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1 Introduction

Models with a warped extra dimension, also called Randall-Sundrum (RS) models [1-4],
in which all Standard Model (SM) fields are allowed to propagate in the bulk, offer natural
solutions to many outstanding puzzles of contemporary particle physics. In addition to pro-
viding a geometrical solution to the hierarchy problem related to the vast difference between
the Planck scale and the electroweak (EW) scale, they also allow to naturally generate hier-
archies in fermion masses and weak mixing angles [5, 6], suppress flavour changing neutral
current (FCNC) interactions [7-9], construct realistic models of EW symmetry breaking
(EWSB) [10-15] and achieve gauge coupling unification [16, 17].



The question then arises whether some imprints of this new physics scenario could be
in the reach of the LHC, while satisfying all existing experimental constraints, coming in
particular from EW precision tests, from the data on FCNC processes in both quark and
lepton sectors and also the data on the very highly suppressed electric dipole moments (for
recent reviews, see [18-20]).

A necessary, though not always sufficient, condition for direct signals of RS models
at the LHC is the existence of Kaluza-Klein (KK) modes with O(1TeV) masses. Early
studies of EW precision observables (EWPO) [10, 21] have shown that with the SM gauge
group in the bulk such low masses of KK particles are inconsistent in particular with the
bounds on the oblique parameter 7" and the well-measured Zbrby, coupling.

In a number of very interesting papers [10-15, 22] these two obstacles have been basi-

cally overcome by enlarging the bulk symmetry to
Gpuk = SU(3). x SU(2), x SU(2)r x U(1)x X Prgr (1.1)

and enlarging the fermion representations, so that the discrete left-right symmetry Prg,
exchanging SU(2);, and SU(2)g, is preserved. The presence of the additional gauge group
SU(2)r implies the existence of an unbroken custodial SU(2) symmetry in the Higgs sec-
tor, so that tree level contributions to the T parameter can be safely neglected. The
Pr.r symmetry and the related enlarged fermion representations eliminate the problematic
contributions to the Zbrby, coupling.

Interestingly, the presence of new light KK modes necessary to solve the “Zbyby, prob-
lem” implies significant contributions to the T' parameter at the one loop level [23]. However
with an appropriate choice of quark bulk mass parameters, an agreement with the EW pre-
cision data in the presence of light KK modes can be obtained [24, 25]. In fact, while the
masses of the KK gauge bosons are forced to be at least (2 — 3) TeV to be consistent with
the data on the oblique parameter S, fermionic KK modes with masses even below 1 TeV
can be made consistent with the measured EWPO.

The suppression of FCNC transitions to an acceptable level in the presence of light
KK modes turns out to be much more challenging if the hierarchy of fermion masses
and weak mixings is supposed to come solely from geometry so that the fundamental 5D
Yukawa couplings are anarchic. In fact, recent studies demonstrate that in this case the
data on the CP-violating parameter ex imply a lower bound on the lightest gauge KK
modes in the ballpark of 20 TeV [26, 27|, the corresponding bound from p — ey is above
10TeV [28, 29]! and even stronger bounds come from electric dipole moments [8, 31].
Moreover it has been pointed out in [32] that the flavour problem in these models becomes
even more serious when ex and B — X,y decays are considered simultaneously. Note
however that the bound in question can be somewhat relaxed by appropriately chosen
brane kinetic terms [26] and/or by allowing the Higgs boson to propagate in the bulk [32].

In view of this situation a number of proposals has been made in order to overcome
these “FCNC problems” of RS models that are directly related to the breakdown of the
universality of gauge boson-fermion couplings implied by the geometric explanation of

!"'We would like to mention that this bound can be avoided by new choices of lepton representations [30].



the hierarchical structure of fermion masses and mixings. This breakdown implies the
violation of the GIM mechanism [33] and consequently tree level FCNC transitions that
are inconsistent with the data for light KK scales, provided that anarchic 5D Yukawa
couplings are chosen and the relevant couplings are O(1).

In [34] a class of RS models has been considered that makes use of bulk and brane
flavour symmetries in order to prevent the theory from large FCNCs. It has been shown
that if flavour mixing is introduced via UV brane kinetic terms, the GIM mechanism is
realized and a minimal flavour violating (MFV) model [35-39] can be obtained. However,
the natural explanation of fermionic hierarchies had to be abandoned in that setup. A
different strategy has been followed in [40], where the field theoretical concept of MEFV
has been promoted to the 5D theory, i.e. the bulk mass matrices are expressed in terms
of the 5D Yukawa couplings. Low energy flavour violation can be further suppressed by
a single parameter that dials the amount of violation in the up or down sector. If this
parameter is ensured to be small, no flavour or CP problem arises even with KK masses as
low as 2 TeV. A more thorough analysis, including the presentation of a possible dynamical
origin of such a model, has been given in [41]. Another economical model based on a U(3)4
bulk flavour symmetry has been proposed in [42]. Here the right-handed down quark bulk
masses are enforced to be degenerate, so that the contributions of the Qg operator to e
are generated only by suppressed mass insertions on the IR brane. A recent approach [43]
presents a simple model where the key ingredient are two horizontal U(1) symmetries. The
SM fields are embedded into the 5D fields motivated by protecting Zbr,br. The horizontal
U(1) symmetries force an alignment of bulk masses and down Yukawas which strongly
suppresses FCNCs in the down sector. FCNCs in the up sector, however, can be close to
the experimental limits.

In two recent papers [27, 44] we took a different strategy and investigated to which
extent a hierarchy in the 5D Yukawa couplings has to be reintroduced in order to achieve
consistency with the existing data on FCNC processes in the presence of KK modes in
the reach of the LHC. In particular in [27] we have demonstrated that there exist regions
in parameter space with only modest fine-tuning in the 5D Yukawa couplings involved
which allow to obtain a satisfactory description of the quark masses and weak mixing
angles and to satisfy all existing AF = 2 and electroweak precision constraints for scales
Mgk =~ 3TeV in the reach of the LHC. As the dominant part of the observed hierarchy in
masses and mixings is still explained through the AdSs; geometry, the resulting hierarchies
are significantly milder than in the SM and other usual 4D approaches.

Subsequently, confining the numerical analysis to the regions of parameter space al-
lowed by AF = 2 observables and with only modest fine-tuning, we have presented in [44]
a complete study of rare K and B meson decays including Kt — ntvp, K; — 7°
Kp — 7% K, — putp~, Bsg — ptu~, B— Kvi, B— K*vi and B4 — X qvi.

In this context it should be emphasised that the presence of FCNC transitions already

v,

at the tree level in the model in question, as opposed to the MSSM and Little Higgs models,
necessarily implies other patterns in CP-violating observables and rare decay branching
ratios. In particular in RS models not only non-MFV interactions are present, like for
instance in the Little Higgs models with T-Parity, but also new operators become important



that are strongly suppressed in the latter. As found in [27, 44] such new contributions lead

to interesting deviations from the SM and in particular from models with Constrained

MFV [35, 36, 45] in observables that are still poorly measured and which allow for large

new physics contributions.

The main results of [27] can be briefly summarised as follows:

The EW tree level contributions to AF = 2 observables mediated by the new weak
gauge boson Zp, while subleading in the case of ex and AMk, turn out to be of
roughly the same size as the KK gluon contributions in the case of By, physics
observables.

The contributions of KK gauge boson tree level exchanges involving new flavour and
CP-violating interactions allow not only to satisfy all existing AF = 2 constraints
but also to remove a number of tensions between the SM and the data, claimed in
particular in e, Syxy and Sye [46-49)].

Interestingly the model allows naturally for Sys as high as 0.4 that is hinted at by
the most recent CDF and D@ data [50-52] and which is by an order of magnitude
larger than the SM expectation: (Sye)sm =~ 0.04.

The Prr symmetry implies automatically the protection of flavour violating Z dichjL
couplings so that tree level Z contributions to all processes in which flavour changes
appear in the down quark sector are dominantly represented by Z d%c& couplings.

However, the tree level Z contributions to AF = 2 processes are of higher order in
v/Mxkxk and can be neglected.

On the other hand the main messages from [44] are as follows:

New physics contributions to rare K and B decays, as opposed to AF = 2 transi-
tions, are governed by tree level contributions from Z boson exchanges (dominated
by ng%dg% couplings) with the new heavy electroweak gauge bosons playing a sub-
dominant role.

Imposing all existing constraints from AF = 2 transitions we find that a number
of branching ratios for rare K decays can differ significantly from the SM predic-
tions, while the corresponding effects in rare B decays are modest. In particular the
branching ratios for K;, — 7'vv and Kt — 7tvw can be by a factor of three and
two larger than the SM predictions, respectively. The latter enhancement could be
welcomed one day if the central experimental value [53] will remain in the ballpark
of 15- 10~ and its error will decrease.

However, it is very unlikely to get simultaneously large NP effects in rare K decays
and Sy, which constitutes a good test of the model.

Sizable departures from the MFV relations between AM; 4 and Br(Bsg — ptp)
and between Sy, and the K — 7 decay rates are possible.



e The pattern of deviations from the SM differs from the deviations found in the LHT
model [54].

It is interesting that in spite of many new flavour parameters present in this model a
clear pattern of new flavour violating effects has been identified in [27, 44]: large effects
in AF = 2 transitions, large effects in AF = 1 rare K decays, small effects in AF =1
rare B decays and the absence of simultaneous large effects in the K and B system. This
pattern implies that an observation of a large Sy, asymmetry would in the context of this
model preclude sizable NP effects in rare K decays. On the other hand, finding Sy, to be
SM-like will open the road to large NP effects in rare K decays, even if such large effects
are only a possibility and are not guaranteed. On the other hand, an observation of large
NP effects in rare B decays would put this model in serious difficulties.

In [27, 44] only a brief description of the RS model in question has been presented
as only gauge boson exchanges were relevant at the tree level. In particular details on
the fermion sector have not been presented there. For the subsequent phenomenological
studies like the b — sy and g — ey transitions it is of interest to have a more detailed
presentation which is the main goal of our paper. We formulate a particular RS model
based on the bulk gauge group Gy in (1.1) and having appropriate quark representations
in order to avoid tensions with EWPO. We work out the general structure of the gauge
and fermion sectors, discuss the new sources of flavour violation, and we give a collection
of Feynman rules? that can be used to calculate all observables of interest. In fact a subset
of the Feynman rules presented here has already been used in [27, 44].

Throughout our analysis we follow the perturbative approach, i. e. we first solve the 5D
equations of motion and perform the KK decomposition in the absence of EWSB, as also
done e.g. in [55, 57] and then treat the Higgs vacuum expectation value (VEV) as a small
perturbation that induces mixing among the various modes. The complementary approach,
solving the equations of motion already in the presence of EWSB, has been followed e. g.
in [58-61]. Recently, a very detailed theoretical discussion of the latter approach has been
presented in [62]. In appendix C.2 we show that both approaches are indeed equivalent;
for an independent discussion see also [63].

The present paper is organised as follows. In section 2 we present in detail the gauge
sector of the model and in particular the effects of EWSB. The final formulae for gauge
boson masses and mixings in the charged and neutral sectors are collected in appendix C.
Next in section 3 we set up the quark representations under the bulk gauge group. In
section 4, one of the main sections of our paper, we work out the flavour structure of the
quark sector. After a detailed discussion of quark mass matrices and Yukawa couplings
in the flavour eigenbasis we outline the diagonalisation of these matrices and study the
structure of weak neutral and charged currents. Subsequently the couplings of KK gluons
and photons are considered. This section forms the basis of the Feynman rules in the
quark sector that are collected in appendix D. We end this section by listing the sources
of flavour violation in this model, with the pattern of flavour violation, in particular in
AF =1 processes, governed by the custodial protection present in the model. In section 5

2 Some of these Feynman rules have already been presented in [55, 56].



we list the parameters of the model and present a useful parameterisation for the 5D
Yukawa couplings in terms of parameters accessible at low energies. In section 6 we discuss
one possible realisation of the lepton sector and present a dictionary that allows in a
straightforward manner to obtain the Feynman rules for the leptons from those of quarks.
We close the paper with a brief summary in section 7.

2 (Gauge sector

2.1 Preliminaries

We consider an SU(3). x SU(2)z, x SU(2)g x U(1)x x Prr gauge theory on a slice of AdSs
with the metric [1]
ds® = e_%yn,wdx“dx” —dy?, (2.1)

with the fifth coordinate being restricted to the interval 0 <y < L, and k ~ O(Mpy). In
order to simplify the phenomenological discussion in [27, 44] we chose to work with the
(+ — — — —) sign convention for the metric, i.e. 7,, = diag(1,—1,—1,—1). The gauge
bosons and fermions are allowed to propagate in the 5D bulk, while the Higgs field will be
localised on or near the IR brane (y = L).

In the electroweak sector, we consider the gauge symmetry [10, 11, 22]

0(4) X U(l)X ~ SU(Q)L X SU(2)R X PLR X U(l)X s (2.2)

where Ppp is the discrete symmetry interchanging the two SU(2) groups. This means for
instance that g;, = gr = ¢g. The gauge group (2.2) is broken by boundary conditions (BCs)
on the UV brane (y = 0) to the Standard Model (SM) gauge group, i.e.

UV brane
—_

SU(2)L X SU(2)R X PLR X U(l)X SU(Q)L X U(l)y . (23)

This breakdown is achieved by the following assignment of BCs?

Wi (++), Bu(++),
W}b%u(_—i_)a ZXM(_+)7

where the first (second) sign denotes the BC on the UV (IR) brane: + stands for a Neumann
BC while — stands for a Dirichlet BC. Furthermore a = 1,2,3 and b = 1,2. The fields B,
and Zx, are given in terms of the original fields W}?%“ and X, as follows:

Zxyu = CoS ng]%M —sing X, , (2.6)
B, = sin(ng# +cosp X, (2.7)

where
cos ¢ = J sing = X (2.8)

\ 92+ 9% 92+ 9%

3These BCs can be naturally achieved by adding a scalar SU(2)r doublet with Qx = 1/2 charge on the
UV brane, that develops a VEV vuy — oo (see [3, 61] for details).




Here, g and gx are the 5D gauge couplings of O(4) and U(1)x, respectively. Note that the
BCs for a gauge field V), imply automatically opposite BCs for its 5th component Vs. In
what follows we choose to work in the gauge V5 = 0 and 9,V* = 0.

The fields with (++) BCs have, in addition to the massive KK modes, zero modes
which are massless at this stage and are identified with the SM gauge bosons qu and By,
of SU(2)r, x U(1)y. The fields with (—+) BCs contain only massive KK modes.

