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ABSTRACT

A measurement of hadron production cross-sections for the

simulation of accelerator neutrino beams and

a search for muon neutrino to electron neutrino oscillations

in the ∆m2 ∼ 1 eV2 region

David W. Schmitz

This dissertation presents measurements from two different high energy physics ex-

periments with a very strong connection: the Hadron Production (HARP) experiment lo-

cated at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-

BooNE) located at Fermilab in Batavia, Illinois.

First, charged pion and proton production is measured at the HARP experiment for

two experimental configurations relevant to two contemporary accelerator-based neu-

trino beams. Double-differential cross-sections for π+, π− and proton production are pre-

sented for proton+beryllium collisions at 8.9 GeV/c and proton+aluminum collisions at

12.9 GeV/c. These data have been used in the predictions of neutrino fluxes by the K2K

experiment in Japan and the MiniBooNE and SciBooNE experiments at Fermilab.

Second, a search for evidence of muon neutrino to electron neutrino oscillations at

MiniBooNE is presented. MiniBooNE was designed to search for evidence of νµ → νe

oscillations consistent with a mass-squared splitting near 1 eV2. Evidence of such an os-

cillation was reported by the LSND collaboration in the 1990s but has not been confirmed

by other experiments. A method which combines the electron neutrino candidate sample

with the high statistics muon neutrino candidate sample to define a single χ2 statistic is

developed. A complete description of experimental uncertainties is contained within a

correlated error matrix which includes correlations between the two samples. This corre-

lation reduces the uncertainty on the prediction of the smaller statistics electron sample

and improves MiniBooNE’s sensitivity to oscillations. Analysis of the MiniBooNE elec-

tron candidate data reveals no evidence of direct νµ → νe oscillations consistent with this

interpretation of the LSND data.
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Chapter 1

Neutrinos and Oscillations

I have done a terrible thing. I have postulated a particle that cannot be detected.

- W. Pauli, 1931

We are happy to inform you that we have definitely detected neutrinos from fission

fragments by observing inverse beta decay of protons.

- F. Reines and C. Cowen, 1956

Thanks for the message. Everything comes to him who knows how to wait.

- W. Pauli, 1956

1.1 Introduction

It took a quarter of a century for physicists to achieve the impossible and detect Pauli’s

chargeless, massless, weakly interacting particle, but suddenly the field of experimental

neutrino physics was born. Since Reines and Cowen’s monumental achievement, neu-

trino physics has become one of the most active fields of research in particle physics.

Much of the focus in recent years has been on neutrino masses, originally considered to

be identically zero, and the resulting phenomenon of neutrino mixing.

It was the process of nuclear beta decay which led Pauli to postulate the neutrino’s

existence. It was known that an element could change its place on the periodic table via

the emission of an electron

(A,Z) = (A,Z + 1) + e− , (1.1)
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but a series of experiments showed that the electron is emitted with a continuous energy

spectrum, which is inconsistent with a 2-body decay of a nucleon at rest. The implied

nonconservation of energy led Pauli to suggest a “desperate way out”. He postulated

that an unseen neutral particle was also being emitted in the decay and carrying away the

missing energy. Many believed the electron and this new “neutron”, as Pauli first called

it, were part of the nucleus and were simply ejected in the process of beta decay.

In 1934, Enrico Fermi placed this new particle into his theoretical framework of the

weak force [1] and gave it the name we use today, “neutrino”. In Fermi’s theory the

interaction was assumed to occur at a single space-time point with the neutron1 emitting

a proton, electron and neutrino (actually what we now know is the electron antineutrino):

n → p + e− + νe (1.2)

and was formulated as a vector×vector current interaction based on analogy to electrody-

namics. The approach enabled H. Bethe and R. Peierls to calculate the rate of the inverse

process [2]:

νe + p → n + e+ (1.3)

and suddenly a process by which to detect the neutrino was discovered. This is the ap-

proach F. Reines and C. Cowen used to detect electron antineutrinos produced at the Sa-

vannah River nuclear power reactor in South Carolina [3] leading to their 1956 telegram

to Pauli which opened this chapter.

Soon afterward, a major breakthrough in the understanding of the weak force arrived

when T.D. Lee and C.N. Yang suggested that the weak force may violate parity [4]. Then,

in 1957, C.S. Wu et al. experimentally confirmed that parity is, in fact, maximally violated

by weak interactions [5]. This led to the very successful (V-A) formulation of the weak

interaction by R. Feynman and M. Gell-Mann as well as by E.C.G. Sudarshan and R.E.

Marshak in 1958 [6]. In the theory, the weak interaction is described by equal amounts

of vector and axial vector coupling which effectively picks out the left-handed helicity

1The actual neutron had been discovered by J. Chadwick in 1932.
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component (H ≡ ~p · ~S/|~p| where ~p and ~S are the momentum and spin of the particle,

respectively) of the massless neutrino and incorporates the observed parity violation.

Another surprise came in 1962 when L. Lederman, M. Schwartz, J. Steinberger and

collaborators discovered a second type of neutrino [51] distinct from the one which par-

ticipated in the reactions 1.2 and 1.3. Their experiment was the first to use the accelerator-

based neutrino beam method and led to the discovery of the muon neutrino. The tau

neutrino, predicted to exist after the discovery of the tau charged lepton, would have to

wait until 2000 to be observed experimentally [52]. However long before the ντ was di-

rectly detected, leptons were now thought to be grouped in families with lepton flavor

(Le, Lµ, Lτ ) being a conserved quantity. The development of this family structure was an

important step and led to the formation of the fermion doublets introduced below.

1.2 Neutrinos in the Standard Model

The Standard Model of weak and electromagnetic interactions is based on the spon-

taneously broken gauge symmetry SU(2)L ⊗ U(1)Y and was first proposed in 1967 by S.

Weinberg [8] and A. Salam [9]. In relativistic quantum mechanics, the spin 1
2 fermions of

mass m are described by the Dirac equation:

(ih̄γµ∂µ −mc)ψ = 0 (1.4)

where γµ are the Dirac matrices [7] and ψ is the 4 component spinor field. Building from

the (V-A) theory of weak interactions, it is the left and right chiral projections of the spin

1
2 particle fields which participate in interactions in electroweak unification theory:

ψ = ψL + ψR =
(

1− γ5

2

)
ψ +

(
1 + γ5

2

)
ψ . (1.5)

Because neutrinos interact only weakly and are presumed massless in the model,

the right handed neutrino states are not included in the Standard Model. The twelve

known fermions [135] (ignoring their antiparticles) are then written as six left-handed

weak isospin doublets and nine right-handed singlets: e

νe


L

 µ

νµ


L

 τ

ντ


L

eR µR τR
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Interaction vertex Dirac spinors Chiral spinors

QED fermions igefγµf ige

(
fLγµfL + fRγµfR

)

CC leptons
−igw√

2
νγµ

(
1− γ5

2

)
`

−igw√
2
νLγµ`L

CC quarks
−igw√

2
qjγµ

(
1− γ5

2

)
qi U

CKM
ij

−igw√
2
qjLγµqi L U

CKM
ij

NC fermions
−igz

2
fγµ

(
cV − cAγ

5
)
f

−igz

2
νLγµνL for ν

Table 1.1: Feynman rules for basic electroweak interaction vertices written in terms of

Dirac spinors and their projections ψL and ψR [7].

 u

d
′


L

 c

s
′


L

 t

b
′


L

uR dR cR sR tR bR

which allows a very symmetric formulation of the rates for electromagnetic and weak

interactions. This is illustrated in Table 1.1 where the basic vertex factors of electroweak

interactions are written using both Dirac spinors and the ψL, ψR projections defined in Eq.

1.5.

The vertex factors in Table 1.1 reveal several important features. First, the photon is

seen to couple to left and right-handed states equally, as expected for the electromagnetic

interaction. The CC weak interactions, however, have the familiar (V-A) form which picks

out ψL. NC weak interactions depend on the fermion involved, but for neutrinos with

cV = cA = 1/2, only νL is involved.

The CC interaction of quarks additionally includes a matrix, UCKM , the Cabibbo-

Kobayashi-Maskawa mixing matrix, which describes the mathematical relationship be-

tween the quark states of definite mass (d, s, b) and of definite weak flavor (d
′
, s

′
, b

′
). An

equivalent matrix for leptons which relates the observable weak states (νe,νµ,ντ ) to neu-

trino mass states (ν1,ν2,ν3) is noticeably absent in this formalism.
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Finally, a mechanism for generating particle masses is needed. Not only is particle

mass an experimental reality that a theory must deal with, but it is the masses of the

gauge bosons W± and Z0 which make the weak force extremely short range (∼ 10−18 m)

compared to the infinite reach of the electromagnetic interaction governed by the massless

photon. Masses are generated in the Standard Model through spontaneous symmetry

breaking via the Higgs mechanism [10]. In the model, a complex doublet of scalar fields

is introduced [11]:

φ ≡

 φ+

φ0

 (1.6)

which leads to additional Yukawa interaction terms in the Standard Model Lagrangian

for each lepton family2

−LYukawa =
∑

α=e,µ,τ

Gα

[
νLφ

+`R + `Lφ
0`R
]
+ h.c. (1.7)

where Gα are new dimensionless coupling constants and the flavor subscript on να and

`α have been left off for clarity.

After spontaneous symmetry breaking, the vacuum expectation values of the Higgs

field become 〈φ+〉 = 0 and 〈φ0〉 = v/
√

2 where v ' 246 GeV, leaving the neutrinos mass-

less while giving the charged leptons each a Dirac mass term,

−LD =
∑

`α=e,µ,τ

(m`
D) `L`R + h.c. (1.8)

with a unique parameter m`
D = G` · v/

√
2 for each lepton. Currently, the coupling

strengths G` are not determined by the theory and can only be measured experimentally.

1.3 Adding neutrino masses to the Standard Model

Perhaps the most obvious way to add neutrino masses to the Standard Model would

be to add the chirally right-handed neutrino field νR to the model which would automat-

ically create Dirac mass terms for each neutrino, ν, analogous to Eq. 1.8 for the charged

2Similar terms exist for the quarks, but we restrict ourselves to the leptons here since ultimately we are

interested in neutrino masses.
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leptons [12]

−LD =
∑

ν

(mν
D) νLνR + h.c. (1.9)

where we have intentionally left off any subscript labeling the neutrinos in anticipation of

the results of the next section.

Because neutrinos are neutral particles, a different kind of mass term, known as the

Majorana mass term, can also be constructed out of νL alone or νR alone

−LML
=
∑

ν

mν
L

2
(νL)c νL + h.c. − LMR

=
∑

ν

mν
R

2
(νR)c νR + h.c. (1.10)

where mν
L,R are parameters with units of mass and (ν)c = C(ν)T where C is the charge

conjugation operator. The Majorana mass terms, therefore, involve converting a neu-

trino into its antiparticle which would be forbidden for other fermions due to violation

of charge conservation. Whether Majorana mass terms exist for neutrinos is a matter for

experiment to decide. If neutrinos are determined to be their own antiparticles, then the

terms almost certainly exist. If the Dirac terms are shown to not exist and neutrinos have

mass, then the Majorana terms become necessary to provide it.

1.4 Adding neutrino mixing to the Standard Model

Because neutrinos interact only via the weak force, it is not the mass states that one

can directly access experimentally. Instead we know the weak flavor να = (νe, νµ, ντ , . . .)

of the neutrino through identification of the charged lepton partner `α = (e, µ, τ, . . .) ob-

served in a CC weak interaction (ναA→ `αA
′
):

−LCC =
∑

α=e,µ,τ

g√
2

(
νLγµ`LW

+
µ + `LγµνLW

−
µ

)
(1.11)

where again we leave off the flavor subscripts for clarity.

However, a neutrino’s propagation through space (for example, from its production

to its detection) is dictated by the free Hamiltonian whose eigenstates are states of defi-

nite mass νi = (ν1, ν2, ν3, . . .) and whose time evolution is described by the Schrödinger
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equation3

i
∂

∂t
|νi(t)〉 = Ei |νi(t)〉

=
(√

m2
i + p2

i

)
|νi(t)〉 '

(
pi +

m2
i

2pi

)
|νi(t)〉 ≈

(
Ei +

m2
i

2Ei

)
|νi(t)〉

(1.12)

where, in the last steps, we have used the expectation that mi � pi and thus pi ≈ Ei for

any reasonable neutrino energy used in an experiment4. The trivial solution to Eq. 1.12 is

then simply:

|νi(t)〉 = e−i(Ei+m2
i /2Ei)t|νi(0)〉 . (1.13)

Next, we must introduce a description of how the weak eigenstates |να〉, which partic-

ipate in the interaction, relate to the mass eigenstates |νi〉, which propagate through space.

We introduce a unitary mixing matrix U such that

|νi〉 =
∑
α

Uαi |να〉

|να〉 =
∑

i

U∗αi |νi〉
(1.14)

which implies that a neutrino produced as a flavor eigenstate |να〉 is the quantum mechan-

ical superposition of mass eigenstates with amplitudes determined by the elements of U .

The mass eigenstates which contribute coherently to an experimental beam are those with

a common energy [13] so Eq. 1.13 implies that each mass state propagates with a unique

complex phase that depends onm2
i . Also, because the neutrino is ultra-relativistic, we can

consider the propagation distance instead of the time, L ≈ t (for c = 1). Hence, a neutrino

produced as weak eigenstate α is, at distance L:

|να(L)〉 =
∑

i

U∗αie
−i(m2

i /2E)L (1.15)

Therefore, the probability of producing a neutrino as weak eigenstate α and detecting

3We will use natural units throughout this section where h̄ = c = 1.
4For m ≤ 1 eV and E ∼ 1 GeV, γ ≥ 109
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weak eigenstate β at a distance L is given by:

P (να → νβ) = |〈νβ|να(L)〉|2 =

∣∣∣∣∣∑
i

U∗αie
−i(m2

i L/2E)Uβi

∣∣∣∣∣
2

= δαβ − 4
∑
i>j

<
(
U∗αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ij

L

4E

)

+ 2
∑
i>j

=
(
U∗αiUβiUαjU

∗
βj

)
sin
(

∆m2
ij

L

2E

) (1.16)

where ∆m2
ij ≡ m2

j − m2
i is the difference in the squared masses of eigenstates νj and

νi. The sinusoidal form of the transmutation probability has earned this effect the name

“neutrino oscillations”. There are several things to note about the phenomenon of neu-

trino oscillations as described by Eq. 1.16

• If neutrinos do not have degenerate masses so that all ∆m2 = 0, then Eq. 1.16

reduces to δαβ and neutrinos cannot change flavor through oscillations. On the other

hand, if neutrinos are found to oscillate, then it indicates that one or more neutrino

masses are necessarily non-zero and not identical.

• If the neutrino mixing matrix is diagonal, such that mass eigenstates do not mix,

then Eq. 1.16 again reduces to δαβ and flavor changing through oscillations cannot

occur.

• To determine the oscillation probability of antineutrinos, one must replace the mix-

ing matrix with its complex conjugate matrix changing the sign of the third term to

(−). Because να → νβ is the CP mirror image of να → νβ , evidence that P (να →

νβ) 6= P (να → νβ) would be evidence of CP violation in the lepton sector.

• Oscillations are only sensitive to mass differences and thus cannot determine the

absolute masses of neutrinos. However, it may be possible to determine the sign of

∆m2 by comparing neutrino and antineutrino oscillation probabilities for neutrinos

passing through dense matter [39].

• Including the missing powers of h̄ and c and converting m,L, and E to useful ex-

perimental units, the arguments of the trigonometric functions in Eq. 1.16 become,
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respectively:

sin2

(
1.267

∆m2(eV2)L(km)
E(GeV)

)
, sin

(
2.534

∆m2(eV2)L(km)
E(GeV)

)
(1.17)

• The parameters L and E determine the values of ∆m2 for which oscillations may be

observed by an experiment. If (1.267∆m2L/E) � 1 then the effect will be negligible.

Effects of oscillations are largest for values of (1.267∆m2L/E) of O(1).

1.4.1 Quasi-two neutrino oscillation formula

In an experiment designed to look for effects of neutrino oscillations, if the produced

eigenstate |να〉 couples strongly to only two mass eigenstates OR if the various ∆m2 are

sufficiently different and the ratio L/E is such that the the effect of one is dominant over

the others, then the oscillation probability can be greatly simplified. This is referred to as

the “quasi-two neutrino oscillation formula”.

For a system with only two weak eigenstates and two mass eigenstates Eq. 1.14 can

be expanded to read∣∣∣∣∣∣ να

νβ

〉
=

 cos θ sin θ

− sin θ cos θ

∣∣∣∣∣∣ νi

νj

〉
(1.18)

where the angle θ describes the level of mixing. The oscillation probability Eq. 1.16 then

greatly simplifies to

P (να → νβ) = δαβ − 4
(
U∗αiUβiUαjU

∗
βj

)
sin2

(
1.267

∆m2
ijL

E

)
(2 ν oscillations) (1.19)

There are two ways to observe the effects of the neutrino flavor oscillations given by

Eq. 1.19. The first is to observe, in a beam of να, the appearance of neutrinos of flavor νβ .

This is referred to as an “appearance” measurement and the probability is given by:

P (να → νβ) = sin2 (2θ) sin2

(
1.267

∆m2
ijL

E

)
(νβ appearance) (1.20)

Second, one can begin with a known flux of να and observe fewer να at a different lo-

cation than were originally in the neutrino beam. This is known as a “disappearance”

measurement and the probability is given by:

P (να → να) = 1− sin2 (2θ) sin2

(
1.267

∆m2
ijL

E

)
(να disappearance) (1.21)
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In both formulas, we have made use of the trigonometric identity 2 sin θ cos θ = sin(2θ).

Most neutrino oscillation measurements to date have interpreted their data using one of

these formulas, so we will refer them often.

1.4.2 Three neutrino mixing matrix

If one assumes the three known, weakly interacting neutrino eigenstates, να = (νe, νµ, ντ ),

are superpositions of three mass eigenstates, νi = (ν1, ν2, ν3), then the mixing is described

by a 3× 3 unitary mixing matrix.

The nine elements of the neutrino matrix can be expressed as functions of three angles,

θ12, θ23 and θ13, describing the levels of mixing between the mass states and a Dirac CP-

invariance violating phase5, δ. There are many possible parameterizations, but a common

choice is the form used for the UCKM matrix [135] in the quark sector where weak–mass

eigenstate mixing dates back to 1973 [14]. The 3 × 3 neutrino mixing matrix is known as

the Maki-Nakagawa-Sakata-Pontecorvo matrix:

UMNSP =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.22)

where cij ≡ cos θij and sij ≡ sin θij . It is extremely instructive to factorize the matrix into

three factors, separating the various mixing terms:

UMNSP =


1 0 0

0 cos(θ23) sin(θ23)

0 − sin(θ23) cos(θ23)

×


cos(θ13) 0 sin(θ13)e−iδ

0 1 0

− sin(θ13)eiδ 0 cos(θ13)



×


cos(θ12) sin(θ12) 0

− sin(θ12) cos(θ12) 0

0 0 1


(1.23)

5Possible additional Majorana CP violating phases, α1,2, are ignored in our treatment as they have no

effect on oscillation probabilities. See [13].
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1.5 The experimental evidence for neutrino oscillations

There is compelling evidence from an impressive variety of experiments that the phe-

nomenon described in the previous section occurs in nature and thus that neutrinos are

not massless. When possible, a given experiment is designed to probe just one of the ma-

trices of Eq. 1.23 and its corresponding mass-squared splitting, although, in general, there

will be dependencies on the other sectors [40]. We discuss each in turn.

1.5.1 The (∆m2
12, θ12) sector

Evidence of neutrino oscillations consistent with a mass-squared splitting near 8 ×

10−5 eV2 has been seen using both neutrinos naturally produced in the core of the sun

and electron antineutrinos produced in the fission process at nuclear power reactors.

1.5.1.1 Neutrinos from the sun - SNO

The first evidence of neutrino oscillations came as a surprise in 1968 when R. Davis Jr.

and collaborators first attempted to detect neutrinos produced inside the core of the sun

[15, 16] and found about 1/3 of the event rate predicted by the Standard Solar Model

(SSM) of J. Bahcall [17]. The nuclear processes in the sun produce only electron neutrinos

and Davis’ detector located in the Homestake Gold Mine in South Dakota could only

detect electron neutrinos. Eventually it was proposed that the measured deficit could be

due to oscillations from νe → νµ, ντ which could not be seen in the Homestake detector.

Many solar neutrino experiments followed [18, 19, 20, 21, 22] measuring flux ratios

φobs/φSSM ranging from 0.3–0.6. The different experiments, however, were sensitive to

solar νe energies ranging from ∼200 keV to 7 MeV. The energy dependent solar neutrino

flux measurements, all inconsistent with the theoretical prediction, became known as the

“solar neutrino problem”. The favored solution was known as the Mikheyev-Smirnov-

Wolfenstein (MSW) [23] large mixing angle (LMA) solution which carefully accounts for

the effects of dense solar matter in the propagation of neutrino eigenstates.

The definitive experimental statement about the solar neutrino problem came in 2001

from the Sudbury Neutrino Observatory (SNO) [24] which used the deuterium in heavy
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Figure 1.1: Flux of muon and tau neutrinos versus flux of electron neutrinos at SNO. The

colored bands correspond to the measured fluxes for CC (red), NC (blue), and ES (green)

interactions. The Standard Solar Model expectation for the NC flux is shown by the band

between the dashed lines. The gray band corresponds to an ES measurement made at

Super-Kamiokande and is in good agreement with SNO data. The point is the best fit for

φµτ and φe with the 68%, 95% and 99% C.L. contours indicated. Plot taken from [24].

water as a target for solar neutrinos. The major advantage of SNO is the ability to see

charged-current (CC) as well as neutral-current (NC) and elastic-scattering (ES) neutrino

interactions:

νe + d → p + p + e− (CC)

να + d → p + n + να (NC)

να + e− → να + e− (ES)

Because of the low neutrino energies, the CC reaction is sensitive to only the νe flux

while the NC and ES reactions sample the total active (νe,νµ,ντ ) flux. The SNO results are

summarized in Figure 1.1. The plot shows the measured νµ,ντ combined flux versus the

νe flux. The red band is the CC measurement (νe only) where the width represents the

1σ uncertainty. The slopes of the blue (NC) and green (ES) are determined by the relative

sensitivity to the νe and non-νe components of these interactions. The total solar neutrino
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Figure 1.2: Summary of KamLAND νe disappearance results. The left panel shows the

energy distribution of events for the no oscillations hypothesis compared to data. The

right panel shows the Ndata/Nno−osc ratio as a function of Lν/Eν where Lν = 180 km is

the average neutrino distance determined from simulation and Eν is the reconstructed νe

energy. The blue histogram shows the best fit for an oscillation hypothesis using Eq. 1.21.

Plot taken from [25].

flux measured using the NC events is in excellent agreement with the prediction of the

Standard Solar Model, but the νe component is shown to be only ∼ 34% of the total. The

sun is not energetic enough to produce muons or taus, yet SNO measures a non-zero νµ,ντ

flux at over 5σ. This is strong evidence that the νe’s produced in the sun have oscillated

into other active flavors. Global analysis of the solar neutrino data under the MSW LMA

hypothesis shows that the data are consistent with νe → νµ, ντ oscillations specified by a

mixing angle θsolar ∼ 34◦ and mass-squared splitting ∆m2
solar ∼ 7× 10−5 eV2 [40].

1.5.1.2 Neutrinos from nuclear power reactors - KamLAND

Equally compelling is the complimentary measurement made by the KamLAND ex-

periment in Japan [25]. KamLAND looked for the disappearance of νe’s produced in

nuclear power reactors across Japan. The average distance L = 180 km and the average

neutrino energy is a few MeV, giving KamLAND a sensitivity to mass-squared differences

of order ∆m2 ≥ 1/(1.267∗180km/0.005GeV) ∼ 10−5 eV2. KamLAND detects electron an-
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tineutrinos by the same inverse beta decay reaction that Reines and Cowen first used to

discover the neutrino, νe + p → n + e+. By measuring the energy of the emitted positron,

KamLAND can estimate the νe energy for each event. Their results are shown in Fig-

ure 1.2. In the left panel, the thin black histogram shows their expected event rate as a

function of measured energy in the absence of νe oscillations and the points show the

measured rate; a clear energy-dependent deficit is seen. The right panel shows the ratio

of Ndata/Nno−osc as a function of the average neutrino path length L = 180 km divided

by the reconstructed neutrino energy, or Lν/Eν . The oscillatory pattern of the νe deficit is

clear. The solid blue histogram is the result of a fit to a neutrino disappearance hypothesis

(Eq. 1.21).

The allowed combinations of oscillation parameters at different C.L. for the solar ex-

periments and KamLAND are compared in the left panel of Figure 1.3. A combined anal-

ysis of data from KamLAND and solar neutrino experiments, shown in the right panel,

yields [25]:

∆m2
12 = 7.9+0.6

−0.5 × 10−5 eV2

θ12 = 32.3+3.0
−2.4 deg.

1.5.2 The (∆m2
23, θ23) sector

Evidence of neutrino oscillations consistent with a mass-squared splitting near 2.5 ×

10−3 eV2 has been seen using both neutrinos naturally produced by cosmic rays hitting

the upper atmosphere and using muon neutrino beams produced at particle accelerators.

1.5.2.1 Neutrinos from the atmosphere - Super-Kamiokande

Following the solar neutrino results, the second evidence for neutrino oscillations

again came quite unexpectedly. The Kamiokande detector in Japan was constructed in

1983 to search for nucleon decay, however, it ultimately detected the oscillation of neutri-

nos produced in the Earth’s atmosphere.

Cosmic rays interacting with nitrogen and oxygen in the upper atmosphere produce

secondary pions and kaons whose subsequent decay chains produce both electron and
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Figure 1.3: Allowed (∆m2
solar, tan2 θsolar) oscillation parameter combinations for a combi-

nation of solar neutrino data compared to the KamLAND reactor neutrino data. The right

panel is a global analysis of solar and reactor data providing the best determination of

∆m2 and tan2 θ. Plot taken from [25].

muon neutrinos. From π → µνµ and µ → eνµνe the ratio of muon to electron flavor

neutrinos is expected to be approximately 2:1. Observations at Kamiokande [26] and the

IMB [27] detector in the US indicated a νµ/νe ratio about 60% of that expected. Other early

atmospheric neutrino experiments reported ratios ranging from 0.5–1.0. This surprising

result soon became known as the “atmospheric neutrino problem”.

This time, the definitive experimental statement would come from the Super-Kamiokande

experiment. The Super-Kamiokande detector (the successor of Kamiokande) is an under-

ground 50 kton water Cherenkov detector lined with photomultiplier tubes to detect light

produced by charged particles in the tank. Taking advantage of high statistics samples

of atmospheric νµ induced CC events and the ability to determine the direction of the in-

coming neutrino, Super-K was able to bin their data into many energy and zenith angle

bins and detect a deficit of upward going muons consistent with oscillations [28].

The clearest way to view the effects of νµ disappearance at Super-K came in a later

L/E analysis of νµ events [29]. Atmospheric muon neutrinos in the range Eν ∼ 1–10 GeV

are detected through the charged-current interaction νµ + n → p + µ− + X where the
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Figure 1.4: Ratio of measured νµ events to the number predicted in the absence of oscilla-

tions versus the reconstructed ratio Lν/Eν in Super-Kamiokande. Plot taken from [29].

final-state muon produces a sharp ring of Cherenkov light identifying it as a muon. From

the total energy deposited in the photo tubes, the incident neutrino energy is able to be

reconstructed.

The path lengths of atmospheric neutrinos at Super-Kamiokande are in the range

Lν ∼ 10–104 km where the shortest distances correspond to neutrinos produced directly

above the detector and the longest are those that travel through the diameter of the Earth

before intercepting the Super-K detector. The path length is estimated from the recon-

structed direction of the incident neutrino and assuming it was produced in the upper

atmosphere at an average height of 15 km. These ranges of Lν and Eν make Super-K

sensitive to oscillation effects corresponding to mass-squared differences ranging from

∆m2 ∼ 1/(1.267 ∗ 104km/1GeV) to 1/(1.267 ∗ 10km/10GeV) ∼ 10−4 to 1 eV2.

Figure 1.4 shows the ratio of measured νµ events to the number predicted in the ab-

sence of oscillations versus the reconstructed ratio Lν/Eν in Super-K. The oscillatory be-

havior of the νµ deficit is clear. The blue histogram is a fit to the νµ disappearance hypoth-

esis as in Eq. 1.21. The other curves are fits to other possible phenomena and are strongly
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disfavored. The data are consistent with νµ → ντ oscillations6 specified by a mixing angle

θatm ∼ 45◦ and mass-squared splitting ∆m2
atm ∼ 2.4× 10−3 eV2.

1.5.2.2 Accelerator based neutrino beams - K2K & MINOS

The neutrino oscillation experiments K2K and MINOS both use the accelerator-based

neutrino beam method to be described in the next chapter. The bottom line is the gener-

ation of a very pure (>90%) beam of νµ with a broad energy distribution peaked in the

range Eν ∼ 1–10 GeV, depending on the exact experimental configuration.

Both experiments look for νµ disappearance using a two detector approach. A near

detector located ∼ 1 km from the neutrino source is used to normalize the expected event

rate in the absence of oscillations at a far detector several hundred kilometers distant. An

energy dependent deficit in the predicted νµ rate is thus evidence for the same νµ → ντ

oscillations as seen in atmospheric neutrinos.

K2K used the 12 GeV proton synchrotron at KEK to produce a neutrino beam peaked

at 1.3 GeV directed at the Super-Kamiokande detector 250 km away which served as a

far detector. For the νµ disappearance search, K2K observed 112 fully-contained events in

Super-K while 158.1+9.2
−8.6 events were predicted based on data in their near detectors [31].

Using a smaller sample (58) of charged-current quasi-elastic events, they were able to ob-

serve an energy dependence to the discrepancy consistent with an oscillation hypothesis.

The most precise measurement to date of the ∆m2 that dictates the νµ → ντ oscillation

comes from the MINOS experiment at Fermilab [32]. MINOS uses the NuMI (Neutrinos

from the Main Injector) neutrino beam produced by 120 GeV protons from the Main In-

jector. Two functionally identical detectors comprised of alternating iron and scintillator

planes are used: a 1 kton near detector at Fermilab and a 5.4 kton far detector located

735 km away in the Soudan Mine in northern Minnesota. In the configuration used in

the oscillation analysis, the νµ beam peaks near 3 GeV, making MINOS most sensitive to

oscillations of order ∆m2 = 1/(1.267 ∗ 735km/3GeV) ∼ 3× 10−3 eV2.

MINOS’ results [33] (updated since [32] using 2.5×1020 proton on target (POT) of data)

6Oscillations to νe are disfavored by the fact that νe event rates agree well with prediction at Super-K and

no evidence of νe disappearance was seen by the CHOOZ reactor experiment.
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Figure 1.5: MINOS νµ disappearance results based on 2.5 × 1020 POT of data. The left

panel shows the measured νµ event rate as a function of reconstructed neutrino energy

compared to the prediction in the absence of oscillations. The right panel shows the

data/simulation ratio. Plots taken from [33].

are shown in Figure 1.5. The disappearance of νµ is clear, and the oscillation hypothesis fits

the spectral distortion well with a mixing angle θMINOS ∼ 45◦ and mass-squared splitting

∆m2
MINOS ∼ 2.38× 10−3 eV2.

The allowed combinations of oscillation parameters at different C.L. for the atmo-

spheric neutrino data at Super-K and the K2K/MINOS data are compared in Figure 1.6.

No combined analysis of just atmospheric, K2K and MINOS data in a simple two neu-

trino oscillation scenario is currently available, but it is clear that MINOS provides the

best constraint on the value of ∆m2 while the mixing angle is better constrained by the

Super-K data:

∆m2
23 ∼ ∆m2

MINOS = 2.38+0.20
−0.16 × 10−3 eV2

θ23 ∼ θatm = 45+0.0
−8.2 deg.

Note that the atmospheric and accelerator experiments cannot determine the sign of

∆m2
23, but only it’s absolute value. This means we do not yet know the hierarchy of the

mass states which we call ν1, ν2 and ν3. The possible arrangements are shown in Figure

1.8 with the nearly degenerate pair (ν1,ν2) either above or below ν3.7

7We do know that ν2 is heavier than ν1 because of the MSW LMA mechanism that accounts for solar
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Figure 1.6: Allowed (∆m2
atm, sin

2(2θatm)) oscillation parameter combinations for atmo-

spheric neutrino data using the two Super-Kamiokande analyses [28, 29] compared to the

K2K [31] and MINOS [33] data. Plot taken from [33].

1.5.3 The (∆m2
13, θ13) sector

The final ∆m2 (in a three neutrino model) is not a new independent parameter in the

mixing formalism but is determined from

∆m2
13 = ∆m2

12 + ∆m2
23 , (1.24)

and given that ∆m2
12 ∼ 1

30∆m2
23 and δ(∆2

23) ∼ 1
12∆m2

23 , to a good approximation ∆m2
13 =

∆m2
23.

The third mixing θ13, however, has no such dependence on the known parameters

and must be determined experimentally. No evidence of this third mixing has yet been

detected; the strongest constraint on its value comes from the CHOOZ reactor experiment

[34, 35] in France. CHOOZ searched for the disappearance of νe produced at the Chooz

nuclear power station (Eν ∼ 3 MeV) over a baseline of approximately 1 km. No signifi-

cant deviation from prediction was found, as shown in the left panels of Figure 1.7, so a

limit on the value of sin2(2θ13) with a strong dependence on the value of ∆m2
13 is set (right

panel). From Figure 1.7, near the best fit value of ∆m2
13 = ∆m2

23 = 2.38 × 10−3 eV2 , the

CHOOZ limit corresponds to θ13 below ≈ 11.5◦ at 90% C.L..

neutrino oscillations.
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Figure 1.7: Final results of the CHOOZ experiment. The left panels show the measured

and predicted positron energy spectra (from νe + p → n + e+) and the data/MC ratio on

the bottom which is consistent with 1.0 within uncertainties. The right panel shows the

limit on sin2(2θ13) that is set based on these data.

The search for θ13 represents an important component of the world’s current neutrino

physics research program. Next generation reactor experiments searching for νe disap-

pearance include the Double Chooz [36] experiment at the site of the former CHOOZ

experiment and the Daya Bay [37] experiment in China. Both experiments combine high

reactor power, multiple detectors to cancel systematics, and careful calibration to improve

the sensitivity to sin2(2θ13) below 0.01 or θ13 < 3◦.

A second category of planned next generation experiments are long baseline (LBL) ac-

celerator based neutrino beam experiments which will search for evidence of θ13 through

νµ → νe transitions at the ∆m2
13 scale, in particular the T2K [38] experiment in Japan

and the NOνA [39] experiment at Fermilab in the US. The expression for the P (νµ → νe)

oscillation probability is quite complicated [38, 39, 40] and involves all three mixing an-

gles, mass-squared splittings, the CP parameter δ and matter effects caused by passing the

neutrino beam through the Earth’s crust. This is both a significant complication and an
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advantage - with sufficiently intense beams and statistics in both neutrinos and antineu-

trinos one can access the CP violation in the lepton sector as well as determine the sign of

∆m2
13.

1.5.4 Three neutrino oscillation summary

The oscillations first discovered in neutrinos from the sun and the atmosphere have

now been verified with terrestrial sources and measured with significant accuracy. Fig-

ure 1.8 provides a schematic summary of the parameters that we now know or wish to

know. The two mass splittings which have been measured, ∆m2
12 and ∆m2

23, are depicted,

however, as mentioned, we do not know the sign of ∆m2
23 so both the “normal” (left) and

“inverted” (right) hierarchies are still possible. The colored bars represent the amount of

each flavor eigenstate which make up the mass eigenstates. The size of the tiny sliver of

purple in the ν3 state is determined by the value of θ13 and so could still be zero. Also, the

absolute mass scale, given by m2
lightest , is still unknown.

The data of the various experiments to date have all been analyzed using the sim-

plified two neutrino formulas given by Eq. 1.20 and 1.21. In reality, however, there are

subdominant effects and correlations between the three mixing and two mass-squared

parameters. Global 3-ν fits of all oscillation data have been performed by various authors

[40, 41] and only their results will be summarized here.

Figure 1.9 shows the results of T. Schwetz et al. [42]. The final KamLAND results

(Figure 1.2) and updated MINOS results (Figure 1.5) have been included in their analysis.

The best fit parameter values are given below. The uncertainties given correspond to 3σ

ranges.

∆m2
12 = 7.6+0.7

−0.5 × 10−5 eV2∣∣∆m2
23

∣∣ = 2.4+0.4
−0.4 × 10−3 eV2

θ12 = 34.4+4.8
−3.7 deg.

θ23 = 45+9.9
−9.3 deg.

θ13 ≤ 12.9 deg.

δCP = ∈ [0, 360] deg.
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Figure 1.8: Schematic summary of the neutrino mixing parameters in a model with three

active neutrinos. The vertical axis is mass-squared and the bars represent mass eigenstates

ν1, ν2 and ν3. The colored sections represent the fractions of νe, νµ and ντ comprising each

mass eigenstate. We do not yet know if the mass hierarchy is “normal” (left) or “inverted”

(right).
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Figure 1.9: Status of 3-ν mixing model parameters in a global fit to all oscillation data

including solar neutrinos, atmospheric neutrinos, reactor experiments and accelerator

based experiments. Plots taken from [41].

Note that the results of the global analysis are consistent with the simple 2-ν interpre-

tations used to determine (∆m2
12, θ12) and (∆m2

23, θ23) in Sections 1.5.1 and 1.5.2. This is

simply the statement that the experimental uncertainties are still larger than the subdom-

inant effects. In the next generation of experiments, however, this should no longer be the

case.

1.5.5 The LSND oscillation signal

Several neutrino experiments have searched for neutrino oscillations consistent with

a mass-squared splitting significantly above ∆m2
12 and ∆m2

23. These searches are typi-

cally performed using neutrinos produced at reactors or accelerators over distances Lν ∼

10–1000 m with sensitivities to ∆m2 > 10−2 eV2. Only one such experiment has reported

a positive oscillation result, the Liquid Scintillator Neutrino Detector (LSND) [43, 44] per-

formed at Los Alamos National Laboratory in the 1990’s. The LSND experiment and

analysis are discussed in detail in Section 5.1 as direct motivation for the design of Mini-

BooNE, so here we simply present the results and their implications for neutrino physics.

LSND searched for the appearance of νe in a beam of νµ and discovered an excess

of 87.9 ± 22.4 ± 6.0 νe events above expected backgrounds. Using the 2-ν appearance
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Figure 1.10: Allowed combinations of oscillation parameters based on the excess of νe’s

seen by the LSND experiment at Los Alamos National Laboratory. The 90% and 99% C.L.

allowed regions are shown in the left panel. The right panel compares the 90% C.L. al-

lowed region from LSND to the oscillation parameters discussed in the previous sections.

probability of Eq. 1.20 to interpret the results, the allowed combinations of (∆m2, sin2(2θ))

are shown in Figure 1.10. The best fit combination, (1.2 eV2, 0.003), corresponds to an

oscillation probability P (νµ → νe) ∼ 0.3%. The right panel compares the LSND oscillation

result to the two oscillation results already discussed in Sections 1.5.1 and 1.5.2.

While neutrino oscillations may now seem like familiar phenomena, the LSND result

is remarkable for the following reason. It is clear from Figure 1.10 that, for the allowed sets

of parameters, ∆m2
LSND 6= ∆m2

12 + ∆m2
23 . Therefore, the LSND result cannot be accom-

modated by the extension to the Standard Model already introduced with three weakly

interacting, massive neutrinos, and implies the introduction of additional neutrino mass

eigenstates.

This is difficult to reconcile, however, with the precision electroweak measurements

on the Z boson resonance performed at the Large Electron-Positron collider (LEP) at

CERN [45]. The total width of the Z is the sum of the partial widths to the various fermion

decay channels:

ΓZ = Γee + Γµµ + Γττ + Γhad + Γinv (1.25)
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Figure 1.11: Measurements of the hadron production cross-section around the Z resonance

at four experiments at LEP. The curves are predicted cross-sections for an invisible decay

contribution coming from 2, 3 and 4 light neutrino species with negligible mass. Plot

taken from [45].

where Γhad =
∑

q 6=t Γqq is a sum over all quark-antiquark pairs excluding the top quark,

since the Z boson cannot decay into the more massive top, and Γinv = Nν(Γνν) is the de-

cay to undetected (hence, invisible) light neutrino pairs. Figure 1.11 shows the measured

hadron production cross-section around the Z resonance at four experiments at LEP com-

pared to the Standard Model predictions for an invisible decay comprised of 2,3 and 4

neutrino families. The result is a stringent limit on there being 3 light, weakly interacting

neutrino species.

A further extension to the Standard Model is, therefore, required to incorporate the

third, independent ∆m2 reported by LSND. A common model includes the addition of

one or more neutrino mass eigenstates, but which are mostly non-weakly interacting,

or “sterile” [46, 47], as depicted in Figure 1.12. The oscillation signal at LSND is then

interpreted as a coupling with the small component of active flavors in the fourth mass

eigenstate.
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Figure 1.12: Possible mass hierarchy of neutrino masses with 3 active neutrinos and 1

sterile neutrino. Sterile neutrino models are not limited to one additional state, but often

include 2 or 3 additional sterile neutrinos [46, 47].
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Clearly, the implications for the Standard Model of a third, independent mass-squared

splitting in the neutrino sector are enormous and potentially very exciting. The LSND

result, however, lacks the strong confirmation of other experiments which the other os-

cillation measurements have enjoyed. It is the main goal of the Mini Booster Neutrino

Experiment (MiniBooNE) at Fermilab to directly test the oscillation interpretation of the

LSND data. Part III of this thesis will present the results of such a search.



29

Chapter 2

Accelerator-based Neutrino Beams

Neutrino physics was initially explored using natural sources (sun, atmosphere,

cosmos) or nuclear power reactors which are an isotropic source of antielectron

neutrinos only. The challenge of creating a directional beam of neutrinos using

an accelerator earned a Nobel Prize for Lederman, Schwartz and Steinberger

in 1988 for ”the neutrino beam method and the demonstration of the doublet

structure of the leptons through the discovery of the muon neutrino”. In this

Chapter, we will describe the basics of creating a neutrino beam using an ac-

celerator and highlight the role played by hadronic interactions in the final

prediction of neutrino spectra.

2.1 Overview of a conventional accelerator neutrino beam

The generation of an accelerator based neutrino beam begins with a primary proton

beam impinged upon a nuclear target to produce secondary pions and kaons. Space is

provided to allow these mesons to decay-in-flight into a tertiary beam of muons and neu-

trinos followed by a large mass of dense material to act as a beam absorber. Hadrons

are quickly absorbed by nuclear interactions and muons suffer ionization loss. Only the

neutrinos pass through without interacting. Downstream of the absorber one constructs

physics detectors capable of seeing the rare interactions of neutrinos with the detector

mass. Unique to neutrino experiments, the low interaction cross-section of neutrinos al-
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Figure 2.1: Plan view of the first accelerator neutrino beam experiment of Lederman et

al. A beryllium target was placed in the synchrotron ring near the point labeled ’G’. A

10-ton aluminum spark chamber was placed behind 13.5 m of steel shielding and 7.5◦ off

the proton beam axis. Plot taken from [51].

lows for multiple detectors to sit in the same beam with a negligible effect on the flux at

the more distant detectors.

Figure 2.1 shows the first neutrino beam experiment of Lederman, et al. Protons from

the AGS at Brookhaven National Laboratory struck a beryllium target placed in a straight

section of the ring. The neutrino detector was placed behind steel shielding and was 7.5◦

off-axis with respect to the proton beam direction at the target. A neutrino beam created

in this way is predominately muon neutrinos due to the favored decays of charged pions

(π± → µ±νµ(νµ), BR = 99.988%) and kaons (K± → µ±νµ(νµ), BR = 63.4%) to muon

flavors. The contamination of νe (νe) from K and µ decays tends to be small, of O(1%). In

fact, taking advantage of the high purity of neutrinos created in combination with a muon,

this experiment was used to determine that the muon neutrino and electron neutrino are,

in fact, unique particles [51].

While the basic principle has remained the same for over 40 years, some technological

advances have increased the intensity and improved the purity of the resulting beams.

Contemporary experiments extract proton bunches from the synchrotron and into a dedi-
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Figure 2.2: Schematic drawing of a generic horn focusing device used in neutrino beams.

A typical trajectory of a π+ and a π− are shown (for neutrino mode running). Plot taken

from [53].

cated beamline. This maximizes the efficiency for proton+target collisions and allows the

neutrino experiments to be placed along the proton beam axis where meson production

is maximal and symmetric.

Aligning the experiment along the beam axis also facilitates the introduction of fo-

cusing. A major enhancement of neutrino fluxes has been achieved through the addition

of magnetic focusing systems, called horns, in the neutrino beam design. The neutrinos

themselves, of course, cannot be focused by magnetic fields, but only their charged π and

K parents. However, the daughter neutrinos are highly boosted in the laboratory frame

for typical parent meson energies of O(1 GeV) so the neutrino direction is highly corre-

lated with the meson direction in the lab and focusing the parent mesons acts to focus the

neutrino beam.

