
Precision Top-Quark Physics with

Leptonic Final States

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften

der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Master of Science

Rene Poncelet

aus Uslar/Schönhagen

Berichter: Universitätsprofessor Dr. rer. nat. Michal Czakon

Universitätsprofessor Dr. rer. nat. Robert Harlander

Tag der mündlichen Prüfung: 24.09.2018

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar.



Abstract

Since their discovery in high energy collisions at the Tevatron collider, more than twenty
years ago, top-quarks constitute an important pillar of modern particle physics. As the
heaviest particles of the Standard Model of particle physics (SM), they play a crucial role in
many phenomenological applications. Their large mass relates them tightly to various other
components of the SM. Examples of importance are parameters of the electroweak sector
which are in�uenced through corrections originating from top-quark loops. This enables
important consistency checks of the SM itself. For such checks, precisely known parameters
estimated from measurements at colliders like the LHC are crucial. By carefully comparing
data and theoretical predictions, parameters of the theory, e.g. the top-quark mass, can be
extracted. To do so accurate predictions are necessary. Quantum Field Theory (QFT) is
the theoretical framework the SM is build upon, and it can be systematically approximated
in perturbation theory. Quantum Chromo Dynamics (QCD) describe the strong interaction
between colored particles and most of the dynamics of top-quarks produced in high energy
collisions of hadronic bound states. State of the art calculations evaluate the partonic
cross section at next-to-next-to-leading order (NNLO). Thus, perturbative QCD is used to
obtain predictions of fully inclusive or di�erential cross sections of top-quarks which show
very good agreement with the measurements, while small uncertainties on the theoretical as
well as the experimental side allow for precise parameter extractions. These measurements
rely on well understood modeling of the top-quarks in hard scattering processes.

A remarkable feature of top-quarks is their very short lifetime which is below even the
typical hadronization time of colored particles. Top-quark decays thus presents a unique
opportunity for studying a bare quark. Inclusion of the decay in the evaluation of top-
quark pair production through NNLO in QCD is the central goal of this work. The
Narrow-Width-Approximation (NWA) is employed to reduce the computational burden by
factorizing production and decay. It is possible to keep information about the polarization
state of the top-quarks which a�ects the decay. To do so at NNLO, two-loop polarized
matrix elements for top-quark pair production are required. The evaluation of two-loop
amplitudes is demanding and their calculation is an important part of this thesis.

Another technical component needed for such a calculation is an e�cient method to handle
contributions from real radiation. While automatized frameworks exist at NLO, the NNLO
case is much more involved. A fully general method of handling this kind of calculation is
given by the Sector-improved residue subtraction scheme (Stripper) which is discussed
in this work. Also, modi�cations to improve the e�ciency of this scheme are presented.
In combination, this allows to present the �rst calculation of top-quark pair production
including decays in NWA at NNLO in QCD. First results compared to LHC data show
remarkable agreement. The calculation is fully di�erential and allows for a broad band
of future phenomenological studies. The extraction of the top-quark mass from di�eren-
tial distributions or the investigation of top-quark spin-properties at high precision are
examples for phenomenological applications for these original calculations.
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Zusammenfassung

Top-Quarks sind seit ihrer Entdeckung in Hochenergiekollisionen am Tevatron-Beschleu-
niger vor über zwanzig Jahren ein wichtiger Bestandteil moderner Teilchenphysik. Als
schwerste Teilchen des Standardmodells der Teilchenphysik (SM) spielen sie eine entschei-
dende Rolle in vielen phänomenologischen Anwendungen. Ihre groÿe Masse verbindet sie
eng mit verschiedenen anderen Komponenten des SM. Ein wichtiges Beispiel für solch
eine Verbindung sind elektroschwache Parameter, die über Schleifenkorrekturen von der
Top-Quark-Masse abhängen. Der Vergleich der so berechneten Werte mit den experi-
mentell bestimmten Werten für die elektroschwachen Parameter erlaubt somit wichtige
Konsistenzprüfungen des SM. Von besonderer Wichtigkeit sind daher präzise Messungen
dieser Parameter an Beschleunigern wie dem Large-Hadron-Collider (LHC). Die Messung
von Parametern wie der Top-Quark-Masse erfolgt durch sorgfältigen Vergleich von Messun-
gen und theoretischen Vorhersagen von Wirkungsquerschnitten. Die Quantenchromody-
namik (QCD) beschreibt die starke Wechselwirkung zwischen Teilchen mit Farbladung und
somit einen wesentlichen Anteil der Dynamik von Top-Quarks, die bei Hochenergiekollisio-
nen von Hadronen entstehen. Berechnungen des partonischen Wirkungsquerschnitts auf
Grundlage der Störungstheorie zweiter Ordnung (next-to-next-to-leading order: NNLO)
sind der aktuelle Stand der Forschung und zeigen eine bemerkenswerte Übereinstimmung
mit bisherigen Messungen. Die extrem geringen Unsicherheiten sowohl auf theoretischer
als auch auf experimenteller Seite erlauben hoch präzise Messungen von Parametern des
SM.

Eine charakteristische Eigenschaft der Top-Quarks ist ihre sehr kurze Lebensdauer, welche
kürzer ist als die typische Hadronisierungszeit. Top-Quark-Zerfälle bieten so eine einzig-
artige Gelegenheit, freie Quarks zu studieren. Die Berücksichtigung dieses Zerfalls bei
der Berechnung der Top-Quark-Paar-Produktion in der QCD mit Störungstheorie der
zweiten Ordnung ist das zentrale Ziel dieser Arbeit. Eine Näherung für kleine Zerfalls-
breiten (Narrow-Width-Approximation: NWA) wird verwendet, um den Rechenaufwand
zu reduzieren. Es ist möglich, Information über den Polarisationszustand der Top-Quarks
bei der Berechnung zu berücksichtigen, welche den Zerfall beein�usst. Dazu sind auf
NNLO polarisierte Matrixelemente mit zwei Schleifen für die Top-Quark-Paar-Produktion
erforderlich, und deren Berechnung ist ein substantieller Teil dieser Arbeit.

Eine weitere technische Komponente, die für solche Berechnungen nötig ist, ist eine e�ziente
Methode, um Beiträge aus reeler Strahlung zu berücksichtigen. Während für die Störungs-
theorie erster Ordnung automatisierte Verfahren existieren, ist der Fall zweiter Ordnung
komplizierter und Gegenstand momentaner Forschung. In dieser Arbeit kommt zur Be-
handlung derartiger Beiträge das sog. STRIPPER-Verfahren (sector-improved residue
subtraction scheme) zum Einsatz. Neben dem Verfahren werden auch Modi�kationen zur
Verbesserung der E�zienz desselben vorgestellt. Dies ermöglicht erstmals eine Berechnung
der Top-Quark-Paar-Produktion inklusive Zerfall unter den oben genannten Annahmen.
Der Vergleich erster Ergebnisse mit LHC-Daten zeigt hervorragende Übereinstimmungen
für totale und di�erentielle Wirkungsquerschnitte. Die in dieser Arbeit vorgestellte Rech-
nung ermöglicht eine breite Palette zukünftiger phänomenologischer Studien, etwa die
Messung der Top-Quark-Masse aus di�erentiellen Verteilungen oder die Untersuchung von
Top-Quark-Spin-Eigenschaften.
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1. Top-Quark physics at Hadron Colliders

1.1. Discovery at TeVatron

More than twenty years ago, the top-quark was con�rmed to be observed in proton-anti-
proton collisions at the Tevatron collider by the CDF [2] and D0 [3] experiments separately.
Its discovery was a huge success of the Standard Model of Particle Physics (SM). The
existence of the top-quark was predicted already two decades before this great achievement,
as a third generation of quarks was proposed by Kobayashi and Masakawa [4] as answer to
the CP problem in the weak sector. The �rst evidence for a third generation of particles
was the discovery of the τ - lepton [5], two years later. It was Harrari who introduced the
naming of the �bottom� or �beauty� quark together with the name of the partner the �top�
or �truth� quark [6] of the yet hypothetical particles. Only few years later the observation
of a resonance structure in muon pair spectra [7] marked the �rst measurement of the
bottom quark. The search for the new presumably heavy partner of the bottom quark was
unsuccessful for almost twenty years. However, due to consistency constraints within the
Standard Model the mass of the new particle could quite well constrained, for instance by
the Large Electron Positron (LEP) collider at CERN [8]. In 1995 �nally, the experiments
located at the TeVatron accelerator operating at a center-of-mass energy of 1.96 TeV, the
most powerful machine at that time, announced the discovery of a heavy particle with
right properties in the expected mass window. The properties of the top-quark are quite
remarkable and opened up a rich �eld of particle physics. The investigation of physics
related to top-quarks is still one of the main interests of the particle physics community.
With a pole mass of roughly 173 GeV, the top-quark is the heaviest elementary particle

observed so far. Its large mass implies the special role of the top-quark within the SM
and beyond. The top-quark mass is naively a free input parameter but relates through
quantum corrections to a broad band of parameters and observables, such that it provides
a strong test of internal consistency of the model. Or provides the possibility for indirect
evidence of new physics beyond the Standard Model (BSM).
Another remarkable property is the short life time of the top-quark. The life time is

about 10−25 seconds and thus shorter than the hadronization time which is of order 10−24.
It allows for the unique opportunity to study a bare quark and its quantum numbers
absent of hadronization e�ects polluting the measurements. As mentioned, the relation of
the top-quark mass to other parameters allows for precision tests of the Standard Model.
One important example is the relation between the masses of the W/Z- and Higgs-boson
and the top-quark. They are related through top-quark and Higgs-boson loops in higher
order corrections to the propagator of the W and Z bosons. This relation can be used
to predict masses from measurements of a subset of those. The comparison with direct
measurements of the predicted mass results in consistency checks of the Standard Model
[9, 10]. In this way it was possible to constrain the mass of the top-quark to a quite narrow
window prior to its discovery. The strong constraints between top and vector boson masses
inherit from the fact that the relation is quadratic in the top mass. For the Higgs boson,
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Figure 1.1.: Stability landscape for di�erent con�gurations of Higgs and top-quark masses
and uncertainty bands of current mass measurements. [11] .

for instance, the dependence is only logarithmic and thus constraints are much weaker.
Another peculiar in�uence of the top-quark mass on the Standard Model is given through

the running of Yukawa couplings. In lowest order perturbation theory the Higgs poten-
tial has the famous �Mexican hat� shape, which describes a stable electroweak vacuum.
The quartic coupling is an input parameter of the theory and thus gets modi�ed through
quantum corrections. The in�uence of the top-quark mass is such that for certain values
another minimum at higher Higgs �eld values appears. Thus it might be possible that
our 'false' vacuum decays into the actual vacuum at some point. For current values of
the top-quark and Higgs masses the Standard Model seems to be in a meta-stable phase
as depicted in �gure 1.1, where the life time of the 'false vacuum' is near the age of the
universe [11].
The crucial ingredients for this kind of analyses are precise measurements of the param-

eter entering the Lagrangian and thus the Standard Model. Precision physics requires well
understood experiments and theory descriptions. Usually lepton colliders provide a clean
and precise environment to perform parameter estimations at high accuracy. The most
powerful lepton machine was LEP, it provided excellent results for masses of the electro-
weak bosons and couplings as well the strong coupling [8]. However, the center of mass
energy of the colliding beams was not high enough to produce top-quarks and Higgs-bosons
on their mass shell. Up to now only hadron colliders like the Tevatron or the LHC provide
energies which are high enough to produce those frequently enough to measure them. The
physics at these colliders is dominated by strong interactions between the color charged
constituents of the hadron. The collision cover and probe a broad band of energy scales.
Combined with large interaction rates they provide therefore a huge discovery potential.
Their precision on the other hand is limited by the hadronic physics that arises naturally.
Even though hadron machines are regarded as 'discovery' rather than 'precision' machines,
the era of precision physics at Hadron colliders has begun.