Before EWSB the profiles of gauge boson zero modes along the extra dimension are
flat. The profiles of KK gauge bosons are given by [6] (see also appendix B for details)

) = S [ (T2 4 magys ()] 29

where Ji(z) and Y7 (z) are the Bessel functions of first and second kind, and explicit expres-
sions for by (m,,) and N,, can be found in appendix B. The bulk masses are approximately
given by [6]

1
m%auge ~ (TL _ Z) Tke kL (n =1,2,... ) (210)

for the modes with a + BC on the IR brane that we are presently interested in. The
accuracy of this approximate formula improves significantly with increasing n, hence for
the first KK modes it is safer to work with the exact KK masses. These can be found
numerically to be

m§* (++) ~ 2.45f = M, (2.11)

for gauge bosons with (++) BCs, and
m§™(—+) ~2.40f = M_ (2.12)

for gauge bosons with (—+) BCs. Here we have introduced the effective new physics
scale f = ke " and set e *' ~ 10716 in order to solve the hierarchy problem. The
~ 2% suppression in the latter case is a direct consequence of the different BC on the UV
brane [55]. Note that the KK masses for the gauge bosons depend neither on the gauge
group nor on the size of the gauge coupling, but are universal for all gauge bosons with
the same BCs. Only after EWSB, the weak KK gauge boson masses will receive small
additional corrections. As can easily be seen from (2.9), the gauge KK modes are localised
near the IR brane.
To further proceed it will be useful to follow [55] and define the fields

WLlu T inu B Wll%u T iW%M

+ +
Wi, = N b= N (2.13)
and
Z, = cosp W}, —sing B, , (2.14)
A, = siniﬁWgM +cosy B, , (2.15)

where again sin ) is given in terms of gauge couplings (see (2.8) for the definition of ¢)
1 sin ¢

—_— sinyY) = ———.
/1 +sin? ¢ /1 +sin? ¢

cos ) = (2.16)



Because of the mixing between the various gauge boson zero and KK modes sin 1) # sin Oy,
but corrections appear first at order O(v2/f?). Their impact on EW precision studies is
beyond the scope of this paper and will be studied elsewhere.

We note that the above relations can be modified by the presence of additional gauge
kinetic terms on the UV and IR branes, that are allowed by the symmetries of the model.
In order not to complicate our analysis, we will neglect such terms and work exclusively
with the action given in appendix A. A generalisation of our results to include also the
effects of possible brane terms is straightforward. In section 4.5.7 we comment on the

effects of such terms on flavour phenomenology.

2.2 Electroweak symmetry breaking

As discussed in the previous section, the bulk gauge symmetry Gy in (1.1) is broken to
the SM gauge group

Guv =SU(3), x SU(2)r x U(1)y = Gsm (2.17)

by means of the BCs of the EW gauge bosons on the UV brane. In order to achieve the
standard EWSB, SU(2),, x U(1)y — U(1)g, a Higgs boson is introduced that is localised
either on or near the IR brane, transforming as a self-dual bidoublet of SU(2)z x SU(2)r

B at/v2  —(hY —inY)/2
i = ((h0+m0)/2 /2 ) ’ (2.18)

and being a singlet under U(1)x, Q@x(H) = 0. In the case of a 5D Higgs field living in the
bulk, the whole bidoublet has to obey (++) BCs in order to yield a light zero mode.

When its neutral component h° develops a 4D effective VEV, on or near the IR brane
the symmetry breaking

SU(Q)L X SU(Q)R X PLR — SU(2)V X PLR (2.19)

takes place. We see explicitly that in the Higgs sector of the theory an unbroken custo-
dial symmetry SU(2)y remains, being responsible for the protection of the T' parameter.
Similarly the Prr symmetry, protecting the Z d’);cii coupling, remains unbroken.
Combining then the symmetry breakings by BCs on the UV brane and by the Higgs
VEV in the IR, we see that the low energy effective theory is described by the spontaneous
breaking
SU2), x U(1)y — U(1)g, (2.20)

as required by phenomenology. The symmetry breaking structure of the model is displayed
in figure 1.

Now due to the unbroken gauge invariance of QED and QCD, the gluon and photon
fields including their KK modes do not couple to the Higgs boson at leading order in

perturbation theory and hence do not mix with each other or with Z,SO), Z,(}) and Z;L and
the higher KK modes of Z and Zx. Therefore, even after EWSB
My =0, Myoy = My, (2.21)
Mg =0, Meay = My, (2.22)



SU©2);, x SU(2)r
XPLR X U(l)x

SU@2)y x U(1)x
XPLR

SU(Q)L X U(l)y

Planck brane TeV brane

Figure 1. EW symmetry breaking pattern of the RS model with custodial protection.

and the corresponding states remain mass eigenstates. On the other hand the kinetic term
for the Higgs field (see appendix A)

L
SHiggs = / d'z / dy VG Tr [(DMH(xﬂ,y))T(DMH(xﬂ,y)) (2.23)
0

leads to v?-corrections to the masses of Wg}?i, WEBi and W}(%Bi as well as of ZLO), ZE)

and Zﬁfl;)u and mixing between states of the same electric charge is induced. Here

1

H(z",y) = —=H (z")h(y) + heavy KK modes, 2.24
(=", y) Ni7 (@")h(y) y (2.24)

where h(y) is the Higgs shape function along the extra dimension. We assume h(y) to be

of the form

h(y) = \/2(8 — 1)kL " ePFu=L) (3> 1) (2.25)

where in the limit 3 — oo the case of an IR brane localised Higgs is recovered. The case

of a bulk Higgs has first been considered in [64, 65]. Furthermore

a0 —v/2
(H(x >>—<U/2 ' ) (2.26)

and v = 246 GeV denotes the effective 4D VEV of the zero mode of h° in (2.18).

Restricting the discussion to n = 0,1 for simplicity, the gauge boson interactions with



the Higgs resulting from (2.23) lead to two mass matrices /\/lgharged and M? [55]

neutral

wO-
0)+ (1)+ (1)+ 2 %1)7
<W£ WL WR ) Mcharged W[(/ : ) (2'27)
1)—
WR
7(0)
1
5 (20 20 29) M | 29| (2.28)
71
X
with Mgharged and Mieutral given explicitly in appendix C.
In order to determine the physical mass eigenstates and the corresponding masses,
Mgharged and Mr%eutral have to be diagonalised by means of orthogonal transformations:
Gw Mgharged gij/;/ = diag(Mi%V’ MI%VH’ Mi%[//) ) (2'29)
Gz M?leutral gg = diag(M%, M%Hv M%’) . (2'30)

The mass cigenstates (W*, Wﬁ, W'%) and (Z, Zy, Z') are then related to the gauge eigen-
states of the KK modes via

W W 0= Z AQ

Wi | =Gw [ W) | Zy | =6z |29 . (2.31)
1

WwE Wél)i 7! Zg()

The explicit form of the orthogonal matrices Gy and Gz can be found in appendix C.

3 Fermion sector — quarks

3.1 Preliminaries

In order to preserve the O(4) ~ SU(2)z x SU(2)r x Prr symmetry, that is necessary for the
suppression of dangerous contributions to EW precision observables [10, 11, 14, 15, 22, 23],
we will choose a particular simple set of representations of the O(4) group. Although
in order to satisfy EW precision measurements only the third quark generation needs to
preserve the Prp symmetry, the incorporation of CKM mixing requires the same choice of
O(4) representations also for the first two quark generations. This is crucial for having a
custodial protection for the flavour violating couplings Z d’);cii [44] as well.

In this section we restrict our attention to the quark sector of the model. The lepton
sector will be discussed separately in section 6.

The particular fermion assignment given below has been motivated by the analyses
of [13-15, 23, 66]. In particular the representations given below can easily be embedded
into complete SO(5) multiplets used in [14, 23, 66] in the context of models with gauge-
Higgs unification.

,10,



We introduce three O(4) multiplets per generation (i = 1,2, 3):

X7 (=+)2/3 47 (++)-1/3 23
Er = ugr(++)23 (3.2)
‘ ‘ ' Ui(=+)s/3 Ui (=+)s/3
§sp = T3 ® Tip = Uﬁ(—+)2/3 ® Uﬁl(—Jr)z/s - (3.3)
D (=+)-1/3 2/3 Dy(++)-1/3 2/3
The corresponding states of opposite chirality are given by
g = Xﬁ( _)5/3 %l? (__ )2/3 ’ (3.4)
Xp(+=)23 a5 (=—)-1/3 2/3
& = up(——)ays (3.5)
‘ ' ‘ ¢Z(+—)5/3 ZZ:(+—)5/3
S, = T3, Ty = | Uf(+-)2y3 SH ng(+_)2/3 : (3.6)

D,IZ;(+_)71/3 2/3 Di(==)-13 9/3
The following comments are in order:
e All fields in (3.1)—(3.6) are triplets under SU(3), i.e. they carry QCD colour.

e &, and &, are bidoublets of SU(2);, x SU(2)g, with SU(2);, acting vertically and
SU(2)r horizontally.

e u} and ul, are singlets of O(4).

. T:;L,R ) TiL,R transform as (3,1) @ (1,3) under SU(2);, x SU(2)g. The embedding
of the right-handed down-type quarks into triplet representations (1,3) is necessary
in order to allow for a U(1)y invariant Yukawa coupling.

e The charges Qx assigned to the various multiplets are U(1)x charges.
e The charges () assigned to separate fields are electric charges, given as
Q=T +Th+Qx, (3.7)

where T} and T denote the third component of the SU(2);, and SU(2)p isospins,
respectively.

e Only the fields obeying (4++) BCs have massless zero modes. Up to small mixing
effects with other massive modes due to the transformation to mass eigenstates dis-
cussed in section 4, these zero modes can be identified with the usual SM quarks.
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e The remaining fields are KK modes with approximately vectorlike couplings. We
thus have in this model additional heavy fermionic states. These are

Q=5/3: XUi(n), wli(n),w//i(n) ’
Q=2/3: g4 (") i) grrit) grin) o din)

where n =1,2,....
e Left- and right-handed fermion fields are defined via 91, r = 212751/@7 R

3.2 KK decomposition and bulk profiles
3.2.1 Zero modes

The profiles of left-handed fermionic zero modes with respect to the flat metric are given
by [5, 6]

(1 —2¢)kL

(0)
(y,0) = o(1—20)kL _ |

ez=ky (3.11)
where ck is the bulk mass of the 5D fermion field. In the case of right-handed zero modes,
¢ has to be replaced by —c in the above formula and in the discussion following below. We
note that

e For ¢ > 1/2 the normalisation factor in (3.11) is O(1) and féo) (y, c) is peaked around
y = 0, i.e. fermions with bulk mass parameter ¢ > 1/2 are placed close to the UV
brane.

e For ¢ < 1/2, as is the case of the top quark, the second term in the denominator
of (3.11) can be neglected and we obtain

y,¢) ~ /(1 — 2)kL elz—0kw~L) (3.12)

Thus the shape function is strongly peaked towards y = L, i.e. the IR brane.

e One should stress that generally the cj, and cp of left- and right-handed SM fermions
can differ from each other, as these fermions are zero modes of different 5D represen-
tations. As both ¢y, and cp enter the formula for the Yukawa couplings and fermion
masses, this freedom can help to satisfy certain features in EW precision studies [13—
15, 23] and in flavour physics [8, 62] while keeping the fermion masses of their natural
size. This is in particular relevant for the third quark generation.

3.2.2 KK modes

The shape functions for fermionic KK modes with respect to the warped metric are given
by [6] (see also appendix B for details)

Ty, ¢, BC) = ej\y,ﬁ J (%d@) + bo(mn)Ya (%ekyﬂ , (3.13)
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where a = |¢ +1/2| for left-(right-)handed modes, and expressions for N,, and b,(m,,) can
be found in appendix B. The KK masses are approximately given by

mffrmion ~ (’I’L + % (

where the F sign corresponds to a + BC for the left-handed fermion on the IR brane. Again,

2

c+1'—1)¢§)wf, (3.14)

as in the case of gauge KK modes, the accuracy of (3.14) improves with increasing n.
The following comments are in order [4, 6]:

e The bulk mass parameter c is universal for the full tower of KK modes and equal to
the ¢ describing the localisation of the zero mode if such mode exists.

e In spite of the same ¢ even for ¢ > 1/2 the form of (3.13) implies that all KK modes
are localised near the IR brane. There is no freedom to delocalise the massive KK
modes away from the IR brane, as was the case for the zero mode.

3.3 Yukawa couplings and fermion masses

The SM fermions acquire masses via their Yukawa interactions with the Higgs in the process
of electroweak symmetry breaking. The effective 4D Yukawa matrices Y;; are then given by

L dy i j
Vo [ £ ) 1 ) (3.15)

where );; is the fundamental 5D Yukawa coupling and h(y) is the Higgs shape function
along the extra dimension, as given in (2.25).

We stress that together with h(y) from (2.25) the fermionic zero mode functions with
respect to the warped metric, as given in (B.13), have to be used in order to determine the
effective 4D Yukawa couplings Y;; in (3.15).

In the special case of an IR brane localised Higgs we obtain

Y;; o #;JVJR e(1—cp+ep)kL (3.16)
where N; 1, N; g are normalisation factors of the fermion shape functions on the IR brane.
We note that in this case, up to \;;, Y;; has a factorised form, as emphasised in [7]. In the
more general case of the Higgs field propagating in the bulk this factorisation is broken,
but only weakly for a large range of ¢}, 07}% [67].

On the other hand we stress that in the presence of non-diagonal entries of \;;, the
factorisation must always be broken as not all entries of A\;; can be equal. Indeed this special
choice of 5D Yukawa couplings would lead to two zero eigenvalues of the corresponding
mass matrix. In addition some non-degeneracy between the entries of );; is needed to cure
the “|Viyp| problem” identified in [7]. Indeed this is completely analogous to the case of
the Froggatt-Nielsen flavour symmetry [68], where also a slight structure in the Yukawa
coupling matrices is needed to obtain the correct size of |Vy;5|. A detailed discussion of the
close analogy between the Froggatt-Nielsen mechanism and bulk fermions in RS models
has been presented in [27].
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4 Flavour structure

4.1 Preliminaries

The flavour structure of this class of models is rather complicated, although as emphasised
by Agashe et al. [8] in certain approximations it is quite simple. For the time being we will
however not make any approximations.

The procedure to find all interactions including flavour violating ones is basically the

following;:

Step 1. We begin with the interaction terms in Leermion and Lyyk in (A.1) in terms of
flavour eigenstates for fermions and in the gauge eigenbasis for the gauge bosons.

To this end we start with the fundamental 5D interactions and then perform the KK
decomposition as described in appendix B. We thus obtain effective 4D couplings
that are non-local quantities along the extra dimension, resulting from the overlap of
the gauge boson and fermion shape functions. Schematically the interactions between
different KK levels (k,m,n =0,1,...) are given by

L
g m n
G = 3 /0 dy e £y, ¢) ) (g, €) Fe ). (4.1)

Note that only fermions within the same gauge multiplet are coupled to each other in
this way, so that their bulk mass parameters are necessarily equal. In the Feynman

rules collected in appendix D these overlap integrals appear as R, P and S.

As the gauge boson zero mode has a flat shape function, the coupling for equal
fermion KK levels kK = m to the gauge boson zero mode n = 0 reduces to the 4D
gauge coupling g/ VL, while the integrals with k& # m vanish due to the normalisation
of the fermion shape function. In the same way, couplings of different fermionic KK
levels to the gauge boson zero mode (n = 0) vanish due to the orthogonality of the
fermion shape functions. However, due to the effects of EWSB, the EW gauge boson
zero mode mixes with its KK modes, so that eventually flavour non-universalities in
the couplings of the SM weak gauge bosons and non-zero couplings between various
KK levels will arise.

A different treatment of the effects of EWSB on the gauge boson zero modes has been
discussed in [58-60]. In their description the Higgs VEV is inserted already at the
level of the 5D equations of motion, which leads to a distortion of the gauge boson
zero mode in the vicinity of the IR brane. On the other hand no mixing between the
various KK levels appears. In appendix C we review both approaches in detail, study
their advantages and shortcomings and show that both interpretations are indeed

physically equivalent. A similar independent discussion has been presented in [63].

