∣∣An

(
kλ1

1 , . . . ,kλn
n

)∣∣∣
2
. (2.3)

29
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Mn gives the leading-colour contribution to equation (2.2) and depends only on the kine-
matical information. It is used to study the efficiency of various methods to calculate the
partial amplitudesAn. Since parity relates a partial amplitude to the one with allhelicities
reversed, we only have to calculate half of the helicity configurations:

An

(
kλ1

1 , . . . ,kλn
n

)
= −An

(
k−λ1

1 , . . . ,k−λn
n

)∗
. (2.4)

The partial amplitude is also invariant under cyclic permutation of its arguments and satisfies
a reflection identity

An

(
kλn

n , . . . ,kλ1
1

)
= (−1)nAn

(
kλ1

1 , . . . ,kλn
n

)∗
. (2.5)

With the shorthand notation

An(1,2, . . . ,n) = An

(
kλ1

1 ,kλ2
2 , . . . ,kλn

n

)
(2.6)

we can write down the cyclicity property:

An(1,2, . . . ,n) = An(2,3, . . . ,n,1) (2.7)

and the identity:

An(1,2,3, . . . ,n)+An(2,1,3, . . . ,n)+An(2,3,1, . . . ,n)+ . . .+An(2,3, . . . ,1,n) = 0 , (2.8)

which is called photon decoupling equation [146] or dual Ward identity [90] or subcyclic
property [87]. Partial amplitudes with all helicities plus(minus) as well as partial amplitudes
with all helicities plus (minus) and only one minus (plus) vanish:

An
(
k±1 ,k+

2 , . . . ,k+
n

)
= 0

An
(
k±1 ,k−2 , . . . ,k−n

)
= 0 . (2.9)

The first non-vanishing amplitudes are those with all but twoof the same helicity. A closed-
form expression for this was found by Parke and Taylor [107]:

An(k
+
1 , . . . ,k+

j−1,k
−
j ,k+

j+1, . . . ,k
+
k−1,k

−
k ,k+

k+1, . . . ,k
+
n ) = i

〈 jk〉4

〈12〉〈23〉 . . .〈n1〉 . (2.10)

Kosower gave an expression for an amplitude with three negative helicities and the remaining
ones positive [99]. The formula would fill half a page.

We also investigate the numerical accuracy of the various methods in critical phase space
regions, i. e. regions where one or more partons become unresolved (soft or collinear). In the
limit where gluonj becomes soft, the partial amplitudes behave as:

An+1(k1, . . . ,k
+
j , . . . ,kn+1)

k j so f t−→
√

2
〈k j−1k j+1〉

〈k j−1k j〉〈k jk j+1〉
An(k1, . . . ,kn+1),

An+1(k1, . . . ,k
−
j , . . . ,kn+1)

k j so f t−→
√

2
[k j+1k j−1]

[k j+1k j ][k jk j−1]
An(k1, . . . ,kn+1). (2.11)
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Figure 2.1:Pictorial representation of the Berends–Giele recurrencerelation. The gluons 1
to n are on-shell and the others off-shell.

The spinor products〈kik j〉 and[kik j ] are defined in appendix A.2. The quantityMn factorises
in the soft limit as:

Mn+1(k1, . . . ,k j , . . . ,kn+1)
k j so f t−→ 2

(2k j−1k j+1)

(2k j−1k j)(2k jk j+1)
Mn(k1, . . . ,kn+1). (2.12)

In the collinear limit tree-level partial amplitudes factorise according to:

An+1(. . . ,ka,kb, . . .)
ka||kb−→ ∑

λ=+/−
Split−λ(k

λa
a ,kλb

b )An(. . . ,K
λ, . . .), (2.13)

whereka andkb are the momenta of two adjacent legs,K = ka+kb, ka = zK andkb = (1−z)K.
The corresponding helicities are denoted byλ, λa andλb. The splitting functions are listed in
appendix A.3. In the collinear limit the quantityMn behaves as [147–150]:

Mn+1(. . . ,ka,kb, . . .)
ka||kb−→ 2

2kakb

(
2

1−z
+

2
z
−4

)
Mn(. . . ,K

λ, . . .)+
8

(2kakb)2Sn, (2.14)

where the spin correlation is given by:

Sn = ∑
λ1,...,λa−1,λb+1,...,λn

∣∣∣EAn

(
kλ1

1 , . . . ,K+, . . . ,kλn
n

)
+E∗An

(
kλ1

1 , . . . ,K−, . . . ,kλn
n

)∣∣∣
2

(2.15)

and

E = z
〈k+

b |ka|K+〉√
2[Kkb]

. (2.16)

2.1.1 Berends–Giele Recurrence Relations

Berends–Giele type recurrence relations [98, 99] were introduced in 1987 by F. A. Berends
and W. T. Giele. Pedagogical introductions can be found in references [90, 151, 152]. These
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kinds of recurrence relations build partial amplitudes from smaller building blocks, so-called
colour-ordered off-shell currents. Off-shell currents have n on-shell legs and one additional
off-shell leg. They are not gauge-invariant.

Recurrence relations relate off-shell currents withn legs to off-shell currents with fewer
legs. The recursion starts withn = 1:

Jµ(k1) = εµ(k1,q) . (2.17)

The variableεµ is the polarisation vector of the gluon andq is an arbitrary light-like reference
momentum. For positive and negative polarisation this vector looks like:

ε+
µ (k,q) =

〈q−|γµ|k−〉√
2〈q−|k+〉

, ε−µ (k,q) =
〈q+|γµ|k+〉√

2〈k+|q−〉
. (2.18)

A gluon couples to other gluons only via the three- or four-gluon vertices. Therefore the
recursive relation can be written in the following form:

Jµ(kλ1
1 , . . . ,kλn

n

)
=

−i

K2
1,n

(
n−1

∑
j=1

Vµνρ
3

(
−K1,n,K1, j ,K j+1,n

)
Jν
(
kλ1

1 , . . . ,k
λ j
j

)
Jρ
(
k

λ j+1
j+1 , . . . ,kλn

n

)

+
n−2

∑
j=1

n−1

∑
l= j+1

Vµνρσ
4 Jν

(
kλ1

1 , . . . ,k
λ j
j

)
Jρ
(
k

λ j+1
j+1 , . . . ,kλl

l

)
Jσ
(
kλl+1

l+1 , . . . ,kλn
n

)
)

,

(2.19)

where

Ki, j =
j

∑
l=i

kl = ki +ki+1 + . . .+k j (2.20)

andV3 andV4 are the colour-ordered three-gluon and four-gluon vertices

Vµνρ
3 (k1,k2,k3) = i

(
gµν (kρ

1 −kρ
2

)
+gνρ (kµ

2−kµ
3

)
+gρµ(kν

3−kν
1)
)
,

Vµνρσ
4 = i

(
2gµρgνσ −gµνgρσ −gµσgνρ). (2.21)

Since gluon currentJµ is conserved:

( n

∑
i=1

kµ
i

)
Jµ = Kµ

1,nJµ = 0, (2.22)

terms proportional toKν
1, j and toKρ

j+1,n can be dropped in equation (2.19). Using momentum
conservation, we get

Vµνρ
3 (k1,k2,k3) = Vµνρ

3 (k2,k3) = i
(
gνρ(k2−k3)

µ+2gρµkν
3−2gµνkρ

2

)
(2.23)

for the three gluon vertex in equation (2.19). With the shorthand notation

Jµ(1,2, . . . ,n) = Jµ
(

kλ1
1 ,kλ2

2 , . . . ,kλn
n

)
(2.24)
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we can write down the decoupling equation for off-shell currentsJµ (similar to equation 2.8):

Jµ(1,2,3, . . . ,n)+Jµ(2,1,3, . . . ,n)+Jµ(2,3,1, . . . ,n)+ . . .+Jµ(2,3, . . . ,n,1) = 0 (2.25)

and the reflection identity (similar to equation 2.5):

Jµ(1,2,3, . . . ,n) = (−1)n+1Jµ(n, . . . ,3,2,1). (2.26)

The partial amplitudeAn(k
λ1
1 , . . . ,kλn

n ) can be obtained from the gluonic off-shell current

Jµ(kλ1
1 , . . . ,kλn−1

n−1 ) by multiplying by the inverse gluon propagator and contracting with the
polarisation vector for gluonn:

An
(
kλ1

1 , . . . ,kλn
n

)
= ελn

µ

(
kn,q

)
·
(
iK2

1,n−1

)
Jµ(kλ1

1 , . . . ,kλn−1
n−1

)
. (2.27)

In some cases it is possible to give a closed form expression for the current:

Jµ(1+,2+, . . . ,n+) =
〈q−|γµ/K1,n|q+〉√

2〈q1〉〈12〉 . . .〈n−1,n〉〈nq〉
, (2.28)

Jµ(1−,2+, . . . ,n+) =
〈1−|γµ/K2,n|1+〉√

2〈12〉 . . .〈n1〉

n

∑
m=3

〈1−|/km/K1,m|1+〉
K2

1,m−1K2
1,m

, (2.29)

where the reference momenta for equation (2.29) areq1 = k2 andq2 = . . . = qn = k1. With
the help of equation (A.22) one can show, that the corresponding partial amplitude for the
current in equation (2.28) vanishes (see equation 2.9).

In the recursion relation equation (2.19) only the quantitiesJµ(kλi
i , . . . ,k

λ j−1
j−1 ) which re-

spect the original order need to be calculated. Therefore anefficient implementation stores a
list of four-momenta

[k1,k2, . . . ,kn] (2.30)

and a list of helicities
[λ1,λ2, . . . ,λn] (2.31)

in memory and passes to the subroutine just two integersi and j, indicating that the quantity

Jµ(kλi
i , . . . ,k

λ j−1
j−1 ) (2.32)

should be computed.

2.1.2 Recursive Calculation with Scalar Diagrams

The recursive calculation with scalar diagrams is a modification of the Berends–Giele re-
cursion relation [99, 153, 154]. In this approach all summations over Lorentz indices are
replaced by a sum over the two physical polarisations. This reduces the number of multipli-
cations needed for a contraction from four to two. The resulting recurrence relation consists
of scalar propagators and a set of primitive vertices.
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Figure 2.2:The non-vanishing gluon amplitudes are the building blocksfor recursive calcula-
tions with scalar diagrams. The mathematical expressions can be found in appendix A.4.3. A
pictorial representation of the recursive calculation with scalar diagrams would look similar
to the one of the Berends–Giele relation in figure 2.1.

Let q be a null-vector, which will be kept fixed throughout the discussion. Usingq, any
massive vectork can be written as a sum of two null-vectorsk♭ andq [155]:

k = k♭ +
k2

2kq
q. (2.33)

Obviously, ifk2 = 0, we havek = k♭. Note further that 2kq= 2k♭q. Using equation (2.33) we
may associate a massless four-vectork♭ to any four-vectork. Using the projection ontok♭ we
define the off-shell continuation of Weyl spinors as:

|k±〉 → |k♭±〉,
〈k±| → 〈k♭±|. (2.34)

We are going to use the following abbreviations:

〈i j 〉 =
〈

k♭−
i |k♭+

j

〉
,

[i j ] =
〈

k♭+
i |k♭−

j

〉
,

〈
i− | j ±k| l−

〉
=
〈

k♭−
i

∣∣∣/k♭
j ±/k♭

k

∣∣∣k♭−
l

〉
. (2.35)

In spinor products, the projectionsk♭ are always used. Let us define anoff-shell amplitude:

On
(
kλ1

1 ,kλ2
2 , . . . ,kλn

n

)
, (2.36)

depending onn external momentaki and helicitiesλi . The momenta need not to be on-shell,
but momentum conservation is imposed:

n

∑
j=1

k j = 0. (2.37)

By definition, the off-shell amplitudesOn are calculated from all Feynman diagrams con-
tributing to the cyclic-ordered partial amplitudeAn, by using the off-shell continuation equa-
tion (2.34) for all external spinors and polarisation vectors, and by using the axial gauge for
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all internal gluon propagators. Compared to off-shell currents, which are used in recurrence
relations of Berends–Giele type, an off-shell amplitude may have more than one leg off-shell.
By construction, if all external particles are on-shell, the off-shell amplitudeOn coincides
with the physical amplitudeAn. We have the following recurrence relation:

On
(
kλ1

1 , . . . ,kλn
n

)
= ∑

λ,λ′=±

n−1

∑
j=2

V3
(
Kλ

1, j−1,K
λ′
j ,n−1,k

λn
n

)
(2.38)

× i

K2
1, j−1

O j
(
kλ1

1 , . . . ,k
λ j−1
j−1 ,(−K1, j−1)

−λ) i

K2
j ,n−1

On− j+1
(
k

λ j
j , . . . ,kλn−1

n−1 ,(−K j ,n−1)
−λ′)

+ ∑
λ,λ′,λ′′=±

n−2

∑
j=2

n−1

∑
l= j+1

V4
(
Kλ

1, j−1,K
λ′
j ,l−1,K

λ′′
l ,n−1,k

λn
n

) i

K2
1, j−1

O j
(
kλ1

1 , . . . ,k
λ j−1
j−1 ,(−K1, j−1)

−λ)

× i

K2
j ,l−1

Ol− j+1
(
k

λ j
j , . . . ,kλl−1

l−1 ,(−K j ,l−1)
−λ′) i

K2
l ,n−1

On−l+1
(
kλl

l , . . . ,kλn−1
n−1 ,(−Kl ,n−1)

−λ′′)
,

where we define the two-point amplitude to be the inverse propagator:

O2
(
k±j ,−K∓

j , j

)
= −ik2

j . (2.39)

The partial amplitudeAn coincides withOn, if all gluons are on-shell:

An
(
kλ1

1 , . . . ,kλn
n

)
= On

(
kλ1

1 , . . . ,kλn
n

)
. (2.40)

There is only a limited number of non-zero vertices, which are listed in appendix A.4.3. This
allows for a high degree of optimisation in the calculation of theses vertices. The double
and triple sums over the intermediate helicities in equation (2.38) reduce in all cases to three
non-vanishing terms.