1.2. Top-Quark Physics at the LHC

The LHC physics programme followed the Tevatron and started operation in 2009. Since
then it provides large amount of data from the proton-proton collisions at 7,8 and 13
TeV center of mass energy. In �gure 1.2 the collected amount of data so far of the LHC
experiments is visualised [12, 13].
The integrated luminosity recorded by the two main experiments from the 13 TeV run

2
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Figure 1.2.: Integrated luminosity of the two main experiments at LHC, CMS [14] and
ATLAS [15], respectively.

up to now is

ATLAS = 111fb−1 ,CMS = 109fb−1 . (1.1)

There is a vast landscape of processes that have been observed and measured in the past
eight years. The �gure 1.3 summarizes the results of cross section measurements for many
Standard Model process. They are compared to the Standard Model theory predictions
and show a remarkable agreement. This shows the validity of the Standard Model over
many orders of magnitude in the production cross section. The experimental uncertainties
on these measurements are for various processes at a compatible order to the uncertainty
estimate of the theory prediction.

The theoretical description of the physics at hadron colliders is governed by Quantum
Chromo Dynamics (QCD). QCD is a SU(3) gauge theory [16] modeling the strong inter-
actions of quarks and gluons. These partons are the constituents of hadronic bound states
like the proton. At low energies the strong coupling constant αs becomes large and give rise
to con�nement. At high energies, on the other hand, QCD is asymptotically free such that
αs becomes small and a perturbative treatment becomes feasible. The low energy physics
of the incoming hadron can be separated from high energy collision of the constituents
with the help of factorization theorem. Hadronic states are described by the parton model.
The abundance of quarks and gluons with a given momentum fraction inside a hadron is
parameterized with the help of parton distribution functions (PDFs). The hadronic cross
section of a given process then factorizes into a convolution of a partonic cross section and
the PDFs. The partonic cross section can be treated in perturbation theory. The PDFs on
the other hand need to be inferred from experiment since it is not possible (yet) to derive
them from �rst-principles. There are di�erent sources of uncertainties in the theoretical
description. There are uncertainties related to the free parameter of the theory, for exam-
ple free parameters of the Lagrangian or the PDFs themself. Those can be conceptually
extracted in independent measurements to allow for new predictions. The perturbative
expansion of partonic cross section yields another source of uncertainty. The expansions
are truncated and the in�uence of higher orders needs to estimated give a reliable theory
description. Next-to-leading order QCD calculations are state of the art for all processes
of interest.
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Figure 1.4.: Theory predictions of the total inclusive cross section of tt̄ production com-
pared to ATLAS and CMS measurements. The left �gure shows the scale
dependence of the theory prediction at LO, NLO and NNLO [32]. The right
�gure has been taken from [33].

The automatisation of tree-level and one-loop matrix-elements [18�21] as well as the
handling of real radiation contributions with the help of subtraction schemes [22�24] are
the foundations of the �NLO-revolution� in past ten years. Monte Carlo frameworks such
asMadGraph[18], Sherpa [25] , HelacNLO [26] and others provide all necessary ingre-
dients to perform full-�edged next-to-leading order calculation for virtually all Standard
Model processes and beyond. Additionally the inclusion of parton shower algorithms, like
[24, 27�29] on top of leading and next-to-leading order calculations allow for a more real-
istic event modelling. Moving to next-to-next-to-leading order in QCD the situation looks
quite di�erent. On one hand the handling of real radiation is still a di�cult problem due
to the much more complicated infrared singularity structure. A detailed discussion of real
radiation in NNLO calculations is given in chapter 4. On the other hand the availability
of two loop amplitudes is limited to 2→ 2 processes up to now. In some cases of compara-
ble importance are NLO electroweak calculations and more or less recently their inclusion
became reality, for example see [20, 21, 30, 31].

The top-quark plays an essential role in the physics program of the LHC. After its discov-
ery at the Tevatron, the focus is on precise as possible measurements of top-quark properties
to either improve the Standard Model with better input values or to unveil inconsistencies
and signs of new physics. The production of a top-quark pair is an extensively studied
process at LHC, for examples see Refs [34�37]. The production is mediated dominantly by
QCD, while electroweak production modes play only a negligible role. While at Tevatron
the quark anti-quark annihilation channels was most important production channel (85%)
at the LHC the gluon initiated production dominates (∼ 85%). The theoretical description
of this process has quite some history. The �rst dedicated next-to-leading order calcula-
tion was performed in late 80's [38, 39] and [40]. The next-to-leading order correction have
been found sizeable and were later re�ned by NLL resummations [41�43]. The resummation
program was extended to NNLL [44�48], over the years before the �rst NNLO calculation
for the inclusive cross section was presented [49�52] including the aforementioned NNLL
soft gluon resummation. Only a short time later the calculation was performed also on
di�erential level [53�58]. So far for on-shell stable top-quarks. Since top-quarks decay im-
mediately, a more realistic treatment takes also decays into account and also there progress
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Figure 1.5.: Di�erential crossection for tt̄ production, measured in the di-lepton channel
and compared to SM theory [33].

was made in di�erent directions. Within the Narrow-Width-Approximation, which allows
to keep the top-quarks on-shell but keeps spin information, motivated by the small width
of the top-quark �rst calculations were presented in Refs [59, 60]. Even more realistic are
full o�-shell calculations which consider the complete production of the decay �nal state
[61�66]. The NLO calculations were also re�ned with parton showers, with and without
the inclusion of the decay [67�69].
The total cross section is good example for well converging perturbative series. The left

�gure in Fig 1.4 shows the theory predictions for the total cross section of tt̄ production
for di�erent orders in perturbation theory together with an error estimate from scale varia-
tions. Each subsequent higher order prediction lies within the estimated uncertainty which
signals a good convergence. In the right �gure is a comparison between the predicted cross
section and measurements performed by the ATLAS and CMS collaborations. They agree
remarkably well within the errors. The cross section can also be studied in a more exclusive
way. An example is given in �gure 1.5 which shows a di�erential distribution with respect
to the transverse momentum of the top-quark. Also here remarkable agreement between
measurements and Standard Model is found.

1.3. Top-quark properties

The top-quark mass Besides the production cross section the mass is an important
property of the top-quark. As a free parameter of the Lagrangian, it needs to be determined
by experiment. However, the treatment within the theoretical description of the mass plays
a crucial role. All free parameters of the Lagrangian are subject to renormalization. The
renormalization procedure is not unique and the very details of the chosen renormalization
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Figure 1.6.: Summary of various top-quark mass measurements. Published by the Top
working group [33], details of the di�erent measurements can be found in
references given in the �gure.

scheme has impact on the interpretation of the mass.
The pole mass mt is probably the most intuitive de�nition. It can be de�ned by con-

sidering top-quarks as asymptotic free states in perturbative QCD. It is then given by
real part of the top-quark propagator pole at mt + iΓt with the width Γt. In this treat-
ment it relates to the peak of the invariant mass distribution of top-quark decay products.
However, even though this is well de�ned in perturbative QCD, top-quarks are not free
particles since they are color charged and thus subject to con�nement. This non perturba-
tive e�ects lead to absence of the pole in the full propagator. This leads to an ambiguity
of the pole mass de�nition, which is naively expected to be of O(ΛQCD), thus of order of
separation between low and high energy scales in QCD. In a recent study of this so-called
renormalon ambiguity [70�72] is has been shown that the e�ect is about 70 MeV [73].
There are also studies which suggest that the inclusion of parton-showers correspond to a
di�erent renormalization scheme [74] and previous works. This ambiguity propagates to
the all observables that depend on the top-quark mass mt and thus limits conceptually the
precision of pole mass measurements. This mass has been measured by experiment and
the current experimental status is summarized in �gure 1.6.
The MS mass m̄t(µ) is obtained when using the MS renormalization scheme for the mass

parameter. This introduces an explicit dependence on the renormalization scale µ which
governed by the renormalization group equation (RGE)

µ2∂m̄t(µ)

∂µ2
= m̄t(µ)γm (1.2)

with the mass anomalous dimension γm. This equation follows directly from the fact that
the bare mass does not depend on the renormalization scale and is known up to �ve loops
[75]. With this equation m̄t can be evaluated at any scale by �xing its value at a speci�c
scale. This can be done by relating this mass de�nition to the pole mass and using its
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measured value as input. The relation reads to next to leading order

mt = m̄t

[
1 +

αs
π
CF

(
1− 3

4
ln
(
m̄2
t /µ

2
))]

(1.3)

but is know up to four loops [76, 77]. This relation introduces the renormalon ambiguity
also to this short distance mass. A pole mass of approximately 173 Gev translates to
m̄t(m̄t) ≈ 163 GeV.

Another way to de�ne the top-quark mass is through its production threshold. Predomi-
nately relevant for lepton-colliders, the study of the threshold gives a clean and theoretically
well controlled opportunity to measure the mass. However, the details of the description
of top-quark production at the threshold give rise to various de�nitions, for example the
1S mass [78] or the potential subtracted (PS) mass [79].

