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1 Introduction

Models with a warped extra dimension, also called Randall-Sundrum (RS) models [1–4],

in which all Standard Model (SM) fields are allowed to propagate in the bulk, offer natural

solutions to many outstanding puzzles of contemporary particle physics. In addition to pro-

viding a geometrical solution to the hierarchy problem related to the vast difference between

the Planck scale and the electroweak (EW) scale, they also allow to naturally generate hier-

archies in fermion masses and weak mixing angles [5, 6], suppress flavour changing neutral

current (FCNC) interactions [7–9], construct realistic models of EW symmetry breaking

(EWSB) [10–15] and achieve gauge coupling unification [16, 17].
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The question then arises whether some imprints of this new physics scenario could be

in the reach of the LHC, while satisfying all existing experimental constraints, coming in

particular from EW precision tests, from the data on FCNC processes in both quark and

lepton sectors and also the data on the very highly suppressed electric dipole moments (for

recent reviews, see [18–20]).

A necessary, though not always sufficient, condition for direct signals of RS models

at the LHC is the existence of Kaluza-Klein (KK) modes with O(1TeV) masses. Early

studies of EW precision observables (EWPO) [10, 21] have shown that with the SM gauge

group in the bulk such low masses of KK particles are inconsistent in particular with the

bounds on the oblique parameter T and the well-measured ZbLb̄L coupling.

In a number of very interesting papers [10–15, 22] these two obstacles have been basi-

cally overcome by enlarging the bulk symmetry to

Gbulk = SU(3)c × SU(2)L × SU(2)R ×U(1)X × PLR (1.1)

and enlarging the fermion representations, so that the discrete left-right symmetry PLR,

exchanging SU(2)L and SU(2)R, is preserved. The presence of the additional gauge group

SU(2)R implies the existence of an unbroken custodial SU(2) symmetry in the Higgs sec-

tor, so that tree level contributions to the T parameter can be safely neglected. The

PLR symmetry and the related enlarged fermion representations eliminate the problematic

contributions to the ZbLb̄L coupling.

Interestingly, the presence of new light KK modes necessary to solve the “ZbLb̄L prob-

lem” implies significant contributions to the T parameter at the one loop level [23]. However

with an appropriate choice of quark bulk mass parameters, an agreement with the EW pre-

cision data in the presence of light KK modes can be obtained [24, 25]. In fact, while the

masses of the KK gauge bosons are forced to be at least (2− 3)TeV to be consistent with

the data on the oblique parameter S, fermionic KK modes with masses even below 1TeV

can be made consistent with the measured EWPO.

The suppression of FCNC transitions to an acceptable level in the presence of light

KK modes turns out to be much more challenging if the hierarchy of fermion masses

and weak mixings is supposed to come solely from geometry so that the fundamental 5D

Yukawa couplings are anarchic. In fact, recent studies demonstrate that in this case the

data on the CP-violating parameter εK imply a lower bound on the lightest gauge KK

modes in the ballpark of 20TeV [26, 27], the corresponding bound from µ → eγ is above

10TeV [28, 29]1 and even stronger bounds come from electric dipole moments [8, 31].

Moreover it has been pointed out in [32] that the flavour problem in these models becomes

even more serious when εK and B → Xsγ decays are considered simultaneously. Note

however that the bound in question can be somewhat relaxed by appropriately chosen

brane kinetic terms [26] and/or by allowing the Higgs boson to propagate in the bulk [32].

In view of this situation a number of proposals has been made in order to overcome

these “FCNC problems” of RS models that are directly related to the breakdown of the

universality of gauge boson-fermion couplings implied by the geometric explanation of

1We would like to mention that this bound can be avoided by new choices of lepton representations [30].
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the hierarchical structure of fermion masses and mixings. This breakdown implies the

violation of the GIM mechanism [33] and consequently tree level FCNC transitions that

are inconsistent with the data for light KK scales, provided that anarchic 5D Yukawa

couplings are chosen and the relevant couplings are O(1).

In [34] a class of RS models has been considered that makes use of bulk and brane

flavour symmetries in order to prevent the theory from large FCNCs. It has been shown

that if flavour mixing is introduced via UV brane kinetic terms, the GIM mechanism is

realized and a minimal flavour violating (MFV) model [35–39] can be obtained. However,

the natural explanation of fermionic hierarchies had to be abandoned in that setup. A

different strategy has been followed in [40], where the field theoretical concept of MFV

has been promoted to the 5D theory, i. e. the bulk mass matrices are expressed in terms

of the 5D Yukawa couplings. Low energy flavour violation can be further suppressed by

a single parameter that dials the amount of violation in the up or down sector. If this

parameter is ensured to be small, no flavour or CP problem arises even with KK masses as

low as 2TeV. A more thorough analysis, including the presentation of a possible dynamical

origin of such a model, has been given in [41]. Another economical model based on a U(3)d
bulk flavour symmetry has been proposed in [42]. Here the right-handed down quark bulk

masses are enforced to be degenerate, so that the contributions of the QLR operator to εK
are generated only by suppressed mass insertions on the IR brane. A recent approach [43]

presents a simple model where the key ingredient are two horizontal U(1) symmetries. The

SM fields are embedded into the 5D fields motivated by protecting ZbLb̄L. The horizontal

U(1) symmetries force an alignment of bulk masses and down Yukawas which strongly

suppresses FCNCs in the down sector. FCNCs in the up sector, however, can be close to

the experimental limits.

In two recent papers [27, 44] we took a different strategy and investigated to which

extent a hierarchy in the 5D Yukawa couplings has to be reintroduced in order to achieve

consistency with the existing data on FCNC processes in the presence of KK modes in

the reach of the LHC. In particular in [27] we have demonstrated that there exist regions

in parameter space with only modest fine-tuning in the 5D Yukawa couplings involved

which allow to obtain a satisfactory description of the quark masses and weak mixing

angles and to satisfy all existing ∆F = 2 and electroweak precision constraints for scales

MKK ≃ 3TeV in the reach of the LHC. As the dominant part of the observed hierarchy in

masses and mixings is still explained through the AdS5 geometry, the resulting hierarchies

are significantly milder than in the SM and other usual 4D approaches.

Subsequently, confining the numerical analysis to the regions of parameter space al-

lowed by ∆F = 2 observables and with only modest fine-tuning, we have presented in [44]

a complete study of rare K and B meson decays including K+ → π+νν̄, KL → π0νν̄,

KL → π0ℓ+ℓ−, KL → µ+µ−, Bs,d → µ+µ−, B → Kνν̄, B → K∗νν̄ and Bs,d → Xs,dνν̄.

In this context it should be emphasised that the presence of FCNC transitions already

at the tree level in the model in question, as opposed to the MSSM and Little Higgs models,

necessarily implies other patterns in CP-violating observables and rare decay branching

ratios. In particular in RS models not only non-MFV interactions are present, like for

instance in the Little Higgs models with T-Parity, but also new operators become important
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that are strongly suppressed in the latter. As found in [27, 44] such new contributions lead

to interesting deviations from the SM and in particular from models with Constrained

MFV [35, 36, 45] in observables that are still poorly measured and which allow for large

new physics contributions.

The main results of [27] can be briefly summarised as follows:

• The EW tree level contributions to ∆F = 2 observables mediated by the new weak

gauge boson ZH , while subleading in the case of εK and ∆MK, turn out to be of

roughly the same size as the KK gluon contributions in the case of Bd,s physics

observables.

• The contributions of KK gauge boson tree level exchanges involving new flavour and

CP-violating interactions allow not only to satisfy all existing ∆F = 2 constraints

but also to remove a number of tensions between the SM and the data, claimed in

particular in εK , SψKS
and Sψφ [46–49].

• Interestingly the model allows naturally for Sψφ as high as 0.4 that is hinted at by

the most recent CDF and DØ data [50–52] and which is by an order of magnitude

larger than the SM expectation: (Sψφ)SM ≃ 0.04.

• The PLR symmetry implies automatically the protection of flavour violating ZdiLd̄
j
L

couplings so that tree level Z contributions to all processes in which flavour changes

appear in the down quark sector are dominantly represented by ZdiRd̄
j
R couplings.

• However, the tree level Z contributions to ∆F = 2 processes are of higher order in

v/MKK and can be neglected.

On the other hand the main messages from [44] are as follows:

• New physics contributions to rare K and B decays, as opposed to ∆F = 2 transi-

tions, are governed by tree level contributions from Z boson exchanges (dominated

by ZdiRd̄
j
R couplings) with the new heavy electroweak gauge bosons playing a sub-

dominant role.

• Imposing all existing constraints from ∆F = 2 transitions we find that a number

of branching ratios for rare K decays can differ significantly from the SM predic-

tions, while the corresponding effects in rare B decays are modest. In particular the

branching ratios for KL → π0νν̄ and K+ → π+νν̄ can be by a factor of three and

two larger than the SM predictions, respectively. The latter enhancement could be

welcomed one day if the central experimental value [53] will remain in the ballpark

of 15 · 10−11 and its error will decrease.

• However, it is very unlikely to get simultaneously large NP effects in rare K decays

and Sψφ, which constitutes a good test of the model.

• Sizable departures from the MFV relations between ∆Ms,d and Br(Bs,d → µ+µ−)

and between SψKS
and the K → πνν̄ decay rates are possible.

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
4

• The pattern of deviations from the SM differs from the deviations found in the LHT

model [54].

It is interesting that in spite of many new flavour parameters present in this model a

clear pattern of new flavour violating effects has been identified in [27, 44]: large effects

in ∆F = 2 transitions, large effects in ∆F = 1 rare K decays, small effects in ∆F = 1

rare B decays and the absence of simultaneous large effects in the K and B system. This

pattern implies that an observation of a large Sψφ asymmetry would in the context of this

model preclude sizable NP effects in rare K decays. On the other hand, finding Sψφ to be

SM-like will open the road to large NP effects in rare K decays, even if such large effects

are only a possibility and are not guaranteed. On the other hand, an observation of large

NP effects in rare B decays would put this model in serious difficulties.

In [27, 44] only a brief description of the RS model in question has been presented

as only gauge boson exchanges were relevant at the tree level. In particular details on

the fermion sector have not been presented there. For the subsequent phenomenological

studies like the b → sγ and µ → eγ transitions it is of interest to have a more detailed

presentation which is the main goal of our paper. We formulate a particular RS model

based on the bulk gauge group Gbulk in (1.1) and having appropriate quark representations

in order to avoid tensions with EWPO. We work out the general structure of the gauge

and fermion sectors, discuss the new sources of flavour violation, and we give a collection

of Feynman rules2 that can be used to calculate all observables of interest. In fact a subset

of the Feynman rules presented here has already been used in [27, 44].

Throughout our analysis we follow the perturbative approach, i. e. we first solve the 5D

equations of motion and perform the KK decomposition in the absence of EWSB, as also

done e. g. in [55, 57] and then treat the Higgs vacuum expectation value (VEV) as a small

perturbation that induces mixing among the various modes. The complementary approach,

solving the equations of motion already in the presence of EWSB, has been followed e. g.

in [58–61]. Recently, a very detailed theoretical discussion of the latter approach has been

presented in [62]. In appendix C.2 we show that both approaches are indeed equivalent;

for an independent discussion see also [63].

The present paper is organised as follows. In section 2 we present in detail the gauge

sector of the model and in particular the effects of EWSB. The final formulae for gauge

boson masses and mixings in the charged and neutral sectors are collected in appendix C.

Next in section 3 we set up the quark representations under the bulk gauge group. In

section 4, one of the main sections of our paper, we work out the flavour structure of the

quark sector. After a detailed discussion of quark mass matrices and Yukawa couplings

in the flavour eigenbasis we outline the diagonalisation of these matrices and study the

structure of weak neutral and charged currents. Subsequently the couplings of KK gluons

and photons are considered. This section forms the basis of the Feynman rules in the

quark sector that are collected in appendix D. We end this section by listing the sources

of flavour violation in this model, with the pattern of flavour violation, in particular in

∆F = 1 processes, governed by the custodial protection present in the model. In section 5

2 Some of these Feynman rules have already been presented in [55, 56].
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we list the parameters of the model and present a useful parameterisation for the 5D

Yukawa couplings in terms of parameters accessible at low energies. In section 6 we discuss

one possible realisation of the lepton sector and present a dictionary that allows in a

straightforward manner to obtain the Feynman rules for the leptons from those of quarks.

We close the paper with a brief summary in section 7.

2 Gauge sector

2.1 Preliminaries

We consider an SU(3)c × SU(2)L× SU(2)R×U(1)X ×PLR gauge theory on a slice of AdS5

with the metric [1]

ds2 = e−2kyηµνdx
µdxν − dy2 , (2.1)

with the fifth coordinate being restricted to the interval 0 ≤ y ≤ L, and k ∼ O(MPl). In

order to simplify the phenomenological discussion in [27, 44] we chose to work with the

(+ − − − −) sign convention for the metric, i. e. ηµν = diag(1,−1,−1,−1). The gauge

bosons and fermions are allowed to propagate in the 5D bulk, while the Higgs field will be

localised on or near the IR brane (y = L).

In the electroweak sector, we consider the gauge symmetry [10, 11, 22]

O(4)×U(1)X ∼ SU(2)L × SU(2)R × PLR ×U(1)X , (2.2)

where PLR is the discrete symmetry interchanging the two SU(2) groups. This means for

instance that gL = gR ≡ g. The gauge group (2.2) is broken by boundary conditions (BCs)

on the UV brane (y = 0) to the Standard Model (SM) gauge group, i. e.

SU(2)L × SU(2)R × PLR ×U(1)X
UV brane−−−−−−−→ SU(2)L ×U(1)Y . (2.3)

This breakdown is achieved by the following assignment of BCs3

W a
Lµ(++) , Bµ(++) , (2.4)

W b
Rµ(−+) , ZXµ(−+) , (2.5)

where the first (second) sign denotes the BC on the UV (IR) brane: + stands for a Neumann

BC while − stands for a Dirichlet BC. Furthermore a = 1, 2, 3 and b = 1, 2. The fields Bµ
and ZXµ are given in terms of the original fields W 3

Rµ and Xµ as follows:

ZXµ = cosφW 3
Rµ − sinφXµ , (2.6)

Bµ = sinφW 3
Rµ + cosφXµ , (2.7)

where

cosφ =
g√

g2 + g2
X

, sinφ =
gX√
g2 + g2

X

. (2.8)

3These BCs can be naturally achieved by adding a scalar SU(2)R doublet with QX = 1/2 charge on the

UV brane, that develops a VEV vUV → ∞ (see [3, 61] for details).

– 6 –
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Here, g and gX are the 5D gauge couplings of O(4) and U(1)X , respectively. Note that the

BCs for a gauge field Vµ imply automatically opposite BCs for its 5th component V5. In

what follows we choose to work in the gauge V5 = 0 and ∂µV
µ = 0.

The fields with (++) BCs have, in addition to the massive KK modes, zero modes

which are massless at this stage and are identified with the SM gauge bosons W a
Lµ and Bµ

of SU(2)L ×U(1)Y . The fields with (−+) BCs contain only massive KK modes.

Before EWSB the profiles of gauge boson zero modes along the extra dimension are

flat. The profiles of KK gauge bosons are given by [6] (see also appendix B for details)

f (n)
gauge(y) =

eky

Nn

[
J1

(mn

k
eky
)

+ b1(mn)Y1

(mn

k
eky
)]

, (2.9)

where J1(x) and Y1(x) are the Bessel functions of first and second kind, and explicit expres-

sions for b1(mn) and Nn can be found in appendix B. The bulk masses are approximately

given by [6]

mgauge
n ≃

(
n− 1

4

)
πke−kL (n = 1, 2, . . . ) (2.10)

for the modes with a + BC on the IR brane that we are presently interested in. The

accuracy of this approximate formula improves significantly with increasing n, hence for

the first KK modes it is safer to work with the exact KK masses. These can be found

numerically to be

mgauge
1 (++) ≃ 2.45f ≡M++ (2.11)

for gauge bosons with (++) BCs, and

mgauge
1 (−+) ≃ 2.40f ≡M−+ (2.12)

for gauge bosons with (−+) BCs. Here we have introduced the effective new physics

scale f = ke−kL and set e−kL ≃ 10−16 in order to solve the hierarchy problem. The

∼ 2% suppression in the latter case is a direct consequence of the different BC on the UV

brane [55]. Note that the KK masses for the gauge bosons depend neither on the gauge

group nor on the size of the gauge coupling, but are universal for all gauge bosons with

the same BCs. Only after EWSB, the weak KK gauge boson masses will receive small

additional corrections. As can easily be seen from (2.9), the gauge KK modes are localised

near the IR brane.

To further proceed it will be useful to follow [55] and define the fields

W±
Lµ =

W 1
Lµ ∓ iW 2

Lµ√
2

, W±
Rµ =

W 1
Rµ ∓ iW 2

Rµ√
2

, (2.13)

and

Zµ = cosψW 3
Lµ − sinψBµ , (2.14)

Aµ = sinψW 3
Lµ + cosψBµ , (2.15)

where again sinψ is given in terms of gauge couplings (see (2.8) for the definition of φ)

cosψ =
1√

1 + sin2 φ
, sinψ =

sinφ√
1 + sin2 φ

. (2.16)

– 7 –
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Because of the mixing between the various gauge boson zero and KK modes sinψ 6= sin θW ,

but corrections appear first at order O(v2/f2). Their impact on EW precision studies is

beyond the scope of this paper and will be studied elsewhere.

We note that the above relations can be modified by the presence of additional gauge

kinetic terms on the UV and IR branes, that are allowed by the symmetries of the model.

In order not to complicate our analysis, we will neglect such terms and work exclusively

with the action given in appendix A. A generalisation of our results to include also the

effects of possible brane terms is straightforward. In section 4.5.7 we comment on the

effects of such terms on flavour phenomenology.

