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1. INTRODUCTION

My aim in these lectures is to outline an approximation scheme for
calculating scattering amplitudes in dispersion theory by the use of which
one would hope to overcome the difficulties associated with previous approxi-
mation schemes. At the moment a fully consistent set of equations has not
been written down, but it is hoped that the materials for a solution of the
problem are at hand. We shall see, probably in the next lecture, that the
concept of ""Regge poles'' will play an important part in the analysis. In fact,
it was in this connection that they were originally introduced into elementary
particle physics.

First let me outline why we were unable to get consistent equations by
the previous approach, used for instance by Chew and me in the pion-pion
problem|[1]. (This approach has also been treated in a paper by CINI and
FUBINI [2]. One started with the double-dispersion representation [3],

1 - A (s, th 1\8‘ - Agz (u’,t')
A(s,t) = \g‘ds dt ST ) + o | du'dt [T

1 Lo, Asal(s' u')
+ ; S\ds du __—(S'-S) (u'_u) . (1)

For the purpose of this lecture we have taken the case of neutral scalar
particles with equal mass, when the variables s, t and u are related by the
equation

s+t +u = 4

We have not written the subtraction terms explicitly, but it is understood
that such terms may and in fact will be present.” The essence of the old
approach was to assume that the scattering amplitude at low energies was
dominated by the nearest singularities. Accordingly, one neglected terms
where "'one' was large. In the first approximation, one neglected contri-
butions which began at the inelastic threshold.

In pion-pion scattering, this amounted to neglecting the double-spectrail
functions completely. The reason is that it is impossible to draw a diagram
where the 77 scattering, both in the s and t- channels, took pléce through
a two-pion intermediate state. The processes with the lowest intermediate
states were in fact as .in Fig. 1,
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Fig.1

Graphs for pion-pion scattering with the lowest intermediate state,

The first diagram goes through a two-pion state in the s-channel but through
a four-pion state in the t-channel, the second through a four-pion state in
the s-channel but through a two-pion state in the t-channel. Accordingly,
the double-spectral function starts at a high threshold in at least one of the
variables s and t, and must consequently be neglected.

We should emphasize that the neglect of the double-spectral function is
purely due to the absence of a three-pion vertex. If there were a three-pion
vertex, the following process (Fig. 2) would contribute, and the double-

N

Fig. 2

Pion~pion scattering through a three-pion vertex

spectral function could not be neglected as.all double-spectral functions are
neglected, the representation would consist purely of subtractlon terms,
and would appear as follows

1 (s (s)ds' 2t S'fp(s')ds'
a2 BN 1, 2

s'-8) (s'-s)

+ crossed terms + X - (2)

. We have taken the case of two subtractions in the t-variable, so that there
will be a constant term and a term linear in t. We have re-grouped them
into a constant term and a term involving the factor § [1+2t/(s-4u2?)]
= 1+ 2t/(s-4u?2) as these terms correspond to S- and P-waves. Thus, if
P-waves dare important, as they are in practice in 7-7 scattering, one would
expect to have to perform at least two subtractions in t, We have been a
little careless in writing (2), as P-waves cannot occur in neutral (pseudo)
scalar pion-pion scattering but, since we are really interested in charged
pions we shall ignore this.

When Chew and I attempted to solve the problem, we arrived at singular
integral equations which did not have a unique solution. The difficulty was
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due to the fact that the diagram (Fig. 3) represents the exchange of a P-wave
pion pair.

Fig. 3

Exchange of a P~wave pion pair.

Now the exchange of a P-wave system corresponds to a very singular po-
tential. If one were solving the problem by any other method, the singularity
would be rounded off by the fact that a composite system such as a pion pair
has an extension in space. Dispersion theory operates in terms of the
S-matrix, however, and concepts such as spatial extension do not enter
directly into the theory. In fact, in the simplest approximation as Chew and
I treated it, the exchange of a composite system is treated on exactly the
same footing as the exchange of an elementary particle, and leads to singular
equations.

The difficulty actually arises from the factor 1 + 2t/(s-4u9 in the second
term of (2), which approaches infinity with infinite t. Now, the function A
(s,t) in addition to representing direct pion-pion scattering, also represents
crossed pion-pion scattering, and now being the energy and s the momentum
transfer. The amplitude for crossed pion-pion scattering then approaches
infinity with the energy, and such a behaviour can lead one into conflict with
the unitarity condition. :

2. CALCULATION OF THE DOUBLE SPECTRAL FUNCTION

In the face of these difficulties, a much more ambitious approximation
scheme was suggested independently by CHEW and FRAUTSCHI, McCAULEY,
TER-MARTIROSYAN and WILSON [3]. The proposal was essentially to calcu-
late all that one can with neglect of multi-particle states in the unitarity
condition. Our next problem will therefore be to investigate how the double-
spectral function may be calculated.

