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ABSTRACT 

We discuss Feynman’s parton model for deep inelastic weak or 

electromagnetic processes as an application of the impulse approximation 

to elementary particle interactions, The special features and conditions 

permitting this application are elaborated upon in some detail including 

the dependence of the parton model and the impulse treatment on an 

appropriate choice of coordinate frames and the role of the very soft or 

‘wee” partons D Application of the parton model is made to the calculation 

of the cross section for massive lepton pair production in very high energy 

hadron-hadron collisions and compared with experiment. The conjectured 

role of light cone singularities in describing this and the other deep inelastic 

amplitudes is also discussed. 
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I. PARTONS AND THE IMPULSE APPROXIMATION 

We discuss Feynman’s parton model (lJ for deep inelastic weak or electro- 

magnetic processes as an application of the impulse approximation to elementary 

particle interactions. The special features and conditions permitting this appli- 

cation of the impulse approximation, whose roots lie in the nonrelativistic 

domain of atomic and nuclear bound states, to particle physics are elaborated 

upon in some detail. In particular we investigate by specific calculation the 

dependence of the parton model and the impulse treatment on an appropriate 

choice of coordinate frames and the role of the very soft or “wee” partons. We 

also present a more complete discussion of the application of the parton model 

to the calculation of the cross section for massive lepton pair production in very 

high energy hadron-hadron collisions (2J. The conjectured role of light cone 

singularities in describing this and the other deep inelastic amplitudes is also 

discussed and criticized. 

In order to apply the impulse approximation we demand the f6llowing (&3J. 

We analyze the bound system - be it a nucleon or nucleus - in terms of its 

constituents, called ‘partons “0 Nucleons are the ‘partons” of the nucleus, and 

the “partons” of a nucleon itself are still to be deciphered though we may wish 

to call them quarks in that (a) they have a heuristic value in serving as additive 

constituents in appropriate reference frames, and (b) their existence has not 

been confirmed definitively by direct observation. If we specify the kinematics 

so that the partons can be treated as instantaneously free during the duration 

of a sudden pulse carrying a large energy transfer from the projectile or from 

some external current, then we can neglect their binding effects during the 

interaction and we can treat the kinematics of the collision as between two free 
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particles - a projectile and the parton. With these conditions the impulse 

approximation applies. 

There is a big difference between the kinematical regime that fulfills the 

conditions for applying the impulse approximation to protons from those for 

applying it to nuclei or atoms. This is because the latter, in contrast to a 

nucleon itself, are structures made up of weakly bound and well identified indi- 

vidual nucleons or electrons. Thus the ratio of binding energies to rest energies 

for the constituents are typically 

for an atom 

for a nucleus 

for a proton 

few eV 
.51 MeV - 1o-5 << 1 

8 MeV 
938 MeV N lo 

-2 << 1 

100’s of MeV 
100’s of MeV - ’ l 

The Bjorken (4J deep inelastic limiting region satisfies the condition for 
. 

applying an impulse approximation (lJ to the electron scattering from protons 

as viewed from a certain class of P - CO, or infinite momentum frames 0 The 

“partons” constituting a proton are strongly bound together as viewed in the 

rest frame. However if their bound state can be formed by momentum compo- 

nents that are limited in magnitude below some fixed maximum - i.e., if there 

exists a finite kmax - then as viewed in an infinite momentum frame the 

partons will each share a finite fraction 0 < xi < 1 of the infinite momentum P 

along the 3-axis, These parton states are long lived by virtue of the time 

dilation as characterized by 



where k i,, Mi, and xi are, respectively, the transverse momentum, rest mass, 

and fraction of P carried by each parton: 1 xi = 1. The derivation of this in- 
i 

tuitively appealing picture from a canonical quantum field theory (5J modified by 

,imposing a maximum constraint on k, , and its applicability to a particular class 

of amplitudes, has been discussed. Equation (1) exhibits the increase in life- 

time by the relativistic factor P/Meff of a virtual state of mass Meff formed 

1 1 with lifetime hi - Meff as viewed in a rest frame. 

For finite values of the fractional longitudinal momenta xi this lifetime 

‘life is long compared with the duration of the pulse, T int,from the inelastically 

scattered electron in the deep inelastic region. In the electron-proton collision 

center-of-mass system the latter is given by 

1 4P 7. mt - S 
= 

0 2Mv -Q 

and hence we see that 7mt << 71ife provided . 

2Mv - Q2 >>M2 
eff 

(2) 

For this condition to be satisfied we need in (1) both a bound on kfmax anda 

restriction preventing x from approaching with M2/Q2 or M/v of its end point 

values O The requirement to satisfy this latter condition is that we work in the 

Bjorken limiting region of kinematics for this process where 2Mv, Q2 >> M2 

and the ratio of the large energy and momentum transfers, w, is finite. Then 

the fraction of x of longitudinal momentum on the parton from which the electron 

scatters is also finite and restricted from its end point values since, as first 

shown by Feynman (lJ, it is given by x = (l/w) D Moreover in this kinematic 

regime the interaction with the long lived parton, which is essentially free by 

(3) 
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(3)) conserves energy as well as momentum across the interaction vertex with 

the electron in Fig, 1. We have thus satisfied the conditions for applying an 

impulse approximation O 

If we want to find other processes which satisfy the same kinematical con- 

straints and allow application of the impulse picture of “partons” in an infinite 

momentum frame we need look for interactions at high energies s which absorb 

or produce a lepton system of huge mass Q2 such that the ratio Q2/s is finite, 

We confine our attention here to massive lepton systems which can be safely 

treated by perturbation theory in the electromagnetic or weak couplings although, 

by further extending the assumptions for the theoretical framework, massive 

hadron systems could be included in the same kinematical framework just as 

well. Beyond the deep inelastic neutrino processes and electron-positron 

annihilation cross sections: v f p - e -t O. .) and e + e-4 hadron + . O. which 

have already been discussed and analyzed (5J an additional observable cross 

section that meets the conditions for applying an impulse analysis (ZJ is 

p+p+L$ + .0. (4) 

Preliminary measurements of this process have been reported (6J0 

The organization of this paper is as follows. A more detailed discussion 

of the kinematical conditions for processes in which the interaction can be 

described using the impulse approximation in terms of hard partons in contrast 

to those in which the wee partons are predominant is presented in Section II, 

In Section III we analyze the dependence of our part.+ model picture on the 

appropriate choice of infinite momentum (P- CO) coordinate frames. Section 

IV is devoted to showing that general scaling predictions of the parton model, 

or the impulse approximation, are not altered by the wee partons. In Section V 
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we study the cross section (4J for massive lepton pair production by hadrons at 

high energy deriving its scaling properties and the parton model for finite Q2/s. 

Finally in Section VI we analyze briefly the significance of the behavior of the 

product of current operators near the light cone for the deep inelastic processes 

we have studied with the parton model. 
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II, WEE VERSUS HARD PARTONS 

In contrast to processes such as (4) which meet the requirements for the 

impulse approximation and can be described in terms of partons, let us turn 

next to the conjectured role of the parton model in describing the predominant 

hadron-hadron interactions. These processes include pp and np elastic, reso- 

nance excitation, or total “inclusive” cross sections, and may best be viewed 

in the collision center-of-mass system. Then we can picture two colliding 

hadrons with very high momenta P, such that s = 4P2, one moving to the right 

and one to the left. How do they interact? What is exchanged between the two 

lines in Fig. 21 It is not the ‘hard partons ” which share a finite fraction of the 

individual nucleons’ P and therefore retain their sense of heading to the right or 

the left respectively. In order to insert a right moving hard parton into a left 

running proton state one pays a penalty of a factor l/s as computed directly 

from energy denominators such as in (1). This is the price to introduce a 

relative momentum of magnitude 2P into the wave function of a ground state 

built predominantly from finite momentum components which we take to be our 

working hypothesis ., Rather it is the “soft” or “wee “partons of Feynman that 

bear only a finite momentum - or a “wee” fraction of P - and are equally at 

home on the right as on the left moving line that are exchanged (1). In contrast 

to the hard partons responsible for the scaling in the deep inelastic processes 

and whose momentum distribution is measured in those experiments, it is the 

wee partons that determine the hadron-hadron cross sections. As described 

by Feynmab “wee” means that the partons carry less than or up to typically 

1 GeV momentum or a fraction x - 1 GeV/P of the proton mo- 

mentum. In that a mass - 1 GeV is introduced, scale invariance no longer 

applies to this analysis; and this is as it must be if total hadronic cross sections 
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approach constant values (to within logarithmic factors) as their high energy 

limiting behavior, so that otot - M -2 
O If scaling remained valid the only di- 

mension would be rrtot - (l/s) --+ 0 as s --t 00. 

Feynman (3 has postulated a specific spectrum for the soft and “wee” 

parton distribution, His argument is that since these “wee” partons with 

X- (1 GeVkf) s are responsible for the hadronic cross sections, their momentum 

spectrum must be consistent with the observed (to within logarithmic factors) 

constant total cross sections at very high energies. Thus if the amplitude to 

emit or absorb a “wee” parton in a momentum interval dx about x is given by 

(dx/x”) we find the total hadronic cross section can be expressed by 

,- ji” ?/[f;‘; ?$ - (EaE$y(- - s2(- 

and therefore 01 = 1. However it should be recognized that independent of the 

success or failure of this extrapolation into the wee region, the concept of partons 

for the deep inelastic scaling region in which the impulse approximation applies 

and each constituent contributes incoherently as shown in II (5J is to be judged 

on its own merits. Indeed its theoretical base is more firm. 

What we would like to emphasize next is that the situation is very different 

for hadron-hadron interactions when we are dealing with processes such as (4) 

in which massive systems are created. If the massive pair emerges by brems- 

strahlung from one of the nucleon lines the interaction cannot proceed via “wee” 

exchanges only. This is kinematically impossible when we satisfy the con- 

straints of energy - momentum conservation for the overall process. 

