
SLAC-PUB-1530
January 1975

STRUCTURFD CONTROL IN PRCGRAMMING LANGUAGES*

Charles T. Zahn, Jr.

Computation Research Group
Stanford Linear Accelerator Center

Stanford, California 94305

*This work supported by the U.S. Atomic Energy Commission under contract
AT(043 151-5.

Prepared for the 1975 National Computer Conference, May 19-22, 1975.

STRUCTURED CONTROL IN PROGRAMMING LANGUAGES

Conceptual Distance

Solving a problem with the aid of a computer involves the construction and

execution of a program described by a linear piece of text. First, the problem-

solver (programmer) translates his problem into a precedural solution embodied

in a static program text, written in a programming language. Then a computer

is caused to perform a dynamic sequence of actions in accordance with the com-

mands in the program text. The reliability of this two-stage problem solution

(i.e., the likelihood that the actions performed really provide a solution of

the problem) depends on the degree to which the program text mirrors the pos-

sible action sequences that it causes, as well as the problem solution that it

purports to implement. It is useful to speak of the tlconceptual distance" be-

tween program text and action sequences or between problem definition and pro-

gram text. The programmer who wants some measure of confidence in the reli-

ability of his program must bridge both these conceptual distances. It follows

that a major goal of programming language design should be to help reduce both

these distances.

Structured Control

Structured programming' is a systematic step-wise method of program com-

position which can be used to conquer the distance between problem and program

by chopping it into bite-sized pieces and employing abstraction as a mental aid

to control the problem of complexity. It reduces the distance between program

text and action sequence by employing in the program text only those forms of

sequence control which allow an easy visualization of the possible action se-

quences from an inspection of the static linear program text. The control

structure includes sequential grouping of commands as well as command selection

-l-

(if statements and case statements) and repetition (while and repeat state- -

ments). Enumerative reasoning and mathematical induction are available mental

aids for-understanding the action sequences evoked by programs restricted to

these forms of sequence control. These considerations 'suggest a control struc-

ture limited to sequential grouping, selection and repetition.

Problem-oriented Control

Unfortunately, the story doesn't end there because, in spite of the im-

mense advantages of the restricted control, it is still not adequately problem-

oriented. This 'is true even when the control structure is extended by a sim-

ple for statement and recursive procedures and functions. One of the commonest

situations in programming is the need to select one of a finite set of commands,

using some selection mechanism, each of whose outcomes corresponds to a unique

command from the set. The following general flowchart models the control:

t

l-

----- v-y-- - -

I

1
I
I
I
I
I
L

In this flowchart, Cl,C2,..., N C are constants of some finite type, each Sk is

a command (statement), and T is a "test" or inspection of program variables

whose execution terminates by selection of one of the Ck as its outcome.

-2-

The special case (N=2, Cl=true, C2=false and T evaluates a logical ex-

pression B) represents the familiar control form if B then Sl else S2. - The

case (Ck=+ for 15 k 5 N and T selects that constant Ck equal to the value of

an integer expression E) represents Hoare's integer case "statement with the

syntax case E s (Sl;S2;.,..;SN). This expression-driven case statement has

been generalized' and implemented in PASCAL.3 By allowing constants Ck and

expression E to correspond to any finite type (especially programmer defined

types like Color whose 4 constant values might be Green, Blue, Red, Black),

the conceptual distance between problem and program can be greatly reduced.