Let us suppose for the moment that we know the double-spectral function
Ajps. In practice, we do not know it in advance, of course, but must calcu-
late it by means of an iteration procedure. We may then re-write (1) as

1 Va(s,t) 1 (% V2 (s,u')
A(s,t) = = fdt'———+ 2 S du! —e——
T . {t'-t) T s 2 {u'-u)
1 Ly, As(s,t) lS‘ y Az(s’,u)
+ p- §ds dt! ———(s'-s) @) + - ds'du E—'-S) )

+ subtraction terms
involving s + X, (3)
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In this equation, the first two integrals come from two sources:

(i) Substraction terms in t and u;
(ii) The second term of (1).

It is shown in [1] how the latter term can be written in the form of the first
two terms of (3). If we have subtractions, the integrals in (3) will really
have a more complicated form. This is also explained in [1]. Such compli-
cations are inessential and we shall ignore them here. We shall explicitly
exclude more than one subtraction in each variable, however. For the moment
we are interested in the calculation of Aj3 and A from unitarity when Vi
and V, are known. Later we shall have something to say on the iteration
procedure for calculating V3 and Va. We shall formulate all our equations in
terms of neutral pion-pion scattering. Generalization to problems with spin,
isotopic spin and unequal mass can be made, and they do not change the
essential features of the calculation,

From (3), we can write a dispersion relation in the momentum transfer
(for fixed s):

1 (® . Ags,t’) 1 (% Az(s,u")
A(s,t) == S at! ——— += S du' ———— (4)
m 2 (tr-t) = " (u'-u)
where
Aals,t _
Aj(s,t) = Vg (s,t) +7‘,l Smds'—(l—%(% . (5a)
42
. A
Ag(s,u) = Vy(s,u) +1|_l S‘oo ds'-(?ll-z_(&;;)u) (5b)

4112

We now insert (4) into the unitarity relation, so as to obtain A, in terms of
the spectral functions Aj, Ag instead of in terms of A. The unitarity relation
is )
q 1 27 N .
Ay(s,t) = AT Ildzl S‘O d® A* {s,t(z;)} A{s,t(zz1- J(1-z%(1- z%)cos?}
(6)

The notation should be fairly evident, The symbol z denotes the cosine of the
ongle of scattering from the initial to the intermediate state,and z; the cosine
of the angle from the initial to the final state, The symbol Pis the azimuthal
angle between the initial and the intermediate state, measured from the plane
of the initial and the final state, and the integral is thus over all intermediate
states. The cosine angle between the intermediate and the final states will
thus be
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zzy-A(1-23)(1- %) cos®.
The variable z will be related to the momentum transger t by the formula
z = 1+t/2¢? (7a)

while the expressions t (z;) and t (zz, - /(1- z§$ (1-z2l)cosq9) in (6) indicate
that t is to be expressed in terms of the cosine of the angle of scattering
by the formula

t(z1) = 2q%(z - 1) (o)

t(zz1-4(1-22) (1- 2§) cos®) = 2q2(z 21 - J(1-23) (l-zlz)cos‘D -1) (7¢)

In all these formulae,tis the centre-of-mass momentum given by.

q?=1 (s-4u9) (8a)

and W the centre-of-mass energy st .
At this point we shall first simplify the calculations by assuming that
the second term of (4) is absent. We can then insert (4) into (6) and, on ex-

pressing t(z;) and t (zz1- //(1-2%)(1- z%) cosP) by (7c), we arrive at the

equation. -
A ) j‘ dz S d jmd' Asfs.t')
s,t) = L tf ———
! 327r2w “ 2 t’ -2q2(z1- 1)

® Az (s, t")
x dt"

4u2 " _2q? (zz1-A(1 - 22) (1-2%) cosP-1) (9)

The integrations over z andPon the one hand, and t/ and t'' on the other
hand, can now be interchanged. As the variables z and Ponly occur in the
denominators, the integrations over these can be performed. After ex-
pressing z in terms of t by (7a), the result is-

— 1 S‘ 1 " ] " 1
Ai(s,t) 33TTqW do'do” Ag(s,t') As(s,t”) K(q5t t, )]

a{q?; t,t',t") + {K(g?, t,t',t")}i
a (q2; t;t’:t") = {K(q2: t: t'at")}i : (10)

X log
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where

K(q2; t,t',t") = t2+ 2+ ¢"2 - 2 (tt' + tt" +t't") -t t' t" /q2 (1la)
a(q2 t,t,t") = t-t'-t" - t' t" [2q? (11b)

Eq.(10)givesA1in terms of As. The equation as it stands is not particularly
useful; however, it can easily be rewritten-as an equation for A3 in terms
of Ag. To see this, we observe that

Lo, el it + (K@ittt} E
Klaut,t, ) 8 o (ght, t,t7) - {K(ght, v, )1

S dt m 1
T2 EE W@ o R (12a)
where the integral is taken over the region.

@yt > @yt +amd

12b
K> 0. (120)

Eq.(12) may be derived by observing that the logarithm is analytic except
for a cut along the real axis when the inequalities (12b) are satisfied, the
discontinuity across the cut being 27K-%. On substituting (12) into (10), we
arrive at the equation

| Y (RN U .
A7) Gt Temagw J Y K@n, o d

X A’g (s,t') Ag(s,t") (13a)

where the integrals of t' and t" ar : taken over the region for which.

