
Physics Letters B 778 (2018) 64–70
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Deep Learning for real-time gravitational wave detection and 

parameter estimation: Results with Advanced LIGO data

Daniel George a,b,∗, E.A. Huerta b

a Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
b NCSA, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 November 2017
Received in revised form 30 November 2017
Accepted 19 December 2017
Available online 27 December 2017
Editor: H. Peiris

Keywords:
Deep Learning
Convolutional neural networks
Gravitational waves
LIGO
Time-series signal processing
Classification and regression

The recent Nobel-prize-winning detections of gravitational waves from merging black holes and 
the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic 
observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this 
emergent field of science, we pioneered the use of deep learning with convolutional neural networks, 
that take time-series inputs, for rapid detection and characterization of gravitational wave signals. This 
approach, Deep Filtering, was initially demonstrated using simulated LIGO noise. In this article, we 
present the extension of Deep Filtering using real data from LIGO, for both detection and parameter 
estimation of gravitational waves from binary black hole mergers using continuous data streams from 
multiple LIGO detectors. We demonstrate for the first time that machine learning can detect and estimate 
the true parameters of real events observed by LIGO. Our results show that Deep Filtering achieves 
similar sensitivities and lower errors compared to matched-filtering while being far more computationally 
efficient and more resilient to glitches, allowing real-time processing of weak time-series signals in non-
stationary non-Gaussian noise with minimal resources, and also enables the detection of new classes 
of gravitational wave sources that may go unnoticed with existing detection algorithms. This unified 
framework for data analysis is ideally suited to enable coincident detection campaigns of gravitational 
waves and their multimessenger counterparts in real-time.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The first detection (GW150914) of gravitational waves (GWs), 
from the merger of two black holes (BHs), with the advanced Laser 
Interferometer Gravitational-wave Observatory (LIGO) [1] has set 
in motion a scientific revolution [2] leading to the Nobel prize 
in Physics in 2017. This and subsequent groundbreaking discover-
ies [3–6] were brought to fruition by a trans-disciplinary research 
program at the interface of experimental and theoretical physics, 
computer science and engineering as well as the exploitation of 
high-performance computing (HPC) for numerical relativity sim-
ulations [7–9] and high-throughput computing facilities for data 
analysis [10,11].

The recent detection of the binary black hole (BBH) merger 
(GW170814) with a three-detector network enabled new phe-
nomenological tests of general relativity regarding the nature of 
GW polarizations, while significantly improving the sky localiza-
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tion of this GW transient [6]. This enhanced capability to localize 
GW transients provided critical input for the first detection of GWs 
from the merger of two neutron stars (NSs) and in conjunction 
with follow-up observations across the electromagnetic (EM) spec-
trum [12]. This multimessenger event has finally confirmed that NS 
mergers are the central engines of short gamma ray bursts [13–18].

Matched-filtering, the most sensitive GW detection algorithm 
used by LIGO, currently targets a 4D parameter space (compact 
binary sources with spin-aligned components on quasi-circular or-
bits) [19–21]—a subset of the 9D parameter space available to GW 
detectors [22–26]. Recent studies also indicate that these searches 
may miss GWs generated by compact binary populations formed in 
dense stellar environments [25,27–29]. Extending these template-
matching searches to target spin-precessing, quasi-circular or ec-
centric BBHs is computationally prohibitive [30].

Based on the aforementioned considerations, we need a new 
paradigm to overcome the limitations and computational chal-
lenges of existing GW detection algorithms. An ideal candidate 
would be the rapidly advancing field called “Deep Learning”, which 
is a highly scalable machine learning technique that can learn di-
rectly from raw data, without any manual feature engineering, by 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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using deep hierarchical layers of “artificial neurons”, called neu-
ral networks, in combination with optimization techniques based 
on back-propagation and gradient descent [31,32]. Deep learning, 
especially with the aid of GPU computing, has recently achieved 
immense success in both commercial applications and artificial in-
telligence (AI) research [31,33–38] and has also been applied in 
astrophysics [39–47].

Our technique, Deep Filtering [48], employs a system of 
two deep convolution neural networks (CNNs [49]) that directly 
take time-series inputs for both classification and regression. In our 
foundational article [48], we provided a comprehensive introduc-
tion to the fundamental concepts of deep learning and CNNs along 
with a detailed description of this method. Our previous results 
showed that CNNs can outperform traditional machine learning 
methods, reaching sensitivities comparable to matched-filtering for 
directly processing highly noisy time-series data streams to detect 
weak GW signals and estimate the parameters of their source in 
real-time, using GW signals injected into simulated LIGO noise.