We can illustrate this in two different coordinate systems that emphasize 

different aspects of the problem. To prove this consider first the kinematics 

in the collision center-of-mass system with the momentum labels of Fig. 3 
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which show two incident hadrons scattering to produce two final hadronic sys- 

tems plus a pair of very large mass Q2. Since the masses as well as the 

transverse momenta of the hadronic systems (A) and (B) are negligible rela- 
1 tive to the energy of each colliding nucleon, ;z J s, and to the lepton pair mass 

P - J- Q s, we can neglect them for simplicity, writing the statement of energy 

conservation as 

(5) 

as shown in Fig. 3. x < 1 is the fractionof the right moving momentum trans- 

ferred to a massive pair it produces (by bremsstrahlung) and we make no 

assumption on its magnitude; x’ is the fraction of z ’ & transferred by the left 

moving hadron. Solving (5) for the transferred momentum we find 

xl=;t/ii~ -4 (6) 

For finite Q’/s, x’ is a finite fraction according to (6); thus the exchanged 

momentum is given by x’P - & This then does not describe interchange of 

only “wee” or very soft partons between the nucleons, but rather of hard ones 

with a finite fraction of P. 

In contrast if we consider ordinary hadron cross sections with only finite 

mass particles appearing 

sothatin(6) [qf+~‘]is 

in the final state and with 

replaced by a finite mass 

limited transverse momenta 

M: ff’ we have 

r- 
X’ - Mzff/s for I> x >> Meff/Js ; (4 

(7) 
x’ - Meff/& for x X Meff/fi 0-3 

The significance of (7) is this: for inelastic hadron processes ,leading to soft 

final particles - viz, processes including “pionization” so that final particles 
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I 

are produced with limited, finite energies in the center-of-mass frame; i.e, , 

with energies, x 4- sxM eff (7b) applies, Then the interaction can take place 

with wee parton exchange - i. e. , with a momentum exchange in Fig. 2 between 

the hadron lines of order x ’ & - Meff as suggested by Feymnan. 

This is in contrast with both elastic two-body high energy processes as 

well as with inelastic ones that exclude pionization, or a soft hadron component, 

in the center-of-mass system. In these cases, by (7a), the final x are finite 

and the exchanged momentum is characterized by x’ - Mzff/s so that the 

exchanged momentum is x 4 -M2 eff/& - Leo, it is “super wee”. Thus 

there are three distinct regions to consider in describing the high energy 

hadron interactions: those relying on hard partons, wee partons, and super-wee 

partons. The hard partons enter processes involving an external line bearing 

a very large mass; wee partons are exchanged in ordinary hadron processes 

leading to pionization, or a soft component of final particles in the center-of- 

mass system; and super-wee ones enter elastic processes, or those from which 

a soft final component is excluded. 

In terms of “collision times” in the center-of-mass frame, hard parton 

exchange occurs during the vanishingly small interval 7H - & - l/x& - l&s; 

“wee” exchanges leading to a constant high energy cross section occur during a 

finite interval 7w - l/x & - l/Meff; and a super wee one has an increasing 

interval of coherence T sw - &Miff. 

In terms of an intuitive wave function picture of a hadron as a bound system 

one may characterize these regions as follows. The loosely bound constituents 

of the proton as viewed in the rest frame will generally acquire a finite fraction 

of the infinite momentum P in a Lorentz transformation, or boost, to an infinite 

momentum frame D These are the hard partons and their distribution can be 
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analyzed in the impulse approximation and is probed by deep inelastic processes 

in the Bjorken region of finite w, or with finite Q’/s. One begins to probe into 

the wee region, characterized by very high momentum components in the rest 

frame, as one moves out to extreme values of w. Thus in the deep inelastic 

electron scattering cross section, for w >> 1 the electron scatters from a soft- 

to-wee parton with a fraction x = l/w << 1 of the proton’s longitudinal momentum. 

Also as we approach the threshold w - 1 the scattering is from a parton with all 

but a fraction 1 - L ( ) 
of the momentum and as this fraction decreases into the w 

wee region the probability of such partons existing is also being probed (2. As 

one enters into the wee region the conditions for Bjorken scaling are violated 

and a scale length such as a mass M or transverse momentum cutoff kl,, 

enters the problem. Finally for elastic processes9 as well as inelastic events 

excluding a soft final component, we have the super wee region. By unitarity, 

or simply the optical theorem, the elastic and inelastic amplitudes are coupled 

nonlinearly. This tells us that what we have called the “super wee” region is 

necessarily related to the ‘wee” one that plays the major role in inelastic 

hadronic processes. This connection is illustrated in Fig. 4 which shows that 

one or more closed loops of wee exchanges can after cancellation of the mo- 

menta carried by the individual partons lead to a net transfer of super-wee 

momentum. Thus all super-wee effects may be no more than a reflection of 

multiple wee exchanges. However we cannot say the same for a relation between 

hard and wee partons. The wee parton effects cannot be mocked up by a multiple 

exchange of hard partons as we now show. For this, it is more convenient to 

use a true infinite momentum system - i.e. , one with P -+ ~0, and with large 

but fixed s and Q2. Let us therefore boost ourselves into such a frame. -- 
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We define our infinite momentum frame by Lorentz transformation to a 

moving coordinate frame with velocity p down along the vertical axis in Fig. 2. 

The resulting kinematics are shown in Fig. 5. Dropping finite masses in the 

high energy limit, s/M2 >> 1, we can write for the energy momentum four vectors 

of the two incident hadrons 

i 
1 PI: p+&, O,P, 2 s 0 

p2 : \ 
S 1 p+8p, 0, P,- 5 s Jl 

where P 

J-- 

= ZP/J-s or p =l- s/8P2 

l-P2 

The final hadron in Fig. 3 with center-of-mass momentum components -+(1-x’)& and 

-k, parallel and perpendicular, respectively, to the collision axis is boosted in 

this system to one with components that to leading order are (l-x’)P and 

- $ (l-x’) d s along the direction of the boost and transverse to it, respectively. 

Thus the momentum transfer from the nucleon line is 

where ‘?,, and & denote unit vectors parallel and perpendicular to the direction 

of the boost. 

In terms of the parton model, (9) together with (6) and (7) reveal the 

following: For a hadron-hadron collision leading to production of a massive 

system with mass from one of the lines, so that x’ is finite as in (6)) there 

must be a very large transverse momentum transfer m J s between the hadron 

lines. On the other hand this transverse momentum transfer can be limited to 

a finite value if wee (or super wee) partons are exchanged in ordinary hadron- 

hadron collisions as in (7) .- Thus if we consider the parton models in an infinite 
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momentum frame as described by (8) and with a finite bound on the transverse 

momentum components as implied, or enforced, in the various models that 

have received detailed study and have provided a base for deriving the Bjorken 

scaling behavior (3, only the wee partons in the sense of (7a) or (7b) can be 

exchanged. These will provide the interaction mechanism for the predominant 

hadronic cross sections. However an exchange of a hard parton as required 

kinematically for the production of a massive pair state cannot occur under the 

assumption of a finite limit, kLmax, at the hadron vertices. Hard partons thus 

cannot by multiple exchanges simulate wee parton effects, either. 

Clearly then the process (4) will not be related to the total nucleon-nucleon 

cross sections and indeed cannot proceed by the illustrated mechanism in Fig. 3. 

In other words the massive pair is not produced by bremsstrahlung from one of 

the nucleon lines, The mechanism for creating the pair that meets all kinematic 

constraints as well as the condition of limited finite momentum transfer is 

illustrated in Fig. 6 - the pair is created via parton-anti-parton annihilation. 

Viewed from the center-of-mass frame a hard parton moving to the right anni- 

hilates on a similar anti-parton headed to the left (or vice versa) and the 

resulting system is very massive since the parton-anti-parton energies add 

while their momenta subtract. From our infinite momentum frame the high 

energy parton-anti-parton pair with parallel longitudinal momenta along g but 

with antiparallel transverse momenta annihilate at the bare electromagnetic 

vertex to form a pair of mass 

Q’gxxs 12 (10) 

where x1 and x2 are the fractions of their respective proton momenta they are 

carrying. Equation (10) is a scalar and is most readily derived in the 

- 13 - 



center-of-mass system: 

Q2 = (El + Ed2 - (zl + lp212 

= (x1 -!- x2)2 s/4 - (x1 - x2) 2 s/4 = “lx2 s 

In describing these graphs and amplitudes in this way we are of course not 

referring to Feynman graphs and amplitudes which combine the annihilation and 

bremsstrahlung contributions together in covariant mixtures as illustrated in 

Fig. 7. Our infinite momentum graphs carry a direction of momentum as well 

as a direction of time as described in our earlier work (3. 

In process (4) with finite Q’/s, (10) shows that one is dealing with hard 

partons and with the same physical region of parton momenta as probed in the 

deep inelastic scattering ‘experiments that measure the parton distribution in 

x = l/w. In Section V we present a detailed formal analysis of the%heory of 

this process using the same techniques as presented earlier for the analysis of 

deep inelastic scattering and pair annihilation. In particular the impulse approxi- 

mation will be shown to apply and with it the parton model. The discussion of 

this section was intended to provide the physical picture and intuitive under- 

standing for this development as well as for its relation to other processes. 

The ability to construct an impulse approximation treatment for high energy 

processes with massive external pair states has been a useful step forward in 

our description and understanding of high energy processes. Tests of these 

ideas through these and other processes are very important to accomplish - as 

well as to keep clearly distinct from successes or failures in the wee or super 

wee regions which are not amenable to an impulse treatment. Indeed the wee 

regions require extrapolations from the hard parton region along with assumptions 

on the spectrum of partons. Moreover in general they do not lead to scale invariant 

results since they contain a cutoff mass or transverse momentum as a parameter. 
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III, CHOICE OF “INFINITE MOMENTUM” COORDINATE SYSTEMS 

Not all infinite momentum frames are suitable for developing a valid parton 

model picture (8J0 The important point to be recognized is that “an infinite 

momentum frame” is not a Lorentz invariant concept. Neither is the decompo- 

sition of an invariant Feynman amplitude into its separate scattering and pair 

creation and annihilation parts corresponding to the direction of time on an 

internal line. As a result, although the use of such infinite momentum frames 

is essential to the derivation of the parton picture, the specific physical picture 

does not hold in all of the infinite momentum frames of the nucleon. If the 

infinite momentum of the nucleon defines the 3-axis, i.e., its four-momentum 

vector is specified by 

4 - p+$$,o 0 , 9 P 
> 

we must satisfy the defining equations 

2 
Mv = + q 0 P = (q”-q3) I’ + g q” 

-q2 = cl3 + 4O) (q3 - qO) + 9; 

which require 

q” - q3 = u/P 

q” = VP 

so that both Mv and q2 approach a limit independent of P as P -’ 00. Two of the 

simplest choices for u and v are 

(a) v = 2i@~~q2 , u = MV ; In this frame we have 

2Mv - q2 , q3= - 4p , -q2 =q;+ 0 (114 
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I 

(b) u=O, 2v v=- 
M ; In this frame we have 

go zq3 =gp, -q2 = q; WQ 

These two possibilities will be called frame (a) and frame (b) , respectively. 

