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ABSTRACT 

This paper is concerned with the current status in the com­
putation of static magnetic and electric fields as applied to 
the design of cylotron magnets and associated equipment. 
There is growing requirement for 3-D solutions to com­
plement the standard techniques of analogue methods and 
measurements. The basic field equations are presented fol­
lowed by a fairly full treatment of a stable algorithm for 
their solution using the finite element method. Two exam­
ples are given where such computations have proved to be 
very useful in the design of cyclotrons, i.e. the joint Dutch­
French AGOR project, and the Oxford Instrument medi­
cal machine OSCAR.lntegral methods are also referred to 
with a discusion on their likely increased use, in the future, 
using parallel processors. 

1. INTRODUCTION 

Magnet builders are becomming increasingly dependent 
on computational techniques for the optimisation of cru­
cial design parameters. This activity is wide-spread and 
is central to a broad range of electromagnetic devices­
from small domestic consumer products to large power 
engineering installations-as well as the enormous range 
of high technology applications supporting industry and 
research. This paper is concerned with computational as­
pects of cyclotron design, but the core issues of predicting 
the magnetic and electric fields for assemblies of ferromag­
netic, dielectric and conducting materials etc. are common 
to all these applications. 

-r:he paper will begin by reviewing the static field equa­
bons, but eddy current effects, and high frequency phe-
nomena are ignored entirely. The latter, though of im­
mense importance in the RF aspects of cyclotron design, is 
outside the scope of this paper. For a fuller examination of 
the current status of field computation generally, including 
eddy current effects, the reader should consult the proceed-

ings of the COMPUMAG series of conferences [1,2,3]. The 
main part of the review will be concerned with the numeri­
cal solution of static field problems using the finite element 
method with a speccial emphasis on the field cancellation 
problem, see section 2.3.1. This will be followed by some 
specific examples on the use of field computation for cy­
clotron design. The examples given are taken from the 
work of magnet designers who have used techniques with 
which the author is associated, and he therefore apologises 
for any bias there may be! This review will end with some 
information on recent work using parallel computers which 
should enable more complex designs to be computed in the 
future. 

2. THE STATIC FIELD EQUATIONS 

f 
r l Il, u, € 

Figure 1: Model Problem for Static Fields 

It is convenient to consider the elementary model prob­
lem(see figure 1) in which a volume of material Om, with 
magnetic permeability Il, electrical conductivity u, and 
electric permittivity f bounded by a surface r m, is im­
mersed in a global volume of free space 0 bounded by a 
surface r which, furthermore, may be extended to infinity 
if required. The global region may also contain a num­
ber of prescribed sources O. which do not intersect Om. 
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However care is needed if n contains multiply connected 
regions. 

If time dependent effects are neglected then the field equa­
tions can be approximated by: 

V'·D 

V'·B 

V'xE 

V'xH 

p (Gauss's Law) 

o 
o 
J, (Ampere's Law ) 

(1) 

(2) 

(3) 

(4) 

where D,B,E,H are the usual field vectors, p and J, the 
free charge and current densities respectively [4]. The field 
vectors are not independent since they are further related 
by the material constitutive properties; 

D 

B 

(5) 

(6) 

For current flow problems the current density in a conduc­
tor,J, is given by: 

J = O"E (Ohm's Law). (7) 

In practice J.l will often be field dependent, and further­
more, some materials will exhibit both anisotropic and 
hysteretic effects. The four field vectors must satisfy the 
following conditions at the interfaces between regions of 
different material properties; 

(B2 - B 1)· n 

(D2 -D1 )·n 

(H2-H1 )xn 

(E2 - Ed x n 

2.1 Magnetic Vector Potential 

0 

0 

0 

o. 

(8) 

(9) 

(10) 

(11 ) 

Since the field vector B satisfies a zero divergence condi­
tion, see equation (2), it can be expressed in terms of a 
vector potential A as follows: 

B = V' x A, (12) 

and then, from equations (4,6) and (12), it follows that, 

1 
V'x-V'xA=J, 

J.l 
(13) 

Is equation (13) sufficient ? It is clear that for regions 
where the current density is zero the right-hand-side of 
equation (13) vanishes and the system is now not unique. 
In point of fact, it is necessary to specify the divergence 
(gauge) of A and appropriate boundary conditions to en­
sure uniqueness. The commonest condition for static prob­
lems is the Coulomb (V' . A = 0) gauge [4]. 