The precise extraction of the top-quark mass parameter from measurements at colliders
is a experimental and theoretical challenge. Many di�erent methods of varying precision
and model dependence are employed to perform this task. A common method is the usage
of theory input to prepare predictions for di�erent input parameters. These templates
are compared after simulating the transition to observable events and detector e�ects to
measured data. By �nding the best match the input parameter are �tted to the data.
The e�ectiveness of this method strongly depends on the observable investigated. An
example is the extraction of the top-quark mass with the help of the total cross section
[36, 80, 81]. The value extracted from 7 TeV data by the CMS collaboration is for instance
173.8+1.7

−1.8 GeV [82]. Also more exclusive observables are used, a review can be found in
[83�86]. A more recent example is the ρs observable de�ned through the invariant mass of
a reconstructed tt̄ pair and accompanying jet [87, 88]

ρs =
2m0√
m2
ttj

with m0 = 170 GeV (1.4)

The shape of the normalized di�erential cross section with respect to ρs

R =
1

σ

∂σ

∂ρs
(1.5)

has quite strong dependence on the top-quark mass parameter. Additionally, due to the
normalization, the theoretical and systematic errors are quite well under control. The
extraction using this parameter was performed by the ATLAS [89] and CMS [90] collabo-
ration. In �gure 1.7 is a comparison of theory predictions for di�erent top masses and the
measured distribution. The extracted mass with this method in case of ATLAS is

mt = 173.7± 1.5(stat)± 1.4(syst.)+1.0
−0.5(theory)GeV (1.6)

which is quite competitive with the extraction of the top mass from the total cross section.
A quite similar method is the extraction from kinematic endpoints. An example is given
in [91]. There the transverse mass of the top-quark is reconstructed. For onshell top-
quarks this mass has a maximum value which depends on the top-quark mass itself. By
measuring this edge in the distribution of the transverse mass implicitly the top-quark
mass is measured. The results from the various methods result in the world average from
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2014

mt = 173.34± 0.74 GeV (1.7)

for the pole mass.

Top-quark decays and spin As mentioned already in various contexts, the top-quark is
not stable and decays imitatively after it is produced. The short life time τ ≈ 10−25s,
or the small decay width Γt ∼ O(1) GeV, is the reason that the top-quark decays before
hadronization e�ects can wash out the properties of the bare quark. This allows to study
the quantum numbers like spin, charge of a quark and its couplings to electroweak bosons
in a clean environment.

The decay of the top-quark is mediated by the weak interaction and can be described
by the three processes

t→ bW+ , t→ sW+ and t→ dW+ . (1.8)

The decay rate in the three channels are proportional to Vtb, Vts and Vtd, where Vij are
entries of the CKM matrix. Due to the strong hierarchy of the CKM matrix the decay
rates into s and d quarks are negligible and thus the total width of the top-quark is well
approximated by

Γt ≡ Γt(t→W+b) . (1.9)

The decay width is not a free parameter of the theory but can rather be expressed through
masses and couplings. In lowest order in perturbation theory the total width can be
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evaluated to

Γ
(0)
t =

GFm
3
t

8π
√

2
(1− r2)2(1 + 2r2) with r2 =

m2
W

m2
t

(1.10)

which corresponds to a numerical value

Γt (mt = 173.3 GeV) = 1.5048GeV (1.11)

For the anti top-quark the same holds (the processes are charged conjugated) due to CPT
invariance. The next-to-leading order QCD contribution was already calculated some time
ago [92], also including e�ects from the light quark mass and o�-shell W s. The next-to-
leading order EW corrections are also known and presented in [93]. A little bit more recent
are the NNLO corrections in [94�96] and [97], which are discussed in more detail later. The
higher order QCD corrections of O(10%), and thus quite sizeable.
In the case of top-quark pair production the decay of the top-quarks and the subsequent

decay of the W -bosons results in variety of di�erent decay channels. They are summarized
in �gure 1.8. Top-quark pair events are usually identi�ed through two reconstructed b-jets
and the decay products of the W -bosons. The b-jets can be distinguished experimentally
from other jets to unusual long life-time of the b quarks since their decay is CKM sup-
pressed. The long life time results in displaced vertices di�erent from the interaction point
of the hard scattering event. Sophisticated analysis techniques and precise particle tracking
allows for high tagging e�ciencies. The decay into quark �nal states, which are identi�ed
as accumulated jets in experiments, has the largest branching fraction. Thus the statistics
of observed events in this channel is quite high. However, this channel su�ers from the
large combinatoric possibilities to assign the various jets to the two top-quarks and large
QCD background. The fully leptonic channel where both W decay into charged leptons
and neutrinos has the advantages that it is easy to detect. The leptons (not necessary
the τ lepton) provide a clean signature. But it has two drawbacks: low statistics due to
the small branching fraction and lost information due to the neutrinos which leave the
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detector unnoticed. The only information about the neutrinos is the missing transverse
energy. The lepton plus jet channel is the middle ground, larger statistics but still quite
easy identi�able �nal state signature. Also the neutrino momentum is better constraint by
the missing transverse energy and can be reconstructed up to two-fold ambiguity [100].
The top-quarks are in general produced unpolarized [101], however the coupling to the

W is a left-handed coupling. The decay products carry therefore information over the
polarization of the decayed top-quark. The polarization of the top-quark has for instance
impact on angular distributions. Taking into account both top-quarks, the correlation
between the decay products reveals information over the spin properties of the top-quarks.
An example is the azimuthal angular distance of the two �nal state leptons in the di-lepton
channel ∆φ. In �gure 1.8 a corresponding measurement together with theory predictions
is shown. For comparison also predictions which neglected the spin information is given.
Evidently, the spin correlation of the top-quarks has important impact on the shape of the
distribution.

This work is structured as follows: After a general introduction in top-quark physics
at hadron colliders presented in this chapter, the modelling and description of top-quark
processes within Quantum Field theory is outlined in chapter 2. Crucial ideas from fac-
torization and renormalization are reviewed and aligned in context suitable for this work.
Additionally, the state of the art of phenomenological calculations for top-quark pair pro-
duction and decays in context of LHC are discussed, since they build the foundations of
the project presented in this thesis. Working towards top-quark pair production and de-
cay within the Narrow-Width-Approximation, the calculation of polarized double virtual
amplitudes needed for polarized top-quark pairs through NNLO in QCD is presented in
chapter 3. In chapter 4 a short overview over the various competing techniques is given,
followed by a detailed description of the Sector-improved residue subtraction scheme. The
scheme is slightly modi�ed from its original formulation with the aim to improve con-
vergence and elegance. This scheme is used in chapter 5 to perform a fully di�erential
calculation of top quark pair production and decay in the Narrow-Width-Approximation
through NNLO in QCD. Results are compared to lower orders and with published data
from the ATLAS and CMS working groups. This work is concluded with a summary and
�nal discussion of the results in chapter 6.
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2. The Top-Quark in Theory

This chapter gives an overview over concepts that appear in the modelling of top-quark
pair production and its decay at hadron colliders. A special focus is put on the role of
factorization, separating perturbative from non-perturbative physics. Also, some general
methods that facilitate higher order calculations are discussed. After the introduction of
various ingredients, a review of the current status of top-quark theory predictions is given.
In the Standard Model all fermions acquire mass due to their Yukawa coupling to the
Higgs-�eld. Considering high energy interactions at colliders like the LHC, the mass of
the light quarks {u, d, c, s, b} is comparatively small and they are treated as massless in
the following discussion. The top-quark, however, with a mass of mt ≈ 173 GeV has to be
treated as a massive particle.

2.1. Factorization in production and decay

The theoretical modelling of top-quark pair production at hadron colliders relies on fac-
torization [102], as basically all other production processes do. The factorization theorems
allow to separate physics on long and short distances scale, or equivalently, physics at
small and high energies. The very nature of the colliding particles at the LHC does not
allow for a direct description of production processes within perturbative QFT. The pro-
ton is a hadronic bound state whose dynamics, to our understanding, are governed by
low energy interactions, i.e. the non-perturbative regime of Quantum Chromo Dynamics
(QCD). Even though non-perturbative QCD builds up a huge and rich �eld of physics, it
is not yet possible to describe this kind of bound states with the required precision from
�rst principles. Factorization allows to separate the low-energy dynamics from high energy
scattering processes of the proton's constituents and parameterize it in terms of parton
distribution functions (PDFs) [103�106]. These PDFs, denoted by φa(x), are universal fea-
tures of the proton and, following the parton model, describe the probability to encounter
a speci�c parton a with a momentum fraction x. The PDFs may be determined in dif-
ferent experiments and at various energies by carefully comparing measured cross sections
with predictions of well established processes. The PDFs depend on the energy scale µF
at which they are measured, such that φa(x) ≡ φa(x, µF ). The energy scale is usually
given by the typical scale of the process under consideration, for instance the partonic
collision energy. However, PDFs at di�erent energy scales are not unrelated to each other,
but rather are connected by di�erential equations in µF , the PDF evolution equations or
DGLAP equations. Since the measurement of the PDFs is tightly connected to the value
and running of αs(µF ), together they provide a predictive set of equations:

µ2
F

dfi(x, µF )

dµ2
F

= (Pij ⊗ fj)(x, µF ) (2.1)

µ2
F

dαs(µF )

dµ2
F

= β(αs(µF )) . (2.2)
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The symbol ⊗ denotes a convolution as de�ned in A.35. These equations allow to predict
the PDFs and αs at any energy scale µF as soon as the boundary conditions are �xed
at some energy scale. From the converse persepective, these equations allow for including
measurements at di�erent energy scales to determine the common boundary condition. On
the right-hand side of the evolution equations appear the Altarelli-Parisi splitting functions
as well as the β-function. They can be determined from perturbative QCD as a series in
αs(µF ), thus from �rst principles. Di�erent orders in this expansion will lead to di�erent
PDFs φa(x, µF ), or, the other way around, to di�erent boundaries. Consequently there
are di�erent existing PDF sets (LO, NLO, NNLO, . . . ) depending on the expansion depth
of the evolution equations. The depth is usually matched to the perturbative order of
the partonic prediction used for extracting the PDFs. This is necessary to consistently
treat the logarithms of the renormalization and factorization scale appearing in various
contributions.
Coming back to top-quark pair production, the hadronic cross section may be written in
a factorized form,