(t"’ )& > (tl)i +(t")i
(13b)
K> O .

We can now compare Eq.(13a) withthe dispersion relation for A; (s,t)

A '
Ay (S.t)="rl S'dt,(_tt%t_). (14)
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(The integral over Ags(s,u) does not contribute when the second term of (4)
is neglected). From Eq. (14) we observe at once that we can identify the integral .
over t' and t” in Eq. (13a) with Ai3:

- 1 r n 1 3 n 15
A13 (s:t) = 16”2 qw Sdt dt {K (q2;t,t', t")} .A3(S,t )AS (S:t )x ( )

for W >ant+ e, k>0
otherwise

Al-3 (S, t) =0

Eq.(14) is the unitarity equation for the double.-spectré_'l function which we
require [3].

We riow have two equations, Eqs.(5a) and (15),between Az and A;3. One is
linear, the other quadratic. Because of the limitations on the range of inte-
gration in Eq.(15) it turns out that one can obtain A;3 and A3 without solving
an integral equation. To see how this can be done, we observe that Ajs(s,t)
will be zero if t < 4u?. As the integration in Eq.(15)is taken only over the
region t! > t't+t" %, it follows that

Ay(s,t)=0 , t<16u2. (16a)
Thus, from Eq.(5a)
Agls,t) = Vy(s,t)s . t< 16u2, (16b)

And Ag(s, t) will thus be known for this range of t.

Next, we observe from the inequality t1> t't + t"} that, if t < 36u2; t'
and t" will both be less than 16u2 (since both are greater than 4u2). How-
ever, Aj(s,t) is known for t < 16u2, so that Ajs(s,t) can be calculated for
t <36u2. Using the dispersion relation (4), Aj(s,t) can then be calculated
for t < 36u2.

The process of using successively Eqgs. (15) and (4) may now be continued
indefinitely. In the next stage, for instance, A;3(s,t) can be calculated from
Eq.(15)fort < 642 if Aj (s,t) is known for t < 36u%. Aj(s,t) can then be
calculated for t < 64u? from Eq.(4). We can thus construct the double-spectral,
function for successively larger ranges of t, and can reach any given value
of t in a finite number of steps. The elastic unitarity and analyticity proper-
ties thus provide us with a means of calculating the double spectral function.

We may remark that a similar equation can be derived for calculating
the double spectral function for a superposition of Yakuwa potentials, as
was shown by BLANKENBECLER, GOLDBERGER, KHURIand TREIMAN
[4]. There are two differences:
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(i) The factor 1/Win Eq. 15 is absent and the numerical factors are

different;
{(ii) The function V (s, t) is known in advance. It depends on t alone and
is given by
- l ] N- (t')
U (t) - Sdt ) (17)

where U (t) is the potential, A superposition of Yukawa potentials can always
be written in the form (17). In the potential case the determination of the
double-spectral function provides a complete solution of the problem,in the
relativistic case it does not as V3 (s, t) is not known in advance and must
be determined from the solution. Because of the similarities between the
equations for the potential and relativistic theories, CHEW and FRAUTSCHI
[5] have dubbed the function Ag (s,t) a "generalized potential", We should
emphasize however, that the innocent-looking factor 1/W in the relativistic
case is sufficient to destroy the equivalence between the present method and
any Schroedinger-like equation, and one is forced to solve the problem using
the procedure just outlined.

We have thus far simplified the problem by omitting the second term
in (2). When such a term is present a similar procedure can be used, but
the equations‘correspondingto (15) are slightly more complicated. They are:

__ 1 [5’ . 1 e o "
Aq3(s,t) 1672 aW T . dt'dt {————————K (@t U TR A% (s, t') Ay(s, t")

1 3#* n
+ SR du'du” Lo o1 A} (s,u")AS(s,u )], (18a)

—.‘ 1 ! ] 1
A12(S, u) = —161r2qW SR dt'du {K(q2;u, T al

[ A% (s,t')A; (s,u")

+ A% (s,u') As(s,t’)]. (18b)

The sub-script R indicates that the integral is to be taken only over the1egion
for which the last three arguments >f K satisfy the inequality in Eq.(15).

We shall now outline very briefly the iteration procedure suggested by
the authors named at the beginning of the lecture for calculating V3 and V,.
We shall not go into details, both because the scheme will probably be dis-
cussed in other lectures, and also because, as it stands at the moment, it
does not appear to be free of divergences and will probably have to be modi-
fied. The iteration scheme is based on the crossing relation, which takes
the form (for neutral pion-pion scattering).
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A (s,t) = Agg (t,8) = App (s, 1) = Ajaft, s) = Ags(s, t) = Agg(t,s). (19)
Now the function A;zcalculated according to the iteration procedure is cer-
tainly not symmetric in its arguments. We shall therefore define
Ajg(s,t) = Arzel(s,t) + Aqgin (s, t) (20a)
where

Ajgin (s, t) = Aggel (t, 5). (20b)

The procedure outlined above gives Ajzel (s, t), and corresponds to diagrams
such as Fig. 4 (a). To maintain the crossing relation one must then include

oA e s
! ¢ ' ! i ' :-
QIO P
L O---C- -1
jortunnio N x
/ cay R ¢by
Fig.4

Elastic and inelastic contributions to pion-pion scattering

diagrams corresponding to Fig, 4(b) as well, and they will correspond to the
spectral function A,3 in inelastic processes as they take into account to a
certain extent, in fact, as will probably be discussed in Frautschi’s lectures,
they are taken into account in the "physical approximation". For the moment,
however, we simply remark that we must include them in order to maintain
the crossing relation.