2.2 The Two-Dimensional Case 

The use of the magnetic vector potential for 2-D problems 
is widespread and for the very common limiting cases of 
infinitely long or axisymmetric models, where the current 
flows either parallel to the z-axis or in the azimuthal 
direction respectively, there will only be one component of 
A involved. For the plane x - y case this component is A., 
which will depend upon x and y only. Furthermore, by 
definition, A. is now independent of the z coordinate and 
the Coulomb Gauge is automatically imposed, and from 
equation (13) A. satisfies, 

1 
V' . - V' A. = J,. (14) 

J.l 

This formulation has been frequently used for cyclotron 
design when two-dimensional limits are a good approx­
imation. Computer codes like TRIM [5], its derivative 
POISSON [6,7], and PE2D [8],for example, have proved 
indispensable tools for the magnet designer. 

2.3 Scalar Potentials 

All three static cases namely, magnetostatics, electrostat­
ics and current flow can be solved in both two and three 
dimensions using scalar potentials. 

2.3.1 Magnetostatics 

The magnetic field H can be partioned into two fields 
namely, the field generated by the prescribed sources Hs 
and the field arising from induced magnetism in ferromag­
netic materials Hm. Thus, 

H = Hm+Hs 

and also since from equation (4) V' x Hm 
that, 

(15) 

o it follows 
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H = -V'</> + H. (16) 

where </> is called the reduced scalar potential [9], and by 
definition for conductor source regions with current density 
J. the source field is given by, 

1 J 1 H'=47r J,xV'(li)dfl, (17) 
n 

where R = Irl - rl is the distance from the source point 
rl to the field point r, equation (17) is known as the Biot 
Savart Law [4]. 

In many cases, this can be integrated to give an analytic 
expression for H.i for complicated current paths, the ex­
pression can be integrated by a combination of analytic 
and numerical quadrature. The permanent magnet sources 
can be represented by a modified form of the constitutive 
relation, equation (6), of the form, 

B = Il(H)(H - He) (18) 

where Il is a non-linear function of H and is in general a 
tensor, and He is the coercive field for the material [4]. 

In 'soft' magnetic materials, the coercive field intensity is 
normally assumed to be zero. 

The governing equation for the reduced scalar potential, 
(</», is obtained by taking the divergence of equation (18) 
Ie. 

Whilst direct solutions of equation (19) are possible, in 
magnetic materials, the two parts of the field Hm and H. 
tend to be of similar magnitude but opposite direction, so 
that £ancellation occurs in computing the field intensity H, 
giving a loss in accuracy [9,10]. This loss is particularly se­
vere when Il is large. Fortunately, for regions where there 
are no conductor sources the total field H can be repre­
sented by a scalar potential since ,in this case, V' x H = 0 
and it follows that, 

H = -V''lj;, (20) 

where 'lj; is known as the total scalar potential. The gov­
erning equation for regions without currents is given by, 

(21) 

It is clear that the total scalar potential should be used to 
avoid cancellation errors, but unfortunately it cannot rep­
resent the whole problem, since in regions where there are 
currents this potential is multi-valued [4]. In a numerical 
algorithm however the two potentials can be combined to 
avoid the cancellation associated with reduced potentials 
and yet allow the inclusion of electric currents [10]. In re­
gions that contain currents the reduced potential should 
be used, and elsewhere the total scalar potential. The so­
lutions can be coupled at the interfaces of the regions by 
applying the continuity conditions equations (8) and (10), 
thus if region 1 contains all the ferromagnetic and perma­
nent magnet sources and region 2 all the conductor sources 
then, 

Interface Integration paths must not 
intersect conductors 

Figure 2: Source Scalar Potentials and Integration Paths 

(22) 

(23) 

where nand t are the outward normal and tangent direc­
tions respectively. Equation (23) can be integrated over 
any path that does not intersect current regions to give 
an integral relationship between potentials at two points 

A and B, ie 

(24) 

where H. is obtained explicitly from equation (17) and at 
point A, 'lj; = </>, see figure 2. 