σh1h2(P1, P2) =

∑

ab

∫∫ 1

0
dx1dx2φa/h1(x1, µ

2
F )φb/h2(x2, µ

2
F )σ̃ab

(
x1P1, x2P2, αs(µ

2
R), µ2

R, µ
2
F

)
, (2.3)

with the partonic cross-section σ̃ab. The renormalization scale µR enters the partonic cross
section through the running of αs and higher order contributions. The partonic cross
section then may be expanded in a series of αs whose coe�cients can be calculated in per-
turbation theory. The higher order terms contain contributions from additional radiation,
and thus from higher multiplicity processes, as well as additional virtual quantum loops
and, at high enough order, combinations of both. In virtual contributions divergences
arise from in�nitely large momenta �owing through loops. They can be regularized and
removed by renormalization. There are di�erent regularization schemes that can be em-
ployed. However, throughout this work dimensional regularization in d = 4− 2ε spacetime
dimensions is used. The removal of this type of divergences can be achieved through ab-
sorption into unobservable quantities of the underlying Lagrangian. Additionally, infrared
divergences remain in the virtual contributions due to soft and collinear loop momenta.
They also arise in the real radiation contribution due to the unresolved emissions. The
handling of UV and IR divergences in loop amplitudes is discussed in more detail in section
2.1.2. Usually, the KLN theorem [107, 108] ensures that all divergences cancel and a �nite
result is obtained when combining the di�erent contribution suitably in terms of infrared
safe observables. This is not true in the presence of hadronic objects in the initial state.
The reason for this are collinear emissions to initial state particles which, in contrast to
�nal state collinear emission, are not averaged over. Collinear renormalization is necessary
to absorb these singularities within the PDFs themselves.

2.1.1. Collinear Factorization

To cancel all divergencies in hadronic cross-sections it is necessary to remove divergences
arising from initial state collinear radiation. Similar to UV renormalization, it is possible
to perform a rede�nition of parameters that enter the theory. Since this is a phenomenon
which enters through the initial state only, it is not feasible to perform the renormaliza-
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tion at Lagrangian level. The PDFs appearing in the cross-section formula (2.3) are the
only parameters left. Assuming that the PDFs appearing in that equation are the bare
quantities, collinear counter terms Zij are introduced in the following way

φ0
i (x) = Zij ⊗ φj =

∫ 1

x

dz

z
Zij

(x
z
, µF

)
fj(z, µF ) (2.4)

where the fj are the observable renormalized PDFs. The renormalization constant ma-
trix Zij can be expressed through the Altaresi-Parisi splitting functions, but beyond the
divergences it is scheme dependent. In the MS scheme they read up to NNLO

Zij(x, µF ) = Z
(0)
ij (x, µF ) + Z

(1)
ij (x, µF ) + Z

(2)
ij (x, µF ) +O

(
αs

3
)

= δijδ(1− x) +
αs(µF )

2π

P
(0)
ij (x)

ε
+

(
αs(µF )

2π

)2

·
[
P

(1)
ij (x)

2ε
+

1

2ε2

(
(P

(0)
ik ⊗ P

(0)
kj )(x)− β0

2
P

(0)
ij (x)

)]
+O

(
αs

3(µF )
)
, (2.5)

where P (n)
ij (x) and β0 are given by the perturbative expansions

Pij(x, µF ) =
∑

n=0

(
αs(µF )

2π

)n+1

P
(n)
ij (x) (2.6)

β(αs(µF )) = −4π
∑

n=0

(
αs(µF )

2π

)n+1

βn (2.7)

of the splitting and β function, respectively. Applying this to the hadronic cross section
formula and expanding everything up to NNLO, the �nite total cross section reads

σh1h2(P1, P2) =

∑

ab

∫∫ 1

0
dx1dx2φa/h1(x1, µ

2
F )φb/h2(x2, µ

2
F )
(
σ̂

(0)
ab + σ̂

(1)
ab + σ̂

(2)
ab

)
+O

(
αs

3
)

(2.8)

with

σ̂
(0)
ab = σ̃

(0)
ab (2.9)

σ̂
(1)
ab = σ̃

(1)
ab +

[
Z

(1)
ka ⊗ σ̃

(0)
kb + Z

(1)
kb ⊗ σ̃

(0)
ak

]
(2.10)

σ̂
(2)
ab = σ̃

(2)
ab +

[
Z

(2)
ka ⊗ σ̃

(0)
kb + Z

(2)
kb ⊗ σ̃

(0)
ak + Z

(1)
ka ⊗ σ̃

(1)
kb

+Z
(1)
kb ⊗ σ̃

(1)
ak + Z

(1)
ka ⊗ Z

(1)
lb ⊗ σ̃

(0)
kl .
]

(2.11)

The expansion in αs is meant to be on top of the order αs needed for the lowest order
contribution. In the case of tt̄, the lowest order is of order αs2.
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2. The Top-Quark in Theory

2.1.2. Renormalization of virtual amplitudes

In the partonic cross sections σ̃ab and σ̂ab virtual amplitudes contribute beyond the leading
order in perturbation theory. It is well known that there are divergences related to large
loop momenta within transition amplitudes (UV divergences) and, due to the appearance
of massless particles, soft and collinear divergences (IR divergences). In a renormaliz-
able theory like QCD, the UV divergences can be absorbed in the free (bare) parameters
of the underlying Lagrangian after a suitable regularization has been applied. Di�erent
regularization schemes were developed in history of higher order QFT. Conventional di-
mensional regularization (CDR) [109�112] is one of the most used ones and also employed
throughout this thesis. A detailed discussion of the de�nitions and assumptions entering
this regularization scheme is given for example in [113]. Calculations in this scheme are
done consistently in d = 4 − 2ε space time dimensions, by analytical continuation. Re-
markably, gauge symmetries are not a�ected by this extension, which is a great advantage
of this scheme. There are variants of this scheme like the four dimensional helicity scheme
(FDH) or 't Hooft-Veltman scheme (HV) which di�er by the treatment of the spin-degrees
of freedom of external and virtual particles. There are also conceptual di�erent regular-
ization schemes like Pauli-Villars (only for UV divergencies) or mass regularization. One
important result of renormalization theory is the independence of physical results on the
regularization scheme as well as renormalization scheme.

UV renormalization

Considering top-quark pair production in QCD, the theory contains two free parameters, αs
and mt. All UV divergences can be absorbed in the bare parameters and the normalization
of the �elds, since they are independent of the kinematics of UV divergent quantities. This
can be achieved by multiplicative renormalization constants that relate the renormalized
with the bare quantities

coupling: αs
0 =

(
eγEµ2

R

4π

)ε
Z

(nf )
αs (µR)αs

(nf )(µR) (2.12)

mass: m0
t = Zmmt (2.13)

�elds: Ψ0
q = Z

1
2
q Ψq, Ψ0

Q = Z
1
2
QΨQ, A0

µ = Z
1
2
3 Aµ (2.14)

with q ∈ {d, u, s, c, b} and Q ∈ {t}. The number of active quarks �avors nf that contributes
to the running of αs is the sum of the number of massless quarks nl and heavy quarks
nh. This introduces a missmatch to the number of active �avors present in evolution of
the PDFs, see equation (2.2). In the factorization formula (2.3) it was assumed that the
top-quarks are too heavy to be produced highly relativistically, such that one could neglect
the mass, for the given hadronic center energy. Therefore there is no top-quark PDF and
the number of active �avors is given by nl. To obtain a consistent treatment of αs in the
partonic cross section one has to decouple the top-quark from the running of αs. This can
be achieved by introducing the decoupling constant ζαs

αs
(nf ) = ζαsαs

(nl) . (2.15)

With this replacement all expressions can be expanded consistently in αs(nl), which will
be denoted as αs for brevity. The actual form of the constants Zi (ζαs) depends on
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2.1. Factorization in production and decay

the regularization and the renormalization scheme used. While the UV poles are �xed
through the theory, the �nite part of the constants is ambiguous and gives rise to various
renormalization schemes. Two schemes are employed in all calculations presented in this
thesis. The on-shell scheme is used for all �elds and the mass, and the MS scheme used
for the coupling constant. The renormalization constants can be treated in perturbation
theory

Z = 1 +
∑

n=1

(
αs

(nf )

2π

)n
Z(n) (2.16)

and up to NNLO all necessary constants are given in appendix B.
One essential type of quantities that require renormalization are partonic scattering

amplitudes which describe the partonic production of a top-quark pair, plus possibly ad-
ditional radiation of massless particles. The renormalized amplitude written in terms of
bare quantities is given by

|Mi1,i2,...,in(αs,mt, µR, ε)〉 =

(
eγEµ2

R

4π

)−n
2
ε N∏

i=1

√
Zi
∣∣M0

i1,i2,...,in(αs
0,m0

t , ε)
〉
. (2.17)

Expansion of both sides in αs yields the renormalized amplitudes entering the partonic
cross section σ̃ab in equation (2.8). All constants act multiplicatively and, besides the bare
amplitude, the expansion yields counter terms on the right-hand side. Special care has to
be taken in case of the mass renormalization constant. It enters the amplitude through
the top-quark propagator

i

/p−m0
t + iη

=
i

/p− Zmmt + iη
, (2.18)

but it can be rewritten in a convenient way, by making use of an inverse Dyson resummation

i

/p− Zmmt + iη
=

i

/p−mt + iη

1

1− Zm−1
/p−mt+iη

=
i

/p−mt + iη

∑

k=0

(
Zm − 1

/p−mt + iη

)k

=
i

/p−mt + iη
+

(
αs

(nf )

2π

)
iZ

(1)
m mt(

/p−mt + iη
)2

+

(
αs

(nf )

2π

)2(
iZ

(2)
m mt(

/p−mt + iη
)2 +

i(Z
(1)
m mt)

2

(
/p−mt + iη

)3

)
+O

(
αs

3
)

(2.19)

which can be employed in a straight forward way, in the evaluation of the expansion of
(2.17) on the right-hand side.