2.2 Electroweak symmetry breaking

As discussed in the previous section, the bulk gauge symmetry Gbulk in (1.1) is broken to

the SM gauge group

GUV = SU(3)c × SU(2)L ×U(1)Y ≡ GSM (2.17)

by means of the BCs of the EW gauge bosons on the UV brane. In order to achieve the

standard EWSB, SU(2)L × U(1)Y → U(1)Q, a Higgs boson is introduced that is localised

either on or near the IR brane, transforming as a self-dual bidoublet of SU(2)L × SU(2)R

H =

(
π+/
√

2 −(h0 − iπ0)/2

(h0 + iπ0)/2 π−/
√

2

)
, (2.18)

and being a singlet under U(1)X , QX(H) = 0. In the case of a 5D Higgs field living in the

bulk, the whole bidoublet has to obey (++) BCs in order to yield a light zero mode.

When its neutral component h0 develops a 4D effective VEV, on or near the IR brane

the symmetry breaking

SU(2)L × SU(2)R × PLR → SU(2)V × PLR (2.19)

takes place. We see explicitly that in the Higgs sector of the theory an unbroken custo-

dial symmetry SU(2)V remains, being responsible for the protection of the T parameter.

Similarly the PLR symmetry, protecting the ZdiLd̄
j
L coupling, remains unbroken.

Combining then the symmetry breakings by BCs on the UV brane and by the Higgs

VEV in the IR, we see that the low energy effective theory is described by the spontaneous

breaking

SU(2)L ×U(1)Y → U(1)Q , (2.20)

as required by phenomenology. The symmetry breaking structure of the model is displayed

in figure 1.

Now due to the unbroken gauge invariance of QED and QCD, the gluon and photon

fields including their KK modes do not couple to the Higgs boson at leading order in

perturbation theory and hence do not mix with each other or with Z
(0)
µ , Z

(1)
µ and Z

(1)
Xµ and

the higher KK modes of Z and ZX . Therefore, even after EWSB

MA(0) = 0 , MA(1) = M++ , (2.21)

MG(0) = 0 , MG(1) = M++ , (2.22)

– 8 –
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SU(2)L × SU(2)R

×PLR × U(1)X

SU(2)L × U(1)Y

Planck brane TeV brane

SU(2)V × U(1)X

×PLR

Figure 1. EW symmetry breaking pattern of the RS model with custodial protection.

and the corresponding states remain mass eigenstates. On the other hand the kinetic term

for the Higgs field (see appendix A)

SHiggs =

∫
d4x

∫ L

0
dy
√
GTr

[
(DMH(xµ, y))†(DMH(xµ, y))

]
(2.23)

leads to v2-corrections to the masses of W
(0)±
Lµ , W

(1)±
Lµ and W

(1)±
Rµ as well as of Z

(0)
µ , Z

(1)
µ

and Z
(1)
Xµ, and mixing between states of the same electric charge is induced. Here

H(xµ, y) =
1√
L
H(xµ)h(y) + heavy KK modes , (2.24)

where h(y) is the Higgs shape function along the extra dimension. We assume h(y) to be

of the form

h(y) =
√

2(β − 1)kL ekL eβk(y−L) (β ≫ 1) (2.25)

where in the limit β → ∞ the case of an IR brane localised Higgs is recovered. The case

of a bulk Higgs has first been considered in [64, 65]. Furthermore

〈H(xµ)〉 =

(
0 −v/2
v/2 0

)
, (2.26)

and v = 246GeV denotes the effective 4D VEV of the zero mode of h0 in (2.18).

Restricting the discussion to n = 0, 1 for simplicity, the gauge boson interactions with

– 9 –
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the Higgs resulting from (2.23) lead to two mass matrices M2
charged and M2

neutral [55]

(
W

(0)+
L W

(1)+
L W

(1)+
R

)
M2

charged



W

(0)−
L

W
(1)−
L

W
(1)−
R


 , (2.27)

1

2

(
Z(0) Z(1) Z

(1)
X

)
M2

neutral



Z(0)

Z(1)

Z
(1)
X


 , (2.28)

with M2
charged and M2

neutral given explicitly in appendix C.

In order to determine the physical mass eigenstates and the corresponding masses,

M2
charged and M2

neutral have to be diagonalised by means of orthogonal transformations:

GWM2
charged GTW = diag(M2

W ,M
2
WH

,M2
W ′) , (2.29)

GZM2
neutral GTZ = diag(M2

Z ,M
2
ZH
,M2

Z′) . (2.30)

The mass eigenstates (W±,W±
H ,W

′±) and (Z,ZH , Z
′) are then related to the gauge eigen-

states of the KK modes via



W±

W±
H

W ′±


 = GW



W

(0)±
L

W
(1)±
L

W
(1)±
R


 ,



Z

ZH
Z ′


 = GZ



Z(0)

Z(1)

Z
(1)
X


 . (2.31)

The explicit form of the orthogonal matrices GW and GZ can be found in appendix C.

3 Fermion sector — quarks

3.1 Preliminaries

In order to preserve the O(4) ∼ SU(2)L×SU(2)R×PLR symmetry, that is necessary for the

suppression of dangerous contributions to EW precision observables [10, 11, 14, 15, 22, 23],

we will choose a particular simple set of representations of the O(4) group. Although

in order to satisfy EW precision measurements only the third quark generation needs to

preserve the PLR symmetry, the incorporation of CKM mixing requires the same choice of

O(4) representations also for the first two quark generations. This is crucial for having a

custodial protection for the flavour violating couplings ZdiLd̄
j
L [44] as well.

In this section we restrict our attention to the quark sector of the model. The lepton

sector will be discussed separately in section 6.

The particular fermion assignment given below has been motivated by the analyses

of [13–15, 23, 66]. In particular the representations given below can easily be embedded

into complete SO(5) multiplets used in [14, 23, 66] in the context of models with gauge-

Higgs unification.
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We introduce three O(4) multiplets per generation (i = 1, 2, 3):

ξi1L =

(
χui

L (−+)5/3 qui

L (++)2/3
χdi

L (−+)2/3 qdi

L (++)−1/3

)

2/3

, (3.1)

ξi2R = uiR(++)2/3 , (3.2)

ξi3R = T i3R ⊕ T i4R =



ψ′i
R(−+)5/3

U ′i
R(−+)2/3

D′i
R(−+)−1/3




2/3

⊕



ψ′′i
R (−+)5/3

U ′′i
R (−+)2/3

Di
R(++)−1/3




2/3

. (3.3)

The corresponding states of opposite chirality are given by

ξi1R =

(
χui

R (+−)5/3 qui

R (−−)2/3
χdi

R (+−)2/3 qdi

R (−−)−1/3

)

2/3

, (3.4)

ξi2L = uiL(−−)2/3 , (3.5)

ξi3L = T i3L ⊕ T i4L =



ψ′i
L(+−)5/3

U ′i
L(+−)2/3

D′i
L(+−)−1/3




2/3

⊕



ψ′′i
L (+−)5/3

U ′′i
L (+−)2/3

Di
L(−−)−1/3




2/3

. (3.6)

The following comments are in order:

• All fields in (3.1)–(3.6) are triplets under SU(3)c, i. e. they carry QCD colour.

• ξi1L and ξi1R are bidoublets of SU(2)L × SU(2)R, with SU(2)L acting vertically and

SU(2)R horizontally.

• uiL and uiR are singlets of O(4).

• T i3L,R ⊕ T i4L,R transform as (3,1) ⊕ (1,3) under SU(2)L × SU(2)R. The embedding

of the right-handed down-type quarks into triplet representations (1,3) is necessary

in order to allow for a U(1)X invariant Yukawa coupling.

• The charges QX assigned to the various multiplets are U(1)X charges.

• The charges Q assigned to separate fields are electric charges, given as

Q = T 3
L + T 3

R +QX , (3.7)

where T 3
L and T 3

R denote the third component of the SU(2)L and SU(2)R isospins,

respectively.

• Only the fields obeying (++) BCs have massless zero modes. Up to small mixing

effects with other massive modes due to the transformation to mass eigenstates dis-

cussed in section 4, these zero modes can be identified with the usual SM quarks.
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• The remaining fields are KK modes with approximately vectorlike couplings. We

thus have in this model additional heavy fermionic states. These are

Q = 5/3 : χui(n), ψ′i(n), ψ′′i(n) , (3.8)

Q = 2/3 : qui(n), ui(n), U ′i(n), U ′′i(n), χdi(n) , (3.9)

Q = −1/3 : qdi(n),Di(n),D′i(n) , (3.10)

where n = 1, 2, . . . .

• Left- and right-handed fermion fields are defined via ψL,R = ∓γ5ψL,R.

3.2 KK decomposition and bulk profiles

3.2.1 Zero modes

The profiles of left-handed fermionic zero modes with respect to the flat metric are given

by [5, 6]

f̂
(0)
L (y, c) =

√
(1− 2c)kL

e(1−2c)kL − 1
e(

1
2
−c)ky , (3.11)

where ck is the bulk mass of the 5D fermion field. In the case of right-handed zero modes,

c has to be replaced by −c in the above formula and in the discussion following below. We

note that

• For c > 1/2 the normalisation factor in (3.11) is O(1) and f
(0)
L (y, c) is peaked around

y = 0, i. e. fermions with bulk mass parameter c > 1/2 are placed close to the UV

brane.

• For c < 1/2, as is the case of the top quark, the second term in the denominator

of (3.11) can be neglected and we obtain

f̂
(0)
L (y, c) ≃

√
(1− 2c)kL e(

1
2
−c)k(y−L) . (3.12)

Thus the shape function is strongly peaked towards y = L, i. e. the IR brane.

• One should stress that generally the cL and cR of left- and right-handed SM fermions

can differ from each other, as these fermions are zero modes of different 5D represen-

tations. As both cL and cR enter the formula for the Yukawa couplings and fermion

masses, this freedom can help to satisfy certain features in EW precision studies [13–

15, 23] and in flavour physics [8, 62] while keeping the fermion masses of their natural

size. This is in particular relevant for the third quark generation.

3.2.2 KK modes

The shape functions for fermionic KK modes with respect to the warped metric are given

by [6] (see also appendix B for details)

f
(n)
L,R(y, c,BC) =

eky/2

Nn

[
Jα

(mn

k
eky
)

+ bα(mn)Yα

(mn

k
eky
)]

, (3.13)
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where α = |c± 1/2| for left-(right-)handed modes, and expressions for Nn and bα(mn) can

be found in appendix B. The KK masses are approximately given by

mfermion
n ≃

(
n+

1

2

(∣∣∣∣c+
1

2

∣∣∣∣− 1

)
∓ 1

4

)
πf , (3.14)

where the ∓ sign corresponds to a ± BC for the left-handed fermion on the IR brane. Again,

as in the case of gauge KK modes, the accuracy of (3.14) improves with increasing n.

The following comments are in order [4, 6]:

• The bulk mass parameter c is universal for the full tower of KK modes and equal to

the c describing the localisation of the zero mode if such mode exists.

• In spite of the same c even for c > 1/2 the form of (3.13) implies that all KK modes

are localised near the IR brane. There is no freedom to delocalise the massive KK

modes away from the IR brane, as was the case for the zero mode.

3.3 Yukawa couplings and fermion masses

The SM fermions acquire masses via their Yukawa interactions with the Higgs in the process

of electroweak symmetry breaking. The effective 4D Yukawa matrices Yij are then given by

Yij ∝
∫ L

0

dy

L3/2
λijh(y)f

(0)
L (y, ci)f

(0)
R (y, cj) , (3.15)

where λij is the fundamental 5D Yukawa coupling and h(y) is the Higgs shape function

along the extra dimension, as given in (2.25).

We stress that together with h(y) from (2.25) the fermionic zero mode functions with

respect to the warped metric, as given in (B.13), have to be used in order to determine the

effective 4D Yukawa couplings Yij in (3.15).

In the special case of an IR brane localised Higgs we obtain

Yij ∝
λij

Ni,LNj,R
e(1−c

i
L
+cj

R
)kL (3.16)

where Ni,L, Nj,R are normalisation factors of the fermion shape functions on the IR brane.

We note that in this case, up to λij , Yij has a factorised form, as emphasised in [7]. In the

more general case of the Higgs field propagating in the bulk this factorisation is broken,

but only weakly for a large range of ciL, c
j
R [67].

On the other hand we stress that in the presence of non-diagonal entries of λij, the

factorisation must always be broken as not all entries of λij can be equal. Indeed this special

choice of 5D Yukawa couplings would lead to two zero eigenvalues of the corresponding

mass matrix. In addition some non-degeneracy between the entries of λij is needed to cure

the “|Vub| problem” identified in [7]. Indeed this is completely analogous to the case of

the Froggatt-Nielsen flavour symmetry [68], where also a slight structure in the Yukawa

coupling matrices is needed to obtain the correct size of |Vub|. A detailed discussion of the

close analogy between the Froggatt-Nielsen mechanism and bulk fermions in RS models

has been presented in [27].
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4 Flavour structure

4.1 Preliminaries

The flavour structure of this class of models is rather complicated, although as emphasised

by Agashe et al. [8] in certain approximations it is quite simple. For the time being we will

however not make any approximations.

The procedure to find all interactions including flavour violating ones is basically the

following:

Step 1. We begin with the interaction terms in Lfermion and LYuk in (A.1) in terms of

flavour eigenstates for fermions and in the gauge eigenbasis for the gauge bosons.

To this end we start with the fundamental 5D interactions and then perform the KK

decomposition as described in appendix B. We thus obtain effective 4D couplings

that are non-local quantities along the extra dimension, resulting from the overlap of

the gauge boson and fermion shape functions. Schematically the interactions between

different KK levels (k,m, n = 0, 1, . . . ) are given by

gkmn =
g

L3/2

∫ L

0
dy ekyf (k)(y, c)f (m)(y, c)f (n)

gauge(y) . (4.1)

Note that only fermions within the same gauge multiplet are coupled to each other in

this way, so that their bulk mass parameters are necessarily equal. In the Feynman

rules collected in appendix D these overlap integrals appear as R, P and S.

As the gauge boson zero mode has a flat shape function, the coupling for equal

fermion KK levels k = m to the gauge boson zero mode n = 0 reduces to the 4D

gauge coupling g/
√
L, while the integrals with k 6= m vanish due to the normalisation

of the fermion shape function. In the same way, couplings of different fermionic KK

levels to the gauge boson zero mode (n = 0) vanish due to the orthogonality of the

fermion shape functions. However, due to the effects of EWSB, the EW gauge boson

zero mode mixes with its KK modes, so that eventually flavour non-universalities in

the couplings of the SM weak gauge bosons and non-zero couplings between various

KK levels will arise.

A different treatment of the effects of EWSB on the gauge boson zero modes has been

discussed in [58–60]. In their description the Higgs VEV is inserted already at the

level of the 5D equations of motion, which leads to a distortion of the gauge boson

zero mode in the vicinity of the IR brane. On the other hand no mixing between the

various KK levels appears. In appendix C we review both approaches in detail, study

their advantages and shortcomings and show that both interpretations are indeed

physically equivalent. A similar independent discussion has been presented in [63].

Step 2. Next we have to consider the mass matrices of gauge bosons and fermions. Here

the new aspects relative to the SM are

• in the gauge sector:
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– The extended gauge group SU(2)L × SU(2)R ×U(1)X leads to the presence

of additional (heavy) gauge bosons.

– In addition, also the heavy KK modes of the SM gauge bosons, including

also gluons and the photon, are present.

– EWSB induces mixing of the SM zero modes with the additional heavy KK

modes of the same electric charge.

• in the fermion sector:

– The enlarged fermionic representations imply the presence of new heavy

fermions that could be much lighter than the gauge KK modes [14, 15].

– Also the heavy KK modes of the SM fermions have to be considered.

– Again mixing of the SM zero modes with the heavy KK states is induced.

Step 3. Finally all interactions have to be rewritten in terms of mass eigenstates for gauge

bosons and fermions. Therefore the corresponding mass matrices need to be diago-

nalised. Note that mixing takes place not only between different flavours, but also

between different KK levels.4 As the new physics scale f is experimentally con-

strained to be f >∼ 1TeV, within a good approximation it is sufficient to consider

only the contributions of n = 0, 1 modes and neglect all higher KK levels. Therefore

in what follows we restrict our discussion to this simplified case. The generalisation

of our formulae to include also higher KK modes is then straightforward.

4.2 Quark mass matrices

The transformation to mass eigenstates in the gauge sector is performed in section 2 and

appendix C. The goal of the present section is to construct and diagonalise the mass ma-

trices for the quark fields given in (3.1)–(3.6). To this end we will only consider zero modes

and the lowest (n = 1) KK modes. As there are only few fields among the ones in (3.1)–

(3.6) that have zero modes, we will assign to them the superscript (0). For the excited KK

modes we will just use the notation of (3.1)–(3.6), making the n = 1 index implicit.

We will have to deal with three mass matrices corresponding to the electric charges

+5/3, +2/3 and −1/3. To this end we group the fermion modes into the following vectors:

For the +5/3 charge mass matrix we have

ΨL(5/3) =
(
χui

L (−+), ψ′i
L(+−), ψ′′i

L (+−)
)T

, (4.2)

ΨR(5/3) =
(
χui

R (+−), ψ′i
R(−+), ψ′′i

R (−+)
)T

, (4.3)

where the flavour index i = 1, 2, 3 runs over the three quark generations. Thus we deal

with 9-dimensional vectors. Note that in this sector only massive excited KK states are

present.

4This should be contrasted with models with flat extra dimensions where the presence of KK parity has

eliminated such mixing. For a recent attempt to introduce KK parity in the RS framework, see [69].
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For the charge +2/3 mass matrix the corresponding vectors read

ΨL(2/3) =
(
q
ui(0)
L (++), qui

L (++), U ′i
L(+−), U ′′i

L (+−), χdi

L (−+), uiL(−−)
)T

, (4.4)

ΨR(2/3) =
(
u
i(0)
R (++), qui

R (−−), U ′i
R(−+), U ′′i

R (−+), χdi

R (+−), uiR(++)
)T

. (4.5)

Here the first components are zero modes, and i = 1, 2, 3 so that we really deal with

18-dimensional vectors.