On the other hand it should be pointed out, that in this approach the four-valent vertices
depend (as do the three-valent vertices) on the momenta attached to these vertices. This
should be compared to the standard Feynman rules, which enter the Berends–Giele recurrence
relations, where the four-gluon vertex in equation (2.21) is independent of the momenta.

As in the Berends–Giele recurrence relations, an efficient implementation stores the se-
quence of four-momenta and helicities in a central place andjust passes two integersi and j
to the implementation of the recurrence relation, indicating the starting and ending points.

2.1.3 Recursive Calculation with MHV Vertices

In the Cachazo–Svrček–Witten (CSW) construction [105], tree-level QCD amplitudes are
constructed from vertices that are off-shell continuations of maximal helicity violating (MHV)
amplitudes, connected by scalar propagators. In maximal-helicity-violating amplitudes all
gluons but two have the same helicity. Compact formulæ for these amplitudes have been
known for a long time [107]. Using the off-shell continuation equation (2.34) the MHV-
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amplitudes serve as new vertices:

Vn(k
+
1 , . . . ,k+

j−1,k
−
j ,k+

j+1, . . . ,k
+
k−1,k

−
k ,k+

k+1, . . . ,k
+
n ) = i

(√
2
)n−2 〈 jk〉4

〈12〉〈23〉 . . .〈n1〉 , (2.41)

Vn(k
−
1 , . . . ,k−j−1,k

+
j ,k−j+1, . . . ,k

−
k−1,k

+
k ,k−k+1, . . . ,k

−
n ) = i

(√
2
)n−2 [k j]4

[1n][n(n−1)] . . .[21]
.

Each MHV vertex has exactly two lines carrying negative helicity and at least one line carry-
ing positive helicity.

Bena, Bern and Kosower [156] derived a recursive formulation, which allows to obtain
vertices with more gluons of negative helicity from simplerbuilding blocks:

Vn
(
kλ1

1 , . . . ,kλn
n

)
=

1
(nneg−2)

n

∑
j=1

j−3

∑
l= j+1

i

K2
j ,l

V(l− j+2) modn
(
k

λ j
j , . . . ,kλl

l ,(−K j ,l)
−)

×V( j−l) modn
(
kλl+1

l+1 , . . . ,k
λ j−1
j−1 ,(−K(l+1),( j−1))

+
)
, (2.42)

wherenneg is the number of negative helicity gluons. The recursion starts if nneg is less than

two. Fornneg= 0 ornneg= 1 the quantityVn(k
λ1
1 , . . . ,kλn

n ) vanishes. Fornneg= 2 it is given by
equation (2.41). Again, the partial amplitudeAn coincides withVn, if all gluons are on-shell:

An
(
kλ1

1 , . . . ,kλn
n

)
= Vn

(
kλ1

1 , . . . ,kλn
n

)
. (2.43)

There are two points which should be noted: first of all, thereis a double sum in equa-
tion (2.42), which over-counts each contribution(nneg−2) times. This over-counting is com-
pensated by the explicit factor 1/(nneg−2) in front. Secondly, it is no longer possible to work
with a static list of four-vectors and helicities, as it was the case for the first two methods. The
recursion relation equation (2.42) inserts the four-momenta−K j ,l and−K(l+1),( j−1) into the
cyclic order. Therefore the lists of momenta and helicitieshave to be updated at each step of
the recursion. This is best implemented by a double-linked list, which allows for the insertion
of the new elements without copying the remaining ones.

2.1.4 Recursive Calculation with Shifted Momenta

Britto, Cachazo and Feng [108] gave a recursion relation forthe calculation of then-gluon
amplitude, which involves only on-shell amplitudes. To describe this method it is best to
view the partial amplitudeAn not as a function of the four-momentakµ

j , but to replace each
four-vector by a pair of two-component Weyl spinors. In detail this is done as follows: each
four-vectorKµ has a bispinor representation, given by:

KAḂ = Kµσµ
AḂ

,

Kµ =
1
2

KAḂσ̄ḂA
µ . (2.44)

For null-vectors this bispinor representation factorisesinto a dyad of Weyl spinors:

kµkµ = 0⇔ kAḂ = kAkḂ. (2.45)
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Figure 2.3:Pictorial representation of the recursive calculation with shifted momenta.

The equations (2.44) and (2.45) allow us to convert any light-like four-vector into a dyad of
Weyl spinors and vice versa. Therefore the partial amplitude An, being originally a function
of the momentak j and helicitiesλ j , can equally be viewed as a function of the Weyl spinors
k j

A, k j
Ḃ

and the helicitiesλ j :

An
(
kλ1

1 , . . . ,kλn
n

)
= An

(
k1

A,k1
Ḃ,λ1, . . . ,k

n
A,kn

Ḃ,λn
)
. (2.46)

Note that for an arbitrary pair of Weyl spinors, the corresponding four-vector will in general
be complex valued. If(λn,λ1) 6= (+,−) we have the following recurrence relation:

An
(
k1

A,k1
Ḃ,λ1, . . . ,k

n
A,kn

Ḃ,λn
)

= (2.47)
n−1

∑
j=3

∑
λ=±

A j
(
k̂1

A,k1
Ḃ,λ1,k

2
A,k2

Ḃ,λ2, . . . ,k
j−1
A ,k j−1

Ḃ
,λ j−1, iK̂A, iK̂Ḃ,−λ

)

× i

K2
1, j−1

An− j+2
(
K̂A, K̂Ḃ,λ,k j

A,k j
Ḃ
,λ j , . . . ,k

n−1
A ,kn−1

Ḃ
,λn−1,k

n
A, k̂n

Ḃ,λn
)
.

If (λn,λ1) = (+,−) we can always cyclic permute the arguments, such that(λn,λ1) 6= (+,−).
This is possible, since on-shell amplitudes, where all gluons have the same helicity, vanish.
In equation (2.47) the shifted spinorsk̂1

A, k̂n
Ḃ
, K̂A andK̂Ḃ are given by:

k̂1
A = k1

A−zkn
A, K̂A=

KAḂkḂ
1√

〈1+ |K|n+〉
,

k̂n
Ḃ = kn

Ḃ +zk1
Ḃ, K̂Ḃ=

kA
nKAḂ√

〈1+ |K|n+〉
, (2.48)

where

KAḂ =
j−1

∑
l=1

kl
Akl

Ḃ, K2
1, j−1 = detKAḂ, (2.49)
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and

z=
K2

1, j−1

〈1+ |K|n+〉 . (2.50)

The recurrence relation starts withn = 3. The only non-vanishing amplitudes are:

A3
(
k1

A,k1
Ḃ,−,k2

A,k2
Ḃ,−,k3

A,k3
Ḃ,+

)
= i

√
2

〈12〉4

〈12〉〈23〉〈31〉,

A3
(
k1

A,k1
Ḃ,+,k2

A,k2
Ḃ,+,k3

A,k3
Ḃ,−

)
= i

√
2

[21]4

[32][21][13]
(2.51)

and the ones with cyclic permutations of the helicities. It should be noted that due to our
choice of shifting the spinors, the three point function with k̂1

A vanishes, if the helicities are
a cyclic permutation of(−,−,+). Similar, the three-point function involvinĝkn

Ḃ
vanishes, if

the helicities are a cyclic permutation of(+,+,−). To speed up the computation the Parke–
Taylor formulæ in equation (2.41) may be used forn≥ 4.

As in the previous method we have to update at each step in the recursion the list of Weyl
spinors and the helicities.

2.2 Comparison

In this section we study numerical implementations of recursive methods for the computa-
tion of Born gluon amplitudes. These amplitudes (together with corresponding ones, where
additional quarks or vector bosons are involved), are relevant for LHC physics. They enter
numerical NLO or LO program codes. As these calculations arebased on Monte Carlo in-
tegration over the phase space, the efficiency of the computation has a direct impact on the
running time of the Monte Carlo program.

From the four methods considered, we found the Berends–Giele method performs best,
as the number of external partons increases (n ≥ 8). However, for a not so large number of
external partons (n < 8), the on-shell recursion relation (BCFW) offers the best performance.

We also investigated the numerical stability and accuracy.Here, all methods give satis-
factory results.

2.2.1 Performance

We have implemented all four methods into a numerical program. All methods give identical
results within an accuracy of 10−12 for randomly chosen non-exceptional phase space points
and up to 12 external particles. To investigate the performance in terms of CPU time we study
the quantityMn defined in equation (2.3):

Mn = ∑
λ1,...,λn

∣∣∣An

(
kλ1

1 , . . . ,kλn
n

)∣∣∣
2
. (2.52)

It is clear from the algorithms that the first two methods (Berends–Giele and scalar diagrams)
need a constant amount of CPU time for each helicity configuration, whereas the last two
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Figure 2.4:CPU time in seconds for the computation of the n-gluon amplitude on a standard
PC (Pentium IV with 2 GHz), summed over all helicities.

methods (MHV and BCFW) are very efficient if the helicities are predominately all plus or
all minus, but take more CPU time, if the helicity configuration contains roughly the same
number of plus and minus helicities. To compare the different methods, the quantityMn

sums over all helicity configurations. This corresponds to the situation encountered in the
calculation of cross sections and observables. Table 2.1 shows the CPU time needed for the
computation ofMn as n varies from 4 to 12. The test was done on a standard PC with a
Pentium IV processor with 2 GHz.

n 4 5 6 7 8 9 10 11 12
Berends–Giele 0.00005 0.00023 0.0009 0.003 0.011 0.030 0.09 0.27 0.7
Scalar 0.00008 0.00046 0.0018 0.006 0.019 0.057 0.16 0.4 1
MHV 0.00001 0.00040 0.0042 0.033 0.24 1.77 13 81 —
BCFW 0.00001 0.00007 0.0003 0.001 0.006 0.037 0.19 0.97 5.5

Table 2.1:CPU time in seconds for the computation of the n-gluon amplitude on a standard
PC (Pentium IV with 2 GHz), summed over all helicities.

As can be seen from the table 2.1 and from figure 2.4, the Berends–Giele type recurrence
relation is the fastest method, as the number of external gluons increases. In the second place
comes the method with scalar diagrams, which has approximately the same slope. As already
discussed in the presentation of the algorithms, these two methods are fast due to the fact
that they can work with a static list of four-momenta and helicities. This avoids copying
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large amounts of data at each step of the recursion. The scalar diagram technique allows
for a higher degree of optimisation in the subroutines, but this is out-weighted by the fact,
that in the Berends–Giele method each three- or four-valentvertex is called exactly once,
whereas in the scalar diagram method each vertex is called three times with different helicity
configurations. For smallern up to circa eight the BCFW method is the fastest, but it has a
steeper slope than the Berends–Giele recurrence relation and the scalar diagram technique, so
that the latter both overtake the method of BCFW.

n 13 14 15 16 17 18 19 20
Berends–Giele 2 4 11 27 64 149 367 831
Scalar 3 6 15 36 85 195 465 1043

Table 2.2:Continuation of table 2.1 for n in the range from13 to 20 for the Berends–Giele
method and the scalar diagram method. The settings are as in table 2.1.

Table 2.2 shows the timings for the Berends–Giele method andthe scalar diagram method
for the computation ofMn asn varies from 13 to 20. It should be noted that forn = 20 the
results of the two methods agree within 10−11. It can be seen from table 2.1 and 2.2 that the
CPU time for the scalar diagram method grows slower than the one for the Berends–Giele
method as the numbern of external particles increases.

The MHV method is rather slow compared to the other three methods. This is related
to the double sum appearing in equation (2.42), which explicitly over-counts each contri-
bution. In addition, the look-up tables we used to speed up the calculation are in this case
rather memory-intensive. That is the reason why we were not able to compute the 12-gluon
amplitude within this approach.

The BCFW method is faster than the Berends–Giele method as long as the number of
external particles is below 9. For applications towards three- or four-jet rates at LHC the
BCFW recurrence relations are therefore an improvement in efficiency.

2.2.2 Numerical Stability

We have shown, that all methods give identical results for randomly chosen non-exceptional
phase space points within an accuracy of 10−12. In this subsection we study the numerical
stability near exceptional phase space points, e. g. near singular configurations where one
or more partons become unresolved. We limit ourselves to single unresolved configurations,
where an external momentum becomes soft, or two external momenta become collinear. In
these cases the quantityMn exhibits an infrared singularity and factorises into a singular
function and a lower-point amplitude, as described by the equations (2.12) and (2.14). The
singular behaviour can cause problems with the numerical stability of amplitude calculations.
To investigate this problem, we evaluatedM for configurations approaching each kind of
singular limit. To illustrate the stability, we have plotted in figures 2.5 and 2.6 the ratio of a

M7 to its factorised formM
( f )
7 as given by the right-hand sides of equations (2.12) and (2.14).