IR renormalization

After removing UV divergences from the theory, virtual amplitudes still contain infrared
divergences. They originate from internal massless particles becoming collinear to external
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2. The Top-Quark in Theory

particles or becoming soft. Fortunately, these infrared limits can be investigated in a
systematic way. The infrared structure of QCD amplitudes is completely known up to
the two-loop level [114�119] and can be expressed through lower order amplitudes. The
factorization of the divergences can be written in terms of the operator Z = 1 + Z(1) +
Z(2) +O

(
αs

3
)
which acts on color space:

∣∣∣M(0)
〉

=
∣∣∣F (0)

〉
, (2.20)

∣∣∣M(1)
〉

= Z(1)
∣∣∣M(0)

〉
+
∣∣∣F (1)

〉
, (2.21)

∣∣∣M(2)
〉

= Z(2)
∣∣∣M(0)

〉
+ Z(1)

∣∣∣F (1)
〉

+
∣∣∣F (2)

〉
(2.22)

=
(
Z(2) − Z(1)Z(1)

) ∣∣∣M(0)
〉

+ Z(1)
∣∣∣M(1)

〉
+
∣∣∣F (2)

〉
. (2.23)

The Z operator can be determined by the anomalous dimension matrix Γ through the
renormalization group equation

d
d lnµR

Z (ε, {pi}, {mi}, µR) = −Γ ({pi}, {mi}, µR) Z (ε, {pi}, {mi}, µR) . (2.24)

The matrix Γ was calculated within the aforementioned references. The matrix depends
on the exact process under consideration. With the summation convention given in the
appendixA the matrix reads

Γ({p}, {m}, µ) =
∑

(i,j)

Ti ·Tj

2
γcusp

(
α

(nl)
s

)
ln

µ2

−sij
+
∑

i

γi
(
α

(nl)
s

)

−
∑

(I,J)

TI ·TJ

2
γcusp

(
βIJ , α

(nl)
s

)
+
∑

I

γI
(
α

(nl)
s

)
+
∑

I,j

TI ·Tj γcusp

(
α

(nl)
s

)
ln
mI µ

−sIj

+
∑

(I,J,K)

i fabc Ta
I Tb

J Tc
K F1(βIJ , βJK , βKI)

+
∑

(I,J)

∑

k

i fabc Ta
I Tb

J Tc
k f2

(
βIJ , ln

−σJk vJ · pk
−σIk vI · pk

)
.

(2.25)

The equation can be solved by an ansatz for the αs expansion of Γ, as demonstrated in
[120]. The �rst two non/trivial terms of the expansion of Z can be written in terms of the
αs expansion of the anomalous dimension matrix

Γ =

∞∑

n=0

Γn

(αs
4π

)n+1
(2.26)

and its derivative

Γ′ =
∂Γ

∂ lnµR
, Γ′ =

∞∑

n=0

Γ′n
(αs

4π

)n+1
(2.27)
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2.1. Factorization in production and decay

and reads [121]

Z(1) =
αs
4π

(
Γ′0
4ε2

+
Γ0

2ε

)
(2.28)

Z(2) =
(αs

4π

)2
[

(Γ′0)2

32ε4
+

Γ′0
8ε3

(
Γ0 −

3

2
β0

)
+

Γ0

8ε2
(Γ0 − 2β0) +

Γ′1
16ε2

+
Γ1

4ε

]
. (2.29)

The expressions for the anomalous dimensions and functions F1 and f2 is given in the
appendix B. These IR �counterterms� are intrinsically di�erent from UV counterterms. In
particular they depend on the kinematics of the external particles and the divergences are
supposed to cancel against unresolved radiation integrated over their phase space from
higher multiplicity matrix elements.

2.1.3. Matrix element factorization

Besides purely virtual radiative corrections, higher order partonic cross-sections contain
contributions from additional radiation. How to deal with these real radiation contribu-
tions is discussed in detail in chapter 4. The central problem which has to be faced, are
divergences generated by soft and/or collinear emissions that need to be integrated over.
There are many di�erent competing approaches to this problem, some of them discussed in
more detail in section 4.1. However, all of them rely in one way or another on factorization
of matrix elements in these critical limits. Factorization in this context means that in a
soft or collinear limit the matrix element is factorized into a universal process-independent
function and a lower multiplicity matrix element. Even though the two limits, i.e. soft
and collinear, are quite di�erent, both limits commute, a feature known as color coherence
which is manifest in the factorization formula itself. The discussion of processes at NNLO
requires not only limits of single particles becoming soft or collinear, but also double/soft
and triple-collinear limits. All necessary functions, as long as tree-level amplitudes are
concerned, have been evaluated in [122].

Soft limits

The single soft limit only concerns gluons due to �avor conservation. If one gluon with
momentum q becomes soft, i.e. q → 0, amplitudes factorize by the well known formula

∣∣∣M(0)
g,a1,...,an(q, p1, . . . )

〉
= gµεJµ(q)

∣∣∣M(0)
a1,...,an(p1, . . . )

〉
(2.30)

with the eikonal current

Jµ(q) =

n∑

i=1

Ti p
µ

pi · q
. (2.31)

For squared matrix elements the factorization can be obtained from the above formula,

|M(0)
g,a1,...(q, p1, . . . )|2 '
− 4παs

∑

ij

Sij(q)
〈
M(0)

a1,...(p1, . . . )
∣∣∣Ti ·Tj

∣∣∣M(0)
a1,...(p1, . . . )

〉
(2.32)
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2. The Top-Quark in Theory

with

Sij(q) =
pi · pj

(pi · q)(pj · q)
. (2.33)

The fact that the color correlators of all particles contribute, represents the long-range
nature of the soft limit. In case of two partons becoming soft, two di�erent situations have
to be distinguished. Consistent with �avor conservation, a pair of quarks can become soft
together. This is re�ected in the fact that the double soft limit is de�ned through two
momenta q1 and q2 becoming soft in a correlated uniform way

q1 → λq1, q2 → λq2, λ→ 0 . (2.34)

For a qq̄ pair this results in

|M(0)
q,q̄,a1,...(q1, q2, p1, . . . )|2 '

(4παs)
2TF

∑

ij

Iij
〈
M(0)

a1,...(p1, . . . )
∣∣∣Ti ·Tj

∣∣∣M(0)
a1,...(p1, . . . )

〉
(2.35)

where the function Iij is de�ned in the Appendix C. For two gluons in the same limit, the
following is found

|M(0)
g,g,a1,...(q1, q2, p1, . . . )|2 ' −4παs
1

2

∑

ij

Sij(q1)Skl(q2)
〈
M(0)

a1,...(p1, . . . )
∣∣∣ {Ti ·Tj ,Tk ·Tl}

∣∣∣M(0)
a1,...(p1, . . . )

〉

−CA
∑

ij

Sij(q1, q2)
〈
M(0)

a1,...(p1, . . . )
∣∣∣Ti ·Tj

∣∣∣M(0)
a1,...(p1, . . . )

〉

 (2.36)

where again the function Iij is de�ned in Appendix C.

Collinear limits

The limit where two partons of �avor a1 and a2 with the momenta p1 and p2 become close
in phase space can be described by the Sudakov parameterization

pµ1 = zpµ + kµ⊥ −
k2
⊥
z

nµ

2p · n, pµ2 = (1− z)pµ − kµ⊥ −
k2
⊥

1− z
nµ

2p · n, (2.37)

where the three momenta k⊥, p and n have been introduced. They ful�ll the following
relations

p2 = n2 = p · k⊥ = n · k⊥ = 0 . (2.38)

In the limit kµ⊥ → 0 the matrix elements factorize in the following way

|M(0)
a1,a2,...(p1, p2, . . . )|2 '

4παs
2

s12

〈
M(0)

a,...(p, . . . )
∣∣∣ P̂(0)

a1a2(z, k⊥; ε)
∣∣∣M(0)

a,...(p, . . . )
〉

(2.39)
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2.1. Factorization in production and decay

where s12 = (p1 + p2)2. The �avour a is determined from the �avour combination a1 and
a2 through �avour conservation. If at least one of the two is a gluon a is given by the
other �avor and if a1 and a2 are a quark-anti-quark pair or two gluons, a is a gluon. The
operator P̂

(0)
a1a2(z, k⊥; ε) acts on spin space of parton a

〈s| P̂(0)
a1a2(z, k⊥; ε)

∣∣s′
〉

= P̂ (0),ss′
a1a2 . (2.40)

The form of the splitting function depends on which combination of quarks and gluons
the collinear pair is build of. The various functions are given in appendix C. At next-
to-next-to-leading order the triple collinear limit also needs to be investigated. For that
purpose the momenta pi of partons with �avour ai with i ∈ {1, 2, 3}, are parameterized in
the following way

pµi = xip
µ + kµ⊥i −

k2
⊥i
xi

nµ

2p · n (2.41)

where the introduced momenta have similar properties as in the single collinear case above

p2 = n2 = p · k⊥i = n · k⊥i = 0 . (2.42)

In the triple collinear limit k⊥i→0 matrix elements factorize as

|M(0)
a1,a2,a3,...(p1, p2, p3 . . . )|2 '

(
8παs
s123

)2 〈
M(0)

a,...(xp, . . . )
∣∣∣ P̂(0)

a1a2a3(zi, k⊥i; ε)
∣∣∣M(0)

a,...(xp, . . . )
〉

(2.43)

where

zi =
xi
x
, with x =

∑

i

xi . (2.44)

The various formulae for the splitting functions are collected in the appendix C as well.