Figure 2.2 is a schematic diagram of a generic focusing system. Focusing horns are

roughly cylindrical devices made of two axially-symmetric conductors. Current is passed

through the inner conductor and returns via the outer conductor, creating a toroidal mag-

netic field between the two shells which falls off with radius and can be well estimated by
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the familiar expression for an infinitely long conductor,

Bφ(r) =
µ0I

2πr
, Br = Bz = 0 (2.1)

where µ0 is the magnetic permeability of air, I is the horn current and r is the perpendic-

ular distance from the axis of the horn. The resulting q(~v × ~B) force on charged particles

in the field will act to focus particles of one sign and defocus particles of the other, thus

increasing the desired flux while reducing the antiparticle background. By changing the

direction of the current in the horn one can create a predominately νµ (neutrino mode) or

νµ (antineutrino mode) beam.

Using the approximation that the field strength is constant along the path of the par-

ticle (constant r), the angular deflection, ∆θ, that results is proportional to the strength of

the field and the amount of field the particle traverses and inversely proportional to the

particle’s momentum,

∆θ =
Bx

p
=
µ0I

2πr
x

p
(2.2)

where x is the path length of the particle through the field region and p is the particle’s

momentum. The goal of any horn design is to cancel the incoming particle angle, θin, with

the deflection caused by the magnetic field such that θout = θin − ∆θ = 0. The tapered

end of the inner conductor in Figure 2.2 acts to increase x for larger values of the start-

ing angle, θin, thus increasing ∆θ to compensate. Horn design has become significantly

more complicated than this simple example over the years and sophisticated Monte Carlo

techniques are typically used to optimize the exact shape of the inner conductor which

account for the full pion kinematic spectrum and the precise locations of currents through

the horn materials. Nonetheless, this simple description provides an adequate framework

for understanding basic horn design.

To illustrate the effect of a horn focusing system, Figure 2.3 compares νµ and νµ fluxes

at the MiniBooNE detector for the case of no focusing system with that of using the

Booster Neutrino Beam magnetic horn in neutrino mode. The increase in the νµ flux is

more than a factor of 7 at 1.25 GeV and larger than 5 throughout the peak of the spec-

trum. The νµ background is reduced by the defocusing of negative pions by as much as
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Figure 2.3: Comparison of neutrino fluxes with and without use of the magnetic focusing

horn at MiniBooNE. The left panel shows the predicted fluxes of νµ and νµ. The ”with

horn” curves correspond to running in neutrino mode. The ratios of with-horn to without-

horn are shown on the right for νµ (top) and νµ (bottom).

60% at 600 MeV. Integrated across the neutrino energy range from 0–2.5 GeV the νµ flux

is increased 4.93 times by the use of the focusing system while the νµ flux is reduced by

45%.

Predictably, the horn alters significantly the pion phase space which is relevant to

the production of the neutrino flux in the detector. Figure 2.4 shows the effect. With no

focusing (left panel) only very forward (small θ) π+ contribute to the forward neutrino

flux. With focusing (right panel) the pions which contribute most to the flux are slightly

lower energy and produced at larger angles, θ ≥ 50 mrad.

Finally, we point out that a very comprehensive and up-to-date summary of the sci-

ence and technology of accelerator neutrino beams has recently been provided by S. Kopp

[53] and the interested reader is strongly encouraged to look there for more information.
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Figure 2.4: Kinematic distributions of pions (at production) which contribute to the νµ

flux in the MiniBooNE detector via p + Be → π+ → νµ with no focusing (left) and with

focusing (right).

2.2 The importance of hadronic interactions

To better motivate the measurement to be presented in the following chapters we now

look in some detail at the impact of the hadronic interaction models used in the simulation

of accelerator-based neutrino beams. A typical simulation of an accelerator neutrino beam

begins with inclusive, double-differential production cross-sections for p, n, π+,π−,K+,K−

and K0 produced in the collisions of incident protons on a nuclear target. The major source

of uncertainty in the accurate prediction of neutrino fluxes is the production of these pri-

mary hadrons. A secondary effect arises from the reinteractions and absorption that can

take place in thicker nuclear targets. Further, the use of focusing systems means that a

larger region of π and K phase space is relevant to the flux predictions. In this section we

will explore the importance of correctly modeling these hadronic interactions and define

the range over which they are important. As with horn focusing in the previous section,

we will use the Booster Neutrino Beamline as an illustrative example.

Figure 2.5, taken from [53], provides a starting point for assessing the relative impor-

tance of the primary and secondary hadronic interactions. The plots show the fraction of
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Figure 2.5: Fluka calculations of the fraction of π+ escaping a thick graphite target which

are tertiary particles as a function of incident proton momentum, p0. The target cross-

sectional area is 6.4×15mm2. The left panel shows the tertiary fraction for a 2.0 interaction

length target for π+ with longitudinal momentum, pz > 0.5, 5.0, etc.. The right panel

shows the total tertiary fraction for targets of different lengths, 0.5λ, 1.0λ, 2.0λ. Plot taken

from [53].

π+ escaping a thick carbon target which are tertiary particles created in interactions other

than primary p+C interactions as a function of primary proton beam momentum, p0. The

fraction will depend on specific features of a particular beamline including the target ma-

terial and geometry, but the plot is still very instructive. The fraction of tertiary π+ rises

sharply with the proton momentum and reaches roughly 50% for the NuMI configuration

of a 120 GeV/c beam and a 2.0λ carbon target. At lower proton energies, such as that

of the Booster at 8.9 GeV/c, the fraction of π+ which are tertiary has dropped to 10%.

This indicates that secondary interactions will be generally less important in the Booster

Neutrino Beamline than for Neutrinos from the Main Injector.
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To better quantify the impact of variations in models of hadronic interactions one

can use the MiniBooNE Geant4 beam Monte Carlo. The Monte Carlo will be described

in some detail in Chapter 5 and has been thoroughly presented in [94] and [69]. For

this discussion it suffices to know that the interactions of p+Be at 8.9 GeV/c are handled

separately from all other hadronic interactions in the simulation, including p+Be at other

momenta, π±+Be, K±+Be, p+Al, π±+Al, K±+Al, etc. This modular construction facilitates

the changing of models for primary and secondary interactions separately.

2.2.1 Primary hadronic interactions

Primary interactions refer specifically to the interactions of incident beam protons

with target nuclei (p+Be at 8.9 GeV/c) with the most relevant result being the inelastic

production of secondary pions and kaons. The multiplicity and kinematics of the pro-

duced mesons can be generated by available built-in Geant4 physics models or by input-

ing externally produced double-differential inclusive cross-sections for π, K production.

Figure 2.6 compares the π+, π− and K+ spectra exiting the MiniBooNE beryllium target

(71 cm long × 1.0 cm diameter) when four different models are used to simulate primary

interactions. MARS (v15) [121] was used to create double-differential cross-section tables

while G4 LHEP, the “Low Energy Parameterization Driven Model” [124] based on the

Geant3.21 GHEISHA package, G4 Bertini, the “Bertini Intranuclear Cascade Model” [123]

and G4 Binary, the “Binary Cascade Model” [122] are built-in Geant4 physics packages.

The comparison is striking with differences larger than a factor of 2 in pion production

and still larger in kaon production. The relevant comparison, however, is in the result-

ing neutrino fluxes and is shown in Figure 2.7. The left panel shows the resulting νµ

flux predictions in neutrinos per proton on target per cm2 of detector surface area for the

four different primary hadronic interaction models. All other components of the Mini-

BooNE beam Monte Carlo are held fixed for these comparisons. One clearly sees that a

naive choice of available hadronic interaction models is not acceptable. Just the four mod-

els shown would imply a flux uncertainty of order 50–100%. Production data is clearly

needed to motivate a choice between available models or to facilitate the generation of a

new one.
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Figure 2.6: Spectra of π+ (top), π− (middle) and K+ (bottom) generated in collisions of 8.9

GeV/c protons with a 1.7λ beryllium target 1.0 cm in diameter according to four different

Monte Carlo hadronic interaction generators (see text). The 2-dimensional (p, θ) distribu-

tions shown on the left for one of the generators are intended as a guide to understanding

the other two panels only. The middle panels compare the total π+ momentum distri-

butions integrated over angles up to 1 radian. The right panels compare the polar angle

distributions integrated over momenta values up to 5 GeV/c. Note the vertical scale on

the K+ panels are reduced by 20x with respect to the π± panels.
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Figure 2.7: Comparison of generated νµ fluxes at the MiniBooNE detector for four dif-

ferent hadronic interaction Monte Carlos (see text) used for the production of hadrons in

primary interactions of p+Be at 8.9 GeV/c.

2.2.2 Secondary hadronic interactions

Secondary interactions refer to all hadronic interactions in the beamline that are not

incident beam protons with target nuclei at 8.9 GeV/c. The analogous comparison was

made to quantify the effect of these secondary interactions on the neutrino flux prediction

at MiniBooNE. Figure 2.8 shows the resulting νµ fluxes when the LHEP, Bertini Cascade

and Binary Cascade models are used to simulate secondary hadronic interactions. All

other components of the MiniBooNE beam Monte Carlo, including the simulation of pri-

mary p+Be interactions, are held fixed for these comparisons. We see in Figure 2.8 that

the resulting variation in the predicted neutrino flux is much smaller than when the same

models were used for primary interactions. Across most of the relevant neutrino energies

the differences between the three models is ≤ 10% with a slight increase at the highest

and lowest energies. This study indicates that an improved understanding of the effects

of secondary interactions in the beamline is important but clearly a second order effect

compared to primary production in p+Be collisions at 8.9 GeV/c.
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Figure 2.8: Comparison of generated νµ fluxes at the MiniBooNE detector for three differ-

ent hadronic interaction Monte Carlos (see text) used for the interactions of all hadrons

except primary interactions of p+Be at 8.9 GeV/c.

The best way to reduce both primary and secondary production uncertainties is by

making dedicated hadron production measurements with an identically matched beam

and target configuration.

2.3 Typical parameters of accelerator neutrino beams

Since the original demonstration of the neutrino beam in 1962 many accelerator neu-

trino beamlines have been constructed around the world. There are five beamlines which

have run since 2000 or are currently being constructed; they include two in Japan at KEK

and JPARC, two in the United States at Fermilab, the BNB and NuMI beams, and one in

Europe at the CERN SPS.

In this chapter we have used the Booster Neutrino Beamline at Fermilab and the Mini-

BooNE detector to illustrate the effects of focusing systems and to demonstrate the im-

portance of accurate simulations of hadronic interactions within the beamline. However,

each accelerator based neutrino beam has its own configuration with unique sensitivi-
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ties to hadronic uncertainties. They do share some basic characteristics, however, which

determine the relevant range of hadron measurements:

• Primary proton energies range from ∼ 10–500 GeV. The large range indicates that

multiple hadron production experiments are likely needed. The mean number of pi-

ons produced per incident proton, 〈nπ〉, scales approximately linearly with incident

proton momentum [53].

• Nuclear targets tend to be lighter elements (Be, C, Al,...) due to the difficulty of

dissipating heat build-up in high-Z targets. Secondary interaction rates are also

reduced in lower Z targets.

• Targets are thick (1–2 interaction lengths) to increase proton reaction rates, but sec-

ondary interactions become non-negligible. The importance of secondary interac-

tions also increases with incident proton momentum (See Figure 2.5 and [53]).

• The relevant meson production off the target is typically forward, but can extend

out to ∼ 20 degrees (350 mrad) in the lab frame due to focusing systems.

• Measurements of π+, π−, K+, K− and K0 production are needed to fully understand

νµ, νµ, νe and νe fluxes.

The specific combinations of incident proton beam energy and nuclear target for the

world’s neutrino beams are represented in Figure 2.9. Several modern hadron produc-

tion experiments have been built in recent years to measure the secondary production for

these beamlines including the Hadron Production (HARP) [54] experiment at CERN, the

NA49 [99] experiment also at CERN and the Main Injector Particle Production (MIPP)

[98] experiment at Fermilab. The MIPP and NA49 experiments are well suited to mea-

sure production at higher proton energies while the HARP experiment collected data for

Ep ≤ 15 GeV. In the following chapters we will present a measurement of the hadronic

production cross-sections needed by the two lower energy beamlines, the FNAL Booster

neutrino beam and the KEK neutrino beam in Japan.
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Figure 2.9: The incident proton energy and nuclear target atomic mass for the world’s five

accelerator neutrino beams.
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Part II

HARP
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Chapter 3

The HARP (PS214) Experiment at

CERN

The HARP (Hadron Production) experiment, located in the T9 beam of the

Proton Synchrotron at CERN, took data in 2001 and 2002. HARP is a high

statistics, large angular acceptance spectrometer experiment for measuring

production rates of secondary hadrons in the interactions of protons and charged

pions with nuclei. Incident beam momenta in the data set range from 1.5

GeV/c to 15 GeV/c and the nuclear targets vary from hydrogen to lead. In

this chapter, we describe the experimental apparatus, explore its calibration

and quantify its performance.

3.1 Motivations for the HARP experiment

Precise measurements of secondary yields in hadron-nucleus collisions in the few

GeV/c region are relevant to several areas of particle physics, particularly experimental

neutrino physics.

The first proposed [54] goal of the HARP experiment is to contribute to optimization

studies in the design of a future Neutrino Factory [49]. The front end of a Neutrino Factory

would include a high intensity proton beam focused onto a high Z nuclear target for the
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copious production of secondary charged pions. These pions are allowed to decay and the

resulting muons must be cooled and guided into an accelerator channel. An optimized

design of this complicated system (including the choice of incident proton beam momen-

tum and target material) requires precise knowledge of the phase space distribution of the

charged pions created in proton-target collisions [59].

The observation of νµ disappearance in neutrinos produced in the atmosphere pro-

vides a second motivation for the HARP experiment. The largest systematic in the de-

termination of oscillation parameters from atmospheric neutrino data arises from an in-

complete model of the interactions of protons and pions with nitrogen and oxygen in the

Earth’s atmosphere [28]. HARP has collected data with a solid carbon target (carbon has

the atomic mass nearest to that of nitrogen and oxygen), as well as with nitrogen and

oxygen cryogenic targets.

Third, the data recorded by HARP can have a broad impact on the improvement of

models used in the simulation of hadronic interactions in this energy range. There are

several hadronic interaction simulation packages which claim some validity in the energy

range represented by the HARP data set, including MARS15 [121], the Binary cascade

model [122], the Bertini intra-nuclear cascade model [123], the Quark-Gluon String CHIPS

(QGSC) model and the Quark-Gluon String Precompound (QGSP) model. Differences

between the models’ predictions can be resolved and deficiencies in the models can be

revealed by a detailed comparison of their predictions to a data set like that available

from HARP.

Finally, measurements made at HARP can have a direct impact on the detailed under-

standing of the neutrino fluxes of several accelerator-based neutrino experiments, includ-

ing the K2K experiment in Japan and MiniBooNE and SciBooNE at Fermilab. The K2K

muon neutrino beam is created by decaying pions produced in collisions of 12.9 GeV/c

protons from the KEK PS with an aluminum target. The Booster Neutrino Beam, used

by MiniBooNE and SciBooNE, begins when 8.9 GeV/c protons from the Fermilab Booster

are impinged upon a beryllium target. HARP recorded millions of events with these ex-

act beam energies and target materials using both thin and thick targets. The quantitative

impact of these data on the flux predictions and oscillation measurements of these exper-
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iments is discussed in Appendix C.

3.2 Glossary of particles and kinematic variables at HARP

Before describing the HARP experiment in detail or presenting physics results, it is

useful to explicitly state a few important definitions. Figures 3.1 and 3.2 show schematic

drawings of the HARP detector and beamline for reference.

• Primary beam particles from the T9 beam are guided in from the left in both figures

and collided with a nuclear target sitting inside the volume of the TPC.

• Secondary particles are created in primary interactions of beam particles with target

nuclei. When measuring production cross-sections one is interested in these secon-

daries only. Hadrons created in interactions other than primary beam particles with

target nuclei are a background to the measurement.

• Tertiary particles are those created when secondary particles decay or inelastically

interact downstream of the target in air or detector materials and are not to be in-

cluded in the measured cross-section.

• In the HARP coordinate system the center of the target is located at (x,y,z) = (0,0,0).

• The z-axis is oriented along the primary beam direction, +x is to the left and +y is

up.

• Given azimuthal symmetry in hadron production, all physics results are presented

in polar coordinates (p, θ) where p is the total momentum of the particle and θ is

the angle with respect to the primary beam direction (approximately equal to the

z-axis).

• Given the rectangular geometry of the dipole and drift chambers, θx = tan−1(px/pz)

and θy = tan−1(py/pz) are useful variables for viewing the detector in x,y-plane co-

ordinates. They are related to the standard polar angle by θ = tan−1(
√

tan2 θx + tan2 θy).
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Figure 3.1: Schematic drawing of the HARP spectrometer at CERN. The large angle track-

ing and PID system consists of a time projection chamber (TPC) and resistive plate cham-

bers (RPC). The forward angle tracking and PID system is made up of five drift chambers

(NDCs) with a spectrometer magnet, a Cherenkov (CHE) detector, time-of-flight scintilla-

tor wall (TOFW), electromagnetic calorimeter (ECAL) and a muon identifier.
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Figure 3.2: Schematic drawing of the HARP beamline showing the relative locations of

the tracking (MWPC), triggering (BS,TDS,HALO-A,HALO-B) and particle identification

(BCA,BCB,TOFA,TOFB) detectors. The locations of the target and ITC trigger inside the

TPC volume and the FTP downstream of the TPC are also shown.

3.3 Description of the HARP experimental apparatus

The HARP experimental apparatus [55] is effectively divided into four subsystems:

• a primary beamline with tracking and particle identification (PID) instrumentation

upstream of the nuclear target

• a set of triggering devices for recording different types of events

• a large angle/low momentum tracking and PID system surrounding the nuclear

target

• a small angle/high momentum tracking and PID system downstream of the nuclear

target

The T9 beamline is created by momentum selecting charged particles created in col-

lisions of 28 GeV kinetic energy protons from the CERN PS with a fixed target. Either

positive or negative particles can be selected with momenta between 1.5 GeV/c and 15

GeV/c. The momentum resolution of the T9 beam is about 0.24% in the momentum range

used [57]. Figure 3.2 shows the relative positions of all beam detectors and trigger ele-

ments of the HARP primary beam.
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Figure 3.3: HARP beam particle identification detectors. There are two threshold

Cherenkov detectors with adjustable gas pressures (left) and two identical scintillator pan-

els (right) for making time-of-flight measurements over a 21.4 m baseline.

Beam particle tracking is performed with a set of four multi-wire proportional cham-

bers (MWPCs) located just upstream of the target area. The position and direction of

incoming beam particles are measured with an accuracy of ∼ 1 mm and ∼ 0.2 mrad, re-

spectively [57]. These chambers are aligned with the nominal HARP coordinate system

and the downstream detectors have been carefully aligned with the beam chambers.

The incoming beam for the HARP experiment is of mixed composition, necessitating

a beamline particle identification system. The PID system is comprised of two threshold

Cherenkov detectors (BCA and BCB) as well as two scintillator planes (TOFA and TOFB)

used to measure particle times-of-flight across a 21.4 m baseline. The Cherenkov gas vol-

umes are 6 m and 3 m for BCA and BCB, respectively, and are filled with nitrogen gas. The

pressure is adjustable allowing the thresholds to be controlled as the beam momentum is

changed. The Cherenkov light produced is read out via a single photo-multiplier tube

attached to each detector. The tagging efficiency for pions and electrons is nearly 100%.

TOFA and TOFB are identical counters comprised of eight 5 mm thick scintillator slabs

oriented vertically as shown in Figure 3.3 each read out by two Hamamatsu H1949 PMTs.

The varying widths were selected to roughly equalize the rates for the eight strips.
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The trigger system is comprised of scintillator planes in the T9 beamline to trigger on

the presence of an incoming beam particle, as well as planes surrounding the nuclear tar-

get to trigger on hadrons emanating from the target volume. The Beam Scintillator (BS)

is the start of the triggering logic for each event and in combination with a hit in TOFB is

the minimum requirement for the lowest level trigger. Additionally, the BS provides the

reference time for all ADC gates in other sub-detectors. The BS is comprised of a single

scintillator slab 5 mm in thickness and with an 80 mm × 80 mm sensitive area perpendic-

ular to the beam axis which is read out by a single Philips XP2020 photo-multiplier tube

(PMT). Two HALO counters (HALO-A and HALO-B) are scintillator slabs with a central

hole and are used to veto events where the beam particle is accompanied by a second

particle in the halo of the beam.

The Target Defining Scintillator (TDS) is a circular scintillator volume 20 mm in diam-

eter and read out by four Hamamatsu R1635P 3/8 inch PMTs. The efficiency to record at

least one hit when a beam particle passes through the TDS is > 99.9% and its location as

near as possible to the upstream end of the target volume nearly guarantees its correlation

with a beam particle striking the target.

There are two downstream trigger counters (see Figure 3.4), one for the large angle

spectrometer and one for the forward angle system. The Inner Trigger Counter (ITC) is

a cylindrical tube mounted inside the TPC field cage and provides a trigger for the large

angle system. Six layers of scintillator fibers are read out by 24 Hamamatsu R1635P 3/8

inch tubes resulting in a trigger efficiency > 99%. The forward angle system is triggered

by the Forward Trigger Plane (FTP). The FTP is comprised of two orthogonal planes of

seven scintillator slabs each with a total area of 1240 mm × 1400 mm. Light is read out on

both ends of each slab by Hamamatsu R2490 fine-mesh tubes. The FTP plane is located

just downstream of the TPC volume as shown in Figure 3.1 and triggers on forward tracks

with an efficiency > 99.8%. A 60 mm diameter hole has been cut out along the beam axis

to allow non-interacting beam particles to pass without triggering the FTP.

The tracking and identification of particles beyond the target region consists of sepa-

rate large angle and forward angle systems. Tracking in the angular region beyond ∼ 20◦

is achieved by a 3972 channel time projection chamber (TPC) built specifically for the
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Figure 3.4: HARP downstream trigger counters. The left panel shows the Inner Trigger

Counter (ITC) which surrounds the target volume inside of the TPC. The right panel is a

schematic drawing of the 14 scintillator slabs of the Forward Trigger Plane (FTP) which

sit downstream of the TPC and triggers on forward going particles.

HARP experiment. The TPC sits inside a 0.7 T solenoidal field enabling momentum re-

construction of tracks. Particle identification is primarily done using a dE/dx measure-

ment provided by the TPC and is supplemented by a time-of-flight measurement given

by resistive plate chambers which surround the TPC volume. The TPC and RPCs have

been described in detail elsewhere [55] and will not be repeated here. The cross-sections

which will be presented as part of this dissertation have been measured using only the

forward spectrometer of the HARP detector. The relevant meson production for the cre-

ation of traditional accelerator-based neutrino beams is forward (0–0.30 rad) and at large

momenta (0.5–6 GeV/c). These ranges are best covered by the forward tracking system

and PID detectors.

In the forward detector, tracking is performed by five drift chamber modules previ-

ously used by the NOMAD experiment [50] (for this reason they are referred to in what

follows as the NOMAD drift chambers, or NDC1–5). The five chambers are arranged

in three planes perpendicular to the beam axis as shown in Figure 3.1 (the fourth plane

shown was never instrumented). Sandwiched between NDC1 and NDC2 is a large aper-
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ture dipole magnet (x × y × z = 2.41 m × 0.88 m × 1.72 m). The magnetic field is not

homogeneous with a maximum By = 0.5 T at the center of the field region. The field of

the spectrometer magnet was mapped using Hall probes and this map has been used in

the reconstruction program.

The chambers all consist of four modules each containing three planes of wires mak-

ing a possible 12 hits per chamber. This implies that a short 3D segment for determining

the direction of the track can be reconstructed at each chamber position. The three sense

wire planes are oriented at 0◦, +5◦ and −5◦ with respect to the vertical axis. A detailed

description of the electronics, alignment procedure and the spatial resolution of recon-

structed points can all be found in [55]. Below, we will focus only on higher level features

of the drift chamber system such as the track reconstruction efficiency and the resolution

and absolute scale of track momentum measurements.

Particle identification in the forward spectrometer is performed using a Cherenkov

detector (CHE) and a time-of-flight system that includes the beam TOF counters in com-

bination with a scintillator wall (TOFW) downstream of the third drift chamber plane.

An electromagnetic calorimeter (ECAL) beyond the TOFW distinguishes electrons from

hadrons, but has only been used in this analysis to reject electrons when quantifying the

response of the other PID detectors.

The Cherenkov detector is located just downstream of NDC2 and the spectrometer

magnet (Figure 3.1). The detector volume is filled with perfluorobutane (C4F10) whose

high refractive index allows it to be operated at atmospheric pressures. The total volume

of the Cherenkov vessel is about 31 m3 with a 6 m × 3 m cross-section along the beam

direction. Photons are collected by two rows of nineteen EMI 9356-KA 8-inch photo-

multiplier tubes, one mounted above and one below the gas chamber with the tube faces

pointing away from the incoming beam. Two large cylindrical mirrors deflect the photons

backward at about 135◦ upward or downward to the two rows of tubes. Signals in the

PMTs are clustered together to give a total number of photo-electrons and a reconstructed

position in the x−y plane. This hit position can then be matched to reconstructed particle

tracks from the drift chamber information.
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Figure 3.5: Layout of the 39 scintillator slabs that comprise the TOFW at the HARP exper-

iment.

The TOFW is made up of 39 BC-408 bars from Bicron, 2.5 cm thick and 21 cm wide.

Two lengths are used, 250 cm and 180 cm, and each slab is read out on both ends by

Philips XP2020 photo-multiplier tubes. The TOFW is locateded ∼ 10 m downstream of

the nuclear target and the configuration of the scintillator slabs is shown in Figure 3.5.

The slabs overlap by 2.5 cm to ensure full coverage, and the total active area is ∼ 6.5 m ×

2.5 m. The vertical position in the outside slabs and the horizontal position in the central

slabs can be determined from the time difference of the hits in the PMTs at either end of

the counter. The position in the other dimension can only be determined to within the

width of the scintillator slabs, 21 cm. As with the CHE, the x − y position of a hit in the

TOFW can be used to associate a time measurement with a reconstructed particle track.
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3.4 Calibration and performance of the HARP sub-detectors

This section will concentrate on the performance of the various subsystems of the

HARP beamline and forward angle spectrometer. Primary beam particle identification

and secondary track reconstruction, momentum resolution and PID will be described for

the relevant particles in the relevant regions of phase space. Chapter 4 will then focus

on using the detector with the demonstrated performance to extract the production cross-

sections of pions and protons for two different beam and target configurations.

3.4.1 Primary particle identification in the T9 beamline

3.4.1.1 Beam Cherenkov detectors

The beam Cherenkov counters require no post data-taking calibration beyond inspec-

tion of the hit distributions and determination of a cut value to select the desired particle

type. The gas pressures can be adjusted for different beam momentum settings to select

e± only, e± and π±, or even e±, π± and K±. Additional flexibility is provided by the

existence of two counters which can be adjusted separately. The two counters should

be configured to best compliment the discrimination power of the TOF system. Below 3

GeV/c, for example, the TOF can completely separate the heavier particles, so the beam

Cherenkovs are set to select electrons only. At momenta above∼ 8 GeV/c, the TOF can no

longer separate pions and protons, so the gas pressures are set to radiate for π±. Figure

3.6 demonstrates the performance of the beam Cherenkov PID system for an 8.9 GeV/c

beam.

3.4.1.2 Beam time-of-flight system

The beam time-of-flight system (BTOF) is a critical system even for high momentum

beam settings where there is no discrimination power for identifying beam particles. Tim-

ing information from TOFA, TOFB and the TDS is used to extrapolate and estimate an

arrival time of the beam particle at the nuclear target. This time, t0, is the start time for

the time-of-flight measurements made by the TOFW. Without this t0 a TOF measurement
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Figure 3.6: Beam Cherenkov distributions for an 8.9 GeV/c beam. Protons are clearly

visible at the ADC pedestal values. Pions and electrons can be selected with nearly 100%

efficiency by requiring an ADC count above pedestal in both BCA and BCB.

of particles created in the target cannot be made. Also, since the resolution of the down-

stream TOF measurement is given by σTOF =
√
σ2

TOFW + σ2
t0

, a well calibrated BTOF

system is important for both primary and secondary PID.

Calibration of the beam time-of-flight detectors The BTOF detectors are, in many ways,

small versions of the ∼ 16 m2 TOFW downstream. The TOFW, TOFA and TOFB are all

made up of thin scintillator bars instrumented with a PMT at each end for which an ADC

and TDC count is recorded. The calibration methods for the two detector systems, there-

fore, are similar. Calibration of the TOFW has been maintained through a combination

of dedicated cosmic ray runs, a laser system and beam particles. Calibration of the BTOF

system was performed using beam particles only. For a detailed description of the cali-

bration of the TOFW see [62].

Several effects must be considered for the proper calibration of plastic scintillation

counters being used for precise timing measurements.

• non-linear time-to-digital converter (TDC) performance

• time slewing due to varying signal amplitudes which are read from analog-to-digital

converter (ADC) channels
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• light propagation time and hardware delays unique to each PMT channel in the TOF

system

The intrinsic resolution (without calibration) of a time-of-flight measurement using the

BTOF system at HARP, ∆t = tTOFB − tTOFA, is ∼ 260 ps. After applying the calibrations

described here the timing resolution is improved to better than 160 ps, demonstrating the

importance of such corrections. The final resolution on the determination of t0 will be

∼ 70 ps.

PMT signals are split and carried to the ADC and TDC electronics. The expected per-

formance of the 37 TDC channels (TOFA(16), TOFB(16) ,TDS(4) and BS(1)) is 35 ps/count.

A more accurate time estimation is achieved, however, by considering the non-linear devi-

ations from this specification for each of 4096 TDC bins for all 37 channels. The conversion

factors have been measured off-line for all BTOF channels, and Figure 3.7 shows values

of ∆t per TDC bin for one representative channel (TOFA ch. 1). A Gaussian fit to the last

3096 values of ∆t reveals a mean conversion factor of 37.0 ps with a width of 1.0 ps. The

average conversion factors range from 35.3 ps to 37.6 ps for the 37 TDC channels.

With the TDC reading converted to a time value, one must next consider pulse-height

effects. The time measurement will depend on the amount of charge created in the photo-

multiplier tube. Events generating less charge, or, equivalently, a lower ADC count, will

record later times due to the longer rise time for the pulse to cross the hardware thresh-

old. This effect has proved significant in all three BTOF detectors, TOFA/B and the TDS.

Figure 3.8 shows converted TDC readings as a function of ADC counts for a characteristic

channel (TOFB ch. 5) as a scatter plot and a profile histogram. 8.9 GeV/c protons were

selected using the beam Cherenkov detectors to generate the distribution. The profile

histogram has been fit to an expansion in 1/
√

ADC to three terms,

f(ADC) = p0 + p1
1√

ADC
+ p2

1
ADC

+ p3
1

ADC3/2
(3.1)

and the four parameters extracted (the constant, p0, is discarded). A parameterization has

been generated for each channel and is used to apply a timing correction to all converted

TDC counts. Figure 3.8 shows that this pulse-height correction can be as large as 1.5 ns

for low ADC values.
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Figure 3.7: Non-linear TDC-to-time conversion for TDC channel 1 in TOFA. The left panel

shows the measured ∆t/bin for each of 4096 bins in the TDC. In the right panel the last

3096 ∆t/bin values are histogramed and fit to a Gaussian function with µ = 37.0 ps and

σ = 1.0 ps.

Figure 3.8: Reconstructed time as a function of pulse-height (ADC count) for TDC chan-

nel 5 in TOFB. The right panel is a profile histogram of the scatter plot on the left. A

parameterization (see text) has been fit to the profile histogram to extract the pulse-height

correction. Similar fits were performed for all 37 BTOF system channels.
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Figure 3.9: Schematic diagram of a scintillator strip in TOFA/B with a photo-multiplier

tube read out from each end.

Before one can measure a meaningful time-of-flight between any pair of detectors, the

37 channels of the BTOF system must be brought into a common time reference-frame.

This requires the determination of the 37 unique signal delays in each circuit due to the

hardware components - mostly the signal cables connecting PMTs to the ADC/TDC hard-

ware. Figure 3.9 is a schematic depiction of a typical scintillator in TOFA/B. The strips are

10 cm in length and the width varies across the eight slabs from 8–20 cm (see Figure 3.3).

If a particle strikes the scintillator at known time t0 and vertical position y0 then the

corrected (TDC-to-time converted and pulse-height corrected) times in the two PMT chan-

nels, t1 and t2, are given by

t1 = t0 +
L/2− y0

veff
+ δ1 − tref , t2 = t0 +

L/2 + y0

veff
+ δ2 − tref (3.2)

where t0 is the true time the particle passes the detector (NOT target arrival time in this

case), L = 10 cm is the total length of the scintillator strips in TOFA/B, y0 is the vertical
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position of the particle as it passes the detector, veff ∼ 0.57c is the effective velocity of light

in the scintillators, δ1 and δ2 are the delays in the top and bottom channels, respectively

and tref is a global time reference signal. The sums and differences of these two quantities

are used to determine the delays for the two channels.

∆T =
t2 + t1

2
= t0 +

L
2veff

+ D− tref (3.3)

∆t =
t2 − t1

2
=

y0

veff
+

d
2

(3.4)

where D = (δ2 + δ1)/2 and d = δ2 − δ1. The sum of the delays, D, can be immediately

determined from the timing information; the y position of the hit has canceled out of

the equation. The difference, however, requires knowledge of the y position of the beam

particle as it passes each detector. The MWPC tracks have been used to extrapolate to

the TOFB detector and this position is used in the delay calculation. TOFA is upstream of

several quadrupole magnets, making the extrapolation impossible, so the middle of the

detector must be assumed. The bias introduced is small, however, of the order y0/veff ≈

1.0 cm/0.6c ∼ 0.05 ns.

As when calculating the pulse-height corrections above, applying strong cuts to the

beam Cherenkov signals provides pure samples of particles of known β to be used for

calibration purposes. The beam momentum setting, particle mass and path length (as de-

termined from the MWPC track) are used to calculate the expected t0 at the given detector.

Here t = 0 is defined at z = 0, so the times are, by convention, negative, as the detectors

are all upstream of the target. Knowing t0, the channel delays δ1 and δ2 can be calculated

from equations 3.3 and 3.4.

All calibration parameters except the non-linear TDC conversion numbers had to be

generated for each experimental configuration in the HARP data set (beam momentum

and target) after it was determined that the running configurations were not sufficiently

constant beyond a time period of weeks. Currently, calibrations for 68 configurations are

incorporated into the HARP analysis tools and are used by the collaboration for all official

analysis.
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Beam time-of-flight system performance Applying the non-linear TDC-to-time conver-

sion, the parameterized pulse-height correction and the channel delay offsets, the recon-

structed time, t, for any PMT channel, j= 1–37, is given by

tj =
TDC∑
i=0

(∆ti)j − fj(ADC, p1, p2, p3)− δj (3.5)

where i is used to sum over TDC bins up to the recorded TDC value. Combining the

reconstructed times in a pair of PMT channels on a single scintillator strip and solving

Eq. 3.3 for t0 one can reconstruct the time the beam particle passed that detector. A

reconstruction package has been incorporated into the HARP analysis tools to apply the

available calibrations and reconstruct the higher lever quantities tTOFA, tTOFB and tTDS

as well as the t0 to be described in the following section.

Figure 3.10 demonstrates the BTOF reconstruction using this calibration for a 3.0 GeV/c

and a 5.0 GeV/c beam. At 3.0 GeV/c kaons are separable from pions and electrons at about

3.9σ and pions and protons are easily distinguished at over 13σ. At 5.0 GeV/c pions and

protons are still separable at nearly 5σ. Beyond 5.0 GeV/c the BTOF system is not used

for beam particle identification.

Calculating t0 Above 5.0 GeV/c beam momentum nearly all ability to identify beam

particles by time-of-flight alone is lost. However, a well calibrated system remains im-

portant as TOFA, TOFB, and the TDS detectors are used to determine an arrival time of

a beam particle at the target (z=0 in this analysis). This t0 then serves as a start time for

subsequent secondary particle time-of-flight measurements. The time-of-flight resolution

for secondaries is, therefore, determined by the beam detectors as well as the TOF wall.

In calculating the t0 for an event it was noted that the uncertainty in the beam mo-

mentum is small compared to that in the timing measurements made with the three beam

detectors. Therefore, one uses the β of a beam particle based on the T9 momentum setting

and the particle’s mass to propagate the times forward to z = 0 m instead of using the

beam detectors to measure a velocity. This method allows three separate calculations of t0

(from three separate detectors), reducing the error significantly. Additionally, it becomes

possible to calculate a t0 value even in the case where only one beam detector registers a
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Figure 3.10: Beam time-of-flight measurements for two different beam momenta after

calibration. The top two panels show TOFB-TOFA measurements for a 3.0 GeV/c beam

at two different zoom levels; the second plot shows a clear kaon peak separate from the

pions and electrons at about 3.9σ, and these are separated from protons at over 13σ. The

bottom two panels show the TOFB-TOFA and TDS-TOFA reconstructions for a 5 GeV/c

beam. The pion and proton peaks are separated at about 4.9σ.
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Run # Momentum σA (ps) σB (ps) σTDS (ps) σt0

19130 1.5 GeV/c 109.5 136.7 138.2 72.7 ps

14180 3.0 GeV/c 114.4 130.9 135.8 72.8 ps

14425 5.0 GeV/c 108.3 130.8 141.7 71.9 ps

17900 8.9 GeV/c 115.4 116.7 138.5 70.6 ps

18263 12.9 GeV/c 108.2 118.0 128.4 67.8 ps

Table 3.1: Beam time-of-flight and t0 resolutions for five different runs and beam mo-

menta.

hit for an event, increasing the efficiency of attaining a t0 value to > 99%.

The drawback to this method is that particle identification is required to choose the

correct mass for determining β. In order to retain as much information as possible and

allow for later adjustments, a t0 value is calculated and stored based on four different

particle type assumptions: proton, pion, kaon, and electron.

tα0 =
1
N

N∑
i=1

(
ti +

di

βαc

)
(3.6)

where α is the particle type (p, π, K, or e), ti is the time measured by the ith detector, di

is the path length of the particle from detector i to z = 0, and βαc = pc/
√
p2 +m2

α is the

velocity. Assuming that the uncertainty on di and the momentum are negligible compared

to the time measurements, we see that the t0 found from Eq. 3.6 is the average of three

independent t0 values each with the uncertainty of the respective time measurement, σti .

For a sample whose individual measurements have unique uncertainties the error on the

mean can be found from

σ2
t0 =

1
N∑

i=1
1/σ2

ti

(3.7)

Table 3.1 lists the t0 resolutions for five runs in the HARP data set. The average resolution

is ∼ 70 ps which is almost negligible compared to the resolution of measurements in the

TOFW, ∼ 160-170 ps.
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3.4.2 Secondary track reconstruction using the NDCs and dipole magnet

3.4.2.1 Secondary track reconstruction algorithm

The five drift chambers are used to reconstruct particle trajectory parameters down-

stream of the target area. The full path is needed to match particles with reconstructed

hits in the Cherenkov, TOFW or calorimeter. The directions before and after entering the

field area of the dipole magnet are used to determine the particle’s momentum.

Due to safety regulations, HARP was forced to use a different chamber gas mix-

ture than the NOMAD experiment before it. The result of changing to a non-flammable

mixture (Ar-90%, CO2-9%, CH2-1%) was a significant reduction in wire hit efficiency to

∼ 80%. A standard reconstruction algorithm which combines triplets of hits (u, x, v) to

generate 3D space points was, therefore, not adequate as the 3D point efficiency would go

as 0.83, or about 50%.

Secondary track reconstruction is performed in several stages. The building, fitting,

extrapolation and matching of tracks is all performed by a sophisticated software package

called RecPack [63] developed by HARP collaborators and based on the Kalman Filter [64]

technique. First, 2D plane segments and 3D track segments are constructed in individual

chambers (recall that each chamber is comprised of four modules each with three planes

of wires for 12 total wire planes):

• Plane (2D) segment - At least three hits out of four in the same projection (0◦, +5◦ or

−5◦) compatible with being aligned.

• Track (3D) segment - More than one plane segment of different projections whose

intersection(s) define a 3D straight line. A track segment can be made from 3 plane

segments or 2 plane segments and a single hit which intersects the 3D line defined

by the two segments.

Note that this method requires a minimum of seven hits out of twelve wire planes to

create a track segment.

Individual chamber segments downstream of the dipole magnet (NDC2–5) are then
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combined to form longer, straight line segments1. At this point the Kalman Package is ca-

pable of extrapolating these long segments to all PID detectors downstream of the dipole

(including the TOFW, CHE and ECAL) for hit matching. All possible combinations of

track segments and reconstructed PID hits are attempted and matching-χ2’s calculated.

Finally, downstream segments must be matched with a 3D point or segment upstream

of the dipole to determine the track momentum. Two independent upstream constraints

on the track have been used to make independent momentum measurements of each re-

constructed track. The first uses the well defined interaction vertex where the secondary

particle was created. The x, y coordinates are provided by the MWPC extrapolation of

the primary beam particle to the z = 0 plane, or the target center2. A matching χ2 is

constructed between the beam particle extrapolation, (x0, y0), and the extrapolated posi-

tion of track segments constructed downstream of the dipole, (xt, yt). The algorithm loops

over allowed values of the momentum and minimizes this χ2 to estimate the momentum,

pv, of each secondary. Multiple scattering and inhomogeneities in the dipole magnetic

field are fully taken into account by the Kalman Filter implementation. An upper cut on

this χ2 has been applied to reduce contamination by tertiary particles which have not em-

anated from the primary vertex. This cut will account for about a 1% inefficiency in this

algorithm.

The second upstream constraint is provided by 3D segments reconstructed in the up-

stream drift chamber, NDC1. The matching algorithm works similarly to the one just de-

scribed but matches to the NDC1 segment to estimate each particle’s momentum, pNDC1.

This algorithm suffers a major disadvantage relative to the one using the event vertex

described above. The tracking efficiency is now directly proportional to the segment ef-

ficiency of NDC1. The segment efficiency in NDC1 is known to be much lower than the

other chambers and, further, suffers from charge saturation caused by the bright beam

spot even for modest event rates. This saturation is difficult to simulate or measure and

1Actually, the Kalman Package does take into account multiple scattering between drift chambers and

does not just assume a perfect straight line path.
2The 5% nuclear interaction length targets used in these analyses are all ∼ 2cm in length, making the

center a very good approximation of the actual z coordinate of the interaction vertex.
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is a function of event number within a spill from the T9 beamline. For this reason the

quantity pv is used in all physics analysis, but the estimator, pNDC1, can be used to very

accurately measure the efficiency of the vertex algorithm as will be shown.

3.4.2.2 Determination of the track reconstruction efficiency

The following criteria have been applied to select tracks in the forward spectrometer

for all physics analyses:

• a successful momentum reconstruction, pv, using a downstream track segment in

NDC modules 2, 3, 4 or 5 and the position of the beam particle at the target as an

upstream constraint.

• a reconstructed vertex radius (i.e. the distance of the reconstructed track from the

z-axis in a plane perpendicular to this axis at z = 0) r ≤ 200 mm

• number of hits in the road around the track in NDC1 ≥ 4 and average χ2 for these

hits with respect to the track in NDC1 ≤ 30

• number of hits in the road around the track in NDC2 ≥ 6

Cuts 2–4 are applied to reduce non-target interaction backgrounds.

The track reconstruction efficiency is defined as the fraction of the total number of par-

ticles that fully traverse the fiducial volume of the HARP spectrometer which are tracked

with a measured momentum and direction by the algorithm and pass the above cuts. For

reasons which will become clear, this is defined as a function of momentum and θx and θy

defined in Sec. 3.2.

εtrack(p, θx, θy) =
Ntrack(p, θx, θy)
Nparts(p, θx, θy)

(3.8)

where Nparts is the number of particles passing through the detector and Ntrack is the num-

ber which have had a successful track parameter reconstruction. The goal is to determine

the efficiency directly from data to avoid any bias introduced by the Monte Carlo simula-

tion of the spectrometer system. This is enabled by taking advantage of the redundancy
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of chambers in the downstream region and by the two, independent upstream constraints

introduced above.

Next, consider the calculation of the efficiency for the event vertex algorithm. To mea-

sure the efficiency from data one must map the efficiency in a reconstructed quantity, such

as the momentum estimator, pNDC1. Additional constraints are applied to ensure that the

track is a true secondary particle emanating from the nuclear target: χ2
match−NDC1 < 10

and reconstructed vertex (in the z = 0 plane) less than 15mm 3. The efficiency is a sta-

tistical calculation determined using large samples of tracks, and since pNDC1 is Gaussian

distributed around the true momentum, p, with σp/p < 10%, it can be used to approxi-

mate the later for the efficiency calculation. Further, it will be seen that the efficiency is

flat at higher momentum, eliminating any tiny bias introduced.