Step 2. Next we have to consider the mass matrices of gauge bosons and fermions. Here

the new aspects relative to the SM are

e in the gauge sector:
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— The extended gauge group SU(2)7, x SU(2)g x U(1)x leads to the presence
of additional (heavy) gauge bosons.

— In addition, also the heavy KK modes of the SM gauge bosons, including
also gluons and the photon, are present.

— EWSB induces mixing of the SM zero modes with the additional heavy KK
modes of the same electric charge.

e in the fermion sector:

— The enlarged fermionic representations imply the presence of new heavy
fermions that could be much lighter than the gauge KK modes [14, 15].

— Also the heavy KK modes of the SM fermions have to be considered.
— Again mixing of the SM zero modes with the heavy KK states is induced.

Step 3. Finally all interactions have to be rewritten in terms of mass eigenstates for gauge
bosons and fermions. Therefore the corresponding mass matrices need to be diago-
nalised. Note that mixing takes place not only between different flavours, but also
between different KK levels. As the new physics scale f is experimentally con-
strained to be f 2 1TeV, within a good approximation it is sufficient to consider
only the contributions of n = 0,1 modes and neglect all higher KK levels. Therefore
in what follows we restrict our discussion to this simplified case. The generalisation
of our formulae to include also higher KK modes is then straightforward.

4.2 Quark mass matrices

The transformation to mass eigenstates in the gauge sector is performed in section 2 and
appendix C. The goal of the present section is to construct and diagonalise the mass ma-
trices for the quark fields given in (3.1)—(3.6). To this end we will only consider zero modes
and the lowest (n = 1) KK modes. As there are only few fields among the ones in (3.1)—
(3.6) that have zero modes, we will assign to them the superscript (0). For the excited KK
modes we will just use the notation of (3.1)-(3.6), making the n = 1 index implicit.

We will have to deal with three mass matrices corresponding to the electric charges
+5/3, +2/3 and —1/3. To this end we group the fermion modes into the following vectors:

For the +5/3 charge mass matrix we have

T

Up(5/3) = (XU (=), (+=), 0 (+ )T (4.2)
Ug(5/3) = (% (+=), Wa(—+), Wl (=) (4.3)

where the flavour index ¢ = 1,2,3 runs over the three quark generations. Thus we deal
with 9-dimensional vectors. Note that in this sector only massive excited KK states are
present.

4This should be contrasted with models with flat extra dimensions where the presence of KK parity has
eliminated such mixing. For a recent attempt to introduce KK parity in the RS framework, see [69].
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For the charge +2/3 mass matrix the corresponding vectors read

u;(0) u; /i " d; i T
W(2/3) = (450 (), g (0L UE ) U () (b () ()
Wi(2/3) = () (44), 4 (—), UR(—+), UE () X () (+0) - (49)

Here the first components are zero modes, and ¢ = 1,2,3 so that we really deal with
18-dimensional vectors.

The —1/3 charge vectors read

W (-1/3) = (g O (). (). D (+-). () . (4.6)
Wi(-1/3) = (DR (+4), 4 (—), Dip(—+), Di(++) (4.7)

Again the first entries are zero modes, the remaining ones massive KK modes, and i =
1,2, 3, so that in this case a 12-dimensional vector is obtained.

In order to construct the mass matrices let us briefly recall certain properties, known
already from numerous studies in the literature:

1. We have three bulk mass matrices ¢y, c2, ¢3 corresponding to the O(4) representations
ghel ¢l (i = 1,2,3 is the flavour index), respectively. Note that for a given O(4)
multiplet with fixed flavour index all bulk mass parameters for different components
of the multiplet are equal to each other.

2. In general, ¢ are arbitrary hermitian 3 x 3 matrices, where k = 1, 2, 3 corresponds to
the O(4) multiplet . In the following we choose to work in the basis where they are
real and diagonal, i.e. each of them is described by three real parameters c};, where
i is the flavour index. This can always be achieved by appropriate field redefinitions
of the ¢ multiplets. Explicitly we then have:

= diag(c%, C%a C?) ) (4.8)
and similarly for ¢o and cs3.

3. The allowed Yukawa couplings, giving mass to the fermion zero modes after EWSB,
have to preserve the full O(4) ~ SU(2); x SU(2)r x Prr gauge symmetry. The
possible gauge invariant terms in the full 5D theory can be found in appendix A.

4. The effective 4D Yukawa matrices will involve the fermion and Higgs shape functions.
We will denote the fermionic ones by fg x(y) and fg ;(y), corresponding to the k-th

and [-th component of V7,(Q) and V(Q) in (4.2)—(4.7), respectively, and h(y) is the
Higgs shape function as given in (2.25).
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Having at hand this information and restricting ourselves to n = 0,1 for simplicity,
we obtain the following effective 4D Yukawa couplings

:Yig‘S/g):kl = \/523/2 /OL dy M1 ) ol ) dy) (4.9)
V) = o [ R ), (4.10)
700 = o [ o), (411
[Yig’il/s):kz B \/523/2 /OL dy A%fg,i/g(y)fﬁ}/g(y)h(y)- (4.12)

glj, connecting &) with 5% and

being thus responsible for the SM down quark Yukawa coupling, leads to mass terms

Interestingly, the Yukawa coupling proportional to A

not only for the charge —1/3 quarks, but simultaneously also to mass terms for the
+5/3 and +2/3 quarks. This is a direct consequence of T3 and T} being placed in the
adjoint representations of SU(2);, and SU(2)g, respectively, as seen in (3.3), (3.6).

u
K
thus responsible for the SM up quark Yukawa coupling, contributes only to the mass

On the other hand, the term proportional to A%, connecting & with §§ and being

matrix for the charge +2/3 quarks.

5. Finally the fermionic KK masses, which can be obtained from solving the bulk equa-
tions of motion, have to be included in the mass matrices. Note that both the
fermion shape function and the KK mass depend on the bulk mass parameter ¢ and
on the BCs.

In what follows we will use the 3 x 3 KK fermion mass matrices MF¥(BC-L), where
k = 1,2,3 labels the representations in (3.1)—(3.6), and (BC-L) are the BCs for the
left-handed mode.

In terms of the mode vectors (4.2)—(4.7) we can write

Linass = —V1(5/3) M(5/3) ¥ g(5/3) + h.c.
—W(2/3) M(2/3) YR (2/3) + h.c.
~Up(=1/3) M(=1/3) ¥R (—~1/3) + h.c.. (4.13)

In order to distinguish zero modes from the KK fermions we will label the zero mode
components of the vectors (4.2)—(4.7) by the index 0. Then the quark mass matrices read

KK Y(5/3) Y(5/3)
M (=) v[ i }12 —v[ i ]13
/317 KK
M(5/3) = v [Yij ]2 M3 (+-) 0 , (4.14)

_ (5/3) KK/,
U{Yij }31 0 Mz (+-)
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v [yigz/s)] 0 _v {Yigg/s)} ; Yigg/s)} 0 o [T
~ 00 02 03 i 05
v |:Y;§2/3)] 10 MlI(K(++) Y [Y;gz/s)} 12 v [Y;gz/s)} 13 0 v [Y;gz/s)} 15
T T
0 ; Yigz/?))]; 0 MEK () U[Yifm]; 0 ,
.y {yfigz/s)LO 0 — {Yig‘wg)hz U[Yigz/s)Lg MEK(—4) —o {%2/3)]45
N T R
! [Yig_l/g)}oo 0 - [Yig_l/g) 02 " Yig_l/g)]ozs
o[V MR ) o [y ]
M(-1/3) = 0 Y {Y'(’_l/g)r MES (1) . . (4.16)
iJ T21 3
0wyl 0 MEK(—-)

These three matrices have to be diagonalised via a bi-unitary transformation to find
the quark mass eigenstates. Due to the large size of the mass matrices this diagonalisation
has to be done numerically.

Let us make a few remarks:

e The mass eigenstates of 5/3 charge are all heavy.

e In M(2/3) and M(—1/3) the off-diagonal entries in the first column and row lead
to mixing between light zero modes and heavy KK modes. This mixing will be
suppressed by O(v?/f?).

e In the case of the Higgs field being confined exactly to the IR brane, only Yukawa
couplings to those fermion modes are non-vanishing that obey a + BC on the IR
brane. In that case some of the entries in the above mass matrices in (4.14)—(4.16)

vanish:
M(5/3)21 = M(5/3)31 =0, (4.17)
M(2/3)21 = M(2/3)31 = M(2/3)51 = M(2/3)24 = M(2/3)34 = M(2/3)54 = 0,
(4.18)
M(=1/3)91 = M(~1/3)31 = 0. (4.19)

As pointed out in [27] and discussed in detail in [70], this difference has profound
implications on the size of flavour violating Higgs couplings.

We can then diagonalise the +5/3, +2/3 and —1/3 charge matrices by

Muiag(5/3) = X M(5/3) X, (4.20)
Maiag(2/3) = U M(2/3) U, (4.21)
Maiag(—1/3) = D}, M(~1/3) Dx. (4.22)
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The corresponding rotations of the ¥y, r vectors of fermion modes are

\I]L,R(5/3)mass = X;R \I]L,R(5/3) ) (423)
\DL,R(2/3)mass = UE,R \DL,R(2/3) ) (424)
\I]L,R(_l/?))mass = ’DLR \I’L,R(_1/3) . (4'25)

Note that X7, g, Uy, g and Dy, g are unitary 9 x 9, 18 x 18 and 12 x 12 matrices, respectively.

4.3 Weak currents

4.3.1 Neutral currents

)

Here we have to consider the currents involving the three gauge bosons Z(©, Z(1) and Z§(1
with the corresponding mass eigenstates Z, Zy and Z’ as defined in (2.31).

In order to simplify the presentation we first perform the rotation to mass eigenstates
in the gauge boson sector, as described in (2.31) and appendix C. The currents involving
the neutral gauge boson mass eigenstates Z, Zy, Z' and the quarks given still in the flavour
eigenstate basis are then given as follows:

Tu(Z) = U 1(5/3) 1A (2) 0L(5/3) + UR(5/3) 1, AN (2) WR(5/3)

+ 01 (2/3) 1 AY(Z) Wi (2/3) + UR(2/3) 7, A2 (2) UR(2/3) (4.26)

+UL(=1/3) AL (Z) UL(=1/8) + WR(=1/3) 7, A5 (2) Wr(=1/3)
and similarly for J,(Zg), J,.(Z').

The Ag r (Q = 2/3,-1/3,5/3) matrices are flavour-diagonal matrices and have di-
mensions 187>< 18, 12 x 12 and 9 x 9, respectively. With flavour-diagonal we mean that all
3 x 3 sub-matrices are diagonal. On the other hand some non-vanishing elements mixing
different fermions with the same flavour exist. The 3 x 3 sub-matrices are not proportional
to the unit matrix due to the universality breakdown in the gauge couplings. Indeed their
entries have the generic structure as in (4.1). However not all entries will differ from each
other as not all fermionic shape functions are different from each other. Recall that we
work in the basis where the bulk mass matrices ¢; are diagonal in flavour space. Explicit
expressions for the Ag p Matrices can easily be obtained from the Feynman rules given
in appendix D, that involve as usual gauge boson mass eigenstates but still quark flavour
eigenstates.

As c}; are flavour non-universal, non-universalities in the gauge couplings are generated
already at this stage and will remain after the rotation to the mass eigenbasis.

Let us then write the currents in the mass eigenbasis for fermions:

J(Z) = U1(5/3)mass 1By (Z) WL (5/3)mass
+ U R(5/3)mass T By (Z) WR(5/3)mass
+ U 1(2/3)mass 1By (Z) U1(2/3)mass
+ U R(2/3)mass 1B (Z) WR(2/3)mass
+ U (—1/3)mass 1B, 2 (Z) O 1.(~1/3)imass
+ Wp(

1/3)mass 1Br 2 (Z) WR(—1/3)mass » (4.27)
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with analogous expressions for J,(Zp) and J,(Z’). Then

5/3 5/3

BL{R(Z) = XE,R AL/,R(Z) XLR, (4.28)
2/3 2/3

BYR(2) = U} g AT 3(Z) sk, (4.29)
—1/3 _ —1/3

BLr (Z2) = DLrALk (Z) DLk, (4.30)

and similarly for Zy and Z’. Note that now all B matrices are non-diagonal also in
flavour space so that the neutral gauge bosons in question mediate FCNC transitions both
between different KK levels and between different flavours. Formula (4.27) and similar
expressions for J,(Zy) and J,(Z') summarise tree level weak FCNC transitions in the
model under consideration. Tree level FCNC transitions mediated by KK photons and
gluons are discussed in section 4.4.

4.3.2 Charged currents

Similarly to the case of neutral currents we first rotate from the gauge eigenstates W]EO),

WS), Wg) to the mass eigenstates W, Wy, W’ by means of (2.31) and the explicit expres-
sions in appendix C. Then

Ju(WH) = Ur(2/3) 1 Gr(WF) Or(~1/3) + Ur(2/3) 7, Gr(W ') Tr(~1/3)
+ U (5/3) 7, GrL(WH) UL (2/3) + Ur(5/3) vuGr(WT) Ur(2/3) + h.c., (4.31)

and similarly for Gr g(Wy), GL (W), Gr r(Wi), G r(W'F). Evidently the matrices
GL7R,C~¥L7R are not square matrices because the number of @ = +5/3, +2/3 and —1/3
quarks differ. In the model under consideration they are 18 x 12 and 9 x 18 matrices,
respectively. In addition the 3 x 3 diagonal sub-matrices are not proportional to the unit
matrix due to the non-universality of gauge couplings. Explicit expressions for the G g
and G 1,r Matrices can be obtained from the Feynman rules given in appendix D, that
involve as usual gauge boson mass eigenstates but still quark flavour eigenstates.

Moreover due to the mixing of the SM quarks with the additional heavy +2/3 and
—1/3 fields, effects of non-unitarity will appear in the 3 x 3 CKM matrix. Note that the
way we define the fields ¥ (2/3) and ¥ (—1/3) in (4.4) and (4.6), the standard CKM
matrix will eventually be the 3 x 3 sub-matrix placed in the upper left corner of the final
mixing matrix.

Our next step then is to go to the mass eigenbasis for the fermions. In this basis the
Grr(W, Wy, W"),Gr.r(W,Wg,W’) are replaced by

Hp p(WT) = ULR GLrR(W") DL g, (4.32)
Hyg(WF) = X nGLr(WH UL, (4.33)

and similarly for Wy, W’.
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Therefore the final expression for the charged currents in the mass eigenbasis is

Ju(WE) = WL(2/3)mass Y HL (W) W1 (—1/3)mass
+ U R(2/3)mass YuHR(W ™) U Rr(—1/3)mass
+ U L(5/3)mass Y HL(W ) UL (2/3)mass
+ UR(5/3)mass Yu HRW ) WR(2/3) mass + hec. (4.34)

and similarly for J,(W7) and J,(W'*). The CKM matrix is then given by

V2L

where HL(Wi)H denotes the upper left 3 x 3 sub-matrix of HL(Wi).

-1
Vekm = <L> HL(Wi)H , (4.35)

4.4 Photonic and gluonic currents

The photonic and gluonic currents mediating FCNCs are similar to the neutral electroweak
currents discussed above, but because of the absence of spontaneous symmetry breaking
in that case, the various KK modes do not mix with each other. Consequently only the
massive KK modes contribute to FCNC processes.