Frame (a) coincides with the CM system of the incident electron and the target 

nucleon for electron-proton scattering. These two frames represent the two 

extreme possibilities for the whole family of infinite momentum frames since 

in frame (a) both q” and q3 are very small, being of order l/P, while in 

frame (b) both q” and q3 are large, being proportional to P. A variant of 

2Mv frame(a) is v=-, u=Mv, orq3-0. 
2P2 

By assigning possible values to u 

and v one obtains the whole family of infinite momentum frames. 

The physical picture of the same scattering process has a different appear- 

ance in different coordinate systems, To demonstrate this point clearly, we will 

give as an elementary, almost trivial, example the second order calculation of 

the structure functions WI 2 in a model of spinless nucleons interacting with 
, 

spinless pions D This model, though unrealistic, is an ideal example for our 

purposes because it is super-renormalizable and has thereby the virtue that a 

Bjorken limit exists in perturbation theory without the need of imposing a high 

momentum cutoff. The interaction Lagrangian of the model is 

where I+!J, Q, are the spinless proton and neutral pion fields, respectively. For 

simplicity we have omitted additional charge states or isospin families as they 

can be incorporated without difficulty. The electromagnetic current operator 

of the model is given by 

J,(X) = -i Q(x) -a,@(x) o 
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We shall now calculate by three different ways and in different coordinate 

frames the second order contribution to the familiar structure functions WI 2 
, 

in the Bjorken limit o First, these structure functions will be obtained by the 

frame independent covariant perturbation technique; and then they will be 

computed in the two infinite momentum frames (a) and (b) . The structure 

functions WI, 2 are defined as 

w = 
PV 

47~’ $l(dx) etiqx <PI J,(x) Jv (0) lP> 

= 4n2 &c (PIJp(0)~n><~~Jv(O)IP> (2794t34 (q+P-Pn) 
n 

(14) 

=- / SW1(q2, v) + g/Jv - q2 -$ (y ykip’ fPv -rev) w2(92d4 

w1 = l- 

2( l-v 2/q2) ’ q 
(15) 

w2 = 1 
2(1-v 2/s5 

2 [-(l-$)A+3B] 

where 

The second order contribution corresponds to the electroproduction of a 

single pion. This is represented by the three Feynman diagrams in Fig. 8. 

c 

The covariant calculation follows standard procedures. The gauge invariant 
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I 

tensor W 
PV 

corresponding to Fig. 8 is given by 

s4(q+P-q-k,) 

(2P +q PPlv 
+ 

-qv)+Wv+qv)(2P~-q ) GQ-q wyv -“J 

(-2P.kl+p2)(2Mv +q2) 
I-1, 

(-ZP*kl+$)’ 

(17) 

where 21, El, M, &l, wl, p are the momenta, energies, and masses of the 

proton and the pion in the final state, respectively. 

Straightforward calculation shows 

G2 1 
A=T=-- 

q2+4Mv+4M2 

PQ 
3 2M (q2+ 2Mv)’ 

+ I 
2(+4M2 -2p2+2Mv~+ 1 

q2 + 2Mv 

2 

+ 2 
2 

1 
q +2Mv IO 

11 + (-q2+ 4M2) I2 (18) 

B =~&wpvPv 
+3Mv +q2+2M2 

IO 
M q2 + 2Mv 

2Wv+2M. 
2 2 2 

+ -P )t+3Mv+2M2+q )I~+ (Mu + 2M2-p2)2~2 

q2 + 2Mv 

where 

(19) 

In = 
J 

d3Pl d3kl 
-2qxq is4 (P+q-Pl-kl) ’ 

(-2P.kl+p2)n 
, n=O,l,Z (20) 
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Elementary integrations give 

I1 = 4Mj;T In ” -“+ M2)(s - M2+p2) - “‘;;:; ~q2~~~~~~)2]CS-(M-~~~ (s-q2+M2)(s-M’+/.?) -2p2 

I2 = 2ns 

[(s-~~+M~)(s-M~+/J~) -2/~~s]~ - 4M2(-q2+v ‘) [s-(M+,u) ‘1 [s-(M-/J)‘] 
(21) 

where 

s = (q+P)2 =2Mv +q2+M2 . (22) 

In the Bjorken limit (LimB J) 2Mv - q2, -q2, Mu + m with x = (-q2/2Mv) < 1 

fixed, these integrals approach the limits 

5 
-T Qn 2v +ziiY NI 

I2 
71 l-x 

-+4Mv M2(l-x)’ I- p2x 

By (15), (18), and (19) this leads to 

LimBJWl=O(+ h “/ 

LimB J VW2 G2 =-----g g X2(1-X) 1 

W? M2(1-x)2+~2x 

(23) 

It is easy to verify that this leading order of Eq, (24) is entirely due to the con- 

tribution of the third term in (17) which is due to Fig. 8c. 
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We now turn to the frame dependent calculation of the same process. Here 

we apply the old-fashioned time-ordered perturbation theory. It is well known 

that a covariant Feynman diagram decomposes into several time-ordered 

diagrams D For example, the Feynman diagram Fig. 8c consists of four time- 

ordered diagrams as represented in Fig. 9. Since time ordering is not a 

Lorentz invariant concept, the value of each diagram in Fig. 9 is not invariant; 

only their sum is O 

According to the discussion above, only the four diagrams in Fig. 9 survive 

in the Bjorken limit. We shall therefore concentrate our attention on these 

four diagrams and neglect those obtained from Fig, 8a and 8b. Furthermore, 

W1 vanishes in the Bjorken limit. Thus, only v W2 will be computed in the 

following. Using the rules of old-fashioned perturbation theory we can verify 

that in frame (a) of Eq. (11) only the diagram of Fig. 9a gives a nonvanishing 

contribution to v W2 in the Bjorken limit, and for this diagram we have 

W 
PV 

G2 1 
=---Tz 

(2Q 

(pl+pi) (pl+pi)v 
2 

Wll (Ep-E1-qJ 
2 (25) 

where we have used the notations indicated in the figure. Let’s adopt the param- 

eterization 

(26) 

- 20 - 



Only when 0 < y < 1 is the integral nonvanishing and we find in the Bjorken 

limit 

2Mv + 2 
q”+Ep-Ei-W1= 4Pq + 

2 
YP- 

2Mv - 
4p q + 

(q, + kL)’ + M2 

2YP 1 
N 2Mv ‘; _--- 

2P 2YP 

k;+p’ 
(l-YIP + 2(&y)P 1 - 

(27) 

2 4” -t El - E; 

i.e., energy as well as momentum becomes conserved across the elementary 

electromagnetic vertex. 

We can also reduce the energy denominator in (25) to 

2El(Ep - El - WI) - ’ 2 - - & ,kl +M2(1-y)2+~2Y 1 

Turning to the numerator factors we have for the large components @=O, 3) 

(PI+ P;‘p = 2p1c1 + qp =2yP +q 
/J I-J 

and so leading order in frame (a) 

W 
PV -+ +ipppv w2 

By identification of the coefficients of P P we obtain 
I-L ?J 

LimBJ vW2 G2 .rr *2 2 =- - 
J 

1 

(Z7Q3 2 0 
dk, x (l-x) 

[k;+ M2(1-x)2+~2x]2 

G2 = --y$ ; x2(1-x) 1 

CW M2(l-x)2 + /.i2x 

(29) 

which agrees with (24)) as it should. 
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We now repeat the calculation in frame (b). In this frame Fig. 9b and 9c 

do not contribute, as can be readily verified. However, both Fig. 9a and 9d 

contribute generally, i.e. , there occur both scattering and pair production at 

the external current interaction. Their contributions are, respectively 

,W - G2 1 1 
J 

$1 P (qO+E 1-E i-ul) 
(pl+p;) (pl+pi) v 

PV (2Q3 2M --pq (2El) ‘(Ep-El-“)’ 

d3kl 1 
T 2E; S(q”+EP-Ei-wl) 

Let us use the parameterization 

gl=Y:+kl* $1= (1-Y) g--:1 

,Pi=zl+q 

for Fig. 9a and 

z1 = y’: + 5; ) lcl = (l+y? P +&I cr 

I?P=q- El 

wa) 

Wb) 

for Fig. 9d. In the Bjorken limit the energy conservation equation becomes 

II 

kf+p” 
- (l-Y)P+ 2(1-y)P 1 

I 

k;+p2 
- l-y 

in terms of (31a) for Fig. 9a, and 

q”+Ep - Ei- ~lz& M2( l-x) 
k12+p2 

-l+y’ 1 

(32) 

(33) 
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in terms of (31b) for Fig. 9d. For the energy denominators notice that 

2El(Ep-El-Al)=-& 
- II 

kf + M2(1-y)2 + p2y 1 

M2( l-~)~ 
(34) 

= - & + M2(1-x) 2 I- /.L~x 1 
where we have made use of the solution to the 6 -function given by (32) D Similarly, 

with the aid of (33) we have 

2E1tEp+El-~1) =& M2(1-x)2+p2x 1 
For the large components (p,v=O, 3) the tensor structure becomes 

(35) 

in frame (b) O Collecting the results (32)) (33)) (34)) (35)) and (36) we obtain 

finally 

X2(1-X) 
k2+M2(1-q2+p2x12 

k12+p2 

I 

x2( 1-x) 

M2(1-x) [ki2+ M2(l-x)2+p2xj2 

3 
1 GY TT 2 = 3 2 x (l-x) 

t2q 
-2 M2( l-x) + p2x 

x2( l-x) 

[k;+ M2(l-x)2+p2x]2 - 
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which again agrees with (24)) as it should. It is interesting to note that if 

p2/M2 2 1 then (32) can never vanish and the scattering diagram (Fig. 9a) will 

not contribute in this frame (b) 0 

This elementary example of comparing the three methods of computing the 

same amplitude reveals the following. The first calculation does not tell 

whether scattering or photon dissociation is more important since the covariant 

perturbation method mixes together all possible time orderings in one diagram. 