Soft-Collinear limits

Soft-collinear limits, where a parton becomes soft and collinear can most easily be obtained
from the corresponding collinear limit by additionally taking z → 0 or 1 (depending on
momentum routing). In case of two unresolved partons, there are limits where one parton
becomes collinear and the other soft. Most of them are obtained from iterative application
of the above formula. One special case emerges when the partons become collinear to each
other and become soft together. This case is governed by the factorization formula

|M(0)
a1,a2,a3,...(q1, q2, p, . . . )|2 '

(4παs)
2 2

s12
P̂ (0),µν
a1a2 (z12, k⊥; ε)

〈
M(0)

a3,...(p, . . . )
∣∣∣Jµ(q1 + q2)Jν(q1 + q2)

∣∣∣M(0)
a3,...(p, . . . )

〉
. (2.45)
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Soft and collinear limits beyond tree-level

At next-to-next-to-leading order, single soft and/or collinear limits of one-loop amplitudes
appear in addition to the discussed limits of tree-level amplitudes. Their limits are special
with respect to their scaling behavior since the limits decompose into two di�erent compo-
nents. For the collinear limit, for instance, there is one part which is a tree-level splitting
function times a lower multiplicity one-loop matrix-element. The other part is a one-loop
splitting function times tree-level matrix element. A similar decomposition occurs in the
soft limit. Due to the integration over the loop-momentum in the one-loop factorization
formula (done in CDR), this part contains terms like

s−ε12 ,

(
z

1− z

)ε
or (Sij)ε (2.46)

where s12 and z de�ned as in equation 2.37. These terms modify the scaling behaviour in
the corresponding infrared limits. To be more precise, the soft limit of a one-loop matrix
element reads

2 Re
〈
M(0)

g,a1,...(q, p1, . . . )
∣∣∣M(1)

g,a1,...(q, p1, . . . )
〉
' −4παs




∑

(i,j)

(Sij(q)− Sii(q)) 2 Re
〈
M(0)

a1,...(p1, . . . )
∣∣∣Ti ·Tj

∣∣∣M(1)
a1,...(p1, . . . )

〉

+
αs
4π


∑

(i,j)

(Sij(q)− Sii(q))Rij
〈
M(0)

a1,...(p1, . . . )
∣∣∣Ti ·Tj

∣∣∣M(0)
a1,...(p1, . . . )

〉

−4π
∑

(i,j,k)

Sik(q)Iij
〈
M(0)

a1,...(p1, . . . )
∣∣∣ fabcT ai T bj T ck

∣∣∣M(0)
a1,...(p1, . . . )

〉




 , (2.47)

where the formulae for the Rij and Iij functions are given in the appendix C. In both

functions a factor Sεij ∼ λ2−2ε
(
Sreg
ij

)ε
appears besides renormalization contributions which

is the origin of altered scaling in the soft case. The functions Sregij are �nite in the soft
limit. Schematically the matrix element (abbreviated by f) scales as

f
→

λ→ 0
1

λ2

(
f0 + λ−2εf ε

)
(2.48)

The collinear limit, parameterized in same way as the normal single collinear limit, reads

2 Re
〈
M(0)

a1,a2,...(p1, p2, . . . )
∣∣∣M(1)

a1,a2,...(p1, p2, . . . )
〉

' 4παs
2

s12

[
2 Re

〈
M(0)

a,...(p, . . . )
∣∣∣ P̂(0)

a1a2(z, k⊥; ε)
∣∣∣M(1)

a,...(p, . . . )
〉

+
αs
4π

〈
M(0)

a,...(p, . . . )
∣∣∣ P̂(1)

a1a2(z, k⊥; ε)
∣∣∣M(0)

a,...(p, . . . )
〉]

(2.49)

with the one-loop splitting functions P̂
(1)
a1a2 which are given in full form in appendix C.

Here, the factor s−ε12 changes the scaling in the collinear limit. Expressing this invariant
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2.1. Factorization in production and decay

(a) (b) (c)

Figure 2.1.: Examples of Feynman diagrams contributing to the full pp → b̄b`+`′−ν`ν̄`′
process. (a) double resonant, (b) single resonant and (c) non resonant.

through the Sudakov parameterization

s12 = − k2
⊥

z(1− z) (2.50)

the matrix element scales like

f → 1

−k2
⊥

(
f0 + (−k2

⊥)εf ε
)
. (2.51)

Considering the soft-collinear limit, the factor (z/(1 − z))ε additionally plays a role. The
transverse component scales here like k⊥ = λk̃⊥, while either z = λzreg or 1 − z =
λzReg, with a regular function zreg. For the one-loop matrix element the following scaling
behaviour is found

f → 1

−k2
⊥λ

2

(
f0 + (−k2

⊥λ
2)εf ε

)
. (2.52)

2.1.4. Narrow-Width-Approximation

Due to limitations set by the availability of high multiplicity two-loop matrix elements, it
is not possible to calculate the full process pp → b̄b`+`′−ν`ν̄`′ at next-to-next-to-leading
order. However, the two-loop matrix elements for the production of a (polarized) top-quark
pair (see chapter 3) as well as for the top-quark decay (see section 2.2.2), are available.
To achieve a separation between the production process pp → tt̄ and the leptonic decays,
t→ b`+ν` and t̄→ b̄`′−ν̄`, it can be made use of the fact that the width of the top-quark is
quite small. In the Narrow-Width-Approximation (NWA) a factorization of the production
amplitudes from the decay-amplitudes is achieved in the limit Γt

mt
→ 0. Indeed, with the

measured value of the top-quark mass and the top-quark width the ratio Γt
mt

is of O(1%).
At lowest order in QCD the partonic cross section entering formula (2.8) is given by

σ̂
(0)
ab (p1, p2) =

1

2ŝ

1

N

∫
dΦ6(P )

〈
M(0)

ab→6

∣∣∣M(0)
ab→6

〉
(2.53)

with P = p1 + p2. When considering the full process, various Feynman diagrams enter the

matrix element
〈
M(0)

ab→6

∣∣∣M(0)
ab→6

〉
. Some generic examples are shown in �gure 2.1. They

23



2. The Top-Quark in Theory

can be classi�ed in double resonant (a), single resonant (b) and continuum diagrams (c),
depending on the number of appearing top-quark propagators. Consider the contribution
of a double or single resonant diagram type. The top-quark propagator in the amplitude
(in the complex mass scheme 1 [123, 124] ) is given by

pt pt =
i

/pt − µt + iη
with µ2

t = m2
t − imtΓt . (2.54)

Thus, after squaring the amplitude, the denominator is given by

D(p2
t ) =

1

(p2
t −m2

t )
2 +m2

tΓ
2
t

. (2.55)

and the corresponding contribution to the matrix element can be written as

D(p2
t ) 〈Mres.|Mres.〉 (p2

t ) ∈
〈
M(0)

ab→6

∣∣∣M(0)
ab→6

〉
(2.56)

Additionally, the phase space integral

dΦ6(P ; {pi}i=1,6) = (2π)4δ(4)(P −
6∑

i=1

pi)
n∏

j=1

d3~pj
(2π)32Ej

. (2.57)

can be split into a phase space integral over the production of an intermediate particle
with invariant mass p2

t and its subsequent decay

dΦ6(P ; {pi}i=1,6) = dΦ4(P ; {pi}i=1,3, pt)
dp2

t

2π
dΦ3(pt; {pi}i=4,6) ≡ dp2

t

2π
dΦr(p

2
t ) . (2.58)

With this at hand, the contribution of (2.56) to the cross section (2.53), can be expressed
through

σ̂B(p1, p2) 3 1

2ŝ

1

N

∫ qmax

qmin

dp2
t

2π
D(p2

t )

∫
dΦr(p

2
t ) 〈Mres.|Mres.〉 (p2

t ) . (2.59)

In the limit Γt
mt
→ 0 the denominator asymptotically behaves like a δ function such that

∫ ∞

−∞

dp2
t

2π
D(p2

t )→
∫ ∞

−∞
dp2

t

δ(p2
t −m2

t )

2mtΓt
. (2.60)

Assuming that the regions (−∞, qmin) and (qmax,∞) give only a negligible contribution
to the integral over dp2

t , they can be added to the p2
t integral without large change. This

leads to the following simpli�cation

1

2ŝ

1

N

∫ qmax

qmin

dp2
t

2π
D(p2

t )

∫
dΦr(p

2
t ) 〈Mres.|Mres.〉 (p2

t ) −→

1

2ŝ

1

N

∫
dΦr(m

2
t ) 〈Mres.|Mres.〉 (m2

t )

2mtΓt
. (2.61)

1The complex mass scheme also generates additional terms ∼ Γt in the numerator. In NWA all addition-
ally generated terms are sub-leading.
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2.1. Factorization in production and decay

This construction can be applied to both top-quark propagators. Before further discussing
the structure ofM2

res, let us turn to other types of diagrams. The decomposition of phase
space is valid independent of the matrix element. Therefore, in absence of a top-quark
propagator, their contribution is negligible in comparison to the Breit-Wigner resonance.
Thus, the contribution of the double resonant diagrams dominates in the cross section and
all other contributions are suppressed by Γt/mt [125].
After stripping o� the propagator denominator and reverting the polarization sum for
on-shell top-quark spinors, the structure of the amplitude |Mres.〉 reads

|Mres.〉 (mt) =
∑

ht

〈ht|Γ〉 〈ht|Mprod〉 (2.62)

where 〈ht|Γ〉 denotes the on-shell decay amplitude with �xed top-quark polarization ht,
and 〈ht|Mprod.〉 the corresponding on-shell top-quark production amplitude.

2.1.5. Spinor-Helicity method

When combining production and decay within the Narrow-Width-Approximation, or in
general whenever evaluating matrix elements depending on external polarization, a method
to evaluate polarized amplitudes is essential. Spinor-helicity methods are a commonly used
approach since they are easy to implement and suitable for automatization ([126, 127] and
references therein). Di�erent variants of these methods di�er in terms of conventions and
notation. In this section some necessary concepts of spinor-helicity formalism presented in
[128] are reviewed. They serve as reference the later discussion of polarized tt̄ amplitudes.

Basic spinors and 4-vectors

The basic object are two-component spinors

ψA and ψȦ (2.63)

which transform under the irreducible representations D(1
2 , 0) and D(0, 1

2) of the Lorentz-
group, respectively. The Lorentz invariant spinor product of two spinors of the same
representation is de�ned by

〈φψ〉 ≡ φAεABψB = φ1ψ2 − φ2ψ1 . (2.64)

The matrix εAB is given in terms of Pauli matrices σa.