The massive photonic current reads

Ju(AW) = U1 5(Q) 1, AT (AM) UL r(Q), (4.36)

where () denotes the electric charge. The massive gluonic current, on the other hand, reads

THGCW) = Uy r(Q) 1ut* AT (G VL R(Q) (4.37)

where A =1,...,8 and we have made the QCD colour indices of the quark fields implicit.
Interestingly, in spite of the universality of the gauge boson shape functions, the matri-
ces AgR(Z(l)) and AgR(Zg(l)) are not proportional to A%,R(A(l)), AgR(G(l)) due to the
different fermionic representations of SU(2)r, x SU(2)g. However,

A7 R(GD) AT p(A)
Js Qe .

Although the SU(3). and U(1l)gp gauge symmetries remain unbroken, A% R(GW) and

Ag R(A(l)) do depend both on @ and on the fermion chirality due to the different fermionic
shape functions involved. After rotation to the fermion mass eigenbasis, the currents are

(4.38)

given by
JM(A(l)) - \I}L,R(Q)mass 'YuBgR(A(l)) \I/L,R(Q)mass ) (439)
and

THGW) = U1, R(Q) s Wit BE R(GY) UL R(Q), s - (4.40)

Again, the matrices Bg R(A(l)) and Bg R(G(l)) are proportional to each other. Their
relation to A%R(A(l)), A%R(G(l)) is given in (4.29) and (4.30). Explicit expressions for
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the Ag (GW) and Ag »(AW) matrices can be obtained from the Feynman rules given in
appendix D.

As due to the absence of spontaneous symmetry breaking in this sector the gauge
bosons are already in their mass eigenstates, the expressions (4.39) and (4.40) are already
the final expressions for the (massive) photonic and gluonic currents.

Because the matrices Bg r are non-diagonal in flavour space, G and AWM mediate
tree level FCNC processes.

4.5 Sources of flavour violation
4.5.1 Preliminaries

Due to non-universalities of the couplings of quarks to KK gauge bosons, implied by the
manner the hierarchies of masses and mixings are explained in this NP scenario, FCNC
transitions mediated by KK gauge bosons appear already at the tree level. The mixing
of the Z boson with the KK gauge bosons in the process of EWSB implies also tree level
Z contributions. Fortunately the model has a custodial protection symmetry not only for
the Zby by, coupling but as pointed out in [27] also for the Z dichjL coupling. Consequently,
the tree level Z exchanges in processes with external down-type quarks while implying
interesting effects in rare K and B decays [44] are not problematic. In particular no fine-
tuning is necessary to satisfy present constraints on the branching ratios of these decays.

The pattern of flavour violation in the present model goes far beyond the one of the
SM and also the one characteristic for models with MFV. There are new flavour violating
parameters in addition to the SM Yukawa couplings and the resulting CKM matrix, and
in particular new CP-violating phases. The counting of all these parameters is given in
the next section. Moreover, new operators contribute that are either absent or strongly
suppressed within the SM.

There are basically two main origins of these non-MFV effects:

1. The explanation of hierarchies of fermion masses through the differences of fermionic
bulk masses and shape functions leads to the non-universality of fermion-gauge in-
teractions and consequently FCNC transitions at tree level.

2. The requirement of consistency with the well-measured EWPO, including the Z —
brby, transition, brings in not only new heavy gauge bosons, but also new heavy
fermions. The presence of the latter and their mixing with the standard quarks
and leptons implies a small non-unitarity of the CKM matrix and consequently still
another source of tree level FCNC transitions. Moreover these new particles can
contribute at loop level to FCNC processes.

Let us briefly elaborate on all these effects.

4.5.2 Tree-level exchange of KK gluons and KK photons

As the zero and KK modes of gluons and photons do not feel EWSB, no mixing between
the various KK modes appears. Consequently the couplings of the zero modes remain
flavour conserving.
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On the other hand the shape functions of the gluonic and photonic massive KK modes
are peaked towards the IR brane. Consequently the different shape functions of light
fermions then imply flavour violating couplings of the fermion zero modes to the KK
gluons and photons, given by the overlaps of the respective shape functions. These are
summarised in (4.39) and (4.40). As we have seen, the explicit appearance of the new
flavour mixing matrices Uy g and Dp, g, that are unobservable in the SM and all other
MFV models, introduces new flavour violating parameters.

The exchange of massive KK gluons leads to tree level contributions to K° — K" and
Bg’ I Bg s mixings and non-leptonic decays discussed originally in [71] and in more details
recently in [26, 27, 74]. The massive KK modes of the photon contribute in addition also
to semi-leptonic decays such as B — X /T¢~ and K — 7007 (~ [44].

For the first two quark generations the universality of the couplings in question is
only slightly broken and tree level FCNC transitions are a priori suppressed. Moreover
the small overlap of the shape functions for these quarks, that are peaked towards the UV
brane, with the shape functions of the KK gauge bosons, peaked towards the IR brane,
suppresses the relevant gauge couplings. This so-called RS-GIM mechanism [8] helps to
suppress FCNCs in the K meson system, but still does not eliminate severe constraints on
the model from e [26, 27], in particular when tree level contributions from KK gluons are
involved. These effects are also present in processes involving the third quark generation,
where the universality breakdown is stronger. On the other hand, also the experimental

constraints are weaker in that case.

4.5.3 Tree level exchanges of Z, Zy and Z’

Flavour violation is more involved in this case because of the spontaneous breaking of EW

symmetry that introduces

e mixing between Z(© and the KK modes Z() and Zg(l),

e mixing between SM fermions and KK fermions.

Concerning the first effect, even if the Z(9) gauge boson does not mediate any FCNCs before
EWSB, such transitions are mediated by the Z(1) and Zg(l) due to their non-universal cou-
plings to light fermions. The mixing of Z(©) with Z() and Zg(l) in the process of EWSB then
implies that the light mass eigenstate Z does indeed mediate tree level FCNCs, and, to-
gether with Zz and Z’, can in principle have a significant impact on rare FCNC processes.’

Now, our detailed study in [27, 44] shows that in the model in question the flavour
violating couplings of Z and Z’ to left-handed down quarks are protected by the custodial
symmetry Prr of the model so that tree level contributions of Z to all flavour violating
processes (dominantly represented by the Zd’écﬁ2 couplings) can be kept under control,
while Z’ contributions are fully negligible. It turns out then that while new contributions
to ex and AMg are dominated by KK gluon exchanges, corresponding contributions to
the AB = 2 observables are governed by KK gluon and Zy gauge boson exchanges, while

®Equivalently, as discussed in appendix C, the tree level transitions mediated by Z can be traced back
to the distortion of its shape function in the vicinity of the IR brane after EWSB has taken place [60].
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the tree level Z contributions being of higher order in v?/ MI%K are negligible. On the other
hand new physics contributions to rare K and B decays are governed by the right-handed
couplings of Z.

Similarly the mixing between SM fermions and KK fermions generates additional con-
tributions to flavour violating Z couplings, but numerical studies [27, 44] and a dedicated
analysis in [70] show that these effects are subleading with respect to the ones originating
from the mixing in the gauge sector.

Flavour violation in the neutral EW sector is given in a compact way by (4.27), with
similar expressions holding for Zy and Z'.

4.5.4 Impact on charged current interactions

The two types of effects, mixing in the gauge sector and mixing in the fermion sector
between zero modes and heavy KK modes also have an impact on charged current inter-
actions of ordinary quarks, although these effects are not as important as in the neutral
sector because flavour violation in charged current interactions appears in the SM already
at the tree level. Still a number of novel effects can be identified:

e The presence of new heavy charged gauge bosons Wy and W’ introduces new flavour
violating interactions. In particular charged weak interactions between right-handed
ordinary quarks are present, leading to new effective operators that were absent in

the SM.

e Moreover, due to the imposed Prr symmetry and the corresponding fermionic rep-
resentations of the EW gauge group, also ordinary W bosons mediate right-handed
weak interactions, as seen explicitly in (4.34).

e However, charged current interactions, both of W= and of the new heavy Wi, W'+
gauge bosons, involving right-handed zero modes appear only due to the mixing of

the fermion zero modes with their heavy KK modes, which is generally found to be

a subleading effect [7, 27, 44, 67, 70].

e Of some interest is also the violation of the unitarity of the CKM matrix that orig-
inates both from the mixing in the charged gauge boson sector and in particular in
the mixing of the fermionic KK modes with the ordinary quarks as seen in (4.24)—
(4.25). For masses of fermionic KK modes significantly below 1TeV, as identified
in [14, 15], such effects have to be taken into account, although they are generally
smaller than the ones related to the breakdown of universality [7, 27, 44, 67]. A

different conclusion has however been reached in [62, 74].
A dedicated study of the impact of KK fermions on the low energy couplings of the

SM fermions to SM gauge bosons and the Higgs boson is presented in [70], where further
references to related literature can be found.
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4.5.5 Tree level Higgs exchanges

An order of magnitude estimate for the absolute size of the tree level flavour changing
Higgs couplings can be obtained in the mass insertion approximation (MIA) as done in
appendix C of [27]. In the MIA, tree level flavour changing Higgs couplings arise from
the flavour changing interactions of the Higgs boson with a light fermion and a heavy KK
fermion or with two different heavy fermions. Adding one, or two, such interactions on
the heavy fermion line then gives rise to flavour changing couplings of the Higgs boson
to two light fermions. Naively, one would expect the coupling in the second case to be
comparable in size to the first case since there the coupling is additionally reduced by a
chiral suppression factor. However, evaluating the Dirac structure of the corresponding
diagrams reveals that also in the second case a strong chiral suppression is active which is
even stronger than in the first case. This is a result of the assignment of BCs to the fermion
representations, see (3.1)—(3.6), which suppresses (or forbids in the case of a brane localized
Higgs field) certain transitions on the IR brane. Hence the largest contribution to tree level
flavor changing Higgs couplings in the MIA is expected from diagrams with only one flavour
changing transition, and one finds the overall suppression factor to be proportional to the
IR brane overlaps of the involved fermions, to v/Mgkxk, and finally to m/Mgk, where m
denotes the mass of the involved light fermions. From these considerations one can conclude
that the Higgs contributions to FCNC processes are negligible in the model in question,
even for Mkk as low as 2.45TeV, as we have also verified numerically. These findings are
supported by the analysis in the effective Lagrangian approach in [70].

An alternative derivation of the flavour changing Higgs coupling has been presented
in [62].

4.5.6 One loop effects

Until now our discussion concentrated on tree level FCNC contributions. However, impor-
tant new effects can also arise at the one loop level, in particular when new contributions
are absent or strongly suppressed at tree level. This is the case of dipole operators that
are relevant for radiative decays such as b — sv [8, 32] and u — ey [28]. These operators
receive new contributions from the heavy KK gauge bosons and KK fermions running in
the loop, as well as from the modifications in the SM couplings that appear due to the
mixing of zero and KK modes both in the gauge and in the fermion sector.

4.5.7 Effects of brane-localised terms

While throughout the present analysis we have omitted brane-kinetic terms, we would
like to stress that they are generally expected to be present, not being forbidden by any
symmetry. The impact of brane-kinetic terms for the gauge fields on FCNC observables has
been discussed in detail in [26, 27]. Here we just mention for the sake of completeness that
the strength of the KK gauge couplings can be strengthened or weakened by as much as a
factor of two, depending on the value of the brane-localised coupling constant. Accordingly
the generic bounds arising from FCNC observables on the KK scale can be worsened or
ameliorated by up to a factor of two [26, 32].
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In principle also the inclusion of brane-localised mass terms can affect flavour phe-
nomenology. This happens e.g. in the gauge-Higgs unification scenario, where the struc-
ture of effective Yukawa couplings is obtained with the help of quark mass terms on the
IR brane [12, 72]. In this case it turns out [26] that while the flavour structure remains
unchanged at the qualitative level, an enhancement of flavour violating effects appears,
leading to somewhat more stringent phenomenological constraints.

Thus we conclude that while the inclusion of brane-localised terms can have an O(1)
impact on flavour violating observables, the qualitative picture of RS flavour physics re-
mains unaffected. In fact this is straightforward to understand from the effective 4D two-
site approach [73]: IR brane-localised terms correspond to couplings within the strongly
coupled sector of the model and may thus modify certain predictions at the O(1) level.
The qualitative flavour structure however is determined by the mixing of the elementary
fermions with the composite degrees of freedom. This mixing is characterised by the bulk
mass parameters and can therefore only be affected indirectly by the IR brane localised
physics via radiative corrections.

5 Parameter counting

In this section we list all parameters of the model,® paying particular attention to those
parameters relevant for flavour physics. Subsequently we develop a useful parameterisation
for the 5D Yukawa coupling matrices A? in terms of parameters that can in principle be
determined from low energy experiments.

5.1 Gauge sector

In the gauge sector, we have the three gauge couplings

Js , q, gx (5.1)

for SU(3)., SU(2);, x SU(2)g and U(1)x, respectively. The Prp symmetry ensures the
equality of SU(2);, and SU(2)r couplings.

We would like to stress that throughout this paper gs, g and gx denote the 5D gauge
couplings that are not dimensionless. Usually the impact of brane kinetic terms is neglected
and the simple tree level matching condition

giP = = (5.2)

VL

is imposed, with similar equations holding also for g*” and g‘)l(D . For a discussion of possible
brane kinetic terms modifying this matching, see e.g. [26, 27].

Clearly the number of free parameters would be larger if we were to consider the more general case
including all possible brane Lagrangians.
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5.2 Higgs sector

The number of parameters present in the Higgs sector depends on the realization of the
Higgs mechanism in the RS bulk. For instance in gauge-Higgs unification models [72] the
Higgs sector is completely determined by the gauge couplings of the theory, so that no new
parameters enter. On the other hand, if a Higgs potential is introduced at tree level, the
number of parameters depends on its exact realization (bulk and/or boundary potential
etc.). As we do not specify the mechanism of EWSB in our analysis but simply assume
the presence of a Higgs field H(z*,y) with 4D VEV (h°(x)) = v, see section 2.2, and bulk
shape function h(y) o e~ we effectively introduce two new parameters

v, g. (5.3)
In our phenomenological analyses [27, 44] we have restricted our attention to the case of a
brane Higgs field, i.e. § — oo.
If we were to study the Higgs sector of our model in more detail, we would also have
to introduce the Higgs mass my as an additional free parameter.

5.3 Geometry

Here we have the two parameters

k, L, (5.4)
which are correlated through e** ~ O(10'6) necessary to explain the hierarchy between the
Planck and the EWSB scale. In order to simplify our phenomenological analysis [27, 44],

kL _ 1016

we fix e and treat

f=ke*t (5.5)
as the only free parameter coming from space-time geometry. This approximation is justi-
fied as physical observables depend only weakly on the exact value of kL. Recently, however,
it has been observed [75] that abandoning the aim to solve the gauge hierarchy problem
and allowing e** ~ O(10%) can solve some of the generic problems of RS models and allow
for a smaller gauge KK scale in accordance with EWPO. On the other hand, the authors
of [74] claim that the “cx problem” [26, 27, 32] can not be solved in this Little RS scenario.