2.3.2 Electrostatics 

The electric field E, defined by equation (3), can be ex-
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pressed in terms of the electric scalar potential V as Ri J Wi (V' ·p,V'u - Q)do. 

E=-V'V, (25) 

and from equation (1) V satifies the Poisson equation 

V' . €V'V = -po (26) 

2.3.3 Current Flow 

In this case, if there are no sources or sinks of electric 
current inside the conducting region, the current density 
satisfies the divergence condition 

V'. J = o. (27) 

Hence from equations (7,25) the electric potential U satis­
fies 

V'. uV'U = 0 (28) 

2.4 Numerical Solutions using Finite Elements 

The equations( 19,21,26,28) are all of the Poisson type and 
can be expressed generically as: 

V'.p,V'~=Q : rEO. (29) 

where ~ is a scalar potential, either reduced </> or total 'IjJ 
subject to boundary conditions 

(30) 

(31) 

where f = fl + f2 on the surface of a domain o.. The 
imposition of Equations (30) and (31) ensure that solutions 
to Equation (29) are unique. Following the standard finite 
element procedure of weighted residuals [11] the solution 
to equation (29) is approximated by a set of basis functions 

~ ~u = LNiUi, (32) 

and by constructing a set of weighted residuals at each 
node of suitably chosen finite elements the residual is given 
by 

o 

r - (au) r = ( -) + Jr, Wi p, 8;'; - p df + Jr, Wi U - ~ df 

o (33) 

where the Wi, Wi, and Wi are an arbitrary set of weighting 
functions. It is necessary to use integration by parts to 
reduce the order of continuity required for the functions u. 
In this case, integration by parts of the first term in the 
above equation gives; 

J Wi (V' ·p,V'U - Q)do. = - J V'Wi ·p,V'udo. 
o 0 

a-
+ J WiP, a: df - J WiQdo. (34) 

r 0 

and by choosing, Wi = - Wi to eliminate the normal gradi­
ent term along the boundary f 2 , Equation (33) becomes: 

Ri = - J V'Wi ·p,V'udo. - J WiQdo. + fr, Wipdo. 
o 0 

+ r Wip,~udf+ r Wi(u-~)df=O (35) Jr. un Jr. 

The Galerkin form [11] is chosen for the weighting func­
tions in which Wi is identified with the basis functions, 
Ie 

Wi = N i . (36) 

The Galerkin method leads to a symmetric system of equa­
tions and can be shown to be equivalent to the variational 
method [11]. As the Ni are functions, local to elements, 
containing the nodal parameter Ui, Equation (35) defines a 
set of algebraic equations based on the nodes. The bound­
ary condition on fl is usually enforced and therefore the 
appropriate integrals are eliminated .The problem has now 
been reduced to the solution of a set of linear equations of 
the form: 

with 

Kij = J V' Ni .p,V' Njdo. 
o 

(37) 

(38) 

the matrix K being sparse and symmetric for this partic­
ular choice of weighting functions. The right hand side 
vector Ci is given by: 
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Ci = ! NiQdf'l 
o 

(39) 

In order to minimise the effects of field cancellation two 
regions are constructed as in figure 2. Each region can be 
subdivided into finite elements, except that the problem 
will now not be completely defined, since on the interface 
boundary f/ between the two regions both 'IjJ and </> are 
unknown. This indeterminancy can be resolved by appli­
cation of the interface conditions, Equations (23) and (24). 
For simplicity the contribution from hard magnetic ma­
terials (ie right-hand-side term in Equation (21)) will be 
omitted although it is perfectly straightforward to include 
these effects [10j. Applying the weighted residual method 
and integration by parts to each region independently, 

Rl = - !'ilWi·tt'il'IjJdf'lk+ !Witt~~df/ (40) 
O. ~ 

and 

R2 = - ! 'ilWi . tt'il </>df'lj + ! Witt ~~ df/, (41) 
OJ r, 

tt2 has been removed, since it is constant in the region f'lj 
from which it follows that the term containing H. van­
ishes, since div(H.) = O. The total residual is to be set 
to zero(i.e. Rl + R2 = 0), and by making use of the in­
terface conditions (Equations (23) and (24)) the sum of 
Equations (40) and (41) become 