The total tracking efficiency can be expressed as the product of two factors, εdown,

representing the downstream track segment efficiency given that the particle entered the

downstream region (without being deflected, absorbed or decaying in the upstream re-

gion) and εvertex, the efficiency for matching a downstream segment with the event vertex

to measure a momentum and direction,

εtrack =
Ndown

Nparts
× Nvertex

Ndown
= εdown × εvertex. (3.9)

Further, in the downstream region there are two planes of drift chambers, NDC2 and

the back-plane made of the combination of NDC3-4-5. A downstream track segment can

be made of a segment in NDC2 only, a segment in the back-plane only, or a segment in

both which are combined into a longer segment. These independent, but not mutually

exclusive probabilities combine to give a total downstream segment efficiency of

εdown = εNDC2 + εback−plane − εNDC2 · εback−plane. (3.10)

To calculate the segment efficiency of NDC2 one selects tracks from the pNDC1 con-

trol sample with a segment in the back-plane and then asks if a segment was also recon-

structed in NDC2. The efficiency can then be mapped out as a function of the pNDC1 recon-

structed quantities. This efficiency is the ’true’ segment efficiency of NDC2 because it is
3All of the nuclear targets being analyzed here are 15mm in radius
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Figure 3.11: Schematic plan view of the HARP forward angle spectrometer system com-

prised of five drift chambers and a large aperture dipole magnet. Two types of secondary

tracks are represented in the diagram (both having negative charge, incidentally). The

one at the top of the figure shows how track segments in the back-plane are used to map

the segment efficiency of NDC2 and vice versa. The second track illustrates the effect of

geometric acceptance for particles at large, positive values of q · θx.
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Figure 3.12: Track segment efficiencies for positive particles as a function of particle mo-

mentum (left), production angle in the horizontal plane, θx (center), and production angle

in the vertical plane, θy (right). The segment efficiency for NDC2 is shown in black, and

that for the ’back-plane’ consisting of NDC3-4-5 is shown in blue.

the efficiency of the chamber given that a particle passed through its volume. One knows

this because the selected tracks created segments in both NDC1 and the back-plane which

surround NDC2 (see Figure 3.11). Figure 3.12 shows the average efficiency calculated by

this method for both data and Monte Carlo to be ∼ 99%.

To determine the segment efficiency of the back-plane one simply asks the opposite

question: for tracks which created a track segment in NDC2, how many also created a

segment in the back-plane? A signal in the ECAL, downstream of the back plane of cham-

bers, is also required to ensure the track traversed the back plane of chambers. As seen in

Figure 3.12 the efficiency of the back-plane is a few percent lower than was calculated for

NDC2, but combining them will result in a total downstream efficiency of nearly 100%.

Also clearly visible in Figure 3.12 is the effect of geometric acceptance in the HARP

forward spectrometer. The acceptance is both momentum and charge dependent due

to the varying amount and direction of bend in the track path that results from passing

through the magnetic field region. The dipole bends particles in the horizontal plane and

low momentum tracks at large, positive values of q ·θx can be bent beyond the reach of the

downstream drift chambers. One expects the effect to extend to smaller values of q · θx for



68 Chapter 3. The HARP (PS214) Experiment at CERN

the back-plane because it is further downstream (see Figure 3.11), and this can be seen in

the middle panel in Figure 3.12. The small acceptance loss visible at large negative θx (for

positive particles) are high momentum tracks that are bent only slightly in the magnetic

field region and miss the back-plane of chambers on the opposite side. The efficiency

for negative particles, which is almost exactly the mirror image of that for positives as a

function of θx, has been calculated but is not shown in the figures for the sake of clarity.

By combining the efficiencies of the two downstream planes according to equation

3.10, one determines the total downstream segment efficiency, εdown, shown in the top

panel of Figure 3.13. After accounting for geometric acceptance of the spectrometer the

downstream segment efficiency is ∼ 100% and does not depend on momentum or open-

ing angle in the vertical plane, θy.

The final piece of the track reconstruction efficiency, εvertex, is the efficiency of the pv

algorithm given that a downstream track segment was constructed. Again, this can be

measured by using a sample of pNDC1 tracks. The successful pNDC1 momentum recon-

struction guarantees the existence of a downstream segment allowing us to determine the

ratio Nvertex/Ndown. The result is shown in Figure 3.13. The average efficiency is ∼ 97%,

most easily seen in the plot as a function of θy. The drop in efficiency below ∼ 1.75 GeV/c

is due to the second cut listed above, r ≤ 200 mm. This cut is necessary to remove a

substantial non-target background and maintain a good resolution at low momentum.

However, because the efficiency can be measured from the data themselves, the only sys-

tematic error contribution will come from the statistical uncertainty in the sample used

to generate the correction. For this reason, high momentum data sets ranging from 8–15

GeV/c and using aluminum, beryllium, carbon and tantalum targets have all been com-

bined. Studies have shown that small changes in spectrum and secondary multiplicity

have negligible effects on the track reconstruction efficiency as a function of p, θx and θy.

3.4.2.3 Geometric acceptance correction

To avoid unnecessary complications caused by the momentum dependent acceptance

of the spectrometer, most clearly visible in the plot of εdown as a function of θx, a fiducial

volume cut (−210 ≤ θx ≤ 0 mrad for positives and 0 ≤ θx ≤ 210 mrad for negatives) will
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Figure 3.13: The track reconstruction efficiency (bottom row), shown as a function of par-

ticle momentum (left), production angle in the horizontal plane, θx (center), and produc-

tion angle in the vertical plane, θy (right), is computed by multiplying the downstream

segment efficiency (top row) by the vertex matching efficiency (middle row). Each are

measured from the data and the Monte Carlo as described in the text. The results from

data will be used in the cross-section measurements to be presented.
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Figure 3.14: Sketch of the forward detector illustrating the two forms of geometric accep-

tance corrections, a) for θ ≤ θcut
y and b) for θ > θcut

y . The corrections are given by Eq.

3.11.

be applied to all cross-section analyses, thus utilizing only the region where the down-

stream segment efficiency is ∼ 100% and extremely flat. In the vertical direction only

tracks with −80 ≤ θy ≤ 80 mrad are selected to avoid drift chamber and magnetic field

edge effects.

This restricted fiducial volume definition necessitates a correction. Assuming az-

imuthal symmetry in hadron production this correction is purely analytical. Inside the

θy acceptance (±80 mrad) the correction is a simple factor of 2 since tracks with θx > (<)

0 mrad are not used for positive (negative) tracks. For values of θ above the θy cutoff the

correction is more complicated and describes the fraction of the circle within the accep-

tance.

εacc(θ) =
1
2

θ ≤ θcut
y

εacc(θ) =
1
π
· arcsin

(
tan(θcut

y )
tan(θ)

)
θ > θcut

y

(3.11)

Figure 3.14 shows a sketch depicting the two forms of the geometric acceptance and the

origins of the correction formulas. All reconstructed tracks are weighted by 1/εacc(θ).
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3.4.2.4 Momentum resolution and scale of the pv algorithm

In the next chapter we will use the Monte Carlo simulation to make corrections associ-

ated with the resolution of the momentum reconstruction. Also, the momentum scale will

be used to assess a systematic error on the cross-section results. Therefore, it is important

to measure the resolution and scale from the data, and for the Monte Carlo and data to be

in good agreement.

Several methods were developed by HARP collaborators to measure and map the

momentum scale and resolution as a function of p and θ. Parameters of the Monte Carlo

simulation were then adjusted to attain adequate agreement with data. Detailed descrip-

tions of these methods have been given previously in [58] and will not be repeated here.

The challenge is to isolate a set of tracks in the data sample with a known momentum.

Briefly, the three methods are based on empty target data sets, samples of elastic scatter-

ing events and using the excellent resolution of the time-of-flight system to determine the

momentum.

To give a sense of the resolution and the agreement between data and Monte Carlo

Figure 3.15 shows the resolution as a function of momentum for a set of empty target data

sets and Monte Carlo samples. In this case the known momentum is the incoming pri-

mary T9 beam momentum. Histograms of secondary tracks were fit to a Gaussian func-

tion and the fractional resolution, σp/p, is plotted as a function of the beam momentum.

Incoming pion and proton beams were used for both data and Monte Carlo. There is good

agreement between data and Monte Carlo and between different particle types across the

full momentum range from 1.5 GeV/c to 15 GeV/c. Below 5 GeV/c, where most of the

total production cross-section of π+ and π− will be for the data sets being analyzed, the

resolution is better than 5% and everywhere better than 10%.

A multiplicative momentum scale correction is applied to all reconstructed tracks in

the data to remove a θx, θy dependence seen in the calibration samples. After this correc-

tion, no significant momentum mis-calibration is seen beyond the 2% absolute momen-

tum scale uncertainty estimated using the elastic scattering technique [58]. Also shown

in Figure 3.15 is the momentum scale, again computed using empty target data sets. Pion
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Figure 3.15: The momentum resolution (bottom left) and absolute scale (bottom right)

can be measured as a function of momentum by using data sets taken using several well-

defined discrete beam momenta and no nuclear target. The top panel shows the unit-area

normalized distributions of beam pion data taken at 1.5, 3.0, 5.0, 8.0, 8.9, and 12.9 GeV/c.

However, both incident pions (circles) and protons (triangles) are used to measure the

resolution and scale for comparison.
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Cherenkov gas C4F10

index of refraction 1.001415

π threshold 2.6 GeV/c

K threshold 9.3 GeV/c

proton threshold 17.6 GeV/c

Table 3.2: Properties of the radiator gas used in the HARP threshold Cherenkov detector.

and proton beams are compared and no difference is seen. At most momenta the momen-

tum scale is better than 2%. In the cross-section analysis, the minimum ratio of momentum

bin width over momentum bin central value will be 8%, four times this value.

3.4.3 Cherenkov detector response

The Cherenkov thresholds of the most relevant charged particles in C4F10 gas at at-

mospheric pressure are listed in Table 3.2. Below 3 GeV/c the Cherenkov can be used to

veto electrons in the sample. Above 3 GeV/c it is a powerful discriminator of pions and

protons/kaons.

Figure 3.16 qualitatively demonstrates this discrimination power using a data set with

a 12.9 GeV/c π+ beam on a thin aluminum target. A minimum bias trigger was used and

the non-interacting beam pions are clearly visible at high momentum and large number

of photo-electrons (Npe). At p < 2 GeV/c secondary electrons can be seen clustered at

∼ 25–30 Npe and are easily separable from pions at Npe < 2. Finally, the Cherenkov

threshold for pions at 2.6 GeV/c is clearly visible. Only a small number of protons are

represented in this plot, but would show up as a band below 2 Npe out to 17.6 GeV/c.

In the cross-section analysis to be presented, the Cherenkov has been used digitally -

that is, the spectral information of the light output as pions go beyond threshold, which

is evident in Figure 3.16, is not being used. Instead, we define a signal as an associated

hit with greater than 2 photo-electrons; two or less is considered no signal. Based on this

definition one must determine the efficiency for pions and protons to have a signal in the
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Figure 3.16: Reconstructed number of photo-electrons in the Cherenkov detector as a

function of particle momentum for a data set with a 12.9 GeV/c π+ beam on a thin alu-

minum target. See the text for an explanation.

Cherenkov as a function of particle momentum. At the time of the first HARP publication

[57] the analysis included only a geometric criteria for hit-track matching. A χ2 was con-

structed between the positions of all tracks in the plane of the CHE detector (xtrack, ytrack)

and the reconstructed position of all Cherenkov hits (xCHE, yCHE); hits that matched with

a sufficient χ2 were associated with that track. In this approach the reconstruction can as-

sociate a single detector hit with multiple tracks. In particular, it was seen that a fraction

of protons (as high as 20%) had a non-negligible amount of associated photo-electrons

due to light from pions or electrons being wrongly associated with proton tracks. By

the time of [58] this problem had been corrected by assigning hits only to the track with

which they are best matched. The loss in efficiency for pions and electrons proved to be

negligible. Above threshold the Cherenkov is greater than 97% efficient for pions. The

small efficiency for protons and pions below threshold is due to remaining false associa-

tions with light generated by other particles in the event. This rate is slightly dependent

on the experimental configuration - the target material and beam momentum - because
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configurations with higher particle multiplicities will have higher rates of false associa-

tions. Because of this one would like to use the Monte Carlo simulation to determine the

Cherenkov efficiency. By using the Monte Carlo one is not limited to the statistical sample

of a particular data set.

However, one still needs to verify the Monte Carlo simulation for the calculation of

the Cherenkov efficiency. One of the largest data sets is with a 12.9 GeV/c proton beam

on a thin aluminum target, so it will be used to compare the Cherenkov efficiency in

data and Monte Carlo. From the Monte Carlo one can use the known particle type to

build the Cherenkov efficiency as a function of momentum. For both the data and the

Monte Carlo one can select a pure sample of pions and protons by making a very tight,

momentum dependent cut on the measured β of all particles. The left panel of Figure 3.17

demonstrates how this is done. The red points are all reconstructed particles in the data

set. The black points are those selected for characterizing the CHE response. The band

that curves down at low momentum is protons, the band that is nearly flat at β = 1.0

is pions. Kaons can be seen in the middle band and will not be included. Electrons are

rejected using the electromagnetic calorimeter. The middle and right panels of Figure 3.17

show the calculated Cherenkov efficiency for pions (middle) and protons (right) using the

true particle type in the Monte Carlo and the time-of-flight selection technique applied to

both data and Monte Carlo samples. The agreement is within the statistical fluctuations

of the values determined from data. However, since the accidental rates for pions and

protons below 2.5 GeV/c are nearly the same and provide no discrimination power, and

because the threshold region is steep and difficult to simulate, the PID algorithm uses the

Cherenkov to separate pions and protons only above 3.0 GeV/cwhere the efficiency is flat

and agreement is excellent.

Figure 3.19 shows the expected response for pions and protons in the Cherenkov for

the two data sets for which we will present cross-section measurements - 8.9 GeV/c pro-

tons on a beryllium target and 12.9 GeV/c protons on an aluminum target. Indeed the

high momentum efficiency differs by a few percent as expected.

As mentioned above, the Cherenkov detector is also used to veto electrons below the

pion threshold. Any tracks below 3.0 GeV/c with Npe > 15 are rejected as electrons.
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Figure 3.17: Cherenkov response for pions (middle) and protons (right) as measured from

data and Monte Carlo for a 12.9 GeV/c proton beam on an aluminum target setting. The

points are the efficiencies for a track to have an associated Cherenkov hit with greater than

2 photo-electrons. Samples of protons and pions are selected from the data by making a

very tight, momentum dependent cut on the measured β as shown in the left panel.
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Figure 3.18: The left panel shows the e/π ratio from a Monte Carlo simulation before

(solid points) and after (open squares) the application of a 15 photo-electron cut. This

cut reduces the electron contamination to 0.5% or less in the region where it is applied.

The right panel shows the efficiency for pions (solid points) and protons (open squares)

to pass the 15 photo-electron cut below 3 GeV/c, and is ≈ 99% for both. Plots taken from

[58].

Figure 3.18 shows the effects of the electron veto cut. A Monte Carlo simulation is used

to verify that such a cut reduces the electron contamination to a negligible level, in this

case ≤ 0.5%. Of course there is a small efficiency loss for pions and protons. This has

been carefully measured from data and is found to be ∼ 1% as shown in the right panel

of Figure 3.18.

3.4.4 Time-of-flight system performance

The TOF system compliments the CHE by discriminating particle types at momenta

below the pion Cherenkov threshold of 3 GeV/c. The time-of-flight of each track from the

nuclear target to the TOFW is determined by combining the TOFW and BTOF systems,

ttof = tTOFW − t0. The path length between these same positions is calculated by the

Kalman Filter fitting package. These are then combined to determine the velocity or β =

d/tc of each track.
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Figure 3.19: Cherenkov response for two different data sets for pions (left) and protons

(right). The points are the efficiencies for a track to have an associated Cherenkov hit with

greater than 2 photo-electrons. The threshold for pions at around 2.6 GeV/c is clearly

visible (note the log scale). The small efficiency for protons and below threshold pions

of around 1.5% is due to false associations with light generated by other particles in the

event.
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Figure 3.20: TOFW hit reconstructed variables. The left panel shows the distribution of

the χ2 between the extrapolated track position and the reconstructed scintillator hit posi-

tion. The right panel shows the total reconstructed number of minimum ionizing particles

(mips) from the two PMTs on the scintillator volume that was hit. Time-of-flight hits are

selected by requiring a χ2 ≤ 6 and number of mips ≥ 1.5 (see the text). Plots taken from

[58].

The selection of TOFW hits has been designed to address a significant non-Gaussian

component to the TOFW response that was reported in [57]. As with the CHE, the hit

selection was previously based entirely on geometric matching between TOFW hits and

track parameters. About 10% of the reconstructed β fell greater than 5σ from the mean

expectation for pions or protons and could not be used for particle identification. It was

discovered that many of these β–outliers were correlated with TOFW hits of particularly

low charge indicating they are some form of noise. Figure 3.20 shows a distribution of the

reconstructed number of minimum ionizing particles, or mips, from the two PMTs that

make up a TOFW hit for a sample of data. The hits piled up at low mip counts are clearly

separable from those with two or more reconstructed ionizing particles.

The following TOFW hit selection criteria have been used for the matching of TOFW

hits with secondary tracks:

• if the track shares the TOFW hit with another track, it must have the better geometric
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Figure 3.21: TOFW matching efficiency as a function of particle momentum (left) and

production angle in the horizontal plane, θx (right) as measured from data and Monte

Carlo. The effect of geometric acceptance can be seen in the right, θx, plot. Note the

present analysis is performed using tracks in the range −0.210 rad ≤ θx ≤ 0 rad where

the acceptance is flat in momentum.

matching χ2;

• χ2 of the geometrical matching between the track and TOFW hit ≤ 6;

• total reconstructed number of minimum ionizing particles (mips) from the two PMTs

in a hit ≥ 1.5.

The TOF hit matching efficiency can be measured directly from the data by once again

taking advantage of the redundancy of the detectors in HARP and using a sample of re-

constructed tracks which leave a signal in the calorimeter (downstream of the scintillator

wall) and asking how often a time-of-flight measurement passing selection cuts is found.

Figure 3.21 shows the matching efficiency for data and Monte Carlo to be flat in momen-

tum and around 95% in the data.

We may also measure the response function of the TOF system from the data them-

selves. This is preferable to using the Monte Carlo as it avoids any bias that may be

introduced by the simulation of the TOFW. To build the TOF response function one must

know the shape of the β distributions as a function of particle momentum for all relevant
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Figure 3.22: Double Gaussian fits to samples of π− tracks in bins of reconstructed mo-

mentum, pv, from 1.25 GeV/c to 3.25 GeV/c. Fits are perfomed across the full range of

momentum but are not shown. From these fits one can extract the mean and width of the

time-of-flight system response (in units of β = d/tc) for pions as a function of momentum

directly from data. The CHE and ECAL are used to select π− and reject electrons below

2.5 GeV/c. Above 2.5 GeV/c K− and antiprotons are rejected using the CHE (although the

contamination from antiprotons and K− is expected to be negligible).

secondary particle types. In Chapter 4 we will only be interested in the β response func-

tions for pions and protons. However, those of electrons and kaons are extracted as part

of the procedure.

A sample of pions with only negligible contamination from other species can be ob-

tained by selecting particles of negative charge which have passed an electron veto. Neg-

ative pions are used because the number of antiprotons produced at these energies is

expected to be negligible and the ratio of K−/π− is known to be much smaller than the

ratio of K+/π+.4 Below 2.5 GeV/c negative tracks are required to have no associated

Cherenkov hit and be consistent with a hadron in the calorimeter (ECAL). Above 2.5

4The double ratio (K+/π+)/(K−/π−) is as large as 10 for 8.9 GeV/c protons on beryllium according to

some hadron production Monte Carlos [94].
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Figure 3.23: Simultaneous fits to proton, kaon and pion tracks in bins of reconstructed

momentum, pv, from 1.25 GeV/c to 3.25 GeV/c. The pion parameters are fixed to those

found in fits to π− samples and one can extract the mean and width of the time-of-flight

system response (in units of β = d/tc) for protons and kaons as a function of momentum

directly from data. Above the pion Cherenkov threshold, the CHE can be used to better

expose the proton peak. For momenta above 2.5 GeV/c both the tracks with 0 associated

Npe (black points) and with more than 5 Npe (red points) are shown.

GeV/c they must have a CHE hit > 5 Npe and again be consistent with a hadron in the

ECAL. Note the Cherenkov selection cut used here is much tighter than the selection used

in a cross-section analysis of Npe > 2. This is done to push the purity of the sample near

100% with a small loss in the statistics available to extract the response function param-

eters. However, since the time-of-flight does not depend on the target material or beam

momentum, several data sets can be combined to greatly increase the statistics of the sam-

ple. The selected π− are separated into bins of momentum and fit with a double Gaussian

function to extract β and σβ as functions of momentum. Figure 3.22 shows these fits for

eight momentum bins between 1.25 GeV/c and 3.25 GeV/c.

The proton and kaon time-of-flight response functions can be obtained by selecting

samples of positive tracks and simultaneously fitting the proton, kaon and pion β peaks
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Figure 3.24: Simultaneous fits to proton, kaon and pion tracks in bins of reconstructed mo-

mentum, pv, from 3.25 GeV/c to 8.00 GeV/c for tracks with no associated photo-electrons

in the Cherenkov detector.

to Gaussian functions. The mean and width of the pions are fixed to the values found

from the negative pions. The Monte Carlo is used to determine initial parameters for

protons and kaons, but these are then allowed to float in the fit. Below 2.5 GeV/c the

proton and pion peaks are well separated and can be fit simultaneously. Above 2.5 GeV/c

the Cherenkov is used to reject 99% of pions to better expose the proton peak for fitting.

Figure 3.23 shows examples of these fits above and near this threshold. For momenta

above 2.5 GeV/c both tracks with no associated photo-electrons (black points) and with

more than 5 photo-electrons (red points) are shown. Interestingly, comparing the two

distributions gives a rough estimate of the Cherenkov efficiency - note the ratio of red to

black in the proton peak is about 1%, as we saw in the previous section. Figure 3.24 shows

examples well above the pion Cherenkov threshold where clean samples of protons can

be obtained by selecting only tracks with no associated photo-electrons.

Organizing the information from this multi-step method one obtains the momentum

dependent TOF response function for all relevant particle types. The results are summa-

rized in Figure 3.25. The described procedure can be tested by using the Monte Carlo
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simulation. Time-of-flight response function parameters are extracted from reconstructed

distributions as prescribed and from histograms built using the true particle type avail-

able from the simulation. The results of such a test are illustrated on the left in Figure

3.25. No significant bias is seen coming from the method. Therefore, one may safely apply

the method to data and obtain the needed time-of-flight response functions for perform-

ing particle identification, shown on the right half of Figure 3.25. Below the Cherenkov

threshold at 2.6 GeV/c there is excellent pion/proton separation (6.2σ at 2.25–2.5 GeV/c).

Above the threshold the time-of-flight system quickly loses its discrimination power (2.2σ

at 4–5 GeV/c), but only acts as a supplement to the Cherenkov detector in this range.

As mentioned above, the TOFW hit selection cuts used here were developed to reduce

the β–outlier rate of∼ 10% that affected the initial HARP publication [57]. While the effect

is reduced significantly, it has not been eliminated. Figure 3.26 shows the remaining rate of

β–outliers with the current hit selection to be 1–3% for pions and protons. Below the pion

Cherenkov threshold, one has no useful PID information for these tracks. Therefore, they

directly contribute to the PID inefficiency and will be accounted for in the PID efficiency

calculation (see Section 4.5).

In the cross-section analysis to be presented we will require a TOF measurement as

part of our selection of secondary tracks. Therefore, the efficiency loss due to TOFW

hit selection must be combined with the tracking efficiency discussed earlier to form an

overall reconstruction efficiency,

εrecon = εtrack · εTOFW−match (3.12)

Figure 3.27 shows the final reconstruction efficiency for positive and negative tracks in

the forward spectrometer. The mirror symmetry in the acceptance for tracks of opposite

charge is clear in the figures. These efficiencies, measured directly from the data, will be

used in all cross-section analyses.
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Figure 3.25: Time-of-flight response functions for pions (red), protons (blue), koans

(green) and electrons (pink). The top panels show the mean and width of the β distri-

bution as a function of reconstructed momentum. The bottom panels show the widths

(same as the error bars in the top panels) for pions and protons only. On the left are the

parameters extracted using Monte Carlo truth information to obtain samples of π+, p, K+

and e+ and parameters found from the method described in the text using reconstructed

information. No significant bias is seen in the means or widths of the β distributions found

from the described method. Therefore, it can be applied to extract the response function

directly from data as shown in the right panels and compared to the values found from

Monte Carlo.
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Figure 3.26: β–outlier rates for pions (left) and protons (right). The pion outlier rate has

been measured from the data; the proton outlier rate is estimated using the Monte Carlo.

Plots taken from [58].

Figure 3.27: Total reconstruction efficiency including track kinematic parameters and

time-of-flight measurement for positive (black) and negative (blue) tracks in the forward

spectrometer. The effects of geometric acceptance are clearly visible in the plot as a func-

tion of θx (center). The average reconstruction efficiency for tracks of both charges is

around 91%.
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Chapter 4

Hadron cross-section measurements

at HARP

Armed with the detailed understanding of the efficiency and performance of

the HARP experimental apparatus outlined in the previous chapter we now

develop an algorithm for the extraction of hadron production cross-sections

from the data. We present absolute differential production cross-sections for

π+, π−, and protons from two beam and target configurations of particular rel-

evance to existing neutrino physics experiments: 8.9 GeV/c protons on beryl-

lium and 12.9 GeV/c protons on aluminum. We also develop a procedure

for the estimation of correlated systematic uncertainties associated with these

measurements.

4.1 Recipe for a cross-section

The goal of this analysis is to measure the inclusive yield of secondary hadrons (π+,π−,p)

from proton-nucleus collisions:

p + A → (π+, π−,p) +X
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The absolutely normalized double-differential cross-section for this process can be ex-

pressed in bins of kinematic variables in the laboratory frame, (p, θ), as

d2σα

dpdΩ
(p, θ) =

A
NA · ρ · t

· 1
∆p∆Ω

· 1
Npot

·Nα(p, θ) , (4.1)

where:

• d2σα

dpdΩ is the production cross-section of hadron α = (π+,π−,p) in cm2/(GeV/c)/sr for

each (p, θ) bin covered in the analysis.

• A
NA·ρ is the reciprocal of the number density of target nuclei 1. A is the atomic mass

of the target material, NA is Avogadro’s number and ρ is the density of the target.

• t is the thickness of the nuclear target along the beam direction. The target has

a cylindrical shape with a diameter, d ' 3.0 cm, and a measured thickness of t

= (2.046 ± 0.002) cm and t = (1.9804 ± 0.002) cm for the beryllium and aluminum

targets, respectively.

• ∆p and ∆Ω are the bin sizes in momentum and solid angle, respectively.2

• Npot is the number of protons on target after event selection cuts (see Section 4.2).

• Nα(p, θ) is the yield of hadron α in bins of momentum and polar angle in the labo-

ratory frame.

The true hadron yield, Nα(p, θ), is related to the measured one, Nα
′
(p

′
, θ

′
), by a set

of efficiency corrections and kinematic smearing matrices. In addition, there is a small

but non-negligible mis-identification of particle types, predominantly between pions and

protons. Both yields must be measured simultaneously in order to correct for migrations.

Eq. 4.1 can be generalized to give the inclusive cross-section for a particle of type α,

d2σα

dpdΩ
(p, θ) =

A
NA · ρ · t

· 1
∆p∆Ω

· 1
Npot

·M−1
pθα·p′θ′α′ ·N

α
′
(p

′
, θ

′
) (4.2)

where reconstructed quantities are marked with a prime andM−1
pθα·p′θ′α′ is the inverse of a

matrix which fully describes the migrations between bins of generated and reconstructed

11.2349 · 1023 per cm3 for beryllium, 0.6004 · 1023 per cm3 for aluminum
2∆p = pmax − pmin; ∆Ω = 2π(cos(θmin)− cos(θmax))
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quantities, namely: laboratory frame momentum, p, laboratory frame angle, θ, and parti-

cle type, α. In practice, the matrix M can be factorized into a set of individual corrections,

as will be done here. The reasons for doing this are threefold:

• Not all efficiencies and migrations are functions of all three variables. Particle iden-

tification efficiencies and migrations do not depend on the angle, θ, and the tracking

efficiency and momentum resolution are the same for pions and protons.

• Using techniques described in Chapter 3 the tracking efficiency and particle iden-

tification detector response functions can be determined from the data themselves

and do not rely on simulation. Other corrections require using the Monte Carlo

simulation.

• Measuring and applying the corrections separately will ease the assessment of sys-

tematic errors as will be discussed in Section 4.6.

The form of the corrections can be separated into two basic categories: absolute effi-

ciencies and bin–to–bin migrations between true and reconstructed quantities. In partic-

ular, migrations in momentum and in particle identification are carefully considered. The

various efficiency corrections can be functions of either reconstructed quantities or true

ones and must then be applied at the appropriate point in the analysis. This is important

given that some corrections, as mentioned above, are measured from the data themselves

where one has only reconstructed quantities.

Particle distributions are built by multiplying a set of correction weights for each re-

constructed track and weighting events before they are added to the total yields. In the

present analysis, M−1
pθα·p′θ′α′ has been factorized into the following components:

• εrecon(p
′
, θ

′
x, θ

′
y) is the efficiency for the reconstruction of an ‘analysis track’. An ‘anal-

ysis track’ is defined to include a momentum measurement from the event vertex

constraint, pv, as well as a matched time-of-flight hit passing the criteria outlined

in Section 3.4.4 such that εrecon = εtrack · εTOFW−match. This efficiency, as measured

from data, is shown for positive and negative tracks in Figure 3.27.
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• εacc(θ
′
) is the correction for the geometric acceptance of the spectrometer and is

a purely analytical function based on the assumption of azimuthal symmetry in

hadron production and the fiducial volume cuts used in the analysis. See Section

3.4.2 and Eq. 3.11 for a full description of the acceptance correction and its depen-

dence on the θy fiducial volume cut.

• M−1
p·p′ is the inverse of a matrix describing the migration between bins of generated

and measured momentum, Mp′ ·p ,

N
′
(p

′
) = Mp′ ·p ·N(p)

Monte Carlo samples will be used to generate the momentum migration correction.

Therefore, it is not necessary to build the matrix M and then invert it. Instead, we

build directly the elements of M−1
p·p′

N(p) = M−1
p·p′ ·N

′
(p

′
)

The matrix is normalized across rows of reconstructed momentum (each track has

a 100% probability of coming from some true momentum value) and the weights

are used to ’spread’ a single reconstructed track over multiple true momentum bins

according to the elements of M−1
p·p′ . In this way, the population in each true bin is

comprised of tracks from all reconstructed momentum bins. A separate matrix is

generated for each angular bin in the analysis since the momentum resolution can

be a function of the track’s angle.

N(p, θ
′
) =

∑
p′

M−1
pp
′ (θ

′
) ·N(p

′
, θ

′
) (4.3)

This approach avoids difficulties associated with inverting a large smearing matrix

as well as potential pathologies in the inverted matrix caused by a loss of informa-

tion at the kinematic boundaries of the matrix itself. The drawback to this method

is that one has some sensitivity to the underlying spectrum in the Monte Carlo used

to generate the matrix.

• M−1
θ·θ′ (p) is a unit matrix, implying that angular migrations, which are small, are

being neglected.
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• ηabsorb(p, θx, θy, α) is the absorption plus decay rate of secondary particles before

reaching the time-of-flight wall. The reconstruction efficiency has been calculated

for particles which are known to have traversed the detector; the absorption correc-

tion accounts for the fraction of particles which never make it to the downstream de-

tectors. The absorption rate cannot be measured from data and must be determined

from a Monte Carlo simulation. The absorption rate is measured as a function of the

true momentum of the lost particle.

• (1−ηtert(p
′
, θ

′
x, θ

′
y, α)) corrects for the fraction, ηtert = Nrec−tert

Nrec , of total tracks passing

reconstruction cuts, Nrec, which are actually tertiary particles, Nrec−tert. Again the

Monte Carlo will be used to estimate this rate, but the tertiary correction is generated

as a function of the reconstructed momentum. These tracks emanate from outside

the nuclear target and, therefore, are not reconstructed according to the same reso-

lution function as secondary particles and must be subtracted before applying the

momentum migration weights.

• εe−veto(p, α) is the efficiency for particles of type α passing the electron veto cut used

to remove electrons from the analysis track sample as described in Section 3.4.3.

• M−1
α·α′ (p) is the inverse of the particle identification efficiency and migration matrix

describing migrations between identified pions and protons,

Mα′ ·α =

 Mππ Mπp

Mpπ Mpp


where Mππ is the pion efficiency, Mπp is the proton to pion migration, Mpπ is the

pion to proton migration and Mpp is the proton efficiency. In Section 4.5 we will de-

scribe the particle identification algorithm and a method for calculating these matrix

elements. The PID matrix is the only correction that is not applied as a weight to in-

dividual tracks but instead to the final distributions of identified pions and protons.

The efficiency component does not create a problem as it is just another multiplica-

tive weight and can be applied at any time. The late application of the migration

elements, however, introduces a bias. Fortunately, we will show that the migration
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terms are mostly < 1% and therefore the bias introduced is very small and can be

neglected.

Neglecting the PID term, the expanded correction matrix takes the form,

M−1
pθ·p′θ′ =

1
εe−veto(p, α)

· 1
1− ηabsorb(p, θx, θy, α)

·M−1
p·p′ (θ

′
) · (1− ηtert(p

′
, θ

′
x, θ

′
y, α)) · 1

εacc(θ′)
· 1
εrecon(p′ , θ′x, θ

′
y)

(4.4)

A final aspect of the analysis is the so-called ’empty target subtraction’. A background

arises from beam protons interacting in materials other than the nuclear target (parts of

the detector, air, etc.). These events can be subtracted by using data collected without the

nuclear target in place where tracks have been selected and identified using the identical

algorithm and set of cuts such that Nα
′
(p

′
, θ

′
) →

[
Nα

′

target(p
′
, θ

′
)−Nα

′

empty(p
′
, θ

′
)
]
.

Finally, simultaneously building corrected yields of identified pions and protons, mul-

tiplying by the inverse of the PID efficiency and migration matrix, and normalizing the

cross-sections with the appropriate physical and kinematic quantities gives the double

differential production cross-sections for pions and protons:


d2σπ

dpdΩ(p, θ)

d2σp

dpdΩ(p, θ)

 =
A

NA · ρ · t
· 1
∆p∆Ω

· 1
Npot

·M−1
α·α′ (p)·

 M−1
pθ·p′θ′

[
Nπ

′

target(p
′
, θ

′
)−Nπ

′

empty(p
′
, θ

′
)
]

M−1
pθ·p′θ′

[
Np

′

target(p
′
, θ

′
)−Np

′

empty(p
′
, θ

′
)
]
 .

(4.5)

4.2 Event selection

The two threshold Cherenkov detectors (BCA and BCB) in the T9 beamline are used

to select protons by requiring a value consistent with the pedestal in both detectors. The

beam Cherenkov pulse height distributions for the 8.9 GeV/c and 12.9 GeV/c beams are

shown in Figure 4.1. Figure 4.2 shows the time-of-flight distributions of those beam tracks

identified as protons and pions by the Cherenkov selection in the 8.9 GeV/c beam, and

we see that the two time peaks are consistent with the proton and pion hypotheses at this

momentum.
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Only events with a single reconstructed beam track in the four beam multi-wire pro-

portional chambers (MWPCs) and no signal in the beam halo counters are accepted. This

MWPC track is used to determine the impact position and angle of the beam particle on

the target. A time measurement in one of three beam timing detectors consistent with a

beam particle is also required for determining the arrival time of the proton at the target,

t0, as described in Section 3.4.1. This t0 is necessary for calculating the time-of-flight of

secondary particles.

The full set of criteria for selecting beam protons for this analysis is as follows:

• ADC count less than 120 in both beam Cherenkov A and beam Cherenkov B at

8.9 GeV/c and less than 130 in beam Cherenkov A and less than 125 in beam Cherenkov

B at 12.9 GeV/c.

• time measurement(s) in TOFA, TOFB and/or TDS which are needed for calculating

the arrival time of the beam proton at the target, t0

• extrapolated position at the target within a 10 mm radius of the center of the target

• extrapolated angle at the target less than 5 mrad

• no signal in the beam halo counters

At the time of data taking, for data taken with a nuclear target, a downstream trigger

in the forward trigger plane (FTP) was required to record the event.3 The FTP is a double

plane of scintillation counters covering the full aperture of the spectrometer magnet ex-

cept a 60 mm central hole for allowing non-interacting beam particles to pass - which for

a 5% interaction length target would otherwise comprise most of the recorded data. The

efficiency of the FTP is measured to be > 99.8%.

Using the FTP as an interaction trigger necessitates an additional set of unbiased, pre-

scaled triggers for absolute normalization of the cross-section. Beam protons in the pre-

scale trigger sample (1/64 of the total trigger rate) are subject to exactly the same selec-

tion criteria as FTP trigger events allowing the efficiencies of the selections to cancel and

3Empty target data sets are recored with an unbiased trigger setting since these samples are used to cali-

brate the experimental apparatus as well as for the empty target subtraction for cross-section measurements.
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Figure 4.1: Beam Cherenkov pulse height distributions showing the expected correlation

between the measurements in BCA and BCB. The cuts used to select protons in the 8.9

GeV/c beam (left) and 12.9 GeV/c beam (right) are shown.

Figure 4.2: Beam time-of-flight distributions for the 8.9 GeV/c beam. The time difference

between TOFA and TOFB is shown in the left panel. The right panel is the time differ-

ence between TOFA and the TDS. The shaded distributions are for particles identified as

protons by the Cherenkov detectors as described in the text. The open histograms are all

other beam tracks: pions, electrons and muons from pion decays.
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Beam Momentum 8.9 GeV/c 12.9 GeV/c

Target Be 5% Empty Al 5% Empty

protons on target 13,074,880 1,990,400 16,258,688 4,174,336

total events processed 4,682,911 413,095 4,252,252 674,027

events with accepted beam proton 2,277,657 200,310 3,082,365 478,747

beam proton events with FTP trigger 1,518,683 91,690 1,889,865 197,181

total good tracks in fiducial volume (pos) 132,147 4,584 143,870 7,274

total good tracks in fiducial volume (neg) 21,591 611 46,745 2,311

Table 4.1: Total number of events and number of protons on target as calculated from the

prescaled trigger count for the 8.9 GeV/c and 12.9 GeV/c data sets with and without the

beryllium or aluminum nuclear targets.

adding no additional systematic uncertainty to the absolute normalization of the result.

These unbiased events are used to determine the Npot used in the cross-section formula.

The number of protons-on-target is known to better than 1%.

Applying these criteria we are left with the event totals and numbers of protons on

target summarized in Table 4.1.

4.3 Secondary track selection

Secondary tracks are selected as described in Section 3.4.2. The selection criteria were

optimized to ensure the quality of the momentum reconstruction as well as a clean time-

of-flight measurement while maintaining a high reconstruction efficiency. The fiducial

volume cuts, also described in Section 3.4.2, eliminate systematic effects that could arise

from a complicated geometrical acceptance of tracks as a function of momentum.

Applying these cuts to reconstructed tracks in accepted events we are left with 132,147

positive and 21,591 negative secondary tracks in the beryllium thin target data set and

143,870 positive and 46,745 negative secondary tracks in the aluminum thin target data

set as listed in Table 4.1.
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4.4 Particle yield corrections

The reconstruction efficiency (Figure 3.27), acceptance correction (Eq. 3.11) and electron-

veto efficiency (Figure 3.18) have already been described in Chapter 3. These efficiencies

are the same for all data sets. Here we discuss the remaining yield corrections: the ab-

sorption rate, the tertiary particle rate and the momentum migration matrix. The PID

algorithm and corrections will be covered in the next section.

4.4.1 Secondary particle absorption

The correction for absorption and decay refers to secondary particles created in the

nuclear target that never make it to the time-of-flight wall for detection and possible iden-

tification. Figure 3.1 shows the location of the time-of-flight scintillator wall just beyond

the back plane of drift chamber modules NDC3, NDC4 and NDC5. We use the Monte

Carlo simulation to determine the size of the correction and the result is shown in Figure

4.3. Note this is an upward adjustment to the raw yield measured and is implemented as

1/(1 − ηabsorb(p, θx, θy, α)) in Eq. 4.4. The absorption correction (which includes pion de-

cays) is a function of θx and θy because it depends on the amount and type of physical ma-

terial a particle passes through, thus the geometry of the detector. It is a function of α be-

cause of the different interaction cross-sections and possible decay rates of hadrons. This

correction is separated from the tertiary correction discussed below because it does not

depend on event multiplicity, kinematics or other details of the hadron production model

used in the simulation, but only the total interaction cross-sections which are known with

significantly more certainty.

4.4.2 Tertiary particle subtraction

The tertiary correction refers to the subtraction of reconstructed tracks which are actu-

ally reconstructions of tertiary particles, i.e. particles produced in inelastic interactions or

decays of true secondary particles and not in primary interactions of beam protons with

target nuclei (See section 3.2). The tertiary subtraction includes muons created in decays

which are falsely identified as pions nearly 100% of the time due to their high β. This
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Figure 4.3: Absorption corrections for pions and protons according to Monte Carlo simu-

lation as a function of particle momentum (left), production angle in the horizontal plane,

θx (center) and production angle in the vertical plane, θy (right).

tertiary subtraction is also generated using the Monte Carlo simulation but is dependent

on the details of the hadron production model used in the simulation. Figure 4.4 shows

the tertiary fractions, ηtert, for the 8.9 GeV/c proton+beryllium data and the 12.9 GeV/c

proton+aluminum data. The correction is significantly smaller than the absorption correc-

tion (compare Figures 4.3 and 4.4), but is less certain, so the contribution to the systematic

error will be non-negligible.

4.4.3 Momentum migration matrix

The Monte Carlo simulation must be used to generate the momentum migration ma-

trix as well. Three factors contribute to the values of the elements in this matrix: the

resolution of the momentum reconstruction, σp(p), the widths of the momentum bins as a

function of momentum, and the underlying true particle spectrum. A unique matrix ex-

ists for each angular bin in the analysis since the momentum resolution and particle spec-

trum vary with angle. In Section 3.4.2 we measured the resolution, σp(p), in the Monte

Carlo and the data and found good agreement at zero angle. Other analyses, described

in [58], have demonstrated agreement at non-zero angles, thus justifying the use of the

simulation to generate the correction. Finally, using different available hadronic models

to build different matrices allows us to quantify this effect on the measured cross-sections.
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Figure 4.4: Tertiary particle rates for protons, pions and muons (which get identified as

pions) according to Monte Carlo simulation for 8.9 GeV/c proton+beryllium data (top

row) and 12.9 GeV/c proton+aluminum data (bottom row) as a function of particle mo-

mentum (left), production angle in the horizontal plane, θx (center) and production angle

in the vertical plane, θy (right).
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Figure 4.5 shows the diagonal elements of migration matrices generated for six angular

bins for the 8.9 GeV/c proton+beryllium data set. The momentum binning of the analysis

was designed to ensure that the diagonal migration remained above≈ 50% for most bins.

The momentum resolution becomes worse at higher momentum, so above 3.25 GeV/c the

momentum bins have been broadened. Two different hadronic models are compared in

Figure 4.5 to give a sense of the variation caused by this effect. Note that in some large an-

gle, high momentum bins the fluctuations are largely statistical due to poor Monte Carlo

statistics in these regions. The statistical precision of the migration matrices will be con-

sidered in the error analysis for the cross-section results presented below.

4.5 Particle identification algorithm

The cross-section analysis uses particle identification information from the time-of-

flight and Cherenkov PID systems; the discrimination power of time-of-flight below 3

GeV/c and the Cherenkov detector above 3 GeV/c are combined to provide powerful

separation of pions and protons. The calorimeter is presently used only for separating

pions and electrons when characterizing the response of the other detectors (See Sections

3.4.3 and 3.4.4). The resulting efficiency and purity of pion identification in the analysis

region is excellent.

4.5.1 The PID estimator

Particle identification is performed by determining the probability that a given track

is a pion or a proton based on the expected response of the detectors to each particle type

and the measured response for the track. Information from both detectors is combined for

maximum discrimination power using a Bayesian technique,

P (α|β,Npe, p, θ) =
P (β,Npe|α, p, θ) · P (α|p, θ)∑

i=π,p,...
P (β,Npe|i, p, θ) · P (i|p, θ)

. (4.6)

where P (α|β,Npe, p, θ) is the probability that a track with reconstructed velocity β, num-

ber of associated photo-electrons Npe, and momentum and angle p and θ is a particle of

type α. P (i|p, θ) is the so-called prior probability for each particle type, i, and is a function
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Figure 4.5: Diagonal elements of the momentum migration matrices generated for the

8.9 GeV/c proton+beryllium data set. A matrix is shown for each of the six angular bins

to be used in the analysis. The matrix elements are shown for two different hadronic

interaction models used in the simulation of proton+beryllium interactions, the Binary

cascade model (black solid) and the QGSC model (green dashed).

of p and θ. In the Bayesian approach, the priors represent one’s knowledge of the relative

particle populations before performing a measurement. Finally, P (β,Npe|i, p, θ) is the ex-

pected response (β and Npe) of the PID detectors for a particle of type i and momentum

and angle p, θ.