5.4 Quark flavour parameters

Our counting of flavour parameters in the quark sector follows the one presented in [8]. We
recall it here for completeness.
First the 3 x 3 complex 5D Yukawa coupling matrices
AL A (5.6)
contain each 9 real parameters and 9 complex phases. This is precisely the case of the SM.
We note that )\qu’d are not dimensionless.
New flavour parameters enter through the three hermitian 3 x 3 bulk mass matrices

1, c2, 3, (5.7)

which bring in additional 18 real parameters and 9 complex phases.
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In total thus we have at this stage 36 real parameters and 27 complex phases. Not all
of these however are physical and some of them can be eliminated by the quark flavour
symmetry U(3)3 of the 5D theory which exists in the limit of vanishing )\;‘j’d and ¢;. Note
that this flavour symmetry is identical to the one present in the SM, and as in the SM 9
real parameters and 17 phases can be eliminated by making use of this symmetry. Note
that one phase cannot be removed as it corresponds to the unbroken U(1)z baryon number
symmetry.

We are then left with 27 real parameters and 10 complex phases to be compared with
9 real parameters and one complex phase in the SM. Evidently the new 18 real parameters
and 9 phases come from the three bulk mass matrices ¢, ¢o and c3.

5.5 Flavour parameters at low energies

As we have seen, the flavour sector of the model comes along with a quite large number of
parameters. One possibility, adopted in [27, 44], is to work in the special basis where the
bulk mass matrices are real and diagonal, and to parameterise the fundamental Yukawa
couplings A%? in terms of physical parameters only. Details on such a parameterisation can
be found in [27]. The first necessary step in a phenomenological analysis is then to fit the
SM quark masses and CKM mixing parameters, that have been determined experimentally.
While such an approach shows clearest how the fundamental parameters enter low energy
flavour observables, it is in practise complicated and numerically time-consuming.
Therefore it is desirable to have at hand a parameterisation in which the quark masses
and CKM parameters enter explicitly and do not have to be fitted. The remaining 18 +
9 parameters can then be scanned over, having to fulfill only the (stringent) AF = 2

constraints.”

In some analogy to the Casas-Ibarra parameterisation [76] in the lepton
sector, we therefore aim to derive a parameterisation of the RS flavour sector in terms of
the SM quark masses, the CKM parameters, and the parameters of the new flavour mixing
matrices Dy, Ur and Dg.

To this end we start by working in the “special basis” in which the bulk mass matrices

are real and diagonal. In what follows we will work with

‘ kL2

Fo = diag (" (y = L,eD), £ (y = L), 117 (v = L, ) T (5.8)
(0) 1y (0) 2y £(0) 5) F2

Fu = dlag (fR (y:L702)7fR (y:L702)7fR (y:LacZ)> \/Z ) (59)
) 1) 2y 4(0) 50\ €2

Fd = dlag (fR (y:L7c3)7fR (y:Lac3)7fR (y:L,03)> \/Z ’ (510)

i.e. Fguaq are diagonal 3 x 3 matrices whose entries are the fermion zero mode shape
functions on the IR brane.

"We would like to thank Yuval Grossman for stressing the importance of a description in terms of
parameters accessible at low energies.
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Neglecting now the mixing with fermionic KK modes and approximating the Higgs
field to be exactly localised on the IR brane, we can write

diag(my, me,my) = %LN{;FQ)\“FUZ;{R, (5.11)
diag(md,ms,mb) = L’ZSEFQ)\dFd’[)R, (5.12)

V2

where L~{L7 R775L, r are the upper left 3 x 3 blocks of the corresponding matrices in (4.24),
(4.25). The CKM matrix is given by

UlDy, = Vor - (5.13)

The 5D Yukawa couplings can then be written as

V2

A\ = TFq;lZ:{Ldiag(mu,mc,17115)Z:{;;FJ1
V2 iz : S
= TFQlDLVCTKMdlag(mu, Me, mt)l/{;;Fu o (5.14)
V2 s A
2= 7FQlDLdlag(md,ms,mb)Dng L (5.15)

where we have expressed Z;IL through @L and Vogym. The SM parameters are encoded in
the quark masses and Voxwm. 9 new real flavour parameters are present in Fg, 4. The
remaining 9 real parameters and 9 complex phases are distributed among Dr, U and Dpg.

In order to obtain a parameterisation of Dy, Ur and Dp in terms of these 9+9 physical
parameters only, we start by writing®

) 1 0 0 01D3L 0 81D3L exp(—iégf)
Dr=|0 02D3L S%)?)L exp(—iégf) . 0 1 0
0 —sgf exp(ié@f) cé)?f —s??f exp(ié@f) 0 ch
ch sgL exp(—z’égL) 0 exp(igplpL) 0 0
—s?zL exp(iégL) CIDQL 0 |- 0 exp(icp;)L) 0 ,
0 0 1 0 0 exp(ips®)
(5.16)

i.e. as a product of three rotation matrices with a complex phase 55L (1,7 = 1,2,3) in each

of them [77], times a diagonal matrix containing three additional phases ap?L (1=1,2,3).
Further

D _
ij =

Dr,

DL
cos Hij , Sy

c =sinf,"  (i,j =1,2,3). (5.17)

Ur and Dpr are written in a completely analogous way. It is then easy to see that the

diagonal phases QD;DL, gpzi’[R and golpR (i = 1,2,3) can be rotated away by appropriate phase

redefinitions of qi(o), u;(}o) and D%O), respectively.

8Note that every unitary 3 x 3 matrix can be parameterised in such a way.
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We are thus left with a parameterisation of Dy, Ur and Dg in terms of three mixing
angles 6;; and three complex phases ¢;; in each of them, which reads [77]

D, = (5.18)
D1, Dr, D1 Dr 71'63L Dr, 71'6?}
" C12°C13 o S12°C13°€ . S13°€ "
D Dr is " Dr DL D1 i(5,5" —5,5" Dr Dr Dr DL DL i(5, 5" —8 5" — 055" Dr DL ,—id,5"
—S819°Co3’€ 1; _Dcm So37S137€ 13 72; ) C19'Co3” — 3D12 So37S137€ 13 1213 2313 Sgg'Ciz’€ 7
Dr Dr i(8, L +6,L Dr, D1 D id, L Dr, Dr id, L Dr D1 D (6, L —8,.L Dy Dy,
812" S237€ (312" +037) — C19'Co3"8137€ 713 —Cyp'8937€72%8  — §157Ca3"S13°€ ERE C23°C13

In order to naturally obtain anarchic 5D Yukawa matrices A9, it can in practice be
useful to adapt the above parameterisation. While the phases

D U D
5ijL s 5in 5 5in (5'19)

are all chosen to lie in their natural range 0 < § < 27, the case of the mixing angles

D 174 D
N N (5.20)

is somewhat different. Here one finds [8] that anarchic 5D Yukawa couplings imply the

Vo) Y (R (B
We can now use this knowledge to find a parameterisation that automatically leads to a

hierarchies

(5.21)

natural structure for \%%. Therefore we define

o1 — ;or Qi s _ ttn (Fui g0r — Dn (Fa)ii (5.22)
] () (FQ)]J ) 1] ] (Fu)]J ) 1] 1] (Fd)]J ) .
where HZZL, H%R, HZZR are O(1) parameters.

Note that although the parameterisation of the 5D Yukawa matrices A% in (5.14),
(5.15) in terms of Fy , 4 and Dy, Ur, D is clearly an approximation in case of a bulk Higgs
field, the hierarchies in ﬁL,Z;{R, Dy are still the same, so that the above parameterisation
of these matrices can still be used without loss of generality. Small deviations from the
exact results will only appear where formulae (5.14), (5.15) are used explicitly.

6 The lepton sector

The embedding of the lepton sector into multiplets of the symmetry O(4) ~ SU(2) x
SU(2)r x Prp is analogous to the quark sector as given in (3.1)—(3.3). Merely the U(1)x
charges have to be modified in order to accommodate the electric charges of the charged lep-

tons and neutrinos. As in the quark sector, there are three O(4) multiplets per generation
(i=1,2,3):

0 _ <x2%<—+>1 ezi<++>o) | (6.1)
0

L AxF (=)o €5 (++)

5 = Va(++)o, (6.2)
. L Na(=+)1 N (=)

& =Tir®Tir = | Ni(—+)o | @ | Ng(—+)o | - (6.3)

Li(=+)-1), \Lr(++)-1
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The corresponding states of opposite chirality can be deduced from (6.1)—(6.3) by exchang-
ing L «+» R and flipping the BCs.
The following comments are in order:

e As in the quark case the field obeying (++) BCs have massless zero modes. Up to
mixing with other massive modes, these zero modes are the usual SM leptons.

e The remaining fields are KK leptons that are vectorial Dirac particles. We thus have
in this model additional heavy lepton states. These are

Q=1: Xui(n), )\/i(n)’ )\//i(n) , (64)
Q=0: W i) Nty i) ein)
Q=-1: a0 LIV 7, (6.6)

where n =1,2,....

The vectors necessary to construct the mass matrices are

\Iﬂ(l): (xf(— >v'< +-) X (+-) (6.7)
= (% —+), X (=) (6.8)
V,(O Vi 1 1"i e; i T
) = (O ), 0 ), NEGH =), NE () XG4k (=) (69)
(“0 )05 (=) N ). NF (0 X () (). (6.10)
< GO (), 65 (1), L'Li(+—),L@'L(——))T : (6.11)

01y _ (1i0) e\ prg i T

Wh(-1) (LR (++4), £ (= =), L(=+), L(++)) - (6.12)

Then the structure of the mass matrices is as given for quarks in (4.14)-(4.16). The
corresponding Yukawa couplings and shape functions are of course those for leptons.

The weak currents have the same structure as in the case of quarks except that the
couplings in (D.7)—(D.18) are modified as now in all these formulae Qx = 0.

For the coupling to the Z boson,

9z(¥;) = (77 — Qsin® 1)) (6.13)

\/_ st

also applies to leptons so that all the couplings, both left- or right-handed, to the Z boson
can easily be found.
For the coupling to the Zx boson we find

V; € 1
KL = g7y (0%) = g7, (L) = —2\/5900%5, (6.14)
V; €; 1
Ky = g7y (X)) = gz, (X)) = 2\/chosqb, (6.15)
"ig = 9Zx (VZ) =9zx ()‘/Z) = 9zx (NIZ) = 9zx (Nm) = 9zx (L/Z) =0, (6'16)
i 1
Ky = gz, (\") = ﬁQCOSQS, (6.17)
i 1
Ky = gzy (L)) = VA cos ¢. (6.18)
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The expressions for Iif (i=1,...,5) can be combined into the following formula

kE=T3 cos ¢ . (6.19)

9
VL

The Feynman rules for leptons can then be obtained directly from the Feynman rules for
quarks by simply mapping the quark fields in (4.2)—(4.7) onto the leptonic fields in (6.7)—
(6.12) and replacing the quark couplings x; and gz(v;) by the corresponding leptonic
couplings. In addition the leptons are SU(3). singlets, so their couplings to the gluons and
KK gluons vanish. Similarly the quark shape functions should be replaced by the leptonic
ones with the gauge sector and Higgs sector being unchanged.

7  Summary

In the present paper we have worked out explicitly the electroweak and flavour structure
of a particular warped extra dimension model with a custodial protection not only for
the flavour diagonal coupling Zbpby as introduced in [22] but in particular for flavour
non-diagonal couplings ZdiLJJL pointed out in [27, 44]. The most important result of the
present paper are the Feynman rules collected in appendix D. These rules allowed already
to perform two detailed phenomenological analyses of AF = 2 FCNC processes in the quark
sector [27] and those AF = 1 rare K and B decays in which new physics contributions
enter already at the tree level [44]. Short reviews of these results can be found in [78-80].
The analyses of processes with dipole operators like B — X7, 4 — e, and electric dipole
moments, where new physics enters first at the one loop level will be presented elsewhere.
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A  Fundamental 5D action

The fundamental 5D action of the SU(3). x SU(2)r, x SU(2)r x U(1)x x Prr model under
consideration can be decomposed as

L
S = /d4$/ dy (Lgauge + Lsermion + LHiggs + ‘CYuk) ’ (Al)
0

with the various contributions being discussed in what follows.

We note that it is possible to extend the theory by additional contributions to the
action that are confined to the UV or IR brane. Indeed such terms, if consistent with the
symmetries of the model, will be generated through loop corrections anyway. In order to
keep the presentation as clear as possible, we do however not consider this most general
case, but restrict our attention to the bulk action given in (A.1).
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A.1 Gauge sector

The kinetic terms for the gauge fields are given by
1 1 1 1
Loange = VG | =Gy G = 2L LM — 2RG y RN — 2 Xy XMV (A2)
where
Gy = OGN — ONGa — g fAPCGEGS  (A=1,...,8) (A.3)
corresponds to SU(3). and g, is the 5D strong coupling constant.

Lyyn = OuWL N — ONWE o — 9€ach£,MWf,N (a=1,2,3) (A.4)
RSy = OuWh n — ONWi o — g™ WE Wiy (0 =1,2,3) (A.5)

correspond to SU(2)z, and SU(2)g, respectively, with equal gauge coupling g, and
XunN =0uXy — Xy (AG)

is the field strength tensor of U(1)x, whose coupling constant is given by gx. Here and
in the following G' = det Gpsny = e 8 has to be included in order to obtain an invariant
integration measure.

We denote SU(2);, indices by small Latin letters a,b,... and SU(2)p indices by small
Greek letters «, 3,.... SU(3). indices are denoted by capital Latin letters A, B, ..., but
are usually made implicit in order to simplify the notation.

A.2 Fermion sector
A.2.1 Quarks

The quark sector contains fields with the following transformation properties under
SU(Q)L X SU(Q)R X U(l)X

(éi)aa ~ (2a 2)2/3a (A?)
& ~ (1,1)y3, (A.8)
&= (T3)a ® (Tha ~ (3,1)2/3 ® (1,3)93, (A.9)

where again SU(2)7, indices are denoted by Latin letters while SU(2) indices are denoted
by Greek letters. All these multiplets transform as triplets under SU(3).. The fermionic
Lagrangian is then given by

3
ﬁfermion = %\/EZ {(gi)aaiPM(DZIM)ab,C“,B(Si)b,@ + (gi)aa(iPMwM - cilk)(é.i)aa
=1

+EGTM D2, +iTMuwy, — kel
+ (T4) i TM (DY)t (T4) + (T4) o (T M wpy — ¢4k)(T5)a
(T (D)o (T + (T)ali0 M wrr — R)(THa] + hec.. (A10)
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where summation over repeated indices is understood. Writing out the “4h.c.” term explic-
itly, one finds that the two terms including the spin connection wy; cancel each other [81].
Here, T'M = E%WA with 4 = {y#, —i7°},? and Ei\([ is the inverse vielbein defined through

GMN — M ENpAB | (A.11)

i.e. it connects the warped space to the flat tangent space. For the case of the RS met-
ric (2.1), we have

1 for A=M =5,
EN =S ek for A=M =p, (A.12)
0 else,

and the vielbein ef/[ is given by

1 for A=M =5,
ey =e " for A=M = p, (A.13)

0 else.

wys is the spin connection defined through
A N N i oA
wy = en(OmEp + g Ep )T ; (A.14)

with o4 = %[%4,73] and TV - = %GNR@KGMR + O0MmGrRr — OrGarK ), which yields in
case of the RS metric (2.1)

ke My, 75 for M = p,
wyr =< 2 MG o (A.15)

for M =5.