There remain situations in which the selection is not conveniently reduced

to an expression evaluation, and T must be a compound command which returns a

value C k' It also naturally occurs that at certain places within T, it be-

comes clear which value should be selected and an immediate termination of T
4

is entirely appropriate. Recent versions of the programming language BLISS5

extend the restricted control by allowing any compound statement to be labeled;

then a statement of the form leave L with E, causes immediate termination of --

the enclosing statement labeled L and returns E as its value. It is, therefore,

easy to implement the more general selection

recent proposal 697 for extending the control

of the form

mechanism T within BLISS. A more

is an event-driven case statement

until Cl E C2 . . . E CN _ do T then case (Cl:Sl;...;CN:SN)

with event statements C
F

within T, causing immediate termination of T and

selection of Ck. Each Ck is an identifier or name created by the programmer

to provide a problem-oriented description of what the program is doing. The

syntax for this generalized case statement was motivated by considerations of

writing and reading programs in a top-down fashion. The number of similar pro-

posals for a termination mechanism (see the survey by Knuth7) shows the uni-

-3-

versa1 need for such a programming device. Other common situations requiring

an explicit termination mechanism are repetitions of a command sequence where

the detection of the termination condition naturally occurs midway through the
I'

sequence and the handling of error conditions which have various degrees of

severity.

Repetitions with a Control Value :

It is a common need in programming to repeat a given compound command

once for each of a well-defined finite sequence of values, where that value is

accessable (but'not changeable) within the repeated command. When the pro-

grammer's intent is exactly reflected in this special form of repetition,

there is a great gain in clarity when the program text employs a special syn-

tax to indicate the repetitive pattern. Certainly, there should be a repetition

like

repeat for V from El [upthru/downthru]E2 do S(V)
.

where V is a variable of ordered finite type and El, 2 E are expressions of that

type. This is the form (with slight differences in syntax) of for statement

implemented in PASCAL. 3,8

Serious consideration should be given to extensions of the for statement

to cater for progressions of values defined by more general successor functions.

For example, the programmer who builds sequences using records and references

is helped immensely by statements like

repeat for R from Start 9 Next upto null do S(R). -- ---

where R is a reference variable whose values are Start, Next (Start), Next

(Next(Start)), etc., up to but not including null. The use of words upthru,

downthru, upto is an attempt to reduce the ambiguity that results from not

making explicit the distinction between inclusion or exclusion of the final

item.

-4-

I

Procedural Mechanisms

Procedures and functions, with carefully designed parameter mechanisms,

are-now Moore widely appreciated as beneficial tools for program decomposition

and the embodiment of problem-oriented abstractions. They are thus helpful to

the programmer in his task of bridging the condeptual distance between problem

and program; that is, when their use is not discouraged by considerations of

efficiency. The programmer should be allowed to attach the macro option to

any procedure or function invocation, and thereby feel free to use them as

purely structuring tools without the run-time overhead often implied by the

closed subroutine.

The main difficulty in the use of procedures and functions is that the

conceptual distance between program text and dynamic actions is often increased

by mysterious parameter mechanisms and side-effects.' The axiomatic definition

of procedures and functions in PASCAL8 can be interpreted as a suggestion that

procedure parameters be classified as constant or as update, while function

parameters are restricted to constant. A constant parameter represents a con-

stant value determined by an actual parameter expression at the time the pro-

cedure or function is invoked. This value may not be altered by the procedure

or function. This has usually been referred to as "call by value". An update

parameter represents a program variable whose value can be altered or in-

spected by the procedure. The actual variable being inspected and altered is

the one whose name is given as the actual parameter in the procedure invo-

cation. It would probably be an aid to program clarity to distinguish a third

class of result parameters which may not be inspected (since they are presumably

as yet undefined!), but which are expected to be assigned values by the pro-

cedure. Of course, result parameters would not be allowed for functions.

-5-

The program text of a procedure or function should indicate all those

global (i.e., non-local, non-parameter) variables which are referenced within

it-with-a textually clear distinction of those which are potentially alterable
i'

by the procedure. No functions should alter any globals. Whether this addi-

tional program documentation is made the responsibility of the programmer or

a helpful compiler -- in either case it provides crucial textual evidence to

aid the programmer in visualizing the possible dynamic actions caused by a

given invocation of the procedure or function. Another important restriction8

is the disjointness of the set of alterable parameters and global variables.

Failure to comply with this restriction may cause very nasty and subtle errors.