The following simplifications are applied to Eq. 4.6. First, we will assume no a priori

knowledge of the underlying pion/proton spectra; that is, the prior distributions will be

flat and equal everywhere, P (i|p, θ) = 1 for all p, θ. This allows the priors to be dropped
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from the expression, but the PID estimator no longer has a full probabilistic interpretation

and cannot be directly used to estimate the particle yields. One could iterate the probabil-

ity distributions to determine the yields. Alternatively, one can build the PID estimator for

each track independently, and an efficiency and migration must be determined for a given

cut on the estimator value, Ptrack > Pcut. We will see that the necessary corrections are

small and the systematic uncertainty is negligible compared to other sources, making this

approach adequate. Second, we will consider the response functions of the different PID

detectors as independent and can therefore factorize the probability into separate terms

for the TOFW and CHE. Third, the time-of-flight and Cherenkov detector responses show

no angular dependence allowing θ to be removed from the above expression. Finally, we

will only consider pions and protons as possible secondary particle types. Monte Carlo

simulation indicates other potential backgrounds to be small.

P (α|β,Npe, p) =
P (β|α, p) · P (Npe|α, p)

P (β, |π, p) · P (Npe|π, p) + P (β|p, p) · P (Npe|p, p)
. (4.7)

where P (α|β,Npe, p) is the PID estimator for a track with reconstructed β, Npe and p to be

of typeα andP (β|π(p), p) andP (Npe|π(p), p) are the response functions for the TOFW and

CHE, respectively, for pions(protons). Methods for measuring these functions from data

have been presented in Chapter 3. The TOFW response function has been parameterized

as a Gaussian function in bins of reconstructed momentum for both pions and protons,

P (β|π(p), p) =
1

σπ,p(p)
√

2π
· exp

−1
2

(
β − βπ,p(p)
σπ,p(p)

)2
 (4.8)

where the functions βπ,p(p) and σπ,p(p) are shown in Figure 3.25. The CHE response

function, P (Npe|π(p), p), is just the probability that a pion or proton at momentum p will

have more than 2 associated photo-electrons. P (Npe > 2|π(p), p) is shown in Figure 3.19.

For each reconstructed track, the PID estimator (Eq. 4.7) is evaluated under the pion

and proton hypotheses. These are normalized quantities such that P (π) + P (p) = 1. A

selection cut for both particle types of P ≥ 0.6 was used to build raw yields of pions and

protons. This cut will be shown to yield a very high purity (important for minimizing the

bias discussed above) and it eliminates the possibility of identifying a single track as both

a pion and a proton (because the estimators have been normalized).
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4.5.2 Particle ID efficiency and migration matrix

The PID matrix describes the migrations of true pions and protons into reconstructed

particle ID bins for a given PID estimator cut value used to select pions and protons,

 Nπ

Np


rec

=

 Mππ Mπp

Mpπ Mpp

 ·
 Nπ

Np


true

(4.9)

where Mππ is the pion efficiency, Mπp is the proton to pion migration, Mpπ is the pion

to proton migration and Mpp is the proton efficiency. A separate matrix is generated for

each momentum bin used in the analysis as the PID migrations will vary with secondary

momentum. The inverse of these matrices, M−1
α·α′ (p) are used to unfold the raw yields in

Eq. 4.5.

The analytical calculation of these matrix elements is described in detail in [61]. Briefly,

the four matrix elements can be expressed as an integral over the possible ranges of β and

Npe for values of the PID estimator above the cut value, Pcut,

Mαα′ =
∫

Pα>Pcut

dβ dNpe P (β|α′) P (Npe|α
′
) (4.10)

where P (β|α′) and P (Npe|α
′
) are the TOFW and CHE response functions for a particle

of type α
′
. This expression is good for a given bin of momentum and so the explicit

dependence on p has been dropped from Eqs. 4.10 and 4.11. Because the CHE is used

digitally, the integral over Npe can be separated into two flat regions corresponding to a

CHE signal and no CHE signal. The TOFW part is a Gaussian function and so can be

integrated analytically using the Error function.

Mαα′ = P (Npe ≤ 2|α′)×
∫

P
Npe≤2
α >Pcut

dβ P (β|α′) +

P (Npe > 2|α′)×
∫

P
Npe>2
α >Pcut

dβ P (β|α′)
(4.11)

The only remaining task is to solve for the value of β that corresponds to a given value of

the PID estimator, Pα, in order to determine the limits of the integrals in Eq. 4.11. These

limits are slightly complicated by the existence of the β–outliers introduced in Section

3.4.4, and we will refer the reader to [61] for the final expressions.
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The PID efficiency and migration matrix elements depend upon eight parameters of

the particle ID detector response functions: the CHE signal efficiencies for pions and pro-

tons, P (Npe|π(p)), the TOFW response parameters βπ,p and σπ,p and the β–outlier rates

for pions and protons. These parameters were extracted from data or Monte Carlo in

Chapter 3 with errors. From these parameters and their uncertainties one can calculate

the 16 element covariance matrix for the PID efficiency and migration matrix

Ckl
ij = cov(Mij ,Mkl) =

∂Mij

∂λm

∂Mkl

∂λm
cov(λm, λm) , (4.12)

where the λm are the 8 parameters that go into the matrix element calculation. Each of the

derivatives, ∂Mij/∂λm, have been explicitly derived in the Appendices of [61].

The final matrix elements and diagonal errors for the 8.9 GeV/c proton+beryllium

data and the 12.9 GeV/c proton+aluminum data are shown in Figure 4.6. The four panels

are the four matrix elements,Mππ,Mπp,Mpπ andMpp, each shown as a function of particle

momentum. The four elements of a single matrix from Eq. 4.5 would be given by the value

from each panel corresponding to a given momentum.

Looking first at the upper left panel we see that pion identification efficiency is > 95%

across the full range of momenta and for both data sets. The proton efficiency (lower

right) dips slightly at low momentum due to a larger β–outlier rate for protons at low

momentum, but the efficiency is still above 92% except in the first bin. The migrations

between pions and protons are small in both data sets. They are negligible (< 10-3) below

2.5 GeV/c and grow to the largest value of 3% above 6.5 GeV/c for the aluminum data set

only. For the beryllium data set the migrations are no where above 1%.

4.6 Method for the estimation of systematic errors

For the cross-sections to be presented in the next section a systematic error analysis

will be performed to estimate the accuracy of the measurements. A contribution to the

total uncertainty will be evaluated for each correction applied to the raw yields described

in Section 4.1 and correlations between (p, θ) bins will be included, resulting in a full error

matrix with N2 elements where N is the number of (p, θ) bins.
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Figure 4.6: Particle ID efficiency and migration matrix elements as a function of momen-

tum. Upper left is the pion identification efficiency,Mππ. Upper right is the proton to pion

migration,Mπp. Lower left is the pion to proton migration,Mpπ. Lower right is the proton

identification efficiency, Mpp. The blue open circles are the matrix elements calculated for

the 8.9 GeV/c proton+beryllium data set. The black points are the elements for the 12.9

GeV/c proton+aluminum data set.
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A Monte Carlo technique is used to estimate the uncertainty on the cross-section. First,

for each correction applied to the raw yields, an error is estimated on the correction itself.

For example, the absorption correction refers to the loss of secondary hadrons due to ab-

sorption in detector materials and air up-stream of the time-of-flight wall. The Monte

Carlo is used to estimate the rate and it depends mostly on the total interaction cross-

sections of pions and protons in carbon. The data used to set these cross-sections in the

simulation have uncertainties of order 10%. Therefore, we assume this uncertainty on the

correction. To estimate the uncertainty on the cross-section arising from the absorption

correction, N ≈ 100 analyses are performed where only the absorption correction is ran-

domly fluctuated for each analysis with an RMS of 10%. Similarly, N cross-section results

are generated for N fluctuations of each source of systematic error. The correlated error

matrix for each correction is then built from the N cross-section results,

Em
ij =

1
N

N∑
n=1

[
d2σα

CV

dpdΩ
−
d2σα

m,n

dpdΩ

]
i

×

[
d2σα

CV

dpdΩ
−
d2σα

m,n

dpdΩ

]
j

(4.13)

where i and j label bins of (p, θ), Em
ij is the (i, j)th element of one of the error matrices (la-

beled m), d2σα
CV/(dpdΩ) is the central value for the double-differential cross-section mea-

surement of particle α and d2σα
m,n/(dpdΩ) is the cross-section result from the nth variation

of the mth systematic error source.

Note that Eq. 4.13 produces matrix elements in units of (error)2. And while the corre-

lations between kinematic bins are considered for each source of uncertainty, the sources

themselves will be assumed to be independent so that the total error matrix is just the sum

of the m matrices,

Eij =
∑
m

Em
ij . (4.14)

It is often convenient to consider the uncertainty in percentage instead of in cross-section

units. In addition, we define the fractional error matrix

Efrac
ij =

Eij[
d2σα

CV

dpdΩ

]
i

×
[
d2σα

CV

dpdΩ

]
j

(4.15)

In total, we will consider 14 sources of systematic uncertainty on the measured cross-

sections. These include data statistical errors and Monte Carlo statistical errors in addition
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to systematic sources. Below we briefly describe each source of error considered.

i. Target data statistical uncertainty : Since statistical errors are uncorrelated the sta-

tistical error matrices are purely diagonal. A unique matrix for pions and protons is

constructed with Nα
tracks(p, θ)× f as the diagonal elements. Nα

tracks(p, θ) is the number

of reconstructed tracks with momentum p and angle θ identified as particle type α

and f is a constant factor that converts the error into cross-section units. The number

of tracks, and not the square root of the number of tracks, is used because we want

the error matrix to be in units of (error)2.

ii. Empty target data statistical uncertainty : As described in Section 4.1 data sets with

the same beam momentum but with no nuclear target are used to subtract non-target

interaction backgrounds from target data. The subtraction ranges from negligible to

about 30%, but the data sets typically correspond to significantly fewer beam pro-

tons on target. Therefore, a second statistical error matrix with diagonal elements

Nα
tracks(p, θ)× f is also generated for the empty target data set used. We will see that

the effect on the final cross-section can be as large as that coming from the target data

statistics.

iii. Empty target subtraction systematic uncertainty : For both data sets being analyzed

here the nuclear target is 5% of a nuclear interaction length for that material, so the

proton beam is attenuated by ∼ 5% for target data. Therefore, a normalization un-

certainty of 5% has been estimated for the empty target subtraction in addition to

the statistical error considered above. With the level of the subtraction ranging from

negligible to 30%, the uncertainty on the final cross-section is typically a few percent.

iv. Reconstruction efficiency statistical uncertainty : The reconstruction efficiency has

been estimated from the data themselves as described in Section 3.4.2. For this reason

the only uncertainty considered on this efficiency is the size of the statistical sample

used to calculate it. To decrease this error, many high momentum data sets have been

combined including beryllium, aluminum, carbon and tantalum targets with inci-

dent proton beams ranging from 8 GeV/c to 15 GeV/c. The reconstruction efficiency
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in each (p, θx, θy) bin is just the ratio of reconstructed tracks, Ntrack, to the total num-

ber of particles passing through the detector, Nparts, so at each stage binomial errors

are assumed,
√

Ntrack ∗ (1− Ntrack

Nparts )/Nparts, and propagated through the calculation

described.

v. Absorption correction systematic uncertainty : As described above, the systematic

error on the absorption correction is estimated to be 10% for both pions and protons.

The error is implemented as a fully correlated normalization uncertainty on the level

of absorption predicted, so the absorption in all (p, θx, θy) bins shifts up and down

together. In this way we determine the maximum excursions on the total integrated

cross-section measured.

vi. Absorption correction Monte Carlo statistical uncertainty : The absorption cor-

rection is estimated from a Monte Carlo simulation. The absorption probability of a

particle of type α produced in the nuclear target with kinematics (p, θx, θy) is deter-

mined by the amount and type of material that the individual particle trajectory will

pass through before reaching the TOFW. It does not depend on the underlying spec-

trum of secondaries or incident beam momentum. Therefore, different Monte Carlo

samples have been combined to increase the statistical sample in each kinematic bin

used to measure the correction and minimize this uncertainty.

vii. Tertiary subtraction systematic uncertainty : The tertiary particle reconstruction

rate is a more complicated correction than the absorption rate. It does depend on the

beam momentum, the shape of the secondary spectrum, and the hadronic produc-

tion models of hadrons in detector materials at a large range of momenta (from the

incident beam momentum down). Fortunately the correction is an order of magni-

tude smaller than the more certain absorption correction. Most of the material where

tertiary particles might be produced in the detector is carbon, so it is the simulation

of inelastic interactions of low-energy protons and pions in carbon that become im-

portant in generating this correction. Comparisons of low momentum HARP p+C,

π++C and π−+C data to the hadronic models used in the simulation have verified

these models to ≈ 50% and we will assume this uncertainty on the calculated tertiary
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subtraction.

viii. Tertiary subtraction Monte Carlo statistical uncertainty : Because the tertiary rate

depends on the specific experimental configuration, different Monte Carlo samples

could not be combined to reduce Monte Carlo statistical uncertainties.

ix. Momentum scale systematic uncertainty : In Section 3.4.2 we investigated the un-

certainty on the absolute scale of the momentum reconstruction. At zero angle it was

seen to be ∼ 2% in empty target data samples from 1.5–12.9 GeV/c. In Ref. [58] other

methods are used to explore non-zero angles and the conclusion is the same. To as-

sess the impact on the cross-section measurement N measurements are made where

the momentum of each track is scaled by the same fraction, p→ η ·p, where the factor,

η, is randomly drawn from a Gaussian function with width 0.02 and mean 1.0.

x. Momentum smearing systematic uncertainty : Momentum smearing refers to the

migration of reconstructed tracks from their true momentum value to a different mo-

mentum value due to the finite resolution of the apparatus and the reconstruction

algorithm employed. The measured spectrum of secondaries is corrected by using an

unsmearing matrix according to Eq. 4.3. As described in Section 4.4 the dominant

source of systematic uncertainty in the matrix elements is the choice of hadronic gen-

erator used to determine the secondary spectrum. Therefore, to asses the error on the

cross-section a matrix is generated for a hadronic interaction model other than the

default and compared to the central value cross-section results.

xi. Momentum smearing Monte Carlo statistical uncertainty : The statistical uncer-

tainty in the momentum migration matrix can be large since reconstructed tracks are

divided into Nθ−bins ×Np−bins ×Np−bins bins. To estimate the effects, each row of the

matrix is fluctuated according to a multinomial distribution before being normalized

and the cross-section is calculated for N such variations of the matrix.

xii. Electron-veto efficiency statistical uncertainty : As with the reconstruction effi-

ciency the uncertainty on the electron-veto efficiency is due only to the statistical error

of the sample used to generate the correction.
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xiii. PID efficiency and migration matrix systematic uncertainty : The 4-element PID

efficiency matrix and 16-element covariance matrix are calculated analytically as de-

scribed in Section 4.5. To determine the impact on the measured cross-section, N

analyses are performed where the PID matrix has been fluctuated according to its

covariance matrix as described at [136].

Consider the multivariate normal distribution comprised of:

mean values µ = (Mππ,Mπp,Mpπ,Mpp)

covariance matrix, Σ.

After finding the Cholesky decomposition of Σ, A, such that AAT = Σ, the fluctuated

vector can be found from µ + AZ where Z is a 4-element vector of independently

fluctuated standard normal (mean = 0, σ = 1) variates.

xiv. Overall normalization systematic uncertainty : A main source of fully correlated

normalization uncertainty comes from the proton beam targeting efficiency. A small

fraction (∼ 1%) of the protons which pass all event selection cuts in Section 4.2 are de-

flected and do no collide with the nuclear target. In addition, there are fully correlated

contributions to the reconstruction efficiency and particle identification efficiency cal-

culations estimated at another ∼ 1%. Uncertainty on the measured thickness of the

nuclear target (∼ 0.1%) and the count of the number of protons on target (∼ 0.2%) are

negligible. In total we estimate a fully correlated normalization uncertainty on the

measured cross-section of 2%.

4.7 Cross-section results

Two data sets have been analyzed according to Eq. 4.5 to extract the double-differential

production cross-sections of charged pions and protons: 8.9 GeV/c protons on beryl-

lium and 12.9 GeV/c protons on aluminum. Emphasis has been put on these particular

data sets because of their importance to existing neutrino oscillation experiments, namely,

MiniBooNE at Fermilab in the US and the K2K experiment in Japan4.
4The analysis methods and software tools developed to generate these results have been carefully pre-

pared in a general way to allow their use for the measurement of other useful cross-sections including thick
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Cross-section results will be presented for both data sets in the kinematic range from

0.75 GeV/c ≤ p ≤ 8.0 GeV/c and 0.030 rad ≤ θ ≤ 0.210 rad. There are 14 momentum bins

and 6 angular bins with boundaries defined by:

• p = [0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 4.0, 5.0, 6.5, 8.0] GeV/c

• θ = [30, 60, 90, 120, 150, 180, 210] mrad

Production cross-sections have been measured for protons, π+ and π− and a full error

matrix with (14 × 6)2 = 7056 elements has been generated for each. The measured π+

and π− production cross-sections from 8.9 GeV/c proton+beryllium collisions are shown

in Figure 4.7 with proton production cross-sections shown in Figure 4.8. The error bars

shown are the square-root of the diagonal elements of the error matrices. No graphical

representation of the off-diagonal elements is shown. Figures 4.9 and 4.10 show the π+,

π− and proton production cross-sections for the 12.9 GeV/c proton+aluminum data. All

cross-sections and diagonal errors are tabulated in Appendix A.

Finally, it is important to better quantify the uncertainty on the cross-section measure-

ments. In addition to the total uncertainty, knowing the contributions of the individual

error sources provides valuable guidance for future efforts to improve the results. To get

an idea of the uncertainty on the cross-section we define the quantity δdiff ,

δdiff ≡
1
N

N∑
i=1

√
Eii[

d2σα
CV/ (dpdΩ)

]
i

. (4.16)

where N is the number of (p, θ) bins to be averaged over. Eij is either the total covariance

matrix or one of the individual 14 covariance matrices evaluated for the cross-section. δdiff

can be interpreted as the average fractional uncertainty on the double-differential cross-

section (diagonal errors only). Additionally, we define the quantity δint,

δint ≡

√∑
ij (dpdΩ)iEij (dpdΩ)j∑

i

(
d2σα

CV

)
i

(4.17)

target (up to 1 interaction length) versions of these settings and data with other nuclear targets from hydro-

gen to lead. Currently work is being done to expand the software’s capabilities to include the measurement

of the production cross-section of charged kaons as well.
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where (d2σα
CV)i is the double-differential cross-section in bin i multiplied by its phase

space factor, (dpdΩ)i. δint can be interpreted as the uncertainty on the total integrated

cross-section within the kinematic region considered.

Both quantities were evaluated for each of the fourteen error sources as well as the

total. The results are tabulated in Tables 4.2 and 4.3 for the beryllium and aluminum data,

respectively. The average total error on the differential cross-section is <10% for π+ and

protons. The π− errors are slightly higher at 12–13% due mostly to larger statistical errors

from their smaller production rates.

Close inspection of Tables 4.2 and 4.3 reveals that statistical and systematic errors con-

tribute almost equally for the chosen binning. Also, particle identification uncertainties

are negligible compared to other sources, so the PID algorithm appears optimized. The

largest contributions to the cross-section uncertainty come from the momentum recon-

struction and the absorption and tertiary corrections. The track reconstruction algorithm

is probably optimal given the spatial resolution of the drift chambers (∼ 340 µm) and low

chamber hit efficiency. The most likely place to reduce the uncertainty on the cross-section

measurement is the absorption and tertiary track corrections. The accuracy of both cor-

rections could be improved by using the increasing wealth of hadron cross-section data

available from HARP to improve the hadronic simulation packages used to generate the

corrections. However, both of these ideas are sizable projects and beyond the scope of this

dissertation.
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Figure 4.7: Double-differential production cross-sections of π+ (top two rows) and π−

(bottom two rows) from the interaction of 8.9 GeV/c protons with beryllium. Each panel

shows the cross-section as a function of momentum from 0.75 GeV/c to 6.5 GeV/c in a

particular angular bin indicated above each plot. The error bars shown are the square-

root of the diagonal elements of the total error matrices.
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Figure 4.8: Double-differential production cross-sections of protons from the interaction

of 8.9 GeV/c protons with beryllium. Each panel shows the cross-section as a function

of momentum from 0.75 GeV/c to 8.0 GeV/c in a particular angular bin indicated above

each plot. The error bars shown are the square-root of the diagonal elements of the total

error matrix.
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Data Set p(8.9GeV/c) + beryllium

secondary particle π+ π− proton

mometum range (GeV/c) 0.75 – 6.5 0.75 – 6.5 0.75 – 8.0

angular range (rad) 0.03 – 0.21 0.03 – 0.21 0.03 – 0.21

Error Category δπ+

diff (%) δπ+

int (%) δπ−
diff (%) δπ−

int (%) δp
diff (%) δp

int (%)

Statistical Errors:

i. Target statistics 4.8 0.6 7.4 0.8 4.7 0.4

ii. Empty target statistics 4.9 0.6 6.3 0.8 5.1 0.4

Sub-total 6.9 0.8 9.7 1.1 6.9 0.6

Track yield corrections:

iii. Empty target subtraction 1.5 0.1 2.1 0.2 1.4 0.1

iv. Reconstruction efficiency 1.1 0.5 4.4 1.0 1.2 0.2

v. Pion, proton absorption syst. 3.6 4.2 4.7 5.8 2.6 2.4

vi. Pion, proton absorption stat. 0.4 <0.1 0.4 <0.1 0.4 <0.1

vii. Tertiary subtraction syst. 1.5 1.7 1.1 1.2 2.2 1.6

viii. Tertiary subtraction syst. 0.5 0.1 0.6 0.2 0.7 0.1

Sub-total 4.4 4.6 6.9 6.0 3.9 2.9

Momentum reconstruction:

ix. Momentum scale 4.0 0.1 2.0 0.1 4.2 1.7

x. Momentum resolution syst. 2.2 0.8 4.6 0.5 2.6 0.7

xi. Momentum resolution stat. 1.4 <0.1 1.9 0.1 1.5 <0.1

Sub-total 4.8 0.8 5.4 0.5 5.2 1.8

Particle Identification:

xii. Electron veto 0.1 <0.1 0.1 <0.1 0.1 <0.1

xiii. Pion, proton ID correction 0.4 0.4 0.3 0.3 0.3 0.1

Sub-total 0.4 0.4 0.3 0.3 0.3 0.1

Overall normalization: 2.0 2.0 2.0 2.0 2.0 2.0

Total 9.7 5.2 13.2 6.4 9.7 4.0

Table 4.2: Summary of the uncertainties affecting the measured π+, π− and proton cross-

sections from 8.9 GeV/c proton+beryllium interactions. The average error on the differen-

tial cross-section, δdiff , and the error on the total integrated cross-section, δint, are listed for

each of the fourteen error sources described in Section 4.6 as well as the total uncertainty.
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Figure 4.9: Double-differential production cross-sections of π+ (top two rows) and π−

(bottom two rows) from the interaction of 12.9 GeV/c protons with aluminum. Each panel

shows the cross-section as a function of momentum from 0.75 GeV/c to 8.0 GeV/c in a

particular angular bin indicated above each plot. The error bars shown are the square-

root of the diagonal elements of the total error matrices.
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Figure 4.10: Double-differential production cross-sections of protons from the interaction

of 12.9 GeV/c protons with aluminum. Each panel shows the cross-section as a function

of momentum from 0.75 GeV/c to 8.0 GeV/c in a particular angular bin indicated above

each plot. The error bars shown are the square-root of the diagonal elements of the total

error matrix.



4.7. CROSS-SECTION RESULTS 117

Data Set p(12.9GeV/c) + aluminum

secondary particle π+ π− proton

mometum range (GeV/c) 0.75 – 8.0 0.75 – 8.0 0.75 – 8.0

angular range (rad) 0.03 – 0.21 0.03 – 0.21 0.03 – 0.21

Error Category δπ+

diff (%) δπ+

int (%) δπ−
diff (%) δπ−

int (%) δp
diff (%) δp

int (%)

Statistical Errors:

i. Target statistics 3.7 0.4 5.5 0.5 4.0 0.4

ii. Empty target statistics 3.0 0.3 4.0 0.4 3.1 0.3

Sub-total 4.8 0.5 6.8 0.6 5.1 0.5

Track yield corrections:

iii. Empty target subtraction 1.0 0.1 1.7 0.1 0.8 0.1

iv. Reconstruction efficiency 1.2 0.7 3.0 1.0 1.2 0.4

v. π, p absorption syst. 5.4 6.1 5.4 6.6 3.9 3.9

vi.π, p absorption stat. 0.4 <0.1 0.4 <0.1 0.4 <0.1

vii. Tertiary subtraction syst. 4.1 4.4 4.9 5.2 3.7 3.3

viii. Tertiary subtraction stat. 1.1 0.2 1.6 0.3 0.7 0.1

Sub-total 7.0 7.6 8.2 8.5 5.6 5.1

Momentum reconstruction:

ix. Momentum scale 2.4 0.1 3.6 0.4 2.2 0.7

x. Momentum resolution syst. 1.7 0.7 2.5 0.6 1.8 0.1

xi. Momentum resolution stat. 1.9 0.1 3.8 0.1 1.8 <0.1

Sub-total 3.7 0.8 5.8 0.7 3.3 0.8

Particle Identification:

xii. Electron veto 0.1 <0.1 0.1 <0.1 0.1 <0.1

xiii. π, p ID correction 0.5 0.3 0.5 0.4 0.3 0.2

Sub-total 0.5 0.3 0.5 0.4 0.3 0.2

Overall normalization: 2.0 2.0 2.0 2.0 2.0 2.0

Total 9.5 7.9 12.3 8.8 8.5 5.6

Table 4.3: Summary of the uncertainties affecting the measured π+, π− and proton cross-

sections from 12.9 GeV/c proton+aluminum interactions. The average error on the differ-

ential cross-section, δdiff , and the error on the total integrated cross-section, δint, are listed

for each of the fourteen error sources described in Section 4.6.
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Part III

MiniBooNE
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Chapter 5

MiniBooNE (E898) at Fermilab

MiniBooNE (The Mini Booster Neutrino Experiment), at Fermilab, was de-

signed to search for the transmutation of muon neutrinos into electron neutri-

nos consistent with a neutrino oscillation hypothesis. With a mean neutrino

energy of ∼ 0.7 GeV and a path length of ∼ 0.5 km, MiniBooNE is sensitive to

oscillations governed by a large mass splitting (relative to the solar and atmo-

spheric results) of order 1 eV2. MiniBooNE took data in neutrino mode from

September 2002 through December 2006 collecting ∼ 5.6 × 1020 protons on

target before changing to antineutrino mode in January 2007. The oscillation

analysis to be presented here is based on the neutrino mode data only. In this

chapter, we begin with a detailed description of the LSND result as motiva-

tion for the basic MiniBooNE design, and then step through a description of

the experiment in greater detail.

5.1 Motivation for MiniBooNE – the LSND experiment

As discussed in Chapter 1, neutrino oscillations in the solar and atmospheric ∆m2 re-

gions are now well established. Evidence for a third mixing at significantly higher ∆m2

was reported by the LSND collaboration but awaits similar confirmation; this serves as the

primary goal of the Booster Neutrino Experiment. A brief description of the LSND exper-

iment and its results is instructive to understanding the MiniBooNE design and analysis



120 Chapter 5. MiniBooNE (E898) at Fermilab

Figure 5.1: Schematic drawing of the LSND experiment at Los Alamos National Labora-

tory. The 798 MeV proton beam comes in from the left of the figure and collides with a

water or high-Z metal target. Secondary pions are stopped in the copper beam stop and

decay. The LSND detector is a cylindrical tank 8.3 m long and 5.7 m in diameter filled with

liquid scintillator doped mineral oil and the center of the detector sits 30 m downstream

of the beam stop. Plot taken from [44].

goals.

The Liquid Scintillator Neutrino Detector experiment [43] was conducted at Los Alamos

National Laboratory from 1993 through 1998. A schematic drawing of the experiment is

shown in Figure 5.1. The neutrino beam was generated by focusing the high intensity 798

MeV kinetic energy proton beam at the Los Alamos Neutron Science Center (LANSCE)

onto a water target (1993–1995) or a dense high-Z nuclear target (1996–1998). A copper

beam dump was located downstream of the target and most secondary pions and ter-

tiary muons decayed-at-rest within this beam stop. Only a few percent of the pions could

decay-in-flight in the small open space between the targets and the beam dump.

The resulting flux spectra from the two decay modes, decay-in-flight (DIF) and decay-

at-rest (DAR), are substantially different. The main oscillation search of LSND was for

νµ → νe oscillations of νµ created in µ+ DAR. A search for νµ → νe oscillations of νµ
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created in π+ DIF was also pursued, and while consistent with the DAR analysis, suf-

fered from very large statistical uncertainties. In the end, both samples were combined to

determine the allowed oscillation parameters [44].

The 3-body decay of the muon, µ+ → e+νeνµ , with the muon at rest, generates a

well known νµ spectrum with an energy cutoff at 52.8 MeV. Further, in the π+/µ+ decay

chain, no νe are produced anywhere. The only beam related sources of νe come from DIF

of π− (suppressed ∼ 10−4 by the low branching fraction for π− → e+νe) and DAR of µ−

from π− DIF. This background is suppressed by the fact that most µ− will be captured in

the beam dump before they can decay. Both sources are further reduced by the low π−

production cross-section and low probability for DIF mentioned above 1.

The LSND detector, capable of detecting both scintillation and Cherenkov light, was

a cylindrical tank filled with liquid scintillator doped mineral oil and lined with 1220 8”

photo-multiplier tubes. The center of the tank was located 30 meters from the copper

beam dump. Evidence for νµ → νe oscillations was searched for by looking for an excess

of inverse beta decay (IBD) events, νep → e+n , indicating an excess of νe in the beam.

The signature of IBD events is a e+ followed by a 2.2 MeV γ from the capture of the

neutron on a free proton. The key to separating IBD events from other events with an

electron/positron2 is the existence of this correlated gamma-ray. The distance between

the positron position and γ position, ∆r, the time interval between the positron event

and the γ event, ∆t, and the reconstructed energy of the γ event must all be consistent

with the neutron capture hypothesis. These three quantities were combined to create a

likelihood variable, Rγ , for separating correlated from accidental photon events. The Rγ

distribution for events passing initial electron/positron cuts is shown in Figure 5.2. The

shape of this distribution for data (the black points with error bars) is compared to a

Monte Carlo simulation that includes both accidental (green histogram) and correlated

(blue histogram) photon events.

For the µ+ DAR analysis the positron will have a reconstructed energy below 60 MeV

due to the kinematic limit on the νµ produced in the decay. Large low energy cosmic ray

1This also explains why the DIF oscillation analysis suffers from poor statistics.
2The LSND detector is not capable of determining the sign of the electron.
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Figure 5.2: TheRγ distribution for events in LSND that satisfy electron/positron selection

cuts. Correlated-γs refer to the 2.2 MeV gamma-ray produced when the neutron captures

on a free proton in an inverse beta decay event, νep→ e+n . Plot taken from [44].

induced backgrounds can be removed with a low energy cut of 20 MeV. The left panel

of Figure 5.3 shows the number of reconstructed IBD events with a positron energy in

the range 20 < Ee < 60 MeV compared with the predicted backgrounds and a best fit

oscillation hypothesis. The event excess above the predicted backgrounds (shown in red

and green) is 32.2 ± 9.4 ± 2.3, where the first error is statistical and the second error is

from systematic uncertainties. This sample was isolated by applying a cut in the event

identification variable of Rγ > 10. The significance of the result is increased slightly from

3.2σ to 3.8σ by using a more sophisticated technique of fitting the full Rγ distribution

to an accidental-γ and correlated-γ template from the Monte Carlo and extracting the

normalizations of the two samples. This is the result shown in Figure 5.2 and reveals a

total number of 117.9 ± 22.4 events in the data with a correlated gamma. This is 87.9 ±

22.4± 6.0 events more than expected in the absence of oscillations.

For each candidate IBD event the interaction vertex within the tank and neutrino

energy can be reconstructed. The distance from the beam dump to the vertex position
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Figure 5.3: The energy (left) and path length to energy ratio (right) for events in LSND

identified as inverse beta decay events with Rγ > 10. A clear excess above predicted

backgrounds (green and red histograms) is seen. The blue histogram corresponds to a

best fit oscillation hypothesis of (∆m2,sin2(2θ))=(1.2 eV2, 0.003). Plots taken from [44].

and the neutrino energy are used to create the ratio Lν/Eν plotted in the right panel

of Figure 5.3 for events with Rγ > 10. Here one clearly sees the L/E dependence of

the excess of νe events which peaks at an L/E value of ∼ 0.7m/MeV. Assuming the

excess is due to νµ → νe oscillations, it implies an average oscillation probability of

(0.264 ± 0.067 ± 0.045)%. The corresponding allowed values of the oscillation parame-

ters sin2(2θ) and ∆m2 can be determined by fitting the event excess to the two neutrino

oscillation formula,

P (νµ → νe) = sin2(2θ) sin2

(
1.27∆m2Lν

Eν

)
. (5.1)

This fit has been performed with careful consideration of the experiment’s statistical and

systematic uncertainties [44]. The resulting allowed oscillation parameter combinations

at 90% and 99% C.L. are shown in Figure 5.4 with the most probable combination being:

(∆m2, sin2(2θ))best−fit = (1.2 eV2, 0.003) .
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Figure 5.4: Allowed oscillation parameter (∆m2, sin2(2θ)) combinations if the excess of

electron neutrino events seen in LSND are assumed to come from oscillations. The νµ →

νe DAR data and the νµ → νe DIF data from all six years of running are included. The

best fit point is at (∆m2, sin2(2θ)) = (1.2 eV2, 0.003). Plot taken from [44].
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5.2 Overview of MiniBooNE

The primary goal of MiniBooNE is to search for neutrino oscillations in the regions

of parameter space allowed by the LSND result and shown in Figure 5.4. Because the

oscillation probability remains constant for constant values of the ratio L/E, it is possible

to search for the same effect but with a significantly different experimental setup. Evi-

dence consistent with the oscillation hypothesis seen by an experiment of substantially

different design would be very strong evidence that the LSND signal is due to νµ → νe

transmutation.

Two key factors dictate the design of such an experiment: the very small probability

for oscillation of ∼ 0.26% and the range of values of L/E which determine the region of

∆m2 to which the experiment is sensitive. Simple inspection of Figure 5.3 reveals that

the relevant values of L/E lie between ∼ 0.4–1.2 m/MeV. The MiniBooNE detector was

constructed 541 m from the neutrino source and to a good approximation this is the path

length of all neutrinos. Therefore, the relevant neutrino energies are 450–1350 MeV. Be-

cause the oscillation probability is expected to be small and it is not feasible at this time to

predict flux levels to< 0.1%, MiniBooNE will instead search for evidence of the oscillation

in the appearance of electron neutrinos.

The primary experimental aim of the Booster Neutrino Experiment can be very con-

cisely stated:

MiniBooNE will search for an excess of electron neutrino events above pre-

dicted backgrounds in the energy range ∼ 450–1350 MeV. An observed ex-

cess of order 0.26% of the muon neutrino flux in this same energy range

would be evidence for the neutrino oscillation interpretation of the LSND

data.

Sounds simple enough.

MiniBooNE, therefore, requires a high statistics, broad-band muon neutrino beam

with mean energy around 700 MeV and a very small contamination of electron neutri-

nos. The detector must be capable of distinguishing νe events with high efficiency while

rejecting > 99% of νµ induced events.
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Figure 5.5: Schematic representation of the MiniBooNE beamline and detector. The view

is a cross-sectional elevation and the drawing is not to scale.

A schematic representation of the experiment in shown in Figure 5.5. The Booster

Neutrino Beamline (BNB) begins with 8 GeV kinetic energy (8.9 GeV/c momentum) pro-

tons from the Fermilab Booster which impinge upon a thick beryllium target. Secondary

hadrons, mostly charged pions, protons and kaons, are produced in inelastic interactions

between incident protons and beryllium nuclei. The target sits along the axis of an alu-

minum, cylindrical magnetic focusing horn. Large currents pass through the shell of the

horn in time with each proton bunch from the Booster and the resulting magnetic field

acts to focus/defocus charged secondaries of opposite sign. By reversing the direction of

the current one can change the sign selection and thus the content of the resulting neutrino

beam.

Focused secondaries enter an open, air-filled decay region 50 m in length where short-

lived pions and kaons will decay3. The tertiary beam is mostly muons and muon neutri-

nos from π± decays. A small contamination of νe results from kaon decays, π → eνe, and

muons that manage to decay before hitting the end of the decay region. All charged par-

ticles that have not decayed will be stopped in an absorber at the end of the 50 m tunnel.

Only neutrinos pass through the absorber and ∼ 500 m of dirt unaffected and reach the

MiniBooNE detector.

3Steel plates are suspended above the decay tunnel by chains. Lowering these plates shortens the decay

region to 25 m which can be useful for studying beam related systematics. See Figure 5.5.
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The MiniBooNE detector is a 610 cm radius carbon steel sphere built just below ground

level in a concrete cylindrical cavity. The detector is filled with 950,000 liters of mineral

oil chosen for its favorable optical properties and stability. The detector is separated into

two optically isolated concentric shells. The outer shell is the “veto” region and is instru-

mented with 240 photomultiplier tubes (PMTs). It is mostly used to reject events caused

by cosmic muons passing through the detector. The inner spherical region acts as the neu-

trino target for the oscillation analysis and the outer wall is instrumented with 1280 PMTs

facing inward.

When neutrinos from the Booster Neutrino Beam interact with nucleons within the oil

(the oil is essentially a carbon target) charged particles created in the interaction produce

both Cherenkov and scintillation light which is detected at the edge of the tank by the

photo tubes. Final state particles can be reconstructed and identified by their characteristic

light patterns in the detector. From this information sophisticated reconstructions will be

used to identify the type of the neutrino that caused the event. In this way we will measure

the νe content of the beam and search for νµ → νe oscillations. Much more about this will

be said in coming sections and chapters.

5.3 The Booster Neutrino Beam

Figure 5.6 shows the layout of the 8 GeV extraction line at Fermilab. The Fermilab

Booster is a 474 m circumference synchrotron which accelerates protons coming from the

LINAC at 400 MeV up to 8 GeV kinetic energy. After being extracted from the Booster

ring, proton bunches are directed either into the Main Injector for further acceleration to

120 GeV or into the Booster Neutrino Beamline by a switch magnet near the point labeled

A in the figure.

5.3.1 Primary proton beam

A lattice of focusing and defocusing magnets (FODO) and bending dipoles transport

proton bunches through the ∼ 200 m beamline to the target area located under the MI-12

service building. The position, direction and profile of the primary beam are monitored
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Figure 5.6: Schematic drawing of the Booster Neutrino Beamline including the 8 GeV

extraction line, target hall and decay region. Plot taken from [71].
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x 0.0 mm σx 1.51 mm

y 0.0 mm σy 0.75 mm

θx 0.0 mrad σθx 0.66 mrad

θy 0.0 mrad σθx 0.40 mrad

Table 5.1: Typical position, size and direction of the 8 GeV primary proton beam 1.0 cm

upstream of the face of the beryllium target in the Booster Neutrino Beamline.

in real-time by a set of beam position monitors (BPMs) and multiwires. A final set of

focusing magnets are used to ensure that the beam hits the upstream face of the beryllium

target with a sufficiently small spread and incident angle. A feedback control system

know as Autotune [73] automatically corrects small beam wanderings using the real-time

monitoring information. Table 5.1 lists the average parameters of the transverse position

and angle profile of the proton bunches just upstream of the target face. The RMS of the

beam profile in the horizontal (x) and vertical (y) directions of< 2 mm are well within the

experimental requirements determined by the 5 mm radius of the beryllium target.

At design intensity, each proton pulse is 1.6 µs wide and contains ∼ 5× 1012 protons.

The design of the horn and power supply system limit the instantaneous proton pulse

delivery rate to the BNB to 15 Hz with a maximum of 10 consecutive pulses in a 2 second

period (5 Hz average rate). The number of protons in each pulse is measured using two

toroids located in the beamline near the target. The toroids are continuously calibrated

on a pulse-by-pulse basis and absolutely calibrated twice per year. The measured proton

intensity in the two devices agree to within 2%.

Figure 5.7 shows the number of protons delivered to the BNB target since the beamline

was commissioned in September, 2002. The gaps in the distribution are due to scheduled

accelerator shutdowns. The thick black line tracks the total integrated protons on target

since September 2002 and passed the important milestone of 1.0 × 1021 on New Year’s

Day, 2008!
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Figure 5.7: Weekly proton delivery rate to the Booster Neutrino Beam since the beamline

start-up in September, 2002. The total integrated protons on target is also plotted using

the units shown on the right axis. The total POT surpassed 1.0 × 1021 in early January,

2008.

5.3.2 Beryllium target

The beryllium target is comprised of seven 10.2 cm long and 0.48 cm radius cylindrical

sections placed end-to-end to make the full 71.1 cm long target. Three “fins”, also made

from beryllium, are attached to the solid cylindrical cores at 120◦ intervals. Figure 5.8

details the geometry and assembly of the target. The seven sections, supported by the

fins, are housed in a beryllium sleeve 0.9 cm thick with a 1.37 cm inner radius and the full

assembly is supported from the upstream end where it is attached to the horn shell and is

fully insulated from the aluminum of the horn and, consequently, the horn current.

The target must be cooled due to the ' 600 W of power that are deposited by the pro-

ton beam under standard operating conditions (∼ 5× 1012 protons per pulse at a 5 Hz av-

erage rate). This is achieved by circulating air along the target in the open space between

the fins and inside of the beryllium sleeve and out through a set of heat exchangers. A set

of temperature and air flow monitors are located throughout the air circulation system,

and any abnormal conditions would trigger the stopping of the proton beam. Readings

from the monitoring devices indicate an air flow rate of' 8×10−3 m3/s. The temperature

of the air coming off the target is ' 120◦ C which is well below the melting temperature
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of beryllium (1278◦ C).

5.3.3 Magnetic focusing horn

The Booster Neutrino Beamline magnetic focusing horn design is based on the gen-

eral principles introduced in Chapter 2, but was designed to satisfy the specific physics

requirements of MiniBooNE by Bartoszek Engineering [138].

The horn sits along the axis of the incident proton beam and is constructed from the

aluminum alloy 6061-T6. The inner and outer conductor shapes are shown in the engi-

neering rendering in Figure 5.9. The up-stream half of the inner conductor, which houses

the beryllium target, has a radius of 2.2 cm. The down-stream section is made of two con-

ical shaped pieces with minimum radius 2.2 cm and maximum radius 6.54 cm. The outer

conductor is a 30.0 cm cylinder connected to the inner conductor at the down-stream end

by a half-donut shaped aluminum cap. The shape and size of the horn conducting shell

was determined using a sophisticated Monte Carlo simulation to maximize the neutrino

flux in the relevant energy range at the MiniBooNE detector. The effect on the MiniBooNE

νµ flux was shown back in Chapter 2 in Figure 2.3.

The magnetic field is created by a 143 µs half-sinusoid current pulse passed through

the outer conductor shell, the half-donut end cap, and back through the inner conductor.

The peak current, nominally 170 kA, is timed to coincide with a proton bunch hitting

the target. The maximum instantaneous frequency of the horn power supply system is

15 Hz while the requirement to constantly dissipate the heat built up in the target limits

the average rate to 5 Hz. The resulting magnetic field per kA of current is shown in the

right panel of Figure 5.9 as a function of the distance from the central axis and follows the

expected 1/r behavior.

Due to the large currents, the aluminum shell must be externally cooled. This is

achieved by a closed radioactive water (RAW) system which sprays onto the inner con-

ductor via portholes in the outer conductor shell which are visible in Figures 5.8 and 5.9.

To avoid the system of pipes and nozzles being broken apart by large vibrations in the

horn, the water system is not rigidly fixed to the shell, but built around it with spray

nozzles aligned with the portholes using a spring connection shown in Figure 5.10.
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Figure 5.8: The Booster Neutrino Beamline beryllium target. The top images show the di-

mensions of the individual target sections (in inches). The middle drawing shows how the

seven sections are assembled to make the full target [138], and the lower drawing shows

how the target assembly is mounted inside the upstream half of the inner conductor [138].
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Figure 5.9: Focusing horn magnetic field. The left panel shows the inner and outer con-

ductor shapes; the outer conductor has been rendered transparent, the inner conductor

is in blue [138]. The right shows the azimuthal component of the magnetic field, Bφ, as

measured (points) and according to Eq. 2.1, Bφ(r) = µ0I/2πr (solid curve). The vertical

line marks the inside edge of the outer conductor. Plot taken from [94].

Figure 5.10: The magnetic focusing horn water cooling system [138].
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5.3.4 Meson decay region

Immediately downstream of the horn/target assembly is a concrete collimator. The

collimator, beginning 259 cm downstream of the forward face of the target, is 214 cm

long with an upstream and downstream aperture diameter of 60 cm and 71 cm, respec-

tively. The collimator opens into the meson decay region which is a 45 m long tunnel

∼ 183 cm in diameter filled with air at standard atmospheric pressure. The walls of the

decay region are made of a corrugated steel pipe surrounded by dolomite (CaMg(CO2)3,

ρ = 2.24g/cm3).