The covariant derivatives D§\4 are given by
(D%d)ab,aﬁ = (8M + Z‘gstAG}?g + igXQXXM)(Sab(SaB

+ ig(TC)abWiM(Saﬁ + ig(Tﬂ/)aﬁW%M(sab R (A.16)
D3, = 0w +igst*Giy +igxQx X, (A.17)
(D3f)ab = (O +igst* Gy +igx Qx Xar)dap + 9™ W 1y (A.18)
(Dig)ap = (Our +igst Gy +igx Qx Xar)0ap + ge* VW ;- (A.19)

t4 = /2 (A=1,...,8) are the generators of the fundamental representation of SU(3).,
where A are the known Gell-Mann matrices. 7¢ = ¢%/2 (7% = ¢ /2) are the generators of
the fundamental SU(2);, (SU(2)g) representations, respectively, where o, c® are the Pauli

abe and —ie®P7 are the generators of the adjoint triplet representations

matrices, and —ie
of SU(2), and SU(2)g, respectively. Recall that despite having the same matrix structure,

the SU(2)z and SU(2)g generators act on different internal spaces.

9Here, v° = i7%v'4%43 is defined in the usual 4D way.
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In addition, the components of the T§74 triplets, as given in (3.3), (3.6), are not those
components associated to a,« = 1,2, 3. Instead

N e
o= | Zwi-p |, @a=|Zwi-p|. (A.20)
Uli Ul/l'

Recall that the same structure appears also in the gauge sector, where WLl’ZR are related to
WLi R Via

(A.21)

A.2.2 Leptons

In order to preserve the minimality of the model, we take the lepton sector in complete
analogy to the quark sector. The only necessary modifications are:

e Leptons transform as singlets under SU(3)., i.e. the coupling to gluons, —i—igStAGﬁ
in (A.16)-(A.19) has to be removed.

e In order to obtain correct electric charges for the leptons, @ x = 0 has to be imposed,
so that leptons do not couple to the X, gauge boson of U(1)x. Effectively thus also
the +igxQx Xy term in (A.16)—(A.19) is absent in the case of leptons.

A.3 Higgs sector

The Lagrangian describing the Higgs bidoublet H, given in (2.18), reads
Litiges = VG | (DaH)L (DM H) o — V(H)| (A.22)

with
(DMH)aa = 8MHaa + ig(TC)abW[c/,MHba + ig(TV)aﬁW}%MHaﬁ (A23)

and V(H) being the potential that eventually leads to EWSB.

Note that in case of a bulk Higgs field, H contains in addition to the zero mode also
massive KK modes. The potential V/(H) then has to be constructed in such a way that only
the zero mode obtains a VEV, as otherwise the consistency with electroweak precision tests
would be spoiled. However, their couplings are, due to the similar profile, roughly the same
as the Higgs zero mode couplings. In addition, the scalar KK modes are even heavier than
the gauge and fermionic KK modes, so that in most phenomenological applications the
Higgs KK modes can be safely neglected. Therefore, we will not give an explicit expression
for V(H), but merely assume that it leads to a VEV for the zero mode and the particular
shape function h(y), as given in (2.25).

The kinetic term in Lyjggs is responsible for the effects of EWSB in the gauge sector.
Those will be discussed in detail in appendix C.
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A.4 Yukawa sector

Finally, we need to construct the Higgs couplings to fermion fields, which will yield the
masses of the SM fermions after EWSB. For simplicity, we restrict ourselves to the quark
sector, the Yukawa couplings for the lepton sector can then be obtained in a completely
analogous way. A dictionary that allows to obtain Feynman rules for leptons from the rules
for quarks is given in section 6.

The most general Yukawa coupling including the Higgs bidoublet H and the quark
fields 5%7273 is given by

EYuk - _\/_\/_ Z [ 51 aq aa£2

1,j=1
+ \/EAZ [(gi)aa( )ab(T ) Hba (gi)aa( )ag(T )W/Hag] + h. C} R (A.24)

where again summation over repeated indices is understood, and the normalisation factor
V/2 enters the second term in order to canonically normalise the fermion triplets T:{’ 4 The
overall signs of the two contributions are chosen such that the 00 components of the M (2/3)
and M(—1/3) in (4.15), (4.16) carry an overall plus sign.!”

Interestingly, while the first coupling, proportional to A, contributes, after EWSB,
only to the mass matrix of +2/3 charge quarks, the second term, proportional to )\U,
contributes to all +5/3, +2/3 and —1/3 mass matrices.

B Bulk profiles of wave functions and KK masses

In this appendix we briefly review the determination of the bulk shape functions and the
KK masses and collect all necessary formulae. We follow closely the presentation in [6],
using the conventions of these authors, except for the opposite sign of the metric and the
fact that we work on the interval 0 < y < L rather than on the orbifold 0 < y < 27 R.
We confirmed the results of [6] except for some approximate formulae given in that paper

which turn out to be too rough when compared with the exact numerical results.

B.1 Bulk equations of motion

By setting all interaction terms in (A.1) to zero, the 5D bulk equations of motion (EOM)
can straightforwardly be obtained from the variational principle §S = 0, which yields

generally
[_e%ynwauay + e 5(e7 M 05) — Mg | B(at,y) = 0. (B.1)

In the case of gauge fields, ® =V, s = 2 and Mc% = 0, while in the case of fermions, 91 r
has to be rescaled by ® = e~ 2%y, g with s = 1 and M2 = c(c41)k? for left-/right-handed
modes. The only physical scalar field is the Higgs, ® = H, for which s = 4 and Mq% depends
on the exact form of V(H).

Note that the minus sign in front of the first term in (B.1), which does not appear in
equation (11) of [6], is due to our sign convention for the metric tensor.

10Recall that the fermionic mass term possesses an overall minus sign.
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B.2 Gauge fields
With the KK decomposition

I <
V xM’ y L Z Vu( ) gauge(y) ) (BQ)
n=0

we obtain for the gauge KK modes [6]

Deelw) =1, (B.3)
Fimee) = % i (B 4 by (BRe)] =120, (BY)

where fg(g&ge(y) exists only for (++) BCs. The fégage(y) satisfy the orthonormality condi-
tion

1 [* n m
E /O dy fg(at)lge(y) g(au)ge(y) = Onm - (B5)

b1(my,) and m,, are determined through the boundary conditions on the branes. For (4+)
fields, which means

0 fgauge( ) y=0.L =0, (B'G)

one obtains [6]

Ji(mp k) + my [k J{ (my,/k)
Yi(mn/k) + mn/k Y] (my/k)

bi(my) = — = bl(mnekL), (B.7)

which can only be solved numerically for m,, and by (m,,). For large values of n, the result
can be well approximated by [6]

1
bi(my) =0, meInee ~ (n - Z) ke *E (n=1,2,...), (B.8)
however, for small values of n it is safer to use the exact numerical result. For (—+) fields,
meaning
g(gl)lge(y)‘yzo =0 fgauge( )‘y:L =0, (B.9)

one finds instead

Ji(mn/k)  Ji(mne"t/k) + myett [k J7 (mpetl k)
Yi(ma k) Yi(maeRL/k) + m,ekL /k Y] (m, ekl [k)

by(mn) = — (B.10)

The numerical solution yields a ~ 2% suppression of m$*"® in that case, with respect to
the (++) one. We do not consider gauge fields with a Dirichlet BC on the IR brane here,
as they do not appear in our model.

Finally, N,, has to be determined from the normalisation condition (B.5). For fields
(also fermions and scalars) with a Neumann BC on the IR brane, N, is approximately

given by [6]
ohL/2
N, ~

(B.11)

wLm,,

Note that this approximation is however not valid in case of a Dirichlet BC on the IR brane.
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B.3 Fermion fields

In this case the KK decomposition reads
ey & n n
v y) = == > TR RG). (B.12)
V/ji n=0 7 ,

and the fermionic KK modes are [6]

1—-2c)kL _,
FO) = || S e, (B.13

ky/2
M,y _ € { <m" ky) vy (% ky)} —1.9 B.14

L (y) Nn Ja L +b( )Oé /{)e (n ) 7"')7 ( : )
where a = |¢ + 1/2] and again féo)(y) exists only for (++) BCs for the left-handed mode.
The right-handed mode obeys automatically opposite BCs and f én) (y) can be obtained by

replacing ¢ by —c in the above formulae. The f én}%(y) satisfy the orthonormality condition

I n m
7 | e R ) = b (B.15)

Note that the fermionic zero mode profile in (3.11) has been given with respect to the
flat tangent space metric, i.e. the factor €% in (B.15) has been absorbed into the shape
functions, in order to make the localisation of the zero mode more explicit.

Again b,(m,,) and m,, are determined through the BCs on the branes. In the case of
left-handed fermions, a — BC means

My =o, (B.16)

brane

while the + BC is modified with respect to the gauge fields and reads

(8 + ck) £ ()

= 0. (B.17)

brane

For right-handed fields, the replacement ¢ — —c¢ has to be made. b,(m,) and m,, are
derived completely analogously to the gauge case. Also here the resulting equations can
only be solved numerically.

B.4 Higgs field
A bulk Higgs field also needs to be KK expanded:

H(z",y) = ZH(" M (). (B.18)

As we do not specify the Higgs potential, we can not solve the bulk equations of motion
explicitly for that case. Instead we merely assume the zero mode profile

1 () = hly) = V2B = DRLeFE H0=0 (g5 1), (B.19)
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which fulfils the normalisation condition

L
I e =1, (B.20)

As the scalar KK modes turn out to be much heavier than the gauge and fermionic reso-
nances [6], they can usually be neglected in phenomenological analyses.

C Gauge sector modifications from EWSB

In this appendix we study explicitly the effects of EWSB on the weak gauge boson sector.
We derive expressions for the mass matrices Mgharged and Mieutral by treating the effects of
EWSB as a small perturbation, and work out the rotation matrices Gy and Gz, neglecting
the n > 1 KK levels.

Subsequently, we compare our results with the ones obtained from the alternative
approach followed in [58-60]. In that case, the effects of EWSB are already included in
the derivation of the 5D equations of motion, so that in principle exact results may be
obtained, as has briefly been noted in [61].

C.1 Gauge boson mass matrices and mixings

C.1.1 Charged electroweak gauge bosons

The mass matrix Mgharged, describing the charged electroweak gauge bosons Wéo)i, Wél)i
and W}(%l)i as defined in (2.27), can be determined from the Higgs kinetic term (A.22). One
finds 2 2T 2
M2 — gQleQLZnL M2 " 9211)2 ++ __ﬁ —1+
charged = 1 i —2|-24L 7, T 2222 , (C.1)
“4rI 4Lt ME o+ 4T,

where the overlap integrals Ili and I;j are given by

L S B
I = E/O dy e g(y)h(y)* , Iy = Z/O dye g(y)h(y)®,  (C2)
++ Lt —2ky 2 2 —= 1t —2ky z(,\2 2
=+ i dye”"g(y) h(y)~, ," =7 ; dye "g(y)°h(y)”,  (C3)
—r 1 L —2ky ~ 2
Lt=g ) dve 93 W)h(y)*. (C4)
Here we introduced the short-hand notation
g(y) = g(fglge(ya (++)) (C5)

for the bulk shape function of Z(M) and WS), as well as for the KK gluons G4 and photon
AWM and
g(y) = g(fglge(ya (_+)) (CG)
1)

for the bulk shape function of Zg( and W](%l).
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In order to obtain transparent expressions for mass eigenvalues and mass eigenstates
we introduce first the following parameterisation

MI, = M*+av*, M. =M?*—a? (C.7)

f2> It =1, <1+5++;—2>, (C.8)

I, =1y, I, =1, <1+5 +
where numerically the parameter a = O(1) for f = O(1TeV) and the coefficients 6% turn
out to be smaller than unity.

Now, our goal is to calculate O(v?/f?) corrections to the couplings of W* and Z but
only O(1) couplings involving heavy gauge boson mass eigenstates as their contributions
in Feynman diagrams will be suppressed by their large masses in the propagators. It turns
out then that to this order in v?/f2 the coefficients §~+ and §7F can be set to zero so that
only a universal Zo will enter the expressions below.

Next we introduce the function

B(() = \/16(12L2 cos? ¢ + 8aLg?Ty sin? ¢ + 473 cos? ¢, (C.9)

that will also be useful in the case of the diagonalisation of the neutral electroweak gauge
boson mass matrix. In the case of charged gauge bosons B(¢ = 0) enters the expressions
for masses and mixings, while in the case of neutral gauge bosons B({ = ) is relevant,
where 1 has been defined in (2.16).

Diagonalising!! then Mgharge 4 leads to
T G202 e

1 ~ et e
Gw = 4LM2 (Ifr cos X —Zy sin X) cos X sin , (C.10)

— i (Z{ sinx + Iy cosy) —siny  cosy

where
1 2aL 1 2alL

=15~ By inx=14/5+ 457" C.11
COS X B B(O)’ sin vy 5 + B(O) ( )

The corresponding masses are given by

2
2 g*v° gt o
Miy = S5~ Tepzape (@7 + )7 (C.12)
2
Miy, = M+ :L (9°72 = B(0)) , (C.13)
2

"'We would like to thank Stefania Gori for help in finding an efficient method for analytic diagonalisation
of the matrices involved and Zhi-zhong Xing for bringing the paper [82] to our attention.
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C.1.2 Neutral electroweak gauge bosons

2
neutral’

and Zg(l) as defined in (2.28), can be determined from the Higgs kinetic term (A.22). Here
we obtain

Also the mass matrix M describing the neutral electroweak gauge bosons Z(©, Z(1)

g2v? 921)21'17L - g2v? cos oI,
4L cos? 4L cos? 1 4L cos
M = | L2424 C0L_gvesdly , (C.15)
cos? ¢ ++ T 4L cosZ 4L cosp
g2v2 cos ¢If 9202 cos ¢IQ_+ M2 g2v? cos? oL,
4L cos " 4Lcosv I+ 4L

with the angles ¢ and v given in (2.8), (2.16). Diagonalisation of M? gives then

neutral

ngQZZlJr gQUQIf cos ¢

9 9 1 T 4LMZcos2¢y 4ALM?Zcos¢
Gz = 74LMgg§0§2w (Ifr cos§ — cos ¢ cos PZ; sin §) cos& sin & , (C.16)
_74LA/5[722082¢ (IlJr sin§ + cos ¢ cos Y| cos f) —siné cos &
where
cosé = B(v) cos ¢ — 4aL cos? ¢ — sin? ¢9212’ (c17)
2B(1)) cos
sing = B(1)) cos ¥ + 4aL cos? 1) + sin? 7/)9212_ (C.18)
2B (1)) cos 9
B(v) is given in (C.9). The corresponding masses are given by
2,2 4,4 +12
g-v g-v () 9 o
M7 = - T C.19
27 ALcos?¢  16L2M2 cos? 1) <COSQ¢ +(Zy) cos" ¢ | ( )
’ B(y)
M2 o= a2 (2, - B2\ P
Zn +4L (9 2 coso )’ (C.20)
’ B()
M2 = M2+ (g1 . 21
d +4L <g 2+cos<;5 (C.21)

Note that for 1» = 0 the results for neutral gauge bosons reduce to the ones for charged
gauge bosons.