In the infinite momentum frame of the proton in which the virtual photon has 

almost zero energy and longitudinal momentum, the calculation shows that only 

the scattering diagram contributes 0 Furthermore, in this frame energy as well 

as momentum is conserved across the bare electromagnetic vertex, i.e., the 

impulse approximation is valid. This leads to a simple physical picture that the 

proton first dissociates into its constituents following which an individual con- 

stituent is suddenly scattered by the very virtual photon. The ratio -q2/2Mv 

measures the longitudinal momentum of the constituent scattered by the photon. 

In fact this picture persists for higher order diagrams of increasing complexity (5~. 

This is the parton model picture. However, we emphasize that such a picture 

is valid only in infinite momentum frames of the proton in which the virtual photon 

has energy (and longitudinal momentum) of order l/P. The infinite momentum 

center-of-mass frame for deep inelastic electron scattering is one such frame. 

On the other hand, the physical picture is more complicated in a frame in 

which both q” and q3 are proportional to P. For the lowest order diagrams, if 

p2/M2 < 1 both scattering and photon dissociation enter into play. If p2/M2 > 1, 

only photon dissociation need be considered. It is disturbing that the mass ratios 

should enter the consideration in view of more complicated final states to be 

included. Furthermore, the impulse approximation fails and no simple 
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interpretation can be given to the ratio -qL/2Mv. As higher order diagrams 

are considered one can expect to find that both scattering and photon dissociation 

will play important and complicated roles in the deep inelastic electron proton 

scattering in this frame. 

The parton model picture is obtained only by a proper choice of the coor- 

dinate system so that the photon dissociation diagrams can be entirely eliminated - 

they are not ignored but simply they are unimportant - in the Bjorken limit. 

This is possible since the relative importance of individual time-ordered diagrams 

is frame dependent and as a result the parton model picture is not a relativisti- 

tally invariant concept. The fact that the same physical process assumes dif- 

ferent appearances in different coordinate systems, simple in some but 

complicated in others, is an important lesson to learn, particularly so in the 

description of hadron-hadron collisions as recently emphasized by Feynman (4, 

and Benecke, Chou, Yang and Yen (9J. 
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IV. ROLE OF ‘WEE” PARTONS 

The formal derivation of the parton model from (14) for the structure 

functions in the Bjorken limit leads to the expression 

Lim BJ w~v 
= 4r2 Ep 

M J W e (38) 

where jp(x) 5 U(t) J,(x) U-‘(t) is the undressed or bare current and 

U = U(0) = [exp (-iJ>I(r)dr)]+ is the U-matrix propagating the asymptotic 

state of a single physical proton, lP> , up to time t=O. Equation (38) is valid 

in reference frames of type (a) of Eq. (11) D To derive this result the essential 

step is the approximation of overall energy conservation by 

q” -t Ep - En = q” + Eup - Eun (39) 

where EUp and Eun are, respectively, the energies of the components appearing 

in the expansions of IUP> and 1 Un> ; viz 

UP>=A2(IP>+ &p<;‘H$p;F>+ 000 
P- n 

(40) 

Equation (39) is an impulse approximation, since it replaces the overall energy 

conservation for the interaction by energy conservation across the bare electro- 

magnetic vertex. It is the necessary approximation for establishing scaling in 

the Bjorken limit. We have studied the validity of the approximation (39) and 

derived (38) in our earlier papers (gO 

Here we analyze the role of the “wee” partons of Feynman (1) and in partic- 

ular show that they do not affect the validity of the scaling arguments. In the 

infinite momentum frame (lla) the direction along the initial mucleon with 

momentum E and the direction of the scattered constituent’s momentum xz+q we+ 
define two distinct directions for all the particles involved, virtual and real, 
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I 

to follow. Generally a particle will have a momentum along the direction of 

xP+q if it is created by the scattered constituent; otherwise, it will have a LIc ue 
momentum along the direction of g. These two groups of particles will be 

called (B) and (A), respectively, as illustrated in Fig. 10. 

A particle with a finite fraction of longitudinal momentum will belong either 

to group (A) or group (B) but not to both, since it has a clear sense of direction. 

Consequently it cannot be exchanged between the two groups which are separated 

by an asymptotically large transverse momentum q. However, a very special as 
group of particles with momenta in an extremely small kinematic region do not 

have a well-defined sense of direction and therefore can be associated with both 

of the two groups (A) and (B) without introducing a large transverse momentum 

mismatch as we discussed in Section II. These are the ‘ZYee” partons which 

introduce interactions and interferences between particles in group (A) and 

those in group (B). They also give rise to the dominant contributions to high 

energy hadron-hadron interactions as we described earlier according to the 

Feynman theory (lJO The “wee” partons have momenta of the following form 

where 

m-m, k,I m’ 

and m and m’ are typical masses assumed no larger than z 1 GeV. Pw is 

closely parallel to the direction of P in the infinite momentum frame. However 

(41) can also be rewritten as 

which is also parallel to xP+q, the direction of the scattered constituent, since c “w 

&- l/x (yq) is finite (10) as a result of the restriction yq ‘u m. Since their 
F 
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phase space diminishes to zero as q2 - a, it may be argued that these “wee” 

partons should not play any role in the Bjorken limit. Indeed this is the case 

order by order in the perturbation expansion for the quantum field theory model 

(the r, theory with a k, cutoff of the hadronic interactions) studied in our 

earlier papers (5J0 

On the other hand, Feynman (lJ argued that “wee” partons do play an es- 

sential role. As we described earlier they account for a nonvanishing total 

cross section in hadron-hadron collisions at very high energies and emerge as 

pioniz ation products. Therefore we must understand their apparent absence 

from our field theory model as we applied it in the Bjorken limit for deriving 

scaling behavior and the parton model. The recent work of Chang and Yan (11) 

offers an explanation and a basis for understanding here. They work with a q3 

model for calculational ease, the point being that no cutoff is required in this 

superrenormalizable model to suppress the high momentum components. Chang 

and Pan show with this model that the wee region is promoted to its prominant 

and essential role if the leading contributions to all orders in the perturbation - 

expansion are summed up, order by order, Then if the coupling is sufficiently 

strong the individual contributions, though small and vanishing as s --+ Q) , add 

up to give the dominant contribution to the limiting behavior. The series 

obtained in this work sums to 

r c GnQn s = sG-l 
’ n=O n! >Oass-+ooifGLl 

We interpret this result to mean that a procedure of working to finite orders in 

a perturbation expansion, even with high momentum components suppressed by 

a cutoff as we have done, is inadequate to represent the “wee” region correctly. 

In fact summing to all orders the leading contribution, term by term, in the 
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region of high o or small x (“soft partons”) was found to lead to just such an 

exponentiation as (43) in our earlier (5J studies of v W2. 

What must we then do? First of all we will show that the derivation of the 

impulse approximation and hence of the scaling behavior in the Bjorken limit, 

which is the central result, is unaffected by the “wee” partons. We can do this 

on grounds of kinematics, without reference to a specific model by verifying 

that the ‘wee” partons do not affect the energy argument in (39). A “wee” parton 

can appear in (14) in three different ways: (1) it is in the expansion of UP> in 

(40) and is absorbed by group (B) as represented by Fig. lla; (2) it is exchanged 

between group (A) and group (B), as represented by Fig. lib; (3) it appears as 

a real particle in the final states as represented by Fig. llc, We now consider 

each of these three cases separately, assuming there is only one “wee” parton 

in each case. Generalization to more complicated situations is obvious. 

(1) The effective squared invariant mass M2 of a component of IUP> is 

ka+ rnf 
M2=x x (44) 

i i 

where x i, kil, mi are the fraction of longitudinal momentum, the transverse 

momentum, and the mass of the ith constituent making up the particular compo- 

nent of )UP>. If one of the particles in the above sum is wee, then as in (41) 

its xi = y = m/q and its contribution to (44) is 

kfL + mf 

X. 
Z O(qm) , xi - m/q 

1 

which is smaller by order m/ J-” Q or & in comparison with (2Mv - q2) which 

appears in q” of (39). Even though the invariant mass is not finite, it is smaller 

than the leading term by M/ J- Q2. Furthermore this statement is true even if the 
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multiplicity of ‘wee” constituents increases in the manner conjectured by 

Feynman (lJ to lead to constant total cross sections for hadronic processes 

as we discussed in Section II - i.e., as dx/x which by (41) leads to 

I- 
dx -N 
X Qn 4/m (45) 

The same is true for the squared invariant mass of the scattered constituent 

plus the wee parton in the component of Uln>. Thus we still can ignore the 

energy differences between the states IP) and (UP), In> and Uln> . The impulse 

approximation is therefore valid. 

(2) Again the corrections are of order q = Q2. i- To see this consider the 

diagram Fig. 12. The single lines Pl, Pi, Pl may represent groups of particles. 

We introduce the parameterizations (the particle with momentum k is wee) 

El = (l-x)rp - $1 , k,=yE+,kj W--h.) 

-p2=xg+l$ 

The energy difference between the states In> and Uln> is computed directly as 

Ei + Ed - El - Ek 

= 2(1-x+y) P I [ + (X-Y) p+q3+ 
c&l+ il -_k1)2+ M; 

2(x-y) P 1 
- 

(k +q)2+M2 -1 -1 2 
2xP 1 

(~cc+~,~-I$)~+M; (&+$2+M; (&-&J2+dl kf+“; 
+ 

X-Y X 1-x+y - l-x 
i 

= 0 (q/P) 
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The leading items proportional to qf cancel as a result of the restriction 

Y - M/q. Thus the difference is only of order q/P which can be neglected in 

comparison with q”. 

(3) The arguments are similar to case (1) and therefore it will not be 

discussed in detail. 

From the discussion above we have seen that the postulated existence of 

‘wee” partons does not invalidate the impulse approximation (38) so long as 

their spectrum is not more singular than the dx/x indicated in (45) 0 Conse- 

quently the parton model picture holds under these circumstances. Furthermore, 

by computing the laboratory energy of a final particle, ki =& P* Pi, in the in- 

finite momentum frame lla, it is straightforward to show that in the Bjorken 

limit the final particles are divided into three groups: 

(a) the non-wee particles from group (A) of Fig. 10 have finite 

energies; 

(b) the wee particles have energies proportional to & ; 

(c) the non-wee particles in group (B) have energies proportional 

to v 0 

In addition 

scattering, the 

to the deep inelastic electron (or neutrino as well as antineutrino) 

impulse approximation also applies to electron-positron pair 

annihilation e+ + e- -+ H + “anything” in the deep inelastic region of high energy, 

or large incident pair mass squared, q2, and large invariant energy transfer 

to the detected hadron v = $ q* P. In an infinite momentum frame of the 

detected hadron, this process can be described (5J as the creation of an essen- 

tially free parton-antiparton pair and its subsequent decay into final states. It 

can also be studied in a similar fashion following the path given above. In par- 

ticular the wee partons will not alter the predictions of scaling that we have 
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derived in III (5J. The specific relation between the scattering and annihilation 

cross sections was based on an analysis with finite order perturbation theory 

which was used to derive the result that the structure functions for annihilation 

were continuations of those for scattering from the region w > 1 to w < 1. 