εAB = εȦḂ = εAB = εȦḂ = iσ2 . (2.65)

The Pauli matrices themselves belong to the D(1
2 ,

1
2) representation and the de�nition

σµ,ȦB =
(
σ0, σ

)
, σµ

AḂ
=
(
σ0,−σ

)
(2.66)

allows to represent a Minkowski 4-vector kµ as

KȦB = kµσµ,ȦB =

(
k0 + k3 k1 + ik2

k1 − ik2 k0 − k3

)
. (2.67)
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2. The Top-Quark in Theory

Using properties of the σµ one can show that a Minkowski product can be written as:

2k · p = KȦBP
ȦB . (2.68)

Assuming that k is real, KȦB is obviously a Hermitian matrix and thus can be written
in terms of two eigenvectors ni,A and their eigenvalues λi. In case of a time-like vector
k = (k0,k) a paticular decomposition is

KȦB =
∑

i=1,2

κi,Ȧκi,B , (2.69)

where λ1,2 = k0 ± |k| and

κ1,A =
√
λ1

(
e−iφ cos θ2

sin θ
2

)
κ2,A =

√
λ2

(
sin θ

2

−eiφ cos θ2

)
. (2.70)

The angles θ and φ are determined trough the direction of k = |k|e:

e =




cosφ sin θ
sinφ sin θ

cos θ


 . (2.71)

In the light-like case (k2 = 0) one of the eigenvalues vanishes and only one spinor remains.
Therefore one obtains

KȦB = kȦkB (2.72)

with the so-called momentum spinor

kA =
√

2k0

(
e−iφ cos θ2

sin θ
2

)
. (2.73)

Dirac matrices can also be expressed through σµ. In the chiral representation the relation
reads

γµ =

(
0 σµ

AḂ

σµ,ȦB

)
. (2.74)

External wave-functions

Fermions External fermion wave functions are given by Dirac-spinors Ψ (D(1
2 , 0)⊕D(0, 1

2)
representation):

Ψ =

(
φA

ψȦ

)
(2.75)

which ful�ll the Dirac equation

(i/∂ −m)Ψ = 0 . (2.76)
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2.2. Production and Decay

With the plane wave ansatz for fermions (e−ikxΦ+
k ) and anti-fermions (eikxΦ−k ) the two

solutions

Ψ
(±)
k,1 =

(
κ1,A

∓κȦ2

)
Ψ

(±)
k,2 =

( ±κ2,A

κȦ1

)
(2.77)

can be constructed. In case of a massless fermion the solutions simplify to

Ψ
(±)
k,1 =

(
kA
0

)
Ψ

(±)
k,2 =

(
0

kȦ

)
. (2.78)

Polarization vectors External vector particles are parametrized by a polarization vector
εµ, a complex/valued four-vector. This leads to the fact that εȦB is not necessarly Her-
mitian and the decomposition in equation (2.69) is not applicable. However, starting with
the equation of motion for a free (massive) vector particle (Proca equation)

[
(∂2 +m2)gµν − ∂µ∂ν

]
Vν = 0 (2.79)

and inserting the plane wave ansatz V µ = e∓ikxεµ(k), three solutions in the massive
(m0 6= 0) case

ε+,ȦB(k) =
√

2κ2,Ȧκ1,B/
√
λ1λ2 (2.80)

ε−,ȦB(k) =
√

2κ1,Ȧκ2,B/
√
λ1λ2 (2.81)

ε0,ȦB(k) =
1

m

(
κ1,Ȧκ1,B − κ2,Ȧκ2,B

)
, (2.82)

and two solutions in the massless case

ε+,ȦB(k) =
√

2g+,ȦkB/〈g+k〉∗ , ε−,ȦB(k) =
√

2kȦg−,B/〈g−k〉 (2.83)

can be constructed. The vectors g± are arbitrary light-like reference vectors with g±k 6= 0.

2.2. Production and Decay

One pillar of the success of top-quark phenomenology is an accurate theoretical description
and modelling. The core of any prediction is the �xed order calculation it is based on, and
the starting point of any prediction for hadron colliders is the factorization formula 2.3.
Considering the production of colored particles, it is evident that the �nal (and initial) state
in �xed order calculations is not very realistic, since this is in contrast to the observation
that all 'stable' particles are color neutral due to con�nement. Also their multiplicity, which
is usually of O(1) at �xed order, does not match the busy events measured at colliders.
However, more realistic �nal states are not directly accessible through perturbation theory
for two reasons: on the one hand, high multiplicity processes are not doable from a practical
point of view, and on the other hand, most of the physics beyond the hard scattering is
governed by low energy physics where perturbation theory breaks down. Fortunately, many
techniques exist that go beyond �xed order and complement �xed order calculations by
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2. The Top-Quark in Theory

including leading contributions from this regimes. Resummation2 is a wide �eld of research
whose goal is the accumulation of soft or collinear e�ects of radiation to all orders. There
are many di�erent approaches, reaching from specialized procedures for single observables
to more general ones like parton-showers. The transformation to measurable �nal states
cannot be achieved by these methods, since con�nement in color-neutral particles is a highly
non-perturbative feature of QCD. The usual way to obtain detector level �nal states is the
modelling of this transition by parameterized functions that are �tted to measurements.
This can happen at di�erent stages, one might be interested in the transition of jet to the
energy deposit in the hadronic calorimeter without taking into account the formation of
stable hadrons and mesons. Another example are fragmentation functions describing the
transition of a quark to a certain meson or hadron, like the transition from b quarks to
B-mesons. They are similar to the PDFs which are also determined by �tting to data.
By modelling the transition to actual measurable quantities, it is possible to relate observ-
ables which are accessible in �xed order calculations to data. This is a non-trivial step
in any analysis and requires careful calibration and simulation. In context of top-quark
production this point is of particular importance. To relate measurements with observables
on top-quark level their decay plays a relevant role in di�erent aspects. One important
aspect is that the decays are mediated by the electroweak force and thus exhibit a V −A
coupling structure. The approximately massless decay products (light quarks and leptons)
therefore induce a dependence on the top-quark polarization. This a�ects, for example,
angular correlations between the �nal state particles. The experiments at the LHC are
not covering the full available phase space but rather only a certain rapidity range. Ad-
ditionally, further experimental cuts on the phase space may apply, like pT cuts on jets,
leptons and so on. Thus measurements do not yield total cross sections, but rather �ducial
cross sections. Also, due to the decay, covering a certain range in rapidity of the measured
objects, for instance, does not correspond to covering the same range for the top-quarks.
Therefore, an extrapolation is required to extract quantities like the total tt̄ cross section.
This introduces systematic uncertainties on such quantities. Those uncertainties can be
reduced by including the decay in the �xed-order part of the calculation and by directly
evaluating quantities on observable particle level in the relevant region of phase space.

2.2.1. Stable top-quark production

Figure 2.2.: Tree-level diagrams contributing to tt̄ production in hadron-hadron collisions.

The partonic cross section entering equation 2.8 is described at lowest order in pertur-
bation theory through the diagrams in �gure 2.2. There are two channels at lowest order,
the gg- and the qq̄-channel with q ∈ {u, d, c, s, b}. Depending on the nature of the incom-
ing hadrons, they contribute with quite di�erent fractions to the cross section. In case

2 Resummation is a broad topic and is not discussed in any detail in this work. A review and collection
of references can be found for instance in [129]
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2.2. Production and Decay

of proton-proton collisions the gg clearly dominates, making up 80-90% of the total cross
section. In proton-antiproton collision, on the other hand, the situation is reversed and the
qq̄-channel dominates. Due to their abundance in protons, u and d quarks are the most
important quark channels. At higher order more channels are allowed. At next-to-leading
order the qg-channel opens up and contributes through real radiation diagrams. The qq′-
and qq̄′-channels, with two di�erent quarks in the initial state, arise at NNLO. They both
give a relatively small contribution to total cross section. Numbers for the total cross
section at the di�erent orders for the Tevatron and LHC @ 7 TeV are collected in table
2.1. The numbers have been obtained for a top mass parameter of mt = 173.3 GeV and
the MSTW2008 PDF [104]. The estimation of uncertainties is an intricate procedure since
there are di�erent ways in which they enter predictions. The treatment of the partonic
cross section in perturbation theory and the �nite expansion in couplings is an important
origin of the uncertainties. Since higher orders are usually unknown, the uncertainty needs
to be estimated. A useful tool is provided by the renormalization and factorization scale.
Formally dependence of the (di�erential) cross section on those scales for each separate
order is of higher order in the perturbative expansion. The actual dependence of a pre-
diction on these scales can then be interpreted as the e�ect of the higher orders that are
missing. In practice the error estimation is performed by varying the scale choice around
a reasonable central scale by a factor of two or four and taking the envelope. There is
no proof that this gives a reliable estimate, but practice and application shows that in
many cases the uncertainty estimated in this way is reasonable. Parametric uncertainties
enter through uncertainties of the input parameters. Masses, couplings and in some sense
the PDFs belong to this type of uncertainties. However, depending on the application of
the calculation, the dependence on these inputs might be used for parameter extraction
rather than considering them as an origin of uncertainty. Especially the estimation of
PDFs uncertainty requires some more details since from the theory point of view they are
arbitrary functions of the momentum fraction x (with some constraints like sum rules and
normalization). PDF sets are provided with additional PDFs (also denoted as eigenvectors
of the Hessian), besides the central PDF. Thez di�er from the central prediction by varying
individual �t parameters within their uncertainty band3. Performing the calculation with
each of these PDFs again results in an uncertainty band. However, in practice, this requires
large computing power, since one is additionally interested in the e�ect of di�erent PDFs
sets (e.g. parameterizations and �tting procedures).

LO [pb] NLO [pb] NNLO [pb] NNLO+NNLL[pb]

Tevatron 6.619+2.932
−1.862 6.682+0.356

−0.125 7.009+0.259
−0.374 7.164+0.109

−0.200

LHC 7 TeV 120.8+48.3
−31.8 158.1+19.5

−21.2 167.0+6.7
−10.7 172.2+4.7

−5.9

Table 2.1.: Total cross section for tt̄ production at Tevatron and LHC at LO, NLO, NNLO
�xed order as well as for NNLO plus NNLL soft gluon resummation. The
MSTW2008 PDF set is used for these predictions, while the error is estimated
from scale variations.

The errors quoted in table 2.1 are estimates obtained from scale variations only. As
expected, the NLO calculation [38�40] exhibits a reduced scale uncertainty with respect to

3 In case of NNPDF the additional PDFs are given by a sample of replica [130].
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2. The Top-Quark in Theory

the LO prediction. That the NLO prediction for the total cross section stays within the
error estimate of the LO cross section indicates a well-behaved convergence of perturbation
theory. The full NNLO result has been obtained in ref. [51], which constitutes the progress
of many years. The double/real contribution to the NNLO cross section was the �rst
application of the novel Sector-improved residue subtraction scheme (or SecToR Improved
Phase sPacE for real Radiation (Stripper)) [131, 132], which is discussed in chapter 4
in great detail. The double-virtual contribution requires two-loop amplitudes which have
been presented in [133]. Details on the used techniques can be found in chapter 3 since
the calculation of the polarized two-loop amplitudes presented in this work follows along
the same lines as the original calculation. The reduction on the scale dependence results
in a theory uncertainty of only 4− 6%. The result was further improved by performing a
NNLL soft-gluon resummation, as discussed in [47]. The resummation lowers the scale
uncertainty to 4%.