C.2 Comparison of two alternative approaches

In this appendix we compare the approach of treating the effects of EWSB as a perturbation
with the exact approach, in which EWSB is considered as a modification of the BCs on the
IR brane. For a related study of this issue we refer the reader also to [63]. We note that
throughout this paper and also in our phenomenological analyses [27, 44, 70] we followed
the perturbative approach which is analogous to the two-site approach presented in [73].
As a simple toy model of EWSB, we consider a U(l) gauge symmetry in the RS
background (2.1), where a scalar field H(x) resides on the IR brane and develops a VEV
that breaks the bulk U(1) symmetry. The action relevant for the gauge field is given by

L

1

Senee = [ ' [ dw@{—ZFMNFMNM@—L><DMH>*<DMH> L (22
0
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where Fyy = OpfAn — ONAn, and Dy = Oy +igAy. We choose to work in the As = 0,
0, A" = 0 gauge in what follows.
Once a potential V(H) is added on the IR brane, the Higgs field develops a VEV

(H(@) = 75 (C.23)

Effectively, the action for the gauge field then reads

_ 4 L _l MN . 9202 M
Seange = | d*z [ dy VG TN FMY 4 0(y — D)= A AM (C.24)
0

Following the presentation in [58-61], from (C.24) we can now derive the bulk EOM for
the gauge field and determine the shape functions and masses for the various KK modes.
Finally we have to consider possible mixing between the various modes induced by the
presence of the Higgs VEV.

The EOM can be derived from the variation principle for the action,

L
6Sgauge =0= /d4£ﬂ/ dy@R(\/EGMRGNsﬁMAN)éAS
0

. (C.25)

+ /d4x e (9, A, + g*v? A,)SAY
y=0

- / d*z (9,A,)5 A"

y=L

The bulk and boundary terms have to vanish independently of each other, so that we obtain

bulk EOM: N 9,0,A" — 8, ("9, A") = 0, (C.26)
UV brane: 8yA,,|y:0 =0, (C.27)
IR brane: OyAy, + gZUQA,,‘y:L =0. (C.28)

In order to understand the effects of EWSB, we first solve (C.26)—(C.28) explicitly for
the zero mode by making an expansion in the small parameter w = (mge*”/k)?. We thus
make the ansatz

FOy) =1+ wd(y) + O(w?). (C29)
From (C.26)—(C.28) and the normalisation condition
1 [
o TR/ (C:30)
L Jo
we find 1 1
— 2k(y—L) o - 1
d(y) 1€ (1—-2ky)+1 T (C.31)
and )
mé ~ ngQef%L = (¢"Pvegr)? . (C.32)

The eigenfunctions for the massive modes (this can in principle also be used for f (0))
are given as usual by [6]
eky

F™M(y) = N, [Jl (%eky> + b1 (my) Y1 (%ekyﬂ , (C.33)
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with

1 J mn kL Mn kLJ m_kL 2,2
bl(mn):— ) (1+7) l(ie )+ % € 1(& ) g
k k

1) + %o (2 _
T+ B(R) (@ (Tee) + ey () "
(C.34)
Note that the EOM we have just solved, including the BCs, is a so-called linear bound-
ary value problem of second order. For this kind of problem, it is well known that the
eigenfunctions f(™ (y) obey the orthogonality relation

L
[ vt Pwrmw =0 tornzm. (C.35)

0
As a direct consequence, there is no mizing between the zero and KK modes of the gauge
boson. The modes we have just calculated are already the final mass eigenstates. The
only effect of the spontaneous symmetry breaking within the present approach is thus the
modified BC on the IR brane, resulting in shifts in the masses and a distortion of the
eigenfunctions £ (y), in particular of £(°)(y), relative to the unbroken case.

Evaluating the mass spectrum numerically (without making any approximation or
expansion in my), we find with ke % = 1TeV, k = 10'6 TeV,

mo = 80.398 GeV , mq = 2.55TeV , meo = 5.61 TeV , (C.36)

where we have chosen gv in order to satisfy mg = My .

The question now arises whether the same results are obtained also by using our previ-
ous approach to EWSB, also followed e. g. by Agashe et al. [55], where the effects of EWSB
are treated as a perturbation of the unbroken case. In order to analyse this let us start
from the same action Sgauge as before, but solve the bulk EOM before inserting the Higgs
VEV. Obviously the bulk shape functions will then be those of the unbroken case, with

fO)y =1,  mp=0, (C.37)
and
ek m m
" (y) = Fy [Jl (7"6’“0 + b1(ma)Y1 (fe’fyﬂ : (C.38)
where
by(my) = —~ L) F IR ey (C.39)

) + B ()
To determine the effects of EWSB, this solution for the gauge boson modes now has

to be inserted into the interaction term with the Higgs, the latter being then replaced by
its VEV. This yields

@maﬁm/@wwnyvaww " (y) AL () A4 ()

2,2 —2kL

L gvie
S A / d'z [ A0 () 440 (2)
+2V2kLADY (2) A" (2)
+ 2k LAY (2) APV () + - | (C.40)
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Figure 2. Effective zero mode shape function f (0)(y) for 0.9L < y < L — comparison of the exact
result with different approximations. The solid black line corresponds to the exact result in (C.29),
while the solid red line displays the expanded (C.29). The results obtained after diagonalisation of
the mass matrix M? are shown for n < 1 (blue, dashed line) and n < 4 (green, dotted line).

Approximating f((y = L) ~ v/2kL for n # 0, and denoting m? = g*v?e 2*L /L, we
obtain the mass matrix

m? m?v2kL m?v2kL
) m2V2kL M? + m?2kL m22kL
ME=\2V3kD  mP2kL M2+ mP2kL --- | (CA1)
where M; are the KK masses in the absence of EWSB:

My =245TeV, Mo =556TeV, .... (C.42)

The off-diagonal entries now induce mixing between the zero and KK modes.

Including the modes up to n = 2 and diagonalising M?, we find

mo = 81.25 GeV mq = 2.55TeV , me = 5.61 TeV (C.43)

which differs from the result obtained from the previous approach, (C.36) only for my,
and even there the error amounts to only 1%.!? Note also that while the first approach
yields exact results, the second approach contains the approximation of cutting the KK
tower after the first few modes. In addition, since EWSB is treated as a perturbation, an
expansion in g is inherent. We have also verified that the more modes are included, the
smaller the errors in the mass determination become.

In addition to the mass spectrum, we have also considered the effective zero mode
shape function that arises after mixing with the KK modes. By comparing numerically
the results obtained by truncating the KK tower after the first few modes with the results

2This error should not be understood as an absolute error on My, that would be huge compared to
the present experimental accuracy, but rather as a relative error which can be absorbed into the gauge KK
masses by making a proper redefinition of the Higgs VEV v.
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in (C.29) and (C.33), we observe that by increasing the number n of modes included,
the approximation quickly approaches the result of (C.29), see figure 2. This confirms
our expectation that inserting the effects of EWSB after performing the KK expansion
effectively amounts to treating EWSB as a perturbation.

In summary, we have studied two quite distinct descriptions of EWSB effects:
1. Modified EOM and wave function distortion, see e.g. [58-62].

e The Higgs VEV is included already for the derivation and solution of the bulk
EOM.

e This implies distortions of the wave functions and shifts in the masses of the
zero and KK modes, with respect to the unbroken case.

e Due to the orthogonality of the bulk wave functions, there is no mixing between
the various modes.

2. EWSB as a perturbation in the KK tower, see e.g. [55, 57].

e The bulk EOM is solved for free fields, i.e. the Higgs VEV is not yet taken into
account and treated later as a perturbation.

e Then the unbroken wave functions are used to calculate the effects of EWSB by
replacing H by its VEV.

e Mixing between the various modes appears, in addition to corrections to the

masses.

We have shown that both approaches are indeed equivalent, up to the fact that the second
one works only if EWSB is a small perturbation of the unbroken theory, and that exact
results can in principle only be obtained by considering the whole infinite tower of KK
modes. Still we have checked numerically that the results converge quickly so that it
appears sufficient to take into account only the zero and the first excited modes.

A similar proof, including also the case of spontaneously broken non-abelian gauge

groups, can also be found in [63].

D Effective 4D Feynman rules

D.1 Preliminaries

In this section we list the complete set of Feynman rules in terms of gauge boson mass
eigenstates and fermion flavour eigenstates. In view of the large size of the fermion mass
matrices in section 4.2, the rotation to fermion mass eigenstates is best done numerically.
The collection contains all v2/f? contributions for the light gauge bosons Z and W, while
we present only vertices of O(1) for the heavy gauge bosons G, AW Zy. 7', Wﬁ and
W'*. Note that v2/f? ~ v?/M? ~ ¢, where ¢ is defined in (D.11). There are no corrections
to gluon and photon couplings.
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D.2 Propagators

Our conventions for fermion and gauge boson propagators in the unitary gauge are as
follows:

R G . (D.1)
p—my
p v —10ab v p'pY
Zt\/vv\/vvvb p72—M2 [77“ YR (D.2)

where my and M are the fermion and gauge boson mass, respectively.

D.3 Overlap integrals

The overlap integrals for KK gluonic and photonic currents and for the ones for the KK
modes Z(1) and WS) are given by

i 1 L n i m i
RZ:(BC)L,R - E / dy ekyf[(/,])%(yvck7BC)f£,]%(y7ck7BC) g(y) ) (D3)

nm 0

while for Zg(l) we have

4 1 b 4 ; .

PLBC)LA = [ v k(0. BO {0k BO)i) (D.4)

with g(y) # g(y) as the shape functions depend weakly on BCs. For charged currents
. 1

mediated by W " we also have

i ey 1 L n i m i T ~
SL(BONBCO)1r = 7 / dy M f1"p(y. ¢k, BOVLR(y.¢k. BO)g(y).  (D5)

nm 0
D.4 Fermion couplings to gluon and KK gluon

All couplings to the zero mode gluons are SM-like. That is the relevant term in the QCD
Lagrangian is

_ s pamiA G(0A D.6

where we suppressed the colour indices.

In tables 1-3 we list all non-vanishing couplings to the KK gluon. The last column in
these tables denotes the entry in the coupling matrices defined in section 4.3.

Diagonal couplings of right-handed heavy fermion fields can be easily obtained from
the left-handed ones by replacing the boundary conditions according to the scheme given in
table 4. In addition the index L has to be replaced by R in the overlap integrals in (D.3)—
(D.5). These replacements are also valid for the heavy neutral gauge bosons Z, Zy and Z’
discussed below.
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Zero mode couplings to the KK gluon
@ = 2/3 quarks
apVap VGO | it AR () | (0.0)

20 O GMA _z‘%fy“tAﬁ)é(-iﬂi-)R (0,0)

Q = —1/3 quarks
O AOGmA ] e yh tA7on§(++)L (0,0)

D pO G A _i%fy“tAfbg(—i—‘F)R (0,0)

Table 1. Vertices involving left-handed and right-handed zero modes and the KK gluon. These
zero modes correspond to the SM quark fields when the rotation to fermion mass eigenstates is
performed.

Off-diagonal couplings to the KK gluon

@ = 2/3 quarks

7O g gA iyt tA7§,1i1(—|-+)L (0,1)

(jziqzi(o)G(l)A —i%fy“ tA71QOi1(++)L (1,0)

g ufpGOA | =i B tA7021§(++)R (0,5)

) GOA | —iZeyp tA71302(++)R (5,0)

Q = —1/3 quarks

O dEGmA | Loyt tA7031i1(++)L (0,1)

O GMA —ideyh tA7130§(++)L (1,0)

—00 i . gs 7

DO pighA | —; ey tA70213(++)R (0,3)

DLDIGMA | e AR (++)R | (3,0)
10

Table 2. Vertices involving the KK gluon and a single zero mode. In terms of the matrices given
in section 4.4, we are talking about the off-diagonal elements.

D.5 Fermion couplings to photon and KK photon

The couplings to photon and KK photon can be read off from the results for gluon and
KK gluon with a simple modification: ¢ has to be removed and the coupling gs must be
replaced by the coupling gg as the photon and KK photon couple through electric charge.
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Heavy fermion couplings to the KK gluon
@ = 5/3 quarks
XpXp GO | =it AR (— ) | (L1

11
PHFGMA | —i G tA7131§(+—)L (2,2)
i GIA —i%v“ tA7lzlé(+_)L (3,3)

Q@ = 2/3 quarks

Tpap GOA | —iZeqr tA7lelﬁ(++)L (1,1)
OpUiGA —i- et tA71€1§(+—)L (2,2)
UFUFGIA | —i ey tA71€1§(+—)L (3,3)
XEXEGA | i PRIHL | (44)
apup G0N [ =G R =) | (55)

Q = —1/3 quarks

Grar GO [ —ideyt R () [ (L)

11
DiDiaMA —E R (22)
D: D GMA | g At ARE(——) 3,3
L~L VL 113( ) ( )

Table 3. Couplings of the KK gluon to heavy left-handed fermions. Note that for each entry in
this table there exists a coupling to the corresponding right-handed fermion fields. The translation
from left-handed to right-handed vertices is given in table 4.

L — R
+ - -
- 5 4+

Table 4. Substitution scheme from heavy left-handed to heavy right-handed fermions.

In particular we have

} 5
g5/3 = gxQx cospcosy + gsiny = 56’ (D.7)
2
923 = gxQx cos deos v =~ e (D.8)
. 1
9-1/3 :gXQXcos¢cosw—gsm¢:—§e, (D.9)

where we defined e = gsinvy = gx cos ¢ cos ¥ with e being the 5D coupling:

oAD —

(D.10)

<l
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Zero mode couplings to the Z boson

Q@ = 2/3 quarks
0 Va2 | —in|92(a") — corla") Frp TR + T mPL)1 ] | (0.0

COS

cos

iy uy 2 —W%ﬂw—@ﬂwamﬁﬁywm+ﬂmzm%HﬂJ (0,0)

@ = —1/3 quarks
_d; d; . ’ 7
Vg Oz | —iyp [gz(qd’) —€gz(q* )C052¢I+73 (++) +ec

cos w

o7 1@1731(++) } (0,0)

DO pi0 _m%gz(pi)_egz(DZ)wSZ wI+RZ(++) LT fs57>3(++)J (0,0)

€os w

Table 5. Couplings involving zero modes and the Z boson. These zero modes correspond to the
SM quark field when the rotation to fermion mass eigenstates is performed.

D.6 Fermion couplings to neutral gauge bosons

We introduce the small parameter

2,2
g°v
= D.11
€= 12 (D.11)
where M is defined in (C.7), and the couplings

9z(¥) = ﬁosw (T - (siny)* Q) , (D.12)
K1 =9z, (@") =g (qdi):L —gxQ sinqﬁ—lgcomﬁ (D.13)

1 Zx Zx NG x&x 5 ) .

w _ 1 ) 1
Ko = gz, (X") = 9z« (Xdz) — ﬁ <—9XQX sin ¢ + §gcos d)> , (D.14)
K3 = 9zx (ul) =9zZx (1/}”) - gZX(U/i) = 9Zx (D/Z) = gZX(U”i) (D'15)
1
= — (- sing) , D.16
NG3 (—g9xQxsing) (D.16)
: 1
Ky = "= — (- sin ¢ + gcos @) , D.17
4= gz (™) \/f( gxQx sind + gcos P) (D.17)
5 = gzx (D') = NG (—9xQxsing — gcos ) . (D.18)
Furthermore, the expressions for x; (i = 1,...,5) can be combined in the following formula:
1

k=— (T3 Ts + sin D.19
7 (T = (T + Qx)sin” 9) 2o (D.19)

where T3 is the SU(2)g-isospin of the fermion related to a given r;, and Qx = 2/3 for
quarks, while Qx = 0 for leptons, as discussed in section 6.