The −1/3 charge vectors read

ΨL(−1/3) =
(
q
di(0)
L (++), qdi

L (++),D′i
L(+−),Di

L(−−)
)T

, (4.6)

ΨR(−1/3) =
(
D
i(0)
R (++), qdi

R (−−),D′i
R(−+),Di

R(++)
)T

. (4.7)

Again the first entries are zero modes, the remaining ones massive KK modes, and i =

1, 2, 3, so that in this case a 12-dimensional vector is obtained.

In order to construct the mass matrices let us briefly recall certain properties, known

already from numerous studies in the literature:

1. We have three bulk mass matrices c1, c2, c3 corresponding to the O(4) representations

ξi1, ξ
i
2, ξ

i
3 (i = 1, 2, 3 is the flavour index), respectively. Note that for a given O(4)

multiplet with fixed flavour index all bulk mass parameters for different components

of the multiplet are equal to each other.

2. In general, ck are arbitrary hermitian 3×3 matrices, where k = 1, 2, 3 corresponds to

the O(4) multiplet ξk. In the following we choose to work in the basis where they are

real and diagonal, i. e. each of them is described by three real parameters cik, where

i is the flavour index. This can always be achieved by appropriate field redefinitions

of the ξi multiplets. Explicitly we then have:

c1 ≡ diag(c11, c
2
1, c

3
1) , (4.8)

and similarly for c2 and c3.

3. The allowed Yukawa couplings, giving mass to the fermion zero modes after EWSB,

have to preserve the full O(4) ∼ SU(2)L × SU(2)R × PLR gauge symmetry. The

possible gauge invariant terms in the full 5D theory can be found in appendix A.

4. The effective 4D Yukawa matrices will involve the fermion and Higgs shape functions.

We will denote the fermionic ones by fQL,k(y) and fQR,l(y), corresponding to the k-th

and l-th component of ΨL(Q) and ΨR(Q) in (4.2)–(4.7), respectively, and h(y) is the

Higgs shape function as given in (2.25).
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Having at hand this information and restricting ourselves to n = 0, 1 for simplicity,

we obtain the following effective 4D Yukawa couplings

[
Y

(5/3)
ij

]
kl

=
1√

2L3/2

∫ L

0
dy λdijf

5/3
L,k (y)f

5/3
R,l (y)h(y) , (4.9)

[
Y

(2/3)
ij

]
kl

=
1

2L3/2

∫ L

0
dy λdijf

2/3
L,k (y)f

2/3
R,l (y)h(y) , (4.10)

[
Ỹ

(2/3)
ij

]
kl

=
1√

2L3/2

∫ L

0
dy λuijf

2/3
L,k (y)f

2/3
R,l (y)h(y) , (4.11)

[
Y

(−1/3)
ij

]
kl

=
1√

2L3/2

∫ L

0
dy λdijf

−1/3
L,k (y)f

−1/3
R,l (y)h(y) . (4.12)

Interestingly, the Yukawa coupling proportional to λdij , connecting ξi1 with ξj3 and

being thus responsible for the SM down quark Yukawa coupling, leads to mass terms

not only for the charge −1/3 quarks, but simultaneously also to mass terms for the

+5/3 and +2/3 quarks. This is a direct consequence of T j3 and T j4 being placed in the

adjoint representations of SU(2)L and SU(2)R, respectively, as seen in (3.3), (3.6).

On the other hand, the term proportional to λuij, connecting ξi1 with ξj2 and being

thus responsible for the SM up quark Yukawa coupling, contributes only to the mass

matrix for the charge +2/3 quarks.

5. Finally the fermionic KK masses, which can be obtained from solving the bulk equa-

tions of motion, have to be included in the mass matrices. Note that both the

fermion shape function and the KK mass depend on the bulk mass parameter c and

on the BCs.

In what follows we will use the 3× 3 KK fermion mass matrices MKK
k (BC-L), where

k = 1, 2, 3 labels the representations in (3.1)–(3.6), and (BC-L) are the BCs for the

left-handed mode.

In terms of the mode vectors (4.2)–(4.7) we can write

Lmass = −Ψ̄L(5/3)M(5/3)ΨR(5/3) + h.c.

−Ψ̄L(2/3)M(2/3)ΨR(2/3) + h.c.

−Ψ̄L(−1/3)M(−1/3)ΨR(−1/3) + h.c. . (4.13)

In order to distinguish zero modes from the KK fermions we will label the zero mode

components of the vectors (4.2)–(4.7) by the index 0. Then the quark mass matrices read

M(5/3) =




MKK
1 (−+) v

[
Y

(5/3)
ij

]
12
−v
[
Y

(5/3)
ij

]
13

v
[
Y

(5/3)
ij

]†
21

MKK
3 (+−) 0

−v
[
Y

(5/3)
ij

]†
31

0 MKK
3 (+−)



, (4.14)
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M(2/3) = (4.15)



v
[
Ỹ

(2/3)
ij

]
00

0 −v
[
Y

(2/3)
ij

]
02
v
[
Y

(2/3)
ij

]
03

0 v
[
Ỹ

(2/3)
ij

]
05

v
[
Ỹ

(2/3)
ij

]
10

MKK
1 (++) −v

[
Y

(2/3)
ij

]
12
v
[
Y

(2/3)
ij

]
13

0 v
[
Ỹ

(2/3)
ij

]
15

0 −v
[
Y

(2/3)
ij

]†
21

MKK
3 (+−) 0 −v

[
Y

(2/3)
ij

]†
24

0

0 v
[
Y

(2/3)
ij

]†
31

0 MKK
3 (+−) v

[
Y

(2/3)
ij

]†
34

0

−v
[
Ỹ

(2/3)
ij

]
40

0 −v
[
Y

(2/3)
ij

]
42
v
[
Y

(2/3)
ij

]
43

MKK
1 (−+) −v

[
Ỹ

(2/3)
ij

]
45

0 v
[
Ỹ

(2/3)
ij

]†
51

0 0 −v
[
Ỹ

(2/3)
ij

]†
54

MKK
2 (−−)




,

M(−1/3) =




v
[
Y

(−1/3)
ij

]
00

0 −v
[
Y

(−1/3)
ij

]
02
v
[
Y

(−1/3)
ij

]
03

v
[
Y

(−1/3)
ij

]
10

MKK
1 (++) −v

[
Y

(−1/3)
ij

]
12
v
[
Y

(−1/3)
ij

]
13

0 −v
[
Y

(−1/3)
ij

]†
21

MKK
3 (+−) 0

0 v
[
Y

(−1/3)
ij

]†
31

0 MKK
3 (−−)




. (4.16)

These three matrices have to be diagonalised via a bi-unitary transformation to find

the quark mass eigenstates. Due to the large size of the mass matrices this diagonalisation

has to be done numerically.

Let us make a few remarks:

• The mass eigenstates of 5/3 charge are all heavy.

• In M(2/3) and M(−1/3) the off-diagonal entries in the first column and row lead

to mixing between light zero modes and heavy KK modes. This mixing will be

suppressed by O(v2/f2).

• In the case of the Higgs field being confined exactly to the IR brane, only Yukawa

couplings to those fermion modes are non-vanishing that obey a + BC on the IR

brane. In that case some of the entries in the above mass matrices in (4.14)–(4.16)

vanish:

M(5/3)21 =M(5/3)31 = 0 , (4.17)

M(2/3)21 =M(2/3)31 =M(2/3)51 =M(2/3)24 =M(2/3)34 =M(2/3)54 = 0 ,

(4.18)

M(−1/3)21 =M(−1/3)31 = 0 . (4.19)

As pointed out in [27] and discussed in detail in [70], this difference has profound

implications on the size of flavour violating Higgs couplings.

We can then diagonalise the +5/3, +2/3 and −1/3 charge matrices by

Mdiag(5/3) = X †
LM(5/3)XR , (4.20)

Mdiag(2/3) = U†
LM(2/3)UR , (4.21)

Mdiag(−1/3) = D†
LM(−1/3)DR . (4.22)
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The corresponding rotations of the ΨL,R vectors of fermion modes are

ΨL,R(5/3)mass = X †
L,R ΨL,R(5/3) , (4.23)

ΨL,R(2/3)mass = U†
L,R ΨL,R(2/3) , (4.24)

ΨL,R(−1/3)mass = D†
L,R ΨL,R(−1/3) . (4.25)

Note that XL,R, UL,R and DL,R are unitary 9×9, 18×18 and 12×12 matrices, respectively.

4.3 Weak currents

4.3.1 Neutral currents

Here we have to consider the currents involving the three gauge bosons Z(0), Z(1) and Z
(1)
X

with the corresponding mass eigenstates Z, ZH and Z ′ as defined in (2.31).

In order to simplify the presentation we first perform the rotation to mass eigenstates

in the gauge boson sector, as described in (2.31) and appendix C. The currents involving

the neutral gauge boson mass eigenstates Z,ZH , Z
′ and the quarks given still in the flavour

eigenstate basis are then given as follows:

Jµ(Z) = Ψ̄L(5/3) γµA
5/3
L (Z)ΨL(5/3) + Ψ̄R(5/3) γµA

5/3
R (Z)ΨR(5/3)

+ Ψ̄L(2/3) γµA
2/3
L (Z)ΨL(2/3) + Ψ̄R(2/3) γµA

2/3
R (Z)ΨR(2/3) (4.26)

+ Ψ̄L(−1/3) γµA
−1/3
L (Z)ΨL(−1/3) + Ψ̄R(−1/3) γµA

−1/3
R (Z)ΨR(−1/3)

and similarly for Jµ(ZH), Jµ(Z
′).

The AQL,R (Q = 2/3,−1/3, 5/3) matrices are flavour-diagonal matrices and have di-

mensions 18× 18, 12× 12 and 9× 9, respectively. With flavour-diagonal we mean that all

3 × 3 sub-matrices are diagonal. On the other hand some non-vanishing elements mixing

different fermions with the same flavour exist. The 3×3 sub-matrices are not proportional

to the unit matrix due to the universality breakdown in the gauge couplings. Indeed their

entries have the generic structure as in (4.1). However not all entries will differ from each

other as not all fermionic shape functions are different from each other. Recall that we

work in the basis where the bulk mass matrices ck are diagonal in flavour space. Explicit

expressions for the AQL,R matrices can easily be obtained from the Feynman rules given

in appendix D, that involve as usual gauge boson mass eigenstates but still quark flavour

eigenstates.

As cik are flavour non-universal, non-universalities in the gauge couplings are generated

already at this stage and will remain after the rotation to the mass eigenbasis.

Let us then write the currents in the mass eigenbasis for fermions:

Jµ(Z) = Ψ̄L(5/3)mass γµB
5/3
L (Z)ΨL(5/3)mass

+ Ψ̄R(5/3)mass γµB
5/3
R (Z)ΨR(5/3)mass

+ Ψ̄L(2/3)mass γµB
2/3
L (Z)ΨL(2/3)mass

+ Ψ̄R(2/3)mass γµB
2/3
R (Z)ΨR(2/3)mass

+ Ψ̄L(−1/3)mass γµB
−1/3
L (Z)ΨL(−1/3)mass

+ Ψ̄R(−1/3)mass γµB
−1/3
R (Z)ΨR(−1/3)mass , (4.27)
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with analogous expressions for Jµ(ZH) and Jµ(Z
′). Then

B
5/3
L,R(Z) = X †

L,RA
5/3
L,R(Z)XL,R , (4.28)

B
2/3
L,R(Z) = U†

L,RA
2/3
L,R(Z)UL,R , (4.29)

B
−1/3
L,R (Z) = D†

L,RA
−1/3
L,R (Z)DL,R , (4.30)

and similarly for ZH and Z ′. Note that now all B matrices are non-diagonal also in

flavour space so that the neutral gauge bosons in question mediate FCNC transitions both

between different KK levels and between different flavours. Formula (4.27) and similar

expressions for Jµ(ZH) and Jµ(Z
′) summarise tree level weak FCNC transitions in the

model under consideration. Tree level FCNC transitions mediated by KK photons and

gluons are discussed in section 4.4.

4.3.2 Charged currents

Similarly to the case of neutral currents we first rotate from the gauge eigenstates W
(0)
L ,

W
(1)
L ,W

(1)
R to the mass eigenstates W,WH ,W

′ by means of (2.31) and the explicit expres-

sions in appendix C. Then

Jµ(W
+) = Ψ̄L(2/3) γµGL(W+)ΨL(−1/3) + Ψ̄R(2/3) γµGR(W+)ΨR(−1/3)

+ Ψ̄L(5/3) γµG̃L(W+)ΨL(2/3) + Ψ̄R(5/3) γµG̃R(W+)ΨR(2/3) + h.c. , (4.31)

and similarly for GL,R(W+
H ), GL,R(W ′+), G̃L,R(W+

H ), G̃L,R(W ′+). Evidently the matrices

GL,R, G̃L,R are not square matrices because the number of Q = +5/3, +2/3 and −1/3

quarks differ. In the model under consideration they are 18 × 12 and 9 × 18 matrices,

respectively. In addition the 3 × 3 diagonal sub-matrices are not proportional to the unit

matrix due to the non-universality of gauge couplings. Explicit expressions for the GL,R
and G̃L,R matrices can be obtained from the Feynman rules given in appendix D, that

involve as usual gauge boson mass eigenstates but still quark flavour eigenstates.

Moreover due to the mixing of the SM quarks with the additional heavy +2/3 and

−1/3 fields, effects of non-unitarity will appear in the 3 × 3 CKM matrix. Note that the

way we define the fields ΨL(2/3) and ΨL(−1/3) in (4.4) and (4.6), the standard CKM

matrix will eventually be the 3 × 3 sub-matrix placed in the upper left corner of the final

mixing matrix.

Our next step then is to go to the mass eigenbasis for the fermions. In this basis the

GL,R(W,WH ,W
′), G̃L,R(W,WH ,W

′) are replaced by

HL,R(W+) = U†
L,RGL,R(W+)DL,R , (4.32)

H̃L,R(W+) = X †
L,R G̃L,R(W+)UL,R , (4.33)

and similarly for WH ,W
′.

– 20 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
4

Therefore the final expression for the charged currents in the mass eigenbasis is

Jµ(W
±) = Ψ̄L(2/3)mass γµHL(W+)ΨL(−1/3)mass

+ Ψ̄R(2/3)mass γµHR(W+)ΨR(−1/3)mass

+ Ψ̄L(5/3)mass γµH̃L(W+)ΨL(2/3)mass

+ Ψ̄R(5/3)mass γµH̃R(W+)ΨR(2/3)mass + h.c. , (4.34)

and similarly for Jµ(W
±
H ) and Jµ(W

′±). The CKM matrix is then given by

VCKM =

(
g√
2L

)−1

HL(W±)11 , (4.35)

where HL(W±)11 denotes the upper left 3× 3 sub-matrix of HL(W±).

4.4 Photonic and gluonic currents

The photonic and gluonic currents mediating FCNCs are similar to the neutral electroweak

currents discussed above, but because of the absence of spontaneous symmetry breaking

in that case, the various KK modes do not mix with each other. Consequently only the

massive KK modes contribute to FCNC processes.

The massive photonic current reads

Jµ(A
(1)) = Ψ̄L,R(Q) γµA

Q
L,R(A(1))ΨL,R(Q) , (4.36)

where Q denotes the electric charge. The massive gluonic current, on the other hand, reads

JAµ (G(1)) = Ψ̄L,R(Q) γµt
AAQL,R(G(1))ΨL,R(Q) , (4.37)

where A = 1, . . . , 8 and we have made the QCD colour indices of the quark fields implicit.

Interestingly, in spite of the universality of the gauge boson shape functions, the matri-

ces AQL,R(Z(1)) and AQL,R(Z
(1)
X ) are not proportional to AQL,R(A(1)), AQL,R(G(1)) due to the

different fermionic representations of SU(2)L × SU(2)R. However,

AQL,R(G(1))

gs
=
AQL,R(A(1))

Qe
. (4.38)

Although the SU(3)c and U(1)Q gauge symmetries remain unbroken, AQL,R(G(1)) and

AQL,R(A(1)) do depend both on Q and on the fermion chirality due to the different fermionic

shape functions involved. After rotation to the fermion mass eigenbasis, the currents are

given by

Jµ(A
(1)) = Ψ̄L,R(Q)mass γµB

Q
L,R(A(1))ΨL,R(Q)mass , (4.39)

and

JAµ (G(1)) = Ψ̄L,R(Q)mass γµt
ABQ

L,R(G(1))ΨL,R(Q)mass . (4.40)

Again, the matrices BQ
L,R(A(1)) and BQ

L,R(G(1)) are proportional to each other. Their

relation to AQL,R(A(1)), AQL,R(G(1)) is given in (4.29) and (4.30). Explicit expressions for
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the AQL,R(G(1)) and AQL,R(A(1)) matrices can be obtained from the Feynman rules given in

appendix D.

As due to the absence of spontaneous symmetry breaking in this sector the gauge

bosons are already in their mass eigenstates, the expressions (4.39) and (4.40) are already

the final expressions for the (massive) photonic and gluonic currents.

Because the matrices BQ
L,R are non-diagonal in flavour space, G(1) and A(1) mediate

tree level FCNC processes.

4.5 Sources of flavour violation

4.5.1 Preliminaries

Due to non-universalities of the couplings of quarks to KK gauge bosons, implied by the

manner the hierarchies of masses and mixings are explained in this NP scenario, FCNC

transitions mediated by KK gauge bosons appear already at the tree level. The mixing

of the Z boson with the KK gauge bosons in the process of EWSB implies also tree level

Z contributions. Fortunately the model has a custodial protection symmetry not only for

the ZbLb̄L coupling but as pointed out in [27] also for the ZdiLd̄
j
L coupling. Consequently,

the tree level Z exchanges in processes with external down-type quarks while implying

interesting effects in rare K and B decays [44] are not problematic. In particular no fine-

tuning is necessary to satisfy present constraints on the branching ratios of these decays.

