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Abstract

We describe the design, fabrication and bench-study of a mm-wave phase-shifter

employed as a high power recirculator for a traveling wave resonator circuit. The

OFE copper phase shifter was prepared by electro-discharge machining. Mea-

sured phase-shifter characteristics are presented and compared with theory. The

phase-shifter was employed in a traveling wave circuit at 91.4 GHz with circu-

lating power of 0.2 MW and subjected to �elds greater than 10 MV/m without

evidence of breakdown.
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Abstract|We describe the design, fabrication and bench-
study of a mm-wave phase-shifter employed as a high pow-
er recirculator for a traveling wave resonator circuit. The
OFE copper phase shifter was prepared by electro-discharge
machining. Measured phase-shifter characteristics are pre-
sented and compared with theory. The phase-shifter was
employed in a traveling wave circuit at 91.4 GHz with cir-
culating power of 0.2 MW and subjected to �elds greater
than 10 MV/m without evidence of breakdown.

High energy physics requires ever more compact charged
particle accelerators, employing ultra-high electric �eld
gradients, in excess of 100 MV/m. Recent experiments at
X-band indicate that such �elds are diÆcult to maintain
due to breakdown, �eld emission, and damage from pulsed
heating [1]. To surpass the 100 MV/m barrier, it has been
suggested that miniature accelerator structures, scaled up
in frequency to W-band, may permit reliable operation.
To access the 100 MV/m range in the laboratory, the ab-
sence of a high power W-band source has motivated tests
on an accelerator beamline, in what is essentially a rela-
tivistic klystron con�guration as seen in Fig. 1(a). In such
a con�guration, with the 0.5 A, 300 MeV, X-band bunched
beam available in our laboratory, it is possible to achieve
10 MV/m �elds in a single W-band resonator [2]. Howev-
er, to achieve another order of magnitude in peak �eld, to
reach the 100 MV/m level, we require either a long trans-
fer structure, with attendant tight tolerances in fabrication
and assembly { or, a short structure, but with recirculation
of power from the output to the input. The choices are il-
lustrated in Fig. 1. Recirculation in this fashion bene�ts
from a phase-shifter, as the power developed in the circuit
depends on the phase-length of the recirculator arm. Com-
mercial components are not adequate for such work, where
vacuum compatibility and high peak power are concerns.
In this work we describe the design, fabrication and bench
test of a squeeze-type phase-shifter suitable for the circuit
of Fig. 1(b).

The squeeze type shifter we envision is that pictured
in Fig. 2, consisting of a length of WR10 waveguide,
with standard WR10 inner and outer dimensions (a=0.10",
b=0.05" and A=0.18", B=0.13" outer), and single mode
propagation in the range 59-118 GHz.

The waveguide can be compressed in the wide (a) dimen-
sion to provide a phase-shift. The actual waveguide will be
bent to form a U-shape, meanwhile, the phase length may
be understood from the scaling for straight WR10. Chang-
ing the width of the waveguide changes the guide wavenum-
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Fig. 1. Con�gurations for W-band power generation.

ber, �, and therefore the phase length of the guide.
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where a is the broad wall dimension and � the free space
wavelength at the desired frequency.
For small deviations Æa in the waveguide width, the

change in phase length is

�� =
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Z
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where s is arc length around the phase-shifter as seen in
Fig. 2. The variation Æa is a function of distance from the
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Fig. 2. Sketches of the squeeze-type phase-shifter, not to scale, show-
ing radius of curvature R, waveguide inner dimensions a� b and
outer dimensions A� B.
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The geometry, coordinates and dimensions are shown in
Fig. 2. Integrating, we �nd the phase length deviation of
the U-shaped phase shifter as a function of �a, and guide
dimensions
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where L = d+R, with R = 0:5" and d = 1:76". The total
phase length through the arm is calculated by integrating
the wave number over the length of the arm and adding
the perturbation �� from Eq. 5.
Meanwhile, as for mechanical considerations, the neces-

sary force required for the de
ection �a is

F = �
3EIy
L3

�a (6)

where E � 1:17 � 1011 N/m2 is Young's modulus for
OFE Cu, and the moment of inertia of the cross-section
is Iy � (AB3

� ab3)=12. With this one may show that the
maximum stress on the copper is

�max = �
3EB

4L2
�a: (7)

To prevent plastic deformation of the waveguide and hence
maintain repeatability, we avoid stressing the guide more
than 5% of its yield strength, Y � 6:9� 107 N/m2.

Fig. 3. Picture of prototype phase shifter (scale in inches).
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Fig. 4. Measured points overlayed with analytical calculation.

With these design scalings in hand, we fashioned a phase-
shifter using a 8" length of extruded OFE copper, with in-
terior dimensions as for WR10. A slit was cut through the
broad wall by EDM to facilitate squeezing, and 304L stain-
less steel 
anges were furnace brazed using CuAu 90/10
alloy. The �nished assembly seen in Fig. 3 was then chem-
ically cleaned as this has been found in waveguide studies
to remove any zinc or other unwanted material from re-
deposit during the EDM process and substantially reduce
attentuation.

We characterized the S-matrix for this device under low
power using a W-band vector network analyzer (VNA) [3].
We took VNA measurements for a series of values of �a
with the help of a stack of feeler gauges used to control the
slit gap. The data are summarized in Fig. 4 showing the
phase shift versus �a at 91.4 GHz. The calculated phase
shift from Eq. 5 is plotted with the measured data in Fig. 4,
giving good agreement. The insertion loss seen in Fig. 5 is
a factor of 2.7 worse than the theoretical result for straight
TE10 mode attenuation in OFE WR10, given by
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Fig. 5. Attenuation through the phase shifter/recirculator versus
frequency. The average attenuation is -1.1 dB.

TABLE I

Field levels in WR10 and WR90.

E(MV/m) P(W) - WR10
0.8 1.00E+03
2.5 1.00E+04
7.8 1.00E+05
24.7 1.00E+06

E(MV/m) P(W) - WR90
0.9 1.00E+05
2.8 1.00E+06
8.9 1.00E+07
28.1 1.00E+08
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where Rs = 0:073
 at the operating frequency of 91.4 GHz
and Z0 = 377
 is the impedence of free space. The dis-
parity between theoretical and measured we attribute to
surface roughness and loss in the waveguide slit.
We tested this device in a traveling wave resonator cir-

cuit, as in Fig. 1(b), at power levels above 180 kW giving
�eld levels above 10.5 MV/m for 100 ns for several mil-
lion pulses at 10 Hz with no sign of breakdown. Table I
shows the �eld levels for di�erent power levels in WR10 and
WR90 waveguide to illustrate the power required for test-
ing under high �elds at W-band compared with X-band.
Tests at X-band producing equivalent �elds would require
2 MW of power. The authors would like to thank O. Milli-
can and D. Shelly for their expert assistance in fabrication
of the phase shifter.
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