Thus, in the iteration scheme, we would define (from Eq. (20b))

Al (s.1) = Aln-D,s), (21a)
Al ew= 4tV w, (21b)

and, from (19)
Agl) (t,u) = Al(ir?le-ll) (u,t)+ Al(;léll)(t’ s). (21c)

The quantities V3 (s, t) and Vy (s, u) are obtained by inserting A;3, A;sand
A 5 in the dispersion relations for Ajand Ay
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A(lnzlm {s',t) 5du’ A(zr:‘s)in(t,u')

V(él) (s,t) = Sds’ N + u - u)

+ subtraction terms, (22a)

(s',u) A (', u)
V(g)(s,t) = S‘ S(S' ) + S‘dt' —W—

+ subtraction terms. (22b)

One obtains the subtraction terms (if there are any) by solving the S-
wave equations by the N/D method; the connection between the subtraction
terms and the S-waves is outlined in [1] The method given above can then
be used to calculate Aﬁgel (s, t) and A12e1(s,t), and we thus have an iteration
procedure which provides a solution of the problem on the assumption that
it converges, of course,

3. THE SCATTERING AMPLITUDE IN THE CASE OF SUBTRACTIONS.

In the previous section we discussed the construction of the double
spectral function A;; and the single spectral function A; from unitarity. (Of
course, in the general case, we also calculate Ajp and Ag). We pointed out
that, in the absence of subtractions, one could now find the scattering ampli-
tude simply by using the dispersion relation in the momentum transfer:

_ 1 f A3(S,tl)
A(S,t)—;ydt E—,—_t—)-- (23)

However, this is only true if there are no subtractions in the t dispersion
relation. Now we want to discuss the question: what happens if there are

subtractions? Canwe still get the scattering amplitude by this procedure,
knowing A;; and Ag?

Just from ordinary, naive, common-or-garden dispersion theory, it
does not look as though we can., There are no subtractions if Ag—0 as t—,
However suppose we only have the weaker condition Agft ~0ast— «». We
then need one subtraction, and have to write the equation as

t- to Az (s,t')

A(s,t) = A(s,tg) + — \ at’ (T’To)(_t’_-—t)‘

(24)

Now you see that we don’t know the scattering amplitude if we know Az - we
also have to know A (s, ty). This doesn’t depend on the momentum transfer
or the angle so it just corresponds to the S-wave. Therefore, if we have one
subtraction, it means that the S-waves are apparently not determined by the
double spectral function, but have to be calculated separately - for instance
by the N/D method.
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Similarly, if A behaves like t at infinity, so that only A/t2—~0, we need
two subtractions and we have to calculate both the S and P-waves separately -
they are not determined by the double spectral function.

Now to answer the question: how does A actually go to zero inthe problem

“of interest? We know what it does in perturbation theory. For potential
scattering in perturbation theory, A(s,t)—0 as t = ©, and in the relativistic
case it goes to a constant, If the potential is sufficiently small, we can use
perturbation theory, and everything is then determined by the spectral
function Az, However, suppose we increase the strength of the potential,
till we get an S-wave bound state. Then A will have a term 1/(s - sB), which
is constant ast— . Similarly, if we increase the potential up to the point
where we get a bound P-state, then we will have a term '

(1+1t/2a%)/(s - sg). (25)

The numerator is just the first Legendre polynomial of the scattering angle.
And you see that when the potential reaches this strength, A =, ast — %,
and we need two subtractions. So, as one increases the strength of the po-
tential, the asymptotic behaviour gets worse and worse and, without any
further information than we have already put in, one has to perform more
and more subtractions.

Now, this, although it is not obviously wrong, does sound a bit paradoxi-
cal, because it would be funny if the double spectral function determined
everything until the potential reached a certain strength, and then suddenly
at this strength of the potential we lost information and couldn't get the S-
waves from the double spectral function, and then when the potential reached
another strength we lost still more information and couldn’t get the P-waves
from the spectral functions, and so on. I think that most people would con-
sider this a rather implausible, although not necessarily ridiculous, situ-
ation. Now this itself is not so serious, but we see that, in the relativistic
case, once A — o at infinite t, then in the crossed reaction A — © at infinite
energy, and we get those troubles I was speaking about yesterday, So for
the relativistic case, it is vital to analyse this asymptotic behaviour in more
detail to see whether we can get rid of this trouble. As a matter of fact,
that is really why I am going to the trouble of doing all this complicated
procedure, instead of using the simpler procedure that we used in earlier
calculations,

The solution to this problem of the asymptotic behaviour was solved
completely by REGGE [6] in the potential theory - this is where he comes
into the picture - and he showed that one can, in fact, get rid of this paradox,
and that it is possible to get the whole scattering amplitude from the spectral
functions Az and Ay3, even in the case where we have subtractions.