The pattern of flavour violation in the present model goes far beyond the one of the

SM and also the one characteristic for models with MFV. There are new flavour violating

parameters in addition to the SM Yukawa couplings and the resulting CKM matrix, and

in particular new CP-violating phases. The counting of all these parameters is given in

the next section. Moreover, new operators contribute that are either absent or strongly

suppressed within the SM.

There are basically two main origins of these non-MFV effects:

1. The explanation of hierarchies of fermion masses through the differences of fermionic

bulk masses and shape functions leads to the non-universality of fermion-gauge in-

teractions and consequently FCNC transitions at tree level.

2. The requirement of consistency with the well-measured EWPO, including the Z →
bLb̄L transition, brings in not only new heavy gauge bosons, but also new heavy

fermions. The presence of the latter and their mixing with the standard quarks

and leptons implies a small non-unitarity of the CKM matrix and consequently still

another source of tree level FCNC transitions. Moreover these new particles can

contribute at loop level to FCNC processes.

Let us briefly elaborate on all these effects.

4.5.2 Tree-level exchange of KK gluons and KK photons

As the zero and KK modes of gluons and photons do not feel EWSB, no mixing between

the various KK modes appears. Consequently the couplings of the zero modes remain

flavour conserving.
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On the other hand the shape functions of the gluonic and photonic massive KK modes

are peaked towards the IR brane. Consequently the different shape functions of light

fermions then imply flavour violating couplings of the fermion zero modes to the KK

gluons and photons, given by the overlaps of the respective shape functions. These are

summarised in (4.39) and (4.40). As we have seen, the explicit appearance of the new

flavour mixing matrices UL,R and DL,R, that are unobservable in the SM and all other

MFV models, introduces new flavour violating parameters.

The exchange of massive KK gluons leads to tree level contributions to K0 − K̄0 and

B0
d,s− B̄0

d,s mixings and non-leptonic decays discussed originally in [71] and in more details

recently in [26, 27, 74]. The massive KK modes of the photon contribute in addition also

to semi-leptonic decays such as B → Xsℓ
+ℓ− and KL → π0ℓ+ℓ− [44].

For the first two quark generations the universality of the couplings in question is

only slightly broken and tree level FCNC transitions are a priori suppressed. Moreover

the small overlap of the shape functions for these quarks, that are peaked towards the UV

brane, with the shape functions of the KK gauge bosons, peaked towards the IR brane,

suppresses the relevant gauge couplings. This so-called RS-GIM mechanism [8] helps to

suppress FCNCs in the K meson system, but still does not eliminate severe constraints on

the model from εK [26, 27], in particular when tree level contributions from KK gluons are

involved. These effects are also present in processes involving the third quark generation,

where the universality breakdown is stronger. On the other hand, also the experimental

constraints are weaker in that case.

4.5.3 Tree level exchanges of Z, ZH and Z
′

Flavour violation is more involved in this case because of the spontaneous breaking of EW

symmetry that introduces

• mixing between Z(0) and the KK modes Z(1) and Z
(1)
X ,

• mixing between SM fermions and KK fermions.

Concerning the first effect, even if the Z(0) gauge boson does not mediate any FCNCs before

EWSB, such transitions are mediated by the Z(1) and Z
(1)
X due to their non-universal cou-

plings to light fermions. The mixing of Z(0) with Z(1) and Z
(1)
X in the process of EWSB then

implies that the light mass eigenstate Z does indeed mediate tree level FCNCs, and, to-

gether with ZH and Z ′, can in principle have a significant impact on rare FCNC processes.5

Now, our detailed study in [27, 44] shows that in the model in question the flavour

violating couplings of Z and Z ′ to left-handed down quarks are protected by the custodial

symmetry PLR of the model so that tree level contributions of Z to all flavour violating

processes (dominantly represented by the ZdiRd̄
j
R couplings) can be kept under control,

while Z ′ contributions are fully negligible. It turns out then that while new contributions

to εK and ∆MK are dominated by KK gluon exchanges, corresponding contributions to

the ∆B = 2 observables are governed by KK gluon and ZH gauge boson exchanges, while

5Equivalently, as discussed in appendix C, the tree level transitions mediated by Z can be traced back

to the distortion of its shape function in the vicinity of the IR brane after EWSB has taken place [60].
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the tree level Z contributions being of higher order in v2/M2
KK are negligible. On the other

hand new physics contributions to rare K and B decays are governed by the right-handed

couplings of Z.

Similarly the mixing between SM fermions and KK fermions generates additional con-

tributions to flavour violating Z couplings, but numerical studies [27, 44] and a dedicated

analysis in [70] show that these effects are subleading with respect to the ones originating

from the mixing in the gauge sector.

Flavour violation in the neutral EW sector is given in a compact way by (4.27), with

similar expressions holding for ZH and Z ′.

4.5.4 Impact on charged current interactions

The two types of effects, mixing in the gauge sector and mixing in the fermion sector

between zero modes and heavy KK modes also have an impact on charged current inter-

actions of ordinary quarks, although these effects are not as important as in the neutral

sector because flavour violation in charged current interactions appears in the SM already

at the tree level. Still a number of novel effects can be identified:

• The presence of new heavy charged gauge bosons WH and W ′ introduces new flavour

violating interactions. In particular charged weak interactions between right-handed

ordinary quarks are present, leading to new effective operators that were absent in

the SM.

• Moreover, due to the imposed PLR symmetry and the corresponding fermionic rep-

resentations of the EW gauge group, also ordinary W bosons mediate right-handed

weak interactions, as seen explicitly in (4.34).

• However, charged current interactions, both of W± and of the new heavy W±
H ,W

′±

gauge bosons, involving right-handed zero modes appear only due to the mixing of

the fermion zero modes with their heavy KK modes, which is generally found to be

a subleading effect [7, 27, 44, 67, 70].

• Of some interest is also the violation of the unitarity of the CKM matrix that orig-

inates both from the mixing in the charged gauge boson sector and in particular in

the mixing of the fermionic KK modes with the ordinary quarks as seen in (4.24)–

(4.25). For masses of fermionic KK modes significantly below 1TeV, as identified

in [14, 15], such effects have to be taken into account, although they are generally

smaller than the ones related to the breakdown of universality [7, 27, 44, 67]. A

different conclusion has however been reached in [62, 74].

A dedicated study of the impact of KK fermions on the low energy couplings of the

SM fermions to SM gauge bosons and the Higgs boson is presented in [70], where further

references to related literature can be found.
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4.5.5 Tree level Higgs exchanges

An order of magnitude estimate for the absolute size of the tree level flavour changing

Higgs couplings can be obtained in the mass insertion approximation (MIA) as done in

appendix C of [27]. In the MIA, tree level flavour changing Higgs couplings arise from

the flavour changing interactions of the Higgs boson with a light fermion and a heavy KK

fermion or with two different heavy fermions. Adding one, or two, such interactions on

the heavy fermion line then gives rise to flavour changing couplings of the Higgs boson

to two light fermions. Naively, one would expect the coupling in the second case to be

comparable in size to the first case since there the coupling is additionally reduced by a

chiral suppression factor. However, evaluating the Dirac structure of the corresponding

diagrams reveals that also in the second case a strong chiral suppression is active which is

even stronger than in the first case. This is a result of the assignment of BCs to the fermion

representations, see (3.1)–(3.6), which suppresses (or forbids in the case of a brane localized

Higgs field) certain transitions on the IR brane. Hence the largest contribution to tree level

flavor changing Higgs couplings in the MIA is expected from diagrams with only one flavour

changing transition, and one finds the overall suppression factor to be proportional to the

IR brane overlaps of the involved fermions, to v/MKK, and finally to m/MKK, where m

denotes the mass of the involved light fermions. From these considerations one can conclude

that the Higgs contributions to FCNC processes are negligible in the model in question,

even for MKK as low as 2.45TeV, as we have also verified numerically. These findings are

supported by the analysis in the effective Lagrangian approach in [70].

An alternative derivation of the flavour changing Higgs coupling has been presented

in [62].

4.5.6 One loop effects

Until now our discussion concentrated on tree level FCNC contributions. However, impor-

tant new effects can also arise at the one loop level, in particular when new contributions

are absent or strongly suppressed at tree level. This is the case of dipole operators that

are relevant for radiative decays such as b → sγ [8, 32] and µ → eγ [28]. These operators

receive new contributions from the heavy KK gauge bosons and KK fermions running in

the loop, as well as from the modifications in the SM couplings that appear due to the

mixing of zero and KK modes both in the gauge and in the fermion sector.

4.5.7 Effects of brane-localised terms

While throughout the present analysis we have omitted brane-kinetic terms, we would

like to stress that they are generally expected to be present, not being forbidden by any

symmetry. The impact of brane-kinetic terms for the gauge fields on FCNC observables has

been discussed in detail in [26, 27]. Here we just mention for the sake of completeness that

the strength of the KK gauge couplings can be strengthened or weakened by as much as a

factor of two, depending on the value of the brane-localised coupling constant. Accordingly

the generic bounds arising from FCNC observables on the KK scale can be worsened or

ameliorated by up to a factor of two [26, 32].

– 25 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
4

In principle also the inclusion of brane-localised mass terms can affect flavour phe-

nomenology. This happens e. g. in the gauge-Higgs unification scenario, where the struc-

ture of effective Yukawa couplings is obtained with the help of quark mass terms on the

IR brane [12, 72]. In this case it turns out [26] that while the flavour structure remains

unchanged at the qualitative level, an enhancement of flavour violating effects appears,

leading to somewhat more stringent phenomenological constraints.

Thus we conclude that while the inclusion of brane-localised terms can have an O(1)

impact on flavour violating observables, the qualitative picture of RS flavour physics re-

mains unaffected. In fact this is straightforward to understand from the effective 4D two-

site approach [73]: IR brane-localised terms correspond to couplings within the strongly

coupled sector of the model and may thus modify certain predictions at the O(1) level.

The qualitative flavour structure however is determined by the mixing of the elementary

fermions with the composite degrees of freedom. This mixing is characterised by the bulk

mass parameters and can therefore only be affected indirectly by the IR brane localised

physics via radiative corrections.

5 Parameter counting

In this section we list all parameters of the model,6 paying particular attention to those

parameters relevant for flavour physics. Subsequently we develop a useful parameterisation

for the 5D Yukawa coupling matrices λu,d in terms of parameters that can in principle be

determined from low energy experiments.

5.1 Gauge sector

In the gauge sector, we have the three gauge couplings

gs , g , gX , (5.1)

for SU(3)c, SU(2)L × SU(2)R and U(1)X , respectively. The PLR symmetry ensures the

equality of SU(2)L and SU(2)R couplings.

We would like to stress that throughout this paper gs, g and gX denote the 5D gauge

couplings that are not dimensionless. Usually the impact of brane kinetic terms is neglected

and the simple tree level matching condition

g4D
s =

gs√
L

(5.2)

is imposed, with similar equations holding also for g4D and g4D
X . For a discussion of possible

brane kinetic terms modifying this matching, see e. g. [26, 27].

6Clearly the number of free parameters would be larger if we were to consider the more general case

including all possible brane Lagrangians.
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5.2 Higgs sector

The number of parameters present in the Higgs sector depends on the realization of the

Higgs mechanism in the RS bulk. For instance in gauge-Higgs unification models [72] the

Higgs sector is completely determined by the gauge couplings of the theory, so that no new

parameters enter. On the other hand, if a Higgs potential is introduced at tree level, the

number of parameters depends on its exact realization (bulk and/or boundary potential

etc.). As we do not specify the mechanism of EWSB in our analysis but simply assume

the presence of a Higgs field H(xµ, y) with 4D VEV 〈h0(x)〉 = v, see section 2.2, and bulk

shape function h(y) ∝ eβk(y−L), we effectively introduce two new parameters

v , β . (5.3)

In our phenomenological analyses [27, 44] we have restricted our attention to the case of a

brane Higgs field, i. e. β →∞.

If we were to study the Higgs sector of our model in more detail, we would also have

to introduce the Higgs mass mH as an additional free parameter.

5.3 Geometry

Here we have the two parameters

k , L , (5.4)

which are correlated through ekL ∼ O(1016) necessary to explain the hierarchy between the

Planck and the EWSB scale. In order to simplify our phenomenological analysis [27, 44],

we fix ekL = 1016 and treat

f = ke−kL (5.5)

as the only free parameter coming from space-time geometry. This approximation is justi-

fied as physical observables depend only weakly on the exact value of kL. Recently, however,

it has been observed [75] that abandoning the aim to solve the gauge hierarchy problem

and allowing ekL ∼ O(103) can solve some of the generic problems of RS models and allow

for a smaller gauge KK scale in accordance with EWPO. On the other hand, the authors

of [74] claim that the “εK problem” [26, 27, 32] can not be solved in this Little RS scenario.

5.4 Quark flavour parameters

Our counting of flavour parameters in the quark sector follows the one presented in [8]. We

recall it here for completeness.

First the 3× 3 complex 5D Yukawa coupling matrices

λuij , λdij (5.6)

contain each 9 real parameters and 9 complex phases. This is precisely the case of the SM.

We note that λu,dij are not dimensionless.

New flavour parameters enter through the three hermitian 3× 3 bulk mass matrices

c1 , c2 , c3 , (5.7)

which bring in additional 18 real parameters and 9 complex phases.
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In total thus we have at this stage 36 real parameters and 27 complex phases. Not all

of these however are physical and some of them can be eliminated by the quark flavour

symmetry U(3)3 of the 5D theory which exists in the limit of vanishing λu,dij and ci. Note

that this flavour symmetry is identical to the one present in the SM, and as in the SM 9

real parameters and 17 phases can be eliminated by making use of this symmetry. Note

that one phase cannot be removed as it corresponds to the unbroken U(1)B baryon number

symmetry.

We are then left with 27 real parameters and 10 complex phases to be compared with

9 real parameters and one complex phase in the SM. Evidently the new 18 real parameters

and 9 phases come from the three bulk mass matrices c1, c2 and c3.

5.5 Flavour parameters at low energies

As we have seen, the flavour sector of the model comes along with a quite large number of

parameters. One possibility, adopted in [27, 44], is to work in the special basis where the

bulk mass matrices are real and diagonal, and to parameterise the fundamental Yukawa

couplings λu,d in terms of physical parameters only. Details on such a parameterisation can

be found in [27]. The first necessary step in a phenomenological analysis is then to fit the

SM quark masses and CKM mixing parameters, that have been determined experimentally.

While such an approach shows clearest how the fundamental parameters enter low energy

flavour observables, it is in practise complicated and numerically time-consuming.

Therefore it is desirable to have at hand a parameterisation in which the quark masses

and CKM parameters enter explicitly and do not have to be fitted. The remaining 18 +

9 parameters can then be scanned over, having to fulfill only the (stringent) ∆F = 2

constraints.7 In some analogy to the Casas-Ibarra parameterisation [76] in the lepton

sector, we therefore aim to derive a parameterisation of the RS flavour sector in terms of

the SM quark masses, the CKM parameters, and the parameters of the new flavour mixing

matrices DL, UR and DR.

To this end we start by working in the “special basis” in which the bulk mass matrices

are real and diagonal. In what follows we will work with

FQ = diag
(
f

(0)
L (y = L, c11), f

(0)
L (y = L, c21), f

(0)
L (y = L, c31)

) ekL/2√
L

, (5.8)

Fu = diag
(
f

(0)
R (y = L, c12), f

(0)
R (y = L, c22), f

(0)
R (y = L, c32)

) ekL/2√
L

, (5.9)

Fd = diag
(
f

(0)
R (y = L, c13), f

(0)
R (y = L, c23), f

(0)
R (y = L, c33)

) ekL/2√
L

, (5.10)

i. e. FQ,u,d are diagonal 3 × 3 matrices whose entries are the fermion zero mode shape

functions on the IR brane.

7We would like to thank Yuval Grossman for stressing the importance of a description in terms of

parameters accessible at low energies.
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Neglecting now the mixing with fermionic KK modes and approximating the Higgs

field to be exactly localised on the IR brane, we can write

diag(mu,mc,mt) =
v√
2
Ũ†
LFQλ

uFuŨR , (5.11)

diag(md,ms,mb) =
v√
2
D̃†
LFQλ

dFdD̃R , (5.12)

where ŨL,R, D̃L,R are the upper left 3 × 3 blocks of the corresponding matrices in (4.24),

(4.25). The CKM matrix is given by

Ũ†
LD̃L = VCKM . (5.13)

The 5D Yukawa couplings can then be written as

λu =

√
2

v
F−1
Q ŨLdiag(mu,mc,mt)Ũ†

RF
−1
u

=

√
2

v
F−1
Q D̃LV

†
CKMdiag(mu,mc,mt)Ũ†

RF
−1
u , (5.14)

λd =

√
2

v
F−1
Q D̃Ldiag(md,ms,mb)D̃†

RF
−1
d , (5.15)

where we have expressed ŨL through D̃L and VCKM. The SM parameters are encoded in

the quark masses and VCKM. 9 new real flavour parameters are present in FQ,u,d. The

remaining 9 real parameters and 9 complex phases are distributed among D̃L, ŨR and D̃R.

In order to obtain a parameterisation of D̃L, ŨR and D̃R in terms of these 9+9 physical

parameters only, we start by writing8

D̃L =




1 0 0

0 cDL

23 sDL

23 exp(−iδDL

23 )

0 −sDL

23 exp(iδDL

23 ) cDL

23


·




cDL

13 0 sDL

13 exp(−iδDL

13 )

0 1 0

−sDL

13 exp(iδDL

13 ) 0 cDL

13




·




cDL

12 sDL

12 exp(−iδDL

12 ) 0

−sDL

12 exp(iδDL

12 ) cDL

12 0

0 0 1


·




exp(iϕDL

1 ) 0 0

0 exp(iϕDL

2 ) 0

0 0 exp(iϕDL

3 )


 ,

(5.16)

i. e. as a product of three rotation matrices with a complex phase δDL

ij (i, j = 1, 2, 3) in each

of them [77], times a diagonal matrix containing three additional phases ϕDL

i (i = 1, 2, 3).