In this article, we extend Deep Filtering to analyze GW 
signals in real LIGO noise. We demonstrate, for the first time, that 
Deep Learning can be used for both signal detection and multiple-
parameter estimation directly from extremely weak time-series 
signals embedded in highly non-Gaussian and non-stationary 
noise, once trained with some templates of the expected signals. 
Our results show that deep CNNs achieve performance compara-
ble to matched-filtering methods, while being several orders of 
magnitude faster and far more resilient to transient noise artifacts 
such as glitches. We also illustrate how Deep Filtering can 
deal with data streams of arbitrary length from multiple detectors. 
Most importantly, this article shows for the very first time that 
machine learning can successfully detect and recover true param-
eters of real GW signals observed by LIGO. Furthermore, we show 
that after a single training process, Deep Filtering can auto-
matically generalize to noise having new Power Spectral Densities 
(PSDs) from different LIGO events, without re-training.

Our results indicate that Deep Filtering can interpolate 
between elements in the template bank, generalize to several new 
classes of signals beyond the training data, and, surprisingly, de-
tect GW signals and measure their parameters even when they are 
contaminated by glitches. We present experiments demonstrating 
the robustness of Deep Filtering in the presence of glitches, 
which indicate its applicability in the future for glitch classifica-
tion and clustering efforts essential for GW detector characteri-
zation [46]. Deep learning, in principle, can learn characteristics 
of noise in the LIGO detectors and develop better strategies than 
matched-filtering, which is known to be optimal only for Gaus-
sian noise. Since all the intensive computation is diverted to the 
one-time training stage of the CNNs, template banks of practically 
any size may be used for training after which continuous data 
streams can be analyzed in real-time with a single CPU, while very 
intensive searches can be rapidly carried out using a single GPU. 
The initial estimates provided by Deep Filtering may be used 
to instantly narrow down the parameter space of GW detections, 
which can then be followed up with existing pipelines using a few 
templates around the predicted parameters to obtain more infor-
mative parameter estimates and confidence measurements, thus 
accelerating GW analysis with minimal computational resources 
across the full parameter space of signals.

2. Methods

Deep Filtering consists of two steps, involving a classifier 
CNN and a predictor CNN, with similar architectures, as described 
in our previous article [48]. The classifier has an additional soft-
max layer which returns probabilities for True or False depending 
on whether a signal is present. The classifier is first applied to 
the continuous data stream via a sliding window. If the classifier 
returns higher probability for True, the predictor is then applied 
to the same input to determine the parameters of the source. In 
a multi-detector scenario, the Deep Filtering CNNs may be 
applied separately to each data stream and the coincidence of de-
tections with similar parameters would strengthen the confidence 
of a true detection, which can then be verified quickly by matched-
filtering with the predicted templates.

In this work, we have used injections of GW templates origi-
nating from quasi-circular, non-spinning, stellar-mass BBH systems, 
which LIGO/Virgo is expected to detect with the highest rate [50]. 
We assumed the source is optimally oriented with respect to the 
detectors which reduces our parameter-space to the two individual 
masses of the BBH system, which we restricted in the range 5 M�
to 75 M� such that their mass-ratios were between 1 and 10. In 
the same manner as before, we fixed the input duration to 1 sec-
ond, and a sampling rate of 8192 Hz, which is more than sufficient 
for the events we are considering. These are arbitrary choices, as 
the input size of the CNNs can be easily modified to take inputs 
with any duration or sampling rate from any number of detectors.

The datasets of waveform templates used to train and test 
our CNNs were obtained using the open-source, effective-one-body 
(EOB) code [51]. Our training set contained about 2500 templates, 
with BBHs component masses sampled in the range 5 M� to 
75 M� in steps of 1 M� . The testing dataset also contained ap-
proximately 2500 templates with intermediate component masses 
separated from the training set by 0.5 M� each. Subsequently, we 
produced copies of each signal by shifting the location of their 
peaks randomly within the final 0.2 seconds to make the CNNs 
more resilient to time translations. This means that in practice, 
our algorithm will be applied to the continuous data stream us-
ing a 1-second sliding window with offsets of 0.2 seconds.