At the end of the decay pipe is a steel and concrete beam dump to absorb any unde-

cayed leptons and hadrons in the beam. One could increase the νµ flux by lengthening the

decay region and allowing more charged pions to decay (βc ·γτ = 112 m for a 2 GeV/c π±

implying that only 36% decay in 50 m), but a sharp increase in the νe background arising

from µ decays offsets the gain in νµ flux for a νµ → νe oscillation search. This explains

why the NuMI decay region is significantly longer (675 m); MINOS is a νµ disappearance

experiment and is less concerned with νe backgrounds than with νµ statistics.

Included in the beamline design is the ability to install a steel beam absorber at 25 m,

thus systematically altering the normalization and energy spectrum of the beam compo-

nents - in particular the νe from µ decay component. Ten steel plates are suspended above

the decay pipe by chains and could be lowered into the beam path. The 25 m absorber

was not deployed, however, during the taking of the data used in the νµ → νe oscillation

search.

5.4 The MiniBooNE detector

The main physics goals driving the design of the MiniBooNE detector were the need

to discriminate between νµ and νe induced events and to reconstruct the neutrino’s en-

ergy with sufficient resolution. The final design, shown in Figure 5.11, is a 610 cm radius

carbon steel sphere filled with 818 tons of mineral oil. Event classification is achieved

using the large amounts of Cherenkov light and lesser amounts of scintillation light gen-

erated by charged particles in the tank. An opaque PMT support structure is constructed
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Figure 5.11: Schematic drawing of the MiniBooNE detector with a quarter sphere section

cut away. The white band near the edge is the 35 cm wide veto region. The PMT dis-

tributions in the main detector region and the veto region are shown. Image taken from

[72].

at a radius of 574.6 cm which separates an inner main detector region from an outer veto

region. Mounted to the inside of this shell pointed toward the center of the tank are 1280

8-inch Hamamatsu photomultiplier tubes which provide an 11.3% photocathode cover-

age of the main detector region. The outer 35 cm thick veto shell is instrumented with

240 8-inch PMTs used to detect entering and exiting charged particles, particularly cosmic

rays. Figure 5.12 shows a schematic diagram and photograph of the main detector/veto

region boundary. Surfaces in the main detector have been painted black to minimize re-

flections. Reflected Cherenkov light can appear delayed and isotropic causing it to look

like scintillation light and degrade the particle identification. In contrast, in the veto re-

gion one wants only to ensure the maximum efficiency for recording PMT signals after

the passage of a charged particle, thus the surfaces have been painted white to increase
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Figure 5.12: Engineering drawing [72] and photograph showing the PMT support struc-

ture which acts as the boundary between the main detector region (black) and the veto

region (white).

reflections.

The detector tank sits below ground level inside a 13.7 m diameter cylindrical vault

which acts as a secondary containment for the oil. Above the vault is a room which houses

the detector’s electronics and utilities. An earth overburden covers the MiniBooNE detec-

tor building such that the minimum earth equivalent that a cosmic ray must traverse to

reach the detector is ∼3 m reducing the cosmic trigger rate to below 10 kHz. Figure 5.13

shows the detector inside its enclosure and the surface building above. Also visible is

the 2500 gallon capacity overflow tank which allows for thermal expansion of the oil and

provides a means by which the oil can be recirculated.
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Figure 5.13: MiniBooNE detector containment plant. Image taken from [72].

5.4.1 Oil

The MiniBooNE detector volume is filled with Exxon/Mobil Marcol 7 mineral oil

manufactured by Penreco. It was chosen from ten commercially available products based

on its matching to a set of criteria including high index of refraction, a small dispersion

and long attenuation length in the wavelength range 320 to 600 nm, low reactivity with

the materials in the detector, and a small amount of scintillation light. A more detailed

description of these qualities is important for an accurate simulation of the detector so

this will be saved for Chapter 7.

Mineral oil was chosen to fill the detector volume instead of water for several reasons.

The higher index of refraction of mineral oil (noil = 1.474, nwater = 1.33) together with

the lower density (ρoil = 0.86 g/cm3, ρwater = 1.00 g/cm3) results in considerably more

Cherenkov light being produced by electrons in oil. The higher index of refraction also

means a lower velocity of light in oil which improves the event vertex resolution (recon-

structed from PMT time information) and lowers the threshold for Cherenkov production

of muons, pions and protons. Table 5.2 lists the thresholds for the most important parti-

cles in the detector in both oil and water for comparison. Also, since the µ− capture rate

4At λ = 589.3 nm and T = 20.0◦
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Particle Cherenkov Threshold

oil, n = 1.47 water, n = 1.33

electron 0.7 MeV/c 0.8 MeV/c

muon 144 MeV/c 160 MeV/c

pion 190 MeV/c 212 MeV/c

proton 1280 MeV/c 1423 MeV/c

Table 5.2: Energy threshold for production of Cherenkov radiation for four important

particle types in mineral oil and water.

is lower at 8% in oil compared to 20% in water, more muon events can be rejected simply

by the presence of the decay electron.

5.4.2 Photomultiplier tubes

Two types of PMTs are used in the MiniBooNE detector; 1198 Hamamatsu [139] R1408

8-inch tubes inherited from the LSND detector and 322 newer model Hamamatsu R5912

8-inch tubes purchased specifically for MiniBooNE. The charge and time resolutions, high

voltage level required to achieve a gain of 1.6× 107 electrons per photoelectron (PE), and

dark noise rate were measured for each of the 1520 PMTs used in the detector. The average

values for the two types of tubes, taken from [74], are compared in Table 5.3. Because of

their better time and charge resolutions, all 322 new PMTs were used in the main tank. Of

the old tubes, those determined to have low dark noise levels were used in the outer veto

region.

5.4.3 PMT charge and time signals

A single coaxial cable carries high voltage to each photomultiplier and also any signals

back from the PMT anode. For each recorded event, charge and timing information is

needed for all 1520 PMT channels. The PMT signals are amplified about 20× by preamps

and passed on to the charge/time digitization boards (QT boards). Signals on the QT

boards are sampled at 10 MHz and the charge and time information is determined as
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Hamamatsu R1408 Hamamatsu R5912

count 1198 322

dynode stages 9 10

charge resolution @ 1 PE ∼130% ∼40%

time resolution ∼1.7 ns ∼1.1 ns

operating voltage ∼1.9 kV ∼1.7 kV

gain 1.6× 107 electrons/PE 1.6× 107 electrons/PE

Table 5.3: Average properties of the two types of photomultiplier tubes used in the Mini-

BooNE detector. Data from [74].

illustrated in Figure 5.14.

The amplified anode signal, Vpmt, feeds an integrating capacitor located in the QT

board which generates the slow signal, Vq (τ ≈ 1.2 µs). If Vpmt passes the discriminator

threshold (∼0.25 photoelectrons), the discriminator is fired starting the time ramp signal,

Vt. This signal rises linearly for two 100 ns clock ticks before quickly returning to baseline.

When a trigger condition is met, the detector data stream consists of the following for each

PMT channel:

• PMT channel number

• the clock tick, from the start of the event, that precedes the discriminator firing

• the four digitized values of Vq recorded at (t− 1) – (t+ 2) in Figure 5.14. This is the

so-called charge quad.

• the four digitized values of Vt recorded at (t− 1) – (t+ 2) in Figure 5.14. This is the

so-called time quad.

The two ADC readings at t and t+ 1 are sufficient to extrapolate back to the baseline and

determine the time relative to the preceding clock tick at t− 1, traw. The raw charge, qraw,

is determined from the four digitized values of Vq and knowing the delay constant of the

integrating capacitor.
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Figure 5.14: Charge and time signals for a single PMT. The amplified anode pulse, Vpmt, is

integrated and convolved with a slow exponential to produce the analog signal, Vq. The

vertical line marks when the anode signal crosses the discriminator threshold and starts

the linear time ramp signal, Vt. Vq and Vt are digitized by FADCs every 100 ns. Image

adapted from [72].
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5.4.4 Calibration systems

Calibration systems are required to provide information on PMT charge and time re-

sponse and to tune and verify simulation and reconstruction algorithms. Two systems are

used: a laser calibration system, and a cosmic muon calibration system.

5.4.4.1 Laser calibration system

The MiniBooNE laser calibration system is comprised of a pulsed diode laser con-

nected via optical fibers to four dispersion flasks inside the detector volume. Each flask,

10 cm in diameter, is filled with a dispersive medium called Ludox R©. In addition to the

flasks there is a bare optical fiber near the top of the tank which emits light in a cone at

about 10◦. The laser system is continuously pulsed at 3.33 Hz (but vetoed by a beam trig-

ger) allowing the generation of calibration data on regular intervals (approximately every

four days). These data are used to generate several important calibrations for reconstruct-

ing PMT signal times and charge amplitudes from traw and qraw.

• time offset correction, toffset, due to the the dynode chain, cabling and electronics for

each PMT channel

• time slewing correction, tslew(qraw), to account for the varying time taken to reach

threshold depending on the raw charge amplitude

• PMT gain calibration for converting qraw into a number of photoelectrons hitting the

PMT surface

The reconstructed time (in nanoseconds) and PE (photoelectrons) for each PMT channel

are given by

t = 100 · (Nt−1) + traw + toffset + tslew(qraw)

PE = qraw/Gain
(5.2)

where Nt−1 is the number of 100 ns clock ticks from the beginning of the event to the tick

that precedes the discriminator firing for that channel, (t− 1) in Figure 5.14.
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Figure 5.15: Schematic drawing of the muon tracker and cube calibration system. There

are seven such cubes located throughout the detector. The drawing is not to scale.

5.4.4.2 Cosmic muon calibration system

The muon calibration system [81] consists of a scintillator hodoscope located above

the detector and seven scintillator cubes located throughout the detector volume. The

muon hodoscope is comprised of two horizontal planes separated vertically by 1.5 m.

Each plane contains two orthogonal layers of Bicron BC-408 plastic scintillator strips in-

strumented with 2-inch PMTs such that the (x, y) position of a passing particle can be

determined. The particle’s path can then be extrapolated into the MiniBooNE detector

below with directional resolution σθ ≈ 2◦ and position resolution σx,y ≈ 10 cm at the

main tank boundary (r = 575 cm).

Each cube is a 5 cm × 5 cm × 5 cm block of plastic scintillator housed in an aluminum

casing with an optical fiber leading to a 1-inch PMT for readout. Cosmic muons which

pass through the hodoscope, enter the tank from above, stop in one of the cubes and decay
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Cube depth (cm) 〈Range〉 (g/cm2) 〈Tµ〉 MeV

31.3 28 ± 1 96 ± 2

60.3 54 ± 1 156 ± 2

100.5 89 ± 1 229 ± 3

200.8 174 ± 2 407 ± 4

298.1 256 ± 4 580 ± 8

401.9 344 ± 4 768 ± 9

Table 5.4: Position of scintillation cubes in the MiniBooNE detector. The depth is the

vertical distance from the center of the cube to the optical barrier as shown in Figure 5.15.

The average range and kinetic energy for muons stopping in each cube are given.

(see Figure 5.15) can be used to study the energy scale for muon track reconstruction. One

knows the entry point and stopping point of the muon to ≤ 5 cm and thus can determine

the amount of oil the muon traverses. Using ionization energy loss tables based on the

Bethe-Bloch formula one can deduce the muon kinetic energy. Table 5.4 lists the depths

and average muon kinetic energies for six of the scintillator cubes. Figure 5.16 shows

the correlation between this expected muon energy and the reconstructed visible energy

from PMT information for both data and simulation. Taking advantage of large available

statistics the samples for each cube have been separated into two samples with slightly

different average path lengths and muon kinetic energies.

5.4.5 Trigger conditions

The MiniBooNE trigger logic is constructed in software using external information

from the Booster, the internal calibration systems and detector PMT multiplicities. PMT

sum cards are used to total the PMTs in the main tank and veto region which fire the dis-

criminator during a clock tick. Several trigger types are based on the totals Ntank and/or

Nveto . For each triggered event, in addition to the digitized charge and time information

for all PMT channels listed above, a global time stamp for the event, the type of trigger,

and neutrino beam quality information from ACNET is recorded. There are several basic
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Figure 5.16: Energy reconstructed from PMT signals vs. the expected muon kinetic energy

from the muon tracker and cube system geometry for both data (filled circles) and Monte

Carlo (open circles). Plot taken from [81].

categories of trigger. The following is not an exhaustive list but describes the most rele-

vant triggers for the oscillation search including detector calibration. A complete list of

triggers can be found in [70].

• Beam triggers - The principle physics trigger is simply the arrival of proton beam

from the Booster to the neutrino beamline target. All detector information is recorded

for a 19.2 µs window (192 contiguous 100 ns clock ticks) surrounding the 1.6 µs wide

proton pulse. The NuMI neutrino beamline also acts as a trigger as MiniBooNE can

detect neutrinos from their beam [97, 86].

• Random and calibration triggers - Detector activity is randomly sampled outside

of the beam window at 2.01 Hz and is referred to as the Strobe trigger. The firing

of the calibration laser, scintillator cube activity, or a 4-fold coincidence in the muon

tracker all trigger the recording of a calibration event.

• Cosmic triggers - Several triggers have been designed to record events from cosmic,

non beam related, non neutrino related, activity. Large pre-scale factors are used
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Trigger Rate (Hz) Pre-scale Time Window (µs)

Booster beam 2–5 1 19.2

NuMI beam 0.5 1 19.2

Strobe 2.01 1 19.2

Laser 3.33 1 9.6

Cube 1.1 1 12.8

Tracker 0.7 170 12.8

Michel 1.2 600 19.2

Tank 0.4 90000 19.2

Veto 0.4 5000 19.2

Table 5.5: MiniBooNE detector trigger types and properties.

due to the high rate of such events. A Michel trigger happens when a low-energy

tank event (Ntank ≥ 24, Nveto < 6) occurs between 3 µs and 15 µs after a cosmic

muon-like event (Ntank ≥ 100, Nveto ≥ 6). The Tank trigger is simply Ntank ≥ 10

and the Veto trigger is Nveto ≥ 6.

Table 5.5 lists the approximate rates and pre-scale factors of the triggers listed above

as well as the length of the trigger window that is opened for each. The total trigger rate

(including those not listed here) is ∼26 Hz.
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Chapter 6

Oscillation Analysis Overview

Before we proceed further toward our goal of presenting a search for νµ → νe

oscillations at MiniBooNE, it is instructive to give an overview of the analysis,

identify the important backgrounds to a νe appearance search, and look at

some basic properties of the data.

6.1 Overview

As stated in Section 5.2, the primary objective of MiniBooNE is to search for an excess

of νe-induced events consistent with a νµ → νe oscillation hypothesis. An oscillation

consistent with that reported by LSND would imply an excess of roughly 0.3% of the

νµ flux, or O(100) νe charged-current quasi-elastic events. The rejection efficiency for νµ-

induced background events in the analysis must, therefore, be greater than 99% while

maintaining a high efficiency for selecting νe-induced events.

Charged-current interactions are used because one can determine the neutrino’s fla-

vor by identifying the charged lepton produced in the event. Further, oscillations are an

energy dependent phenomenon, and charged-current quasi-elastic (CCQE) scattering,

ν` + n → p + `+ ,

being a two-body interaction, allows one to reconstruct the incident neutrino’s energy

from the outgoing charged lepton’s energy and angle. Therefore, it is in an energy distri-

bution of candidate νe CCQE events where one looks for an excess above a background
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of both intrinsic beam νe-induced and misidentified νµ-induced events.

In Section 6.2 we describe the neutrino interactions which make up the backgrounds

and potential signal. In Section 6.3 we explain how a few simple cuts on basic event

information can reject 99.99% of cosmic ray induced backgrounds and ∼ 80% of beam

related νµ charged-current events. The remaining needed background rejection will be

achieved through a sophisticated particle identification algorithm to be presented in the

next chapter.

A Monte Carlo simulation of the experiment will be used to predict the background

rates and determine their uncertainties. However, several methods have been employed

which use MiniBooNE data to directly constrain the most important physics models and

background contributions to the νe appearance search. These are presented in detail in

Chapters 7 and 8.

6.2 Neutrino events in the MiniBooNE detector

Figure 6.1 shows Feynman diagrams of the most relevant neutrino interactions within

the MiniBooNE detector. In each diagram, the final state particles which produce Cherenkov

light have been highlighted in red. In addition, any final state nucleons which are below

Cherenkov threshold will produce a small amount of scintillation light. It is important

to note that the MiniBooNE detector is incapable of distinguishing between an electro-

magnetic shower initiated by an electron and one initiated by gamma conversion. The

interactions shown in Figure 6.1 are:

a) νe charged-current quasi-elastic (CCQE) scattering. These events comprise a potential

signal as well as an irreducible background of intrinsic νe that will need to be estimated

with sufficient accuracy. The electron in the final state identifies the neutrino as νe and

allows an estimation of the neutrino’s energy.

b) νµ charged-current quasi-elastic scattering. Roughly 82% of these events can be tagged

by the presence of the muon’s Michel electron produced in stopped muon decay (µ→

eνν); those without an associated Michel must be separated from electrons by their

distinct Cherenkov light patterns (see next sections).
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Figure 6.1: Feynman diagrams of four important neutrino interactions for the νe appear-

ance search: a) νe charged-current quasi-elastic (CCQE) scattering b) νµ CCQE scattering

c) νµ neutral-current (NC) resonant π0 production and d) νµ NC ∆ radiative decay. The

final state particles which produce Cherenkov light in the detector have been highlighted

in red.

c) νµ neutral-current interactions producing a neutral pion which decays to two photons.

NC π0 events can be identified by the presence of two electron-like showers pointing

back to a common vertex; if either photon is lost, however, then these events become

indistinguishable from νe CCQE events. The diagram shows resonant π0 production

(through a ∆ resonance decay), but coherent production, where the target nucleus is

left in the ground state, may also be possible.

d) νµ neutral-current interactions producing a ∆0 or ∆+ resonance which decays radia-

tively, producing a single photon. Events with a single photon final state cannot, in

principle, be distinguished from a νe CCQE event.

The latter three event types constitute the majority of the νµ mis-ID backgrounds in the

νe CCQE sample, and must be considered carefully. In Section 7.2, when discussing the

MiniBooNE neutrino cross-section models, we will focus on these interactions. In Section
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7.2.1, we describe how the high statistics νµ CCQE sample has been used to tune the

charged-current quasi-elastic scattering model which applies to both νµ and νe. In Section

7.2.2, we present a procedure which uses the observed NC π0 event rate at MiniBooNE

to make an absolutely normalized prediction of the π0 and ∆ → Nγ backgrounds in

the νe sample. In Chapter 8, we discuss a method for constraining the intrinsic beam νe

background using the observed νµ CCQE sample.

6.3 Initial data reduction: subevents and Ntank, Nveto

Three basic pieces of information from an event are used in an initial reduction of

the total MiniBooNE data sample toward isolating νe CCQE candidates. These include

the number of time-separated clusters of PMT hits, known as “subevents”, and the total

number of tank and veto PMTs which have registered a hit in each subevent.

As described in Section 5.3.1, protons are delivered to the Booster Neutrino Beam in

1.6 µs long pulses at 15 Hz. The MiniBooNE detector DAQ records all detector activity

within a 19.2 µs window beginning 4.6 µs before the start of each spill. Within this beam

trigger window, clusters of PMT hits in time, corresponding to different particle tracks in

the detector, are clearly visible. Figure 6.2 shows an example for a single beam trigger.

The two distinct clusters are examples of subevents (SE) within a single trigger. Strictly,

subevents are defined as≥ 10 PMT hits separated by less than 10 ns. Figure 6.2 is an exam-

ple of a νµ CC event; the primary µ is seen in the beam window and several microseconds

later the Michel electron from its decay is clearly visible.

As mentioned above, ∼ 82% of νµ CC events can be rejected by the presence of their

Michel electrons as a second subevent. Of the remaining 18%, 8% of µ− capture on carbon,

8% of muons decay too quickly for the electron to be separated from the primary µ event,

and about 2% of Michel electrons are below threshold. The other interactions shown in

Figure 6.1 (νe CCQE, NC π0 and ∆ → Nγ ), all of which do not contain a decaying muon,

will create a single subevent only.

Figure 6.3 shows the time distribution of all such subevents (determined as the av-

erage calibrated time of the hits making up each subevent) for a set of beam triggers.
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Figure 6.2: PMT hit time distribution for a single beam trigger with two clear subevents

(SE). The event is a candidate νµ CCQE event where the first subevent is the muon and

the second is the Michel electron from the muon’s decay.

The low duty factor of the proton beam from the Booster makes the beam-on excess of

events clearly visible. The flat background is due to cosmic muons (∼10 kHz) and their

decay electrons. The excess is due to beam neutrino interactions and the decays of muons

created in those interactions. The Michel electrons from these decays account for the in-

crease during the beam spill and the exponential fall-off following the spill. Two simple

cuts reduce the cosmic background to less than 0.1%.

• Ntank ≥ 200: The Michel endpoint at 52.8 MeV translates into a maximum number

of PMT hits in the tank around Ntank = 180. Figure 6.4 shows the Ntank distribution

for the 2nd subevent in a sample with exactly 2 subevents. The right panel shows

the reconstructed energy for the 2nd subevent. The distribution is consistent with

a Michel electron energy spectrum smeared by a resolution function. Figure 6.3

shows how the cut at Ntank > 200 removes the Michel electron features from the

time distribution.

• Nveto < 6: Figure 6.5 shows the distribution of Nveto for beam triggers. Two non-
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Figure 6.3: Time distribution for subevents (see text) in a sample of beam triggers. The ex-

cess of events in the beam spill is evident (black). A minimum requirement on number of

tank PMTs above threshold, Ntank ≥ 200, removes low energy Michel electrons produced

in muon decays (green). A cut on veto activity, Nveto < 6, removes cosmic muons entering

through the veto shell (red). Applying both cuts removes > 99.99% of non-beam-induced

events (blue).
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Figure 6.4: Number of tank PMT hits Ntank (left) for the second subevent in a SE == 2 sam-

ple. These are Michel electron candidates from stopped muon decays. The reconstructed

energy (right) is consistent with the expected Michel electron spectrum convolved with

an energy resolution function (14.8% at the Michel endpoint of 52.8 MeV).

zero peaks are visible. The first is from cosmic muons entering the veto and stopping

in the detector (usually producing a Michel electron). The second is muons pene-

trating the entire detector and passing through the veto shell twice. This veto cut

removes both types.

The application of the Ntank and Nveto cuts removes 99.99% of non beam-induced back-

grounds as can be seen in Figure 6.3. An additional timing cut of 4600 ns ≤ t ≤ 6200 ns

removes the few out-of-beam-spill events which passed the Ntank and Nveto cuts.

6.4 Electron/muon Cherenkov light patterns

The ∼18% of νµ CCQE events which cannot be rejected on the basis of having two

distinct subevents from the muon and Michel electron must be rejected based on the dif-

ferent Cherenkov light patterns of a muon and an electron in the detector. For muons,

the angular deflections caused by multiple Coulomb scattering are small, so the outside

edge of the Cherenkov cone tends to be sharp. Also, the range in oil of an O(1 GeV)

muon is several meters, so the ring will be partially or completely filled in as the muon

approaches the walls of the tank. Electrons, on the other hand, will lose energy through
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Figure 6.5: Number of veto PMT hits Nveto for beam trigger events. The two peaks from

cosmic muons are clearly visible (see the text). The spike at Nveto = 0 are beam-induced

neutrino events. The vertical line at Nveto = 6 marks the cut used to reject cosmic muon

events.

bremsstrahlung and scatter to larger angles. The result is a diffuse ring of hit PMTs with

a diameter defined by the Cherenkov angle and the distance of the electron from the tank

wall.

Figure 6.6 illustrates the effect for electrons and muons. The right plots show the

angular distribution of hits in the MiniBooNE detector. Using a 2 subevent sample (νµ

CC events), each subevent has been further subdivided into prompt (|t − tSE | < 5 ns)

Cherenkov radiation and delayed (t − tSE > 5 ns) isotropic scintillation light. The dis-

tinct profiles are evident. Note that Figure 6.6 compares data to the simulation and shows

excellent agreement. Section 7.3 will discuss the simulation of light production and prop-

agation in the MiniBooNE detector. Section 7.5 will describe how these differences in

the light angular distributions shown in Figure 6.6 are used in the particle identification

algorithm to separate νe and νµ charged-current quasi-elastic events.
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Figure 6.6: Cherenkov light patterns of electrons and muons in the MiniBooNE detector.

The right plots show the angular distribution of PMT hits with respect to the electron

or muon direction. Red points (data) and histograms (MC) are the prompt Cherenkov

light. Blue points (data) and histograms (MC) are the contribution from more delayed

scintillation light.
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Chapter 7

MiniBooNE Simulation and

Reconstruction Algorithms

A detailed and accurate simulation of the experiment is critical to the search

for νµ → νe oscillations at MiniBooNE. In this chapter, we describe the com-

ponents of the simulation and the techniques used to constrain the charged-

current quasi-elastic scattering model and the νµ mis-ID backgrounds intro-

duced in Chapter 6. The MiniBooNE simulation is comprised of three separate

Monte Carlo programs: the beam simulation, the neutrino interaction model

and the MiniBooNE detector simulation.

7.1 Simulation of the Booster Neutrino Beam

A sophisticated Monte Carlo program has been developed to simulate the Booster

Neutrino Beamline (BNB) in order to predict the neutrino fluxes (νµ, νµ, νe, νe) as a func-

tion of neutrino energy (per proton on target per unit area) at a given detector location. To

facilitate the ability to predict fluxes for different detectors and as a method for applying

statistical enhancements to the neutrino flux predictions, two separate simulation codes

are used. The first, a Geant4-based Monte Carlo, simulates all relevant processes from

primary protons hitting the target to the point of decay of mesons which create neutri-

nos. The second program, a FORTRAN-based Monte Carlo code, uses the output of the
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Geant4 simulation and generates the kinematics of the neutrino(s) produced in each me-

son decay and extrapolates the neutrino’s path to determine if it crosses the location of a

specified detector. The decay of each meson can be repeated many times to increase the

statistical precision of the flux predictions at distant detectors. The most comprehensive

descriptions of the BNB Monte Carlo can be found in [94] and [69].

7.1.1 Geant4-based Booster Neutrino Beamline Monte Carlo

Geant4 [125, 126, 127] is a C++ software toolkit for the simulation of the passage of

particles through matter. The physics interface of Geant4 facilitates the use of a variety

of built-in physics packages or the implementation of custom models by the user. The

BNB Monte Carlo takes advantage of both of these possibilities. The BNB Monte Carlo

can effectively be broken into five components:

• The definition of the beamline geometry, specified by the shape, location and mate-

rial composition of the components of the BNB, through which all simulated parti-

cles must be tracked. This includes the simulation of the magnetic field within the

horn volume.

• The generation of primary protons according to the expected beam optics properties.

• The simulation of inelastic interactions of primary protons with the beryllium target.

Due to the importance of primary hadron production in the target, a custom model

of the inclusive production of p, n, π+, π−, K+, K− and K0 in p+Be interactions at

8.9 GeV/c has been implemented.

• The propagation of particles through the beamline geometry accounting for energy

loss and electromagnetic and hadronic processes that can alter their kinematics or

lead to the production of tertiary particles. The simulation of these interactions is

based on a combination of built-in hadronic interaction models and custom built

cross-section tables for interactions in the most important materials, beryllium and

aluminum.

• The identification of decay processes that result in neutrinos.
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Both hadronic and electromagnetic processes are considered for all particles tracked

in the simulation. The most important electromagnetic processes, including particle tra-

jectories through the horn magnetic field, multiple Coulomb scattering and energy loss

by ionization, have been described and their simulations carefully validated in [94]. Here

we will focus on the simulation of hadronic processes. Three forms are considered: elas-

tic scattering, quasi-elastic scattering and inelastic interactions which produce final state

particles different from those in the initial state. Elastic scattering refers to coherent scat-

ters of hadrons off a nucleus as a whole. Quasi-elastic scattering involves the scattering

of hadrons off nucleons within the nucleus in a manner analogous to elastic scattering of

hadrons off free nucleons.

The simulation of each process is divided into two components. The first is the de-

termination that an interaction has occurred based on the total cross-section (or rate) for

that process. The total elastic cross-section, σELA, total quasi-elastic cross-section, σQEL,

and total inelastic production cross-section, σPROD, combine to give the total hadronic in-

teraction cross-section, σTOT. The later two, σQEL and σPROD, combine to give the total

inelastic cross-section, σINE.

σTOT = σELA + (σQEL + σPROD) = σELA + σINE. (7.1)

The second component is the determination of the final state particles and their kine-

matics based on available models of differential cross-sections.1 The BNB simulation re-

quires a complete description of elastic, quasi-elastic and inelastic interactions for the most

relevant hadrons (p, n, π+, π−, K+, K−, K0) in the most relevant materials (Be, Al, Fe, con-

crete) in the most relevant energy ranges (Ep,n ≤ 8 GeV, Eπ±,K ≤ 6 GeV).

A combination of custom-built and built-in Geant4 models have been used in the BNB

Monte Carlo. Relevant data is used to tune the cross-section tables wherever possible,

particularly for the critical inelastic interactions of primary protons with beryllium. Ta-

ble 7.1 summarizes the sources of the models for the most relevant hadronic interaction

cross-sections in the default configuration of the BNB Geant4 Monte Carlo. The custom
1The three built-in physics models introduced in Section 2.2, the “Low Energy Parameterization Driven

Model”, the “Bertini Intranuclear Cascade Model” and the “Binary Cascade Model”, are examples of differ-

ential cross-section models for determining final states.
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Interaction σTOT σQEL σINE
final state
kinematics

p+Be (Kp ≥ 7.5 GeV) Data Data/MARS

p+Be (Kp ≥ 7.5 GeV) Glauber Shadow G4 LHEP

p+Be (Kp < 7.5 GeV) Glauber Shadow Data G4 LHEP

p+Al Glauber Shadow Data G4 LHEP

n+Be Data/Glauber Shadow same as p+Be G4 LHEP

n+Al Data/Glauber Shadow same as p+Al G4 LHEP

π± +Be Data/Glauber Data/Shadow Data G4 LHEP

π± +Al Data/Glauber Data/Shadow Data G4 LHEP

K± +Be, K0 +Be G4 default G4 default G4 default G4 LHEP

K± +Al, K0 +Al G4 default G4 default G4 default G4 LHEP

X+other G4 default G4 default G4 default G4 LHEP

Table 7.1: Summary of the sources of the models for the most relevant hadronic interaction

cross-sections in the BNB simulation. σINE is the total inelastic cross-section. σPROD can

be determined from σPROD = σINE − σQEL. σELA is determined from σELA = σTOT −

σINE. “Data”, “Shadow” and “Glauber” all refer to custom-built models implemented

specifically for the BNB Monte Carlo (see the text). “G4 LHEP” refers to the Low Energy

Parameterization Driven Model [124], a built-in Geant4 model. “G4 default” refers to cross-

section tables available in Geant4 for hadronic processes.

model for p+Be inelastic interactions at Kp ≥ 7.5 GeV is described below, followed by an

overview of the models developed for (p/n/π/K)+(Be/Al) total cross-sections.

7.1.1.1 Simulation of the beamline geometry

A basic feature of the Geant4 simulation toolkit is the ability to define geometric vol-

umes and their material compositions. A careful definition of the relevant objects in the

BNB has been created which includes the aluminum horn, beryllium target, both concrete

and iron shielding, the dolomite surrounding the decay region and the 25 m and 50 m
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Figure 7.1: The Booster Neutrino Beamline geometry as defined in the Geant4 Monte

Carlo. The images show the full 50 m decay region (top left), the target hall (top right),

horn (bottom left) and target (bottom right). Images taken from [94].

beam absorbers.

Figure 7.1, taken from Ref. [94], shows the beamline geometry at four different zoom

levels as implemented in the Geant4 simulation using a VRML [137] viewer. Beryllium,

aluminum and iron are rendered in red, green and blue, respectively.

7.1.1.2 Simulation of the primary proton beam

Each Monte Carlo event begins with the generation of a single 8 GeV kinetic energy

primary proton directed at the upstream face of the beryllium target. This approach is

sufficient (and even preferred) since no correlated effects between protons in a bunch are

expected.

The beam optics of the 8 GeV beamline are accurately simulated in order to account for

its effect on the neutrino flux prediction. The coordinate system used has the z-axis along
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the beam direction and the y-axis upward. In this frame, the initial position (x0, y0, z0)

and 3-momentum (px0 , py0 , pz0) are randomly generated from specified beam optics pa-

rameters:

x0 = x+R1σx px0 =
√
E2

p −m2
p(θx +R3σθx)

y0 = y +R2σy py0 =
√
E2

p −m2
p(θy +R4σθy)

z0 = z pz0 =
√
E2

p −m2
p − p2

x0
− p2

y0

(7.2)

where R1 − R4 are independent random numbers drawn from a standard normal distri-

bution (mean = 0, variance = 1), Ep = 8 GeV is the proton kinetic energy, mp is the proton

mass and (x, y, θx, θy, σx, σy, σθx , σθy ) are the parameters describing the proton beam pro-

file. In the default configuration, primary protons are generated 1 cm upstream of the

target face (z = -1.0 cm) and using the values listed in Table 5.1 to describe the beam

optics.

7.1.1.3 Simulation of hadronic cross-sections in the beamline

Table 7.1 lists the models used for the most relevant hadronic interactions within the

BNB and indicates where data have been used to constrain or check the models. The most

important secondary interactions occur in the beryllium target or the aluminum horn and

particular attention has been given to these interactions. Data has been used whenever

available to constrain or check the models. The total hadronic cross-sections for protons

and neutrons were calculated using the Glauber model [113] as described in [114]. The

few data available have been used as a cross-check on the theoretical calculation. The

inelastic cross-section model takes advantage of a large set of experimental data and fits

these to parameterizations sufficiently sophisticated to reproduce the features of the data

(particularly resonances in the π± inelastic cross-sections). The measurements of quasi-

elastic scattering are again sparse, so a theoretical model has been used; σQEL is calculated

as the incoherent sum of the cross-sections for scatters off the nucleons within the nucleus

using the shadowed multiple scattering expansion [113]. σPROD and σELA are determined

from these calculations via σPROD = σINE − σQEL and σELA = σTOT − σINE. A very

complete description is provided in [69] and the reader is referred there for details of the

models and data used.
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Each theoretical calculation of the cross-section or sample of data (where available) are

fit to smooth parameterizations across the relevant momentum ranges for use in the sim-

ulation. Figures 7.2, 7.3 and 7.4 show the hadronic cross-section models used for p, n, π+

and π− in beryllium and aluminum. These total cross-sections, plus the differential cross-

sections for primary hadron production at pB = 8.9 GeV/c discussed in the next section,

constitute the custom parts of the BNB Monte Carlo. All other interactions, accounting

for < 1% of the neutrino flux prediction, use default Geant4 models.

7.1.1.4 Simulation of primary p+Be inelastic interactions in the target

In Chapter 2 we explored the relative impact of primary and secondary hadronic inter-

actions for the MiniBooNE neutrino flux where ’primary’ was defined as the interaction

of beam protons with the beryllium target at 8.9 GeV/c.2 Those studies not only revealed

that primary interactions are significantly more important for an accurate flux prediction,

but also that the variation in available Geant4 models is of order 50–100%. For this rea-

son, we use a custom-built physics model for the simulation of inelastic production of the

most important secondaries (π+, π−, K+, K−, K0, p, n) in proton+beryllium interactions

at 8.9 GeV/c.

The simulation proceeds in the following steps:

1. For each secondary considered, a table of double-differential inclusive production

cross-sections is built in bins of longitudinal and transverse momentum of the sec-

ondary hadron, pz and pT :

d2σp+Be→h+X

dpzdpT
=


(

d2σ
dpzdpT

)
00

(
d2σ

dpzdpT

)
01

· · ·(
d2σ

dpzdpT

)
10

· · ·

· · ·


Each table is defined in the range 0 GeV/c < pz < 10 GeV/c (50 bins 200 MeV/c

wide) and 0 GeV/c < pT < 1 GeV/c (100 bins 10 MeV/c wide).

2In practice, beam protons may lose a small amount of energy before an inelastic collision occurs, so

interactions are considered ’primary’ in the Monte Carlo if the proton kinetic energy is greater than 7.5 GeV.
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Figure 7.2: (p/n)+Be (left) and (p/n)+Al (right) hadronic cross-section models used in

the BNB Geant4 simulation. The total hadronic (top), inelastic (middle) and quasi-elastic

(bottom) cross-section models are shown in the relevant momentum ranges. The available

data are plotted with the models for comparison. Plots taken from [69].
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Figure 7.3: π+ +Be (left) and π− +Be (right) hadronic cross-section models used in the BNB

Geant4 simulation. The total hadronic (top), inelastic (middle) and quasi-elastic (bottom)

cross-section models are shown in the relevant momentum ranges. The available data are

plotted with the models for comparison. Plots taken from [69].
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Figure 7.4: π+ +Al (left) and π− +Al (right) hadronic cross-section models used in the BNB

Geant4 simulation. The total hadronic (top), inelastic (middle) and quasi-elastic (bottom)

cross-section models are shown in the relevant momentum ranges. The available data are

plotted with the models for comparison. Plots taken from [69].
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2. Determine the average multiplicity per inelastic interaction for each secondary by

integrating over the differential cross-section and normalizing to the total inelastic

production cross-section

〈Nh〉 =

∑
pz ,pT

(d2σh/dpzdpT ) ∗ (dpzdpT )
σPROD

(7.3)

3. The total production cross-section, σPROD, at 8.9 GeV/c determines the rate of inelas-

tic interactions within the target. Once an inelastic interaction occurs the number of

each secondary produced is drawn from a Poisson distribution with mean 〈Nh〉.

4. The kinematics (pz , pT ) for each secondary in the event are randomly determined

from the weighted elements in the cross-section tables from step 1.

Once generated, secondary hadrons are propagated through the geometry by Geant4

and subsequent hadronic interactions are controlled by cross-section tables and final state

models described in Section 7.1.1.3.

Filling the inclusive cross-section tables The inclusive double-differential production

cross-section tables for π+, π−, K+ and K0 are filled from smooth parameterizations of

available production data. The tables for K−, p and n production are filled using cross-

sections extracted from the MARS15 [121] Monte Carlo program.

Two different parameterizations have been used and are described in Appendix B.

They are the 9 parameter model of Sanford and Wang (SW) given in Eq. B.1 and used to

describe π+, π− and K0 production, and a 7 parameter model based on Feynman scaling

(FS) given in Eq. B.7 and used to describe K+ production. The pion models are deter-

mined using data from the E910 [101] and HARP experiments, the latter being the data

described previously in this dissertation. The K+ model is based on data from 8 kaon

production experiments and the K0 model is based on E910 data and those of Abe et al

[106]. The details of the fitting procedure, the results, the quality of the fits and errors on

the parameters are described in detail in [69] and summarized in Appendix B.
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Parent Lifetime (ns) Decay mode (positives) Branching ratio (%)

π+/π− 26.03 µ+ νµ 99.9877

e+ νe 0.0123

K+/K− 12.385 µ+ νµ 63.44

π0 e+ νe 4.98

π0 µ+ νµ 3.32

K0
L 51.6 π− e+ νe 20.333

π+ e− νe 20.197

π− µ+ νµ 13.551

π+ µ− νµ 13.469

µ+/µ− 2197.03 e+ νe νµ 100.0

Table 7.2: Lifetimes and branching ratios of particle decays which produce neutrinos in

the BNB simulation. The decays listed are for the positive parent. The negative parent

decay is the charge conjugate of that listed.

7.1.2 FORTRAN-based meson/lepton decay simulation

The Geant4 simulation tracks all particles until they are absorbed or decay. Those

decays producing neutrinos are recorded in output ntuples for propagation to the next

stage of the simulation. The lifetimes and branching ratios of the neutrino-producing

decays are given in Table 7.2. Each parent meson or lepton’s position, 4-momentum and

polarization at decay are stored. The next stage, a FORTRAN-based code, then simulates

details of the decays [69, 94] as well as provides important statistical enhancements for

the flux predictions. Each neutrino produced is propagated in space to determine if it

intersects the cross-sectional area of the detector defined (a disc 610 cm in diameter, 541 m

from the target and 1.89 m above the beam direction in the case of MiniBooNE). Statistical

enhancements in the predicted neutrino flux at a distant detector are achieved by decaying

each parent multiple times (N = 1000 in standard running mode) earning this Monte Carlo

program its name, “re-decay”.
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Figure 7.5: Neutrino flux predictions for neutrino mode (left) and antineutrino mode

(right). The total fluxes are shown for νµ, νµ, νe and νe for both configurations.

7.1.3 Neutrino flux prediction at the MiniBooNE detector

The neutrino flux prediction at the MiniBooNE detector location according to the BNB

Monte Carlo is shown in Figures 7.5 through 7.7. In Figure 7.5 the total flux of the four

neutrino flavors (νµ, νµ, νe, νe) are shown as a function of neutrino energy, Eν , for both

neutrino mode (horn I = +174 kA) and antineutrino mode (horn I = -174 kA) running of

the Booster Neutrino Beamline.

In Figure 7.6, the neutrino mode fluxes have been further broken down according to

the chain of hadronic processes which created the neutrino. In particular, they are sep-

arated by the primary hadron produced in a p+Be interaction. These plots provide im-

portant information about the history of each neutrino species and the hadronic processes

that are most relevant to predicting their fluxes. In Appendix C we take it one step further

still and look at the fraction of each neutrino’s flux which has been directly constrained

by the HARP cross-section measurements presented in Chapter 4. Figure 7.7 shows the

same breakdown, but for antineutrino running of the BNB.

These figures contain a lot of complicated, energy dependent information. We have

attempted to summarize this information in Table 7.3 which gives the fractional contribu-
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Figure 7.6: Neutrino flux predictions for neutrino mode for each of the four flavors broken

into components based on the chain of hadronic processes which produced the neutrino.

The four panels are νµ (top left), νµ (top right), νe (bottom left) and νe (bottom right).
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Figure 7.7: Neutrino flux predictions for antineutrino mode for each of the four flavors

broken into components based on the chain of hadronic processes which produced the

neutrino. The four panels are νµ (top left), νµ (top right), νe (bottom left) and νe (bottom

right).
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Neutrino flavor Process Contribution

ν mode ν mode ν mode ν mode

p+Be → π± → (. . . ) → νµ 89.5 % 75.5 %

νµ (93.5%) νµ (15.7%) p+Be → K± → (. . . ) → νµ 2.8% 7.4 %

p+Be → K0
L → (. . . ) → νµ <0.1 % <0.5 %

p+Be → p/n→ (. . . ) → νµ 7.7 % 16.4 %

p+Be → π± → (. . . ) → νe 48.8 % 11.2 %

νe (0.5%) νe (0.2%) p+Be → K± → (. . . ) → νe 36.8 % 49.9 %

p+Be → K0
L → (. . . ) → νe 7.0 % 29.6 %

p+Be → p/n→ (. . . ) → νe 7.4 % 9.2 %

p+Be → π± → (. . . ) → νµ 66.5 % 87.4 %

νµ (5.9%) νµ (83.7%) p+Be → K± → (. . . ) → νµ 1.3 % 0.2 %

p+Be → K0
L → (. . . ) → νµ 0.7 % 0.1 %

p+Be → p/n→ (. . . ) → νµ 31.0 % 12.1 %

p+Be → other → (. . . ) → νµ 0.5 % 0.0 %

p+Be → π± → (. . . ) → νe 12.9 % 68.8 %

νe (0.1%) νe (0.4%) p+Be → K± → (. . . ) → νe 6.3 % 3.4 %

p+Be → K0
L → (. . . ) → νe 65.2 % 15.6 %

p+Be → p/n→ (. . . ) → νe 15.4 % 12.2 %

p+Be → other → (. . . ) → νe 0.2 % 0.1 %

Table 7.3: Neutrino flux prediction broken down by neutrino type and hadronic process

for neutrino and antineutrino running modes. The first two columns give the fraction

of each neutrino type which make up the total flux and, therefore, each column adds to

100%. The last two columns give the fraction of that neutrino type which came from the

listed chain of hadronic processes, so each block should add to ∼ 100%.
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tions of each process represented in the figures integrated over all neutrino energies.

7.2 Neutrino cross-section model

MiniBooNE makes use of the NUANCE [128] neutrino event generator code to sim-

ulate neutrino interactions and nuclear effects in the detector volume. NUANCE is a

comprehensive neutrino cross-section simulator which models virtually all relevant pro-

cesses over a broad energy range from Eν ∼ 100 MeV – 1 TeV. Ninety-nine exclusive

reactions are modeled separately and the total cross-section is determined by summing

the contribution from each. As discussed in Section 6.2, the most important of these

for the MiniBooNE oscillation search are charged-current quasi-elastic scattering (CCQE),

neutral-current (NC) π0 production, and the NC production of resonances which decay

radiatively, νN → ∆0,+ → Nγ.

Figures 7.8 and 7.9 give an idea of the current knowledge of these cross-sections. Fig-

ure 7.8 compares the NUANCE predictions for several charged-current cross-sections to

available measurements of the CCQE, CC single pion, deep inelastic scattering, and in-

clusive CC interactions. Many data sets are available to constrain the models, but become

noticeably more sparse in the relevant region below 1 GeV. Comparing the models, the

CCQE interaction clearly becomes the dominant reaction below 1 GeV.