Further

cDL

ij = cos θDL

ij , sDL

ij = sin θDL

ij (i, j = 1, 2, 3) . (5.17)

ŨR and D̃R are written in a completely analogous way. It is then easy to see that the

diagonal phases ϕDL

i , ϕUR

i and ϕDR

i (i = 1, 2, 3) can be rotated away by appropriate phase

redefinitions of q
i(0)
L , u

i(0)
R and D

i(0)
R , respectively.

8Note that every unitary 3 × 3 matrix can be parameterised in such a way.
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We are thus left with a parameterisation of D̃L, ŨR and D̃R in terms of three mixing
angles θij and three complex phases δij in each of them, which reads [77]

D̃L = (5.18)



cDL

12 c
DL

13 sDL

12 c
DL

13 e
−iδ

DL

12 sDL

13 e
−iδ

DL

13

−sDL

12 c
DL

23 e
iδ

DL

12 − cDL

12 s
DL

23 s
DL

13 e
i(δ

DL

13
−δ

DL

23
) cDL

12 c
DL

23 − sDL

12 s
DL

23 s
DL

13 e
i(δ

DL

13
−δ

DL

12
−δ

DL

23
) sDL

23 c
DL

13 e
−iδ

DL

23

sDL

12 s
DL

23 e
i(δ

DL

12
+δ

DL

23
) − cDL

12 c
DL

23 s
DL

13 e
iδ

DL

13 −cDL

12 s
DL

23 e
iδ

DL

23 − sDL

12 c
DL

23 s
DL

13 e
i(δ

DL

13
−δ

DL

12
) cDL

23 c
DL

13




In order to naturally obtain anarchic 5D Yukawa matrices λu,d, it can in practice be

useful to adapt the above parameterisation. While the phases

δDL

ij , δUR

ij , δDR

ij (5.19)

are all chosen to lie in their natural range 0 ≤ δ < 2π, the case of the mixing angles

θDL

ij , θUR

ij , θDR

ij (5.20)

is somewhat different. Here one finds [8] that anarchic 5D Yukawa couplings imply the

hierarchies

θDL

ij ∼
(FQ)ii
(FQ)jj

, θUR

ij ∼
(Fu)ii
(Fu)jj

, θDR

ij ∼
(Fd)ii
(Fd)jj

. (5.21)

We can now use this knowledge to find a parameterisation that automatically leads to a

natural structure for λu,d. Therefore we define

θDL

ij = κDL

ij

(FQ)ii
(FQ)jj

, θUR

ij = κUR

ij

(Fu)ii
(Fu)jj

, θDR

ij = κDR

ij

(Fd)ii
(Fd)jj

, (5.22)

where κDL

ij , κUR

ij , κDR

ij are O(1) parameters.

Note that although the parameterisation of the 5D Yukawa matrices λu,d in (5.14),

(5.15) in terms of FQ,u,d and D̃L, ŨR, D̃R is clearly an approximation in case of a bulk Higgs

field, the hierarchies in D̃L, ŨR, D̃R are still the same, so that the above parameterisation

of these matrices can still be used without loss of generality. Small deviations from the

exact results will only appear where formulae (5.14), (5.15) are used explicitly.

6 The lepton sector

The embedding of the lepton sector into multiplets of the symmetry O(4) ∼ SU(2)L ×
SU(2)R × PLR is analogous to the quark sector as given in (3.1)–(3.3). Merely the U(1)X
charges have to be modified in order to accommodate the electric charges of the charged lep-

tons and neutrinos. As in the quark sector, there are three O(4) multiplets per generation

(i = 1, 2, 3):

ξi,ℓ1L =

(
χνi

L (−+)1 ℓνi

L (++)0
χei

L (−+)0 ℓei

L (++)−1

)

0

, (6.1)

ξi,ℓ2R = νiR(++)0 , (6.2)

ξi,ℓ3R = T i,ℓ3R ⊕ T
i,ℓ
4R =



λ′iR(−+)1
N ′i
R(−+)0

L′i
R(−+)−1




0

⊕



λ′′iR (−+)1
N ′′i
R (−+)0

LiR(++)−1




0

. (6.3)
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The corresponding states of opposite chirality can be deduced from (6.1)–(6.3) by exchang-

ing L↔ R and flipping the BCs.

The following comments are in order:

• As in the quark case the field obeying (++) BCs have massless zero modes. Up to

mixing with other massive modes, these zero modes are the usual SM leptons.

• The remaining fields are KK leptons that are vectorial Dirac particles. We thus have

in this model additional heavy lepton states. These are

Q = 1 : χνi(n), λ′i(n), λ′′i(n) , (6.4)

Q = 0 : ℓνi(n), νi(n), N ′i(n), N ′′i(n), χei(n) , (6.5)

Q = −1 : ℓei(n), Li(n), L′i(n) , (6.6)

where n = 1, 2, . . ..

The vectors necessary to construct the mass matrices are

Ψℓ
L(1) =

(
χνi

L (−+), λ′iL(+−), λ′′iL (+−)
)T

, (6.7)

Ψℓ
R(1) =

(
χνi

R (+−), λ′iR(−+), λ′′iR (−+)
)T

, (6.8)

Ψℓ
L(0) =

(
ℓ
νi(0)
L (++), ℓνi

L (++), N ′i
L(+−), N ′′i

L (+−), χei

L (−+), νiL(−−)
)T

, (6.9)

Ψℓ
R(0) =

(
ν
i(0)
R (++), ℓνi

R (−−), N ′i
R(−+), N ′′i

R (−+), χei

R(+−), νiR(++)
)T

, (6.10)

Ψℓ
L(−1) =

(
ℓ
ei(0)
L (++), ℓei

L (++), L′i
L(+−), LiL(−−)

)T
, (6.11)

Ψℓ
R(−1) =

(
L
i(0)
R (++), ℓei

R (−−), L′i
R(−+), LiR(++)

)T
. (6.12)

Then the structure of the mass matrices is as given for quarks in (4.14)–(4.16). The

corresponding Yukawa couplings and shape functions are of course those for leptons.

The weak currents have the same structure as in the case of quarks except that the

couplings in (D.7)–(D.18) are modified as now in all these formulae QX = 0.

For the coupling to the Z boson,

gZ(ψi) =
g√

L cosψ

(
T 3
L −Q sin2 ψ

)
(6.13)

also applies to leptons so that all the couplings, both left- or right-handed, to the Z boson

can easily be found.

For the coupling to the ZX boson we find

κℓ1 = gZX
(ℓνi) = gZX

(ℓei) = − 1

2
√
L
g cosφ , (6.14)

κℓ2 = gZX
(χνi) = gZX

(χei) =
1

2
√
L
g cosφ , (6.15)

κℓ3 = gZX
(νi) = gZX

(λ′i) = gZX
(N ′i) = gZX

(N ′′i) = gZX
(L′i) = 0 , (6.16)

κℓ4 = gZX
(λ′′i) =

1√
L
g cosφ , (6.17)

κℓ5 = gZX
(Li) = − 1√

L
g cosφ . (6.18)
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The expressions for κℓi (i = 1, . . . , 5) can be combined into the following formula

κℓ = T 3
R

g√
L

cosφ . (6.19)

The Feynman rules for leptons can then be obtained directly from the Feynman rules for

quarks by simply mapping the quark fields in (4.2)–(4.7) onto the leptonic fields in (6.7)–

(6.12) and replacing the quark couplings κi and gZ(ψi) by the corresponding leptonic

couplings. In addition the leptons are SU(3)c singlets, so their couplings to the gluons and

KK gluons vanish. Similarly the quark shape functions should be replaced by the leptonic

ones with the gauge sector and Higgs sector being unchanged.

7 Summary

In the present paper we have worked out explicitly the electroweak and flavour structure

of a particular warped extra dimension model with a custodial protection not only for

the flavour diagonal coupling ZbLb̄L as introduced in [22] but in particular for flavour

non-diagonal couplings ZdiLd̄
j
L pointed out in [27, 44]. The most important result of the

present paper are the Feynman rules collected in appendix D. These rules allowed already

to perform two detailed phenomenological analyses of ∆F = 2 FCNC processes in the quark

sector [27] and those ∆F = 1 rare K and B decays in which new physics contributions

enter already at the tree level [44]. Short reviews of these results can be found in [78–80].

The analyses of processes with dipole operators like B → Xsγ, µ→ eγ, and electric dipole

moments, where new physics enters first at the one loop level will be presented elsewhere.
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A Fundamental 5D action

The fundamental 5D action of the SU(3)c × SU(2)L× SU(2)R×U(1)X ×PLR model under

consideration can be decomposed as

S =

∫
d4x

∫ L

0
dy (Lgauge + Lfermion + LHiggs + LYuk) , (A.1)

with the various contributions being discussed in what follows.

We note that it is possible to extend the theory by additional contributions to the

action that are confined to the UV or IR brane. Indeed such terms, if consistent with the

symmetries of the model, will be generated through loop corrections anyway. In order to

keep the presentation as clear as possible, we do however not consider this most general

case, but restrict our attention to the bulk action given in (A.1).
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A.1 Gauge sector

The kinetic terms for the gauge fields are given by

Lgauge =
√
G

[
−1

4
GAMNG

MN,A − 1

4
LaMNL

MN,a − 1

4
RαMNR

MN,α − 1

4
XMNX

MN

]
, (A.2)

where

GAMN = ∂MG
A
N − ∂NGAM − gsfABCGBMGCN (A = 1, . . . , 8) (A.3)

corresponds to SU(3)c and gs is the 5D strong coupling constant.

LaMN = ∂MW
a
L,N − ∂NW a

L,M − gεabcW b
L,MW

c
L,N (a = 1, 2, 3) (A.4)

RαMN = ∂MW
α
R,N − ∂NWα

R,M − gεαβγW β
R,MW

γ
R,N (α = 1, 2, 3) (A.5)

correspond to SU(2)L and SU(2)R, respectively, with equal gauge coupling g, and

XMN = ∂MXN − ∂NXM (A.6)

is the field strength tensor of U(1)X , whose coupling constant is given by gX . Here and

in the following G = detGMN = e−8ky has to be included in order to obtain an invariant

integration measure.

We denote SU(2)L indices by small Latin letters a, b, . . . and SU(2)R indices by small

Greek letters α, β, . . . . SU(3)c indices are denoted by capital Latin letters A,B, . . . , but

are usually made implicit in order to simplify the notation.

A.2 Fermion sector

A.2.1 Quarks

The quark sector contains fields with the following transformation properties under

SU(2)L × SU(2)R ×U(1)X

(ξi1)aα ∼ (2,2)2/3 , (A.7)

ξi2 ∼ (1,1)2/3 , (A.8)

ξi3 = (T i3)a ⊕ (T i4)α ∼ (3,1)2/3 ⊕ (1,3)2/3 , (A.9)

where again SU(2)L indices are denoted by Latin letters while SU(2)R indices are denoted

by Greek letters. All these multiplets transform as triplets under SU(3)c. The fermionic

Lagrangian is then given by

Lfermion =
1

2

√
G

3∑

i=1

[
(ξ̄i1)aαiΓ

M (D1
M )ab,αβ(ξ

i
1)bβ + (ξ̄i1)aα(iΓMωM − ci1k)(ξi1)aα

+ ξ̄i2(iΓ
MD2

M + iΓMωM − ci2k)ξi2
+ (T̄ i3)aiΓ

M (D3
M )ab(T

i
3)b + (T̄ i3)a(iΓ

MωM − ci3k)(T i3)a
+ (T̄ i4)αiΓ

M (D4
M )αβ(T

i
4)β + (T̄ i4)α(iΓMωM − ci3k)(T i4)α

]
+ h.c. , (A.10)
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where summation over repeated indices is understood. Writing out the “+h.c.” term explic-

itly, one finds that the two terms including the spin connection ωM cancel each other [81].

Here, ΓM = EMA γ
A with γA = {γµ,−iγ5},9 and EMA is the inverse vielbein defined through

GMN = EMA E
N
B η

AB , (A.11)

i.e. it connects the warped space to the flat tangent space. For the case of the RS met-

ric (2.1), we have

EMA =





1 for A = M = 5 ,

eky for A = M = µ ,

0 else ,

(A.12)

and the vielbein eAM is given by

eAM =





1 for A = M = 5 ,

e−ky for A = M = µ ,

0 else .

(A.13)

ωM is the spin connection defined through

ωM = eAN (∂ME
N
B + ΓNMKE

K
B )

σA
B

2
, (A.14)

with σAB = 1
4 [γA, γB ] and ΓNMK = 1

2G
NR(∂KGMR + ∂MGKR − ∂RGMK), which yields in

case of the RS metric (2.1)

ωM =

{
i
2ke

−kyγµγ5 for M = µ ,

0 for M = 5 .
(A.15)

The covariant derivatives Di
M are given by

(D1
M )ab,αβ = (∂M + igst

AGAM + igXQXXM )δabδαβ

+ ig(τ c)abW
c
L,Mδαβ + ig(τγ)αβW

γ
R,Mδab , (A.16)

D2
M = ∂M + igst

AGAM + igXQXXM , (A.17)

(D3
M )ab = (∂M + igst

AGAM + igXQXXM )δab + gεabcW c
L,M , (A.18)

(D4
M )αβ = (∂M + igst

AGAM + igXQXXM )δαβ + gεαβγW γ
R,M . (A.19)

tA = λA/2 (A = 1, . . . , 8) are the generators of the fundamental representation of SU(3)c,

where λA are the known Gell-Mann matrices. τa = σa/2 (τα = σα/2) are the generators of

the fundamental SU(2)L (SU(2)R) representations, respectively, where σa, σα are the Pauli

matrices, and −iεabc and −iεαβγ are the generators of the adjoint triplet representations

of SU(2)L and SU(2)R, respectively. Recall that despite having the same matrix structure,

the SU(2)L and SU(2)R generators act on different internal spaces.

9Here, γ5 = iγ0γ1γ2γ3 is defined in the usual 4D way.
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In addition, the components of the T i3,4 triplets, as given in (3.3), (3.6), are not those

components associated to a, α = 1, 2, 3. Instead

(T i3)a =




1√
2
(ψ′i +D′i)

i√
2
(ψ′i −D′i)

U ′i


 , (T i4)α =




1√
2
(ψ′′i +Di)

i√
2
(ψ′′i −Di)

U ′′i


 . (A.20)

Recall that the same structure appears also in the gauge sector, where W 1,2
L,R are related to

W±
L,R via

W±
L,R =

W 1
L,R ∓ iW 2

L,R√
2

. (A.21)

A.2.2 Leptons

In order to preserve the minimality of the model, we take the lepton sector in complete

analogy to the quark sector. The only necessary modifications are:

• Leptons transform as singlets under SU(3)c, i. e. the coupling to gluons, +igst
AGAM

in (A.16)–(A.19) has to be removed.

• In order to obtain correct electric charges for the leptons, QX = 0 has to be imposed,

so that leptons do not couple to the XM gauge boson of U(1)X . Effectively thus also

the +igXQXXM term in (A.16)–(A.19) is absent in the case of leptons.

A.3 Higgs sector

The Lagrangian describing the Higgs bidoublet H, given in (2.18), reads

LHiggs =
√
G
[
(DMH)†aα(DMH)aα − V (H)

]
, (A.22)

with

(DMH)aα = ∂MHaα + ig(τ c)abW
c
L,MHbα + ig(τγ)αβW

γ
R,MHaβ (A.23)

and V (H) being the potential that eventually leads to EWSB.

Note that in case of a bulk Higgs field, H contains in addition to the zero mode also

massive KK modes. The potential V (H) then has to be constructed in such a way that only

the zero mode obtains a VEV, as otherwise the consistency with electroweak precision tests

would be spoiled. However, their couplings are, due to the similar profile, roughly the same

as the Higgs zero mode couplings. In addition, the scalar KK modes are even heavier than

the gauge and fermionic KK modes, so that in most phenomenological applications the

Higgs KK modes can be safely neglected. Therefore, we will not give an explicit expression

for V (H), but merely assume that it leads to a VEV for the zero mode and the particular

shape function h(y), as given in (2.25).

The kinetic term in LHiggs is responsible for the effects of EWSB in the gauge sector.

Those will be discussed in detail in appendix C.
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A.4 Yukawa sector

Finally, we need to construct the Higgs couplings to fermion fields, which will yield the

masses of the SM fermions after EWSB. For simplicity, we restrict ourselves to the quark

sector, the Yukawa couplings for the lepton sector can then be obtained in a completely

analogous way. A dictionary that allows to obtain Feynman rules for leptons from the rules

for quarks is given in section 6.

The most general Yukawa coupling including the Higgs bidoublet H and the quark

fields ξi1,2,3 is given by

LYuk = −
√

2
√
G

3∑

i,j=1

[
− λuij(ξ̄i1)aαHaαξ

j
2

+
√

2λdij

[
(ξ̄i1)aα(τ c)ab(T

j
3 )cHbα + (ξ̄i1)aα(τγ)αβ(T

j
4 )γHaβ

]
+ h.c.

]
, (A.24)

where again summation over repeated indices is understood, and the normalisation factor√
2 enters the second term in order to canonically normalise the fermion triplets T j3,4. The

overall signs of the two contributions are chosen such that the 00 components of theM(2/3)

and M(−1/3) in (4.15), (4.16) carry an overall plus sign.10

Interestingly, while the first coupling, proportional to λuij , contributes, after EWSB,

only to the mass matrix of +2/3 charge quarks, the second term, proportional to λdij ,

contributes to all +5/3, +2/3 and −1/3 mass matrices.

