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Abstract. We develop a stochastic framework for describing fluctuations in multi-field
inflationary models. Unlike most previous such approaches, metric perturbations are taken
into account and the basic dynamical quantities are invariant under changes of time slicing.

Inflation [1], an early period of accelerated expansion of the universe, is a concept which can
explain many special features of the cosmos on large scales. Its most important merit is the
provision of a natural mechanism for the creation of fluctuations in an otherwise homogeneous
universe [2]. These fluctuations act as the primordial seeds which later lead to the formation of
structures such as galaxies and clusters of galaxies. There are many models which implement
inflation and practically all of them invoke one or more scalar fields to drive the accelerated
expansion phase. Such a phase is capable of producing fluctuations in the energy density by
amplifying the quantum fluctuations of any light scalar field present during inflation.

The study inflationary fluctuations has become a major activity in cosmology over the last
two decades [3]. They are usually represented as linearised deviations from a homogeneous
spacetime and are therefore described by non-interacting quantum fields. Linearity, along with
the additional assumption that the initial state is the vacuum (as defined on scales much smaller
then the Hubble radius), lead to the prediction that inflation creates Gaussian fluctuations. The
smallness of the observed CMB anisotropy [4] certainly justifies the use of linear perturbation
theory as a first approximation. However, some non-linearity will always be present in inflation
due to the non-linear nature of gravity and the fact that the fields have a potential V (φ) which
may be not be quadratic. Such non-linearities will lead to non-Gaussianity in the temperature
anisotropies of the CMB. Given the increasing precision of CMB observations [5, 6], it is worth
considering the possibility that CMB non-Gaussianity may be observable.

In order to address this question one must go beyond standard linear perturbation theory [7].
The extension of the latter to second order in perturbations is straightforward but technically
tedious [8] and in such an approach quantisation can only be performed at linear order. A more
proper quantum computation has been performed [9] but it refers to single field models and is
constrained by the slow-roll assumption. In this paper we offer an alternative methodology to
study non-Gaussianity, valid for generic multi-field inflation models without assuming slow-roll.
The form of the equations is rather simple and contain non-linearity to all orders, at least at
the classical level. Quantum fluctuations are modelled via stochastic noise terms which source
the classical equations.
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The use of a stochastic picture to simulate quantum fluctuations in inflation is quite old [10].
In the simplest case of a scalar field evolving in deSitter space with Hubble rate H, one can
split the inhomogeneous part of the field into long (k < caH) and short (k > caH) wavelength
modes and derive for the slowly evolving long wavelength part

φ̇ = − 1
3H

∂V

∂φ
+ f(t,x) , (1)

with f is a random source term satisfying

〈f(t,x)f(t′,x′)〉 =
H3

4π2
δ(t − t′)

sin(c̃aH|x − x′|)
c̃aH|x − x′| . (2)

In the above, c̃ is an arbitrary number defining the separation between the short and the long
wavelength regime. The quantum nature of the scalar field can adequately be described by a
classical probability distribution on long wavelengths, hence the stochastic nature of f .

An equation of this sort provides a relatively simple way to study deviations from linearity
since H2 � 8π

m2
pl

V and ∂V
∂φ will depend on φ in a non-linear way and introduce mode couplings.

Indeed such approaches have been used in the past. Even though it has proved useful, equation
(1) has various shortcomings. One is the appearance of c̃ when considering correlations at
different spatial points. Since it is a totally arbitrary parameter, separating long and short
wavelengths, it should not appear in the final results. Secondly, the time parameter t is supposed
to be the cosmic time of homogeneous cosmology. However in the presence of perturbations
there is no preferred time slicing. Thirdly, and most importantly, gravitational perturbations
are totally ignored. The precision of forthcoming CMB measurements requires more fine tuned
computational technology. We present a formalism which does not exhibit such shortcomings.
More details and applications can be found in [11, 12, 13].

We start by considering a metric of the form

ds2 = −N2(t,x)dt2 + a2(t,x)hij(x)dxidxj . (3)

The matter content of the inflationary era is a set of scalar fields with the energy momentum
tensor

Tµν = GAB∂µφA∂νφ
B − gµν

(
1
2
GAB∂λφA∂λφB + V

)
. (4)

We focus attention on lengths longer than the characteristic scale of the inflationary spacetime,
namely the Hubble radius (aH)−1. The main approximation is to drop from the Einstein
equations terms that contain second order spatial gradients [14, 15]. After ignoring the traceless
part of the extrinsic curvature K̄i

j which is a decaying mode on such scales, we arrive at

dH

dt
= − 4π

m2
pl

NΠBΠB , (5)

DtΠA = −3NHΠA − NGABVB , (6)

H2 =
8π

3m2
pl

(
1
2
ΠBΠB + V

)
, (7)

∂iH = − 4π

m2
pl

ΠB∂iφ
B, (8)

where ΠB = φ̇B

N and the symbol D appearing in (6) is a covariant derivative with respect to the
field space metric GAB. In particular, one can define

DtL
A = ∂tL

A + ΓA
BC ∂tφ

BLC , (9)
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and similarly
DiL

A = ∂iL
A + ΓA

BC ∂iφ
BLC , (10)

with ΓA
BC the symmetric connection formed from GAB. The quantities ∂iφ

B and NΠB transform
as vectors in field space but φB does not. The latter is just a set of n scalar functions (w.r.t
both field and spacetime transformations) parameterising the field manifold.