We obtained real LIGO data from the LIGO Open Science Cen-
ter (LOSC) around the first 3 GW events, namely, GW150914, 
LVT151012, and GW151226. Each event contained 4096 seconds 
of real data from each detector. We used noise sampled from 
GW151226 and LVT151012 for training and validation of our 
model and noise from GW150914 was used for testing. These tests 
ensure that our method is able to generalize to different noise 
distributions, also in the presence of transient glitches, since it is 
well known that the PSD of LIGO is highly non-stationary, varying 
widely with time. Therefore, if Deep Filtering performs well 
on these test sets, it would also perform well on data from future 
time periods, without being re-trained.

Different realizations of noise was randomly sampled from the 
real LIGO data around the two events GW151226 and LVT151012 
and superimposed with signals from the training set over multiple 
iterations, thus amplifying the size of the training datasets. The 
power of the noise was adjusted according to the desired optimal 
matched-filter Signal-to-Noise Ratio (SNR [52]) for each training 
round. The inputs were then whitened with the average PSD of 
the real noise measured at that time-period. We also scaled and 
mixed different samples of LIGO noise together to artificially pro-
duce more training data and various levels of Gaussian noise was 
also added to augment the training process. However, the test-
ing results were measured using only pure LIGO noise not used 
in training with true GW signals and with signals injected from 
the unaltered test sets (see Fig. 1).

We used hyperparameters similar to our original CNNs in [48]. 
There were 4 convolution layers with the filter sizes to 64, 128, 
256, and 512 respectively and 2 fully connected layers with sizes 
128 and 64. The standard ReLU activation function, max(0, x), was 
used throughout as the non-linearity between layers. We used ker-
nel sizes of 16, 16, 16, and 32 for the convolutional layers and 4 for 
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Fig. 1. Sample signal injected into real LIGO noise. The red time-series is an example 
of the input to our Deep Filtering algorithm. It contains a hidden BBH GW 
signal (blue) from our test set which was superimposed in real LIGO noise from the 
test set and whitened. For this injection, the optimal matched-filter SNR = 7.5 (peak 
power of this signal is 0.65 times the power of background noise). The component 
masses of the merging BHs are 57 M� and 33 M� . The presence of this signal was 
detected directly from the (red) time-series input with over 99% sensitivity and the 
source’s parameters were estimated with a mean relative error less than 10%. (For 
interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

Fig. 2. Spectrograms of real LIGO noise test samples. We used signals injected into 
real data from the LIGO detectors in this article, ensuring that the training and 
testing sets did not contain noise from the same events. These are some random 
examples of real glitches that were present in our test set of LIGO noise. The Deep 
Filtering method takes the 1D strain directly as input and is able to correctly 
classify glitches as noise and detect true GW signals as well as simulated GW signals 
injected into these highly non-stationary non-Gaussian data streams, with similar 
sensitivity compared to matched-filtering.

all the (max) pooling layers. Stride was chosen to be 1 for all the 
convolution layers and 4 for all the pooling layers. We observed 
that using dilations [53] of 1, 2, 2, and 2 in the corresponding con-
volution layers improved the performance. The final layout of our 
predictor CNN is shown in Fig. 3.

We had originally optimized our CNN architectures to deal with 
only Gaussian noise having a flat PSD. However, we later found 
that this model also obtained the best performance with noise 
having the colored PSD of LIGO, among all the models we tested. 
This indicates that our CNNs will be robust to a wide range of 
noise distributions. Furthermore, pre-training the CNNs on Gaus-
sian noise (transfer learning) before fine-tuning on the limited 
amount of real noise prevented over-fitting, i.e., memorizing only 
the training data without generalizing to new inputs. We used the 
Wolfram Language (Mathematica [54]) neural network functional-
ity, built using the open-source MXNet framework [55], that uses 
the cuDNN library [56] for accelerating the training on NVIDIA 
Fig. 3. Architecture of deep convolutional neural network. This is the dilated 1D 
CNN used as the predictor which outputs the component masses of the BBH system. 
The classifier has the same architecture, except for a softmax layer added at the end 
which outputs the probability for the presence of a GW signal. The input is a time-
series vector of length 8192 corresponding to 1 s of data sampled at 8192 Hz. The 
classifier is applied separately to continuous data streams from each detector using 
a sliding window. If the classifier detects a signal in coincidence across multiple de-
tectors, then the inputs are fed to the predictor which estimates the parameters of 
the GW source. The classifier is separated from the predictor and softmax regres-
sion is used so that neurons can be added to the final layer of the classifier for 
representing different types of signals and glitches, and specialized predictors may 
be designed to be applied depending on the class of the signal.