B Bulk profiles of wave functions and KK masses

In this appendix we briefly review the determination of the bulk shape functions and the

KK masses and collect all necessary formulae. We follow closely the presentation in [6],

using the conventions of these authors, except for the opposite sign of the metric and the

fact that we work on the interval 0 ≤ y ≤ L rather than on the orbifold 0 ≤ y < 2πR.

We confirmed the results of [6] except for some approximate formulae given in that paper

which turn out to be too rough when compared with the exact numerical results.

B.1 Bulk equations of motion

By setting all interaction terms in (A.1) to zero, the 5D bulk equations of motion (EOM)

can straightforwardly be obtained from the variational principle δS = 0, which yields

generally [
−e2kyηµν∂µ∂ν + esky∂5(e

−sky∂5)−M2
Φ

]
Φ(xµ, y) = 0 . (B.1)

In the case of gauge fields, Φ ≡ Vµ, s = 2 and M2
Φ = 0, while in the case of fermions, ψL,R

has to be rescaled by Φ ≡ e−2kyψL,R with s = 1 and M2
Φ = c(c±1)k2 for left-/right-handed

modes. The only physical scalar field is the Higgs, Φ ≡ H, for which s = 4 and M2
Φ depends

on the exact form of V (H).

Note that the minus sign in front of the first term in (B.1), which does not appear in

equation (11) of [6], is due to our sign convention for the metric tensor.

10Recall that the fermionic mass term possesses an overall minus sign.
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B.2 Gauge fields

With the KK decomposition

Vµ(x
µ, y) =

1√
L

∞∑

n=0

V (n)
µ (xµ)f (n)

gauge(y) , (B.2)

we obtain for the gauge KK modes [6]

f (0)
gauge(y) = 1 , (B.3)

f (n)
gauge(y) =

eky

Nn

[
J1

(mn

k
eky
)

+ b1(mn)Y1

(mn

k
eky
)]

(n = 1, 2, . . . ) , (B.4)

where f
(0)
gauge(y) exists only for (++) BCs. The f

(n)
gauge(y) satisfy the orthonormality condi-

tion
1

L

∫ L

0
dy f (n)

gauge(y)f
(m)
gauge(y) = δnm . (B.5)

b1(mn) and mn are determined through the boundary conditions on the branes. For (++)

fields, which means

∂yf
(n)
gauge(y)

∣∣∣
y=0,L

= 0 , (B.6)

one obtains [6]

b1(mn) = −J1(mn/k) +mn/k J
′
1(mn/k)

Y1(mn/k) +mn/k Y ′
1(mn/k)

= b1(mne
kL) , (B.7)

which can only be solved numerically for mn and b1(mn). For large values of n, the result

can be well approximated by [6]

b1(mn) = 0 , mgauge
n ≃

(
n− 1

4

)
πke−kL (n = 1, 2, . . . ) , (B.8)

however, for small values of n it is safer to use the exact numerical result. For (−+) fields,

meaning

f (n)
gauge(y)

∣∣∣
y=0

= ∂yf
(n)
gauge(y)

∣∣∣
y=L

= 0 , (B.9)

one finds instead

b1(mn) = −J1(mn/k)

Y1(mn/k)
= −J1(mne

kL/k) +mne
kL/k J ′

1(mne
kL/k)

Y1(mnekL/k) +mnekL/k Y ′
1(mnekL/k)

. (B.10)

The numerical solution yields a ∼ 2% suppression of mgauge
1 in that case, with respect to

the (++) one. We do not consider gauge fields with a Dirichlet BC on the IR brane here,

as they do not appear in our model.

Finally, Nn has to be determined from the normalisation condition (B.5). For fields

(also fermions and scalars) with a Neumann BC on the IR brane, Nn is approximately

given by [6]

Nn ≃
ekL/2√
πLmn

. (B.11)

Note that this approximation is however not valid in case of a Dirichlet BC on the IR brane.
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B.3 Fermion fields

In this case the KK decomposition reads

ψL,R(xµ, y) =
e2ky√
L

∞∑

n=0

ψ
(n)
L,R(xµ)f

(n)
L,R(y) , (B.12)

and the fermionic KK modes are [6]

f
(0)
L (y) =

√
(1− 2c)kL

e(1−2c)kL − 1
e−cky , (B.13)

f
(n)
L (y) =

eky/2

Nn

[
Jα

(mn

k
eky
)

+ bα(mn)Yα

(mn

k
eky
)]

(n = 1, 2, . . . ) , (B.14)

where α = |c+ 1/2| and again f
(0)
L (y) exists only for (++) BCs for the left-handed mode.

The right-handed mode obeys automatically opposite BCs and f
(n)
R (y) can be obtained by

replacing c by −c in the above formulae. The f
(n)
L,R(y) satisfy the orthonormality condition

1

L

∫ L

0
dy ekyf

(n)
L,R(y)f

(m)
L,R(y) = δnm . (B.15)

Note that the fermionic zero mode profile in (3.11) has been given with respect to the

flat tangent space metric, i. e. the factor eky in (B.15) has been absorbed into the shape

functions, in order to make the localisation of the zero mode more explicit.

Again bα(mn) and mn are determined through the BCs on the branes. In the case of

left-handed fermions, a − BC means

f
(n)
L (y)

∣∣∣
brane

= 0 , (B.16)

while the + BC is modified with respect to the gauge fields and reads

(∂y + ck)f
(n)
L (y)

∣∣∣
brane

= 0 . (B.17)

For right-handed fields, the replacement c → −c has to be made. bα(mn) and mn are

derived completely analogously to the gauge case. Also here the resulting equations can

only be solved numerically.

B.4 Higgs field

A bulk Higgs field also needs to be KK expanded:

H(xµ, y) =
1√
L

∞∑

n=0

H(n)(xµ)f
(n)
H (y) . (B.18)

As we do not specify the Higgs potential, we can not solve the bulk equations of motion

explicitly for that case. Instead we merely assume the zero mode profile

f
(0)
H (y) ≡ h(y) =

√
2(β − 1)kL ekL eβk(y−L) (β ≫ 1) , (B.19)
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which fulfils the normalisation condition

1

L

∫ L

0
dy e−2ky[h(y)]2 = 1 . (B.20)

As the scalar KK modes turn out to be much heavier than the gauge and fermionic reso-

nances [6], they can usually be neglected in phenomenological analyses.

C Gauge sector modifications from EWSB

In this appendix we study explicitly the effects of EWSB on the weak gauge boson sector.

We derive expressions for the mass matricesM2
charged andM2

neutral by treating the effects of

EWSB as a small perturbation, and work out the rotation matrices GW and GZ , neglecting

the n > 1 KK levels.

Subsequently, we compare our results with the ones obtained from the alternative

approach followed in [58–60]. In that case, the effects of EWSB are already included in

the derivation of the 5D equations of motion, so that in principle exact results may be

obtained, as has briefly been noted in [61].

C.1 Gauge boson mass matrices and mixings

C.1.1 Charged electroweak gauge bosons

The mass matrixM2
charged, describing the charged electroweak gauge bosons W

(0)±
L , W

(1)±
L

and W
(1)±
R as defined in (2.27), can be determined from the Higgs kinetic term (A.22). One

finds

M2
charged =




g2v2

4L
g2v2

4L I
+
1 − g2v2

4L I
−
1

g2v2

4L I
+
1 M2

++ + g2v2

4L I
++
2 − g2v2

4L I
−+
2

− g2v2

4L I
−
1 − g2v2

4L I
−+
2 M2

−− + g2v2

4L I
−−
2


 , (C.1)

where the overlap integrals I±1 and I ij2 are given by

I+
1 =

1

L

∫ L

0
dy e−2kyg(y)h(y)2 , I−1 =

1

L

∫ L

0
dy e−2kyg̃(y)h(y)2 , (C.2)

I++
2 =

1

L

∫ L

0
dy e−2kyg(y)2h(y)2 , I−−

2 =
1

L

∫ L

0
dy e−2kyg̃(y)2h(y)2 , (C.3)

I−+
2 =

1

L

∫ L

0
dy e−2kyg(y)g̃(y)h(y)2 . (C.4)

Here we introduced the short-hand notation

g(y) = f (1)
gauge(y, (++)) (C.5)

for the bulk shape function of Z(1) and W
(1)
L , as well as for the KK gluons G(1)A and photon

A(1), and

g̃(y) = f (1)
gauge(y, (−+)) (C.6)

for the bulk shape function of Z
(1)
X and W

(1)
R .

– 39 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
4

In order to obtain transparent expressions for mass eigenvalues and mass eigenstates

we introduce first the following parameterisation

M2
++ = M2 + av2, M2

−− = M2 − av2, (C.7)

I−−
2 = I2, I−+

2 = I2
(

1 + δ−+ v
2

f2

)
, I++

2 = I2
(

1 + δ++ v
2

f2

)
, (C.8)

where numerically the parameter a = O(1) for f = O(1TeV) and the coefficients δij turn

out to be smaller than unity.

Now, our goal is to calculate O(v2/f2) corrections to the couplings of W± and Z but

only O(1) couplings involving heavy gauge boson mass eigenstates as their contributions

in Feynman diagrams will be suppressed by their large masses in the propagators. It turns

out then that to this order in v2/f2 the coefficients δ−+ and δ++ can be set to zero so that

only a universal I2 will enter the expressions below.

Next we introduce the function

B(ζ) =
√

16a2L2 cos2 ζ + 8aLg2I2 sin2 ζ + g4I2
2 cos2 ζ, (C.9)

that will also be useful in the case of the diagonalisation of the neutral electroweak gauge

boson mass matrix. In the case of charged gauge bosons B(ζ = 0) enters the expressions

for masses and mixings, while in the case of neutral gauge bosons B(ζ = ψ) is relevant,

where ψ has been defined in (2.16).

Diagonalising11 then M2
charged leads to

GW =




1 − g2v2

4LM2I+
1

g2v2

4LM2I−1
g2v2

4LM2

(
I+

1 cosχ− I−1 sinχ
)

cosχ sinχ

− g2v2

4LM2

(
I+

1 sinχ+ I−1 cosχ
)
− sinχ cosχ


 , (C.10)

where

cosχ =

√
1

2
− 2aL

B(0)
, sinχ =

√
1

2
+

2aL

B(0)
. (C.11)

The corresponding masses are given by

M2
W =

g2v2

4L
− g4v4

16L2M2

(
(I+

1 )2 + (I−1 )2
)
, (C.12)

M2
WH

= M2 +
v2

4L

(
g2I2 −B(0)

)
, (C.13)

M2
W ′ = M2 +

v2

4L

(
g2I2 +B(0)

)
. (C.14)

11We would like to thank Stefania Gori for help in finding an efficient method for analytic diagonalisation

of the matrices involved and Zhi-zhong Xing for bringing the paper [82] to our attention.
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C.1.2 Neutral electroweak gauge bosons

Also the mass matrixM2
neutral, describing the neutral electroweak gauge bosons Z(0), Z(1)

and Z
(1)
X as defined in (2.28), can be determined from the Higgs kinetic term (A.22). Here

we obtain

M2
neutral =




g2v2

4L cos2 ψ
g2v2I+

1
4L cos2 ψ

− g2v2 cosφI−

1
4L cosψ

g2v2I+
1

4L cos2 ψ
M2

++ +
g2v2I++

2
4L cos2 ψ

− g2v2 cosφI−+
2

4L cosψ

− g2v2 cosφI+
1

4L cosψ − g2v2 cosφI−+
2

4L cosψ M2
−− +

g2v2 cos2 φI−−

2
4L


 , (C.15)

with the angles φ and ψ given in (2.8), (2.16). Diagonalisation ofM2
neutral gives then

GZ =




1 − g2v2I+
1

4LM2 cos2 ψ
g2v2I−

1 cosφ
4LM2 cosψ

g2v2

4LM2 cos2 ψ

(
I+

1 cos ξ − cosφ cosψI−1 sin ξ
)

cos ξ sin ξ

− g2v2

4LM2 cos2 ψ

(
I+

1 sin ξ + cosφ cosψI−1 cos ξ
)

− sin ξ cos ξ


 , (C.16)

where

cos ξ =

√
B(ψ) cosψ − 4aL cos2 ψ − sin2 ψg2I2

2B(ψ) cos ψ
, (C.17)

sin ξ =

√
B(ψ) cosψ + 4aL cos2 ψ + sin2 ψg2I2

2B(ψ) cos ψ
. (C.18)

B(ψ) is given in (C.9). The corresponding masses are given by

M2
Z =

g2v2

4L cos2 ψ
− g4v4

16L2M2 cos2 ψ

(
(I+

1 )2

cos2 ψ
+ (I−1 )2 cos2 φ

)
, (C.19)

M2
ZH

= M2 +
v2

4L

(
g2I2 −

B(ψ)

cosφ

)
, (C.20)

M2
Z′ = M2 +

v2

4L

(
g2I2 +

B(ψ)

cosφ

)
. (C.21)

Note that for ψ = 0 the results for neutral gauge bosons reduce to the ones for charged

gauge bosons.

C.2 Comparison of two alternative approaches

In this appendix we compare the approach of treating the effects of EWSB as a perturbation

with the exact approach, in which EWSB is considered as a modification of the BCs on the

IR brane. For a related study of this issue we refer the reader also to [63]. We note that

throughout this paper and also in our phenomenological analyses [27, 44, 70] we followed

the perturbative approach which is analogous to the two-site approach presented in [73].

As a simple toy model of EWSB, we consider a U(1) gauge symmetry in the RS

background (2.1), where a scalar field H(x) resides on the IR brane and develops a VEV

that breaks the bulk U(1) symmetry. The action relevant for the gauge field is given by

Sgauge =

∫
d4x

∫ L

0
dy
√
G

[
−1

4
FMNF

MN + δ(y − L)(DMH)†(DMH)

]
, (C.22)
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where FMN = ∂MAN − ∂NAM , and DM = ∂M + igAM . We choose to work in the A5 = 0,

∂µA
µ = 0 gauge in what follows.

Once a potential V (H) is added on the IR brane, the Higgs field develops a VEV

〈H(x)〉 =
v√
2
. (C.23)

Effectively, the action for the gauge field then reads

Sgauge =

∫
d4x

∫ L

0
dy
√
G

[
−1

4
FMNF

MN + δ(y − L)
g2v2

2
AMA

M

]
. (C.24)

Following the presentation in [58–61], from (C.24) we can now derive the bulk EOM for

the gauge field and determine the shape functions and masses for the various KK modes.

Finally we have to consider possible mixing between the various modes induced by the

presence of the Higgs VEV.

The EOM can be derived from the variation principle for the action,

δSgauge = 0 =

∫
d4x

∫ L

0
dy ∂R(

√
GGMRGNS∂MAN )δAS

+

∫
d4x e−2kL(∂yAν + g2v2Aν)δA

ν

∣∣∣∣
y=L

−
∫
d4x (∂yAν)δA

ν

∣∣∣∣
y=0

. (C.25)

The bulk and boundary terms have to vanish independently of each other, so that we obtain

bulk EOM: ηµρ∂µ∂ρA
ν − ∂y(e−2ky∂yA

ν) = 0 , (C.26)

UV brane: ∂yAν
∣∣
y=0

= 0 , (C.27)

IR brane: ∂yAν + g2v2Aν
∣∣
y=L

= 0 . (C.28)

In order to understand the effects of EWSB, we first solve (C.26)–(C.28) explicitly for

the zero mode by making an expansion in the small parameter w = (m0e
kL/k)2. We thus

make the ansatz

f (0)(y) = 1 +w d(y) +O(w2) . (C.29)

From (C.26)–(C.28) and the normalisation condition

1

L

∫ L

0
dy f (0)(y)2 = 1 , (C.30)

we find

d(y) =
1

4
e2k(y−L)(1− 2ky) + 1− 1

kL
, (C.31)

and

m2
0 ≃

g2

L
v2e−2kL ≡ (g4Dveff)2 . (C.32)

The eigenfunctions for the massive modes (this can in principle also be used for f (0))

are given as usual by [6]

f (n)(y) =
eky

Nn

[
J1

(mn

k
eky
)

+ b1(mn)Y1

(mn

k
eky
)]

, (C.33)
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with

b1(mn) = −J1(
mn

k ) + mn

k J
′
1(
mn

k )

Y1(
mn

k ) + mn

k Y
′
1(mn

k )
= − (1 + r)J1(

mn

k e
kL) + mn

k e
kLJ ′

1(
mn

k e
kL)

(1 + r)Y1(
mn

k e
kL) + mn

k e
kLY ′

1(
mn

k e
kL)

, r =
g2v2

k
.

(C.34)

Note that the EOM we have just solved, including the BCs, is a so-called linear bound-

ary value problem of second order. For this kind of problem, it is well known that the

eigenfunctions f (n)(y) obey the orthogonality relation

∫ L

0
dy f (n)(y)f (m)(y) = 0 for n 6= m. (C.35)

As a direct consequence, there is no mixing between the zero and KK modes of the gauge

boson. The modes we have just calculated are already the final mass eigenstates. The

only effect of the spontaneous symmetry breaking within the present approach is thus the

modified BC on the IR brane, resulting in shifts in the masses and a distortion of the

eigenfunctions f (n)(y), in particular of f (0)(y), relative to the unbroken case.

Evaluating the mass spectrum numerically (without making any approximation or

expansion in m0), we find with ke−kL = 1TeV, k = 1016 TeV,

m0 = 80.398GeV , m1 = 2.55TeV , m2 = 5.61TeV , . . . (C.36)

where we have chosen gv in order to satisfy m0 = MW .