Figure 7.9 exhibits the relative lack of knowledge about NC π0 production. The left

panel compares the NUANCE prediction for resonant production to two available data

points, both in the multi-GeV region. The right panel compares four different models to

two data points for coherent π0 production and demonstrates wide disagreement among

theories. Note the scale of the right panel is two orders of magnitude smaller than the

left. Also, the coherent measurements are reported per carbon atom since it is a coherent

effect, while the resonant cross-sections are per nucleon.

MiniBooNE, which has collected the largest neutrino data set in the world at 1 GeV,

is well positioned to make many relevant and interesting contributions to the physics of

both charged-current and neutral-current interactions. For the purpose of the oscillation

analysis, however, we specifically require the following:
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Figure 7.8: Contributing charged-current neutrino cross-sections vs. energy in the range

Eν ∼ 100 MeV – 400 GeV. The total cross-section (black), charged-current quasi-elastic

(red), single pion production (blue) and deep-inelastic scattering (green) cross-sections

are shown. Plot from G.P. Zeller [].
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Figure 7.9: Neutral-current single pion production cross-sections vs. neutrino energy. The

left panel shows the NUANCE prediction for NC resonant pion production off a bare pro-

ton target. Only two data points are available for comparison. The right panel compares

four models of coherent π0 production off carbon to the two available measurements of

coherent production.

• A charged-current quasi-elastic model which accurately reproduces the data. CCQE

events are used to form the energy distribution where we will search for oscillations.

The cross-section shape as a function of energy and momentum transfer,Q2, must be

well understood. The rate can be further complicated by nuclear effects due to the

target neutrons residing in carbon. As described in Section 7.2.1, the high statistics

sample of νµ CCQE events will be used to extensively study the CCQE interaction

and make corrections to the model as implemented in NUANCE.

• An absolute prediction of the rate of π0 and ∆ → Nγ events in MiniBooNE. The

underlying physics model is much less relevant for neutral-current events. Instead

we require a “dead-reckoning” of the rate at which π0’s and γ’s are produced in

the tank. The probability that a π0 is misidentified as an electron depends directly

on the kinematics of the photons created in its decay which in turn depends on the

momentum of the decaying π0. It is important, therefore, to study π0 production as

a function of momentum. This is described in Section 7.2.2.
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7.2.1 The charged-current quasi-elastic scattering model

The overall basis for the CCQE cross-section model in NUANCE is the formalism of

Llewellyn Smith [116] in which the differential cross-section on a bare nucleon is given by

[115]

dσ

dQ2
=
G2

FM
8πE2

ν

[
A∓ (s− u)

M2
B +

(s− u)2

M4
C

]
(7.4)

where (+)− refers to (anti)neutrino scattering, Q2 is the squared 4-momentum transfer,

GF is the Fermi constant, M is the nucleon mass, Eν is the incident neutrino energy, and

(s − u) = 4MEν − Q2 − m2
` with m` the mass of the charged lepton produced in the

interaction. The Q2 dependence is explicit in the three parameters, A,B and C

A =
(m2

` +Q2)
M2

[
(1 + τ)F 2

A − (1− τ)F 2
1 + τ(1− τ)F 2

2 + 4τF1F2 −m2
`

−
m2

`

4M2

[
(F1 + F2)2 + (FA + 2FP )2 − 4(1 + τ)F 2

P

]] (7.5)

B =
Q2

M2
FA(F1 + F2) (7.6)

C =
1
4
(F 2

A + F 2
1 + τF 2

2 ) (7.7)

where τ = Q2/4M. The two vector form factors, F1 and F2, are given by

F1 =
1 + τ(1 + µp − µn)

(1 + τ)(1 +Q2/m2
V )2

, F2 =
(µp − µn)

(1 + τ)(1 +Q2/m2
V )2

(7.8)

the axial vector form factor is

FA =
gA(

1 + Q2

m2
A

)2 (7.9)

and the pseudo-scalar form factor is

FP =
2M2

m2
π +Q2

FA (7.10)

where mπ is the pion mass, µp and µn are the proton and neutron anomalous magnetic

moments andmV , gA andmA are empirical parameters. High statistics electron scattering
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Figure 7.10: Existing νµ CCQE cross-section measurements (not MiniBooNE) on a variety

of targets vs. Eν compared to the Llewellyn Smith [116] prediction from NUANCE with

mV = 0.84 GeV, mA = 1.0 GeV and gA = -1.26 (solid). Also shown is the cross-section

prediction on carbon from the Smith-Moniz RFG model described in the text (dashed).

data is used to inform our choice for the Q2 dependence of the vector form factors, F1 and

F2. Historically, the value of the vector mass parameter is taken to be mV = 0.84 GeV. In

our simulation, however, empirical fits from [119] are used to determine F1 and F2. The

axial coupling parameter, gA = -1.267, is well determined from neutron beta decay ex-

periments [135]. mA must be determined from neutrino scattering data and the weighted

average from available measurements is mA = 1.03 GeV [117]. Figure 7.10 compares this

model using the parameter values given to existing CCQE cross-section measurements.

The agreement is good, but the experimental uncertainties are large.

While Eq. 7.4 describes the cross-section on a bare nucleon target, the MiniBooNE

target is 12C and hence nuclear corrections must be made. To model scattering off bound

nucleons, NUANCE uses the Smith-Moniz relativistic Fermi gas (RFG) model [118]. The

model assumes a flat nucleon momentum distribution out to some maximum value, the

Fermi momentum, pF (pF = 220 MeV/c for carbon [67]) with a binding energy EB =



176 Chapter 7. MiniBooNE Simulation and Reconstruction Algorithms

34 MeV. In the RFG model, “Pauli-blocking” causes a suppression in the cross-section

for low values of the momentum transfer, Q2. This arises because, as fermions, the struck

nucleon is forbidden from entering a state already occupied by one of the spectator nu-

cleons in the interaction. The dashed curve in Figure 7.10 shows the CCQE cross-section

prediction on neutrons bound in carbon using this model.

The cross-section formalism presented applies both to νe and νµ interactions with the

appropriate change in m`. This allows us to use the high statistics observed νµ CCQE

event sample to finely tune the cross-section model to accurately reproduce quasi-elastic

interactions in the MiniBooNE detector. Figure 7.11 shows a comparison of the NUANCE

prediction of the quasi-elastic event rate as a function of Q2 (dashed) compared to the νµ

CCQE data sample at MiniBooNE (points). The data and Monte Carlo have been relatively

normalized and, therefore, illustrate the discrepancy in the shape of the Q2 dependence of

the cross-section between data and the model.

It was found that the adjustment of two parameters in the model greatly improved

agreement with the data. First, the value of the axial mass parameter,mA, has a significant

effect on the distribution at high Q2, so adjusting its value may improve the disagreement

seen atQ2 > 0.2 GeV2. The lowQ2 region, recall, is strongly affected by the Pauli-blocking

phenomenon mentioned above. The addition of a parameter, κ, as described in [67], pro-

vides control over the amount of Pauli-blocking in the model and thus has particularly

strong effects in the low Q2 region. The values of these parameters, mA and κ, were

determined in a fit to MiniBooNE νµ CCQE data with the result mA = 1.23 ± 0.20 and

κ = 1.019 ± 0.011 [67]. Using these effective parameter values, the predicted νµ CCQE

distribution is shown in Figure 7.11 by the solid line with systematic errors given by the

gray band. The agreement with data is excellent.

This tuning of these parameters accounts for any inadequacies in our axial form factor

assumptions and the RFG-based nuclear model. Also, since these new parameter values

result from relatively normalized fits to the MiniBooNE νµ CCQE data, they do not adjust

for any observed normalization differences between data and the prediction3.

Finally, as mentioned several times, charged-current quasi-elastic scattering is impor-

3The combined effect of the mA, κ change is a 5.6% changed in the total predicted rate of CCQE events.



7.2.2 NC π0 and single γ production 177

Figure 7.11: MiniBooNE νµ CCQE data (points) compared to the default NUANCE model

withmA = 1.03 GeV and κ = 1.0 (dotted) and to the fitted result withmA = 1.23 GeV and

κ = 1.019 (solid). The Monte Carlo curves have been relatively normalized to the data.

Plot taken from [67].

tant to oscillation experiments because it allows the determination of the neutrino’s en-

ergy from the reconstructed kinematics of the outgoing charged lepton4:

EQE
ν`

=
2(Mn − EB)E` − (E2

B − 2MnEB +m2
` + ∆M2)

2[(Mn − EB)− E` + p` cos θ`]
(7.11)

where Mn = 938.7 MeV is the neutron mass, EB = 34 MeV is the binding energy in carbon

[67], m` is the lepton mass, ∆M2 = M2
n − M2

p, and E`, p` and θ` are the reconstructed

energy, momentum and scattering angle of the final state lepton, respectively.

7.2.2 NC π0 and single γ production

The largest νµ-induced background in the νµ → νe oscillation search is the neutral-

current production of π0’s. Most (>90%) π0 events can be identified by the presence of

two Cherenkov rings created by the electromagnetic showers initiated by the photons in
4This is true if one ignores the Fermi motion of the target neutron (maximum pF = 220 MeV/c). A calibra-

tion has been performed to account for this simplification and is detailed in Appendix A of [97]
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Figure 7.12: Absolutely normalized π0 momentum distributions for data (dark points)

and the default Monte Carlo (light points). The ratio Ndata/Nmc is shown below. Plot

taken from [68].

π0 → γγ decay. However, a background to the νe appearance search arises when either

of the photons is not reconstructed. This is most common in asymmetric decays with one

very low energy photon or when one photon exits out the side of the detector.

The NUANCE model of NC π0 production is based on the formalism of Rein and

Sehgal [120] and includes both resonant and coherent π0 production processes. In reso-

nant production, the pion is produced in the decay of an excited nucleon state such as the

∆(1232). In the case of coherent scattering, the neutrino interacts with the nucleus as a

whole leaving it in the ground state. The absolute rate of π0 production in the detector is

further complicated by nuclear effects as pions propagate in a carbon nucleus. A π0 can

be absorbed, change its identity through charge exchange, or have its kinematics altered,

all effects with a strong dependence on the pion momentum. Given the large inherent

uncertainties in the production of ∆ resonances in CH2 and the coherent π0 production

cross-section, as well as in pion propagation through the nucleus, we opt to measure the

overall rate of π0 production from MiniBooNE data and use it to constrain the Monte
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Carlo prediction [68].

First, a very pure (97%) sample of 28,000 NC π0 events is selected and the Monte

Carlo is used to make corrections for efficiency and momentum smearing. Figure 7.12

compares the total number of events as a function of π0 momentum for data and the

default Monte Carlo. The Monte Carlo prediction differs from the data both in shape and

overall normalization. A correction, Ndata/NMC, is shown at the bottom of Figure 7.12

which can then be used to reweight the π0 true momentum distribution in the Monte

Carlo, thereby correcting for any inadequacies in our π0 production model as a function

of π0 momentum.

Figure 7.13 shows the reconstructed invariant mass distributions for π0 candidate

events in bins of π0 momentum. The data with statistical errors are shown as black points.

The default NUANCE Monte Carlo prediction is shown by the black dashed histogram.

The corrected Monte Carlo with systematic errors is shown by the red boxes in Figure 7.13

and shows good agreement with the data.

Figure 7.14 compares other important kinematic quantities in the data and simulation

both before and after applying the π0 momentum-based correction to the Monte Carlo

prediction. Panels a), b) and c) show the recontructed opening angle and energies of the

two photons produced in the π0 decay. These distributions are critical in determining

the rate of mis-identification of NC π0 events as CC νe events. The clear improvement

in the photon kinematic distributions shows that the data-MC differences can largely be

attributed to the disagreement seen in the π0 rate as a function of momentum.

It is important to note that the described method measures the absolute rate of π0’s in

the MiniBooNE data and adjusts the Monte Carlo to reproduce it. The effects of neutrino

flux, π0 resonant and coherent production cross-sections, as well as absorption, charge

exchange and scattering in the nucleus are all folded together. Internally, we refer to any

event where a π0 escapes the nucleus and decays in the detector as an “effective π0” event.

What is important for the νe appearance search is the absolute rate for effective π0 events

as a function of π0 momentum, and it is this rate that we have directly constrained with

this procedure. The uncertainty on the absolute rate of effective π0 events is reduced from

∼ 25% using the Monte Carlo prediction to 5% [68]. The dominant uncertainty on the π0-
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Figure 7.13: Reconstructed invariant mass distributions for NC π0 candidate events in

bins of π0 momentum. The data are shown by the black points with statistical errors.

The default NUANCE prediction is the black dashed histogram and the corrected Monte

Carlo with systematic errors is shown by the red boxes. The data and Monte Carlo have

been absolutely normalized.
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induced background prediction will, therefore, come from the uncertainty of the rejection

power of the particle identification algorithm.

Radiative ∆ decay Using only the shapes of the pion kinematic distributions, the anal-

ysis described above was able to extract the fractions of π0’s which are produced through

resonant production and through coherent production. The result is that 80.5% are pro-

duced through a resonance [68]. A related background arises from the radiative decay of

baryonic resonances, ∆ → Nγ . Single photon events cannot be isolated in MiniBooNE

data, but these decays (BR = 0.56%) have the same source (baryonic resonances) as 80%

of the NC π0 background that we have constrained with data. Therefore, the radiative ∆

event rate predicted by NUANCE is scaled by the same correction factor (see Figure 7.12)

as the NC π0 sample.

7.3 MiniBooNE detector simulation

Final state particles emerging from the target nucleus in the NUANCE event generator

are next passed to a Geant3 [129] simulation of the MiniBooNE detector which propagates

them through the oil. Photons are generated through Cherenkov radiation and scintilla-

tion and propagated until they are absorbed or hit a PMT photocathode where they may

produce a photoelectron. The PMT and DAQ electronics are simulated separately.

Similar to the Geant4-based BNB Monte Carlo, some custom additions to the base

Geant3 simulation have been made. In particular two decays, π0 → γe+e− and µ → eνν̄,

are controlled by a dedicated routine using matrix elements. Also, 8% of µ− in the detec-

tor will capture on carbon before they can decay. Geant3 simply removes the muon, so

a model to simulate the possible low energy final state neutrons and photons was devel-

oped [82]. Rarely, however, are these final state particles above detection threshold.

The default Geant3 hadronic model, GFLUKA [131], has been replaced by the GCALOR

[130] package which better models pion absorptions and charge exchange processes. The

two codes can be interchanged for performing systematics studies.

Finally, a sophisticated model of the propagation of photons through the oil has been
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Figure 7.14: Relatively normalized π0 event kinematic distributions: a) the opening angle

between the two photons from the π0 decay, b) energy of the more energetic photon, c)

energy of the less energetic photon, and d) the π0 momentum. The data are shown by the

black points with statistical errors. The default NUANCE prediction is the black dashed

histogram and the prediction after applying the momentum-based correction of Figure

7.12 is shown by the solid histogram. Plot taken from [68].
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Property # par. Property # par.

Cherenkov scale factor 1 index of refraction 3

fluor scintillation yield 4 extinction length 5

fluor fluorescence yield 4 scattering 3

fluor UV fluorescence yield 4 reflections 2

fluor time constant 4 PMT angular efficiency 2

Birks’ law coefficients 2 old/new PMT relative efficiency 1

Table 7.4: Number of parameters used to model various aspects of the custom built model

of the optical properties of the Marcol 7 oil and the PMTs used in the MiniBooNE detector.

There are 35 total parameters.

developed. This model contains 35 adjustable parameters which have been tuned using

a combination of external measurements and calibration data. Table 7.4 lists the various

components of the detector optical model and the number of parameters associated with

each.

Here we provide a very broad overview of the detector simulation highlighting only

the components needed for understanding neutrino event reconstruction and identifica-

tion. A detailed account of the detector simulation and a description of the tuning of the

35 optical model parameters is available in [96].

7.3.1 Cherenkov radiation

Charged particles traveling through a material medium with index of refraction n(ω)

faster than the speed of light in that material, c/n(ω), will emit a coherent wavefront of

electromagnetic radiation known as Cherenkov radiation [133]. The photons are emitted

at a characteristic angle relative to the particle’s path, θC, given by

cos θC =
1

β · n(ω)
(7.12)
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λD 589.3 nm

T0 20.0 ◦C

nD 1.4684 ± 0.0002

B (4240 ± 157) nm2

β (3.66 ± 0.04) ×104 (◦C)−1

Table 7.5: Parameter values in index of refraction model for Marcol 7 oil Eq. 7.14.

where β ≡ v/c = p/E is the velocity of the particle. The number of photons generated per

unit wavelength, λ = 2πc/ω, per unit length, x, is [134]

d2NCh

dλdx
=

2πα
λ2

(
1− 1

β2n2(λ)

)
(7.13)

where α is the fine structure constant. An overall scale factor is used in the simulation

and calibration samples prefer a value of fCh = 1.106 - the first detector optical model

parameter.

A careful measurement of the wavelength and temperature dependence of the index

of refraction in Marcol 7 oil was made by H.O. Meyer in [80]. The measurements are well

described by

n(λ,T) =
[
nD + B

(
1
λ2
− 1
λ2

D

)]
· [1− β(T− T0)] (7.14)

with the wavelength in nanometers, the temperature in degrees Celsius and the parameter

values given in Table 7.5. These are 3 more of the 35 parameters of the detector optical

model.

7.3.2 Scintillation and fluorescence

Ionizing particles traversing the MiniBooNE detector oil produce excitations of or-

ganic molecules which emit isotropic light upon de-excitation known as scintillation.

When the excitation is produced by photons the emitted radiation is known as fluores-

cence. In either case, the emission is delayed according to the time constant of the particu-

lar fluorophore producing the radiation, typically 10’s of nanoseconds. Four fluorophores



7.3.3 Photon propagation and detection 185

were detected in the MiniBooNE oil [89] and their individual time constants represent 4

more parameters of the optical model. Their scintillation, fluorescence and UV fluores-

cence5 photon yields are 12 more. However, data rich in scintillation light (NC elastic

scattering events) used to calibrate the model prefer the use of a single fluorophore with a

time constant τ = 34 ns. The other three are used to assess systematic errors. The number

of scintillation photons produced per unit deposited energy is simulated according to

dNSci

dE
=

31.64 MeV−1

1 + B1

(
1

ρoil

dE
dx

)
+ B2

(
1

ρoil

dE
dx

)2 (7.15)

with B1 = 0.014 g/(MeV · cm2) and B2 = 0.0 g2/(MeV2 · cm4). B2 is included only for the

purposes of assessing systematic errors. This is known as Birks’ Law and constitutes 2 of

the 35 parameters of the detector optical model.

7.3.3 Photon propagation and detection

Photon propagation, including absorption, scattering and reflection, is described by 10

more parameters of the detector optical model. Both Rayleigh scattering and Raman scat-

tering are considered with the latter contributing about 5% of the total effect. The amount

of reflection from the tank walls in both the main tank and veto regions can also be con-

trolled in the simulation. Figure 7.15 shows the rates for several of these processes as a

function of wavelength. The level of absorption is determined by the difference between

the measured total extinction and the other processes including scattering and fluores-

cence.

Figure 7.16 clearly demonstrates the importance of the reflection and scattering mod-

els. The figures show the PMT hit time distribution for a set of calibration laser triggers.

The data are compared to the full simulation as well as a simulation with no reflection

and no reflection or scattering.

The final 3 parameters of the detector optical model deal with the detection efficiency

of the photomultipliers. Figure 7.17 shows the quantum efficiency (QE) in oil for the 322

new R5912 tubes as a function of the incident photon wavelength. The efficiency peaks at
5UV fluorescence refers to photons below 250 nm which are not propagated in the simulation fluorescing

photons at higher wavelengths (λ ≥ 250 nm) which could be seen by the PMTs



186 Chapter 7. MiniBooNE Simulation and Reconstruction Algorithms

Figure 7.15: Optical photon extinction rates in the Marcol 7 oil used in MiniBooNE. Ex-

tinction refers to any process altering the path of the photon. The total extinction was

measured in a 10 cm cell at FNAL and is shown by the solid black histogram. The extrap-

olation curve (black dashed) was determined using laser and Michel data. The rates of

the four fluorophores mentioned in the text are shown; number 4 is the one preferred by

data. Two Rayleigh scattering measurements and an extrapolation are shown. Plot taken

from [96].
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Figure 7.16: PMT hit times in a set of calibration laser triggers (see Section 5.4.4.1). Data

are shown by the black crosses with statistical errors only, the total Monte Carlo by the

blue histogram. The simulation with no reflections is shown in green. The simulation

with no reflections and no scattering (Rayleigh or Raman), leaving only the simulated

PMT responses, is shown in red.

about 22% near 400 nm for these tubes. Once a photon is absorbed by a PMT photocathode

and produces a photoelectron a careful simulation of the PMT dynode chains and DAQ

electronics converts the signal into a charge and time signal which can be used in the

reconstruction algorithms. For a description of the electronics simulation see [96].

7.4 Event reconstruction

For each event in the MiniBooNE detector a set of raw charges and times are recorded

for each PMT as described in Section 5.4.3 and corrected quantities are calculated using

PMT calibration information as in Eq. 5.2. From these charge and time data one must

reconstruct the full set of physical parameters (particle positions, directions and energies)

describing the event with the goal of identifying different varieties of neutrino interac-

tions.

As indicated in several places above, the neutrino interactions important for the os-

cillation search will produce electrons, muons, single photons or π0’s (2 photons) in the
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Figure 7.17: Quantum efficiency of the new (R5912) PMTs in oil. Plot taken from [96].

detector. The reconstruction should be robust for these types of events. Further, each

event type will produce both Cherenkov and scintillation light and determining the con-

tributions from each should be part of the reconstruction.

Multiple reconstruction algorithms have been developed for the experiment [79, 96]

with the latter building from and improving upon the former. Both are based on maximiz-

ing the likelihood that a set of measured charges and times correspond to a given event

hypothesis. A single track can be described by seven parameters defining its position,

time, direction and energy

~α = (x, y, z, t, θ, φ, E) . (7.16)

and the likelihood that a set of measured charges qi and times ti correspond to an event

defined by ~α is given by

L(~α) =
1280∏
i=1

P (qi|~α) · P (ti|~α) (7.17)

where P (qi|~α) is the probability to measure charge qi in PMT i for an event with parame-

ters ~α, P (ti|~α) is the same for the measured time, and we have multiplied the probabilities
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for all 1280 main tank PMTs.6 In writing Eq. 7.17 we have assumed that the measurements

in each PMT are independent and that the measurements of charge and time in a single

PMT are independent. The parameter set is determined by minimizing the negative log

of the likelihood function

− log(L(~α)) = −
1280∑
i=1

log(P (qi|~α))−
1280∑
i=1

log(P (ti|~α)) (7.18)

with respect to ~α.

The reconstruction algorithm used in the νe event selection described below (Ref. [79],

colloquially referred to as the S-Fitter) proceeds in a series of steps designed to increase

the level of sophistication of the fit at each step and use the results of the previous step

as a seed for the current one. Detailed descriptions are available in many places, notably

[93] and [97], and will not be reproduced here.

The detailed and accurate construction of the charge and time probability functions

P (qi|~α) and P (ti|~α) is, of course, the entire game in producing a precise and accurate

reconstruction algorithm. These must include effects of the emission spectra of Cherenkov

and scintillation light from charged particles in the tank, the absorption and scattering of

photons in their propagation toward the PMT surfaces as well as the quantum efficiency

and gains of the individual PMTs.

A major advantage of the second reconstruction algorithm mentioned above (Ref.

[96], and often referred to as, what else, the P-Fitter) is its modeling of subtleties in the

photon emission spectra due to extended tracks in the detector. This is particularly im-

portant for muons which have path lengths of several meters at the relevant energies.

The S-Fitter, in contrast, makes a point-source approximation; Cherenkov and scintilla-

tion light in an event are assumed to both be produced from a single point in the tank.

The 3-vertex found in the minimization is, therefore, the mean photon emission point and

not the neutrino interaction vertex. For events being fit under an electron hypothesis,

an energy dependent correction, extracted from Michel electron data, is used to estimate

the event vertex with a resolution ∼ 30 cm. When fitting for a muon, the central light

6Both the charge and time likelihoods include the possibility of measuring 0, or no hit above threshold in

that channel
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source is divided into two equal sources which are moved out symmetrically from the

mean emission point until a new minimum of the log likelihood function is found. The

reconstructed distance between the two sources is not the full track length, but will be

significantly longer for true muons than for electron tracks.

Finally, a word about reconstructing NC π0 → γγ events. Each photon initiated

shower is indistinguishable from an electron. It is the presence of two tracks and their

combined energy near the pion mass that identifies them as a NC π0 event.7 π0 candidate

events are fit to a 14 parameter model

~απ0 = (x, y, z, t, s1, θ1, φ1, ρ1,Φ1, s2, θ2, φ2, ρ2,Φ2) (7.19)

where (x, y, z, t) is the 4-vertex of the π0, (si, θi,Φi) are the conversion distance and direc-

tion of the two photons, and (ρi,Φi) are the Cherenkov and scintillation strengths of the

two EM showers and are proportional to the energy of that photon. From these results

the invariant mass can be reconstructed via

m2
π0 = 2E1E2(1− cos θγγ) (7.20)

where E1 and E2 are the reconstructed energies of the two photons and θγγ is the angle

between the two photon directions. Figure 7.18 shows the reconstructed mass for two ring

events with the expected peak near the pion mass.8

Due to the large number of parameters, the fitting procedure proceeds in multiple

stages where at each step a minimal number of parameters are allowed to float and the

others are held fixed. The 0th step is that the event has already been fit to the electron

hypothesis as described above and the results are considered a starting point for the more

energetic photon. Detailed descriptions of the π0 fitting algorithm used in this analysis

are available in [78] and [93].

One can compare the maximum likelihood values for fits to the electron, muon and

pion hypothesis and already have a decent discriminator between event types. The next
7Note that π0’s can also be created in charged-current (CC) events, νµn → µ−pπ0, but the presence of the

muon makes these events easily separated from νe CCQE events.
8Figure 7.13 showed the mass distributions used in the effective π0 constraint analysis, which was per-

formed using the P-Fitter, not the S-Fitter. The measurement as a constraint on the effective π0 rate in Mini-

BooNE is, however, universal and still an important part of the oscillation analysis.
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Figure 7.18: Reconstructed π0 mass using the S-Fitter. Data (black points) is compared to

the Monte Carlo (red histogram). Plot taken from [93].

section, however, describes a much more sophisticated and powerful algorithm for the

isolation of νe (electron) events.

7.5 The BDT νe CCQE event selection algorithm

The boosting machine learning algorithm is a process by which many weak classifiers

are combined into a single powerful discriminating variable. In the case of MiniBooNE,

the boosting technique has been applied to decision trees and is known as the Boosted

Decision Tree (BDT) algorithm [90].

The BDT algorithm is trained using Monte Carlo samples of signal (νe CCQE events)

and single subevent (see section 6.3) backgrounds (including νµ CCQE with no Michel

electron, NC π0, ∆ → Nγ , etc.). 172 reconstructed variables from the S-Fitter provide the

input to the decision trees. We leave a description of the details of the BDT algorithm itself

to the many references available [90, 91, 92], but a brief discussion of the nature of the 172
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Figure 7.19: Schematic diagrams of the cos θ (left) and ring sharpness (right) bin defini-

tions mentioned in the text. Figures taken from [97].

input variables used may prove enlightening.

The 172 variables used were chosen from a pool of near 1000 output variables from the

reconstruction. It seems slightly implausible at first that a detector with only 1280 PMT

charge and time readouts per event could have such a large number of reconstructed

quantities. A large multiplication of basic tank hit information is found, for example, by

dividing the tank into 10 equal ∆ cos θ bins around the reconstructed track position. In

another example, the reconstructed track length is divided into 10 equal segments to form

10 rings with the expected Cherenkov angle from each segment. The ratio of hit to unhit

PMTs in each successive sub-ring is a measure of the total ring’s sharpness. The ∆ cos θ

and ring sharpness bins are shown schematically in Figure 7.19. The BDT input variables

can be broken into five categories [97]:

• Physical or geometric observables: reconstructed quantities like the π0 mass, track

length and angle, radial position of the mean photon emission point, etc.

• Time related variables: time likelihood values for the µ, e and π0 hypotheses for all

PMTs or in separate cos θ or ring sharpness bins. Also likelihood ratios and products

between different cos θ and sharpness bins are calculated.

• Charge related variables: charge likelihood values for the µ, e and π0 hypothesis.
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Also the ratios of hit to unhit PMTs in cos θ and ring sharpness bins as mentioned

above.

• Combinations of charge and time information: charge likelihoods in corrected time

bins, fractions of prompt and delayed PMT hits, etc.

• Auxiliary variables from minimizations: minimum negative log likelihood values

and ratios from fits to the µ, e and π0 hypotheses.

Each of the 172 input variables chosen for the algorithm were rigorously checked for

data/Monte Carlo agreement using full systematic errors in five different MiniBooNE

data samples [88] including:

• νµ CCQE (1st subevent - the µ)

• NC π0 events with reconstructed mπ0 > 50 MeV/c2

• NC elastic scatters

• Michel electron sample (2nd subevent in cosmic µ events)

• 10% of 1 subevent sample (a low statistics signal sample)

Figure 7.20 demonstrates the separation power of the BDT algorithm using these 172

inputs. In all plots νe CCQE events (the signal) are compared to important νµ-induced

backgrounds: νµ CCQE events with one subevent, NC π0 events and radiative ∆ de-

cay events. The separation between νe and νµ CCQE events is very powerful due to

the markedly different light patterns produced by electrons and muons in the detector.

The separation improves at higher energies. Both NC π0 and radiative ∆ backgrounds

increase at low reconstructed energy (note all events have been reconstructed assuming

they are a νe CCQE event using Eq. 7.11). The separation from radiative ∆ events is par-

ticularly poor because of the fact that showers initiated by electrons and photons look the

same in the detector.

Using this particle identification algorithm, in Chapter 8 we will assess systematic

errors and explore optimizations of event selection for performing the νµ → νe oscillation

search.
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Figure 7.20: Monte Carlo distributions of the BDT PID score for important backgrounds

compared to νe CCQE events as a function of reconstructed (CCQE) energy and integrated

over energy from 0.2–3.0 GeV. The backgrounds shown are νµ CCQE (top), NC π0’s (mid-

dle) and radiative delta decays (bottom). All distributions have been normalized to have

unit area.
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Chapter 8

A Search for νµ → νe Oscillations at

MiniBooNE

In this final chapter we present a search for νµ → νe oscillations using the

MiniBooNE data. A χ2 fitting procedure is developed to test for evidence of

oscillations in the νe candidate sample which also incorporates a constraint

on νe backgrounds enabled by the νµ CCQE data. An overview of the experi-

mental uncertainties affecting the analysis is presented culminating in a final

sensitivity to the oscillation parameters (∆m2, sin2(2θ)). Finally, we apply the

fitting procedure to neutrino mode data from MiniBooNE corresponding to

5.58× 1020 protons on target (POT) collected between 2002 and 2006.

8.1 Introduction

The observed distribution of νe events at MiniBooNE will be used to set limits on

possible values of the oscillation parameters, ∆m2 and sin2(2θ). To do so, a fitting proce-

dure must be developed to compare simulated background and signal predictions with

the measured data. Experimental uncertainties must be carefully considered in order to

quantify the level at which the data are consistent with a given oscillation hypothesis.

We will consider both data and Monte Carlo statistical uncertainties as well as system-

atic uncertainties arising from our modeling of the neutrino fluxes, neutrino interaction
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cross-sections, and the detector simulation. Many of these uncertainties will introduce

correlations among different energy regions in the predicted spectrum. Because neutrino

oscillations are an energy dependent phenomenon, the fitting algorithm should include

these correlations. In Section 8.2 we introduce such an algorithm which also incorporates

an experimental constraint on the oscillation background provided by the observed νµ

data. In Section 8.3 we detail the experimental errors considered in the analysis. Section

8.4 presents the νµ CCQE selection and data/Monte Carlo comparisons. Section 8.5 dis-

cusses two possible selections of νe candidate events and compares their sensitivities to

oscillation parameters. Finally, in Section 8.7, we apply these νe selections to MiniBooNE

data and present the result of a fit for oscillations.

8.2 The νµ – νe combined fitting technique

In the previous chapter we discussed important misidentification backgrounds and

how their absolute rates have been directly constrained using non-νe CCQE data samples.

In this section, we present a technique by which we use the observed high statistics νµ

CCQE event sample to constrain the absolute rate of intrinsic νe-induced backgrounds.

The approach used incorporates this constraint as part of the fitting procedure used to

search for an excess of νe events consistent with the νµ → νe expectation.

8.2.1 Correlations between observed νµ and νe events

The details of the method will be described, but first we outline some key elements

of the experiment which create this important correlation between the observed νµ CCQE

events and the expected νe CCQE event distribution. It is helpful to note that the observed

rate of each is just the product of a flux, interaction cross-section, and event selection

efficiency:

Nνµ = Φνµ × σνµ × ενµ Nνe = Φνe × σνe × ενe

1. The νµ flux from π+ decay (90% of the total νµ flux) is correlated with the νe flux
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Figure 8.1: Kinematic distributions of π+ which contribute to the νµ flux through π+ →

µ+νµ decays (left) and which contribute to the νe flux through π+ → µ+ → e+νµνe decays

(right). The absolute scales are arbitrary, but the relative scales are those predicted by the

BNB Monte Carlo.

from µ+ decay (49% of the total νe flux) through the decay chain:

π+ →µ+ + νµ

↓

µ+ → e+ + νµ + νe

A measurement of the high statistics νµ CCQE event rate, therefore, provides a

constraint on the νe CCQE rate coming from muon decays. Two facts make this

constraint possible. First, the muons creating the νe flux are produced in decays of

the same π+ that produce the νµ flux. This is demonstrated in Figure 8.1 showing

the kinematic distributions of the parent π+ for νµ’s crossing the MiniBooNE detec-

tor and the grandparent π+ for νe from µ+ decay which cross the detector. There

is a large overlap in pion phase space in the two distributions. Second, due to the

small solid angle which the MiniBooNE detector subtends (10 m/541 m≈ 0.02 rad),

the muon neutrino energy is strongly correlated with the energy of its parent pion.

Only the most forward decays can contribute to the flux and in the limit of perfectly

forward decays Eν ≈ (1−m2
µ/m

2
π)Eπ = 0.43Eπ. Figure 8.2 shows the actual correla-

tion according to the BNB simulation. The peak near the small angle approximation
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Figure 8.2: Correlation between the muon neutrino energy (ordinate axis) and its parent

pion energy (abscissa axis) for neutrinos passing through the MiniBooNE detector. The

peak near the physical cutoff at Eν = 0.43Eπ is clearly visible.

0.43Eπ is clear.

2. The νµ CCQE event rate, modulated by allowed combinations of (∆m2, sin2(2θ)),

constrains the possible signal shapes and magnitudes from νµ → νe oscillations.

Figure 8.3 shows possible distributions of signal events passing νe selection pre-cuts

given the predicted νµ flux shape. The black histogram represents a flux of electron

neutrinos with exactly the shape and magnitude (when properly normalized, which

Figure 8.3 is not) of the predicted νµ flux. Typically, such a fully νµ → νe transmu-

tated Monte Carlo sample is referred to as a “full-osc” sample and we will use this

nomenclature where convenient. The colored histograms in Figure 8.3 show the

fully oscillated sample modulated by sin2(1.267 ∆m2 0.541 km/Eν) for three values

of ∆m2.

3. Muon and electron neutrinos share the same CCQE cross-section; the constraint on

the model described in Section 7.2.1 from observed νµ events applies equally to νe.

The difference comes only from lepton mass effects, so the correlation between the
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Figure 8.3: Examples of possible oscillation signal shapes for different values of ∆m2. The

black histogram shows the distribution of events passing νe pre-cuts (SE = 1,Ntank >

200,Nveto < 6) for a fully transmutated νµ flux (that is, a flux of electron neutrinos with

exactly the νµ flux shape). The colored histograms demonstrate how the signal is modu-

lated for different possible values of ∆m2.

two cross-section is large.

4. The detection efficiency for electron events, as we will see, is strongly dependent

upon the MiniBooNE detector model which has large uncertainties. Unfortunately,

these effects are only marginally correlated with the νµ efficiencies.

8.2.2 Definition of the χ2 statistic

In order to test for evidence of an oscillation signal in MiniBooNE data we will deter-

mine the minimum value of a χ2 statistic that depends simultaneously upon the observed

and predicted spectra of νµ events, νe background events, and νe signal events:

χ2(∆m2, sin2(2θ)) =
nνe+nνµ∑

i,j

[
Nobs

i −Npred
i (∆m2, sin2(2θ))

]
E−1

ij

[
Nobs

j −Npred
j (∆m2, sin2(2θ))

] (8.1)

where the sum runs over the total number of energy bins in both the νe and νµ distribu-

tions, nνe + nνµ . The observed and predicted numbers of events in reconstructed energy
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bin i are given by Nobs
i and Npred

i , respectively. The νe prediction is built from the set of

considered backgrounds and a signal component:

Npred
i = Nbkgd

i + P (∆m2, sin2(2θ), Lν , Eν)×Nfull−osc
i (νe energy bins) (8.2)

where the background, Nbkgd
i = Nνµ−misID

i + Nνe−int
i , includes the number of both νµ-

induced and intrinsic νe-induced events expected to pass a given set of νe selection cuts

and Nfull−osc
i is the number of events passing these cuts from a fully oscillated νµ → νe

sample. The oscillation probability, P , is calculated using the two neutrino appearance

equation, Eq. 1.20, and is a function of the true travel distance, Lν , and neutrino energy,

Eν , which are obtained from the Monte Carlo. The predicted νµ distribution is just the

number of events expected to pass νµ CCQE selection cuts:

Npred
i = Nνµ−CCQE

i (νµ energy bins) (8.3)

Strictly, the νµ prediction should include a term accounting for the probability of νµ dis-

appearance,−P (∆m2, sin2(2θ), Lν , Eν)×Nνµ−CCQE
i . However, for an expected oscillation

probability of ∼ 0.3%, the term is negligible in the fit compared to the systematic uncer-

tainties and can be neglected.

Finally, Eij is the (i, j)th element of a correlated error matrix which includes all statis-

tical and systematic uncertainties considered in the analysis:

E =



N1 + σ2
1 ρ21σ2σ1 · · · ρn1σnσ1

ρ12σ1σ2 N2 + σ2
2 · · · ρn2σnσ2

...
...

. . .
...

ρ1nσ1σn ρ2nσ2σn · · · Nn + σ2
n


(8.4)

where Ni is the number of events in the ith bin (or the statistical error squared) and ρij is

the correlation coefficient between the systematic error in those bins, σi and σj .

8.2.3 The error matrix

To facilitate the simultaneous fitting of νµ and νe events, we must construct a single

covariance matrix describing the uncertainties for both the νµ and νe energy distributions.
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In doing so, the off-diagonal terms will describe the correlations among energy bins within

a distribution as well as the correlations between the νµ and νe energy spectra. It is these

correlation terms which will provide the constraint on the νe prediction provided by the

high statistics νµ sample.

The calculation of the systematic error matrices follows closely the methods used in

the analysis of the HARP cross-section data as described in Section 4.6. Briefly, a Monte

Carlo technique is employed to translate the uncertainty on underlying parameters to an

uncertainty on a final output quantity. For HARP this was the differential production

cross-section. In the case of MiniBooNE, the output quantity is a reconstructed energy

distribution of charged-current quasi-elastic candidate events. To continue the analogy,

the matrix we will build for MiniBooNE data would be equivalent to building a corre-

lation matrix between the π+ and proton cross-sections at HARP. One can imagine that

the measured cross-sections are highly correlated (same reconstruction efficiencies, anti-

correlated PID efficiencies, etc.).

Each systematic error matrix will be calculated analogously to Eq. 4.13,

Em
ij =

1
N

N∑
n=1

[NCV −Nm,n]i × [NCV −Nm,n]j (8.5)

where i and j label bins of EQE
ν , Em

ij is the (i, j)th element of the error matrix being con-

sidered (labeled m), NCV is the central value for the predicted number of either νµ or νe

candidate events and Nm,n is the prediction from the nth variation of the mth systematic

error source.

Figure 8.4 shows a schematic diagram of the covariance matrix to be built. The correla-

tions with the νe signal and background components are generated separately. The energy

binning chosen for the two samples must have bin boundaries in common to allow their

combination in future steps. If one chooses the same binning for the νe background and

signal components, then the final error matrix will contain (2nνe + nνµ) × (2nνe + nνµ)

elements. For the matrices generated for this analysis nνe = 18 and nνµ = 17 with bin

boundaries:

• EQE
νe = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 3.0] GeV
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Figure 8.4: Schematic diagram of the covariance matrix built to describe the correlations

within the MiniBooNE muon and electron neutrino data. Separate blocks exist for the νe

signal (upper left), νe background (middle) and νµ CCQE (lower right) predictions. In

addition, each of these distributions may be correlated with each other and are described

by the off-diagonal blocks. The total error matrix contains (2nνe + nνµ) × (2nνe + nνµ)

elements.
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• EQE
νµ = [0.0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 3.0] GeV

so that the error matrix contains 53 × 53 elements. The fitting software allows combina-

tions of the events in neighboring bins, but the bin boundaries used in the matrix must be

respected.

Finally, it is the fractional variations which are input to the fitting algorithm:

Efrac
ij =

Eij

Npred
i Npred

j

(8.6)

This separation of νe background and signal components in the fractional error matrix

allows us to construct a total error matrix corresponding to a particular signal hypothesis

within the mechanics of the fitting procedure.

8.2.4 Oscillation fit mechanics

The goal of the fit is to determine the values of ∆m2 and sin2(2θ) for which the χ2

statistic of Eq. 8.1 is minimized. We discovered in the previous section that the error

matrix itself contains a signal component and, therefore, is also a function of the oscillation

parameters, E ≡ E(∆m2, sin2(2θ)). In the data, of course, it is not possible to separate

the background and signal components of the events for comparison1. Therefore, the

νe background and signal components of the error matrix must be combined just as the

predicted number of events are combined in Eq. 8.2. First, the fractional errors must be

multiplied by the number of predicted events in each bin (Npred
i × Npred

j ) to convert the

input fractional error matrix into a total error matrix in units of (events)2. The matrix

elements corresponding to the same EQE
ν bin can then simply be summed to collapse the

3 × 3 block error matrix into the 2 × 2 block format that we need in order to compare to

data (a total νe block and a νµ block). This procedure is depicted in Figure 8.5 showing

how the elements are added when considering one νe energy bin.

Allowing the error in a χ2 minimization to vary with the parameters is, in general,

a dangerous strategy. In our χ2 definition as a matrix equation with correlations, mul-

tiplying by the matrix inverse corresponds to division by the uncorrelated error in the

1Wouldn’t it be nice if it were!
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Figure 8.5: Schematic diagram showing the collapse of the covariance matrix to combine

the νe background and signal error elements. The four red bins on the left are added to

give the value in the red bin in the collapsed matrix on the right. Similarly for the blue

and green bins.

traditional χ2 definition, E−1 ⇔ 1/σ2. Mathematically, therefore, it would be possible

to minimize the function by taking the errors to infinity, σ2 → ∞. In our case, the error

matrix can be increased by increasing Npred, or adding signal! While we desire to care-

fully account for the systematics on the signal prediction as well as take advantage of

the constraint provided by the observed νµ data, we clearly wish to avoid this artificial

minimizing of the χ2 statistic.

To minimize the function in a controlled way we adopt an iterative approach to up-

dating the error matrix. We begin with an error matrix built assuming no signal, which we

refer to as the null hypothesis matrix, Enull ≡ E(0, 0). Keeping the matrix fixed, we step

through the 2-dimensional (∆m2, sin2(2θ)) parameter space with sufficiently small steps,

update the νe event prediction, Npred, at each grid point according to Eq. 8.2 and calculate

the value of χ2 using Eq. 8.1. In this manner, we map out a smooth surface of χ2 values

across the relevant regions of oscillation parameter space upon which the minimum point

can easily be determined [∆m2, sin2(2θ)]min. This minimum set is used to build a new er-

ror matrix E([∆m2, sin2(2θ)]min) and the process is repeated until the fit result converges.
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Numerous tests performed using fake data samples verified that the iterative method is

stable, and showed that the fit nearly always converged in a single iteration.