GPUs. The learning algorithm was ADAM [57] and other details 
were the same as before [48].

While training, we used the curriculum learning strategy in our 
first article [48] to improve the performance and reduce training 
times of the CNNs while retaining performance at very high SNR. 
By starting off training inputs having high SNR (≥ 100) and then 
gradually increasing the noise in each subsequent training session 
until a final SNR distributed in the range 4 to 15, we found that 
the performance of prediction can be quickly maximized for low 
SNR while retaining performance at high SNR. We first trained 
the predictor on the datasets labeled with the BBH masses and 
then copied the weights of this network to initialize the classifier 
and then trained it on datasets having 90% pure random noise in-
puts, after adding a softmax layer. This transfer learning procedure, 
similar to multi-task learning, decreases the training time for the 
classifier and improves its sensitivity.

3. Results

The sensitivity (probability of detecting a true signal) of the 
classifier as a function of SNR is shown in Fig. 4. We achieved 
100% sensitivity when SNR is greater than 10. The false alarm rate 
was tuned to be less than 1%, i.e., 1 per 100 seconds of noise 
in our test set was classified as signals. Given independent noise 
from multiple detectors, this implies our 2-detector false alarm 
rate would be less than 0.01%, when the classifier is applied inde-
pendently to each detector and coincidence is enforced. Although 
the false alarm rate can be further decreased by tuning the frac-
tion of noise used for training or by checking that the predicted 
parameters are consistent, this may not be necessary since run-

https://reference.wolfram.com/
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Fig. 4. Sensitivity of detection with real LIGO noise. The figure shows the sensitivity 
of detecting GW signals injected in real LIGO noise (from LOSC) from our test set 
using Deep Filtering compared with matched filtering with the same template 
bank used for training the CNN. Note that the SNR is on average proportional to 
10 ± 1.5 times the ratio of the amplitude of the signal to the standard deviation 
of the noise for our test set. This implies that we are capable of detecting signals 
significantly weaker than the background noise. While matched-filtering has the 
advantage of being optimized with the PSD of the LIGO noise in the test set, Deep 
Filtering was only trained on noise from other events, therefore our results 
demonstrate the ability of the CNNs to automatically generalize to non-stationary 
LIGO noise having different PSDs without retraining.

Fig. 5. Error in parameter estimation with real LIGO noise. This shows the mean 
percentage absolute error of estimating masses on our testing signals at each SNR, 
injected in real LIGO noise from events not used for training, compared to matched 
filtering using the same template bank that was used for training the CNN. While 
the mean error of matched-filtering, with the same template bank used for training, 
is always greater than 11% at every SNR we can see that the Deep Filtering
method is able to interpolate to test set signals with intermediate parameter values.

ning matched-filtering pipelines with a few templates close to our 
predicted parameters can quickly eliminate these false alarms.

Our predictor was able to successfully measure the component 
masses given noisy GW signals, that were not used for training, 
with an error lower than the spacing between templates for op-
timal matched-filter SNR ≥ 15.0. The variation in relative error 
against SNR is shown in Fig. 5. We observed that the errors follow 
a Gaussian distribution for each region of the parameter space for 
SNR greater than 10. For high SNR, our predictor achieved mean 
relative error less than 10%, whereas matched-filtering with the 
same template bank always has error greater than 10%. This im-
plies that Deep Filtering is capable of interpolating between 
templates seen in the training data.

Although, we trained only on simulated quasi-circular non-
spinning GW injections, we applied Deep Filtering to the 
LIGO data streams containing a true GW signal, GW150914, us-
ing a sliding window of 1 s width with offsets of 0.2 s through 
the data around each event from each detector. This signal was 
Fig. 6. Examples of sine-Gaussian glitches. These are some samples of simulated 
sine-Gaussian glitches from our test set. We found that our classifier was able to 
correctly differentiate GW signals from these glitches and classify them as noise 
when they were injected into real LIGO data streams. This suggests that Deep 
Filtering can be extended to create a unified pipeline for glitch classification 
along with signal detection and parameter estimation.

correctly identified by the classifier at the true position in time 
and each of the predicted component masses was within the pub-
lished error bars [2]. There were zero false alarms after enforcing 
the constraint that the detection should be made simultaneously in 
multiple detectors. This shows that deep learning is able to gener-
alize to real GW signals after being trained only with simulated 
GW templates injected into LIGO noise from other events with 
different PSDs. A demo showing the application of Deep Fil-
tering to GW150914 can be found here: tiny.cc/CNN.