The question now arises whether the same results are obtained also by using our previ-

ous approach to EWSB, also followed e. g. by Agashe et al. [55], where the effects of EWSB

are treated as a perturbation of the unbroken case. In order to analyse this let us start

from the same action Sgauge as before, but solve the bulk EOM before inserting the Higgs

VEV. Obviously the bulk shape functions will then be those of the unbroken case, with

f (0)(y) = 1 , m0 = 0 , (C.37)

and

f (n)(y) =
eky

Nn

[
J1

(mn

k
eky
)

+ b1(mn)Y1

(mn

k
eky
)]

, (C.38)

where

b1(mn) = −J1(
mn

k ) + mn

k J
′
1(
mn

k )

Y1(
mn

k ) + mn

k Y
′
1(
mn

k )
= b1(mne

kL) . (C.39)

To determine the effects of EWSB, this solution for the gauge boson modes now has

to be inserted into the interaction term with the Higgs, the latter being then replaced by

its VEV. This yields

Sgauge ∋
∫
d4x

∫ L

0
dy
√
Gδ(y − L)

g2v2

2L
e2ky

∑

n,m

f (n)(y)f (m)(y)A(n)
µ (x)Aµ(m)(x)

≃ g2v2e−2kL

2L

∫
d4x

[
A(0)
µ (x)Aµ(0)(x)

+ 2
√

2kLA(0)
µ (x)Aµ(1)(x)

+ 2kLA(1)
µ (x)Aµ(1)(x) + · · ·

]
. (C.40)
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L

mixing up to n=4

mixing up to n=1

expansion in w

exact result

Figure 2. Effective zero mode shape function f (0)(y) for 0.9L < y < L — comparison of the exact

result with different approximations. The solid black line corresponds to the exact result in (C.29),

while the solid red line displays the expanded (C.29). The results obtained after diagonalisation of

the mass matrixM2 are shown for n ≤ 1 (blue, dashed line) and n ≤ 4 (green, dotted line).

Approximating f (n)(y = L) ≃
√

2kL for n 6= 0, and denoting m2 = g2v2e−2kL/L, we

obtain the mass matrix

M2 =




m2 m2
√

2kL m2
√

2kL · · ·
m2
√

2kL M2
1 +m22kL m22kL · · ·

m2
√

2kL m22kL M2
2 +m22kL · · ·

...
...

...
. . .



, (C.41)

where Mi are the KK masses in the absence of EWSB:

M1 = 2.45TeV , M2 = 5.56TeV , . . . . (C.42)

The off-diagonal entries now induce mixing between the zero and KK modes.

Including the modes up to n = 2 and diagonalising M2, we find

m0 = 81.25GeV , m1 = 2.55TeV , m2 = 5.61TeV , (C.43)

which differs from the result obtained from the previous approach, (C.36) only for m0,

and even there the error amounts to only 1%.12 Note also that while the first approach

yields exact results, the second approach contains the approximation of cutting the KK

tower after the first few modes. In addition, since EWSB is treated as a perturbation, an

expansion in g is inherent. We have also verified that the more modes are included, the

smaller the errors in the mass determination become.

In addition to the mass spectrum, we have also considered the effective zero mode

shape function that arises after mixing with the KK modes. By comparing numerically

the results obtained by truncating the KK tower after the first few modes with the results

12This error should not be understood as an absolute error on MW , that would be huge compared to

the present experimental accuracy, but rather as a relative error which can be absorbed into the gauge KK

masses by making a proper redefinition of the Higgs VEV v.
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in (C.29) and (C.33), we observe that by increasing the number n of modes included,

the approximation quickly approaches the result of (C.29), see figure 2. This confirms

our expectation that inserting the effects of EWSB after performing the KK expansion

effectively amounts to treating EWSB as a perturbation.

In summary, we have studied two quite distinct descriptions of EWSB effects:

1. Modified EOM and wave function distortion, see e. g. [58–62].

• The Higgs VEV is included already for the derivation and solution of the bulk

EOM.

• This implies distortions of the wave functions and shifts in the masses of the

zero and KK modes, with respect to the unbroken case.

• Due to the orthogonality of the bulk wave functions, there is no mixing between

the various modes.

2. EWSB as a perturbation in the KK tower, see e. g. [55, 57].

• The bulk EOM is solved for free fields, i. e. the Higgs VEV is not yet taken into

account and treated later as a perturbation.

• Then the unbroken wave functions are used to calculate the effects of EWSB by

replacing H by its VEV.

• Mixing between the various modes appears, in addition to corrections to the

masses.

We have shown that both approaches are indeed equivalent, up to the fact that the second

one works only if EWSB is a small perturbation of the unbroken theory, and that exact

results can in principle only be obtained by considering the whole infinite tower of KK

modes. Still we have checked numerically that the results converge quickly so that it

appears sufficient to take into account only the zero and the first excited modes.

A similar proof, including also the case of spontaneously broken non-abelian gauge

groups, can also be found in [63].

D Effective 4D Feynman rules

D.1 Preliminaries

In this section we list the complete set of Feynman rules in terms of gauge boson mass

eigenstates and fermion flavour eigenstates. In view of the large size of the fermion mass

matrices in section 4.2, the rotation to fermion mass eigenstates is best done numerically.

The collection contains all v2/f2 contributions for the light gauge bosons Z and W+, while

we present only vertices of O(1) for the heavy gauge bosons G(1), A(1), ZH , Z ′, W±
H and

W ′±. Note that v2/f2 ∼ v2/M2 ∼ ǫ, where ǫ is defined in (D.11). There are no corrections

to gluon and photon couplings.
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D.2 Propagators

Our conventions for fermion and gauge boson propagators in the unitary gauge are as

follows:

p
:

i

/p−mf
, (D.1)

pµ ν
a b :

−iδab
p2 −M2

[
ηµν − pµpν

M2

]
, (D.2)

where mf and M are the fermion and gauge boson mass, respectively.

D.3 Overlap integrals

The overlap integrals for KK gluonic and photonic currents and for the ones for the KK

modes Z(1) and W
(1)
L are given by

Rik
nm

(BC)L,R =
1

L

∫ L

0
dy ekyf

(n)
L,R(y, cik, BC)f

(m)
L,R(y, cik, BC) g(y) , (D.3)

while for Z
(1)
X we have

Pik
nm

(BC)L,R =
1

L

∫ L

0
dy ekyf

(n)
L,R(y, cik, BC)f

(m)
L,R(y, cik, BC) g̃(y) (D.4)

with g̃(y) 6= g(y) as the shape functions depend weakly on BCs. For charged currents

mediated by W
(1)
R we also have

Sik
nm

(BC)(B̃C)L,R =
1

L

∫ L

0
dy ekyf

(n)
L,R(y, cik, BC)f

(m)
L,R(y, cik, B̃C) g̃(y) . (D.5)

D.4 Fermion couplings to gluon and KK gluon

All couplings to the zero mode gluons are SM-like. That is the relevant term in the QCD

Lagrangian is

− gs√
L
ψ̄γµ tAψG(0)A

µ , (D.6)

where we suppressed the colour indices.

In tables 1–3 we list all non-vanishing couplings to the KK gluon. The last column in

these tables denotes the entry in the coupling matrices defined in section 4.3.

Diagonal couplings of right-handed heavy fermion fields can be easily obtained from

the left-handed ones by replacing the boundary conditions according to the scheme given in

table 4. In addition the index L has to be replaced by R in the overlap integrals in (D.3)–

(D.5). These replacements are also valid for the heavy neutral gauge bosons Z, ZH and Z ′

discussed below.
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Zero mode couplings to the KK gluon

Q = 2/3 quarks

q̄
ui(0)
L q

ui(0)
L G(1)A −i gs√

L
γµ tARi1

00
(++)L (0,0)

ū
i(0)
R u

i(0)
R G(1)A −i gs√

L
γµ tARi2

00
(++)R (0,0)

Q = −1/3 quarks

q̄
di(0)
L q

di(0)
L G(1)A −i gs√

L
γµ tARi1

00
(++)L (0,0)

D̄
i(0)
R D

i(0)
R G(1)A −i gs√

L
γµ tARi3

00
(++)R (0,0)

Table 1. Vertices involving left-handed and right-handed zero modes and the KK gluon. These

zero modes correspond to the SM quark fields when the rotation to fermion mass eigenstates is

performed.

Off-diagonal couplings to the KK gluon

Q = 2/3 quarks

q̄
ui(0)
L qui

L G
(1)A −i gs√

L
γµ tARi1

01
(++)L (0,1)

q̄ui

L q
ui(0)
L G(1)A −i gs√

L
γµ tARi1

10
(++)L (1,0)

ū
i(0)
R uiRG

(1)A −i gs√
L
γµ tARi2

01
(++)R (0,5)

ūiRu
i(0)
R G(1)A −i gs√

L
γµ tARi2

10
(++)R (5,0)

Q = −1/3 quarks

q̄
di(0)
L qdi

LG
(1)A −i gs√

L
γµ tARi1

01
(++)L (0,1)

q̄di

L q
di(0)
L G(1)A −i gs√

L
γµ tARi1

10
(++)L (1,0)

D̄
i(0)
R Di

RG
(1)A −i gs√

L
γµ tARi3

01
(++)R (0,3)

D̄i
RD

i(0)
R G(1)A −i gs√

L
γµ tARi3

10
(++)R (3,0)

Table 2. Vertices involving the KK gluon and a single zero mode. In terms of the matrices given

in section 4.4, we are talking about the off-diagonal elements.

D.5 Fermion couplings to photon and KK photon

The couplings to photon and KK photon can be read off from the results for gluon and

KK gluon with a simple modification: tA has to be removed and the coupling gs must be

replaced by the coupling gQ as the photon and KK photon couple through electric charge.
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Heavy fermion couplings to the KK gluon

Q = 5/3 quarks

χ̄ui

L χ
ui

L G
(1)A −i gs√

L
γµ tARi1

11
(−+)L (1,1)

ψ̄′i
Lψ

′i
LG

(1)A −i gs√
L
γµ tARi3

11
(+−)L (2,2)

ψ̄′′i
L ψ

′′i
L G

(1)A −i gs√
L
γµ tARi3

11
(+−)L (3,3)

Q = 2/3 quarks

q̄ui

L q
ui

L G
(1)A −i gs√

L
γµ tARi1

11
(++)L (1,1)

Ū ′i
LU

′i
LG

(1)A −i gs√
L
γµ tARi3

11
(+−)L (2,2)

Ū ′′i
L U

′′i
L G

(1)A −i gs√
L
γµ tARi3

11
(+−)L (3,3)

χ̄di

L χ
di

LG
(1)A −i gs√

L
γµ tARi1

11
(−+)L (4,4)

ūiLu
i
LG

(1)A −i gs√
L
γµ tARi2

11
(−−)L (5,5)

Q = −1/3 quarks

q̄di

L q
di

LG
(1)A −i gs√

L
γµ tARi1

11
(++)L (1,1)

D̄′i
LD

′i
LG

(1)A −i gs√
L
γµ tARi3

11
(+−)L (2,2)

D̄i
LD

i
LG

(1)A −i gs√
L
γµ tARi3

11
(−−)L (3,3)

Table 3. Couplings of the KK gluon to heavy left-handed fermions. Note that for each entry in

this table there exists a coupling to the corresponding right-handed fermion fields. The translation

from left-handed to right-handed vertices is given in table 4.

L → R

+ → −
− → +

Table 4. Substitution scheme from heavy left-handed to heavy right-handed fermions.

In particular we have

g5/3 = gXQX cosφ cosψ + g sinψ =
5

3
e , (D.7)

g2/3 = gXQX cosφ cosψ =
2

3
e , (D.8)

g−1/3 = gXQX cosφ cosψ − g sinψ = −1

3
e , (D.9)

where we defined e = g sinψ = gX cosφ cosψ with e being the 5D coupling:

e4D =
e√
L
. (D.10)

– 48 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
4

Zero mode couplings to the Z boson

Q = 2/3 quarks

q̄
ui(0)
L q

ui(0)
L Z −iγµ

[
gZ(qui)− ǫgZ(qui) 1

cos2 ψI
+
1 Ri1

00
(++)L + ǫ cos φ

cosψI
−
1 κ1Pi1

00
(++)L

]
(0,0)

ū
i(0)
R u

i(0)
R Z −iγµ

[
gZ(ui)− ǫgZ(ui) 1

cos2 ψ
I+

1 Ri2
00

(++)R + ǫ cos φ
cosψI

−
1 κ3Pi2

00
(++)R

]
(0,0)

Q = −1/3 quarks

q̄
di(0)
L q

di(0)
L Z −iγµ

[
gZ(qdi)− ǫgZ(qdi) 1

cos2 ψI
+
1 Ri1

00
(++)L + ǫ cosφ

cosψI
−
1 κ1Pi1

00
(++)L

]
(0,0)

D̄
i(0)
R D

i(0)
R Z −iγµ

[
gZ(Di)− ǫgZ(Di) 1

cos2 ψ
I+

1 Ri3
00

(++)R + ǫ cosφ
cosψI

−
1 κ5Pi3

00
(++)R

]
(0,0)

Table 5. Couplings involving zero modes and the Z boson. These zero modes correspond to the

SM quark field when the rotation to fermion mass eigenstates is performed.

D.6 Fermion couplings to neutral gauge bosons

We introduce the small parameter

ǫ =
g2v2

4LM2
, (D.11)

where M is defined in (C.7), and the couplings

gZ(Ψ) =
g√

L cosψ

(
T 3
L − (sinψ)2Q

)
, (D.12)

κ1 = gZX
(qui) = gZX

(qdi) =
1√
L

(
−gXQX sinφ− 1

2
g cosφ

)
, (D.13)

κ2 = gZX
(χui) = gZX

(χdi) =
1√
L

(
−gXQX sinφ+

1

2
g cosφ

)
, (D.14)

κ3 = gZX
(ui) = gZX

(ψ′i) = gZX
(U ′i) = gZX

(D′i) = gZX
(U ′′i) (D.15)

=
1√
L

(−gXQX sinφ) , (D.16)

κ4 = gZX
(ψ′′i) =

1√
L

(−gXQX sinφ+ g cosφ) , (D.17)

κ5 = gZX
(Di) =

1√
L

(−gXQX sinφ− g cosφ) . (D.18)

Furthermore, the expressions for κi (i = 1, . . . , 5) can be combined in the following formula:

κ =
1√
L

(
T 3
R − (T 3

R +QX) sin2 φ
) g

cosφ
, (D.19)

where T 3
R is the SU(2)R-isospin of the fermion related to a given κi, and QX = 2/3 for

quarks, while QX = 0 for leptons, as discussed in section 6.

In order to obtain the Z ′ couplings one can use the results of the ZH couplings with

the replacements summarised in table 11.
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Off-diagonal couplings to the Z boson

Q = 2/3 quarks

q̄
ui(0)
L qui

L Z −iγµ
[
− ǫgZ(qui) 1

cos2 ψ
I+

1 Ri1
01

(++)L + ǫ cos φ
cosψI

−
1 κ1Pi1

01
(++)L

]
(0,1)

q̄ui

L q
ui(0)
L Z −iγµ

[
− ǫgZ(qui) 1

cos2 ψ
I+

1 Ri1
10

(++)L + ǫ cos φ
cosψI

−
1 κ1Pi1

10
(++)L

]
(1,0)

ū
i(0)
R uiRZ −iγµ

[
− ǫgZ(ui) 1

cos2 ψ
I+

1 Ri2
01

(++)R + ǫ cosφ
cosψI

−
1 κ3Pi2

01
(++)R

]
(0,5)

ūiRu
i(0)
R Z −iγµ

[
− ǫgZ(ui) 1

cos2 ψI
+
1 Ri2

10
(++)R + ǫ cosφ

cosψI
−
1 κ3Pi2

10
(++)R

]
(5,0)

Q = −1/3 quarks

q̄
di(0)
L qdi

L Z −iγµ
[
− ǫgZ(qdi) 1

cos2 ψ
I+

1 Ri1
01

(++)L + ǫ cosφ
cosψI

−
1 κ1Pi1

01
(++)L

]
(0,1)

q̄di

L q
di(0)
L Z −iγµ

[
− ǫgZ(qdi) 1

cos2 ψI
+
1 Ri1

10
(++)L + ǫ cosφ

cosψI
−
1 κ1Pi1

10
(++)L

]
(1,0)

D̄
i(0)
R Di

RZ −iγµ
[
− ǫgZ(Di) 1

cos2 ψ
I+

1 Ri3
01

(++)R + ǫ cosφ
cosψI

−
1 κ5Pi3

01
(++)R

]
(0,3)

D̄i
RD

i(0)
R Z −iγµ

[
− ǫgZ(Di) 1

cos2 ψ
I+

1 Ri3
10

(++)R + ǫ cosφ
cosψI

−
1 κ5Pi3

10
(++)R

]
(3,0)

Table 6. Couplings involving the Z boson and a single zero mode.