As I have just said, the problem was originally solved by the potential
theory, but it can also be solved - and we get the same solution - for the
relativistic case that I have just been discussing, What I have to say now
will be adequate both for the potential case and the relativistic case. Now
let me be careful what we are interested in. We are interested in the con-
struction of the double spectral function and scattering amplitude from the
successive procedure which I outlined yesterday which makes use of the



412 S. MANDELSTAM

elastic unitarity approximation. The question whether the exact scattering
amplitude in field theory has the properties that I am going to describe, is
very much more complicated, and we can only apply conjectures at the
moment. You are certainly going to hear a lot more about it in other lectures
at this Seminar, But for the moment we are interested in the question of
whether the functions constructed according to our approximation scheme
have certain asymptotic properties, because we want to use these asymptotic
properties in solving these equations, and for that we don’t need to apply
conjectures - everything has now been proved.

The essence of the Regge analysis is to look at everything in the complex
£ - plane, £ being the angular momentum. So this is a new analytic continu-
ation,

The only physicalvalues of £ are the positive integers; at£= 0, we have S-
waves, at £ = 1 we have P-waves, at /= 2 D-waves, and so on. Now what

—

|

f

[

l
—
Fig.5

The complex £-plane

Regge showed was that this function A(s,£), which is equal to the S-wave
at £ = 0, the P-wave at £ = 1, the D-wave at £ = 2, can be continued analyti-
cally both to non-integral and complex £ to the right of the line Re £ = -3.
Actually, in potential theory, one can get to the left of this line, but in field
theory it seems a bit difficult to do so, so I think I will keep my analysis
to what happens to the right of this line Ref= -3. Our scattering amplitude
is meromorphic in this region. There may be poles in the upper half plane,
and these are in fact the Regge poles (Fig. 5).

We now want to use these properties to try and get the asymptotic be-
haviour of ourscattering amplitude as afunction of t, the momentum transfer,
So let us use the ordinary partial wave expansion

A(s,t) = €(2L+ 1)A, (s)B, (z), z=1+t/2q% (26)

What Regge did was to replace this sum by an integral over a contour like
that in Fig, 4, of the following expression;

A - y g 22+ DA P (2) @)
d sin (7 )

Here £ is not restricted to an integer any more. The contour must not

enclose any: of the poles of A(s,£), so that the only singularities of the inte-

grand are given by sin (v£) = 0, which of course are just the positive integers.
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So evaluating the integral by the residue theorem, we get just the partial
wave expansion, We put P, (-z) instead of P, (z) in order to cancel the alter-
nation of sign of the residues of sin (r£) between the even and odd integers,
(P (z) = (-1)! Py (z) for integer£).

The next thing one does is to deform the contour of integration until it
goes along the line Ref = - 1. However, in doing so we have to cross these
poles of A(s,Z), so we must add

L (2a+1)B Pa {(z)/Sin ma. (28)

Now let me call the positions of these poles a3, ag and so on, and the residues
at each of these poles we will call 8, @ and  will depend on the energy, so
the equation becomes

(z)
= (z4+ 1) Ag(s)B (-2) " (2ap(s) + 1) Bn(s) Pan (s)
Als,2) = S o Sin (nf) ¥ Z Sin (rern (s)) .
Rel = -} n
(29)

We can use this formula to find at once the asymptotic behaviour of A as
a function of z. The reason is that we know that

Py (z)~2z%, as z—-,

Now in the first (integral) term, the real part of £ is - §, so this part goes
down like |z] -} at infinite z. So we will forget about that, since it goes down
very nicely. Anything that goes to zero, we are not interested in. The pole
terms, however, behave like z® as z~—~ . In particular, the pole that domi-
nates is the one that has the largest real part. So the asymptotic behaviour
will be ~z%! where a; is the pole furthest to the right.

This gives the results in principle, but in order really to be able to see
what is going on, we have to know how the function @ depends on s, so let me
take the [ -plane again, What normally * happens is that for sufficiently large,
negative values of the energy, the poles all lie to the left of the line Re £ = -3,
so that we just donot see them., As the energy increases, the poles move.to
the right along the real axis. Now it may happen that, at some energy so< 4u2,
before the threshold, one of the poles passes through £ = 0, At that point
the scattering amplitude becomes infinite, it therefore has apole as afunction
of s, at s = sg. At£ = 0, P =-1, so the residue at the pole does not involve the
angle at all, and what we have is a bound S-state. As we continue to increase
the energy, it may happen that, for a very strong potential, the pole actually
passes through £ = 1 before we reach the threshold s = 4u2. Again we have
a bound state, because sin (7f) becomes zero. However, the residue is now
proportional to P (z), so we have a bound P-state. In general we have bound
states at those values of s, for which e (s) = 'a positive integer.