The data from the first LIGO event, that was used for testing, 
contained a large number of non-Gaussian transient noise called 
glitches. Some of these can be seen in Fig. 2. Therefore, our re-
sults demonstrate that the Deep Filtering method can auto-
matically recognize these glitches and classify them as noise. This 
suggests that by adding additional neurons for each “glitch” class,
Deep Filtering could serve as an alternative to glitch clas-
sification algorithms based on two-dimensional CNNs applied to 
spectrograms of LIGO [44,46] or machine learning methods based 
on manually engineered features [58–60].

Furthermore, we conducted some experiments to show the re-
silience of Deep Filtering to transient disturbances, with a 
simulated set of sine-Gaussian glitches, which cover a broad range 
of morphologies found in real LIGO glitches, following [59] (see 
Fig. 6 for some examples). We ensured that a different set of fre-
quencies, amplitudes, peak positions, and widths were used for 
training and testing. We then injected some of these glitches into 
the training process and found that the classifier CNN was able to 
easily distinguish new glitches from true signals, with a false alarm 
rate less than 1%, using only single detector inputs. When we ap-
plied the standard naive matched-filtering algorithm to the same 
test set of glitches, approximately 30% of glitches were classified 
as signals due to their high SNR. This is because matched-filtering 
is unable to distinguish signals from loud glitches having simi-
lar frequencies. Note that additional signal consistency tests and 
coherence across detectors can be enforced to decrease this false 
alarm rate for both methods.

We then tested the performance of Deep Filtering, when a 
signal happens to occur in coincidence with a glitch, i.e., the signal 
is superimposed with both a glitch and real LIGO noise (see Fig. 7). 
We trained the CNNs by injecting glitches from the training set and 
measured the sensitivity of the classifier on the test set signals su-
perimposed with glitches sampled from the test set of glitches. We 
found that over 80% of the signals with SNR of 10 were detected, 
and their parameters estimated with less than 30% relative error, 

http://tiny.cc/CNN
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Fig. 7. Detecting signals contaminated by glitches. These are some of the signals in 
our test set injected into real LIGO noise and superimposed with simulated sine-
Gaussian glitches from the test set. Each of these inputs was correctly detected as 
a signal by our classifier. This indicates that Deep Filtering can be used as an 
automatic trigger generator for GW signals that occur in coincidence with glitches.

even after they were superimposed with glitches. These results are 
very promising, motivating an in-depth investigation, since we may 
be able to automatically detect GW signals that occur during peri-
ods of bad data quality in the detectors using Deep Filtering, 
whereas currently such periods are often vetoed and left out of the 
analysis by LIGO pipelines.

Another important experiment that we carried out was to in-
ject waveforms obtained from simulations of eccentric BBH sys-
tems, with eccentricities between 0.1 and 0.2 when entering the 
LIGO band that we performed using the open-source Einstein 
Toolkit [61,62] on Blue Waters, as well as waveforms from spin-
precessing binaries from the public SXS catalog [63] as described 
in [48]. We found that, after injecting these signals into real LIGO 
noise from the test set events, they were detected by our classifier 
with the same sensitivity as the original test set of quasi-circular 
BBH waveforms, with 100% sensitivity of detection and less than 
35% error in estimating masses for SNR > 10, thus demonstrat-
ing its ability to automatically generalize to GW signals from new 
classes of BBH mergers beyond the training data to some extent. 
This is particularly promising since recent studies indicate that 
moderately eccentric BBH populations may be missed by quasi-
circular GW searches [25,28,64,65]. Parameter estimation of these 
new classes of signals could be more challenging, without training, 
as spin and eccentricity may have the effect of mimicking features 
of systems of different masses. We expect that by training on the 
full parameter space of signals, we will be able to decrease this 
error and also predict more parameters.