In order to obtain the Z’ couplings one can use the results of the Zy couplings with
the replacements summarised in table 11.
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Off-diagonal couplings to the Z boson

= 2/3 quarks

qﬁz(o) a1'Z | —ir| - ez(a") oy I+RZ(++)L +e2eT RPi(++)] | (0.1

@y Oz | it | - egz(q") =k I+R2<++>L +e=0Tr m7>1<++> (1,0

cos Y

)
)
B0 | ]~ egz(ul) g z+nz<++>R+eC°S¢z n37>2<++> | |03
)

duyZ | —iy —egz(u) oy I+R2(++) —i—emfl /<c3772(—|-+)R (5,0
L 10 |

Q = —1/3 quarks

_d; (0 . i
a7 Oqbz | —iyt| — egzlq

gl Ri(++ L+e§g§i1 mpl ++)r| | (0.1

cos w

DR DRZ | —int| — egz (D! co;zwﬁw TR+ eyl msPi(+Ha| | (03

) (++)
(leiqLi(O)Z — gyt - egz(qdi)COSlg ¢I+RZ (++)L + €2

) (++)

) 5(++H)R +

(++) )
O, K1P1(++)L_ (1,0)
(++) )
(++) )

DpDR"Z | —iv"| = eg2(D') g eL207 m57>3 ++)r| | (3,0

Table 6. Couplings involving the Z boson and a single zero mode.

Heavy fermion couplings to the Z boson

Q@ = 5/3 quarks
XEXEZ |~ gz (") — eaz(x Vg T RU—H)1 + ey Ty maPH (=) IS
1;/[% I[Z/Z —iryH {92(1//2) - 6gZ(wll)cos2 wa_,]lzlé( _) cosd)I K?’/Pg( ) J (272)
I 7 |~ 90"~ cor (W) T RA (o) + 28T K4Ps< )i | 63)
Q@ = 2/3 quarks

a7 Z | —iy# gz( Z)—egz(qul)wsz I+RZ(++)L+6§§:$I /<;1731(++) | (1,1)
UiUrz | it gZ(U”) €92 (U") sotrg I*RZ( ) +eZeTr 53733( ol | (2,2
oz —W[ 2(U") = egz(U") =% ¢I+RZ( )+ 28T 163733( )] (3,3)
XEXEZ | it 197 (X )—egz(xdl)coszﬂﬂfl’i( )+ ST %27’1( Hr| | (44)
@t Z _mu[gz( )—egZ(uZ)COSQwI+7131i( o+ e28TT 163732(——) ] (5,5)
Q = —1/3 quarks

chlq%Z — P gz( i) — egz(qdl)wszwlﬁLRZ (++)r + egoswl' mPl(—H-) | (1,1)

DiD}Z | —iy* L(JZ(D”)—egZ(D'Z)COSzwI+RZ( L tesnv Ty “3733( ) J (2.2)

COs

DiDYZ | —ivyt|gz(D?) — egz (D! )m%ﬁnl( )L+ Cowz m57>3(——) (3,3)

Table 7. Couplings involving the Z boson and the heavy left-handed fermions. In analogy to the
couplings of the KK gluon to heavy fermions, one has to complete these rules with the couplings of
the Z boson to the heavy right-handed fermions according to the scheme given in table 4.
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Zero mode couplings to the Zy boson
Q@ = 2/3 quarks

0y Va0 Zy | —iv*[g2(a") cos € RY(+)1 + sin &y Pi(++)1] | (0,0)
00 00

g ug Zi | —iv"|gz(ul) cos ¢ Ry(++)r + sin€ maPi(++)r| | (00)
00 00
Q = —1/3 quarks
~d;(0) di(O)Z i~ d; Rz : i
ar ar Zo | =i |gz(q%) cos Ry (++) L +siné kP (++)| | (0,0)
- 00 00 -

DX DI 7z | —ini| g7(D7) cos € RE(++)  + sin€ ksPi(++)r| | (0,0)
- 00 00 -

Table 8. Couplings involving zero modes and the Zg boson. These zero modes correspond after
rotation to fermion mass eigenstates to the SM quark fields.

Off-diagonal couplings to the Zgy boson

Q = 2/3 quarks

0%y 2y | i7" [o2(a") cos € RY(+)1 + singmPi(++)2] | (01

74iq" O Zy | —ig"|gz(qu) cos ERL(+4) 1 + siné mPi(++)1| | (1,0
- 10 10 -

)

)

i |~ |g2(u) cosERYCH)p +sing myPh(++)r] | (05)
)

(
(

ﬁ%ugO)ZH —iyH | gz (ut) cos € RE(++)r + sin € k3 Py (++)r (5,0
L 10 10 /

@ = —1/3 quarks

4:(0)_d, . : ; . ;
0 Vi 2 |~ [gz(a") cosE RI(++)1 +sinmPi++)e | | (0.1

DYV Di Zy | —igt| gz (D) cos € Ry (++)r + sin € ksPi(++)r| | (0,3
- 01 01 -

)
—d; di(0) o d; i : i
ar'ar Zu | —iv"|92(q%) cos E Ry (++) L +sing kaPi(++)| | (1,0)
L 10 10 .
)
)

DD 7y | —in# | g7 (D) cos € Ry (++)k + sin € ksPi(++)r| | (3,0
- 10 10 -

Table 9. Couplings involving the Zx boson and a single zero mode.
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Heavy fermion couplings to the Zy boson

= 5/3 quarks
XL xLZZH i |9z(x") cosE R (—+)1 +sing maPi(—4)r] | (L1)
Vi Zy | —iv"|gz(y") COS&E@(JF—)L + Sin§f€371’§,(+—)L (2,2)
VI Zy | =it gz (") cos € 7131%(+—)L + sin£/€47l’§(+—)L (3,3)

Q@ = 2/3 quarks
ar'ap' Zn | =" |92(¢") cos ERY(++)1 +sin{mPr(++)2 | | (1,1
11 11 .

UiU Zu | —in* |9z U'Z)cosgng(Jr—)L+sin£ff37’§(+—)L (2,2
11 -

XXt zu | —in 92! >coss7za<— o+ sing P~ )] | (44
b ut Zy —iyH [gz( )CO&fRZ(——)L —i—51n£/-€3732(——)4 (5,5

11
Q@ = —1/3 quarks

@Fdh Zy | —in*|g2(q%) cos € Ry (++)p +sin€ ki Pi(++)p| | (1,1)
- 11 11 -

)

( )

TruriZy | —igh gZ(U”Z)COS§R3( )L+sin§f€37l’§(+—)LJ (3,3)
)

)

DiDiZy —iry#[gz(D'i)cosg?lg(—k—)L—|—Sin£/-€37131§;(—|——)4 (2,2)

DiDt Zy | —iy*|gz(D?) cos ERE(——)r +siné ksPi(——)r| | (3,3)
- 11 11 -

Table 10. Couplings involving the Zy boson and the heavy left-handed fermions. The rules for
the couplings of the Zz boson to the heavy right-handed fermions can be found by means of the
scheme given in table 4.

ZH — Z/

cos( — —siné

siné —  cos¢

Table 11. Replacement rules for obtaining the Z’ couplings from the Zy couplings.
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Wy — w’

cosy — —siny

siny —  cosy

Table 12. Replacement rules for obtaining the W’ couplings from the Wy couplings.

Zero mode coupling to the W boson
Q =—-1/3 — Q = 2/3 transitions
apVa W 1= eI/ Ri(++)z | | (00)
00

_i_9 A~
Svortl

Table 13. In case of the W we have only a single SM-like coupling including two zero mode
fermion fields.

W T boson couplings involving a single zero mode
Q =2/3 — @ = 5/3 transitions

—ui WO+ | - g —Si(_

g O WiWL%(ﬂHﬂL (1,0)
Q= —-1/3 — @ = 2/3 transitions

—u; di(0) pr 4 9 +Ri

arq; W i=e Ty 71601(++)L (1,0)
odi diO)rr+ | - g ~Si(—

xra W el ‘f&( +)(++)L (4,0)
115 12 (0 . - Qi

URDRIW | —icfonte Si(—H)++n | (30)

Table 14. Couplings involving the W™ boson and a single zero mode.

D.7 Fermion couplings to charged gauge bosons

In tables 13-18 we give all fermion couplings to W and WI}' . Similarly to the case of
heavy neutral gauge bosons, the W't couplings are easy to get from WI}F couplings by
making the replacements summarised in table 12.

Tables 13-18 give automatically the couplings of W, W, and W'~ to fermionic flavour
eigenstates. But as e. g. qzi(o)q%(o)W* is now replaced by cfjif(o)qzi(o)W*, after rotation to
fermionic mass eigenstates through complex matrices Uy, g and Dy, g, the couplings of W,
WI"; and W'* and W, W, and W'~ will differ from each other by complex conjugation
of the relevant mixing matrix. For instance Vg in the vertex tdW ™ will be changed to o

in dtW—.
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Heavy fermion couplings to the W+ boson

Q =2/3 — @ = 5/3 transitions

—ui  divrr+ 9 u _ i

XrxTw 1—L=v [1 eIy RY( +)L] (1,4
LXL VoL i

JITTITA + s 9 _ +11 _
VRUEW S | it [ 14 IRy ()] | (22

X%iqziWJr _i\/%fy“effgﬁ(——i-)("i“F)L (171

VEURWE it S o)) | (33

Q =-1/3 — @Q = 2/3 transitions

GraEwt | iy {1 - er7121§(++)LJ (1,1)
GiDpw | =it [ - IRy ] | (22
AT _i\/%fy“ez'fgﬁ(——i-)("f“")L (4,1)
U//iDi W+ _iLr}/MEI*Si +—)(—)L 373
L *~L VL 1 1%( )( ) ( )

Table 15. Couplings including the W boson and the heavy left-handed fermions. For each
coupling to left-handed heavy fermion fields there exist one with right-handed fermions. The cor-
responding couplings can be read off from this table by making the substitution according to the

scheme given in table 4.

Zero mode coupling to the Wg boson
Q= —1/3 — @ = 2/3 transitions
“wu(0) GOt | g p i
a ar Wy |~y cosx Ri(++)L | (0,0)
L 4L H V2L o

Table 16. In case of the WE we have only a single SM-like coupling involving two zero mode

fermion fields.

W; boson couplings involving a single zero mode
Q =2/3 — @ = 5/3 transitions

RYTH () . . <
Kriay Wi | —icgeytsinx SH=+H)(++H) | (10)
10
Q =—-1/3 — Q = 2/3 transitions
—u;(0) d;ii+ c g i
a,qrw —i—LFcos x RL(++) 1, (0,1)
]
qziqu( )W;Ir —i\/%wf‘ cos X Ri(++)L (1,0)
10
—d; di(0)yy/+ S BT i
Xrqr Wi | —i="sinx Sj(—+)(++)1 (4,0)
_L LA H V2L 101
U;éZD;(zO)W;Ir —i\/%’y“ SinX‘fé(—‘i‘)("“")R (3,0)

Table 17. Here we show all couplings involving the WE boson and a single zero mode.
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Heavy fermion couplings to the WE boson
Q =2/3 — @ =5/3 transitions

iy diyrr+ _i g ~p i(_

XrxrWw 1—2—="y"cos x Ri(—+)r 1,4

_LALA H V2L 111( ) (1,4)

RURW L i%y“cosx?@é(—k—)L (2,2)

11

cWi Wity + i 9 A i

XrqrWw i—L=y*sin x S;(—+)(++)r | (1,1)

o i

VEUFW | iyt sinx S+ ) () | 3.3)
11

Q= —1/3 — @ = 2/3 transitions

~u; diyrr+ s 9 i

arqrw i—A=y"cos x Ry (++)1 11

_L. L. " V2L 111

ULDIW —i%*y“ cos x Ry(+—)r 2,2
L 11

(
(

XLaE Wi |~y sinx Sj(—H) () | (41
(

UZZDZLWI}_ _i%fy“ Sianff,(‘i‘_)(__)L

Table 18. Couplings involving the WI;,F boson and the heavy left-handed fermions. For each
coupling to left-handed heavy fermion fields there exist one with right-handed fermions that can be
obtained using table 4.

D.8 Triple gauge boson couplings

In this section we list the triple gauge boson couplings, where we give the SM-like couplings
up to the order of O(e), while the couplings involving a heavy gauge boson are given at
O(1). Therefore we define the following overlap integrals:

1 L - 1 L I B
7?**:—/ dyg(y)?®, T, +:Z/ dyg(y)iely) T :Z/ dy g(y)*.

L 0 0 0
(D.20)
The corresponding overlap integrals with one or two shape functions of the first KK mode
simplify because of the orthonormality condition.
The following Feynman rules are given in gauge boson mass eigenstates. The Dirac

structure of all vertices is the same,

0
Vo

! l Cluw(k =p)p+ 10— Qp +npula — k)],

k p

VvVt / \

1 Vi,

where V;‘ = WJ‘, WIJ{FM, Wlﬂ', Vi, =W, Wy, W, Vpo = A;O),Agl), Zpy ZHp, Z/’), and
k,p, q are their incoming momenta. Therefore in tables 19-22 we collect only the coefficients

C of the respective couplings.
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Couplings to the Z boson

WWw-Z i% cos P + O(e?)
WiW-Z O(e)

WIJ{FWI}Z i\% (COS 1 cos? y — sin ¢ sin 1) sin® X)
WHW,Z —i% sin y cos x (cos ¥ + sin ¢ sin 1))

Table 19. Triple gauge boson couplings to the Z boson. The remaining vertices W/tW =27 and
W't W'~ Z can be simply derived by making use of the replacements of table 12. Furthermore the
coupling of WHW; Z is equal to W W~ Z, the same ist valid for WTW'=Z and W/TW~Z as well
as WAW'=Z and WHW, Z.

Couplings to the Z boson
WHW~=Zy O(e)
WhW~=Zy i% cos 1) cos x cos &
WIJ{FWEZH i% ( cos 1) cos? x cos & 7§+++ + cos ¢sin? ysin & T35
— sin ¢ sin ) sin? y cos§’]})__+)
WWy Zy i% sin y cos x(— coscos E T, 4 cos gsiné T,
—sin¢siny cos ,2%,,+)

Table 20. Triple gauge boson couplings to the Zy boson. The remaining vertices can again be
derived by making use of the replacements of tables 11 and 12.

Couplings to the photon
wWHw—AO) i% sin 1)
Wiw—AO 0
WiW, A0 i% sin 1)
WHw, AQ) 0

Table 21. Triple gauge boson couplings to the photon zero mode. The remaining vertices can
again be derived by making use of the replacements of table 12.

In table 19 we give a subset of the vertices involving the Z boson, from which the
remaining Z vertices can be obtained performing the replacements in table 12.

The corresponding Zp vertices are given in table 20. In order to obtain the triple
gauge boson couplings involving Z’ one can use the results of the couplings to Zy with the
replacements of table 11.

Finally we give in tables 21 and 22 the vertices involving the photon and its first KK
mode.
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Couplings to the KK photon
wHw—AW O(e)
Wiw—AW i% sin 1) cos
WIJ}WI}A(U i\% sin 1) (Cos2 X '];FJFJF +sin? y 'nger)
wHHw, AW i% sin y cos ysiny (=75 4+ 7,7

Table 22. Triple gauge boson couplings to the first KK photon mode. The remaining vertices can

again be derived by making use of the replacements of table 12.
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