% In relativistic theory, when one solves the NfD equations, they will sometimes give poles with rather
unphysical properties ("ghosts"), which may be due to the failure of the approximation theory, I will ignore
these.
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Suppose that we have now got to the threshold s = 442, Then what happens
as we continue to increase s is that the poles move out into the complex
plane. They go a certain distance further to the right, but eventually come
back again, and when s is sufficiently large the poles disappear to the left
of the line Rel = - 3.
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Fig.6

Trajectory of a Regge pole in the complex £-plane

Now for positive kinetic energy, seeing that the poles are complex, they
never pass through a positive integer; so we don’t get bound states. However,
it may happen, as in the case I have drawn, that a pole passes near a positive
integer, Then sin (74) will be very small, and the scattering amplitude, al-
though it does not get infinite, gets very large. So when the pole passes near
£=1 we get not a P-wave bound state but a P-wave resonance,

Well one can draw this in a different way if one likes: suppose one just
plots Re @ against s (Fig. 7). The line at the bottom is Re @ = -3, We don't
know what is going on below this. The vertical line is the threshold s = 4u2
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A Regge trajectory: Re a as function of s
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The points where the curve passes through integers are bound states to the
left of this line, and resonances to the right of it. These curves are some-
times called Regge trajectories, For potential scattering, we have an @

for each value of the radial quantum number, All that the Regge trajectory
then does is to interpolate between the known bound states, like a Bohr angu-
lar momentum plot turned sideways.

Let us turn back to this question of how we can find the scattering ampli-
tude from the spectral functions if we need subtractions, without introducing
any optional quantities. We can do this, given the fact that the scattering
amplitude satisfies the Regge formula. The reason is the following: we know
the analytic properties of Pg (-z) in the z plane. It is analytic in z, except
for a cut along the real axis from z = 1 onwards. The discontinuity across
this cut is Py (z) sin (7a). In particular for @ an integer, Pp(z) is analytic
all the way, because this discontinuity is then equal to zero, If therefore
the scattering amplitude satisfies the Regge formula, the spectral function
A, which is the discontinuity as a function of z (or as a function of t, which
is the same thing), will satisfy the formula

Az(s,t) = Agp(s,t) + T (2e(s) + 1)Bn(s) Pay(s) (2). (30)

The first term, which I will call the background term, comes from taking
the discontinuity of the integral. We can get the discontinuity of the pole
terms from the discontinuity of Pa, (z), because this is the only place in
them where the momentum transfer is involved.

Now, remember our problem is to calculate A, given Az. We cannot do
this by putting Ajs into the dispersion relation for A, because we have sub-
tractions. However, the "background' term goes down like t-%. So, for
the background term, we can find A from Aj by using the dispersion relation
without subtractions. Now, if we know Az numerically, then we can separate
it into Regge pole terms and the "background'' term by equation (30), and
find the a's and 8's of the Regge pole terms, This is practical numerically
[7]. And therefore all one needs to do is to put the a’s and 's into Eq. >n
(29) and one has obtained the whole scattering amplitude from the spectral
function without introducing any arbitrary subtractions.

All right then, so this is how we get over this apparent paradox of not
being able to calculate the scattering amplitude from the spectral functions,
We see that, once we know the Regge formula, we can calculate the scatter-
ing amplitude from the spectral functions, even when we have lots of sub-
tractions, and therefore we do not lose information when the asymptotic
behaviour gets worse and worse, as we increase the strength of the potential
or the strength of the coupling. Now let us go on to the second point: can
this get us over our difficulties of bad asymptotic behaviour, which gave us
singular integral equations in the previous scheme? Now you remember that
in the old method we found that if we only had large S-waves then things go
like a constant at large t, which is all right, we do not mind that sort of '
behaviour, However, if we have large P-waves as well, then things go pro-
portional to t at large t, and similarly, if we have large S, P and D-waves,
then things go proportional to t2 Now what we have in the Regge formula
is slightly different. According to the Regge formula, the asymptotic be-
haviour as t = « depends on s, At those points where we have an S-wave
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bound state, @ = 0, and the asymptotic behaviour is a constant just as before.
Similarly, the asymptotic behaviour is still proportional to t at a P-wave
bound state., However, even if we have a P-wave resonance or bound state,
the asymptotic behaviour is no longer proportional to t everywhere. Now

you know that the trouble resulted from the fact that, if the direct reaction
has a bad asymptotic behaviour as a function of t, which does not matter.
then the crossed reaction would have a bad asymptotic behaviour as a function
of the energy, which does matter. However, the interchange of s and t only
takes us into the physical region of the crossed reaction if s is negative,
because in the crossed reaction t is the energy, s the momentum transfer,
and for a physical reaction the momentum transfer is always negative. The
energy is always positive. So we only expect to get into trouble if we have

a bad asymptotic behaviour as t—+w, where s is negative. Therefore, in

a Regge curve like Fig. 6, so long as we keep a < 1 when s is negative, we
would not expect to get into trouble, even though a> 1 when s is positive, so
that we could get P-wave resonances, and resonances of any higher angular
momentum, So it is this dependence of @ on s which can probably get us

over the difficulty that the old procedure led us into. And it is, as a matter
of fact, the equivalent of the spreading out of the wave function of a composite
system in space that one gets if one uses any method other than dispersion
relations, '

I may say that the only way x can depend on s is if the spectral function
oscillates, (In this case you observe that the spectral function does oscillate,
because we have t@ (s), with @ complex for positive s, and a number to a
complex power is an oscillatory function). This follows from the ordinary
dispersion relation in the energy: )

A '
A(s,t)=%Sds'(sl,—(?s’)i)- (31_?