Both our CNNs are only 23 MB in size each, yet encodes all the 
relevant information from about 2500 GW templates (∼ 300 MB) 
of templates and several GB of noise used to generate the training 
data. The time-domain matched-filtering algorithm used for com-
parison required over 2 s to analyze 1 s inputs on our CPU. The 
average time taken for evaluating each of our CNNs per second 
of data is approximately 85 milliseconds and 540 microseconds 
using a single CPU core and GPU respectively, thus enabling anal-
ysis even faster than real-time. While the computational cost of 
matched-filtering grows exponentially with the number of param-
eters, the Deep Filtering algorithm requires only a one-time 
training process, after which the analysis can be performed in 
constant time. Therefore, we expect the speed-up compared to 
matched-filtering to further increase by several orders of magni-
tude when the analysis is extended to a larger number of pa-
rameters. When considering the full range of signals that span a 
very high-dimensional parameter space which cannot be sampled 
densely due to computational costs, we expect Deep Filter-
ing may have higher sensitivity due to its ability to interpolate 
and also because the one-time training process can be carried out 
with template banks much larger than what is feasible to use with 
matched-filtering.

4. Conclusion

In this article, we have shown for the very first time that CNNs 
can be used for both detection and parameter estimation of GW sig-
nals in LIGO data. This new paradigm for real-time GW analysis 
may overcome outstanding challenges regarding the extension of 
established GW detection algorithms to higher dimensions for tar-
geting a deeper parameter space of astrophysically motivated GW 
sources. The results of Deep Filtering can be quickly verified, 
and the time of coalescence computed, via matched-filtering with 
a small set of templates in the region of parameter space pre-
dicted by the CNN. Therefore, by combining Deep Filtering
with well-established GW detection algorithms, we may be able to 
accelerate multimessenger campaigns, pushing the frontiers of GW 
astrophysics and fully realize its potential for scientific discovery.

The intrinsic scalability of deep learning can overcome the 
curse of dimensionality [32] and take advantage of massive 
datasets [66]. This ability could enable fast automated GW searches 
covering millions or billions of templates over the full range of 
parameter-space that is beyond the reach of existing algorithms. 
Extending Deep Filtering to predict any number of param-
eters such as spins, eccentricities, etc., or additional classes of 
signals or noise, is as simple as adding an additional neuron for 
each new parameter, or class, to the final layer and training with 
noisy waveforms with the corresponding labels. Furthermore, the 
input dimensions of the CNNs can be enlarged to take simulta-
neous time-series inputs from multiple detectors, thus allowing 
coherent searches and measurements of parameters such as sky 
locations.

The results presented in this article provide a strong incen-
tive to extend Deep Filtering to cover the parameter space 
of spin-aligned BBHs on quasi-circular orbits and beyond. This 
study is underway, and will be described in a subsequent arti-
cle. In addition to our primary results, we have also presented 
experiments exhibiting the remarkable resilience of this method 
for detection in periods of bad data quality, even when GW signals 
are contaminated with non-Gaussian transients. This motivates in-
cluding additional classes of real glitches, e.g., from the Gravity Spy 
project [46], to the training process to automatically classify and 
cluster glitches directly from the time-series inputs. It may be pos-
sible that, by investing more effort in hyperparameter tuning and 
by experimenting with deeper architectures, we may be able to 
outperform the sensitivity of matched-filtering searches in the fu-
ture (since matched-filtering is proven to be the optimal algorithm 
only for Gaussian noise). These considerations provide sufficient 
motivation to develop and deploy—before the beginning of the up-
coming LIGO-Virgo GW discovery campaign—a single, robust, and 
computationally efficient Deep Filtering pipeline that uni-
fies real-time GW detection and parameter estimation, along with 
glitch classification and clustering.

Deep Filtering can be extended to provide instant alerts 
with accurate parameter estimates for EM follow-up campaigns. 
Furthermore, the initial point estimates provided by the Deep 
Filtering predictor may be used to inform and accelerate com-
putationally intensive offline Bayesian parameter estimation meth-
ods [67,68] to estimate the full posterior distributions for each 
parameter by constraining the parameter space of new GW detec-
tions. It is also possible to obtain uncertainty distributions for the 
parameters predicted by the CNN [69], which will be explored in a 
following article. As deep CNNs excel at image processing, applying 
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the same approach to analyze raw telescope data may also ac-
celerate the subsequent search for transient EM counterparts. Our 
results also suggest that, given templates of expected signals, Deep 
Filtering can be used as a generic tool for efficiently detecting 
and estimating properties of highly noisy time-domain signals em-
bedded in Gaussian noise or non-stationary non-Gaussian noise, 
even in the presence of transient disturbances. Therefore, we an-
ticipate that the techniques we have developed for analyzing weak 
signals hidden in complex noise backgrounds may also be useful 
in other domains of science and technology.
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