! 'ilWi · tt'il'IjJdf'lk + ! 'ilWi · tt'il</>df'lj 
O. OJ 

_! Wi [_/N + o</>] df/ on on 
r, 

-! WiH • . iidf/. 
r, 

( 42) 

After applying the Galerkin method to Equation (43) with 
a finite-element discretisation, the coefficient matrix is 
identical to Equation (38) with appropriate permeability. 
At the interface fl, either 'IjJ or </> can be eliminated by 
Equation (24). Eliminating </> results in a right-hand side 
term for a node on the interface that is given by: 

C = Kg - h ( 43) 

where K is the element matrix, Equation (38), and 

g 

h 1
t2 

N/Hmdt, 
t1 

(44) 

( 45) 

see figure 2. The method described in 
used in the 3-D code TOSCA [8]. 

this section IS IS 

2.5 Discusion on Field Cancellation 

The use of combined potentials, reduced and total, have 
been recommended in order to minimize cancellation er­
rors [9,10]. The effectiveness of single reduced potential 
methods depend critically on the sub-space of functions 
used to interpolate the coil fields H., and in particular 
the relation between these functions and the finite element 
potential solution space. Implementations of the reduced 
potential method, Equation (19), usually use exact eval­
uation of H. at all points by analytic integration of the 
Biot-Savart expression for the field from a defined current 
distribution, Equation (17). To some extent the use of two 
potentials can be circumvented [12], albeit at a heavy com­
putational cost. To achieve this the space of functions used 

1"- \ / 
1"- / ~ ~ ...... 

t:'L1Z :L::: ....-

v. r-
~ tz r--

V ~ 
V J ~ 

(a) Differential Madel with for 
field boundary at a finite 
distance from the R\09n.t 

(b) Int""ral Model, variable }l 
and for field boundary at 
infinity 

(c) I nteora I Madel, conslont }' and 
far field boundary at infinity 

Figure 3: Integral versus Differential 

to interpolate H. should be the same as that describing the 
gradients of the reduced potentials. If the two parts of the 
total field are not supported on the same space of functions 
then the cancellation between the two parts gives rise to 
large oscillations in the total field over each element. 

Unfortunately the integration for H. is expensive for com­
plex coils and when using a reduced potential method these 
integrations must be performed over the complete domain, 
whereas with the combined reduced and total potential 
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methods these values need only be evaluated in the re­
duced potential regions. Furthermore, using numerical ba­
sis function to support H. implies that the elements must 
be capable of interpolating H. with good accuracy. 

3. INTEGRAL EQUATION FORMULATIONS 

The integral equation forms of the governing field equa­
tions are often a viable alternative to the differential 
forms [13]. There are many different types that can be 
derived, see for example [13], however, in this paper, there 
is only enough space to quote the main equation types. 

For example, in magnetostatics the magnetisation vector 
M satisfies a volume integral equation given by 

M(r) = (p-l) [H.(r') - LV [M(r'). V(~)dn] . (46) 

An alternative form using scalar potentials which is valid 
for linear materials only, and furthermore requires surface 
discretisation only is give by 

1 i a( l) 7j;p = -( - (p -1)7j;· _ R df) + 7j;s. 
411" r an ( 47) 

Finally the clasic boundary element method(BEM) first 
applied to mechanical problems [14] and later to electro­
magnetics [15J should be mentioned. The method is based 
on Green's theorem [4] to optain solutions inside defined 
volumes in terms of surface values of potential and the nor­
mal derivative of potential. Thus, for 3-D linear problems 
the scalar potential at a point is given by 

411"¢> = - / (~ a¢> _ ¢> a(~) )df 
Ran an ' (48) 

r 

ie. given ¢> or ~ on f, ¢> is uniquely defined in fl. Problems 
with many regions with or without sources can be solved 
by applying equation (48) to each region simultaneously 
using total scalar potential 7j; where there are no sources 
and the reduced potential ¢> elsewhere [15]. The additional 
equations required at the interfaces, where neither the po­
tential nor its derivative are known , are supplied by the 
interface conditions as in equations (22,23). 