Whether this identification will be altered by the sum to all orders of the “wee” 

parton contributions is an open problem. 
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V, MASSIVE LEPTON PAIR PRODUCTION IN HADRON-HADRON COLLISIONS 

AT VERY HIGH ENERGIES 

If we want to satisfy the kinematical constraints allowing application of the 

impulse approximation in hadron-hadron interactions we need look for interactions 

at high energies s which absorb or produce a lepton system of huge mass Q2 such 

that the ratio Q2/s is finite as we discussed in Section II, We shall discuss in 

detail here an observable process meeting this requirement (3, viz. 

Our remarks apply equally to any colliding pair such as (pp), (pp), (q), (Kp), (rp) and 

to final leptons (p’p-), (ee), &v), and (ev). 

For finite Q2/s one has the relation (see (10)) 

2 Q rxxs; 12 OKX12<1 
, 

where x 
132 

are the fractions of the longitudinal momenta of their respective 

hadrons carried by the annihilating parton-antiparton pair as illustrated in Fig. 6. 

Here we are dealing with hard partons and with the same region of momenta as 

probed by deep inelastic electron scattering experiments which measure the 

parton distribution 0 < x = Q2/2Mv < 1. In this process we are measuring over 

a range of x values for antipartons as well as partons as constrained by (47) for 

fixed Q2/s. 

Following standard calculational steps we obtain the general expression for 

the cross section to form a lepton pair of mass Q2 

(48) 
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where a spin average is understood and 

W(Q 2 ,s) = -16n 2 E1E2 s(dq) S(q2-Q2) [(dx) 
. 

eBiqx <PIPp)l J,(x) P(O) IP,P\m)> 

= -167r2 ElE2 ;dQ S(q2-Q? c (2n)4 s4(Pl+P2-q-Pn) x 
n 

X (PlP!2in)I $In) <nlflP2P(li”)> 0 (49) 

In (49) El, P1, Ml and E2, P2, M2 are the energies, momenta, and masses of 

the two initial hadrons; m is the muon mass: and c is a sum over all unobserved 

hadron states. The integral over pair momenta, d4q, extends over the entire 

mass hyperboloid q2 = Q2 in the high energy limit. Restrictions on the phase 

space integral can be included to match experimental conditions and will be 

discussed later for comparison with Ref. 6. 

To simplify (49) in the limit s --rm with Q2/s fixed, we may proceed either 

in the CM system of the two initial hadrons or a true infinite momentum frame 

defined earlier by (8). The final result, as required, is independent of the 

choice between the two types of coordinate systems, 

Since we will imitate the steps in our preceding analysis of deep inelastic 

processes (3 we work in a true infinite momentum frame as introduced in 

Section II by boosting from the collision center-of-mass frame by a velocity 

p/G2 = 2P/S s in a direction orthogonal to the collision axis. The four- 

vector ,momenta of the two incident colliding hadrons are then as in (8) for 

s>>M2 

p”1=(P+&,O,P,$) , 

p”2 = ip+&, o,P+) . 

(50) 
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We can now let P +a for large but finite s : P >> ,/s >> M. The energy in the 

collision is represented by a transverse momentum mismatch of the two col- 

liding hadrons 0 For a parton, or a baryon or meson quantum in our field theory 

model, to be exchanged between them without introducing an asymptotically large 

momentum transverse to either of the two hadron lines, the parton momentum 

is restricted to a fraction - M/& along the 2 axis and to a finite value - M 

orthogonal to it. This constraint corresponds to the ‘wee” parton condition in 

the center-of-mass frame of the colliding hadrons. In the P-m frame (50) this 

constraint satisfies the condition of finite transverse momentum imposed on our 

field theory model. 

In this frame (3 we can repeat steps developed in earlier work of undressing 

the current operator by the U matrix: J,(O) = U-l jp(0) U where jcl(0) is the cur- 

rent operator expressed in terms of free fields, Furthermore the energy dif- 

ferences between the eigenstate IPIP (@> and the components of U(P1P2)in) 

can be ignored in the limit s -+CQ for Q2/s finite; the same is true for In> and 

Uln> o This is so because the invariant mass of the individual system of particles 

moving along ,Pl and I?)2 respectively in (50), or to the right and left in the center- 

of-mass frame, is negligible compared with the invariant mass l/2 & appearing 

in (50) as a result of the transverse momentum cutoff imposed. In other words 

the impulse approximation is good and energy as well as momentum is conserved 

across the electromagnetic current vertex in (49) D This leads to the simplification 

in the LimB J for P * a ; s >>M2; Q2/s finite to 

LimB J W = -16n2 ElE2 j(dq) 6 (q2-Q2) J(dx) eBiqx <WlP2Pljptx) jc”cO, lW2PlP> 

(51) 
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A remark about the result (51) is in order because in our earlier work it 

was only the “good” components of the current (Le., /.L = 0 and 3) that were 

explicitly studied and for which %ndressingLL was derived. Here we have to 

deal with a scalar product involving all four components. The ‘bad” components 

transverse to the infinite momentum direction give rise to the following compli- 

cation. In the true infinite momentum frame (50)) for a current component 

transverse to E the electromagnetic vertex is of order P when the colliding 

parton and antiparton are of spin l/2 and have longitudinal momenta opposite 

in direction relative to 2 as shown by 

(52) 

where X is a two-component Pauli spinor 0 In such a case, however, the factor 

P in (52) is used in conjunction with another factor of P coming from a strong 
\ 

vertex which also behaves like a bad current and is very large, - P, when pro- 

ducing, annihilating, or scattering fermions with opposite sense of motion along 

,P. These two factors of P compensate the l/P2 factor introduced by the bad 

energy denominator associated with an intermediate state involving particle(s) 

of opposite longitudinal momenta. Thus, effectively, the electromagnetic vertex 

is of order unity. On the other hand, however, when all the particles move 

along the direction of the infinite momentum, the electromagnetic vertex of a 

transverse component of the current is of order J s, introduced by the large 

transverse momentum mismatch of the colliding spin l/2 parton-antiparton pair. 

And there are no powers of P to cancel (12). Consequently as s+~ the contri- 

bution is negligible from an electromagnetic vertex with the annihilating parton- 

antiparton pair moving in opposite directions relative to P. Thus, the result -I 

(51) is valid in frame (50) for all four components of the current. The arguments 
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given here are similar to those given in IV in connection with neutrino scattering 

in which the use of transverse components of the current is also required. The 

key in deriving (51) as shown by our earlier work is that all particles be moving 

along the z-+eo direction at the instant of the current interaction, and the above 

argument verifies it in the high energy limit. 

Turning to the situation in the CM system, we expect each member of the 

annihilating pair to retain the direction of its original hadron. For such a case, 

i.e., the colliding parton and antiparton moving in opposite directions, it is 

interesting to notice that the transverse components of the currents for spin l/2 

particles are the ‘good currents” and in this problem their vertices are of 

order P = l/2 G(see (52)). When both of the pair move along the same direction, 

the corresponding vertices are of order unity. The reverse is true for the third 

and time components of the current. However, the unnatural possibility for the 

time and third components (with both particles moving along the same direction) 

can be dismissed by a discussion similar to the previous one given in the true 

infinite momentum frame (50). Thus, again the result (51) is also valid for all 

components of the current in the CM system. 

Although the above discussion shows that the contribution of individual cur- 

rent components is very different in the two frames, the CM system and (50)) 

we will now show that the final result is invariant as it should be. Proceeding in 

analogy with II, Eqs. (72) - (78) we find for the annihilation of a boson pair 

(-) j-(Q) 6 ts2-Q2) j-tdx, e -iqx<klk21j'l(X) $U91k2kl> 

= t2q 4 8 [Q” - Ckl’k2,2] (2~ (3; ““, (2 ) tkl-k2)p tkl-k2? 
9 w2 

(53) 

= A2 
16x2 E1E2. 

6 (x1x2- 7-J ; eQ2/s < 1 
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n 

where ~~ is the square of the charge of an individual parton and we have used 

the high energy approximation for the dominant large components of the momenta 

Iru,=x&, k;=x2 2. P” For a fermion pair annihilation, we find 

(-)J(dq) s(s2-Q2) /;dq eBiqx ( plsls p2s2 1 jpWjpP~ 1 p2s& P&,> 

(54) 

To simplify this expression, observe the identity 

+ “lYp(l-Y5) “i~~~tl-ycj v2 (55) 
-4 ql; ;;v2 

1 

which shows clearly that the helicities of the annihilating pair must be opposite 

and the helicities are conserved, since the last term in (55) is negligible in the 

high energy limit. Now (54) and (55) lead in the high energy limit to 

u1ypv2 % 
6UlUiF~ urfiu -u 

22 1’ 2 

where the C’S denote the helicities. Using the high energy approximation 

I’“12= , 

t-1 

xl, 2 $” 1, 2 , we obtain 

J t&O Stq2-Q2) &W emiqx <plsls p,s,)$(x)j%) 1 p2sh, plsi) 

= A2 
2 16n ElE2 

myf7) l 2 8 UlUi SojC$ bIl ) - U2 

(56) 

After a spin average (57) gives the same result as (53). As our procedure is 

covariant in every step, the result (57) is valid in the infinite momentum frame 
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(50) and in the CM system. Using (52)) (53)) and (57) and inserting the identity 

we can bring (51) to the form 

LdgJ WQ2, s) = z ha a 2~1q--)~1d($)~(&-~) x 
(58) 

where the summation over types of partons with charges 1, pairs a parton of 

type a with its antiparton 2. 