8.2.5 Understanding the νµ constraint on the νe prediction : The 2 bin example

We use a simple example to give an idea how the νµ events are able to constrain the

νe background prediction and produce a smaller error on the extracted number of signal

events. We assume each distribution is made up of only a single energy bin. We define

the difference between the number of predicted and observed events in the single νe and

single νµ bin as:

∆νe = Nobs
νe
−Nbkgd

νe

∆νµ = Nobs
νµ
−Npred

νµ

(8.7)

The covariance matrix in this case is reduced to a 2×2 matrix with only a single correlation

coefficient ρνeνµ = ρνµνe ≡ ρ. We explicitly separate the statistical uncertainties, s =
√

N,

from the systematic uncertainties, σ, such that the total diagonal error in a bin is given by

s2 + σ2 and only the systematic errors are potentially correlated:

E =

 s2νe
+ σ2

νe
ρσνeσνµ

ρσνeσνµ s2νµ
+ σ2

νµ

 (8.8)

which has the trivial inverse

E−1 =
1
|E|

 s2νµ
+ σ2

νµ
−ρσνeσνµ

−ρσνeσνµ s2νe
+ σ2

νe

 (8.9)

where |E| = (s2νe
+ σ2

νe
)(s2νµ

+ σ2
νµ

) − (ρσνeσνµ)2 is the matrix determinant. Writing out

the χ2 expression as a matrix equation and including potential signal events, S, in the νe

block yields:

χ2 =
(
∆νe − S ∆νµ

) 1
|E|

 s2νµ
+ σ2

νµ
−ρσνeσνµ

−ρσνeσνµ s2νe
+ σ2

νe

 ∆νe − S

∆νµ



=
1
|E|

[(
s2νµ

+ σ2
νµ

)
(∆νe − S)2 − 2ρσνeσνµ∆νµ (∆νe − S) +

(
s2νe

+ σ2
νe

)
∆2

νµ

]
(8.10)
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which is just a quadratic equation in (∆νe − S). Setting the first derivative equal to zero,

∂χ2/∂S = 0, produces the best fit number of signal events:

S = ∆νe −

[
σνeσνµ

s2νµ
+ σ2

νµ

]
ρ∆νµ (8.11)

and twice the inverse of the second derivative yields the uncertainty on the number of

signal events:

σ2
S = s2νe

+

1− ρ2(
s2
νµ

σ2
νµ

+ 1
)
σ2

νe
(8.12)

Below we make several observations from Eq. 8.11 and 8.12 about the nature of the νµ

constraint on the νe’s and potential signal:

• Eq. 8.11 shows how the best fit number of signal events are affected by any discrep-

ancy observed between the measured and predicted number of νµ’s.

1. If the νµ data agree perfectly with the prediction such that ∆νµ = 0, or if there

is no correlation between the νµ and νe samples so ρ = 0, then Eq. 8.11 reduces

to S = ∆νe and the νe candidates attributed to signal become just the excess

of observed νe events over the prediction.

2. If the two samples are correlated and the agreement is not exact, then a correc-

tion is made. For example, assume the two samples are positively correlated

with a coefficient ρ > 0. Further, assume there are an excess of νµ events in

data over the prediction, such that ∆νµ > 0. The νe background prediction is

pulled up by the positive correlation and the data excess observed in the νµ’s.

In Eq. 8.11 the sign of the second term remains negative, thus reducing the

number of signal events observed, exactly as one expects given an increase in

the background estimate.

• Eq. 8.12 shows how the uncertainty on the extracted signal is constrained by the

high statistics νµ sample. Note that the uncertainty constraint is dependent upon

the level of correlation with the νe background and the statistical precision of the νµ

sample, but not on the data/Monte Carlo agreement in the νµ’s.
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1. If the νµ and νe backgrounds are completely uncorrelated such that ρ = 0, then

the uncertainty on the signal is just the quadrature sum of the statistical and

systematic uncertainties on the predicted background σ2
S = s2νe

+ σ2
νe

.

2. In the opposite limit, if the νµ and νe backgrounds are fully correlated such that

ρ = 1, and the νµ statistical errors are negligible compared to the systematic

uncertainty so that s2νµ
/σ2

νµ
→ 0, then Eq. 8.12 reduces to just the statistical

errors on the background prediction. The fully correlated, infinite statistics

sample has been used to eliminate the systematic errors on the low statistics

sample.

3. In practice, we have a moderately correlated sample with semi-infinite statis-

tics, so we get a reduction, but not an elimination of the systematic uncertain-

ties on the νe backgrounds.

8.3 Estimation of systematic errors

For the νµ → νe oscillation search, the error matrix in Eq. 8.1 is a combination of both

data and Monte Carlo statistical errors and 10 sources of systematic uncertainty on the

predicted νµ and νe CCQE distributions. A full covariance matrix is constructed for each

systematic according to Eq. 8.5. The statistical error matrix is a purely diagonal matrix

with the uncorrelated statistical errors for each bin. The total error matrix is just the sum

of the 11 matrices:

E = Eπ+
+Eπ− +EK+

+EK0
+Ebeam +Eσ +Eπ0

+Edirt +Edet +EDAQ +Estat (8.13)

Below we briefly describe each source of error considered and the methods used to prop-

agate them to the final output quantity, EQE
ν .

8.3.1 Neutrino flux uncertainties

Flux related uncertainties are considered for a variety of sources associated with the

simulation of the Booster Neutrino Beamline described in Section 7.1. The dominant un-

certainty in the neutrino flux arises from the modeling of primary particle production
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in the beryllium target and these are considered separately for π+, π−, K+ and K0. The

production of each secondary meson is modeled by a parameterization of the double-

differential production cross-section based on available production data as described in

Appendix B:

d2σ

dpdΩ
(p, θ) ≡ f(p, θ, c1 . . . ck) (8.14)

where p and θ are the secondary meson kinematics and c1 through ck are the k parameters

of the model. For each set of parameters, a k × k covariance matrix is also generated in

the fit to data. Using the Cholesky decomposition method [136], allowed variations in the

model parameters can be drawn. The resulting variation in the double-differential pro-

duction cross-section at any point (p, θ) can be determined by comparison to the default

parameterization value. Since we know the kinematics of the parent meson which pro-

duced each neutrino in the simulation, the variation in the meson cross-sections can be

propagated to the neutrino flux by assigning a weight to each neutrino event equal to the

ratio of the double-differential production cross-section of its parent given by the varied

and default parameter sets:

w =
f(p, θ, cn1 . . . c

n
k)

f(p, θ, c1 . . . ck)
(8.15)

where cn1 . . . c
n
k are the nth variation of the set of model parameters. In this way, N total

variations of the parameters (N ∼ O(1000)) are used to build N neutrino flux distribu-

tions for each neutrino type from which the error matrices Eπ+
, Eπ− , EK+

and EK0
can

be constructed from Eq. 8.5.

The remaining beam related error matrix, Ebeam, is built from variations due to un-

certainties in the hadronic cross-section model (see Section 7.1.1.3) and properties of the

horn magnetic field. Table 8.1 lists the variations that are made in the underlying models.

Two neutrino flux variations are generated by varying the horn current ± 1 kA from the

nominal value. The “skin depth” effect allows for the magnetic field to penetrate into the

inner conductor of the horn, thus increasing the amount of field seen by particles entering

the horn volume. The default model is an exponential decay of the field with decay length

1.4 mm. A model with the magnetic field located completely within the horn volume (no
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BNB MC parameter nominal value excursion

horn current 174 kA ± 1 kA

skin depth exponential surface

(p/n)-(Be/Al) Be Al

σTOT Fig. 7.2 ± 15.0 mb ± 25.0 mb

σINE Fig. 7.2 ± 5.0 mb ± 10.0 mb

σQEL Fig. 7.2 ± 20.0 mb ± 45.0 mb

(π+/π−)-(Be/Al) Be Al

σTOT Fig. 7.3,7.4 ± 11.9 mb ± 28.7 mb

σINE Fig. 7.3,7.4 ± 10.0 mb ± 20.0 mb

σQEL Fig. 7.3,7.4 ± 11.2 mb ± 25.9 mb

Table 8.1: Variations in BNB Monte Carlo parameter values used to build the beam sys-

tematic error matrix Ebeam. For each hadron-nucleus cross-section, the momentum de-

pendent cross-section is offset by the listed amount.
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inner conductor penetration) is used as an excursion. Finally, each hadronic cross-section

is individually raised and lowered by the amount listed in Table 8.1 to create twelve more

neutrino flux variations. These 15 variations of the neutrino fluxes are used to build the

beam covariance matrix, Ebeam.

8.3.2 Neutrino cross-section uncertainties

Neutrino interactions are modeled using the NUANCE event generator code as de-

scribed in Section 7.2. Within this model, there are many parameters which control the

shape and rate of the various interactions. To estimate the uncertainty on the νµ and νe

charged-current quasi-elastic candidate distributions a weighting method similar to that

used for the primary meson production uncertainties in the beam is employed. A co-

variance matrix from which allowed values of the parameters can be drawn has been

generated for NUANCE parameters which affect the rate of CCQE interactions or their

backgrounds. Table 8.2 lists the cross-section model parameters considered and their un-

certainties. Only a few pairs of parameters are correlated and their coefficients are given

in the table. The other off-diagonal elements of the error matrix are zero.

The quasi-elastic axial mass, mQE
A , κ, EB and pF are the parameters introduced in

Section 7.2.1 which described the charged-current quasi-elastic interaction model. The

first two have been measured using the MiniBooNE νµ CCQE data sample [67]. The errors

listed in the table do not include contributions from the flux or detector model to avoid

double counting of these uncertainties. The other mass parameters listed have effects on

the background rates in the νµ CCQE sample, 75% of which are charged-current single π+

events.

The total rate of π0 events in MiniBooNE has been constrained to ∼ 5% and that mea-

surement has its own uncertainties which will be addressed in the next section. The frac-

tion of π0’s which are produced coherently, however, affects the electron misidentifica-

tion rate of π0 events because of the different kinematics of coherent and resonant events

(coherent events are more forward). Therefore, the uncertainty on the coherent fraction

is included in the cross-section model errors. The varying of the coherent cross-section

is fully correlated with the resonant cross-section in order to maintain a total consistent
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cross-section model par. nominal value error correlation

mQE
A , quasi-elastic axial mass 1.23 GeV ± 0.077 GeV ρ(mQE

A , κ) = -0.875

m1π
A , single pion axial mass 1.1 GeV ± 0.28 GeV none

mcohπ
A , coherent axial mass 1.03 GeV ± 0.28 GeV none

mNπ
A , multi pion axial mass 1.3 GeV ± 0.52 GeV none

κ, Pauli-blocking correction 1.02 ± 0.02 ρ(κ,mQE
A ) = -0.875

EB, binding energy in 12C 34 MeV ± 9 MeV none

pF, Fermi momentum in 12C 220 MeV/c ± 30 MeV/c none

resonant π0 fraction 19.5% ± 2.5% ρ(Res,Coh) = -1

coherent π0 fraction 80.5% ± 2.5% ρ(Coh,Res) = -1

∆ → Nγ decay BR 0.56% ± 0.04% none

π escape probability in 12C 62.5% ± 7.5% none

π charge exchange in 12C energy dependent 50% none

π absorption in 12C energy dependent 35% none

Table 8.2: NUANCE cross-section model parameter values and errors.

with the measured rate. This measurement was used to constrain the rate of radiative

delta decays as well, but the uncertainty on the branching ratio for the ∆ → Nγ decay

must be considered.

Pion charge exchange and absorption within the nucleus affect the νµ CCQE back-

grounds. When pions created in a charged-current reaction are absorbed by final state

interactions within the target nucleus, the only final state particle is the muon, making

the event indistinguishable from a νµ CCQE event. Therefore, the uncertainty on the pion

charge exchange and absorption rates are included.
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Wπ0
1.4477 1.4794 1.1301 1.0414 0.9515 1.0241 0.7071 0.9638 0.9684

Mπ0

ij 0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.8 0.8–1.0 1.0–1.5

0.0–0.1 0.1203 0.0401 0.0015 -0.0079 -0.0182 -0.0455 -0.0345 -0.0672 -0.0898

0.1–0.2 0.0401 0.0195 0.0008 -0.0027 -0.0074 -0.0165 -0.0161 -0.0240 -0.0392

0.2–0.3 0.0015 0.0008 0.0016 0.0001 0.0001 -0.0003 -0.0010 -0.0024 -0.0024

0.3–0.4 -0.0079 -0.0027 0.0001 0.0019 0.0009 0.0037 0.0024 0.0035 0.0063

0.4–0.5 -0.0182 -0.0074 0.0001 0.0009 0.0054 0.0043 0.0076 0.0081 0.0170

0.5–0.6 -0.0455 -0.0165 -0.0003 0.0037 0.0043 0.0314 0.0104 0.0317 0.0412

0.6–0.8 -0.0345 -0.0161 -0.0010 0.0024 0.0076 0.0104 0.0198 0.0203 0.0400

0.8–1.0 -0.0672 -0.0240 -0.0024 0.0035 0.0081 0.0317 0.0203 0.0777 0.0540

1.0–1.5 -0.0898 -0.0392 -0.0024 0.0063 0.0170 0.0412 0.0400 0.0540 0.1274

Table 8.3: Correction factors applied to the predicted π0 and ∆ → Nγ event rates to

match that seen in data. The top row gives the scaling factors to be applied in bins of true

π0 or γ momentum given in the second row (in GeV/c). The matrix below describes the

errors and correlations for the 9 scaling factors.

8.3.3 π0 and ∆ → Nγ event rate uncertainties

The rate of effective π0 events in the MiniBooNE detector has been measured as de-

scribed in Section 7.2.2. This measurement was used to generate a set of correction factors

used to scale Monte Carlo π0 and ∆ radiative decay events as a function of the true mo-

mentum of the final state π0 or γ. The scaling factors are listed in the top row of Table 8.3

along with a covariance matrix describing the systematic errors and bin correlations for

these weights. A weighting technique is again used to propagate the uncertainty on the

Monte Carlo correction factors to the predicted CCQE distributions.

Note that the uncertainty on the π0 and ∆ → Nγ event rates affect only the νe candi-

date prediction and is negligible for the νµ’s which do not have a π0 or single photon back-

ground component. This complete lack of correlation with the νµ CCQE sample made the

in situ measurement of the π0 event rate a critical component of the νe appearance search.
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8.3.4 Dirt event rate uncertainties

Another background in the νe CCQE sample comes from neutrinos interacting in the

dirt surrounding the detector. If a single photon, mostly from π0 decays, penetrates the

veto and converts in the fiducial volume, then it can mimic a signal event. Dirt events

were studied in the data by isolating a sample of events reconstructed at large radius and

moving towards the center of the tank. It was found that the Monte Carlo accurately

predicted the rate of dirt events, so no additional correction factor was required. A flat

15% uncertainty on the dirt event rate as a function of reconstructed neutrino energy was

estimated from these studies.

8.3.5 Detector model uncertainties

The detector simulation and optical photon model are described in Section 7.3. The

35 parameters of the optical model and their covariance matrix comprise another multi-

variate normal distribution of underlying parameters whose uncertainties must be prop-

agated to the νµ and νe CCQE candidate distributions. The parameter values and covari-

ance matrix have been generated as described in [96] using MiniBooNE Michel electron

data to constrain the parameters.

The detector model effects, however, cannot be propagated to the reconstructed EQE
ν

distribution by the weighting techniques used for flux and cross-section errors. Changes

in the optical photon model have subtle effects on the reconstruction of different event

types rather than pure normalization effects on the total number of events. For exam-

ple, the scattering of photons in the oil could affect the sharpness of Cherenkov rings, or

photon extinction and reflections from the tank walls can affect the energy scale of the

reconstruction.

Unable to employ weighting techniques, the full Monte Carlo simulation, reconstruc-

tion and particle identification algorithms must be run for each variation of the detector

model parameters starting from a statistically independent sample of events generated by

NUANCE. The weighting approach allowed one to use a single high statistics sample of

events and quickly generate many systematic variations in order to build the systematic
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error matrix. The significant computational requirements of running the full simulation,

however, makes the generation of many large samples with negligible statistical fluctua-

tions impractical. This introduces the additional complication that the N resulting event

distributions will contain statistical variations in addition to the systematic ones caused

by the detector model uncertainties. To account for this, the following modification is

made when building the detector error matrix Edet. First, we rewrite Eq. 8.5 as

Edet
ij =

1
N

N∑
n=1

[
NCV −

∣∣∣∣Nn,det

NCV

∣∣∣∣ ·NCV

]
i

×
[
NCV −

∣∣∣∣Nn,det

NCV

∣∣∣∣ ·NCV

]
j

(8.16)

where the ratio
∣∣∣Nn,det

NCV

∣∣∣will differ from 1.0 according to the statistical and systematic fluc-

tuations in the event distributions of the nth Monte Carlo generation. This ratio is fit to a

polynomial as a function of reconstructed energy separately for the full-osc, νe candidate

and νµ CCQE distributions. The order of the polynomial is chosen such that it is large

enough to track the systematic variations, but sufficiently below the number of bins in

each distribution, so that the bin-to-bin statistical fluctuations are smoothed out in the ra-

tio. It is the value from this polynomial function in energy bin i and j that is used in the

generation of Edet in Eq. 8.16.

For this analysis, N = 66 detector model variations were generated. The finite num-

ber of detector model variation samples has an important consequence for the analysis.

The covariance matrix is intended to contain information about the systematic correla-

tions between all pairs of bins in the νµ and νe energy distributions. For the νµ and νe

background blocks this could be as many as (17 + 18) × (17 + 18) = 35 × 35 matrix ele-

ments that must be calculated with only 66 variations. Tests performed with samples of

generated fake data revealed that statistical fluctuations in off-diagonal elements could

produce unreliable behavior in fits. We have settled on a convention with 8 νµ and 8 νe

bins:

• EQE
νe = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 3.0] GeV

• EQE
νµ = [0.0, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9] GeV

This binning structure was well behaved in tests performed using Monte Carlo samples

with no signal and a variety of generated fake signals.



8.3.6 DAQ uncertainties 215

It will be seen that the effect of the optical model variations on the νe background

rejection efficiency is substantial, making the detector model a dominant source of un-

certainty in the νe appearance search. Therefore, methods to reduce the effect of detector

uncertainties and maximize the sensitivity of the analysis to oscillations will be explored

in Section 8.5.

8.3.6 DAQ uncertainties

The final systematic error matrix in Eq. 8.13, EDAQ, is constructed from excursions in

two data acquisition system related quantities whose implementations do not lend them-

selves to being incorporated into the detector variations above. The first is the threshold

of the discriminator on the PMT electronics which determines when a hit is recorded. The

second is the correlation between the charge amplitude and hit time for the PMT electron-

ics mentioned in Section 5.4.4.1. A new Monte Carlo sample is generated for a conser-

vative variation in the discriminator threshold and another in the charge-time correlation

model. These two variations are combined to form EDAQ. It is necessary to employ the

smoothing procedure used to build the detector model error matrix for the DAQ matrix

as well, as the variations also contain non-negligible statistical fluctuations.

8.3.7 Data and Monte Carlo statistical uncertainties

Data and Monte Carlo statistical error matrices are built within the fitting software.

Data statistical errors can be set using the data,
√

Nobs
i , or estimated from the Monte Carlo

when properly scaled to data statistics. Monte Carlo statistical errors are included, but

are small. The predicted νe and νµ distributions are generated from a sample 7.9 times

larger than data (4.4 × 1021 POT). The dirt event background is estimated from a sample

4.1 times larger than data (2.3× 1021 POT). The full-osc sample used to generate possible

signal distributions in the fit corresponds to a νµ flux from 7.1× 1019 POT. This is 49 times

larger than a signal from P (νµ → νe) ≈ 0.26% would be in the data.
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8.4 νµ CCQE sample

The following selection cuts are used to isolate a νµ CCQE candidate sample. Accord-

ing to Monte Carlo, the selection is 35% efficient at selecting quasi-elastic events with 74%

purity [67].

• Exactly 2 subevents (corresponding to the muon and its Michel electron)

• 1st subevent in the beam window (4400 < t < 6400 ns)

• Ntank > 200 (1st subevent), Ntank < 200 (2nd subevent)

• Nveto < 6 (both subevents)

• Radius < 500 cm (1st subevent)

• ∆R < 100 cm (∆R is the distance between the Michel vertex and the muon end-

point)

Figure 8.6 shows the events selected by these cuts in the data and the Monte Carlo as

a function of reconstructed EQE
ν (Eq. 7.11). The Monte Carlo has been normalized to

5.58 × 1020 POT to match the data. The error bars on the data are statistical only and no

systematic errors are shown. In the left panel, the Monte Carlo has been separated into

signal (CCQE) and background (non-CCQE) components. On the right, the predicted

events are separated into those where the νµ was produced in π+ → µ+νµ decays and

those with a non-π+ parent.

A normalization difference clearly exists between the predicted and measured νµ CCQE

events. Fortunately, we can use the fitting tools and systematic error propagation tech-

niques introduced in the previous two sections to study the νµ CCQE sample alone with-

out incorporating the νe’s. The covariance matrix is reduced to the lower right block in

Figure 8.4 where only the correlations within the νµ distribution are considered. The χ2

expression becomes

χ2 =
nνµ∑
i,j

[
Nobs

i −Npred
i

]
E−1

ij

[
Nobs

j −Npred
j

]
(8.17)
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Figure 8.6: νµ charged-current quasi-elastic candidate events as a function of recon-

structed EQE
ν . Data and Monte Carlo are absolutely normalized to 5.58 × 1020 POT. Sta-

tistical errors are shown on the data but no systematic uncertainties are shown. The total

Monte Carlo and the data are the same in both panels. The left panel separates Monte

Carlo events into a signal (CCQE) and background (non-CCQE) component. The right

panel divides the Monte Carlo into neutrinos with a π+ parent and those with a different

parent.

with no dependence on the oscillation parameters and the sums run only over νµ energy

bins. Figure 8.7 shows the νµ distribution re-binned to the 8 EQE
ν bins of the error matrix

to be used in the oscillation fits. The systematic errors shown on the Monte Carlo are the

square-root of the diagonal elements of the νµ covariance matrix. Using the full covariance

matrix to compare absolutely normalized data and Monte Carlo, Eq. 8.17 yields a χ2 per

degree of freedom of χ2/dof = 6.8/8, indicating good agreement within the estimated

uncertainties.

Nonetheless, a systematic discrepancy between the observed and predicted νµ event

rate is evident. We add a free parameter, fπ, to the χ2 expression which scales only events

where the νµ was created in π+ → µ+νµ decay (see Figure 8.6):

χ2(fπ) =
nνµ∑
i,j

[
Nobs

i −
(
fπ ·Npred

i (π+) + Npred
i (6π+)

)]
E−1

ij

[
Nobs

j −
(
fπ ·Npred

j (π+) + Npred
j (6π+)

)]
(8.18)
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Figure 8.7: νµ charged-current quasi-elastic candidate events as a function of recon-

structed EQE
ν binned according to the error matrix to be used in the oscillation fit. Data

and Monte Carlo are absolutely normalized to 5.58×1020 POT. Statistical errors are shown

on the data but are smaller than the points. The systematic error band is generated from

the square-root of the diagonal elements of the νµ CCQE total covariance matrix. The

right panel shows these errors as a fraction of the total predicted number of events.

A fit is performed to minimize χ2 with respect to fπ with the result shown in Figure 8.8.

A value of fπ = 1.19 ± 0.21 is preferred with a minimum χ2/dof = 4.6/7. Note that we

have lost a degree of freedom due to the new parameter fπ.

By including this new parameter we have, in effect, absorbed much of the data/Monte

Carlo disagreement seen in the νµ CCQE events into the production of π+ in the Booster

Neutrino Beamline target. This is not necessarily a physics measurement - we do not

purport to have measured π+ production in beryllium using neutrino data - but rather

a convenient way to handle a normalization discrepancy seen in νµ CCQE data. We will

make the assumption, however, that the true cause(s) of the disagreement affect all events

originating from π+ in the beamline and will, therefore, scale all such events2 by the same

factor fπ = 1.19.

2This will not apply to event samples where the absolute rate has been measured in the data, namely the

π0, ∆→ Nγ and dirt event rates.
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Figure 8.8: νµ charged-current quasi-elastic candidate events as a function of recon-

structed EQE
ν after fitting for the parameter fπ. Monte Carlo events where the neutrino

parent is a π+ have been scaled by fπ = 1.19.

8.5 νe CCQE sample and oscillation sensitivity - two possible se-

lections

The following pre-cuts are used to begin to isolate a νe CCQE candidate sample in

MiniBooNE data (see Section 6.3):

• Exactly 1 subevent (reject νµ CC events)

• Ntank > 200 (reject Michel electrons)

• Nveto < 6 (reject cosmics and out-of-tank events)

• Radius < 500 cm (fiducial volume)

• event in the beam window (4400 < t < 6400 ns)

In Section 7.5, we described a Boosted Decision Tree (BDT) algorithm developed to re-

ject non-νe CCQE single subevent backgrounds, particularly νµ CCQE and NC π0 events.

Figure 8.9 shows the distribution of the BDT particle identification output score as a func-

tion of reconstructed3 EQE
ν for a sample of Monte Carlo νe charged-current quasi-elastic

3The neutrino energy has been reconstructed in all events using the quasi-elastic formula of Eq. 7.11 and

assuming that the final state particle detected is an electron.
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Figure 8.9: Distribution of the BDT PID score as a function of reconstructed EQE
ν for νe

CCQE events (green) and all other event types (black) in the νe pre-cuts sample. The two

samples have been relatively normalized and the green has been plotted on top of the

black, thus obscuring a portion of the background.
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events (green) and all backgrounds (black) which have passed the νe pre-cuts above. We

are now faced with the task of determining the cut positions in the BDT output variable

as a function of reconstructed energy. Of the systematic uncertainties discussed in Section

8.3, only the detector model uncertainties have an effect on the signal efficiency or the

background rejection rate of the algorithm. Therefore, it is with respect to the detector

model uncertainties that we wish to optimize the cut positions in isolating νe quasi-elastic

events.

Below we present two approaches to determining the BDT event selection. Both are

based on Monte Carlo input only to avoid any bias introduced by using the data4. The

intent in both approaches is to minimize the impact of the detector model systematic

errors on the BDT selection efficiencies. They differ in the figure of merit (FOM) used to

perform the optimization.

8.5.1 Optimization Strategy 1: Isolate intrinsic νe events

The first method treats each reconstructedEQE
ν bin independently and determines the

optimal BDT cut position for separating intrinsic νe events from non-νe backgrounds. The

first EQE
ν bin (0.2-0.4 GeV) used in the oscillation fits is divided into two 100 MeV bins

when applying BDT selection cuts, making 9 total energy bins:

• EQE
νe (PID) = [0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 3.0] GeV

Both the νµ mis-ID backgrounds and detector model uncertainties increase sharply at the

lowest energies, so it was believed the extra freedom in the BDT cut at low energy would

be beneficial.
4While we have blatantly ignored the interesting issue of “blindness” in this dissertation, the two methods

of optimizing the νe event selection were both developed entirely using Monte Carlo before even looking at

the νe data candidates. The blindness concept was used by MiniBooNE to eliminate any potential biasing of

the νe appearance analysis. All event selections, background predictions, physics models, systematic errors

and fitting routines were extensively studied and eventually fixed before we allowed ourselves to analyze

the data νe candidates for evidence of oscillations. The official “unblinding” of the νe data was done using

the analysis presented in this dissertation as well as another based on an independent event reconstruction,

particle identification and νµ constraint/fitting algorithm [96] on March 26, 2007. Those initial results have

been published in Physical Review Letters [66].
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For each bin in EQE
ν , our goal is to maximize the number of intrinsic νe CCQE events

passing the selection, Nνe , relative to the systematic variation in the total number of events

caused by the detector model uncertainties, (RMS)All:

F.O.M. =
Nνe

(RMS)All
(8.19)

Note there is no consideration of the particular signal we are looking for (νµ → νe oscil-

lation events) in this approach; we are simply maximizing the significance of the νe event

selection by using the intrinsic νe background prediction. A significant excess of νe events

in the data above this prediction would then be attributed to oscillations.

We can build our figure of merit of Eq. 8.19 by using the 66 Monte Carlo samples

produced for constructing the detector model covariance matrix, Edet. By applying a

given cut in the BDT output variable to each sample, we calculate the average number

of intrinsic νe CCQE events that are selected, and also the RMS of all events passing the

same cut from the spread in the 66 samples. The ratio of Eq. 8.19 can then be mapped as

a function of the BDT variable cut position in each bin of EQE
ν .

The result is shown in Figure 8.10. The nine panels correspond to the nine bins of

reconstructed energy where we will select a unique cut position. In each panel, the black

histogram shows how the FOM of Eq. 8.19 changes as a function of cut location. From

the left axis labels one can read off the significance of the intrinsic νe selection in the bin

for a given BDT cut. In each bin there is a clear peak in the distribution where we choose

to set the BDT cut in order to maximize our figure of merit in that energy range. The

other curves shown (which use the right axis labels) illustrate how the fractions of signal

(red) and background (blue dashed) events which pass the selection changes with the cut

position.

Figure 8.11 shows the set of cuts determined by this method plotted over the 2-dimensional

(BDT vs. EQE
ν ) distribution of signal and background events. The efficiency of these cuts

has been calculated as a function of EQE
ν for signal (νe CCQE events) and two important

backgrounds (NC π0 and νµ CCQE events) and is shown in the right panel. At the lowest

point, near 500 MeV, the BDT cut rejects 99.8% of NC π0 events and 99.95% of νµ CCQE

events which have passed νe pre-cuts while maintaining ∼ 30% efficiency for νe CCQE
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Figure 8.10: The figure of merit of Eq. 8.19 as a function of the BDT output score cut

position (black histogram) in nine different bins of reconstructed EQE
ν . Also shown (using

the right axis labels) are the signal (red) and background (blue dashed) efficiency as a

function of the cut value.
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Figure 8.11: The left panel shows the BDT score cuts as a function of reconstructed EQE
ν

optimized for separating intrinsic νe events from non-νe backgrounds. The right is the

corresponding efficiencies for three types of events: νe CCQE events, NC π0 events, and

νµ CCQE events.

events. The cuts loosen and the νe efficiency steadily rises to nearly 100% at high energy.

The predicted event distribution for this set of cuts is presented in Figure 8.12. The

Monte Carlo has been normalized to 5.58 × 1020 POT, so the plot shows an absolute pre-

diction. The error bars are the square-root of the diagonal elements of the total error

matrix of Eq. 8.13 before applying the constraint from the high statistics νµ CCQE sample.

The dashed curves show the effect of the νµ constraint for comparison. The νµ mostly pro-

vide a constraint on the rate of νe from muon decay since the correlation between these

samples is strong.

Figure 8.13 presents the sensitivity of this event selection and analysis methods to

νµ → νe oscillations. All systematic and statistical errors as well as the constraint from the

νµ CCQE sample are considered in the generation of the 90% C.L. sensitivy curve shown in

the top figure. The bottom panel provides valuable information about the relative impact

of the various systematic uncertainties. The sensitivity is shown for different subsets of the

total error matrices of Eq. 8.13. The blue line shows the 90% C.L. sensitivity curve if only

the statistical uncertainty of the data is considered and represents an absolute upper limit
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Figure 8.12: Monte Carlo prediction for events passing the νe BDT selection cuts opti-

mized for separating intrinsic νe events from non-νe backgrounds. The prediction has

been absolutely normalized to 5.58 × 1020 POT to match the neutrino data set. The er-

ror bars shown are the square-root of the diagonals of the total covariance matrix before

any constraint from the νµ CCQE sample. The dashed curves are the errors after the νµ

constraint is applied which mostly affects the intrinsic νe’s from muons (top green band).
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Figure 8.13: Sensitivity to νµ → νe oscillation parameters (∆m2, sin2(2θ)) using the νe BDT

selection cuts optimized for separating intrinsic νe events from non-νe backgrounds. The

top plot shows the 90% C.L. sensitivty curve including all statistical and systematic uncer-

tainties. The bottom plot shows the 90% C.L. sensitivity considering different subsets of

the error matrices. The sensitivity with statistical errors only is shown by the blue curve.

The green and orange curves show the result of removing all flux related errors and neu-

trino interaction errors, respectively. The red curve is for all errors except the detector

optical model errors.
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for the data available. The black curve is a reproduction of the full sensitivity from above.

If all flux related errors (Eπ+
, Eπ− , EK+

, EK0

, Ebeam) are ignored the sensitivity is given

by the gold curve. If the neutrino cross-section model errors, the π0 rate measurement

errors and the error on the dirt event rate (Eσ, Eπ0
, Edirt) are all ignored, then the resulting

sensitivity is shown by the green line. Both curves are barely different from the final

sensitivity.

The red sensitivity curve, however, is the result of removing only a single matrix,

the detector optical model error matrix, Edet. Here we see a noticeable improvement in

the oscillation sensitivity implying that the detector model errors have the single largest

impact on the sensitivity of this analysis. While the simple optimization described here

produces a decent coverage of the relevant oscillation parameter space, we nonetheless

explore one more possibility at reducing the impact of the optical model variations on the

analysis.

8.5.2 Optimization Strategy 2: Maximize sensitivity to νµ → νe oscillations

The second method of determining the BDT νe selection cuts will not treat the EQE
ν

bins independently, but rather will compare the sensitivity to νµ → νe oscillations of sets

of cuts and seek to find the set with the maximum sensitivity. Again, we will consider only

the detector optical model systematic uncertainty as it is the dominant effect in reducing

the sensitivity of the analysis. While the strategy is rather straight forward, the process is

quite involved. Below we provide a detailed description of the steps:

1. Randomly select a set of 9 BDT cut values for the 9 EQE
ν (PID) bins listed in the

previous section.

2. Apply this set of cuts to the high statistics (7.9× data POT) central value Monte Carlo

which has already been filtered through νe pre-cuts to generate a νe CCQE candidate

sample.

3. Apply the same cuts to the central value full-osc Monte Carlo which has been mod-

ulated by sin2(1.267 ∆m2 0.541 km/Eν) for the value of ∆m2 = (∆m2)opt for which

you wish to optimize the analysis.
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4. Apply the same BDT cuts to the 66 Monte Carlo samples corresponding to the 66

detector model parameter variations.

5. Use the central value and 66 detector model variations of νe candidates along with

the central value and detector model variations of the νµ CCQE sample to build the

(νe, νµ) blocks of the covariance matrix, Edet, as in Eq. 8.16.

6. Calculate χ2 using Eq. 8.1 and ((∆m2)opt, 0) for oscillation parameters. This is the

reference χ2 value corresponding to no signal, χ2
null.

7. Increase sin2(2θ) in steps, scale the full-osc sample accordingly to generate a test

signal, and recalculate χ2 until ∆χ2 = χ2−χ2
null ≥ 9.0. This is the value of sin2(2θ) ≡

(sin2(2θ))3σ that sits on the 3σ sensitivity curve for this set of BDT cuts at (∆m2)opt.

8. Repeat steps 1–7 N times where N → ∞ and compare the 3σ crossing points for all

sets of cuts. Select the set with the smallest value of sin2(2θ) which sits on the 3σ

sensitivity curve (furthest to the left on the oscillation parameter space plots).

We make two important modifications to the procedure outlined above:

• The problem described above is one of function minimization. The figure of merit

we wish to minimize is the value of the mixing angle for which we have 3σ sensi-

tivity, (sin2(2θ))3σ, and it depends (albeit, in a very complicated way) on the set of

9 BDT cut positions used to select the νe candidate sample. The “brute-force” ap-

proach of repeating the procedure N times with a new set of 9 random cut values

is far from optimal. We, therefore, embed the calculation of steps 2–7 within the

FCN routine of the Minuit function minimization software package [132]. Minuit

is then used to explore the 9-dimensional parameter space and seek the set of cut

positions which yields the minimum value of (sin2(2θ))3σ.

• We wish to optimize the analysis for detecting νµ → νe oscillations, but not neces-

sarily for a particular value of ∆m2. The range in ∆m2 allowed by the LSND data

spans several orders of magnitude and we would like to avoid biasing the analysis

to a precise value. To do this we define a new figure of merit which depends on the
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sensitivity at multiple ∆m2 values:

F.O.M. =
∑
∆m2

i

(sin2(2θ))3σ

W∆m2
i

. (8.20)

Typically, 2–3 values of ∆m2 are used which are spaced appropriately through the

allowed region. The weighting factors, W∆m2
i
, are used to normalize the contribu-

tions from the different ∆m2 to the total figure of merit since the absolute value of

(sin2(2θ))3σ can vary widely at different values of ∆m2, as is obvious from Figure

8.13.

We have applied the above procedure combining the sensitivities at ∆m2 = 0.4 eV2

and 1.8 eV2 in the FOM of Eq. 8.20. The results are displayed in Figures 8.14 through 8.17.

The BDT cuts and selection efficiencies are shown in 8.14 and 8.15. The optimization

has had two noticeable effects on the cut values relative to the optimization strategy of

Section 8.5.1. First, the νe selection efficiency between 300–1400 MeV has become fairly

flat in the 60–70% range. For our previous selection, the νe efficiency rose steadily from

25% to 95% in this same range. Second, the optimization has relaxed the cut in the 200-

300 MeV energy bin to a BDT score of -10.8. This causes the first energy bin to be flooded

with νµ-induced backgrounds as seen in the top panel of Figure 8.16.

This surprising result can be understood by comparing the left and right panels of

Figure 8.14. These plots illustrate the change in our definition of “signal” in the two op-

timization strategies presented. The left plot shows the intrinsic νe CCQE events (green

points) compared to all other predicted event types (black points), as before. In the right

plot, the green points are νe CCQE events for νe’s from a 1% (flat in energy) νµ → νe os-

cillation. The black points are all backgrounds to the oscillation search including intrinsic

νe-induced events. The two distributions are absolutely normalized to the same number of

protons on target.

Note the clustering of signal events in the ∼ 300–1400 MeV range in the right panel of

Figure 8.14. Also, as mentioned previously, the νµ-induced backgrounds and, along with

them, the systematic uncertainties increase sharply at low reconstructed EQE
ν . But these

backgrounds tend to be strongly correlated as a function of energy. Therefore, the loose
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BDT cut in the 200-300 MeV EQE
ν bin provides a high statistics constraint on the level of

νµ-induced backgrounds (NC π0, ∆ → Nγ , and dirt events) in the same way that the high

statistics νµ CCQE sample provides a constraint on the rate of intrinsic νe events from

muon decays in the beam - through the covariance matrix used in the oscillation fit. The

lack of oscillation signal events in this energy range means the benefit of this constraint

far outweighs the damage done by reducing the likelihood of seeing a significant excess

in the first energy bin.

Figure 8.16 shows the predicted distribution of νe candidate events for this set of BDT

cuts. The bottom panel simply reduces the energy range shown in order to highlight

the prediction in the region where we expect to look for oscillation events. The dotted

histogram shows the expected excess of events for a possible set of oscillation parameters,

(∆m2, sin2(2θ)) = (1.2 eV2, 0.003), the LSND best-fit values.

The oscillation sensitivity curve for this selection, considering all sources of experi-

mental uncertainty, is shown in Figure 8.17. The bottom panel of Figure 8.17 compares

directly the 90% C.L. sensitivities of the two νe event selection strategies presented. This

latter strategy creates a significant improvement in the oscillation sensitivity for ∆m2 ≤

1 eV2.

8.6 Verifying the simulation in a BDT sideband

In this section, we take our first look at the neutrino data for events having passed

the νe pre-cuts listed at the start of Section 8.5. Rather than looking immediately in the

νe candidate region as defined by the BDT cuts determined in the previous section, we

choose to inspect first a “sideband” region just outside of these cuts. The intent is to

verify the simulation and systematic error estimates as well as test the fitting algorithms

using a sample of real data events.

To perform the test we define a new set of cut positions in the BDT score variable as

shown by the blue line in the upper left panel of Figure 8.18. For the set of events which

fall between the blue and black cut lines, we select events in the data and generate a central

value Monte Carlo prediction. We also calculate the full set of systematic error matrices
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Figure 8.14: BDT score cuts as a function of reconstructed EQE
ν optimized for sensitivity

to oscillation signal events. The left panel compares the cuts to relatively normalized νe

CCQE (green points) and non-νe backgrounds (black points) as before. In the right panel,

the green points represent a 1% flat probability oscillation signal. The black points are

all backgrounds to the oscillation search including intrinsic νe-induced events. The two

distributions are absolutely normalized to the same POT.

Figure 8.15: Selection efficiencies for three types of events: νe CCQE events, NC π0 events,

and νµ CCQE events for the BDT cuts optimized for sensitivity to oscillation signal events.
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Figure 8.16: Monte Carlo prediction for events passing the νe BDT selection cuts opti-

mized for sensitivity to oscillation signal events. The prediction has been absolutely nor-

malized to 5.58 × 1020 POT to match the neutrino data set. The error bars shown are

the square-root of the diagonals of the total covariance matrix after constraint by the νµ

sample. The dotted histogram is the expected number of signal events for oscillation pa-

rameters (∆m2, sin2(2θ)) = (1.2 eV2, 0.003), the LSND best-fit point.
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Figure 8.17: Sensitivity to νµ → νe oscillation parameters (∆m2, sin2(2θ)) with the BDT

selection cuts optimized for sensitivity to oscillation signal events. The top plot shows

the 90% C.L. sensitivty curve including all statistical and systematic uncertainties. The

bottom plot compares the sensitivity of this selection to that of the selection optimized

using intrinsic νe events described in Section 8.5.1.
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listed in Eq. 8.13 to enable a quantitative comparison of data and prediction.

The upper right panel of Figure 8.18 shows the absolutely normalized data and Monte

Carlo prediction in the sideband region. The Monte Carlo prediction is dominated by NC

π0 events (red). The gray band, labeled “other” is mostly νµ quasi-elastic events. The

figure also shows the effects of the high statistics νµ sample on the νe background predic-

tion. In Figure 8.8 there is a residual discrepancy between the νµ data and Monte Carlo

even after scaling the prediction by fπ = 1.19. In the peak of the distribution, the Monte

Carlo sits a few percent below the data such that ∆νµ = Nobs
νµ
− Npred

νµ < 0. The positive

correlation with both the νe from muon decay and, more importantly in the sideband, the

νµ quasi-elastic background, will act to pull up the prediction a few percent. The colored

stacked histograms are the absolute prediction before any adjustment based on the νµ’s.

The solid histogram with systematic error bars is the final Monte Carlo prediction after

incorporating information from the νµ CCQE data/Monte Carlo disagreement.

The χ2 statistic is calculated according to equation 8.1 to be χ2/dof = 7.1/15. The 15

degrees of freedom are calculated from +8 νµ bins (see Figure 8.7), +8 νe bins (the 1.6–3.0

GeV bin is not shown in Figure 8.18) and -1 for the parameter fπ = 1.19 which multiplies

events with a π+ parent.

Finally, the bottom panel in Figure 8.18 shows the projection onto the BDT score axis

for events in the energy range 400–1400 MeV. The data and Monte Carlo are absolutely

normalized to the data POT. νe events from muon decays and νµ quasi-elastic events have

been scaled up by fπ = 1.19. The error bars shown are the data statistical errors only and

no systematic errors are presented. Above the absolute distributions is the data/Monte

Carlo ratio as a function of the BDT variable. A flat line fit to the ratio yieldsR = 1.02±0.02

considering only statistical uncertainties.

The plots of Figure 8.18 demonstrate a very successful test of the simulation and fitting

methods in a sample of nearest-neighbors to the potential signal events. We now proceed

to analyzing the νe candidate events and searching for evidence of νµ → νe oscillations in

the MiniBooNE data.
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Figure 8.18: BDT “sideband” test. The sideband is defined in the upper left panel as

the events between the blue and black curves. Absolutely normalized data and Monte

Carlo are compared in the top right panel. Using the full covariance matrix and the νµ

constraint the χ2/dof = 7.1/15. The bottom panel shows a projection onto the BDT score

axis for events in the energy range 400–1400 MeV and the Data/MC ratio. A flat line fit to

the ratio yields R = 1.02± 0.02 with statistical errors only.
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8.7 Oscillation results

With the analysis tools vetted and all systematic uncertainties estimated, we turn to

the νe candidate events in the MiniBooNE data. We present comparisons of data and

Monte Carlo for both sets of BDT event selection cuts5 presented in Section 8.5. It should

be noted, however, that these are in no way independent samples. The events selected by

one set of cuts are necessarily a sub-set of the other, depending on which has a tighter BDT

cut in each energy bin. While the relative normalization and shape difference between the

data and Monte Carlo in the two samples will have subtle impacts on the oscillation fit,

the general conclusions, to be at all conclusive, must be the same.

Tables 8.4 and 8.5 report basic information from the oscillation fits performed for the

two samples (BDT 1 = intrinsic νe optimization, BDT 2 = oscillation νe optimization).

The total number of predicted and observed νe candidate events is given in the recon-

structed energy range 200–1600 MeV. For the BDT 2 selection we separate these into a

200–400 MeV and a 400–1600 MeV region because of the loose cut in the low-energy bin.

The total systematic uncertainty on the prediction is calculated by summing over the ele-

ments of the error matrix. The error on the number of observed events is just
√
N of the

data. The difference in the total number of events (Data - MC) is listed in the last column

with total statistical and systematic uncertainties added in quadrature. This single num-

ber provides a first indication of whether there is evidence of neutrino oscillations in the

MiniBooNE data. For both samples, the total numbers of predicted and observed events

agree within the uncertainties.

Table 8.5 lists the relevant χ2 values determined in the oscillation fit:

• χ2
null – the value of the χ2 statistic of Eq. 8.1 when comparing the data and Monte

Carlo without adding any signal component to the prediction. The error matrix used

also contains no signal component, Enull ≡ E(0, 0).