4.1 Advantages of Integral Equations 

The above equations are just three of the many forms that 
can be derived. The use of Integral methods for solving 
electromagnetic field problems has many advocates . The 
advantages (see figure 3) of integral formulations compared 
to the standard differential approach using finite elements 
are: 

(a) Only active regions need to be discretised which is an 
enormous advantage in 3D,see figure 3. 

(b) The far-field boundary condition is automatically taken 
into account by the formulation. 

(c) The fields recovered from the solution are usually very 
smooth since the local basis functions are proper field so­
lutions. 

Unfortunately, the computational costs are high and 
rapidly escalate as the problem sizes are increased. The 
use of parallel hardware to extend the range of the appli­
cabilty of integral methods is considered in section 5. 

4. Examples in AVR Cyclotron Design 

A growing number of cyclotron designers are now using 
three-dimensional codes to help them optimise the critical 
parameters, see for example AGOR [16], OSCAR [17,18] 
in which the TOSCA code was used. Figure 4 shows 
the geometric model for the French-Dutch AGOR super­
conducting cyclotron. This is an example of a high energy 
machine (600MeV protons) to be used for physics exper­
iments. Figure 5 shows axial field plots in the median 
plane(z=O.O) as a function of angle for several radii. 

In the case of OSCAR,the 12 MeV superconducting cy­
clotron built by Oxford Instrument Ltd., UK for medical 
applications (Isotope production and tomography), several 
components were computed including the ion-source ex­
traction sytem, the electrostatic inflector, and main mag­
net fields. Some statistics for these components are shown 
in table 1. 

Figure 4: Geometric Model used in Computing AGOR 
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Figure 5: Computed Median Plane Fields in AGOR 

OSCAR Cyclotron Computer Statistics 
Component Code C-Time(m) Remarks 

Problem Nodes Acc.% 
Median Plane TOSCA 270.0 Difficult geomemtry 

Bz 20000 0.5-1.0 at small radii and 
variations in iron. 

Magnetic Field PE2D 4.0 Estimated Accuracy 
along axis 8000 0.3 of measurement. 

without sectors 
Injector Lens PE2D 5.0 Specified tolerance 
(Permanent 1000 1.0 of Nd-Fe material. 

Magnets) 
Spiral TOSCA 10.0 Complex electrodes 

Infiector 1000 No measurements . 

Table 1: The Oxford Instruments Ltd., Cyclotron OSCAR 
computed using VAX 8650. 

Figure 6: Geometry and Mesh for OSCAR 

In figure 6 a computer generated picture of the model used 
in the TOSCA code is shown. Full use was made of sym­
metry with a 60 degree sector actually analysed with im­
plied symmetry by first refelecting in y = 0 plane and then 
repeating at 120 degrees . Computing the forces on the sec­
tors turned out to be an important factor in the design, 
the results indicated that the webs supporting the sectors 
needed considerable stiffening. 

In figure 7 the results for the average (over azimuth) com­
puted and measured field as a function of radius are plot­
ted. Also shown are the errors as a percentage. The max­
imum error is seen to be ,....., 1%, and it is possible that 
this would decrease by improving the material modelling, 
i.e. by measuring accurately the B - H characteristics of 
the actual material used, also the model could be further 
refined to take account of fine details in the construction. 
Both these effects are important if very high accuracy is 
required. In figure 8 the mesh used in TOSCA for solving 
the electrostatic inflector is shown. The electrodes con­
sist of a spiral channel which proved quite challenging to 
model !, and, incidentally to visualize [17]. 

./ 

-1.000'----<l5O".ooo;;;;;------,�~OOi;-.ooo=----;cI50l;-.;;;ooo;;;----200:;;;l;-.OOO=-­

:::::~~:t':-f-~'~~a) OSCAR Axial FI.tds( AYft'&gpd ov.r AZI.,t.h) 
It--CI Error' In Fltld \ 

Rod,US(.> 

Figure 7: Field measurements compared with prediction 
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Figure 8: TOSCA mesh to analyse the OSCAR Inflector 

5. Future Developments 

The paper will conclude by listing a number of recent de­
velopments which should have some effect on the quality 
of cyclotron design. 