The soft limit (figure 2.5) is described byx→ 0 wherex is the fraction of total energy carried
by the soft gluon. The onset of instability is atx ≃ 10−12. The collinear limit (figure 2.6)
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is described bypT/E → 0 wherepT is the transverse momentum involved in the collinear
splitting (withz= 1/2). Instability occurs when the dimensionless variablepT/E ≃ 10−7.

In addition to these physical singularities, spurious singularities might occur. An example
can be found in the on-shell recursion relation. The shift inthe spinors introduces sandwiches
of the form〈p−i |pk + pl |p−j 〉 in the denominator. For example, the analytical formula forthe
six-gluon partial amplitudeA6(1+,2+,3+,4−,5−,6−) reads:

A6(1
+,2+,3+,4−,5−,6−) =

4i

( 〈6−|1+2|3−〉3

〈61〉〈12〉[34][45]s126〈2−|1+6|5−〉 +
〈4−|5+6|1−〉3

〈23〉〈34〉[56][61]s156〈2−|1+6|5−〉

)
, (2.53)

wheresi jk is defined in equation (A.39). This introduces unphysical singularities when sums
of external momenta become collinear. Of course, these cancel exactly in the final result, but
can lead to problems when the recursion relation is evaluated numerically. An example of this
is shown in figure 2.7. Here we consider an amplitude of the form shown in equation (2.53),
in the limit thatp1 + p6 becomes collinear top2 + p5. We have plotted the fractional error in
the on-shell results by comparing to those of the Berends–Giele recursion relation. The onset
of instability occurs when the transverse momentum is of theorder of 10−7E.

The other recurrence relations can also exhibit spurious singularities, as each require an
arbitrary light-like referencevectorq to be specified, and various quantities diverge if this
vector becomes collinear to one of the external momenta. Forthe Berends–Giele recurrence
relations this vector is needed to define the polarisation vectors in equation (2.18), and for
the scalar diagram and MHV vertex approaches it is needed to fix the on-shell projection in
equation (2.33). The dependence of our results onq asq becomes collinear to an external
momentumk is illustrated in figure 2.8. The scalar and MHV approaches become unstable
when

√
k ·q≃ 10−7E, whereas the Berends–Giele relation is stable down to

√
k ·q≃ 10−12E.
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Figure 2.5: Ratio of the helicity amplitude to its factorised form for a set of seven-gluon
configurations where one gluon becomes soft. Here x is the energy fraction of the soft gluon.
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Figure 2.6:Ratio of the helicity amplitude to its factorised form for a set of seven-gluon con-
figurations where two gluons becomes collinear. Here pT/E is the transverse momentum of
the pair of gluons, normalised to the total energy. Key:⋄ Berends–Giele,⋆ scalar diagrams,
△ MHV rules,� on-shell.
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Figure 2.7:Fractional error in the sum of squared helicity amplitudes computed with the on-
shell recursion relations for a set of six-gluon configurations where k1+k2 becomes collinear
to k3 + k4. Here pT/E is the transverse momentum between the two pairs of gluons,nor-
malised to the total energy.
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Figure 2.8:Fractional error in the sum of squared helicity amplitudes as the reference vec-
tor (q) used in the definition of each recursion relation becomes collinear with an external
momentum (k). Key:⋄ Berends–Giele,⋆ scalar diagrams,△ MHV rules.
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Chapter 3

Shower Algorithm Using the
Dipole Formalism

In this chapter we present an implementation of a parton shower algorithm for hadron collid-
ers and electron–positron colliders based on the dipole factorisation formulæ [157]. The al-
gorithm treats initial-state partons on equal footing withfinal-state partons. We implemented
the algorithm for massless and massive partons.

3.1 Introduction

Event generators like PYTHIA [119, 120], HERWIG [121–123] or SHERPA [125] are a stan-
dard tool in high-energy particle physics. In these tools the physics of particle collisions is
modelled by a simulation with different stages – hard scattering, parton showering, hadro-
nisation – to name the most important ones. The hard scattering process is calculable in
perturbation theory. The same holds – in theory at least – forthe parton showering process,
the relevant scales are still large enough for perturbationtheory to be applicable. In practice
however, one is forced into approximations due to the large parton multiplicities. These ap-
proximations are derived from the behaviour of the matrix elements in singular regions. The
matrix elements become singular in phase space regions corresponding to the emission of
collinear or soft particles. The first showering algorithmsstarted from the collinear factori-
sation of the matrix elements and approximated colour interference effects through angular
ordering [158, 159]. An exception is the algorithm implemented in ARIADNE [127, 160–
163], which is based on a dipole cascade picture. Most showeralgorithms are accurate to the
leading-logarithmic approximation in the collinear limit. Extensions to the next-to-leading
logarithmic approximation have been studied in references[164–167].

Recent years have witnessed significant developments related to shower algorithms, in-
cluding procedures to match parton showers to fixed-order tree-level matrix elements [168–
172] and methods to combine parton showers with next-to-leading order matrix elements
[173–196]. The shower algorithms in PYTHIA , HERWIG and ARIADNE have been improved
[197–199] and new programs like the shower module Apacic++ [200, 201] of SHERPA have
become available. Other improvements include the study of uncertainties in parton show-

45
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ers [202–204], as well as showers in the context of the soft-collinear effective theory [205].
Of particular importance is the matching of parton showers with next-to-leading order

matrix elements. The pioneering project MC@NLO [182, 206–209] used an existing shower
program (HERWIG) and adapted the NLO calculation to the shower algorithm, atthe expense
of sacrificing the correctness in certain soft limits. It is clear that a better but more labour-
intensive approach would adapt the shower algorithm to NLO calculations. Nowadays in
NLO computations the dipole subtraction method [147, 148, 210–212] is widely used. Nagy
and Soper [186, 187] proposed to build a shower algorithm from the dipole subtraction terms.

In this chapter we report on an implementation of a shower algorithm based on the dipole
formalism as suggested by Nagy and Soper. We take the dipole splitting functions as the split-
ting functions which generate the parton shower. In the dipole formalism, a dipole consists of
an emitter–spectator pair, which emits a third particle, soft or collinear to the emitter. The for-
malism treats initial- and final-state partons on the same footing. In contrast to other shower
algorithms, no distinction is made between final- and initial-state showers. The only differ-
ence between initial- and final-state particles occurs in the kinematics. In the implementation
we have the four cases final–final, final–initial, initial–final and initial–initial corresponding
to the possibilities of the particles of the emitter–spectator pair to be in the initial or final
state. Because all four cases are included, the shower can beused for hadron colliders and
electron–positron colliders. We implemented the shower for massless and massive partons.
Initial-state partons are however always assumed to be massless. We use spin-averaged dipole
splitting functions. The shower algorithm is correct in theleading-colour approximation. As
the evolution variable we use the transverse momentum in themassless case, and a variable
suggested in references [198, 213] for the massive case. Thevariable for the massive case
reduces to the transverse momentum in the massless limit. Schumann and Krauss reported
on a similar but separate implementation of a parton shower algorithm based on the dipole
formalism [214, 215].

This chapter is organised as follows: in section 3.2 we review basic facts about the colour
decomposition of QCD amplitudes and the dipole formalism. In section 3.3 we discuss the
shower algorithm. In section 3.4 we present numerical results from the parton shower sim-
ulation program. Technical details can be found in the appendix. Appendix A.5 discusses
the case of a massless final-state emitter and a massless final-state spectator in detail. Ap-
pendix A.6 describes the construction of the four-momenta of the (n+ 1)-particle state in
all cases. This appendix is also useful in the context of a phase space generator for the real
emission part of NLO computations.

3.2 QCD Amplitudes and the Dipole Formalism

In this section we briefly review the colour decomposition ofQCD amplitudes and the dipole
formalism.

3.2.1 Colour Decomposition

We use the normalisation Tr(TaTb) = 1/2δab for the colour matrices. Amplitudes in QCD
may be decomposed into group-theoretical factors (carrying the colour structures) multiplied
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by kinematic functions called partial amplitudes [88, 89, 146, 216, 217]. The partial am-
plitudes are gauge-invariant objects. In the pure gluonic case tree-level amplitudes withn
external gluons may be written in the form:

An(1,2, . . . ,n) =

(
g√
2

)n−2

∑
σ∈Sn/Zn

δiσ1 jσ2
δiσ2 jσ3

. . .δiσn jσ1
An(σ1, . . . ,σn) , (3.1)

where the sum is over all non-cyclic permutations of the external gluon legs. The quanti-
ties An(σ1, . . . ,σn), called the partial amplitudes, contain the kinematic information. They
are colour-ordered, e. g. only diagrams with a particular cyclic ordering of the gluons con-
tribute. The choice of the basis for the colour structures isnot unique, and several proposals
for bases can be found in the literature [218, 219]. Here we use thecolour-flow decompo-
sition [150, 219]. This basis is obtained by replacing every contraction over an index in the
adjoint representation by two contractions over indicesi and j in the fundamental representa-
tion:

VaEa = VaδabEb = Va(2Ta
i j T

b
ji

)
Eb =

(√
2Ta

i j V
a)(√2Tb

ji E
b). (3.2)

As a further example we give the colour decomposition for a tree amplitude with a pair of
quarks:

An+2(q,1,2, . . . ,n, q̄) =
( g√

2

)n

∑
Sn

δiq jσ1
δiσ1 jσ2

. . .δiσn jq̄An+2(q,σ1,σ2, . . . ,σn, q̄), (3.3)

where the sum is over all permutations of the gluon legs. The tree amplitude with a pair
of quarks,n gluons and an additional lepton pair has the same colour structure as in equa-
tion (3.3). In squaring these amplitudes a colour projector

δīi δ j j̄ −
1
Nc

δī j̄δ ji (3.4)

has to applied to each gluon. In these examples we have two basic colour structures, a colour
cluster described by theclosed string

δiσ1 jσ2
δiσ2 jσ3

. . .δiσn jσ1
(3.5)

and a colour cluster corresponding to theopen string

δiq jσ1
δiσ1 jσ2

. . .δiσn jq̄. (3.6)

Born amplitudes with additional pairs of quarks have a decomposition in colour factors, which
are products of the two basic colour clusters above. The colour factors in equation (3.1) and
equation (3.3) are orthogonal to leading order in1/Nc.

3.2.2 The Dipole Formalism

The starting point in the calculation of an observableO in hadron–hadron collisions in per-
turbation theory is the following formula:

〈O〉 =
Z

dx1 f (x1)
Z

dx2 f (x2)
1

2K(ŝ)
1

(2J1+1)

1
(2J2+1)

1
n1n2

×
Z

dφn(p1, p2; p3, . . . , pn+2)O(p1, . . . , pn+2) |An+2|2 . (3.7)
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This equation gives the contribution from then-parton final state. The two incoming parti-
cles are labelledp1 and p2, while p3 to pn+2 denote the final-state particles. The function
f (x) gives the probability of finding a partona with momentum fractionx inside the parent
hadronh. A sum over all possible partonsa is understood implicitly. 2K(s) is the flux factor,
1/(2J1+1) and 1/(2J2+1) correspond to an averaging over the initial helicities andn1 and
n2 are the number of colour degrees of the initial-state particles. The phase space measure
dφn for n final-state particles includes (if appropriate) the identical particle factors. The ma-
trix element|An+2|2 is calculated perturbatively. At leading and next-to-leading order one
has the following contributions:

〈O〉LO =

Z

n

OndσB,

〈O〉NLO =

Z

n+1

On+1dσR+

Z

n

OndσV +

Z

n

OndσC. (3.8)

Here we used a rather condensed notation.dσB denotes the Born contribution, whiledσR

denotes the real emission contribution, whose matrix element is given by the square of the

Born amplitudes with(n+ 3) partons|A(0)
n+3|2. dσV gives the virtual contribution, whose

matrix element is given by the interference term of the one-loop amplitudeA(1)
n+2 with (n+2)

partons with the corresponding Born amplitudeA
(0)
n+2. dσC denotes a collinear subtraction

term, which subtracts the initial-state collinear singularities. Within the subtraction method
one constructs an approximation termdσA with the same singularity structure asdσR. The
NLO contribution is rewritten as:

〈O〉NLO =

Z

n+1

(
On+1dσR−OndσA)+

Z

n

(
OndσV +OndσC +OndσA), (3.9)

such that the terms inside the two brackets are separately finite. The matrix element corre-
sponding to the approximation termdσA is given as a sum over dipoles [147, 148, 210–212]:

∑
pairsi, j

∑
k6=i, j

Di j ,k +

[
∑

pairsi, j

D
a
i j +∑

j
∑
k6= j

D
a j
k +∑

j
D

a j,b+(a↔ b)

]
. (3.10)

In equation (3.10) the labelsi, j andk denote final-state particles, whilea andb denote initial-
state particles. The first term describes dipoles where boththe emitter and the spectator are in
the final state.Da

i j denotes a dipole where the emitter is in the final state, whilethe spectator

is in the initial state. The reverse situation is denoted byD
a j
k : here the emitter is in the

initial state and the spectator is in the final state. Finally, Da j,b denotes a dipole where both
the emitter and the spectator are in the initial state. The full complexity is only needed for
hadron colliders; for electron–positron annihilation thesubtraction terms inside the square
bracket are absent. The dipole subtraction terms for a final-state emitter–spectator pair have
the following form:

Di j ,k = A
(0) ∗
n+2

(
p1, . . . , p̃(i j ), . . . , p̃k, . . .

) (−Tk ·Ti j )

T2
i j

Vi j ,k

2pi · p j
A

(0)
n+2

(
p1, . . . , p̃(i j ), . . . , p̃k, . . .