The right-hand side of (58) depends on the dimensionless ratio T =Q2/s, 

as explicitly indicated. It may also be a function of the total energy s =(Pl+P2)2 

via the states U(P,P,)i” > . Such s dependence could enter into the expansion 

coefficients of U(PlP2)ln), which 1 ‘s the hadronic state at the instant t=O that 

develops under the influence of the full hadronic dynamics from a two nucleon 

“in”-state at t + -00 of total energy s: 

UP,P,)i”) = C C,(s) 1 n> 

i-1 I C,(s) 2 = 1 0 
n 

(59) 

If we assume that there exists a high energy limiting behavior to the expansion 

coefficients for the n particle states, i. e, , 

lim C,(S) = Cn 
s-00 

(60) 
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then, in this limit, (58) will be independent of s and we can write 

LimBJ WtQ2, s) 

Then from (48) we can write the differential 

form 

= W(T) (61) 

cross section in a simple scaling 

(62) 

47rtu2/3Q2 is just the total cross section for ee annihilation into point muon pairs 

in the relativistic limit. Thus a nontrivial scaling result of the form (62) follows 

from existence of the high energy limiting behavior of (60). In our field theory 

model (5J as described and discussed in Section IV the “wee” parton exchanges 

can be ignored as unimportant when we compute processes such as these with 

hard partons 0 With “wee” partons ignored, the state (59) can be factored into 

the “right” and llleft” moving constituents associated, respectively, with Pl 

and P2 so that we can write 

(63) 

Introducing (63) into (58) we see by comparison with (78)) (79)) and (80) of II 

that (58) can be rewritten as 

&T) = 7 Lim .,W(Q’, s) = x tAJ-zJmdol 
a 

:a, $y2-5) F2a(Ol)F;xt”2) 
1 “1 

(64) 
(ha! 

in terms of the invariant structure functions F2a(~1) = vW2 introduced in the 

deep inelastic scattering analyses (see (78) of II) for w1 times the probability of 

finding parton ot type a in the proton (or hadron A in Fig. 6) with a momentum 

fraction x1 = l/al0 F&(w2) has .the same significance for the corresponding 

antiparton distribution in hadron (B) D 
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The differential cross section (62) now assumes the simple form in the 

scaling limit 

where we have rewritten the invariant structure functions in terms of momentum 

fraction x. Presumably the ‘wee” quanta ignored in deriving (65) from a factored 

state (63) are needed to generate Feynman’s spectrum of “wee” or infrared quanta, 

dx/x, for explaining real hadron cross sections as we described in Section II. 

As we also discussed earlier the “wee” region is prominent only when we sum 

their contributions to all orders, a la Chang and Yan (11)) although to each finite 

order of calculation they are unimportant. We can verify explicitly that, order 

by order, the “wee” partons have no effect on our results for massive lepton 

pair production. To show this let us suppose that we include “wee” parton 

exchanges between the two systems (A) and (B) before or after the parton-anti- 

parton annihilation takes place in Fig. 6. Precisely because the transferred 

momenta are “wee”, these interactions can change the kinematic relations only 

by a relatively negligible amount. 

As a simple example consider the diagram in Fig. 13 in which the momentum 

k is wee and we are in the CM system. It can be easily checked that the impulse 

approximation is valid and that energy conservation requires 

2P = (l-x1-x)P + (1-x2-x)P + JV (x1-x2) P +Q 

or 

x1+x2+2x = j7 (x1-x2) + 4 -g- 
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But x - l/P, so it can be neglected and 

x1x2 = Q2/s o 

These corrections therefore do not affect our arguments leading to (51) which 

in turn implies (58) and the general scaling (62) O Therefore although the invariant 

function S(T) will be modified from (64) to (61) by the “wee” exchanges when 

fully computed to all orders, the general scaling property will not be affected. 

Based on this observation we would like to emphasize that although “wee” 

exchanges must survive at infinite energies to account for a nonvanishing total 

cross section of hadron-hadron collisions, they are not relevant to the massive 

muon pair production in proton-proton scattering considered here, We argued 

in Section IV that they also did not affect the Bjorken scaling behavior of deep 

inelastic lepton processes such as electron scattering and electron-positron 

annihilation. A nontrivial Bjorken scaling behavior and the validity of the 

impulse approximation for these processes are independent of whether or not 

the total cross section for hadrons vanishes at high energies. 

In addition to scaling, there are a number of general features of the cross 

section that can be established without specific reference to the role of the “wee” 

partons. These include a sum rule, the angular distribution, and the polarization 

of the current, or massive lepton pair, emerging from the interaction: 

(1) A sum rule can be derived from (48) and (58) in the high energy limit 

s-+oo by forming the weighted cross section integral 

/ 

1 
o(Q2)2d> $z 

/ 

S 

0 
Q2 3 dQ2 = k?$ <w1p2)inl~ h”, lw1p2P> (66) 

a 
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Equation (66) is analogous to the sum rule for the sum of the mean square charges 

of the partons, or constituents in the one proton state (see (78) and (81) of II) 

%(vW2) = %x 
1 0 

x F2(x) = <UPlc zaIUP> 
a 

(67) 

and is subject to the same question of convergence, i.e., does the integral exist. 

In neither case is it experimentally clear. In terms of a factorized model with 

no ‘wee” partons we can use (65) to reduce (66) to 

Both (67) and (68) involve the same weighting of the parton momentum distri- 

bution. Higher moments can also be introduced for better convergence 

n-Id7 _ 4ro!2 IL f1 n-l 1 

3 f au0 
F2a(X) x dx 

J 
F;iJi(33 Y n-ldy 

0 

(69) 

These relations may be of use in comparing specific parton models. 

Returning to (48) and (49) we can identify the general ingredient of the sum rule 

(66) as a spectral constraint. In (49) an integral over the entire range of masses 

lIdQ2 allows closure to be carried out. Experimentally however the range is 

confined to the time-like interval 0 < Q2 < s. The parton model, and in par- 

ticular the prediction that it is via the parton-antiparton annihilation described 

in Fig. 6 and with the kinematic relation 0 < x1x2 = Q2/s < 1, ensures that the 

dominant contribution at high energies comes only from the time-like region 

0 < Q2 < s and thus permits closure in (49). We find then 

J ‘2do- 2 stQ 1 TdQ 
dQ 

dQ2W(Q2, s)= 16x2 ElE2(27r)4(U(PlP2)inl-j~(0) j’l(0)~U(PlP2)in> 

0 

in the parton model. 
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(2) The angular distribution of the vector q s ,P+ + ,P-, the total momentum 
c*r 

of the muon pair, is peaked along the incident nucleon’s direction in the lab 

system. This follows from the observation that q l Pl = (xlP1 + x2P2) m P1 g 

$x2” and q l P2 z gxls are invariant, and in terms of laboratory variables 

we have 

q* P2=q;M2 

Denoting by BL the angle between z and I& in the lab we write 

The transverse momentum cutoff that appears in our analysis limits 

q 
lMMax 

z 2 X 400 MeV = 800 MeV. 

It follows then that 

(71) 

(73) 

(74) 

We expect to see such a strong peaking in the cross section for 

with 

W,(Q2,q,, s)=- 16n2EIE2fiq3 dqo S(q2-Q2)l(dx) e-iqx(P,P~in)I Jp(x)f(0) IP2Plin)> 
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(3) In order to determine the angular distribution of the lepton pair emerging 

from the interaction we want to examine the contribution of each current compo- 

nent in the CM system of the collision. In this system the asymptotically large 

vector q coincides in direction, neglecting finite bounded transverse momenta w 
of the annihilating parton and antiparton, with the collision axis of the two initial 

hadrons. Thus the contributions of the transverse current components correspond 

to the production of a transversely polarized virtual photon while the contributions 

of the longitudinal and time components of the current correspond to the produc- 

tion of a longitudinally polarized virtual photon. For this purpose we must com- 

pute the contribution of each component of the current, not just the scalar product 

as in (55). Using (52) and the fact that 

3x,: + &I 
Y0 

ii 

v( -x2P&J = 0 (1) 
y3 

(77) 

we find that the dominant contribution for a spin l/2 pair annihilation comes 

from the transverse components of the current. Moreover, explicit calculation 

using (52) verifies that the right-hand side of (57) is entirely due to the sum of 

the two transverse components. 

On the other hand, for a spin 0 pair annihilation the dominant contribution 

comes from the longitudinal and time components of the current, since in (53) 

(k13 - k23) 2 - (k;-k;)2 

= (x1+x2)2 P2 - (x1-x2)2 P2 (78) 

= x1x2 s 

while 

(7% 
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This observation leads to the conclusion that if a spin l/2 current is dominant 

the virtual photons produced are predominantly transversely polarized, while 

if a spin 0 current is dominant the virtual photons produced should be pre- 

dominantly longitudinally polarized. These two cases correspond to a distri- 

bution in the center-of-mass system of the lepton pair that varies as (l+cos2 0) 

for spin l/2 partons and as sin’ 0 for spin 0 partons where 0 is the angle of the 

lepton relative to the virtual time-like photon direction. 

The data of deep inelastic electron scattering suggest that a spin l/2 current 

is dominant. Accordingly this would lead us to expect that the time-like virtual 

photons in the p-pair production in this deep inelastic region should be pre- 

dominantly transversely polarized. 

The above results can of course also be transcribed directly to the weak 

currents, i.e., the production of a p+v or P-Z pair by pp scattering. The cor- 

respondence with the /L’/L- pair production is given by the substitution 

-% 

Mti7 
M&-Q2 

(80) 
J -J C 

I-1 CL 

where G is the Fermi coupling constant, MW the mass of the intermediate vector 

boson and Ji the Cabbibo current. A factor of 2 should also be introduced into 

dcr/dQ2 as the vector and axial part of the lepton current contribute equally. 