Cosmological perturbations are quantised in linear theory through the Sasaki-Mukhanov
variables

δqA = a

(
δφA − φ̇A

H
Ψ

)
, (11)

where Ψ = δa/a is the perturbation in the trace of the spatial metric. An appropriate non-linear
generalisation of these variables is

QA
i = a

(
∂iφ

A − ΠA

H
Xi

)
, (12)

with Xi = ∂i ln a. These combinations of spatial gradients have the same value for all choices
of the lapse function N in the long wavelength limit. Their linear part is the gradient of (11).
From (5) - (8) and using linear theory to describe short wavelengths, we derive the following
equations for (12)

D2
tQA

i −
(

Ṅ

N
− NH

)
DtQA

i + ΩA
BQB

i =
∫

d3k

(2π)
3
2

ki ξ
A(k) eikx + c.c. , (13)

with c.c. the complex conjugate,

ΩA
B = N2V A

B −
m2

pl

4π
(NH)2RA

FCBωF ωC − (NH)2
[
(2 − ε̃) δA

B

+ 2 (3 + ε̃)ωAωB + 2
√

ε̃
(
η̃BωA + η̃AωB

) ]
, (14)

V A
B = DBV A, RA

FCB is the curvature tensor of the field manifold and

ε̃ =
4π

m2
pl

ΠAΠA

H2
, (15)

η̃A =
1
N

DtΠA

HΠ
, (16)

ωA =
√

ε̃
ΠA

Π
. (17)

The right hand side of (13) is a stochastic source term:

ξA(k) = δqA(k)Ẅ(k)+

[
2Dtδq

A(k) −
(

Ṅ

N
− NH

)
δqA(k)

]
Ẇ(k)−

(
Nk

a

)2

W(k)δqA(k) , (18)

δqA(k) =
1√
2
QA

B(k)αB(k) . (19)

The matrix QA
B(k) obeys the linear equation of motion

D2
tQA

B −
(

Ṅ(t)
N(t)

− N(t)H(t)

)
DtQA

B +

(
ΩA

C(t) +
(

N(t)
a(t)

k

)2

δA
C

)
QC

B = 0 . (20)
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Figure 1. A slice through a small 643 simulation of equation (13) for a single field model.
Different colours represent fluctuations in the expansion of each spatial point near the end of
inflation. The statistics of the fluctuations show small deviations (skewness) from Gaussianity.

The quantities αA are complex stochastic constants satisfying

〈αA (k)αB∗ (
k′)〉 = δABδ

(
k + k′) , (21)

〈αA (k)αB (
k′)〉 = 0 , (22)

where 〈...〉 denotes an ensemble average and W(k) is an appropriate window function that filters
out short wavelength modes. So far no choice of time slicing has been made. It turns out that
a useful choice of time for calculating ξ(k) is

t = ln aH , (23)

which gives NH = (1 − ε̃)−1.
Equation (13) describes the non-linear evolution on long wavelengths, sourced by random

linear short-wavelength fluctuations. The coefficients appearing on the left hand side depend on
QA

i . For the gauge choice (23) the following constraints hold:

Xi =

(
4π

m2
pl

) 1
2 1

a(1 − ε̃)
ωAQA

i = −∂i(ln H) , (24)

∂iφ
A =

1
a

[
δA

B +
ωAωB

(1 − ε̃)

]
QB

i , (25)

and

∂iΠA =
H

a
(1 − ε̃)DtQA

i − H

a

⎡
⎣δA

C + ωAωC +

(
m2

pl

4π

) 1
2

ΓA
BCωB

⎤
⎦QC

i

+
H

a

⎡
⎣√ε̃η̃A −

(
m2

pl

4π

) 1
2

ΓA
BCωBωC

⎤
⎦ ωD

(1 − ε̃)
QD

i . (26)
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Equation (13) along with the constraints (24) - (26) provide a stochastic framework for
studying the generation of primordial non-Gaussianity from inflation. Unlike most previous
approaches, metric perturbations are incorporated and no slow-roll assumption is made. The
choice of time slicing is addressed and the basic variables used, the QA

i , are invariant under
changes of the latter. These features allow for a wide class of inflationary models to be accurately
studied using this formalism. This seems to the present authors likely to be a more fruitful
and elegant approach to incorporating further nonlinearity than the technically much more
complicated alternative of applying higher order perturbation theory to the original Einstein
equations [8]. Analytic solutions to the equations can be derived in some simple cases under
the slow-roll approximation [13]. However, the stochastic system can be simulated numerically
for any model without the need for such approximations. A large code has been developed
to perform these nonlinear stochastic simulations for multifield inflation. Figure 1 illustrates
preliminary results for a simple single-field inflation model, which confirms analytic expectations
of a distinct non-Gaussian signature (see the three-point correlation function discussed in [13]),
though one which is well below current observational limits. A number of multifield models are
already believed to produce much larger observable non-Gaussian signatures, and using these
numerical methods calculations are underway to produce example realizations of cosmological
perturbations from these models.
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