)
.

(3.11)
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The structure of the dipole subtraction terms with initial-state partons is similar. HereTi

denotes the colour charge operator for partoni andVi j ,k is a matrix in the spin space of the
emitter parton(i j ). In general, the operatorsTi lead to colour correlations, while theVi j ,k’s
lead to spin correlations. The colour charge operatorsTi for a quark, gluon and antiquark in
the final state are:

gluon: A
∗(. . .gc . . .)(i f cab)A(. . .gb . . .),

quark: A
∗(. . .qi . . .)(T

a
i j )A(. . .q j . . .),

antiquark: A
∗(. . . q̄i . . .)(−Ta

ji )A(. . . q̄ j . . .). (3.12)

The corresponding colour charge operators for a quark, gluon and antiquark in the initial state
are:

gluon: A
∗(. . .gc . . .)(i f cab)A(. . .gb . . .),

quark: A
∗(. . . q̄i . . .)(−Ta

ji )A(. . . q̄ j . . .),

antiquark: A
∗(. . .qi . . .)(T

a
i j )A(. . .q j . . .). (3.13)

In the amplitude an incoming quark is denoted as an outgoing antiquark and vice versa.
In this chapter we neglect spin correlations and work to leading order in1/Nc. Therefore we

replace the splitting functionsVi j ,k by the spin-averaged splitting functionsVi j ,k → 〈Vi j ,k〉. In
the leading-colour approximation we only have to take into account emitter–spectator pairs,
which are adjacent inside a colour cluster. For those pairs we obtain for the colour charge
operators

(−Tk ·Ti j )

T2
i j

=

{
1/2 emitter(i j ) is a gluon,
1 emitter(i j ) is a quark or antiquark.

(3.14)

We introduce the notation

Pi j ,k =
〈Vi j ,k〉

(pi + p j)2−m2
i j

·θ
(
〈Vi j ,k〉

)
, Pi j ,a =

〈Va
i j 〉

(pi + p j)2−m2
i j

· 1
x
·θ
(
〈Va

i j 〉
)
,

Pa j,k =
〈Va j

k 〉∣∣2pa · p j
∣∣ ·

1
x
·θ
(
〈Va j

k 〉
)
, Pa j,b =

〈Va j,b〉∣∣2pa · p j
∣∣ ·

1
x
·θ
(
〈Va j,b〉

)
. (3.15)

The functionsP will govern the emission of additional particles in the shower algorithm.
The spin-averaged dipole splitting functions〈V〉 can be found in references [147, 212]. The
Heaviside theta-functions [220] ensure that the functionsP will be non-negative. They are
needed for splittings between an initial- and a final-state particle, since the dipole splitting
functions〈Va

i j 〉 and〈Va j
k 〉 may take negative values in certain regions of phase space. In ad-

dition, the spin-averaged dipole splitting functions for massive partons are slightly modified:
terms related to the soft singularity are re-arranged between the two dipoles forming an an-
tenna, in order to ensure positivity of the individual dipole splitting functions in the singular
limit.
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3.3 The Shower Algorithm

In this section we describe the shower algorithm. We first discuss the colour treatment in
subsection 3.3.1. The shower algorithm for massless final-state partons is discussed in sub-
section 3.3.2. The necessary modifications for initial-state partons are discussed in subsec-
tion 3.3.3. Finally, massive partons are discussed in subsection 3.3.4.

3.3.1 Colour Treatment

Before starting the parton showers, the partons from the hard matrix element have to be as-
signed to colour clusters. For the simplest matrix elements, like e+e− → qq̄, the choice is
unique: the quark–antiquark pair forms a colour cluster. For the parton shower we work in
the leading-colour approximation. In the leading-colour approximation we have to take into
account only emitter–spectator pairs, which are adjacent inside a colour cluster. We have
implemented two options: in the first one, which we call thestrict leading-colour approxi-
mation, we take exactly the terms which are leading in an expansion in 1/Nc and only those.
As a consequence, all splittingsg→ qq̄ are ignored, as they are colour-suppressed compared
to g→ gg. In this approximationCF is replaced by3/2. For the second option, which we call
themodified leading-colour approximation, we include the splittingg→ qq̄ and keepCF as
(N2

c −1)/(2Nc). In this case, if a gluon in a closed string splits into a quark–antiquark pair, the
closed string becomes an open string. If a gluon in an open string splits into a quark–antiquark
pair, the open string splits into two open strings.

3.3.2 The Shower Algorithm for Massless Final-State Parton s

We first describe the shower algorithm for electron–positron annihilation. The extension to
initial-state partons is treated in subsection 3.3.3. For the shower algorithm we use as an
evolution variable

t = ln
−k2

⊥
Q2 , (3.16)

whereQ2 is a fixed reference scale andk⊥ is the transverse momentum of a splitting. During
the shower evolution we move towards smaller (more negative) values oft. We start from
a givenn-parton configuration. In the dipole formalism, emission ofadditional partons is
described by an emitter–spectator pair. In the leading-colour approximation emitter and spec-
tator are always adjacent in the cyclic order. The probability to evolve fromt1 to t2 (with
t1 > t2) without any resolvable branching is given by the Sudakov factor. For the algorithm
considered here, the Sudakov factor is given as a product of factors corresponding to the
no-emission probabilities for individual dipoles’ emissions:

∆(t1, t2) = ∏̃
i,k̃

∆ĩ,k̃(t1, t2). (3.17)

If parton ĩ can emit different partons,∆ĩ,k̃(t1, t2) factorises in turn into different contributions:

∆ĩ,k̃(t1, t2) = ∏
j

∆i j ,k(t1, t2). (3.18)
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An example is the possibility of a gluon to split either into two gluons or into aqq̄-pair. We
denote the emitter before the splitting byĩ, while the emitter after a splitting is denoted byi.
This notation takes into account that the emitter might change its “flavour” due to a splitting,
like in the case of ag→ q̄q splitting. ∆i j ,k(t1, t2) is the probability that the dipole formed by
the emitter̃i and spectator̃k does not emit a partonj. It is given by:

∆i j ,k(t1, t2) = exp

(

−
t1

Z

t2

dtCĩ,k̃

Z

dφunresδ
(
t −Tĩ,k̃

)
Pi j ,k

)

, (3.19)

whereCĩ,k̃ is a colour factor. In the leading-colour approximation this factor is non-zero only

if ĩ andk̃ are adjacent in a colour cluster. ThenCĩ,k̃ is obtained from equation (3.14) and given
by:

Cĩ,k̃ =

{
1/2 for ĩ = g,
1 for ĩ = q, q̄.

(3.20)

The dipole phase space is given by:

Z

dφunres=
(pĩ + pk̃)

2

16π2

1
Z

0

dκ
z+(κ)
Z

z−(κ)

dz
1

4z(1−z)

(
1− κ

4z(1−z)

)
, (3.21)

with

z±(κ) =
1
2

(
1±

√
1−κ

)
. (3.22)

The variableκ is proportional to the transverse momentum of the splitting:

κ = 4
(−k2

⊥)

(pĩ + pk̃)
2 . (3.23)

Tĩ,k̃ depends on the dipole invariant mass(pĩ + pk̃)
2 and the phase space variableκ for the

emission of an additional particle and is given by:

Tĩ,k̃ = ln
κ
4

(pĩ + pk̃)
2

Q2 . (3.24)

With the help of the delta-function [221] we may perform the integration overκ, while keep-
ing the integration overt andz. Then

κ(t) =
4Q2et

(pĩ + pk̃)
2 . (3.25)

Pi j ,k is the dipole splitting function. As an example we quote the splitting function for the
q→ qg splitting (others are given in appendix A.5):

Pq→qg = CF
8παs(µ2)

(pĩ + pk̃)
2

1
y

(
2

1−z(1−y)
− (1+z)

)
, y =

κ(t)
4z(1−z)

. (3.26)
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αs is evaluated at the scaleµ2 = −k2
⊥ = κ

4(pĩ + pk̃)
2.

The probability that a branching occurs att2 is given by

∑̃
i,k̃

∑
j

Cĩ,k̃

Z

dφunresδ
(
t2−Tĩ,k̃

)
Pi j ,k∆(t1, t2). (3.27)

We can now state the shower algorithm. Starting from an initial evolution scalet1 we proceed
as follows:

1. Select the next dipole to branch and the scalet2 at which this occurs. This is done
as follows: for each dipole we generate the scalet2,i j ,k of the next splitting for this
dipole from a uniformly distributed numberr1,i j ,k in [0,1] by solving (numerically) the
equation

∆i j ,k(t1, t2,i j ,k) = r1,i j ,k . (3.28)

We then set
t2 = max

(
t2,i j ,k

)
. (3.29)

The dipole which has the maximal value oft2,i j ,k is the one which radiates off an addi-
tional particle.

2. If t2 is smaller than a cut-off scaletmin, the shower algorithm terminates.

3. Next we have to generate the value ofz. Again, using a uniformly distributed random
numberr2 in [0,1] we solve:

z
Z

z−(t2)

dz′J(t2,z
′)Pi j ,k = r2

z+(t2)
Z

z−(t2)

dz′J(t2,z
′)Pi j ,k , (3.30)

where the Jacobian factorJ(t2,z) is given by:

J(t2,z) =
κ(t2)

4z(1−z)

(
1− κ(t2)

4z(1−z)

)
. (3.31)

4. Select the azimuthal angleφ. Finally we generate the azimuthal angle from a uniformly
distributed numberr3 in [0,1] as follows:

φ = 2πr3. (3.32)

5. With the three kinematic variablest2, z andφ and the information, that partoñi emits
a parton j, with partonk̃ being the spectator, we insert the new partonj. The mo-
mentapĩ andpk̃ of the emitter and the spectator are replaced by new momentapi and
pk. The details how the new momentapi , p j and pk are constructed are given in the
appendix A.6.

6. Sett1 = t2 and go to step 1.
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Begin

generatet2

t2 < tmin generatez selectφ insert partons sett1 = t2

End

Yes

No

Figure 3.1:Flowchart of the shower algorithm.

Remark: step 1 of the algorithm is equivalent to first generating the pointt2 from a uni-
formly distributed numberr1 in [0,1] by solving (numerically) the equation for the full Su-
dakov factor

∆(t1, t2) = r1, (3.33)

and then selecting an individual dipole with emitterĩ, emitted particlej and spectatork with
probability [222]:

Pi j ,k =
Cĩ,k̃

R

dφunresδ
(
t2−Tĩ,k̃

)
Pi j ,k

∑
l̃ ,ñ

∑
m

Cl̃ ,ñ

R

dφunresδ
(
t2−Tl̃ ,ñ

)
Plm,n

. (3.34)

3.3.3 The Shower Algorithm with Initial-State Partons

In this subsection we discuss the necessary modifications for the inclusion of initial-state
partons. In the presence of initial-state partons there is no separation into final-state showers
and initial-state showers. Initial-state radiation is treated on the same footing as final-state
radiation. The algorithm generates initial-state radiation through backward evolution, starting
from a hard scale and moving towards softer scales. Therefore the shower evolves in all cases
from a hard scale towards lower scales.

Final-state Emitter and Initial-state Spectator

For an initial-state spectator we modify the Sudakov factorin equation (3.19) to:

∆i j ,a(t1, t2) = exp

(

−
t1

Z

t2

dtCĩ,ã

Z

dφunresδ
(

t −Tĩ,ã

) xa f (xa, t)
xã f (xã, t)

Pi j ,a

)

, (3.35)

wherexã is the momentum fraction of the initial hadron carried by ˜a, while xa is the momen-
tum fraction carried bya. The initial parton of then-particle state is denoted by ˜a, while the
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initial parton of the(n+1)-particle state is denoted bya. We set:

x =
xã

xa
. (3.36)

The unresolved phase space is given by:

Z

dφunres=
|2pĩ pã|
16π2

1
Z

xã

dx
x

1
Z

0

dz. (3.37)

The transverse momentum betweeni and j is expressed as:

−k2
⊥ =

(1−x)
x

z(1−z)(−2pĩ pã) (3.38)

andTĩ,ã is therefore given by:

Tĩ,ã = ln
−k2

⊥
Q2 = ln

(−2pĩ pã)(1−x)z(1−z)
xQ2 . (3.39)

A subtlety occurs for the emission between a final-state spectator and an initial-state emitter.
We discuss this for the splittingq→ qg. The spin-averaged splitting function for theq→ qg
splitting is given by:

〈Vk
qg〉 = 8παsCF

(
2

1−z+(1−x)
− (1+z)

)
. (3.40)

In contrast to the final–final case this function is not a positive function on the complete phase
space. It can take negative values in certain (non-singular) regions of phase space. This is not
a problem when it is used as a subtraction terms in NLO calculations, but prohibits a straight-
forward interpretation as a splitting probability for a shower algorithm. However, since neg-
ative values occur only in non-singular regions, we can ensure positiveness by modifying the
splitting functions through non-singular terms. The simplest choice is to set

Pi j ,a =
〈Va

i j 〉
(pi + p j)2 ·

1
x
·θ
(
〈Va

i j 〉
)
. (3.41)

For a final-state emitter we eliminate thex-integration with the help of the delta-function:

1
Z

xã

dx
x

δ
(
t −Tĩ,ã

)
=

1

1+
4z(1−z)

κ(t)

, x =
1

1+
κ(t)

4z(1−z)

, κ(t) =
4Q2et

(−2pĩ pã)
. (3.42)

For the boundaries we obtain:

κ(t) <
1−xã

xã
, z−(t) < z< z+(t), z±(t) =

1
2

(
1±
√

1−κ(t)
xã

1−xã

)
. (3.43)
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The modifications to the shower algorithm are as follows: thedipoles for the emission from
a final-state emitter with an initial-state spectator are included in the Sudakov factor in equa-
tion (3.17). With this modification steps 1 and 2 are as above.Let us define

flm,n =






1, if l andn are final-state particles,
xa f (xa,t)
xã f (xã,t)

, if l = a is an initial-state particle,
xb f (xb,t)
xb̃ f (xb̃,t)

, if n = b is an initial-state particle andl is a final-state particle.