It has recently been proposed by Hardgrave 10 that a keyword, rather than

positional notation for the correspondence between formal and actual parameters,

would have several nice advantages, one of which is the obvious textual clarity

of the programmer's intent. In the case of procedures and functions with long

parameter lists, there is a disturbing potential for erroneous parameter com-

munication even in a highly typed language. By allowing default actual par-

ameters" for certain formal parameters to be explicitly given within the

procedure declaration, the textual length of the invocation can often be kept

reasonably small in spite of the apparent verbosity of the keyword notation.

It is also possible to add. a new parameter without altering previously written

invocations of the procedure -- a potentially non-trivial advantage in a large

software project requiring modifications through time.

Recursive procedures and functions should be allowed since they reflect

problem solutions whose reprogramming without recursion involves considerable

conceptual distortion and, therefore, increases the conceptual distance be-

tween problem and program. In a similar way, there are certain problems which

to one are most natura lly solved by two or more procedures whose relationships

-6-

I

another are more symmetric than the normal hierarchical procedure relation-

ships. 11 Such procedures are known as coroutines or semi-coroutines and they

dsffer from normal procedures in that each time they are invoked from another

coroutine they resume execution where they last left off. Their cooperative

behavior is understandable in terms of an anthropomorphic model in which each

coroutine is executed by a different person who simply goes to sleep when he

resumes one of the other coroutines, but when his own coroutine is resumed

again he awakens in the same state as before he went to sleep. Coroutines can

be used to obta,in the conceptual advantages of a multi-pass algorithm without

the actual need for secondary storage and data format specifications usually

implied by a literal implementation of the separate passes. 12 Especially com-

pelling examples of the conceptual correctness of coroutines are to be found

in Dahl. 11 The coroutines discussed here are never in simultaneous or inter-

leaved execution so their correct behavior doesn't involve the deeper problems

of mutual exclusion, deadlock, etc.

Conclusion

An attempt has been made to discuss various issues involved in the design

of control for a programming language by relating these design issues to the

goal of reducing Wconceptual distance". A slight compromise to the strict

structured control seems justifiable to obtain a more problem-oriented control.

More research would be worthwhile in the area of "safe" iterations, parameter

mechanisms and coroutines.

-7-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

References

E.W. Dijkstra, 'Notes on Structured Programming," in Structured Pro-
- gramming by O.J. Dahl, E.W. Dijkstra and C.A.R. Hoare, 1972,

Academic Press, London and New York. "'

C.A.R. Hoare, "Notes on Data Structuring," in Structured Programming

(see 1).

N. Wirth, "The Programming Language PASCAL," Acta Informatica, Vol. 1,

No. 1, pp. 35-63.

W.A. Wulf, "A Case Against the goto," Proc. ACM National Conference (1972), --
PP. 791-797.

W.A. Wulf, D.B. Russell and A.N. Haberman, "BLISS: A Language for Systems

Programming," CACM, Dec. 1971, pp. 780-790.

C.T. Zahn, "A Control Statement for Natural Top-down Structured Pro-

gramming," presented at Symposium on Programming Languages, Paris,

1974.

D.E. Knuth, "Structured Programming with goto Statements," ACM Computing
Surveys, December 1974.

C.A.R. Hoare and N. Wirth, "An Axiomatic Definition of the Programming

Language PASCAL," Acta Informatica, 1973, pp. 335-355.

C.A.R. Hoare, "Hints on Programming Language Design," Stanford University

Computer Science Department Report No. CS-403, October 1973.

W.T. Hardgrave, "Positional versus Keyword Parameter Communication in
Programming Languages," Report of the Institute for Computer Appli-

cations in Science and Engineering (ICASE), NASA Langley Research
Center, Hampton, Virginia, September 1974.

11. O.J. Dahl, "Hierarchical Program Structures," in Structured Programming

(see 1).

12. D.E. Knuth, "The Art of Computer Programming," Volume 1, Chapter 2, 1968.