Now suppose for a certain value of s', A; had bad asymptotic behaviour as
a function of t, and suppose there were no oscillations, so that there could
be no cancellation-in sign, Then, if one performs the integral, the expression
on the left will have the same bad asymptotic behaviour, whatever the value
of s. So, if our spectral function does not oscillate, we cannot have an asymp-
totic behaviour as a function of t which depends on s. However, if A; does
oscillate, this bad asymptotic behaviour may cancel out in the dispersion
relation, and we can have the asymptotic behaviour depending on s, which
is what does happen in the Regge formula.

Now you may think that this construction of the spectral function by
the method of successive approximations, and subsequently isolating these
Regge pole terms to get @’s and 8's, is something rather complicated How-
ever, it has actually been carried out in model calculations by BURKE and
TATE [7] well, not for the complete relativistic case, but for the relativi-
stic case where they assumed Vg 3 known, and they also did it for the po-
tential case. The calculation is almost the same, and doing it for the po-
tential case, they find that the results agree with the direct calculations
of the Regge trajectories from the Schroedinger equation, which was made
both by them and by LOVELACE at Imperial College [8]. So it looks as
if this method is feasible. However, at the moment one does not have a
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consistent set of integral equations for the problem [9]. The difficulty comes
from the fact that if we have an input with Regge asymptotic behaviour in s,
and use the unitarity equation in the s channel, we obtain an output with

still worse asymptotic behaviour. The situation has not been clarified, that
is all I can say at the moment.

In order to conclude this lecture, let me now go on to the conjectures,
which have not been made till now, that the exact scattering amplitude also has
a Regge asymptotic behaviour, and see what experimental consequences that
will lead to.

We shall now use crossing symmetry, so that s and t are interchanged,
and we shall assume that A(s, t) behaves like B {t) s@(t)as s —w. And we
now conjecture that this is true of the exact scattering amplitude, not only
the scattering amplitude which is constructedfrom the strip approximation,
Let us use this formula to analyse what happens in the diffraction peakregion,
where s is large and t is small and negative, This was first done independent-
ly, Ithink, by CHEW, by FRAUTSCHI, GELL-MANN and ZACHARIASEN,
and by LOVELACE [10]. First of all, we shall take it as an experimental
fact that the cross-section is constant for large values of the energy.

It follows from the optical theorem that A(s,t) will go like s, as 8 — o,
at t = 0, which is the forward direction. Such a result does not follow from
the Regge analysis, one has fo put this in, We thus observe thata = 1 at
t = 0, and we can rewrite the Regge asymptotic behaviour as:

Afs,t)~iB(t)s e ) logs. : (32)

n is a decreasing function of t, so that as we go into the physical region
(negative t), the scattering amplitude falls off, which is what one expects
it to do. However, it does not fall off in the same way as one would expect
in the optical model for two reasons.

Firstly, it follows from the double dispersion relation that n must be
analytic near t = 0, so we can put n ® ¥t, and we see that the scattering
amplitude will go down exponentially as a function of t. In the optical model, .
if one assumes that the diffracting object has a Yukawa. shape, which is a
reasonable thing to do, the diffraction peak would go down much more slowly
than exponentially, it would go down like an inverse power. Experimentally
one definitely finds an exponential type of behaviour, rather than anything
like an inverse power behaviour.

The second thing is that the width of the diffraction peak depends on the
energy, because you could say that the width of the diffraction peak is es-
sentially that value of t where A(s, t) reaches some given value, and you see
that the bigger the value of log s, the less distance you will have to go in t
in order to reach any particular value. The width of the diffraction peak
therefore shrinks logarithmically as the energy s is increased., Now, if that
was the only thing, one wouldnot be so surprised, because a shrinking dif-
fraction peak corresponds to an increase in the size of the diffracting object.
The bigger the diffracting object, the smaller the diffraction peak. So one.
could say that the peripheral regions of the nucleon were just getting more
and more effective.as the energy was being increased. However, the thing
that is very surprising from any classical sort of analysis is that the total
oross-section is remaining constant at the same time, so not only is the -
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nucleon getting bigger and bigger, but the inner part is getting more and
more transparent at the same time, in order to keep the total cross-section
constant, Such a feature is in conflict with any sort of physical visualization
by means of an optical model, so if the Regge pole model is right then the
optical model is wrong. And the experimentalists - lam not quite sure just
under how much brain-washing - say they see a narrowing of the diffraction
peak [11], That would therefore mean that the optical model visualization

is bad, and that there is an essential truth in this method of visualization.

It does not prove that the conjecture of applying the Regge pole formula to
the exact scattering amplitude is necessarily right., For instance, if the
AMATI-FUBINI-STANGHELLINI analysis [12] is correct, and there are
Regge cuts, in addition to Regge poles, then I think one could still fit the
results to present experiments., So I would say that the experiments show
that a Regge formula, or something of a similar sort which is rather more
complicated, is correct.