(3.44)

In step 2 we replace formula (3.30) by:

z
Z

z−(t2)

dz′J(t2,z
′) fi j ,aPi j ,a = r2

z+(t2)
Z

z−(t2)

dz′J(t2,z
′) fi j ,aPi j ,a, (3.45)

with the Jacobian

J(t,z) =
1

1+
4z(1−z)

κ(t)

. (3.46)

Steps 4 to 6 proceed as in subsection 3.3.2.

Initial-state Emitter and Final-state Spectator

For an initial-state emitter ˜a with a final-state spectatorĩ the Sudakov factor is given by:

∆a j,i(t1, t2) = exp

(
−

t1
Z

t2

dtCã,ĩ

Z

dφunresδ
(
t −Tã,ĩ

)xa f (xa, t)
xã f (xã, t)

Pa j,i

)
. (3.47)

The unresolved phase space is again given by equation (3.37). The transverse momentum
betweena and j is given by:

−k2
⊥ =

(1−x)
x

(1−z)(−2pĩ pã) (3.48)

andTã,ĩ is given by:

Tã,ĩ = ln
(−2pĩ pã)(1−x)(1−z)

xQ2 . (3.49)

For a initial-state emitter we eliminate thez-integration with the help of the delta-function:

1
Z

0

dzδ
(
t−Tã,ĩ

)
=

κ(t)
4

x
(1−x)

, z= 1− κ(t)
4

x
(1−x)

, κ(t) =
4Q2et

(−2pĩ pã)
. (3.50)

For the boundaries we obtain:

κ(t) < 4
1−xã

xã
, x < x+(t), x+(t) =

1

1+ κ(t)
4

. (3.51)
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There are no new modifications to the shower algorithms compared to the case for a final-
state emitter and an initial-state spectator, except that in step 3 we now generate the value of
x according to:

x
Z

xã

dx′J(t2,x
′) fa j,iPa j,i = r2

x+(t2)
Z

xã

dx′J(t2,x
′) fa j,iPa j,i , (3.52)

with the Jacobian

J(t,x) =
κ(t)

4(1−x)
. (3.53)

Initial-state Emitter and Initial-state Spectator

For an initial-state emitter ˜a with an initial-state spectatorb̃ the Sudakov factor is given by:

∆a j,b(t1, t2) = exp

(

−
t1

Z

t2

dtCã,b̃

Z

dφunresδ
(
t −Tã,b̃

)xa f (xa, t)
xã f (xã, t)

Pa j,b

)

. (3.54)

In this case we do not rescale the momentum of the spectator, but transform all final-state
momenta. Therefore no factor

xb f (xb, t)
xb̃ f (xb̃, t)

(3.55)

appears in the Sudakov factor. The unresolved phase space isgiven by:

Z

dφunres=

∣∣2pãpb̃

∣∣
16π2

1
Z

xã

dx
x

1−x
Z

0

dv. (3.56)

The transverse momentum betweena and j is given by:

−k2
⊥ =

(1−x)
x

v
(
2pãpb̃

)
(3.57)

andTã,b̃ is given by:

Tã,b̃ = ln

(
2pãpb̃

)
(1−x)v

xQ2 . (3.58)

We integrate overv with the help of the delta-function:

1−x
Z

0

dvδ
(
t −Tã,b̃

)
=

κ(t)
4

x
(1−x)

, v =
κ(t)

4
x

(1−x)
, κ(t) =

4Q2et
(
2pãpb̃

) . (3.59)

For the boundaries we obtain:

κ(t) < 4
(1−xã)

2

xã
, x < x+(t), x+(t) =

1
2

(
2+

κ(t)
4

−
√

κ(t)+
κ(t)2

16

)
. (3.60)
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In step 3 of the shower algorithm we again selectx according to:

x
Z

xã

dx′J(t2,x
′) fa j,bPa j,b = r2

x+(t2)
Z

xã

dx′J(t2,x
′) fa j,bPa j,b, (3.61)

with the Jacobian

J(t,x) =
κ(t)

4(1−x)
. (3.62)

3.3.4 The Shower Algorithm for Massive Partons

In this subsection we discuss the modifications of the showeralgorithms due to the presence
of massive partons. We first address the issue of a splitting of a gluon into a heavy quark
pair. This mainly concerns the splitting of a gluon intob-quarks. We will always require that
initial-state particles are massless. Therefore for processes with initial-state hadrons we do
not considerg → qq̄ splittings. Calculations for initial-state hadrons should be done in the
approximation of a masslessb-quark. In the case of electron–positron annihilation the parton
shower affects only the final state. Here we can consistentlyallow splittings of a gluon into a
pair of massive quarks. As evolution variable we use in the massive case:

t = ln
−k2

⊥ +(1−z)2m2
i +z2m2

j

Q2 . (3.63)

This choice reduces to equation (3.16) in the massless limitand is suggested by dispersion
relations for the running coupling [198, 213].

Final-state Emitter and Final-state Spectator

The unresolved phase space is given by:

Z

dφunres=
(pĩ + pk̃)

2

16π2

(
1−µ2

i −µ2
j −µ2

k

)2(λ(1,µ2
i j ,µ

2
k)
)− 1

2

y+
Z

y−

dy(1−y)

z+(y)
Z

z−(y)

dz, (3.64)

where the reduced massesµl and the boundaries on the integrations are defined in equa-
tions (A.67)–(A.69) in appendix A.6.Tĩ,k̃ is given by:

Tĩ,k̃ = ln

(
(pĩ + pk̃)

2−m2
i −m2

j −m2
k

)
yz(1−z)

Q2 . (3.65)

Again, we have to ensure that the splitting functions are positive. The original spin-averaged
dipole splitting functions can take negative values in certain regions of phase space. In the
massive case the negative region can extend into the singular region. The problem is related
to the soft behaviour of the dipole splitting functions. Since a squared Born matrix element is
positive in the soft gluon limit, the negative contributionfrom a particular dipole is compen-
sated by the contribution from the dipole, where emitter andspectator are exchanged. The



58 3 Shower Algorithm Using the Dipole Formalism

sum of the two contributions is positive in the singular region. Therefore we can cut out the
negative region from the first dipole and add it to the second dipole. The second dipole will
stay positive.

As in the massless case we eliminate they-integration:

y+
Z

y−

dy(1−y)

z+(y)
Z

z−(y)

dzδ
(
t −Tĩ,k̃

)
=

zmax
Z

zmin

dz y(1−y),

y =
κ(t)

4z(1−z)
,

κ(t) =
4Q2et

(pĩ + pk̃)
2−m2

i −m2
j −m2

k

. (3.66)

The physical region is defined by:
(

1− κ
4z(1−z)

)2(κ
4
− (1−z)2m2

i −z2m2
j

)
−
( κ

4z(1−z)

)2
m2

k +4m2
i m2

j m2
k ≥ 0, (3.67)

with

m2
l =

m2
l

(pĩ + pk̃)
2−m2

i −m2
j −m2

k

for l ∈ {i, j,k}. (3.68)

This equation is solved numerically forzmin andzmax. Thenz is generated according to:

z
Z

zmin(t2)

dz′J(t2,z
′)Pi j ,k = r2

zmax(t2)
Z

zmin(t2)

dz′J(t2,z
′)Pi j ,k, (3.69)

with the Jacobian

J(t,z) =
(
1−µ2

i −µ2
j −µ2

k

)2(λ(1,µ2
i j ,µ

2
k)
)− 1

2 κ(t)
4z(1−z)

(
1− κ(t)

4z(1−z)

)
. (3.70)

Final-state Emitter and Initial-state Spectator

The unresolved phase space is given by:

Z

dφunres=
|2pĩ pã|
16π2

1
Z

xã

dx
x

1
Z

z−(x)

dz=
|2pĩ pã|
16π2

1
Z

z−(xã)

dz

x+(z)
Z

xã

dx
x

(3.71)

The integration boundary is given by:

z−(x) =
xµ̃2

1−x(1− µ̃2)
, x+(z) =

z
µ̃2+z(1− µ̃2)

, µ̃2 =
m2

i

|2pĩ pã|
. (3.72)

Tĩ,ã is given by:

Tĩ,ã = ln
−k2

⊥ +(1−z)2m2
i

Q2 = ln
(−2pĩ pã)(1−x)z(1−z)

xQ2 . (3.73)
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For a final-state emitter we eliminate thex-integration with the help of the delta-function:

1
Z

xã

dx
x

δ
(
t −Tĩ,ã

)
=

1

1+
4z(1−z)

κ(t)

, x =
1

1+
κ(t)

4z(1−z)

, κ(t) =
4Q2et

(−2pĩ pã)
. (3.74)

For the boundaries we obtain:

z+(t) =
1
2

(
1+

√
1−κ(t)

xã

1−xã

)
,

z−(t) = max

(
xãµ̃2

1−xã(1− µ̃2)
,
1
2

(
1−
√

1−κ(t)
xã

1−xã

)
,1−

√
κ(t)
4µ̃2

)

. (3.75)

The boundary onκ(t) is given forµ̃2 < (1−xã)/xã by:

κ(t) <
1−xã

xã
. (3.76)

For (1−xã)/xã < µ̃2 we have:

κ(t) <
1−xã

xã



1−
(

1− 1−xã
xãµ̃2

1+ 1−xã
xãµ̃2

)2

=
4µ̃2

(
1+ xãµ̃2

1−xã

)2 . (3.77)

z is generated according to:

z
Z

z−(t2)

dz′J(t2,z
′) fi j ,aPi j ,a = r2

z+(t2)
Z

z−(t2)

dz′J(t2,z
′) fi j ,aPi j ,a, (3.78)

with the Jacobian

J(t,z) =
1

1+
4z(1−z)

κ(t)

. (3.79)

Initial-state Emitter and Final-state Spectator

Tã,ĩ is given by:

Tã,ĩ = ln
(−2pĩ pã)(1−x)(1−z)

xQ2 . (3.80)

For an initial-state emitter we eliminate thez-integration with the help of the delta-function:

1
Z

z−(x)

dzδ
(
t −Tã,ĩ

)
=

κ(t)
4

x
(1−x)

, z= 1− κ(t)
4

x
(1−x)

, κ(t) =
4Q2et

(−2pĩ pã)
. (3.81)
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For the boundaries we obtain:

κ(t) <
4(1−xã)

2

xã(1−xã(1− µ̃2))
, x < x+(t), x+(t) =

2+ κ(t)
4 −

√
κ(t)2

16 + µ̃2κ(t)

2
(

1+ κ(t)
4 (1− µ̃2)

) . (3.82)

The value ofx is generated according to:

x
Z

xã

dx′J(t2,x
′) fa j,iPa j,i = r2

x+(t2)
Z

xã

dx′J(t2,x
′) fa j,iPa j,i , (3.83)

with the Jacobian

J(t,x) =
κ(t)

4(1−x)
. (3.84)

3.4 Numerical Results

In this section we show numerical results obtained from the parton shower. We first discuss
observables related to electron–positron annihilation insubsection 3.4.1 and then the shower
in hadron collisions in subsection 3.4.2. The shower algorithm depends on two parameters,
the strong couplingαs and the scaleQmin. For the strong coupling we use the leading-order
formula

αs(µ) =
4π

β0 ln µ2

Λ2

, β0 = 11− 2
3

Nf . (3.85)

The cut-off scaleQmin gives the scale at which the shower terminates. As our showeris cor-
rect in the leading-colour approximation, we also study theeffects of different treatments of
subleading colour contributions. As described in subsection 3.3.1 we have implemented two
options: the strict leading-colour approximation and the modified leading-colour approxima-
tion. Numerical differences from these two options will give an estimate of uncertainties due
to subleading colour effects.

3.4.1 Electron–Positron Annihilation

For electron–positron annihilation we useαs(mZ) = 0.118 corresponding toΛ5 = 88 MeV.
We start the shower from the 2→ 2 hard matrix elemente+e− → qq̄. We first study the
event shape variables thrust, theC-parameter and theD-parameter. The distributions of the
first moments of these observables are shown in figure 3.2 for two choices of the cut-off
parameter:Qmin = 1 GeV andQmin = 2 GeV. The distributions are normalised to unity. The
different prescriptions for the colour-treatment do not change the distributions significantly.

In figure 3.3 we show the distributions for the four-jet angles. Again we start from the
2 → 2 hard matrix element. The particles in an event are first clustered into jets, defined
according to the Durham algorithm [223] withycut = 0.008 and theE-scheme for the re-
combination. Then events with exactly four jets are selected. We consider the modified
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Nachtmann–Reiter angle [224], the Körner–Schierholz–Willrodt angle [225], the Bengtsson–
Zerwas angle [226] and the angleα34 between the jets with the smallest energy [227]. In the
plots we show the results from the different options for the colour treatment forQmin = 1 GeV.
A variation of the cut-off scale does not change the distributions significantly.