There is no interference between the axial and vector current if only the total 

momentum vector qP of the pair is observed. The differential cross section for 

producing p-t’ipairs with squared invariant mass Q2 is 

*@-;I dQ2 

dQ2 
1 W1(Q2, s) 

2 IC wq-M2) 
2 1 

(81) 
- 46 - 



where a spin average is understood and 

W’(Q2,s) =-16r2ElE2 

(82) 
In (81) the lepton masses are neglected. In the scaling limit we have 

LimBJ Wt(Q2, s) = W’(T) (83) 

and 

Notice that if the vector boson does not exist - or has infinite mass so that the 

weak interaction is local - we take the limit 
i 
M.$ M;-Q2)] --+ 1 o Then the 

differential cross section do-/dQ2 becomes scale invariant. It is independent 

of Q2 and is a function of the ratio T = Q2/s only. It will be of particular interest 

to search for a deviation from such a scaling law for the weak currents if scaling 

is verified for the electromagnetic pair production. If such a deviation is ob- 

served as an enhancement at high Q2 and can be fit to a form [Mi/(M&-Q2)12, 

we can interpret it in terms of a finite mass for the vector boson of the weak 

interactions o 

With the neglect of “wee” parton contributions (58) reduces to (64) and the 

cross section can be expressed as a product of structure functions for the parton 

and antiparton distributions in one-body states. These distributions are inte- 

grated over all momentum fractions x1 and x 2 consistent with the kinematic 

constraint x X 1 2=Q2/s=~o Deep inelastic electron scattering measures the 

sum of the parton and antiparton contributions as a function of 0 < x = Q2/2Mv < 1, 

Here however we require the product of these contributions. To help unravel 
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these individual terms it would also be of great interest to study pp as well as 

pp annihilation, Moreover the full range of possibilities including np, kp, 3/p 

will be of great interest to study in order to compare their spectra, as well as 

to measure their effective charges h20 

These comparisons are dependent however on the assumption that wee 

partons can be ignored. There is no small expansion parameter in terms of 

which to measure the quality of such an approximation, The problem presented 

by the “wee” partons is illustrated in Fig. 14. What we show here is elastic 

exchange of a single ‘wee” parton between the two colliding protons., Since the 

wee exchanges involve large energy denominators as we recall from (1) we may view 

them as occurring instantaneously on the longer time scale of the hard parton 

states 0 With the momentum labels as drawn this exchange has introduced a 

momentum dependence via an energy denominator 

1 
E 

xlz+:ll 
-E xlP-ai +k 

-W 
- *p -l*-~~ oi +q -p -1 

(85) 

and has coupled the transverse momentum structure of the two-proton states. 

Factoring as in (63) is hence impossible and we can no longer derive the product 

form of (65), As emphasized earlier the scaling dependence is unaffected. In 

the limit of purely forward scattering by the wee exchanges this problem can be 

avoided since no change occurs in the transverse momenta. Moreover the change 

of longitudinal momenta is of order l/P and negligible. However we know that 

the wee exchanges must do more than simply forward scatter at 0’. Experi- 

mentally the high energy cross sections have diffraction peaks that typically are 

of 350-400 MeV/c width in transverse momentum and this, being comparable to 

the transverse momenta appearing in our parton distribution, cannot in general 
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be neglected. Our formal theoretical methods are not adequate for making a 

more detailed study of the role of these wee exchanges and their effect on the 

7 dependence Of S(T) o If we simply ignore them we can make some qualitative 

observations from the comparison of (65) with the preliminary data of Ref. 6, 

The data to which we want to compare (65) was obtained by taking a limited 

cut of the events leading to a given lepton pair mass of Q20 Only those events 

were detected for high energy protons incident on a uranium nucleus leading to 

muon pairs of total momentum q > 12 GeV/c and emerging with s,/q 5 l/l6 in 

the laboratory system. Therefore these actual experimental resolution functions 

must be introduced before a detailed comparison can be made, The angular constraint 

includes all transverse momenta up to at least q1 = l/16 (12 GeV/c) = 750 MeV/c, 

This value is sufficiently close to our actual transverse momentum cutoff in (73) 

that for purpose of comparison we include all solid angles in (65). However a 

longitudinal momentum cutoff corresponding to qmm = 12 GeV/c must be intro- 

duced as we do in the following way, Denoting the laboratory momentum of the 

target nucleon by 

P$ = (M2, 0) and the pair by 8 = (4:’ qL) (86) 

we can write the magnitude of the pair momentum in the laboratory frame as 

qL = J(qoP2)2/M”2 - Q2 = q (87) 

An invariant expression for qL ’ in terms of the fraction of momenta on the col- 

liding parton pair is given by 

1 M2q”L= qoP2 = P20(Xlpl+x2p2) = TX1 s (88) 

f 

We can also write, as we already have a number of times, 

Q 2 =xxs o 12 
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Collecting we have in the kinematic region of interest 

qL=l&gyr2 c$gxl 

The content of (89) is that the asymptotically large momentum of the lepton pair 

is given simply by the incident nucleon momentum, s/2M2 in the laboratory 

system, multiplied by x1, the fraction of that momentum carried by the anni- 

hilating parton, In this limit the momentum components in the target state 

(at rest) are negligible. The experimental constraint that qL > qLmm = 12 GeV/c 

now can be expressed as a step function to be inserted directly into (65): 

0, = (5) ;--$) [ixlfctx2; [e(x2- 2M1*)+ ,61-2M2FM$ 

In writing (90) we have symmetrized the expression in terms of parton and anti- 

parton, The sum is to be taken over different types of antipartons as well as 

partons. The observed rapid decrease of the inelastic structure functions 

F2(x) = vW2 as x ---) 1 leads in (65) and (90) to a prediction of a very rapid falloff 

in SCE(~) with increasing Q2, or 7 0 If we assume that the parton and antiparton 

have identical momentum distributions in the proton, and this is common for all 

parton types A, we can compute dc/dQ2 directly from measured F2(x)$ finding 

a very rapid falloff in the cross section as shown in Fig. 15, even though the 

model consists of point-like constituents. For comparison a dotted curve is 

drawn in Fig, 15 to show the effect of the experimental resolution in reducing 
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the cross section below the full value in (65). The slope of the theoretical curve 

fits the preliminary experimental findings in the range of Q2 from Q2 =2 (GeV/c)2 

to Q2 = 10 (GeV/c)2. However there is an apparent bump in the observed spec- 

trum that exceeds our calculated curve by a factor of 2-3 in the interval of 

Q2 = lo-20 (GeV/c)2, 

We will not speculate here on the possible significance of such a bump (13). 

Recall that our prediction is based on an assumption of identical momentum 

distributions for antipartons and for partons as constituents of the physical proton. 

We have no evidence for such an assumption, If we think of the partons as quarks 

then the antiquark or antiparton distribution of a proton state may have very 

little relation to the parton distribution as observed in inelastic proton scattering. 

If we think of the proton as built of three quarks plus a background sea or glue of 

quark pairs then the antiquark distribution for this analysis should be correlated 

only to that portion of the inelastic electron scattering that remains after the 

contribution of the simple 3-quark model for the neutron and proton is removed. 

Evidence of the importance of this background sea or glue is now available from 

experiments on electron scattering from neutrons as well as protons (14). It 

is clear from these experiments that the contribution of this sea or glue must 

be very important in order to explain the results. A further measure of the 

importance of the background sea comes from the normalization of the theoretical 

curve to the data in Fig. 15. We have used a relatively small value of l/i 2 1 - z- 1 

in (90) in order to adjust the calculated curve to the data, This value is in con- 

trast to typical values of 1/(l/g2 = 9 or l/(2/3)2 = 9/4 associated with the quark 

model and suggests as in the analysis of the data (14) that the sea and the 3 quarks 

are both of comparable importance. + 

To paint the “real” picture of the proton’s structure we shall need all the 

clues that come from massive lepton pair production in hadron-hadron collisions 
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together with deep inelastic scattering results from neutrons and protons. The 

first step here is to verify the scaling law (62). 
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VI. LIGHT CONE BEHAVIOR 

In this final section we discuss briefly the possible role of singularities 

near the light cone in controlling the behavior of (49) and, through it, in deter- 

mining the energy and mass dependence of this cross section. Arguments of 

this type have shed light on scaling behavior for the deep inelastic scattering 

process in the Bjorken limit in terms of singularities of almost equal time 

commutators D In (49) we are not computing a commutator but simply a product 

of currents. However as the momentum q carried by the current grows large 

one might argue that the dominant coordinate values in (49) will decrease so 

that the product q 0 x is finite. Contributions from other space-time regions 

will presumably be damped by the very rapid oscillations of e lqox. Such an 

approach has been proposed and studied by Altarelli, Brandt, and Preparata (15) 

who in this way arrive at a different functional form than we have found in 

this work. Specifically our scaling result of (58), 

AZ.- 
dQ2 

is replaced in their work by a form 

(92) 

containing two scale factors Ml and M2 and two scale invariant functions Gi(~) 

which can be further simplified if Regge pole behavior is assumed to dominate. 

Before commenting on this argument let us review how analogous ones have been 

applied to the study of almost equal time commutators in the deep inelastic 

process in the Bjorken limit (16). 
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In order to illustrate the sense in which # -+ 0, i. e. ) how the interval de- 

creases to that only the short distance behavior of J,(x) JV (0) need be considered 

in (14) we find it convenient to work in the laboratory frame of the target proton 

For deep inelastic scattering in the Bjorken limit the photon momentum is to 

leading order 

l,O,O, I++; w = 2Mv/Q2 3 1 

and the exponential in (14) is 

iv r e 
iv (x0-x3)-&%x3/w 

e (94) 

The important space time interval, assumed to be the coordinate domain over 

which the integrand is not modulated by very rapid oscillations, is then 

Ix0 3 
-x 1 s l/v - 0 

x3’xo 5 w/M i,e, finite 

and by causality 

(95) 

Throughout the region defined by (95) and illustrated in Fig. 16 the scalar vari- 

ables in the matrix element multiplying the exponent extend over a finite range 

also, i. e, , 

o-xps+ 0; and xoB = MxO --w, Le. finite 

With these constraints we see that the region along a finite segment of the light 

cone of length - w/M and within an asymptotically vanishing invariant interval 

- Jw/Mv in the time-like region about the light cone may be expected to deter- 

mine the structure functionsb By study of the current commutator and its 
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singularities for a finite interval of length - U/M along the light cone but only 

infinitesimally removed from it we can analyze the meaning of scaling in the 

Bjorken region. 

In contrast consider the space-time region of importance for high energy 

hadron-hadron total cross sections which can be obtained by unitarity from the 

imaginary part of (14) with q representing the four momentum of the incident 

nucleon in the laboratory system 

SC” r v 
( 

l,O,O, 1 
M2 -- 0 

2v2 ) 

In this case 
.M2 

iq*x N 
iv (x0-x3)+1% x3 

e -e 

and the important interval in contrast with (95) is 

,x()-x31 2 + 

(96) 

(97) 
unbounded and -+ m with v = & 

and 

xP2 s -$-XT i.e. finite D 

For these processes which are usually studied in terms of Regge parameteri- 

zation we are concerned with the region along an infinitely long segment of the 

light cone and of finite invariant width into the time-like region. 