Heavy fermion couplings to the Z boson

Q = 5/3 quarks

χ̄ui

L χ
ui

L Z −iγµ
[
gZ(χui)− ǫgZ(χui) 1

cos2 ψI
+
1 Ri1

11
(−+)L + ǫ cos φ

cosψI
−
1 κ2Pi1

11
(−+)L

]
(1,1)

ψ̄′i
Lψ

′i
LZ −iγµ

[
gZ(ψ′i)− ǫgZ(ψ′i) 1

cos2 ψ
I+

1 Ri3
11

(+−)L + ǫ cosφ
cosψI

−
1 κ3Pi3

11
(+−)L

]
(2,2)

ψ̄′′i
L ψ

′′i
L Z −iγµ

[
gZ(ψ′′i)− ǫgZ(ψ′′i) 1

cos2 ψ
I+

1 Ri3
11

(+−)L + ǫ cosφ
cosψI

−
1 κ4Pi3

11
(+−)L

]
(3,3)

Q = 2/3 quarks

q̄ui

L q
ui

L Z −iγµ
[
gZ(qui)− ǫgZ(qui) 1

cos2 ψ
I+

1 Ri1
11

(++)L + ǫ cos φ
cosψI

−
1 κ1Pi1

11
(++)L

]
(1,1)

Ū ′i
LU

′i
LZ −iγµ

[
gZ(U ′i)− ǫgZ(U ′i) 1

cos2 ψ
I+

1 Ri3
11

(+−)L + ǫ cos φ
cosψI

−
1 κ3Pi3

11
(+−)L

]
(2,2)

Ū ′′i
L U

′′i
L Z −iγµ

[
gZ(U ′′i)− ǫgZ(U ′′i) 1

cos2 ψI
+
1 Ri3

11
(+−)L + ǫ cos φ

cosψI
−
1 κ3Pi3

11
(+−)L

]
(3,3)

χ̄di

L χ
di

L Z −iγµ
[
gZ(χdi)− ǫgZ(χdi) 1

cos2 ψ
I+

1 Ri1
11

(−+)L + ǫ cosφ
cosψI

−
1 κ2Pi1

11
(−+)L

]
(4,4)

ūiLu
i
LZ −iγµ

[
gZ(ui)− ǫgZ(ui) 1

cos2 ψ
I+

1 Ri2
11

(−−)L + ǫ cos φ
cosψI

−
1 κ3Pi2

11
(−−)L

]
(5,5)

Q = −1/3 quarks

q̄di

L q
di

L Z −iγµ
[
gZ(qdi)− ǫgZ(qdi) 1

cos2 ψ
I+

1 Ri1
11

(++)L + ǫ cosφ
cosψI

−
1 κ1Pi1

11
(++)L

]
(1,1)

D̄′i
LD

′i
LZ −iγµ

[
gZ(D′i)− ǫgZ(D′i) 1

cos2 ψ
I+

1 Ri3
11

(+−)L + ǫ cosφ
cosψI

−
1 κ3Pi3

11
(+−)L

]
(2,2)

D̄i
LD

i
LZ −iγµ

[
gZ(Di)− ǫgZ(Di) 1

cos2 ψ
I+

1 Ri3
11

(−−)L + ǫ cosφ
cosψI

−
1 κ5Pi3

11
(−−)L

]
(3,3)

Table 7. Couplings involving the Z boson and the heavy left-handed fermions. In analogy to the

couplings of the KK gluon to heavy fermions, one has to complete these rules with the couplings of

the Z boson to the heavy right-handed fermions according to the scheme given in table 4.
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Zero mode couplings to the ZH boson

Q = 2/3 quarks

q̄
ui(0)
L q

ui(0)
L ZH −iγµ

[
gZ(qui) cos ξRi1

00
(++)L + sin ξ κ1Pi1

00
(++)L

]
(0,0)

ū
i(0)
R u

i(0)
R ZH −iγµ

[
gZ(ui) cos ξRi2

00
(++)R + sin ξ κ3Pi2

00
(++)R

]
(0,0)

Q = −1/3 quarks

q̄
di(0)
L q

di(0)
L ZH −iγµ

[
gZ(qdi) cos ξRi1

00
(++)L + sin ξ κ1Pi1

00
(++)L

]
(0,0)

D̄
i(0)
R D

i(0)
R ZH −iγµ

[
gZ(Di) cos ξRi3

00
(++)R + sin ξ κ5Pi3

00
(++)R

]
(0,0)

Table 8. Couplings involving zero modes and the ZH boson. These zero modes correspond after

rotation to fermion mass eigenstates to the SM quark fields.

Off-diagonal couplings to the ZH boson

Q = 2/3 quarks

q̄
ui(0)
L qui

L ZH −iγµ
[
gZ(qui) cos ξRi1

01
(++)L + sin ξ κ1Pi1

01
(++)L

]
(0,1)

q̄ui

L q
ui(0)
L ZH −iγµ

[
gZ(qui) cos ξRi1

10
(++)L + sin ξ κ1Pi1

10
(++)L

]
(1,0)

ū
i(0)
R uiRZH −iγµ

[
gZ(ui) cos ξRi2

01
(++)R + sin ξ κ3Pi2

01
(++)R

]
(0,5)

ūiRu
i(0)
R ZH −iγµ

[
gZ(ui) cos ξRi2

10
(++)R + sin ξ κ3Pi2

10
(++)R

]
(5,0)

Q = −1/3 quarks

q̄
di(0)
L qdi

L ZH −iγµ
[
gZ(qdi) cos ξRi1

01
(++)L + sin ξ κ1Pi1

01
(++)L

]
(0,1)

q̄di

L q
di(0)
L ZH −iγµ

[
gZ(qdi) cos ξRi1

10
(++)L + sin ξ κ1Pi1

10
(++)L

]
(1,0)

D̄
i(0)
R Di

RZH −iγµ
[
gZ(Di) cos ξRi3

01
(++)R + sin ξ κ5Pi3

01
(++)R

]
(0,3)

D̄i
RD

i(0)
R ZH −iγµ

[
gZ(Di) cos ξRi3

10
(++)R + sin ξ κ5Pi3

10
(++)R

]
(3,0)

Table 9. Couplings involving the ZH boson and a single zero mode.
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Heavy fermion couplings to the ZH boson

Q = 5/3 quarks

χ̄ui

L χ
ui

L ZH −iγµ
[
gZ(χui) cos ξRi1

11
(−+)L + sin ξ κ2Pi1

11
(−+)L

]
(1,1)

ψ̄′i
Lψ

′i
LZH −iγµ

[
gZ(ψ′i) cos ξRi3

11
(+−)L + sin ξ κ3Pi3

11
(+−)L

]
(2,2)

ψ̄′′i
L ψ

′′i
L ZH −iγµ

[
gZ(ψ′′i) cos ξRi3

11
(+−)L + sin ξ κ4Pi3

11
(+−)L

]
(3,3)

Q = 2/3 quarks

q̄ui

L q
ui

L ZH −iγµ
[
gZ(qui) cos ξRi1

11
(++)L + sin ξ κ1Pi1

11
(++)L

]
(1,1)

Ū ′i
LU

′i
LZH −iγµ

[
gZ(U ′i) cos ξRi3

11
(+−)L + sin ξ κ3Pi3

11
(+−)L

]
(2,2)

Ū ′′i
L U

′′i
L ZH −iγµ

[
gZ(U ′′i) cos ξRi3

11
(+−)L + sin ξ κ3Pi3

11
(+−)L

]
(3,3)

χ̄di

L χ
di

L ZH −iγµ
[
gZ(χdi) cos ξRi1

11
(−+)L + sin ξ κ2Pi1

11
(−+)L

]
(4,4)

ūiLu
i
LZH −iγµ

[
gZ(ui) cos ξRi2

11
(−−)L + sin ξ κ3Pi2

11
(−−)L

]
(5,5)

Q = −1/3 quarks

q̄di

L q
di

L ZH −iγµ
[
gZ(qdi) cos ξRi1

11
(++)L + sin ξ κ1Pi1

11
(++)L

]
(1,1)

D̄′i
LD

′i
LZH −iγµ

[
gZ(D′i) cos ξRi3

11
(+−)L + sin ξ κ3Pi3

11
(+−)L

]
(2,2)

D̄i
LD

i
LZH −iγµ

[
gZ(Di) cos ξRi3

11
(−−)L + sin ξ κ5Pi3

11
(−−)L

]
(3,3)

Table 10. Couplings involving the ZH boson and the heavy left-handed fermions. The rules for

the couplings of the ZH boson to the heavy right-handed fermions can be found by means of the

scheme given in table 4.

ZH → Z ′

cos ξ → − sin ξ

sin ξ → cos ξ

Table 11. Replacement rules for obtaining the Z ′ couplings from the ZH couplings.
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WH → W ′

cosχ → − sinχ

sinχ → cosχ

Table 12. Replacement rules for obtaining the W ′ couplings from the WH couplings.

Zero mode coupling to the W
+ boson

Q = −1/3→ Q = 2/3 transitions

q̄
ui(0)
L q

di(0)
L W+ −i g√

2L
γµ
[
1− ǫ I+

1 Ri1
00

(++)L

]
(0,0)

Table 13. In case of the W+ we have only a single SM-like coupling including two zero mode

fermion fields.

W
+ boson couplings involving a single zero mode

Q = 2/3→ Q = 5/3 transitions

χ̄ui

L q
ui(0)
L W+ −i g√

2L
γµǫ I−1 Si1

10
(−+)(++)L (1,0)

Q = −1/3→ Q = 2/3 transitions

q̄
ui(0)
L qdi

LW
+ i g√

2L
γµǫ I+

1 Ri1
01

(++)L (0,1)

q̄ui

L q
di(0)
L W+ i g√

2L
γµǫ I+

1 Ri1
10

(++)L (1,0)

χ̄di

L q
di(0)
L W+ −i g√

2L
γµǫ I−1 Si1

10
(−+)(++)L (4,0)

Ū ′′i
R D

i(0)
R W+ −i g√

2L
γµǫ I−1 Si3

10
(−+)(++)R (3,0)

Table 14. Couplings involving the W+ boson and a single zero mode.

D.7 Fermion couplings to charged gauge bosons

In tables 13–18 we give all fermion couplings to W+ and W+
H . Similarly to the case of

heavy neutral gauge bosons, the W ′+ couplings are easy to get from W+
H couplings by

making the replacements summarised in table 12.

Tables 13–18 give automatically the couplings ofW−, W−
H andW ′− to fermionic flavour

eigenstates. But as e. g. q̄
ui(0)
L q

di(0)
L W+ is now replaced by q̄

di(0)
L q

ui(0)
L W−, after rotation to

fermionic mass eigenstates through complex matrices UL,R and DL,R, the couplings of W+,

W+
H and W ′+ and W−, W−

H and W ′− will differ from each other by complex conjugation

of the relevant mixing matrix. For instance Vtd in the vertex t̄dW+ will be changed to V ∗
td

in d̄tW−.
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Heavy fermion couplings to the W
+ boson

Q = 2/3→ Q = 5/3 transitions

χ̄ui

L χ
di

LW
+ −i g√

2L
γµ
[
1− ǫ I+

1 Ri1
11

(−+)L

]
(1,4)

ψ̄′i
LU

′i
LW

+ −i g√
L
γµ
[
− 1 + ǫ I+

1 Ri3
11

(+−)L

]
(2,2)

χ̄ui

L q
ui

L W
+ −i g√

2L
γµǫ I−1 Si1

11
(−+)(++)L (1,1)

ψ̄′′i
L U

′′i
L W

+ i g√
L
γµǫI−1 Si3

11
(+−)(+−)L (3,3)

Q = −1/3→ Q = 2/3 transitions

q̄ui

L q
di

LW
+ −i g√

2L
γµ
[
1− ǫ I+

1 Ri1
11

(++)L

]
(1,1)

Ū ′i
LD

′i
LW

+ −i g√
L
γµ
[
1− ǫI+

1 Ri3
11

(+−)L

]
(2,2)

χ̄di

L q
di

LW
+ −i g√

2L
γµǫ I−1 Si1

11
(−+)(++)L (4,1)

Ū ′′i
L D

i
LW

+ −i g√
L
γµǫI−1 Si3

11
(+−)(−−)L (3,3)

Table 15. Couplings including the W+ boson and the heavy left-handed fermions. For each

coupling to left-handed heavy fermion fields there exist one with right-handed fermions. The cor-

responding couplings can be read off from this table by making the substitution according to the

scheme given in table 4.

Zero mode coupling to the W
+

H
boson

Q = −1/3→ Q = 2/3 transitions

q̄
ui(0)
L q

di(0)
L W+

H −i g√
2L
γµ cosχRi1

00
(++)L (0,0)

Table 16. In case of the W+
H we have only a single SM-like coupling involving two zero mode

fermion fields.

W
+

H
boson couplings involving a single zero mode

Q = 2/3→ Q = 5/3 transitions

χ̄ui

L q
ui(0)
L W+

H −i g√
2L
γµ sinχSi1

10
(−+)(++)L (1,0)

Q = −1/3→ Q = 2/3 transitions

q̄
ui(0)
L qdi

LW
+
H −i g√

2L
γµ cosχRi1

01
(++)L (0,1)

q̄ui

L q
di(0)
L W+

H −i g√
2L
γµ cosχRi1

10
(++)L (1,0)

χ̄di

L q
di(0)
L W+

H −i g√
2L
γµ sinχSi1

10
(−+)(++)L (4,0)

Ū ′′i
R D

i(0)
R W+

H −i g√
2L
γµ sinχSi3

10
(−+)(++)R (3,0)

Table 17. Here we show all couplings involving the W+
H boson and a single zero mode.
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Heavy fermion couplings to the W
+

H
boson

Q = 2/3→ Q = 5/3 transitions

χ̄ui

L χ
di

LW
+
H −i g√

2L
γµ cosχRi1

11
(−+)L (1,4)

ψ̄′i
LU

′i
LW

+
H i g√

L
γµ cosχRi3

11
(+−)L (2,2)

χ̄ui

L q
ui

L W
+
H −i g√

2L
γµ sinχSi1

11
(−+)(++)L (1,1)

ψ̄′′i
L U

′′i
L W

+
H i g√

L
γµ sinχSi3

11
(+−)(+−)L (3,3)

Q = −1/3→ Q = 2/3 transitions

q̄ui

L q
di

LW
+
H −i g√

2L
γµ cosχRi1

11
(++)L (1,1)

Ū ′i
LD

′i
LW

+
H −i g√

L
γµ cosχRi3

11
(+−)L (2,2)

χ̄di

L q
di

LW
+
H −i g√

2L
γµ sinχSi1

11
(−+)(++)L (4,1)

Ū ′′i
L D

i
LW

+
H −i g√

L
γµ sinχSi3

11
(+−)(−−)L (3,3)

Table 18. Couplings involving the W+
H boson and the heavy left-handed fermions. For each

coupling to left-handed heavy fermion fields there exist one with right-handed fermions that can be

obtained using table 4.

D.8 Triple gauge boson couplings

In this section we list the triple gauge boson couplings, where we give the SM-like couplings

up to the order of O(ǫ), while the couplings involving a heavy gauge boson are given at

O(1). Therefore we define the following overlap integrals:

T +++
3 =

1

L

∫ L

0
dy g(y)3 , T −−+

3 =
1

L

∫ L

0
dy g̃(y)2g(y) T −−−

3 =
1

L

∫ L

0
dy g̃(y)3 .

(D.20)

The corresponding overlap integrals with one or two shape functions of the first KK mode

simplify because of the orthonormality condition.

The following Feynman rules are given in gauge boson mass eigenstates. The Dirac

structure of all vertices is the same,

V −
ν

V +
µ

V 0
ρ

k p

q
C [ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ] ,

where V +
µ = W+

µ ,W
+
Hµ,W

′+
µ , V −

ν = W−
ν ,W

−
Hν ,W

′−
ν , V 0

ρ = A
(0)
ρ , A

(1)
ρ , Zρ, ZHρ, Z

′
ρ, and

k, p, q are their incoming momenta. Therefore in tables 19–22 we collect only the coefficients

C of the respective couplings.

– 55 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
4

Couplings to the Z boson

W+W−Z i g√
L

cosψ +O(ǫ2)

W+
HW

−Z O(ǫ)

W+
HW

−
HZ i g√

L

(
cosψ cos2 χ− sinφ sinψ sin2 χ

)

W ′+W−
HZ −i g√

L
sinχ cosχ (cosψ + sinφ sinψ)

Table 19. Triple gauge boson couplings to the Z boson. The remaining vertices W ′+W−Z and

W ′+W ′−Z can be simply derived by making use of the replacements of table 12. Furthermore the

coupling of W+W−

HZ is equal to W+
HW

−Z, the same ist valid for W+W ′−Z and W ′+W−Z as well

as W+
HW

′−Z and W ′+W−

HZ.

Couplings to the ZH boson

W+W−ZH O(ǫ)

W+
HW

−ZH i g√
L

cosψ cosχ cos ξ

W+
HW

−
HZH i g√

L

(
cosψ cos2 χ cos ξ T +++

3 + cosφ sin2 χ sin ξ T −−−
3

− sinφ sinψ sin2 χ cos ξ T −−+
3

)

W ′+W−
HZH i g√

L
sinχ cosχ

(
− cosψ cos ξ T +++

3 + cosφ sin ξ T −−−
3

− sinφ sinψ cos ξ T −−+
3

)

Table 20. Triple gauge boson couplings to the ZH boson. The remaining vertices can again be

derived by making use of the replacements of tables 11 and 12.

Couplings to the photon

W+W−A(0) i g√
L

sinψ

W+
HW

−A(0) 0

W+
HW

−
HA

(0) i g√
L

sinψ

W ′+W−
HA

(0) 0

Table 21. Triple gauge boson couplings to the photon zero mode. The remaining vertices can

again be derived by making use of the replacements of table 12.

In table 19 we give a subset of the vertices involving the Z boson, from which the

remaining Z vertices can be obtained performing the replacements in table 12.

The corresponding ZH vertices are given in table 20. In order to obtain the triple

gauge boson couplings involving Z ′ one can use the results of the couplings to ZH with the

replacements of table 11.

Finally we give in tables 21 and 22 the vertices involving the photon and its first KK

mode.
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Couplings to the KK photon

W+W−A(1) O(ǫ)

W+
HW

−A(1) i g√
L

sinψ cosχ

W+
HW

−
HA

(1) i g√
L

sinψ
(
cos2 χ T +++

3 + sin2 χ T −−+
3

)

W ′+W−
HA

(1) i g√
L

sinχ cosχ sinψ
(
−T +++

3 + T −−+
3

)

Table 22. Triple gauge boson couplings to the first KK photon mode. The remaining vertices can

again be derived by making use of the replacements of table 12.
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[3] C. Csáki, J. Hubisz and P. Meade, Electroweak symmetry breaking from extra dimensions,

hep-ph/0510275 [SPIRES].

[4] T. Gherghetta, Warped models and holography, hep-ph/0601213 [SPIRES].

[5] Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry,

Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

[6] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS,

Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

[7] S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269

[hep-ph/0303183] [SPIRES].

[8] K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models,

Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].

[9] G. Moreau and J.I. Silva-Marcos, Flavour physics of the RS model with KK masses reachable

at LHC, JHEP 03 (2006) 090 [hep-ph/0602155] [SPIRES].

[10] K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision

tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].
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