3.4.2 Hadron Colliders

For the Tevatron and the LHC we studyZ/γ∗-production. We start from the 2→ 2 hard
matrix elementqq̄→ Z/γ∗ → l+l−. As parton distribution functions we use the CTEQ 6L1
set [228, 229]. For consistency we use hereαs(mZ) = 0.130 corresponding toΛ5 = 165 MeV.
The centre-of-mass energy we set to

√
s = 1.96 TeV for the Tevatron and to

√
s= 14 TeV

for the LHC. We require a cut on the invariant mass of the lepton pair of ml+l− > 80 GeV.
As cut-off parameter for the parton shower we useQmin = 1 GeV. In figure 3.4 we show
the transverse momentum distribution and the rapidity distribution of the lepton pair for the
Tevatron and the LHC.
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Figure 3.2:The first moments of the thrust distribution, the C-parameter distribution and the
D-parameter distribution. The results are from the parton shower for two different values of
the cut-off scale Qmin.
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Figure 3.3:The distributions for the four-jet angles. From top-left tobottom-right: the modi-
fied Nachtmann–Reiter angle, the Körner–Schierholz–Willrodt angle, the Bengtsson–Zerwas
angle and the angleα34 between the smallest energy jets. As cut-off parameter Qmin = 1 GeV
is used. Shown are the result from thestrict leading-colour approximationand themodified
leading-colour approximation.
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Figure 3.4:The transverse momentum distribution and the rapidity distribution of the lepton
pair for Z/γ∗-production for the Tevatron and the LHC. As cut-off parameter Qmin = 1 GeV
is used.



Chapter 4

Summary and Conclusion

The classical way to calculate hard scattering processes inperturbation theory using Feyn-
man diagrams is not efficient enough to calculate all necessary processes – for example for
the Large Hadron Collider – to sufficient precision. Two alternatives to order-by-order calcu-
lations were investigated in this thesis.

We studied the numerical implementations of four differentrecursive methods for the
computation of Born gluon amplitudes: Berends–Giele recurrence relations, recursive calcu-
lations with scalar diagrams, with MHV vertices (Cachazo–Svrček–Witten), and with shifted
momenta (Britto–Cachazo–Feng–Witten). From the four methods considered, we found the
Berends–Giele method performs best, as the number of external partons increases (n ≥ 8).
However, for a not so large number of external partons (n< 8), the on-shell recursion relation
(BCFW) offers the best performance. These amplitudes together with corresponding ones,
where additional quarks or vector bosons are involved, are relevant for LHC physics. They
enter numerical NLO or LO program codes. As these calculations are based on Monte Carlo
integration over the phase space, the efficiency of the computation has a direct impact on the
running time of the Monte Carlo program. We also investigated the numerical stability and
accuracy and found that all methods give satisfactory results.

Duhr, Höche and Maltoni observed exactly the same growth in computation time and
improved the CSW calculation [230, 231], to bring it on the same level of complexity as the
BCFW calculation. In their implementation the Berends–Giele recurrence relations perform
best for the processgg→ ng for 3≤ n ≤ 10. Gleisberg, Höche, Krauss and Matyszkiewicz
addressed the issue of efficiency of the CSW technique when dealing with full cross sections,
including summation over colours and helicities, rather than single amplitudes [232].

One possible extension of the tree-level calculations donein this thesis are calculations of
loop amplitudes. Some of the methods used in this thesis are similarly useful at loop-level,
like the spinor helicity technique, others were generalised to one-loop amplitudes, like colour
decomposition [146] and the BCFW recurrence relations [233]. Another approach is the OPP
reduction method to compute one-loop amplitudes numerically [234–236].

In the second part of this thesis we presented an implementation of a shower algorithm
based on the dipole formalism. The formalism treats initial- and final-state partons on the
same footing. The shower can be used for hadron colliders andelectron–positron colliders.
We also included in the shower algorithm massive partons in the final state. We studied nu-
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merical results for electron–positron annihilation, the Tevatron and the LHC. An independent
implementation of this shower algorithm is now used in the event generator SHERPA.



Appendix A

Appendix

Appendix

A.1 Standard Model Lagrangian Density

The most general Standard Model Lagrangian density consists of the following parts: [237]

LSM = Lc +Lw +Lf +Lfc +LFPc+LFPw+LfH . (A.1)

The colour Lagrangian density, describing the gluons of quantum chromodynamics and their
mutual interactions

Lc = −1
2

∂νga
µ∂νga

µ−gs f abc∂µga
νgb

µgc
ν −

1
4

g2
s f abcf adegb

µgc
νgd

µge
ν . (A.2)

The weak Lagrangian density, describing the vector bosons and their interactions including
the interactions with the Higgs system

Lw = −∂νW
+
µ ∂νW

−
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µ − 1

2
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The fermion Lagrangian density, describing the interactions of the fermions with the weak
vector bosons
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The fermion–colour Lagrangian density, describing the interactions of fermions with gluons

Lfc = +
1
2

ig2
s(q̄

σ
i γµqσ

j )g
a
µ . (A.5)

The Faddeev–Popov ghost Lagrangian density of quantum chromodynamics

LFPc= +Ḡa∂2Ga +gs f abc∂µḠaGbgc
µ . (A.6)
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The Faddeev–Popov ghost Lagrangian density of the weak interactions
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The fermion–Higgs Lagrangian density, describing the interactions of fermions with the
Higgs system
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A.2 Spinors

For the metric we use

gµν = diag(+1,−1,−1,−1) =





+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



 . (A.9)

We define the light-cone coordinates as:

p+ = p0 + p3, p− = p0− p3, p⊥ = p1 + ip2, p⊥∗ = p1− ip2. (A.10)

In terms of the light-cone components of a null-vector, the corresponding massless spinors
〈p±| and|p±〉 can be chosen as:

〈
p+
∣∣=

exp(−i φ
2)

√
|p+|

(0,0,−p⊥, p+) ,
〈
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√
|p+|

(p+, p⊥∗ ,0,0) ,



70 Appendix
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 , (A.11)

where the phaseφ is given by:
p+ = |p+|exp(iφ). (A.12)

Spinor products are denoted as:

〈pq〉 = 〈p−|q+〉 = pAqA, [qp] = 〈q+|p−〉 = qȦpȦ. (A.13)

Here the Weyl–van der Waerden spinor notation was used [238–240]. From the definition in
equation (A.11) one immediately sees that products of spinors with the same sign vanish:

〈q+|p+〉 = 〈q−|p−〉 = 0 . (A.14)

The polarisation vectors for positive and negative polarisations are:

ε±µ (ki ,q) = ± 〈q∓|γµ|k∓i 〉√
2〈q∓|k±i 〉

, (A.15)

wherek is the momentum of the vector boson andq is an auxiliary massless vector called
reference momentum.
Here the Dirac matricesγµ are used. They are defined by the following anticommutation
relation:

{γµ,γν} = γµγν + γνγµ = 2gµν . (A.16)

One specific choice of them is:

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (A.17)

with
σµ = (1,σ1,σ2,σ3) , (A.18)

where the Pauli matrices [241]

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.19)

are used.
Complex conjugation reverses the helicity:

(
ε±
)∗

= ε∓ . (A.20)

Polarisation vectors are normalised:

ε± ·
(
ε±
)∗

= ε±ε∓ = −1 ,

ε± ·
(
ε∓
)∗

= ε±ε± = 0 . (A.21)
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There are some properties that make the calculations with polarisation vectors especially easy:

ε±(k,q) ·k = 0,

ε±(k,q) ·q= 0,

ε+(ki ,q) · ε+(k j ,q) = ε−(ki ,q) · ε−(k j ,q) = 0,

ε+(ki,k j) · ε−(k j ,q) = ε+(ki ,q) · ε−(k j ,ki) = 0,

/ε+(ki ,k j)|k+
j 〉 = /ε−(ki ,k j)|k−j 〉 = 0,

〈k+
j |/ε

−(ki ,k j) = 〈k−j |/ε
+(ki ,k j) = 0 . (A.22)

Convenient abbreviations for spinor products are:

〈 jl 〉 = 〈k jkl 〉 = 〈k−j |k+
l 〉,

[ jl ] = [k jkl ] = [k−j |k+
l ]. (A.23)

The spinor products are antisymmetric:

〈 jl 〉 = −〈l j 〉,
[ jl ] = − [l j ] , (A.24)

they fulfil the Schouten identity [242]:

〈12〉〈34〉= 〈14〉〈32〉+ 〈13〉〈24〉, (A.25)

and the Fierz identity [243, 244]:

〈1−|γµ|2−〉〈3+|γµ|4+〉 = 2〈14〉 [32] . (A.26)

In addition there is charge conjugation of current:

〈1+|γµ|2+〉 = 〈2−|γµ|1−〉 (A.27)

and the following property:

〈 j j 〉 = [ j j ] = 0 . (A.28)

A.3 Splitting Functions

In the collinear limit the all-gluon tree-level partial amplitudes factorise according to:

An+1(. . . ,ka,kb, . . .)
ka||kb−→ ∑

λ=+/−
Split−λ(k

λa
a ,kλb

b )An(. . . ,K
λ, . . .), (A.29)
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whereka andkb are the momenta of two adjacent legs,K = ka+kb, ka = zK andkb = (1−z)K.
λ, λa andλb denote the corresponding helicities. The splitting functions are:

Splitg+(g+,g+) = 0, Splitg−(g−,g−) = 0,
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√
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. (A.30)

A.4 Feynman Rules

A.4.1 Feynman Rules in the Standard Model

The Feynman rules for external lines:

incoming photon εµ(λ)
outgoing photon ε∗µ(λ)
incoming gluon εµ(λ)
outgoing gluon ε∗µ(λ)

incoming fermion u(p,s)
outgoing fermion ū(p,s)
incoming antifermion v̄(p,s)
outgoing antifermion v(p,s)

The Feynman rules for internal lines (propagators) in Feynman gauge:

Photon
µ ν

q
−i

gµν
q2

Gluon
a,µ b,ν

q
−iδab

gµν
q2

massless Fermion
i j

q iδi j
/q
q2

Here the Feynman slash was used

/q≡ q · γ = gµνqµγν . (A.31)

The Feynman rules for vertices:
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photon-fermion
µ

−ieef γµ

gluon-quark
a,µ

−igsγµTc
jk

The conventional three- and four-point Feynman vertices are

k1,µ,a

k2,ν,bk3,ρ,c

= −g fabc[gµν (kρ
1 −kρ

2

)
+gνρ (kµ

2−kµ
3
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]
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
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[
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+ f adef bce(gµνgρσ −gµρgνσ)
]
,

where thef abc are the structure constants defined by

[Ta,Tb] = i f abcTc . (A.32)

The only non-zero elements (up to permutations) of the totally antisymmetric tensor are:

1 = f123 = 2 f147 = 2 f246 = 2 f257 = 2 f345

=−2 f156 = −2 f367 =
2√
3

f458 =
2√
3

f678. (A.33)

The Gell-Mann matrices [245] are the generators of the Lie algebra of the groupSU(3):

λ1 =




0 1 0
1 0 0
0 0 0



 , λ2 =
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

 . (A.34)
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They are correlated to theTa by:

Ta =
λa

2
. (A.35)

A.4.2 Colour-Ordered Feynman Rules

The Feynman rules for colour-ordered partial amplitudes read:
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k2,νk3,ρ
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1 −kρ
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]
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µ
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σ

= i [2gµρgνσ −gµνgρσ −gµσgνρ] . (A.36)

A.4.3 Scalar Diagrammatic Rules

The non-vanishing primitive vertices involving only gluons are:

1−

2−3+

=V3(k
−
1 ,k−2 ,k+

3 ) = i
√

2〈12〉 [3q]2

[1q][2q]
= i

√
2

〈12〉4

〈12〉〈23〉〈31〉,

1+

2+3−
=V3(k

+
1 ,k+

2 ,k−3 ) = i
√

2[21]
〈3q〉2

〈1q〉〈2q〉 = i
√

2
[21]4

[32][21][13]
,

1+

2+3−

4−

=V4(k
+
1 ,k+

2 ,k−3 ,k−4 )

=i
[1q][2q]〈3q〉〈4q〉
〈1q〉〈2q〉[3q][4q]

(
1+

〈q− |2−3|q−〉〈q− |4−1|q−〉
〈q− |2+3|q−〉〈q− |4+1|q−〉

)
,



A.5 Sudakov Factors for Massless Final-State Partons 75

1+

2−3+

4−

=V4(k
+
1 ,k−2 ,k+

3 ,k−4 )

=i
[1q]〈2q〉[3q]〈4q〉
〈1q〉[2q]〈3q〉[4q]

(〈q− |1−2|q−〉〈q− |3−4|q−〉
〈q− |1+2|q−〉〈q− |3+4|q−〉

+
〈q− |2−3|q−〉〈q− |4−1|q−〉
〈q− |2+3|q−〉〈q− |4+1|q−〉 −2

)
. (A.37)

A.5 Sudakov Factors for Massless Final-State Partons

In this appendix we discuss in more detail the Sudakov factors for massless final-state partons.
This case is simple enough that one integration can be done analytically. The spin-averaged
dipole splitting functions in four dimensions are:

Pq→qg = CF
8παs(µ2)

si jk

1
y

(
2

1−z(1−y)
− (1+z)

)
,

Pg→gg = CA
8παs(µ2)

si jk

1
y

(
2

1−z(1−y)
+

2
1− (1−z)(1−y)