In this case we must know the behavior of the matrix element of the current 

commutators throughout a finite tube around the light cone but of infinitely long 

length along the cone according to (97), unless the current operators themselves 

introduce a damping before 

pax = Mx3 grows to - i$+m 
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This difference in the space-time descriptions corresponds to the difference 

between the ‘wee” parton and the hard parton or impulse approximation regimes 

as we have earlier described them, In the Regge region the limit is always 

taken such that v/M -+ 00 whereas the corresponding parameter in the Bjorken 

limit is w = (2Mv/Q2) = l/x and is finite, Since the experimental value of a 

Regge pole parameterization of high energy processes has been established only 

for finite mass particles (real ones on their mass shells) entering the interaction 

we have no guide for continuing amplitudes between the Regge and impulse regimes. 

In order to relate the behavior of the matrix elements in either of these regimes, 

one finite and one asymptotically infinite, to singularities at the tip of the light 

cone 

#-+ 0; p = 0,1,2,3 

that have been analyzed by Wilson (17), added smoothness assumptions are 

required. In particular observed scaling in the Bjorken limit is used to select 

the correct behavior (NJ, 

However when we turn to the massive pair formation in (49) we are no 

longer confined by the kinematics to the neighborhood of the light cone region; 

also since (49) contains a product of current operators, not a commutator, the 

matrix element does not vanish outside of the light cone for space-like separa- 

tions 0 In contrast to the scattering where we could take the limit q -+UJ in the 

laboratory frame we must here deal with the limiting process 

q -+ CO and s -+ 00 so that Q2/s C 1. and finite 

The limit q-ra, with fixed PI and P2 in (49) corresponds to 

Q2/ S400 

- 56 - 



and is very far removed from the experimental regime of study and interest. 

But it is just this region of asymptotically large Q2/s that we properly probe 

in a theoretical study by taking the $” -00 limit and expanding the matrix element 

about the origin in a power series as a function of ~~2 and x 0 (P,+P,), as 

2 ---, 0. There is no assurance that such an expansion procedure works in the 

experimental region of interest, The relevance of the light cone ~~2 - 0 for 

the analysis of massive mu-pair production as claimed by Alteralli et al. (15) -- 

depends on the assumed smooth behavior of the matrix element independent of 

whatever may be its s +a~ limiting properties as we take Q2 -a with Q2/s < 1. 

For Q2+(o, with s fixed, the expansion about the light cone would be an elegant 

approach to this study, but for the experimentally accessible region, a very 

major extrapolation of the behavior of the matrix element is required. The 

mathematical conditions and assumptions for justifying the interchange of the 

limits s 00 and Q2 Q- 2 in Eq. (49) are discussed in Ref. 15. 
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CONCLUSION 

We have described how the impulse approximation, whose roots lie in the 

low energy domain of atomic and nuclear bound states, finds a wide class of 

applications in the high energy electromagnetic and weak processes of the tightly 

bound systems forming single hadrons. For the latter we have to work in a 

properly chosen infinite momentum frame of the hadron system in order that 

the strong binding, as viewed in the laboratory frame, can be neglected as a 

consequence of the Lorentz dilatation of time scale. Only in such a system can 

we apply our intuition to working with almost free constituents - whatever and 

however many there may be - of the proton state., For atomic and nuclear 

systems the laboratory frame is a good working coordinate system since the 

binding of these systems is relatively much weaker. 

Apart from this coordinate dependence of this approximation, atomic as 

well as nuclear processes and the deep inelastic hadronic processes are not very 

different conceptually. This analogy, although only qualitative, allows us to 

borrow the well-developed intuitive understanding of low energy nuclear physics 

as a guide to search for the clues of high energy or short distance substructure 

of the hadronic systems, Indeed, within the same framework of the impulse 

approximation we are able to give a unified treatment to the various deep 

inelastic processes involving one current, electromagnetic or weak: electron 

scattering, neutrino as well as antineutrino scattering, electron-positron anni- 

hilation into hadrons, massive lepton pair production in hadron-hadron collisions. 

Our goal has been to derive general scaling laws beyond the original accomplish- 

ment of Bjorken (4J who used the powerful, formal methods of dispersion theory 

and current algebra where they were applicable to the deep inelastic scattering, 
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We have also related the different scaling processes in as model independent 

a way as possible, relating the electron scattering to electron-positron 

annihilation (5J, neutrino scattering to antineutrino scattering (3, and electron 

scattering to neutrino scattering (3, massive pair production to electron 

scattering (3, and the threshold behavior of the structure function for electron 

scattering to the asymptotic behavior of the elastic nucleon form factors (7). 

These relations are all empirically testable and probably will be confronted with 

experimental data in the near future. If they are found to be correct they will 

lend strong support to the applicability and utility of the impulse approximation 

to these deep inelastic high energy processes involving the hard partons. 

On the other hand validity of the scaling predictions, but not of the specific 

relations between the different processes, will bring the role of wee exchanges 

to the fore. As we have shown they do not effect the scaling arguments and to 

any finite order of calculation we can neglect the wee exchanges in relating 

electron scattering to e+e- pair annihilation or massive lepton pair production. 

However they may “exponentiate” to prominance when all orders are summed 

up (11) and provide an effective initial or final state interaction that will alter 

the specific predictions without destroying the validity of the impulse approximation. 

The problem of wee parton exchange is obviously very difficult. Our treat- 

ment in this paper with respect to the “wees” is certainly not dynamical but 

kinematical. It is hoped that the recent high order calculations in certain field 

theory models will eventually lead to a more complete treatment of these wee 

partons, although undoubtedly that day is still not in sight (11, 19 o 
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In addition to the role of the wee partons there are two other open issues 

not addressed by our approach: 

(1) When and how does scaling set in with increasing Q2, s, or Mu? 

(2) Where does the transverse momentum cutoff come from, and in 

detail how is it related to the conditions of vanishing wave function 

renormalization as we have conjectured (7-, 5J ? 

1 
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FIGURE CAPTIONS 

1. 

2, 

3, 

4. 

5. 

6. 

7. 

8. 

9, 

10. 

11. 

12. 

Inelastic electron-proton scattering viewed in the P -W frame. 

Hadron-hadron interaction in the center-of-mass system at high energy 

via Yvee” parton exchange. 

Kinematics for massive lepton pair production by bremsstrahlung from 

one of the nucleon lines. 

Example of a super wee exchange as a result of super position of two wee 

exchanges 0 

Hadron-hadron interaction viewed in a true infinite momentum frame with 

a large transverse momentum mismatch between the two initial hadrons. 

Production of a massive lepton pair by parton-antiparton annihilation. 

Example of a covariant Feynman diagram for producing a virtual photon as 

expressed in terms of a sum of time-ordered old-fashioned perturbation 

diagrams with both bremsstrahlung and annihilation. 

Second order Feynman diagrams for electroproduction of one pion. The 

crosses x indicate the electromagnetic vertex and the vertical dashed line 

indicates that the final particles are on their mass shells. 

Time-ordered diagrams corresponding to the single Feynman diagram of 

Fig. 8c. 

Diagrams illustrating pions and nucleons moving in well-separated and well- 

identified groups along the directions ,P and xg + q, m. 

Examples which show how the postulated existence of wee partons affects 

the picture shown in Fig. 10. The dashed line represents a wee parton or 

a system of wee partons. 

Example of afinal state interaction between the two groups of particles in (A) 

and (B) of Fig. 10 introduced by exchange of wee partons. 
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13. Example of an initial state interaction inmassive pair production in proton- 

proton scattering, 

14. Example to illustrate how the initial state interaction due to wee exchange 

affects the structure function for massive pair production. 

15. du/d r Q2 computed from (90) assuming identical parton and antiparton 

momentum distributions. The normalization is fitted to the curve. The 

solid curve includes the effect of the experimental resolution qL> 12 GeV. 

The dashedcurve includes all phase space. 

16. The space-time region which gives the dominant contribution to the current 

commutator in electron-proton scattering in the Bjorken scaling limit 

(heavily shaded), and hadron-hadron scattering at high energies (lightly 

shaded). The first quadrant only is shown. 

- 65 - 



/ 
/ 

1589A6 

Fig. 1 

! t 



wee fraction 
I p of P 

1589A5 

Fig. 2 



I 

. . 

p 4-k (A) (I-X-X’) P+kL-ql 
v - I 

I 

-(l-x’) P-k, 03) +---F 1706A3 

Fig. 3 



I . 

. 

q, , q2 : wee ; q: super wee 

1706A4 

Fig. 4 

i 



. i. . 

’ s 2 d- 
I -- 
2 J S 

1706A5 

Fig. 5 - 



A 

Q2: x,x,s 

Fig. 6 

1589A3 



I 

i 
I 

I 
I 

L / / / / L \ \ \ 

+ +! + w-D-- / 
1706A7 

Fig. 7 



I 

(a) (b) 

Fig. 8 



I 
I k, ,-y---,\ 

,v’ I \ / I \ 
+ ‘bXb I ” \ 

I A 
P PI I I PI ’ 

(a) 

/ =-T--‘-+ . \ I \ 
I 

\ \ v I A 

W 

Fig. 9 _ 

(d) 1706.49 



\ I 

-u 
U

 

i 



I 

(b) 

---- wee parton 

Fig. 11 



I . 

I 

P 

1706A12 

Fig. 12 

i’ 
i 



P,=P I 
PI P; / 

. 
f’, = (I-X,) P-k,, 

r . I b \ \ / k, =X, P+k,l 

kly, dk 4 P:’ -(l-X2)P+k2L 
j-q 

k27 ” 
k2 = -X2 P-k,, 

0 / 0 
k=XP-k,, X-h 

L 0 / 7 
P2 p =- 

p: 

b P;=(I-X,-X) P-(k,L+kl) 

=-+X,-X) P+!k21+kl) 

l706A13 

Fig. 13 



I . 

P,=X,P+k,,- 

q P[=X,P-aip+k,-q, 

k=W,+q, 

1706A14 

Fig. 14 

I.4 . 



-32 

-33 - 
CLI 
\u 
z -34 
-? 

75 -35 

3 
5 

-37 

-3E I - 

-39 i I I I I 
t+, 

I 
0 I 234567 

a - mp,u(GkV/c2) 

- I I I I I I 

t 

t 

1706A15 

Fig. 15 



1706A16 

Fig. 1tL 