In doing the unitarity condition, obviously, different quantum numbers
donot get mixed up, so we get different uncrossed Regge trajectories asso-
- ciated with different quantum numbers. In terms of the crossed process,
where the Regge asymptotic behaviour is in s, these correspond to different
quantum numbers being exchanged. Pure diffraction scattering can’t exchange
any quantum number, so the Regge trajectory which produces the diffraction
scattering, and goes through the value 1 at t = 0, must have the quantum
numbers of the vacuum, Gell-Mann has called the object that gets exchanged
a Pomeranchon, because if this Regge trajectory dominates, the Pomeran-
chuk theorem is valid.

Now, of course, for other kinds of elastic scattering, there will be other
trajectories [13] coming below this one, and GELL-MANN, FRAUTSCHI
and ZACHARIASEN [10] have proposed experiments to look at these lower
trajectories, Idonot think I need go into them, because we are sure to hear
a lot more about that in further lectures.

But let me end by referring very briefly to a further conjecture made
by CHEW and FRAUTSCHI [10] that fits in here. Remember, when we were
speaking about the potential theory, I said that, in writing all these dis-
persion relations and double dispersion relations down, we might be pre-
pared to include the S-wave subtraction explicitly. We do not want to include
higher subtractions explicitly, because that would give much trouble with
the unitarity equation. Thus, in addition to these double dispersion terms,
we could have terms like

5 ds'f(s') . (33)

(s'-s)

which do not depend on t. If one were doing the calculation in such a case,
one would get all the angular momentum states other than the S-wave by
integrating over the double spectral function, but for the S-wave one would
conclude by performing an N/D calculation to find the function f. We thus
observe that the asymptotic behaviour of the scattering amplitude consists

of a Regge term t¢ (s), coming from the double spectral function, plus another
term which is asymptotically just a constant. In the Regge term the asymp-
totic behaviour does depend on s, in this other term it does not. The point

is that, when we do have a subtraction, there is extra information which we
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can introduce. For instance, we might put into the calculation a pole

a/(s - sp), with two constants, The constants a and sp have to be known
beforehand, they are not given to us by the theory. And if we put in the pole
like this, then in order to have consistency at least in the approximation
schemes that have been tried up till now we would have to do a subtraction
in t. We would have to calculate the S-waves by the N/D technique. they would
not be given from the double spectral function, and the asymptotic behaviour
would be given by the sum of two terms, one which does depend on s and

one which does nbt. ,

Now the question is often raised whether there is really a distinction
between elementary particles and non-elementary particles, and I do not
think it is one that one can really answer definitely, There will probably
always be conflicting views until we have a complete theory, and I rather
think that, if we do ever get a complete theory, it is not going to make any
distinction between elementary particles and non-elementary particles. But,
if we do not have a complete theory at the moment, there may be some par-
ticles that one cannot get from the calculations - that one has to put in at
the beginning - which provisionally one would call elementary particles,
and some other particles which one can calculate, which one would not call
elementary particles. And generally one would expect to have to introduce
the masses and coupling constants for elementary particles, but to be able
to get the masses and coupling constants for non-elementary particles in
principle from the calculations,

When we put in the subtraction term from the beginning, we actually
have to put in the mass sp - the position of the pole - and the coupling con-
stant a. So one may therefore take the viewpoint that terms like this, where
the asymptotic behaviour does not depend on the energy, correspond to
elementary particles, whereas terms where the asymptotic behaviour does
depend on the energy correspond to bound states. If we subtract P-waves
or higher angular momentum waves, it is going to give us the old trouble
again, and therefore, from this way of looking at it, we can only have 5~
wave elementary particles, not P-wave and higher angular momenta. In
other words, we get the same results we get from the renormalizationtheory
studied by perturbation methods. And this again fits in with what I said about
this s-dependence of the asymptotic behaviour corresponding to the spreading
out of particles in space, because the elementary particle, which one naively
supposes at least to have something in the middle which is not spread out
in space, does not have this s-dependence of @ in the asymptotic behaviour.
The proposal made by Chew and Frautschi is, in fact, that, even at the
present moment, there are no particles that one has to put in and call ele-
mentary, but that all particles correspond to the points where these Regge
trajectories pass through the positive integers, and all resonances to the
points when they pass near the positive integers. Fairly detailed graphs
have been drawn up with these Regge trajectories for all the different quantum
numbers, and the various resonances have been put in. Ithink at the moment
the number of resonances is not yet so much greater than the number of
quantum states that one would ascribe much significance to this fit, and I
do not think that the authors claim that one should. But at least it is inter-
esting to see how, if we assume that it is correct, the various particles
could be fitted into the Regge scheme.
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For those of you whose family keep on asking you what sort of work you
are doing, there is an article by Chew, Gell-Mann and Rosenfeld which is
going to appear in the Scientific American, so you will be able to get them
to read that, There, all these Regge trajectories are drawn in a nice colour-
ed diagram. :
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