−4+2z(1−z)

)
,

Pg→qq̄ = TR
8παs(µ2)

si jk

1
y

(
1−2z(1−z)

)
, (A.38)

where
si jk =

(
pi + p j + pk

)2
= (pĩ + pk̃)

2. (A.39)

The dipole phase space measure is:

Z

dφunres=
si jk

16π2

1
Z

0

dκ
z+(κ)
Z

z−(κ)

dz
1

4z(1−z)

(
1− κ

4z(1−z)

)
, (A.40)

where

z±(κ) =
1
2

(
1±

√
1−κ

)
. (A.41)

The strong coupling is evaluated at the scaleµ2 = −k2
⊥:

αs(µ
2) = αs

(
1
4

κsi jk

)
. (A.42)

The Sudakov factor is given by:

∆i j ,k(t1, t2) = exp

(

−
t1

Z

t2

dtCĩ,k̃

Z

dφunresδ
(
t −Tĩ,k̃

)
Pi j ,k

)

. (A.43)
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For the splittingq→ qgwe obtain:

∆i j ,k(t1, t2) = exp

(
−Cĩ,k̃CF

κ+
Z

κ−

dκ
κ

αs(µ2)

2π

z+(κ)
Z

z−(κ)

dz(1−y)

(
2

1−z(1−y)
− (1+z)

))
, (A.44)

where

κ− = 4
Q2

si jk
et2, κ+ = min

(
1,4

Q2

si jk
et1

)
, y =

κ
4z(1−z)

,µ2 =
1
4

κsi jk . (A.45)

The integration overzcan be done analytically:
Z

dz(1−y)

(
2

1−z(1−y)
− (1+z)

)
= −1

2
z2−z+

κ
4

(
lnz−2ln(1−z)

)

− 4
4+κ

(
1
2

κ lnz+ ln
(
κ+4(1−z)2)+

√
κarctan

( 2√
κ
(1−z)

))
. (A.46)

The same holds for the other splittings. Therefore we obtainfor the Sudakov factors:

∆i j ,k(t1, t2) = exp

(
−Cĩ,k̃C

κ+
Z

κ−

dκ
κ

αs
(1

4κsi jk
)

2π
(
Vi j ,k (κ,z+)−Vi j ,k (κ,z−)

)
)

, (A.47)

whereC is a colour factor and equal to:

C =






CF for q→ qg,
CA for g→ gg,
TR for g→ qq̄.

(A.48)

The functionsVi j ,k (κ,z) are given by:

Vqg,k (κ,z) =− 1
2

z2−z+
κ
4

(
lnz−2ln(1−z)

)

− 4
4+κ

(
1
2

κ lnz+ ln
(
κ+4(1−z)2)−

√
κarctan

( 2√
κ
(1−z)

))
,

Vgg,k (κ,z) =− 2
3

z3+z2−4z− 1
2

κz+κ ln
z

1−z
+

4
4+κ

(
1
2

κ ln
1−z

z

+ ln
κ+4z2

κ+4(1−z)2 −
√

κarctan
( 2z√

κ

)
+
√

κarctan
(2(1−z)√

κ

))
,

Vgq,k (κ,z) =
2
3

z3−z2 +z+
κ
2

z− κ
4

ln
z

1−z
. (A.49)

A.6 Insertion of Emitted Particles

In this appendix we list the relevant formulæ for the insertion of one additional four-vector
into a set ofn four-vectors. This insertion satisfies momentum conservation and can be con-
sidered as the inverse of the(n+1)→ n phase space mapping of Catani and Seymour. These
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insertion mappings are also useful for an efficient phase space integration of the real emis-
sion contribution in NLO calculations. Therefore we quote in addition the relevant phase
space weights. For the shower algorithm, these weights are not needed, as they are taken into
account through the generation of the shower.

A.6.1 Insertion for Final-State Particles

The Massless Case

We start with the simplest case, where both the emitter and the spectator are in the final
state and all particles involved in the dipole splitting aremassless. The insertion procedure is
identical to the one used in references [149]. Given the four-vectors ˜pi j and p̃k together with
the three variablesy, z andφs we would like to constructpi , p j andpk, such that

pi + p j + pk = p̃i j + p̃k, p2
i = p2

j = p2
k = 0. (A.50)

In four dimensions we have for the phase space measure:

dφunres=
si jk

32π3

1
Z

0

dy (1−y)

1
Z

0

dz

2π
Z

0

dφs, (A.51)

wheresi jk = (p̃i j + p̃k)
2 = (pi + p j + pk)

2. It is convenient to work in the rest frame of
P = p̃i j + p̃k = pi + p j + pk. We shall orient the frame in such a way, that the spatial compo-
nents of ˜pk are along thez-direction. When used as a phase space generator we set:

y = u1, z= u2, φs = 2πu3, (A.52)

whereu1, u2 andu3 are three uniformly distributed random numbers in[0,1]. From

y =
si j

si j +sik +sjk
, z=

sik

sik +sjk
(A.53)

we obtain:
si j = yP2, sik = z(1−y)P2, sjk = (1−z)(1−y)P2. (A.54)

If si j < sjk we want to havep′k → pk assi j → 0. Define

Ei =
si j +sik

2
√

si jk
, E j =

si j +sjk

2
√

si jk
, Ek =

sik +sjk

2
√

si jk
, (A.55)

θik = arccos

(
1− sik

2EiEk

)
, θ jk = arccos

(
1− sjk

2E jEk

)
. (A.56)

In our coordinate system we have:

p′i = Ei
(
1,sinθik cos(φs+π),sinθik sin(φs+π),cosθik

)
,

p′j = E j
(
1,sinθ jk cosφs,sinθ jk sinφs,cosθ jk

)
,

p′k = Ek
(
1,0,0,1

)
. (A.57)
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The momentap′i , p′j andp′k are related to the momentapi , p j andpk by a sequence of Lorentz
transformations back to the original frame:

pi = ΛboostΛxy(φ)Λxz(θ)p′i (A.58)

and analogously for the other two momenta. The explicit formulæ for the Lorentz transfor-
mations are obtained as follows: let|P| =

√
(p̃i j + p̃k)2 and denote by ˆpk the coordinates of

the hard momentum ˜pk in the centre of mass system of ˜pi j + p̃k. p̂k is given by:

p̂k =

(
EP

|P|Ẽk−
~̃pk ·~P
|P| ,~̃pk +

(
~̃pk ·~P

|P|(EP+ |P|) −
Ẽk

|P|

)
~P

)

. (A.59)

The angles are then given by:

θ = arccos

(
2ÊkE′

k−2p̂k · p′k

2
∣∣∣~̂pk

∣∣∣
∣∣~p′k
∣∣

)
, φ = arctan

(
p̂y

k

p̂x
k

)
. (A.60)

For the case considered here particlek is massless and the formula forθ reduces to:

θ = arccos

(
1− 2p̂k · p′k

2p̂t
kpt ′

k

)
. (A.61)

The explicit form of the rotations is:

Λxz(θ) =





1 0 0 0
0 cosθ 0 sinθ
0 0 1 0
0 −sinθ 0 cosθ



 , Λxy(φ) =





1 0 0 0
0 cosφ −sinφ 0
0 sinφ cosφ 0
0 0 0 1



 . (A.62)

The boostp = Λboostq is given by:

p =

(
EP

|P|Eq+
~q ·~P
|P| ,~q+

(
~q ·~P

|P|(EP+ |P|) +
Eq

|P|

)
~P

)
. (A.63)

The weight is given by:

w =
si jk

16π2 (1−y) . (A.64)

The Massive Case

We now consider the case of final-state particles with arbitrary masses:

p̃2
i j = m2

i j , p2
i = m2

i , p2
j = m2

j , p̃2
k = p2

k = m2
k. (A.65)

The dipole phase space reads [212]:

dφunres=
si jk

32π3

(
1−µ2

i −µ2
j −µ2

k

)2(λ(1,µ2
i j ,µ

2
k)
)− 1

2

y+
Z

y−

dy (1−y)

z+
Z

z−

dz

2π
Z

0

dφs, (A.66)
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where

si jk =
(
p̃i j + p̃k

)2
, µl =

ml√
si jk

, λ(x,y,z) = x2 +y2 +z2−2xy−2yz−2zy. (A.67)

The integration boundaries are given by:

y+ = 1− 2µk(1−µk)

1−µ2
i −µ2

j −µ2
k

, y− =
2µiµj

1−µ2
i −µ2

j −µ2
k

,

z± =
2µ2

i +
(
1−µ2

i −µ2
j −µ2

k

)
y

2
(

µ2
i +µ2

j +
(
1−µ2

i −µ2
j −µ2

k

)
y
)
(
1±vi j ,ivi j ,k

)
. (A.68)

The general formula for the relative velocities isvp,q =
√

1− p2q2/(pq). In our case the
relative velocities are given by:

vi j ,k =

√(
2µ2

k +
(
1−µ2

i −µ2
j −µ2

k

)
(1−y)

)2
−4µ2

k
(
1−µ2

i −µ2
j −µ2

k

)
(1−y)

,

vi j ,i =

√(
1−µ2

i −µ2
j −µ2

k

)2
y2−4µ2

i µ2
j(

1−µ2
i −µ2

j −µ2
k

)
y+2µ2

i

. (A.69)

For the phase space generation we set:

y = (y+−y−)u1+y−, z= (z+−z−)u2+z−, φs = 2πu3. (A.70)

We again work in the rest frame ofP = p̃i j + p̃k = pi + p j + pk, such that the spatial compo-
nents of ˜pk are along thez-direction:

p̃i j =
(
Ẽi j ,0,0,−

∣∣~̃pk
∣∣) , p̃k =

(
Ẽk,0,0,

∣∣~̃pk
∣∣) . (A.71)

For the invariants we have:

2pi p j = y
(
P2−m2

i −m2
j −m2

k

)
,

2pi pk = z(1−y)
(
P2−m2

i −m2
j −m2

k

)
,

2p j pk = (1−z)(1−y)
(
P2−m2

i −m2
j −m2

k

)
. (A.72)

The invariants are related toy andz as follows:

y =
2pi p j

2pi p j +2pi pk +2p j pk
, z=

2pi pk

2pi pk +2p j pk
. (A.73)

In our chosen frame

p′i = |~pi |
( Ei

|~pi |
,sinθik cos(φs+π),sinθik sin(φs+π),cosθik

)
,

p′j =
∣∣~p j
∣∣
( E j∣∣~p j

∣∣ ,sinθ jk cosφs,sinθ jk sinφs,cosθ jk

)
,

p′k = |~pk|
( Ek

|~pk|
,0,0,1

)
. (A.74)
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The energies are obtained from the invariants as follows:

Ei =
si jk −2p j pk +m2

i −m2
j −m2

k

2
√

si jk
,

E j =
si jk −2pi pk−m2

i +m2
j −m2

k

2
√

si jk
,

Ek =
si jk −2pi p j −m2

i −m2
j +m2

k

2
√

si jk
. (A.75)

For the angles we have:

θik = arccos

(
2EiEk−2pi pk

2|~pi | |~pk|

)
, θ jk = arccos

(
2E jEk−2p j pk

2
∣∣~p j
∣∣ |~pk|

)
. (A.76)

The momentap′i , p′j andp′k are related to the momentapi , p j andpk by the same sequence of
Lorentz transformations as in equation (A.58). The weight is:

w =
si jk

16π2

(
1−µ2

i −µ2
j −µ2

k

)2(λ(1,µ2
i j ,µ

2
k)
)− 1

2 (1−y)(y+−y−)(z+−z−) . (A.77)

A.6.2 Insertion for an Antenna Between an Initial State and a Final State

The Massless Case

Here the(n+1)-particle phase space is given by a convolution:

dφn+1 =

1
Z

0

dx dφn(xpa) dφdipole. (A.78)

The dipole phase space reads:

dφdipole =

∣∣2p̃i j pa
∣∣

32π3

1
Z

0

dz

2π
Z

0

dφs. (A.79)

The angleφs parametrises the solid angle perpendicular to ˜pi j andxpa. Therefore we can
treat the case of a final-state emitter with an initial-statespectator as well as the case of an
initial-state emitter with a final-state spectator at the same time. x andz are related to the
invariants as follows:

x =
−2pi pa−2p j pa−2pi p j

−2pi pa−2p j pa
, z=

−2pi pa

−2pi pa−2p j pa
. (A.80)

For the phase space generation we set:

x = 1−u1, z= u2, φs = 2πu3. (A.81)
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We denoteQ = p̃i j + xpa = pi + p j + pa. It is convenient to work in the rest frame ofP =
pi + p j = Q− pa and to orient the frame such thatpa is along thez-axis. For the invariants
we have:

2pi p j =
(
−Q2) 1−x

x
, 2pi pa =

z
x
Q2, 2p j pa =

1−z
x

Q2. (A.82)

In this frame

p′i = Ei
(
1,sinθia cosφs,sinθia sinφs,cosθia

)
,

p′j = Ei
(
1,−sinθia cosφs,−sinθia sinφs,−cosθia

)
,

p′a =
(
−|Ea| ,0,0, |Ea|sign(pz

a
′)
)

. (A.83)

We have

Ei =
1
2
|P| , Ea =

1
|P| (P · pa) , θia = arccos

(
sign(pz

a
′)
(
−1+

2pi pa

2EiEa

))
. (A.84)

The momentap′i , p′j are again related to the momentapi , p j by a sequence of Lorentz trans-
formations as in equation (A.58). The weight is given by:

w =

∣∣Q2
∣∣

16π2x
. (A.85)