5.1 The Impact of Parallel Processing 

Parallel computing heralds a new vista for computational 
mechanics, or so we are told, but do the results bear any 
resemblance to the propaganda? There are two distinct 
types of hardware, the vector processor ego FPS, and the 
loosely coupled massively parallel systems ego Transputers. 
Some results follow for both types of system. 

5.1.1 Solution speed-up on a Vector Processor [19] 

Some speed-up times for running the TOSCA magneto­
statics code on a Floating Point Systems M64/60 Vector 
processor are shown in table 2, the absolute times are in 
minutes. These results were obtained without the nec­
essary re-coding in order to exploit more fully the vec­
tor machine. Some further benefits may be expected (A 
factor ~ 3) if this is done. In assessing these results it 
is essential to normalize the performance with the hard­
ware costs which will of course be installation dependent. 
The efectiveness of using vector processing can be inferred 

from the speed-up ratios shown in table 2. Thus, con­
sider the timings for the OSCAR median plane fields{see 
table 1) which would be reduced from 270 minutes to 54 
minutes(assuming the micro-vax2 is ~ 6 time slower than 

From Scalar to Vector Processor 

Problem Micro FPS M64/60 ! Ratio 
Nodes Vax 2 OPT=3 I 

400 1.600 0.060 I 27 

18700 227.670 7.550 30 

18700 1375.73 40.530 34 

non-linear I 

Table 2: Speed-up statistics for TOSCA 

the vax-8650). Furthermore, if vector optimised linear al­
gebra is used, the computer time could be reduced to ~ 20 
minutes. 

5.1.2 Integral Methods and Parallel Processing 

In section 3. integral equation formulations were briefly in­
troduced and their strengths and weaknesses summarised. 
In solving a magnetostatic problem using boundary ele­
ments the following computational stages are performed: 

• (a) Source Field8 -+ n operations 
H. = J JQdo'c 

0, 

• (b) Matrix set-up -+ n 2 operations 
A = J FdO, 

o 

• (c) Solve Equations -+ n 3 operations 
Ax = B 
Matrix A is fully populated 

Of the above only item( c) is not a perfectly parallel oper­
ation i.e. containing both communication and calculation. 
In figure 9 some recent results for a solving a magneto­
static problem using arrays of transputer are shown [20] 
in which it can be seen that up the number of processors 
(32) good efficiency was obtained (~ 80%). This result 
is encouraging and it is likely that integral methods will 
become an important technique in the future as the use 
of parallel hardware becomes wide-spread, this especially 
attractive since relatively low cost systems involving tran­
puter arrays can be constructed using small workstations 
as hosts. 
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Figure 9: Using Transputers to speed up Integral Equation 
Solutions 

5.2 The Design Environment 

In recent years, the major emphasis on Computer Inte­
grated Manufacture(CIM) research and development ac­
tivity has been in the area of automatic manufacturing, 
where technical and economical feasibility is certainly crit­
ical for a viable CIM environment. Cyclotons are com­
plex devices that are difficult to design and manufacture 
so what impact will these recent developments have? In 
order to achieve a truly integrated manufacturing environ­
ment, it is necessary to integrate many activities into the 
design structure. In most cases, computer aided draft­
ing tools are provided, but they are seldom connected in 
an integrated way to the design process and the depen­
dent analysis tools are still only available via separate and 
frequently unrelated analysis codes. Possible ways of im­
proving the situation include strengthening the robustness 
of analysis codes by error estimation, adaptive meshing 
and postprocessing features, and providing an effective in­
tegrated environment with drafting and design tools. 

With the improvements available in analysis tools the task 
of the analyst can be made much simpler. However there is 
still the overriding difficulty that a realistic design needs to 
be analysed bearing in mind its coupled nature. Very few 
problems in reality can be analysed using tools based on a 
single discipline. For example in cyclotron devices, forces 
generated by the high magnetic fields effect the design. To 
model such a device accurately, it is necessary to analyse 
the same problem using both electromagnetic and stress­
analysis tools. Ideally, the analysis should be carried out 
using a single, fully coupled model for whole problem, but 
this is still at an early stage of development. Some recent 
work has attempted to define a design environment which 

should go someway toward integrating analysis packages 
and standard design procedures [21J. It is with such a 
system that designers can make best use of their time, and 
improve both their creativity and productivity. 
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