• χ2
best−fit – the minimum value of the χ2 statistic determined by fitting for oscillation

parameters. The error matrix used is that from the last iteration of the fitting routine

5Originally, the νe data were unblinded in March, 2007 using cuts optimized by the 2nd method of Section

8.5.2 only and not by the cuts optimized to isolate intrinsic νe’s.
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νe sample EQE
ν (MeV) MC events Data events Data - MC

BDT 1 200-1600 1372 ± 228 1192 ± 35 -180 ± 231 (0.78σ)

BDT 2 400-1600 985 ± 198 788 ± 28 -197 ± 200 (0.98σ)

BDT 2 200-400 2346 ± 364 2582 ± 51 +236 ± 368 (0.64σ)

Table 8.4: Total numbers of predicted and observed events in the νe candidate samples

in the range 200 ≤ EQE
ν ≤ 1600 MeV. BDT 1 = intrinsic νe optimized cuts presented in

Section 8.5.1. BDT 2 = oscillation νe optimized cuts from Section 8.5.2.

νe sample EQE
ν (MeV) χ2

null/dof (Prob.) χ2
best−fit/dof (Prob.) (∆m2, sin2(2θ))best−fit

BDT 1 200-3000 10.17/15 (80.9%) 10.16/13 (68.1%) 0.01 eV2, 0.16

BDT 2 200-3000 11.90/15 (68.7%) 10.81/13 (62.7%) 7.56 eV2, 0.0014

Table 8.5: χ2 values from the oscillation fits. See the text for definitions of χ2
null, χ

2
best−fit,

and (∆m2, sin2(2θ))best−fit.

(see Section 8.2.4).

• (∆m2, sin2(2θ))best−fit – the best-fit oscillation parameters corresponding to χ2
best−fit.

In neither case is the best-fit χ2 a significant improvement over the null hypothesis case.

The energy distributions of events are shown in Figures 8.19 and 8.20 for the BDT 1

and BDT 2 samples, respectively. No evidence of an excess of νe events is seen. For each,

therefore, we calculate a limit on the νµ → νe oscillation hypothesis as a function of ∆m2

at 90% C.L. The 90% C.L. contours shown in the right panels of the figures have been

determined by calculating the value of sin2(2θ) at each ∆m2 for which the χ2 increases by

∆χ2 = χ2 − χ2
null = 1.64 units.

One final way of expressing the level of data/Monte Carlo agreement in the Mini-

BooNE data is shown in Figure 8.21. The plots show the data event excess over prediction

in all νµ and νe CCQE candidate energy bins. For the majority of the νe energy bins, of

course, we see a systematic deficit, but in almost every bin the data and prediction agree
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Figure 8.19: Comparison of observed and predicted event rates in the νe CCQE candi-

date region selected using the BDT cuts optimized for separating intrinsic νe from non-νe

backgrounds (BDT 1). The right panel shows the resulting 90% C.L. limit on νµ → νe

oscillations set by these data.

Figure 8.20: Comparison of observed and predicted event rates in the νe CCQE candidate

region selected using the BDT cuts optimized for separating oscillation events from non-

oscillation backgrounds (BDT 2). The right panel shows the resulting 90% C.L. limit on

νµ → νe oscillations set by these data.
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Figure 8.21: Data - MC event excesses for νµ (top) and νe (bottom) CCQE candidates se-

lected using the BDT cuts optimized for separating intrinsic νe from non-νe backgrounds

(left) and those optimized for separating oscillation events from non-oscillation back-

grounds (right). The error bars shown are the square-root of the diagonals of the error

matrix and include all statistical and systematic uncertainties. The green and blue his-

tograms show the expectations for two different sets of oscillation parameters in the LSND

allowed region.

within the estimated uncertainties.
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Figure 8.22: Summary of the search for νµ → νe oscillations using MiniBooNE data. The

90% C.L. limits are shown for two (not independent) samples of νe candidate events se-

lected using the BDT algorithm. Oscillations consistent with those reported by LSND are

strongly excluded by these data.
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Appendix A

HARP cross-section data

This appendix contains tables of double-differential production cross-section

data measured at the HARP experiment at CERN. Proton, π+ and π− produc-

tion from interactions of 8.9 GeV/c protons with beryllium and 12.9 GeV/c

protons with aluminum are presented in bins of laboratory frame momen-

tum, p, and polar angle with respect to the incident proton direction, θ, in the

range 0.75 GeV/c ≤ p ≤ 8.0 GeV/c and 0.030 rad ≤ θ ≤ 0.210 rad. For each

kinematic bin the central value cross-section and the square-root of the corre-

sponding diagonal element of the covariance matrix are listed. For the data

and full 84×84 element error matrices in a readable ASCII format please see

http://home.fnal.gov/˜dschmitz/thesis/harp data/.
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8.9 GeV/c proton + beryllium

θmin θmax pmin pmax d2σπ+
/(dpdΩ) d2σπ−/(dpdΩ) d2σp/(dpdΩ)

(mrad) (mrad) (GeV/c) (GeV/c) (mb/(GeV/c sr)) (mb/(GeV/c sr)) (mb/(GeV/c sr))

30 60 0.75 1.00 176.5 ± 22.7 122.9 ± 15.3 72.0 ± 12.3

1.00 1.25 172.5 ± 21.7 137.9 ± 16.8 75.0 ± 11.8

1.25 1.50 187.7 ± 21.0 130.7 ± 13.0 69.3 ± 10.3

1.50 1.75 179.7 ± 19.7 120.3 ± 11.6 85.2 ± 10.6

1.75 2.00 197.5 ± 17.8 106.6 ± 9.4 83.5 ± 9.9

2.00 2.25 208.5 ± 17.5 86.7 ± 11.0 98.3 ± 10.9

2.25 2.50 188.9 ± 14.6 86.9 ± 8.9 122.3 ± 12.6

2.50 2.75 179.9 ± 13.3 75.6 ± 9.0 128.0 ± 13.4

2.75 3.00 168.7 ± 12.8 66.2 ± 7.9 146.3 ± 12.9

3.00 3.25 124.4 ± 9.8 51.8 ± 6.2 162.1 ± 12.4

3.25 4.00 97.8 ± 7.7 40.9 ± 4.1 184.3 ± 15.3

4.00 5.00 65.9 ± 5.9 19.9 ± 2.4 268.9 ± 20.5

5.00 6.50 29.5 ± 5.0 7.1 ± 1.0 413.1 ± 25.7

6.50 8.00 10.3 ± 6.6 0.7 ± 0.4 562.7 ± 34.5

60 90 0.75 1.00 153.5 ± 16.8 129.6 ± 14.4 82.7 ± 9.4

1.00 1.25 160.1 ± 15.0 120.9 ± 11.9 68.3 ± 7.7

1.25 1.50 168.4 ± 15.6 106.0 ± 10.0 77.1 ± 7.6

1.50 1.75 176.8 ± 15.2 108.5 ± 10.0 79.4 ± 7.9

1.75 2.00 183.3 ± 13.8 103.2 ± 8.3 85.4 ± 6.4

2.00 2.25 185.7 ± 11.4 91.9 ± 8.1 81.6 ± 7.7

2.25 2.50 177.3 ± 10.2 75.4 ± 5.8 96.6 ± 9.2

2.50 2.75 151.9 ± 8.6 64.5 ± 5.4 106.0 ± 9.8

2.75 3.00 125.4 ± 7.6 47.9 ± 4.7 117.7 ± 9.0

3.00 3.25 92.1 ± 7.6 34.9 ± 4.5 130.4 ± 8.9

3.25 4.00 70.3 ± 5.4 28.9 ± 2.3 150.8 ± 10.3

4.00 5.00 44.7 ± 3.2 14.2 ± 1.3 183.3 ± 8.5

5.00 6.50 17.9 ± 2.3 3.8 ± 0.5 207.0 ± 10.3

6.50 8.00 4.7 ± 2.4 0.2 ± 0.1 226.2 ± 13.8
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8.9 GeV/c proton + beryllium

θmin θmax pmin pmax d2σπ+
/(dpdΩ) d2σπ−/(dpdΩ) d2σp/(dpdΩ)

(mrad) (mrad) (GeV/c) (GeV/c) (mb/(GeV/c sr)) (mb/(GeV/c sr)) (mb/(GeV/c sr))

90 120 0.75 1.00 186.4 ± 17.6 122.3 ± 12.5 79.9 ± 9.3

1.00 1.25 179.7 ± 16.9 112.3 ± 13.1 67.4 ± 7.5

1.25 1.50 180.9 ± 13.2 108.0 ± 10.0 69.2 ± 8.2

1.50 1.75 146.5 ± 11.9 99.0 ± 8.1 80.0 ± 5.9

1.75 2.00 143.9 ± 12.4 85.2 ± 8.4 78.7 ± 6.6

2.00 2.25 127.2 ± 8.5 69.5 ± 7.3 72.0 ± 6.8

2.25 2.50 118.4 ± 7.9 56.9 ± 5.4 79.4 ± 7.0

2.50 2.75 94.9 ± 6.7 45.4 ± 4.0 78.4 ± 6.9

2.75 3.00 75.0 ± 7.0 37.4 ± 4.2 86.7 ± 7.6

3.00 3.25 58.4 ± 5.1 24.9 ± 3.3 89.9 ± 7.1

3.25 4.00 45.0 ± 3.1 19.7 ± 1.9 100.1 ± 5.9

4.00 5.00 24.1 ± 2.7 7.6 ± 1.1 110.2 ± 5.2

5.00 6.50 8.7 ± 1.4 1.4 ± 0.4 97.1 ± 5.4

6.50 8.00 1.3 ± 0.9 0.1 ± 0.1 67.8 ± 4.9

120 150 0.75 1.00 175.0 ± 17.5 104.1 ± 13.9 71.7 ± 10.4

1.00 1.25 158.7 ± 15.1 116.0 ± 13.7 71.4 ± 8.2

1.25 1.50 156.0 ± 13.2 103.1 ± 8.8 74.1 ± 6.9

1.50 1.75 143.2 ± 11.2 82.8 ± 8.7 77.5 ± 6.6

1.75 2.00 119.9 ± 8.7 71.6 ± 7.4 76.8 ± 6.1

2.00 2.25 97.1 ± 7.7 53.4 ± 5.8 71.7 ± 8.2

2.25 2.50 85.7 ± 6.0 45.9 ± 4.1 78.7 ± 5.9

2.50 2.75 66.8 ± 5.7 33.8 ± 3.0 83.3 ± 5.8

2.75 3.00 55.8 ± 4.3 25.9 ± 2.3 76.0 ± 5.8

3.00 3.25 45.2 ± 3.9 18.1 ± 2.2 75.0 ± 5.6

3.25 4.00 28.4 ± 3.0 14.6 ± 1.1 81.3 ± 4.5

4.00 5.00 15.1 ± 1.7 6.1 ± 0.7 74.9 ± 4.1

5.00 6.50 5.2 ± 0.7 0.9 ± 0.2 48.9 ± 3.3

6.50 8.00 0.4 ± 0.4 0.0 ± 0.1 19.5 ± 2.9
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8.9 GeV/c proton + beryllium

θmin θmax pmin pmax d2σπ+
/(dpdΩ) d2σπ−/(dpdΩ) d2σp/(dpdΩ)

(mrad) (mrad) (GeV/c) (GeV/c) (mb/(GeV/c sr)) (mb/(GeV/c sr)) (mb/(GeV/c sr))

150 180 0.75 1.00 172.5 ± 20.2 134.7 ± 19.3 71.6 ± 9.3

1.00 1.25 180.1 ± 16.9 99.9 ± 13.5 63.5 ± 7.5

1.25 1.50 147.5 ± 13.7 95.9 ± 10.6 59.8 ± 6.5

1.50 1.75 119.0 ± 9.8 73.6 ± 8.5 57.0 ± 6.5

1.75 2.00 98.4 ± 7.1 55.5 ± 6.8 58.4 ± 6.2

2.00 2.25 69.5 ± 5.4 35.7 ± 5.7 54.2 ± 5.9

2.25 2.50 52.6 ± 5.2 26.0 ± 4.7 59.7 ± 5.4

2.50 2.75 41.8 ± 3.7 25.0 ± 3.1 53.2 ± 5.2

2.75 3.00 35.7 ± 3.5 21.1 ± 2.7 52.2 ± 4.9

3.00 3.25 24.9 ± 2.9 13.9 ± 2.3 54.2 ± 4.2

3.25 4.00 17.4 ± 2.1 7.1 ± 1.4 51.0 ± 3.6

4.00 5.00 7.5 ± 1.2 2.2 ± 0.6 39.4 ± 2.7

5.00 6.50 2.7 ± 0.3 0.4 ± 0.1 21.7 ± 2.0

6.50 8.00 0.2 ± 0.1 0.0 ± 0.1 4.9 ± 1.2

180 210 0.75 1.00 177.5 ± 24.8 121.8 ± 21.5 65.3 ± 10.5

1.00 1.25 139.3 ± 16.5 94.1 ± 13.7 66.9 ± 7.1

1.25 1.50 103.8 ± 11.3 82.6 ± 9.3 55.9 ± 6.2

1.50 1.75 66.9 ± 7.5 55.8 ± 7.0 56.3 ± 5.3

1.75 2.00 49.7 ± 6.0 37.0 ± 5.8 46.8 ± 4.7

2.00 2.25 39.9 ± 4.8 31.9 ± 4.0 40.0 ± 4.6

2.25 2.50 28.7 ± 4.1 25.3 ± 2.7 34.2 ± 3.6

2.50 2.75 21.8 ± 2.7 14.7 ± 3.1 32.1 ± 3.0

2.75 3.00 15.9 ± 2.2 9.7 ± 3.1 26.6 ± 3.0

3.00 3.25 13.3 ± 1.7 8.1 ± 2.2 22.1 ± 2.9

3.25 4.00 10.0 ± 1.0 4.3 ± 1.2 20.0 ± 2.5

4.00 5.00 5.5 ± 0.8 1.3 ± 1.2 16.0 ± 1.6

5.00 6.50 1.7 ± 0.4 0.1 ± 0.1 8.4 ± 1.3

6.50 8.00 0.0 ± 0.1 0.0 ± 0.1 0.7 ± 0.3
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12.9 GeV/c proton + aluminum

θmin θmax pmin pmax d2σπ+
/(dpdΩ) d2σπ−/(dpdΩ) d2σp/(dpdΩ)

(mrad) (mrad) (GeV/c) (GeV/c) (mb/(GeV/c sr)) (mb/(GeV/c sr)) (mb/(GeV/c sr))

30 60 0.75 1.00 442.2 ± 54.5 389.4 ± 48.3 207.6 ± 23.2

1.00 1.25 484.6 ± 54.1 417.9 ± 45.7 186.4 ± 19.2

1.25 1.50 469.2 ± 47.6 372.2 ± 41.7 177.4 ± 17.5

1.50 1.75 463.5 ± 46.8 362.6 ± 38.2 170.1 ± 16.9

1.75 2.00 461.0 ± 41.3 293.8 ± 31.3 201.8 ± 16.6

2.00 2.25 461.1 ± 35.4 284.5 ± 27.6 214.9 ± 16.3

2.25 2.50 487.9 ± 40.7 283.8 ± 26.4 205.1 ± 17.6

2.50 2.75 474.9 ± 35.6 241.4 ± 23.5 219.8 ± 18.7

2.75 3.00 450.5 ± 32.2 210.5 ± 21.6 233.6 ± 18.0

3.00 3.25 418.5 ± 28.1 160.0 ± 16.3 264.4 ± 21.0

3.25 4.00 387.6 ± 22.9 165.7 ± 14.5 300.6 ± 17.1

4.00 5.00 283.5 ± 16.8 103.9 ± 8.7 360.2 ± 20.3

5.00 6.50 169.7 ± 10.6 58.8 ± 5.4 496.7 ± 26.2

6.50 8.00 89.6 ± 7.1 16.7 ± 2.8 570.9 ± 27.5

60 90 0.75 1.00 443.8 ± 49.3 363.4 ± 43.2 208.0 ± 18.8

1.00 1.25 418.0 ± 45.0 359.3 ± 39.4 177.3 ± 15.2

1.25 1.50 421.7 ± 40.4 363.1 ± 35.2 171.7 ± 14.7

1.50 1.75 463.3 ± 39.9 320.3 ± 30.8 171.4 ± 13.9

1.75 2.00 453.3 ± 34.8 280.3 ± 26.6 185.6 ± 16.7

2.00 2.25 465.4 ± 32.3 253.8 ± 22.6 185.9 ± 13.3

2.25 2.50 414.0 ± 28.5 264.2 ± 22.4 186.5 ± 13.9

2.50 2.75 421.8 ± 27.8 236.3 ± 18.3 216.3 ± 15.2

2.75 3.00 372.3 ± 23.2 188.8 ± 16.8 221.9 ± 14.6

3.00 3.25 315.1 ± 21.6 147.6 ± 13.0 227.5 ± 15.1

3.25 4.00 269.0 ± 16.0 127.9 ± 9.8 251.1 ± 13.9

4.00 5.00 172.1 ± 10.4 73.1 ± 5.9 284.6 ± 14.8

5.00 6.50 86.8 ± 5.6 30.4 ± 3.1 296.4 ± 13.9

6.50 8.00 29.8 ± 2.5 6.7 ± 1.1 212.9 ± 13.2
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12.9 GeV/c proton + aluminum

θmin θmax pmin pmax d2σπ+
/(dpdΩ) d2σπ−/(dpdΩ) d2σp/(dpdΩ)

(mrad) (mrad) (GeV/c) (GeV/c) (mb/(GeV/c sr)) (mb/(GeV/c sr)) (mb/(GeV/c sr))

90 120 0.75 1.00 450.1 ± 56.7 351.8 ± 44.9 217.1 ± 19.8

1.00 1.25 445.2 ± 47.6 343.9 ± 39.6 187.2 ± 15.6

1.25 1.50 454.8 ± 41.3 322.5 ± 31.7 170.5 ± 14.4

1.50 1.75 425.8 ± 35.3 306.1 ± 28.2 183.0 ± 16.5

1.75 2.00 395.2 ± 30.8 263.1 ± 23.0 189.2 ± 14.6

2.00 2.25 356.4 ± 26.7 220.0 ± 19.4 190.6 ± 13.3

2.25 2.50 329.4 ± 23.4 210.4 ± 18.0 152.8 ± 14.2

2.50 2.75 295.8 ± 20.2 191.6 ± 16.0 169.2 ± 13.0

2.75 3.00 268.1 ± 17.8 145.5 ± 12.6 172.4 ± 12.8

3.00 3.25 224.0 ± 15.7 104.4 ± 12.1 188.5 ± 12.8

3.25 4.00 188.0 ± 11.5 77.1 ± 6.9 181.7 ± 11.2

4.00 5.00 111.5 ± 6.8 49.8 ± 4.2 178.7 ± 10.2

5.00 6.50 47.3 ± 3.1 16.2 ± 2.0 149.9 ± 9.1

6.50 8.00 14.9 ± 1.4 2.4 ± 0.4 95.5 ± 6.9

120 150 0.75 1.00 462.4 ± 62.5 342.4 ± 44.9 182.5 ± 19.7

1.00 1.25 446.1 ± 50.4 318.1 ± 36.3 178.5 ± 15.7

1.25 1.50 395.3 ± 41.8 289.3 ± 29.4 182.3 ± 16.4

1.50 1.75 357.8 ± 32.3 261.3 ± 25.8 170.0 ± 14.9

1.75 2.00 307.7 ± 25.6 245.7 ± 20.1 149.9 ± 13.0

2.00 2.25 265.3 ± 20.4 193.8 ± 16.7 141.6 ± 12.4

2.25 2.50 237.8 ± 19.0 171.8 ± 15.1 137.8 ± 12.5

2.50 2.75 219.8 ± 16.6 127.6 ± 12.0 142.7 ± 12.2

2.75 3.00 190.9 ± 14.0 111.8 ± 11.3 150.0 ± 11.5

3.00 3.25 160.9 ± 11.8 89.5 ± 7.9 159.1 ± 11.9

3.25 4.00 125.8 ± 9.0 73.7 ± 5.7 144.3 ± 9.5

4.00 5.00 65.4 ± 4.8 30.9 ± 3.3 122.5 ± 8.4

5.00 6.50 23.9 ± 1.9 7.8 ± 1.4 79.7 ± 5.9

6.50 8.00 7.6 ± 1.0 0.7 ± 0.3 45.9 ± 3.8
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12.9 GeV/c proton + aluminum

θmin θmax pmin pmax d2σπ+
/(dpdΩ) d2σπ−/(dpdΩ) d2σp/(dpdΩ)

(mrad) (mrad) (GeV/c) (GeV/c) (mb/(GeV/c sr)) (mb/(GeV/c sr)) (mb/(GeV/c sr))

150 180 0.75 1.00 457.6 ± 71.6 350.5 ± 55.3 202.6 ± 23.4

1.00 1.25 407.0 ± 54.8 360.6 ± 48.2 197.7 ± 17.9

1.25 1.50 376.4 ± 44.2 299.1 ± 36.2 185.2 ± 17.2

1.50 1.75 277.8 ± 28.6 212.5 ± 22.9 135.8 ± 13.6

1.75 2.00 256.1 ± 24.1 191.8 ± 19.0 114.1 ± 13.1

2.00 2.25 204.6 ± 20.8 149.1 ± 14.2 127.0 ± 12.0

2.25 2.50 168.5 ± 17.1 127.6 ± 12.7 140.5 ± 13.1

2.50 2.75 135.0 ± 12.3 104.0 ± 10.1 124.5 ± 10.4

2.75 3.00 125.4 ± 10.7 86.6 ± 8.7 117.2 ± 9.9

3.00 3.25 102.2 ± 9.9 61.8 ± 7.2 117.2 ± 9.6

3.25 4.00 63.6 ± 5.3 38.6 ± 4.0 89.0 ± 6.9

4.00 5.00 34.4 ± 3.4 15.5 ± 2.2 64.8 ± 5.6

5.00 6.50 11.2 ± 1.3 3.2 ± 0.8 38.7 ± 3.6

6.50 8.00 3.0 ± 0.8 0.1 ± 0.1 19.4 ± 2.0

180 210 0.75 1.00 432.0 ± 104.1 377.9 ± 83.7 202.3 ± 35.7

1.00 1.25 341.4 ± 54.3 338.5 ± 46.8 170.5 ± 19.1

1.25 1.50 252.3 ± 34.3 255.4 ± 29.8 139.5 ± 15.5

1.50 1.75 183.9 ± 21.8 188.7 ± 21.8 116.6 ± 11.8

1.75 2.00 144.6 ± 15.3 143.1 ± 17.2 109.4 ± 10.3

2.00 2.25 115.3 ± 12.3 103.6 ± 11.5 88.9 ± 9.5

2.25 2.50 80.8 ± 9.4 90.4 ± 10.0 67.8 ± 8.4

2.50 2.75 68.5 ± 8.4 66.0 ± 8.6 64.6 ± 6.9

2.75 3.00 52.8 ± 6.3 44.4 ± 8.1 57.8 ± 5.8

3.00 3.25 39.9 ± 4.9 30.6 ± 6.5 52.6 ± 5.1

3.25 4.00 31.3 ± 3.7 16.3 ± 3.3 45.6 ± 4.7

4.00 5.00 15.0 ± 2.0 5.0 ± 2.4 27.2 ± 3.5

5.00 6.50 6.6 ± 0.9 1.1 ± 0.4 17.1 ± 1.9

6.50 8.00 2.8 ± 0.6 0.0 ± 0.1 9.9 ± 1.4
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Appendix B

Meson Production Cross-Section

Models for the BNB

This appendix provides details on the models used to describe pion and kaon

production in the Booster Neutrino Beamline beryllium target.

B.1 A note on cross-section parameterizations

The inclusion of hadron production cross-section data in Monte Carlo simulations typ-

ically requires the use of some form of parameterization for one or more of the following

reasons:

• to scale available production data to the primary proton beam momentum or target

nucleus of the experimental configuration being simulated

• to facilitate the combination of multiple hadron production data sets

• to interpolate between data points and provide a smooth description of the differ-

ential cross-section in secondary phase space

• to extrapolate the differential cross-section into regions of secondary phase space

where production data are not available

Many scaling laws and parameterizations have been explored by different authors

([107, 108, 109, 110, 111, 112] among others) which are based on various amounts of em-
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pirical, phenomenological and theoretical arguments. Unfortunately, no parameterization

will reproduce the data exactly and often a systematic uncertainty is included to cover the

discrepancy between data and the model. Additionally, one must be cautious regarding

extrapolations into regions of phase space not covered by data where there is no constraint

on the function and the result is particularly sensitive to the accuracy of scaling laws and

other assumptions used in the development of a parameterization’s functional form.

B.1.1 The Sanford-Wang Parameterization

The parameterization of Sanford and Wang [107] has been used by both the K2K and

MiniBooNE experiments to model pion production in their targets. It is an empirical

formula originally developed to describe charged pion production in proton-beryllium

collisions. The functional form was developed by inspection of data from four early pro-

duction papers published before 1967 for incident proton momenta between 10 and 34

GeV/c [102, 103, 104, 105].

The Sanford-Wang (SW) formula describes the double-differential production cross-

section of secondary pions in terms of the incident proton momentum, pB, the secondary

pion total momentum in the laboratory frame, p, the pion production angle w.r.t to the

incoming proton direction, θ, and 8 free parameters, ci,

d2σ

dpdΩ
(p, θ) = c1 · pc2

(
1− p

pB − c9

)
e−g(p,θ) (B.1)

with

g(p, θ) = c3 ·
pc4

pc5
B

+ c6θ (p− c7 · pB · cosc8 θ) . (B.2)

The parameter c1 is an overall normalization factor, c2, c3, c4, c5 describe the momentum

dependence of the cross-section in the forward direction and c6, c7, c8 make adjustments

to the momentum distribution at larger production angles. c9 is related with the threshold

for producing a given secondary, and for pions is usually fixed at 0 or 1. The parameters

c1, ..., c9 can be determined by a least-squares or χ2 fit to available production data.1

1In its original form the function included an exponent on θ as an additional parameter, c6θ
m, but the fit

favored a value consistent with 1.0, so the authors removed m as a free parameter [107].
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Due to the pB dependence in the formula it is possible to combine data sets with differ-

ent proton momenta (but same nuclear target) into a single fit. The general χ2 expression

is then given by

χ2(c1, ..., c8) =
∑

k

∑
i,j

(Di,k −Nk · SWi)E−1
ij,k (Dj,k −Nk · SWj) +

(Nk − 1)2

σ2
k

 (B.3)

where i and j label bins of (p, θ), Di,k is the ith data point in the kth data set, SWi is the

value of the Sanford-Wang function in the ith bin for the current set of parameter values,

Eij,k is the (i, j)th element of the correlated error matrix for the kth data set (such as the

HARP data error matrix from Eq. 4.14), Nk is a normalization fit parameter for each data

set and σk is the experiment’s quoted normalization error. Using a function minimizing

software such as Minuit [132] one can determine a set of parameters with errors and

correlations by minimizing Eq. B.3.

Hadron production experiments report the average cross-section values over 2D bins

of phase space, typically of size ∆p×∆θ. However, the average cross-section is, in general,

not equal to the cross-section at the center of the bin, (pmin + ∆p/2, θmin + ∆θ/2), partic-

ularly for larger bins or for bins in which the cross-section is changing rapidly. There-

fore, when minimizing the χ2, it is the average cross-section across the kinematic bin

(pmax − pmin, θmax − θmin)

SWi =
1

∆p∆Ω

∫ pmax

pmin

∫ θmax

θmin

SW(p, θ) · 2π sin θdpdθ , (B.4)

which is compared to the data value.

B.1.2 A parameterization based on Feynman scaling

A second example is a parameterization developed by Shaevitz [84] to describe K+

production off beryllium based on the Feynman scaling hypothesis [108]. The fit proceeds

in two steps. First, the scaling hypothesis is used to translate all available production data

to the production at the proton beam momentum needed. The hypothesis states that the

invariant cross-section is only a function of two variables, the transverse momentum, pT ,

and the ratio of the longitudinal momentum to the maximum longitudinal momentum in



252 Chapter B. Meson Production Cross-Section Models for the BNB

the center-of-mass frame, known as the Feynman scaling variable, xF ,

xF =
pcm

L(
pcm

L

)max . (B.5)

Once scaled to a single proton momentum, the data can be simultaneously fit without

explicit dependence on the beam momentum in the parameterization. The functional

form is also motivated by Feynman’s idea that the invariant cross-section depends only

on pT and xF

E
d3σ

dp3
= A · F (pT , xF ) (B.6)

A seven parameter model has been developed, given by

E
d3σ

dp3
=

E
p2

(
d2σ

dpdΩ

)
= c1 · (1− |xF |) e−c2pT − c3 |xF |c4 − c5p

2
T − c7 |pT · xF |c6 (B.7)

Again a minimization program is used to determine the parameter values by mini-

mizing a χ2 between the model and available production data. In Chapter 7 this model

was used to predict K+ production in the BNB.

B.2 BNB π+ π− production models

The production models for secondary π+ and π− in the BNB target are based on fits

of the SW parameterization (Eq. B.1) to data sets from two different experiments, E910

at Brookhaven National Laboratory and HARP at CERN. Table B.1 gives the best fit pa-

rameters and covariance matrix for the π+ SW model. Table B.2 gives the same for π−.

Figures B.1 and B.2 show the fit results compared to the production data for π+ and π−,

respectively.

B.3 BNB K+ K0 production models

The production model for secondary K+ in the BNB target is based on a fit of the FS

parameterization (Eq. B.7) to data sets from eight different experiments which have all

been scaled to pB = 8.89 GeV/c. The K0 model is a fit of SW to data from E910 and Abe

et al [106]. Table B.3 gives the best fit parameters and covariance matrix for the K+ FS
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Figure B.1: π+ production data from HARP at pB = 8.9 GeV/c (top), E910 at pB =

6.4 GeV/c (middle) and E910 at pB = 12.3 GeV/c (top). The global SW fit (solid red line)

and 1σ (68%) band (dashed blue lines) determined from the covariance matrix of Table

B.1 are shown.
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Figure B.2: π− production data from HARP at pB = 8.9 GeV/c (top), E910 at pB =

6.4 GeV/c (middle) and E910 at pB = 12.3 GeV/c (top). The global SW fit (solid red line)

and 1σ (68%) band (dashed blue lines) determined from the covariance matrix of Table

B.1 are shown.
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SWπ+
220.7 1.080 1.978 1.320 5.572 0.08678 9.686

Mπ+

ij c1 c2 c4 c5 c6 c7 c8

c1 1707.22 1.14601 -17.6455 -15.9683 -8.80997 -0.73472 -60.8160

c2 1.14601 0.03963 -0.10719 -0.09928 0.03249 0.00069 -0.07772

c4 -17.6455 -0.10719 0.59447 0.50491 0.06546 0.00251 0.19795

c5 -15.9683 -0.09928 0.50491 0.44109 0.05684 0.00250 0.22709

c6 -8.80997 0.03249 0.06546 0.05684 0.20664 0.00466 0.10310

c7 -0.73472 0.00069 0.00251 0.00250 0.00466 0.00049 0.06405

c8 -60.8160 -0.07772 0.19795 0.22709 0.10310 0.06405 16.01887

Table B.1: The best fit and covariance matrix of SW parameters describing π+ production

in the BNB determined from fits to HARP and E910 [101] π+ production data. Parameters

c3 and c9 have been fixed (c3 = 1.0, c9 = 1.0) and therefore do not have entries in the

covariance matrix.

SWπ− 213.7 0.9379 1.210 1.284 4.781 0.07338 8.329

Mπ−

ij c1 c2 c4 c5 c6 c7 c8

c1 3688.9 7.6100 -15.666 -17.480 -11.329 -0.9925 -91.400

c2 7.6100 0.0388 -0.0437 -0.0509 0.0102 -0.0009 -0.1957

c4 -15.666 -0.0437 0.0841 0.0895 0.0301 0.0029 0.2588

c5 -17.480 -0.0509 0.0895 0.0986 0.0375 0.0033 0.3141

c6 -11.329 0.0102 0.0301 0.0375 0.1595 0.0051 0.1933

c7 -0.9925 -0.0009 0.0029 0.0033 0.0051 0.0005 0.0640

c8 -91.400 -0.1957 0.2588 0.3141 0.1933 0.0640 17.242

Table B.2: The best fit and covariance matrix of SW parameters describing π− production

in the BNB determined from fits to HARP and E910 [101] π− production data. Parameters

c3 and c9 have been fixed (c3 = 5.454, c9 = 1.0) and therefore do not have entries in the

covariance matrix.
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Figure B.3: K+ production data scaled to pB = 8.89 GeV/c. The global FS fit (solid line)

and 1σ (68%) band (dashed lines) determined from the covariance matrix of Table B.3 are

shown.

model. Table B.4 gives the same for the K0 SW fit. Figures B.3 and B.4 show the fit results

compared to the production data for K+ and K0, respectively.
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Figure B.4: K0 production data from E910 at pB = 17.6 GeV/c and pB = 12.3 GeV/c and

Abe et al at pB = 12.0 GeV/c. The global SW fit is shown. Plot taken from [83].
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FSK+

11.70 0.88 4.77 1.51 2.21 2.17 1.51

MK+

ij c1 c2 c3 c4 c5 c6 c7

c1 1.094046 0.05017 2.99E-03 -0.03316 -0.03745 0.125194 0.074319

c2 0.05017 0.016104 1.39E-03 -1.44E-03 -0.01264 0.032194 0.021996

c3 2.99E-03 1.39E-03 7.47E-03 2.06E-03 1.93E-03 0.013534 -3.34E-03

c4 -0.03316 -1.44E-03 2.06E-03 3.46E-03 2.03E-03 -4.11E-03 -6.28E-03

c5 -0.03745 -0.01264 1.93E-03 2.03E-03 0.014637 -0.01544 -0.02444

c6 0.125194 0.032194 0.013534 -4.11E-03 -0.01544 0.181522 0.126181

c7 0.074319 0.021996 -3.34E-03 -6.28E-03 -0.02444 0.126181 0.159265

Table B.3: The best fit and covariance matrix of FS parameters describing K+ production

in the BNB determined from fits to K+ production data scaled to pB = 8.89 GeV/c using

the Feynman scaling hypothesis [84].

SWK0

15.13 1.975 4.084 0.9277 0.7306 4.362 4.79E-02 13.3 1.278

MK0

ij c1 c2 c3 c4 c5 c6 c7 c8 c9

c1 32.302 -0.0969 0.8215 -0.1018 -0.2124 -0.8902 -0.1333 16.552 -1.7893

c2 -0.0969 0.0957 0.0325 0.0013 -0.0130 0.0884 -0.0003 -1.5364 -0.2156

c3 0.8215 0.0325 0.5283 -0.0192 0.0227 -0.0033 -0.0024 0.0391 -0.0802

c4 -0.1018 0.0013 -0.0192 0.0084 0.0040 0.0007 -0.0004 -0.0144 -0.0730

c5 -0.2124 -0.0130 0.0227 0.0040 0.0098 0.0029 0.0003 -0.0578 0.0297

c6 -0.8902 0.0884 -0.0033 0.0007 0.0029 0.3599 0.0038 -4.7514 -0.1577

c7 -0.1333 -0.0003 -0.0024 -0.0004 0.0003 0.0038 0.0010 0.0581 0.0069

c8 16.552 -1.5364 0.0391 -0.0144 -0.0578 -4.7514 0.0581 130.201 1.2222

c9 -1.7893 -0.2156 -0.0802 -0.0730 0.0297 -0.1577 0.0069 1.2222 2.9480

Table B.4: The best fit and covariance matrix of SW parameters describing K0 production

in the BNB determined from fits to K0 production data [83].
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Appendix C

Relevance of HARP Production Data

for Neutrino Experiments

The hadron production cross-section data measured in Part II and tabulated

in Appendix A were chosen for their particular relevance to two accelerator

neutrino beams: the KEK 12.9 GeV/c proton synchrotron neutrino beam and

the FNAL 8.9 GeV/c Booster neutrino beam, and three neutrino experiments:

K2K, MiniBooNE and SciBooNE. This appendix is intended to give an idea

how these data are used by these experiments and to illustrate the impact on

the neutrino measurements made by them.

C.1 Significance of HARP data for K2K

Pion production data from HARP have also been used by the K2K long baseline oscil-

lation experiment in Japan. The original analysis of the K2K oscillation data [30] used the

Sanford-Wang fit of the so-called “Cho-CERN compilation” which was based largely on

the production data of Cho et al. [100]. The Cho data is from proton collisions with beryl-

lium at 12.4 GeV/c necessitating a scaling in proton momentum and target atomic mass

before being used to simulate the KEK beamline. The measurement of π+ production in

proton+aluminum interactions at exactly 12.9 GeV/c done at HARP [57] was used by the

K2K experiment in an updated publication in 2006 [31]. The HARP results published in
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Figure C.1: The predicted ratio of the νµ fluxes in Super Kamiokande and the K2K near

detector in the absence of oscillations. The empty circles with error bars show the central

values and systematic errors on the ratio using the HARP π+ production data [57]. The

shaded regions show the ratio using the pion monitor measurement in the K2K beamline

and the dotted histogram is the ratio based on the previous pion production model using

the Cho-CERN compilation. Plot taken from Ref. [31].

[57] used an earlier version (2005) of the same analysis described in this dissertation.

K2K measures neutrino oscillations through the disappearance of νµ created mostly

in the chain p + Al → π+ → νµ. The neutrino beam simulation is used to calculate the

“far-to-near ratio” for extrapolating the near detector event rate into an expected event

rate at Super-Kamiokande. Figure C.1 has been reproduced from [31] and shows the

calculated far-to-near ratio using the original model based on Cho and that using the

HARP aluminum data. The agreement is excellent, but the systematic uncertainties on the

HARP data are significantly smaller and allow a more precise prediction of the neutrino

flux in the far detector.

Most of the significance of the K2K oscillation result comes from an observed normal-

ization difference (3.4σ) with less coming from distortions in the neutrino energy spec-
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trum (2.9σ) [31]. The introduction of the HARP production data between [30](2005) and

[31](2006) was particularly beneficial in reducing the systematic uncertainty on the total

number of νµ events expected (normalization). The far-to-near ratio contribution to this

uncertainty was reduced from 5.1% to 2.9% between the two publications.

C.2 Significance of HARP data for MiniBooNE

Early versions of the MiniBooNE flux predictions were based upon the SW model of

Eq. B.1 fit to the π± production cross-sections at pB = 6.4 GeV/c and 12.3 GeV/c mea-

sured by the E910 experiment at Brookhaven National Laboratory [101]. A model such

as SW was absolutely necessary for interpolating the differential cross-sections to pB =

8.9 GeV/c, but model uncertainties are large and difficult to quantify. The minimum χ2

in a fit to the E910 data sets, which is quite good at 83 for 91 degrees of freedom, unfortu-

nately tells us nothing about how to estimate the model uncertainty at 8.9 GeV/c. In the

words of Sanford and Wang, “except for kinematical constraints, the approach is purely

algebraic rather than physical.”

The HARP data, therefore, being at exactly the Booster momentum, are a critical addi-

tion to the development of the pion production model, reducing the model uncertainties

from extrapolation to 8.9 GeV/c. The E910 data sets continue to be used, however, in a

simultaneous fit to all three data sets in order to provide an additional constraint at angles

larger than 210 mrad. Figure C.2 compares the kinematic coverage of the HARP data set

and the two E910 data sets. The left panel compares the binning of the data sets in labora-

tory variables p and θ with no attempt to normalize to a common beam momentum. The

right panel compares the data coverage using the Feynman scaling hypothesis introduced

above. The figure clearly shows the added coverage that the E910 data provides at high

pT and values of xF near 0.

A preliminary version of the HARP π+ production data available in early 2006 were

incorporated into a SW fit to be used in the MiniBooNE neutrino flux simulations. The

minimum χ2 in a fit to the three data sets was degraded to 302 for 168 degrees of freedom,

indicating that the functional form of the SW model in Eq. B.1 is insufficient to accurately
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Figure C.2: Comparison of the kinematic coverage of the HARP pion data sets at

8.9 GeV/c to the E910 data at 6.4 GeV/c and 12.3 GeV/c. The left panel is binned in

laboratory variables p and θ. These have been converted into the invariant quantities pT

and xF in the right panel.

describe π+ production at these momenta - a fact that was previously hidden by the larger

experimental errors of the available data. The updated HARP cross-sections presented

in this thesis, which represent a further reduction in uncertainties since the preliminary

result, further reveal the inadequacies of the SW model by a continued degradation of the

minimum χ2 to 413 for 168 degrees of freedom.

This incompatibility of the SW model with data results in the inflation of uncertainties

on the parameters determined in the fitting procedure, in particular the normalization pa-

rameter, c1. The parameterized curve used in the MiniBooNE neutrino flux predictions at

the time of the first oscillation analysis [66] is compared to the final HARP π+ production

cross-sections in Figure C.3. Due to the relative timing of the first HARP and MiniBooNE

results the SW parameterization shown is that based on the preliminary HARP results

mentioned above. The error band on the parameterized curve represents the uncorre-

lated error on the parameter c1 (18.2%) and shows complete coverage of the data within

this overall normalization error.

The result is an absolute neutrino flux prediction with uncertainties larger than those
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Figure C.3: Sanford-Wang parameterization used in the MiniBooNE flux prediction com-

pared to the π+ production data presented in this dissertation.

of the underlying hadron production data used to predict it. Figure C.4 shows the number

of events reconstructed as νµ charged-current quasi-elastic (CCQE) events according to

simulation. The distribution is, therefore, a product of the predicted νµ flux, the CCQE

cross-section on carbon and detector effects. The errors shown (∼16%) are those attributed

to the π+ production model only, yet in Table 4.2 we see that the average uncertainty on

the π+ cross-section is <10%. Recently a method has been proposed [87] by a member

of the MiniBooNE collaboration for developing a production model using 2D spline fits

instead of a global function which should better reflect the uncertainty in the production

data. Preliminary results indicate the flux systematic on CCQE events will improve from

the 16% shown in Figure C.4 to 5–10%.

For now, however, it is critical to note that the analysis methods used in the νe ap-

pearance search make it largely insensitive to normalization errors on pion production as

was demonstrated in Chapter 8. It is for absolute neutrino cross-section measurements

and νµ disappearance searches to be made at MiniBooNE in the future that the flux errors

from pion production have the greatest impact. Using the spline method, absolute flux

predictions to better than 10% should be achievable where the flux is directly constrained
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Figure C.4: νµ CCQE event rate prediction as a function of reconstructed energy at Mini-

BooNE running in neutrino mode. The errors shown come from the current π+ production

model only. The right panel shows the fractional error.

by production data at 8.9 GeV/c from HARP.

Figures C.5 and C.6 illustrate the regions of muon and electron neutrino flux that are

directly constrained by the HARP cross-section data for neutrino and antineutrino modes,

respectively. It is worth noting that any tests one can perform to quantify the coverage are

slightly circular - data is used to generate a model which is used in a simulation of the

beamline which is, in turn, used to quantify the impact of the data. Despite small model

dependencies, however, such an exercise remains important for defining the regions of

meson production which are shown to be important to the flux prediction yet remain

unconstrained by data.

In each panel of Figures C.5 and C.6 the total νµ or νe flux prediction is given by the

solid black histogram on the right plot. The other curves and the left panel illustrate the

direct impact of the HARP data on the MiniBooNE flux prediction. For example, in the

top panel of Figure C.5 the blue curve on the right shows the high fraction (90.3%) of total

νµ which come from the decays of π+ which were created in primary interactions in the

target. The kinematic distribution of these π+ are shown by the black histogram in the 2D

panel on the left. The red box marks the boundary of the HARP measurement and thus
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the region of the π+ parameterization that is directly constrained by data. Moving back

to the right panel, the dashed black curve, labeled p + Be → π+
HARP → νµ, shows the νµ

whose parent π+ is directly constrained by the HARP data (originates from inside the red

box). Almost 80% of the π+ which contribute to the νµ flux are being directly constrained

by the measurement.

The remaining three curves (red, green, magenta) show the flux contributions from

primary π+ which are not being directly constrained by HARP data. The red curve repre-

sents νµ coming from all pions at small angles (θ < 30 mrad), the green curve is νµ from

large angle pions (θ > 210 mrad) and the magenta represents νµ created by all pions with

momentum below 750 MeV. The low momentum and high-angle pions contribute mostly

to the lowest energy neutrino fluxes. As mentioned above the inclusion of the E910 pro-

duction data are important to constraining pion production outside of the range of the

HARP measurements.

The bottom panel of Figure C.5 shows the coverage for π+ → µ+ → νe events in

neutrino mode. Primary pion production accounts for 49% of the total intrinisic νe flux.

The other half is split between K+ and K0 decays.

Figure C.6 shows the equivalent distributions for antineutrino running mode fluxes.

For νµ and νe from muon decay it is the measurements of π− production which are rel-

evant. Also shown in the bottom two rows are the νµ and νe flux predictions since the

so-called “wrong sign” component is significant in antineutrino mode. The conclusion

concerning the lowest energy fluxes is similar for antineutrinos. The “wrong sign” neu-

trino fluxes are largely unconstrained at 31% and 23% coverage of the π+ producing the νµ

and νe fluxes, respectively. It is the most forward π+ which tend to generate the neutrino

background since they miss the field region of the horn and are, therefore, not defocused.
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Figure C.5: Relevance of the HARP forward production data for the MiniBooNE νµ and

νe flux predictions in neutrino mode. See the text for details.
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Figure C.6: Relevance of the HARP forward production data for the MiniBooNE νµ, νe.

νµ and νe flux predictions in antineutrino mode. See the text for details.
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