The Massive Case

The dipole phase space now reads:

dφdipole =

∣∣2p̃i j pa
∣∣

32π3

z+
Z

z−

dz

2π
Z

0

dφs. (A.86)

The integration boundaries are given by:

z+ = 1, z− =
µ2

1−x+µ2 , (A.87)

where

µ2 =
m2

i∣∣2p̃i j pa
∣∣ =

xm2
i∣∣Q2−m2

i

∣∣ . (A.88)

We consider only the case wherem˜i j = mi = m and all other masses are zero. For the phase
space generation we set:

x = 1−u1, z= (z+−z−)u2+z−, φs = 2πu3. (A.89)

For the invariants we have now:

2pi p j =
(
−Q2 +m2

i

) 1−x
x

, 2pi pa =
z
x

(
Q2−m2

i

)
, 2p j pa =

1−z
x

(
Q2−m2

i

)
. (A.90)
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We parametrise the momenta as:

p′i = |~pi |
( Ei

|~pi |
,sinθia cosφs,sinθia sinφs,cosθia

)
,

p′j = |~pi |
(

1,−sinθia cosφs,−sinθia sinφs,−cosθia

)
,

p′a =
(
−|Ea| ,0,0, |Ea|sign(pz

a
′)
)

. (A.91)

Then

Ei =
P2+m2

i

2|P| , Ea =
1
|P| (P · pa) , θia = arccos

(
sign(pz

a
′)

(2EiEa−2pi pa)

2|~pi |(−Ea)

)
. (A.92)

The momentap′i , p′j are again related to the momentapi , p j by a sequence of Lorentz trans-
formations as in equation (A.58). The weight is given by:

w =

∣∣Q2−m2
i

∣∣
16π2x

(z+−z−) . (A.93)

A.6.3 Insertion for an Initial-State Antenna

Here we only have to consider the case where all particles aremassless. In this case we trans-
form all the final-state momenta. The(n+1)-particle phase space is given by a convolution:

dφn+1 =

1
Z

0

dx dφn(xpa) dφdipole. (A.94)

The dipole phase space reads:

dφdipole =
|2papb|
32π3

1−x
Z

0

dv

2π
Z

0

dφs. (A.95)

The variablev is given by:

v =
−2papi

2papb
. (A.96)

For the phase space generation we set:

x = 1−u1, v = (1−x)(1−u2), φs = 2πu3. (A.97)

We denote
K = −pa− pb− pi , K̃ = −p̃ai − pb. (A.98)

We have

pa =
1
x

p̃ai,

pi = ΛboostEi
(
1,sinθia cosφs,sinθia sinφs,cosθia

)
,

pb = pb, (A.99)
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with Ei andθia given in the rest frame ofpa + pb by:

Ea = −1
2

√
2papb ,

Ei =
K̃2−2papb

4Ea
,

θia = arccos

(
sign(p̂z

a)

(
−1+

2pi pa

2EiEa

))
. (A.100)

p̂a denotespa in the rest frame ofpa + pb. Λboost transforms from the rest frame ofpa + pb

to the lab frame. All other final-state momenta are transformed with:

Λ−1 = gµν −2

(
K + K̃

)µ(
K + K̃

)ν

(
K + K̃

)2 +2
KµK̃ν

K2 . (A.101)

The weight is given by:

w =

∣∣K̃2
∣∣

16π2x
(1−x). (A.102)
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[35] T. Kaluza, Zum Uniẗatsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin
(1921) pp. 966–972

[36] O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys. 37 (1926)
pp. 895–906

[37] S.D. Drell and T.M. Yan,Massive Lepton-Pair Production in Hadron–Hadron Col-
lisions at High Energies, Phys. Rev. Lett. 25 (1970) pp. 316–320, erratum ibid. p.
902

[38] ATLAS collaboration, ATLAS Detector and Physics Performance. Technical Design
Report. Vol. 2, CERN-LHCC-99-15

[39] CMS collaboration, G.L. Bayatian et al.,CMS Physics Technical Design Report, Vol-
ume II: Physics Performance, J. Phys. G34 (2007) pp. 995–1579

[40] F. Englert and R. Brout,Broken Symmetry and the Mass of Gauge Vector Mesons,
Phys. Rev. Lett. 13 (1964) pp. 321–323, received 26 June 1964, published 31 August
1964

[41] P.W. Higgs,Broken Symmetries, Massless Particles and Gauge Fields, Phys. Lett. 12
(1964) pp. 132–133, received 27 July 1964, published 15 September 1964



88 Bibliography

[42] P.W. Higgs,Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13
(1964) pp. 508–509, received 31 August 1964, published 19 October 1964

[43] G.S. Guralnik, C.R. Hagen and T.W.B. Kibble,Global Conservation Laws and Mass-
less Particles, Phys. Rev. Lett. 13 (1964) pp. 585–587, received 12 October1964,
published 16 November 1964, see also G. S. Guralnik,The History of the Guralnik,
Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and
Gauge Particles, IJMPA 24 (2009) pp. 2601–2627, arXiv: 0907.3466

[44] LEP Working Group for Higgs Boson Searches, R. Barate etal., Search for the Stan-
dard Model Higgs Boson at LEP, Phys. Lett. B565 (2003) pp. 61–75, arXiv: hep-
ex/0306033

[45] L. Evans and P. Bryant (ed.),LHC Machine, JINST 3 (2008) S08001

[46] LHC The Guide, (2009), seehttp://cdsweb.cern.ch/record/1165534/files/
CERN-Brochure-2009-003-Eng.pdf (a brochure of the interested public)

[47] O.S. Br̈uning (ed.) et al.,LHC Design Report. Vol. I: The LHC Main Ring, CERN-
2004-003-V-1,http://lhc.web.cern.ch/LHC/LHC-DesignReport.html

[48] M.J. Syphers,Analytical Description of Tevatron Integrated Luminosity, Presented at
Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4–8 May 2009,
available athttp://trshare.triumf.ca/∼pac09proc/Proceedings/papers/we
6pfp033.pdf

[49] F. Gianotti et al.,Physics Potential and Experimental Challenges of the LHC Lumi-
nosity Upgrade, Eur. Phys. J. C39 (2005) pp. 293–333, arXiv: hep-ph/0204087

[50] D. Bortoletto, The ATLAS and CMS Plans for the LHC Luminosity Upgrade, (2008),
arXiv: 0809.0671

[51] VLHC Design Study Group, G. Ambrosio et al.,Design Study for a Staged Very Large
Hadron Collider, (2001), SLAC-R-591

[52] J. Brau (ed.) et al.,International Linear Collider Reference Design Report. 1:Execu-
tive Summary. 2: Physics at the ILC. 3: Accelerator. 4: Detectors, ILC-REPORT-
2007-001, (2009), http://ilcdoc.linearcollider.org/record/6321?ln=en,
see also Barry Barish,A Technically Driven Timeline for the ILC, (2007),http://
www.linearcollider.org/cms/?pid=1000422

[53] CLIC Physics Working Group, E. Accomando et al.,Physics at the CLIC Multi-TeV
Linear Collider, (2004), arXiv: hep-ph/0412251, see alsohttp://clic-study.web.
cern.ch/clic-study/

[54] C.M. Ankenbrandt et al.,Status of Muon Collider Research and Development and
Future Plans, Phys. Rev. ST Accel. Beams 2 (1999) 081001, arXiv: physics/9901022



Bibliography 89

[55] W. Fischer, Run Overview of the Relativistic Heavy Ion Collider, (2011), http://
www.agsrhichome.bnl.gov/RHIC/Runs/

[56] ATLAS collaboration, ATLAS Detector and Physics Performance. Technical Design
Report. Vol. 1, CERN-LHCC-99-14, for the technical design reports of the single sub-
detectors seehttp://www.slac.stanford.edu/spires/find/hep/www?rawcmd=
find+title+ATLAS+technical+design+report

[57] CMS collaboration, G.L. Bayatian et al.,CMS Physics: Technical Design Report.
Volume I: Detector Performance and Software, CERN-LHCC-2006-001, for the tech-
nical design reports of the single subdetectors seehttp://www.slac.stanford.edu/
spires/find/ hep/www?rawcmd=find+title+CMS+technical+design+report

[58] LHCb collaboration, S. Amato et al.,LHCb Technical Proposal, CERN-LHCC-98-04,
for the subdetectors’ TDRs seehttp://www.slac.stanford.edu/spires/find/
hep/www?rawcmd=find+title+LHCb+technical+design+report

[59] TOTEM collaboration, V. Berardi et al.,TOTEM: Technical Design Report. Total Cross
Section, Elastic Scattering and Diffraction Dissociationat the Large Hadron Collider
at CERN, CERN-LHCC-2004-002 and CERN-LHCC-2004-020

[60] ALICE collaboration, ALICE: Technical Proposal for A Large Ion Collider Experi-
ment at the CERN LHC, CERN-LHCC-95-71, for the technical design reports of the
single subdetectors seehttp://www.slac.stanford.edu/spires/find/hep/www?
rawcmd=find+title+ALICE+technical+design+report

[61] LHCf collaboration, O. Adriani et al.,Technical Design Report of the LHCf Experi-
ment: Measurement of Photons and Neutral Pions in the Very Forward Region of LHC,
CERN-LHCC-2006-004

[62] T. Kinoshita,Mass Singularities of Feynman Amplitudes, J. Math. Phys. 3 (1962) pp.
650–677

[63] T.D. Lee and M. Nauenberg,Degenerate Systems and Mass Singularities, Phys. Rev.
133 (1964) pp. B1549–B1562

[64] G. ’t Hooft and M.J.G. Veltman,Regularization and Renormalization of Gauge Fields,
Nucl. Phys. B44 (1972) pp. 189–213

[65] C.G. Bollini and J.J. Giambiagi,Lowest Order “Divergent” Graphs inν-Dimensional
Space, Phys. Lett. B40 (1972) pp. 566–568

[66] J.F. Ashmore, A Method of Gauge-Invariant Regularization, Lett. Nuovo Cim. 4
(1972) pp. 289–290

[67] G.M. Cicuta and E. Montaldi,Analytic Renormalization via Continuous Space Dimen-
sion, Nuovo Cim. Lett. 4 (1972) pp. 329–332



90 Bibliography

[68] W. Pauli and F. Villars,On the Invariant Regularization in Relativistic Quantum The-
ory, Rev. Mod. Phys. 21 (1949) pp. 434–444

[69] S. Tomonaga,On a Relativistically Invariant Formulation of the QuantumTheory of
Wave Fields, Prog. Theor. Phys. 1 (1946) pp. 27–42

[70] J.S. Schwinger,Quantum Electrodynamics. I. A Covariant Formulation, Phys. Rev. 74
(1948) pp. 1439–1461

[71] R.P. Feynman,The Theory of Positrons, Phys. Rev. 76 (1949) pp. 749–759

[72] R.P. Feynman,Space-Time Approach to Quantum Electrodynamics, Phys. Rev. 76
(1949) pp. 769–789, some of Feynman’s ideas (like spacetimediagrams for processes
such as Compton scattering and positrons as electrons travelling backwards in time)
were already published by Zisman in 1940 and 1941, seeG. A. Zisman, Teori�

Pozitrona, ЖЗTF 10 (1940) pp. 1163–1167 and 11 (1941) pp. 631–641

[73] F.J. Dyson, The Radiation Theories of Tomonaga, Schwinger, and Feynman, Phys.
Rev. 75 (1949) pp. 486–502

[74] F.J. Dyson, The S Matrix in Quantum Electrodynamics, Phys. Rev. 75 (1949) pp.
1736–1755

[75] H.A. Bethe, The Electromagnetic Shift of Energy Levels, Phys. Rev. 72 (1947) pp.
339–341

[76] J.S. Schwinger,On Quantum-Electrodynamics and the Magnetic Moment of the Elec-
tron, Phys. Rev. 73 (1948) pp. 416–417

[77] F.J. Dyson,Divergence of Perturbation Theory in Quantum Electrodynamics, Phys.
Rev. 85 (1952) pp. 631–632

[78] L.N. Lipatov, Divergence of the Perturbation-Theory Series and the Quasiclassical
Theory, Sov. Phys. JETP 45 (1977) pp. 216–223, also in J. C. Le Guillou and J. Zinn-
Justin (ed.),Large-Order Behaviour of Perturbation Theory(Amsterdam, 1990), pp.
83–90

[79] J. Zinn-Justin,Quantum Field Theory and Critical Phenomena(Oxford, 1996), third
edition, 1008 p. (Int. Ser. Monogr. Phys., 92), especially chapter 41Perturbation The-
ory at Large Orders and Instantons. The Summation Problem, pp. 871–889

[80] U. Jentschura and G. Soff,Divergence of Perturbation Theory and Resummation, in
U. Grundinger (ed.),GSI Scientific Report 2000(Darmstadt, 2000), p. 110, see also
http://www.gsi.de/informationen/wti/library/scientificreport2000/

[81] I.M. Suslov,Divergent Perturbation Series, J. Exp. Theor. Phys. 100 (2005) pp. 1188–
1233, arXiv: hep-ph/0510142



Bibliography 91

[82] A.V. Semenov,LanHEP – a Package for the Automatic Generation of Feynman Rules
in Field Theory. Version 3.0, Comput. Phys. Commun. 180 (2009) pp. 431–454, arXiv:
0805.0555, see alsohttp://theory.npi.msu.su/∼semenov/lanhep.html
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