Also, di�erential distributions have been investigated and compared to measurements at
the Tevatron and the LHC. An example for a Tevatron measurement is given in �gure 2.3
[55]. The di�erential cross sections with respect to the invariant mass of the tt̄ system and
the top transverse momentum are shown in comparison with D0 data [134]. Even though
the experimental errors are quite large, the theory predictions matches the measurements
nicely. For the LHC, an example of a comparison between data measured by CMS [135] and
a NNLO calculation [54] is given in �gure 2.4. Similar to the total cross section, the higher
order calculations result in greatly reduced theory uncertainties. In �gure 2.4, a further
e�ect of the higher order corrections can be seen. There, higher order correction pull the
tails of the di�erential distributions towards the correct shape. The large corrections in
the tail of pT distributions originate from the real radiation contributions which start at
NLO. In these contributions the tt̄ system recoils from the additional radiation, an e�ect
not possible at LO. Beyond the bare comparison against data, the di�erential distribution
can be used for parameter extraction. The shape of di�erential cross sections like dσ/dpT
or dσ/dmtt̄ depends on the top-quark mass. This was used for example in [58] to extract
the top-quark mass to be 169.1± 2.5 GeV from D0 measurements.

There are further interesting observables which pro�t from higher order theory predictions
that are not discussed here. An important example are asymmetries [53] or the extraction
of PDFs using di�erential tt̄ cross sections [136]. Also, observables which are related to
associated production, where the top pair is produced accompanied by an additional jet
or a vector boson, are omitted here.

2.2.2. Top-quark decay

The top-quark decay is mediated by the weak interaction and the central observable to
investigate is the decay width Γt. The strong hierarchy in the CKM matrix leaves the
decay into bottom quark and a W boson as the dominating contribution to the width.
The width is a quantity which can be calculated within perturbation theory and reads up
to NNLO in the strong coupling constant

Γt = Γ
(0)
t + αsΓ

(1)
t + (αs)

2 Γ
(2)
t +O

(
αs

3
)
. (2.84)

At lowest order in perturbation theory this decay process is described by the process
t(pt)→W+(pW )+b(pb) with the Feynman diagram in �gure 2.5. The leading order width
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Figure 2.3.: Di�erential cross sections at Tevatron at di�erent orders in perturbation theory
compared to D0 data [55].
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Figure 2.4.: Normalised di�erential cross sections at LHC @ 8 TeV at di�erent orders in
perturbation theory compared to CMS data [54].
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Figure 2.5.: Leading order diagram contributing to the decay width Γt(t→ bW+).
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2. The Top-Quark in Theory

evaluates to

Γ(0) =
GFm

3
t

8π
√

2
(1− x)2(1 + 2x) with x =

p2
W

m2
t

, (2.85)

where the weak coupling constant was expressed through the Fermi constantGF = 1.16379·
10−5 GeV2. For on-shell W -bosons, p2

W = m2
W , the width is a function of the top-quark

andW mass as well as coupling constants. Beyond leading order, it is convenient to express
the virtual contributions to the width in terms of form factors. The general form of decay
amplitudes can be written as a function of the top-quark polarization state ht

Γhtt = 〈ht|Γt〉 = ū(pb)Γ
µuht(pt)εµ(pW ) , (2.86)

with all other polarization indices suppressed. The vertex Γµ can be decomposed into three
structures

Γµ = C1γ
µPL + C ′2

PRp
µ
W

2mt
+ C3

PRq̃
µ

2mt
, (2.87)

with projectors PL/R = (1± γ5)/2 and the momentum q̃ = pt + pb. In case of decay of the
W -boson,

W+(pW )→ `+(p`+)ν(pν) or W−(pW )→ `−(p`−)ν(pν̄) (2.88)

is considered as well, the same decomposition holds with the polarization vector replaced
by

εµ(pW )→ −gµµ
p2
W −m2

W + iΓWmW
ū(pv)γ

νPLv(p`+) (2.89)

and similarily for the anti-top decay. At leading order only C1 is non-vanishing. For
physical amplitudes, the transversality of the W -boson, ε ·pW = 0, implies that the second
structure does not contribute. The coe�cients are known up to NNLO in QCD and NLO
in EW. They can be found in the literature [137�139] and are not reproduced here. Also,
the full width has been calculated through NLO [140] and NNLO [96, 97, 141] in QCD,
fully inclusive as well as di�erentially. For the total width, results are summarized in table
2.2 which has been taken from [97]. The higher orders in QCD have sizeable impact on
the value of Γt which shows the necessity to include them in calculations with decaying
top-quarks.

The incorporation of the decays within the NWA approach can be achieved by means of
spin-correlators as shown in equation 2.62. In that case, the on-shell top-quark propagator
is written in terms of the spin sum. However, when theW decays as well, another possibility
to incorporate the decay is to keep the spin sum and de�ne �decay-spinors�

Ū(pt) = Γ̃t(t→ b`+ν)
i(/pt +mt)√

2mtΓt
, (2.90)

V (pt) =
i(−/pt +mt)√

2mtΓt
Γ̃(t̄→ b̄`−ν) . (2.91)

which replace the spinors in the production amplitude. This can be done since the external
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2.2. Production and Decay

mt Γt δEW δ
(1)
QCD δ

(2)
QCD

172.5 GeV 1.4806 GeV 1.68 -8.58 -2.09
173.5 GeV 1.5109 GeV 1.69 -8.58 -2.09
174.5 GeV 1.5415 GeV 1.69 -8.58 -2.09

Table 2.2.: The top-quark width Γ(0) and corrections in (%) from higher orders in QCD
and EW for di�erent top masses.

particles are massless and thus their polarizations are �xed due to the V −A structure of
the coupling. This method was used, for instance, in [59].

2.2.3. Unstable top-quarks

The inclusion of the top-quark decays is an important step towards a realistic modelling
of top-quark processes at any collider. There are basically two possible ways to proceed:
either one considers a full process like pp → bb̄`+`−νν̄ or one uses the Narrow-Width-
Approximation. Both approaches have advantages and disadvantages.

NWA. The advantage of the NWA approach is that it is considerably easier to com-
pute. Due to the factorization of the matrix elements and the suppression of o�-shell
contributions, only low-multiplicity matrix elements are required. The on-shellness of the
top-quarks additionally simpli�es the phase space integration. Another advantage is that
the spin-correlation is fully kept and its e�ect can be investigated with predictions in NWA.
Since the decay kinematics are included, di�erential distributions of the �nal state parti-
cles can be used with less unfolding for parameter extraction, as to top-quark mass, and
thus have a smaller theoretical uncertainty. An example for an observable that encodes
spin-correlation e�ects in the di-lepton channel is the azimuthal distance of two charge
leptons (see �gure 1.5). The NLO calculation of tt̄ within NWA were presented in [59, 60].
An important �nding of these calculations was that the NLO corrections of the decay have
sizable impact on certain results. An example is the reconstructed W -mass in the lepton
plus jet decay channel in �gure 2.6. While the leptonic decaying W+ can be perfectly
reconstructed, there is an ambiguity in the reconstruction of the W− boson from the light
jets. Since this decay to light quarks is subject to NLO QCD corrections, the impact is
quite strong here. The NNLO corrections to the top-quark pair production and decay are
presented in chapter 5.

O�-shell e�ects. An even more accurate description of top-quark production is given by
full o�-shell calculations taking into account the �nite width of the top. Such a calculation
has been performed in [61, 62] at NLO. A nice summary of the results can be found in
[142]. The �nite top-quark width has only a very small e�ect on total crossection of O(1%)
with respect to the NWA results. This coincites with the naive expections of the NWA
error Γt/mt. However, depending on the observable, the e�ect on di�erential distributions
can be quite substantial. An example for such an observable is the minimal invariant
mass of a charged lepton and a b-jet (�gure 2.7). Two conclusions can be drawn from
this. On the one hand, the NLO have a large impact on the shape and normalization
of the distributioins. On the other hand, one can divide the phase space in two regions:
One region where the NWAapproximation gives reliable results and one where �nite width
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Figure 2.6.: Reconstructed W± mass in the leptons+jets channel, taken from [60].

e�ects become important. The two regions are separated by the kinematic edge in the
distribution. This is caused by the existance of a sharp boundary depending on the t and
W masses for on-shell top-quarks (at LO). By including the o�-shell contributions, this
region can be �lled and thus may give a completely di�erent result than in the NWA case.
However, the cross section is strongly suppressed in that region.
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Figure 2.7.: Minimal invariant mass of e+ and a b-jet compared between a NWA and an

o�-shell calculation. [142]
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3. Polarized Double Virtual Top-Quark

Pair Production

This chapter reviews the results for the polarized double virtual matrix elements published
in [1]. It gives some further details on methods applied and a more detailed analysis of
kinematic limits. Furthermore a representation of the result in form correlation matrices
is presented.

3.1. Decomposition of Amplitudes

In order to obtain the matrix elements such that they can be evaluated for arbitrary polar-
ization states of the external particles, a projection method is employed. The problem in
the evaluation of polarized matrix-elements originates from the Lorentz structures appear-
ing in the expressions. While at tree-level it is still feasible and quite e�cient to evaluate
helicity-amplitudes directly, for instance in terms of a spinor-helicity method, at loop-level
the reduction of tensor-integrals to scalar ones becomes the bottle neck. However, at one
loop there exist automated frameworks that can achieve these reductions [20, 21, 26]. The
automated evaluation of two-loop is up to now a unsolved problem. Some progress was
made in the past few years, for example with the numerical unitarity framework [143] or
the integrand reduction method [144]. However, there is still a long way to go until these
and other methods reach the status of practicability. As long as the multiplicity of the
process under consideration is not too huge (in practice it is restricted to more or less four
external particles) a projection method is a reasonable approach to this problem. Is was
successfully applied in [145�147]
This method starts from an analysis of the functional dependence of the amplitude on

external quantities, to determine linear independent structures from which the amplitude
can be build up. These structures can be regarded as a basis, and a projection onto this
basis can be performed. The projection itself then leads to traces over γ-matrices and
contracted Lorentz indices, which can be evaluated with computer algebra systems like
FORM [148]. In this way a reduction to scalar integrals is achieved. The number of
structures appearing is process- dependent and grows dramatically with the number of
external particles and thus independent quantities.

3.1.1. Spin and Color structures

Onshell top-quark pair production in QCD involves two partonic processes

g(p1)g(p2)→ t(p3)t̄(p4) and q(p1)q̄(p2)→ t(p3)t̄(p4) . (3.1)

with

p2
1 = p2

2 = 0 , p2
3 = p2

4 = m2
t , (3.2)
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3. Polarized Double Virtual Top-Quark Pair Production
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Figure 3.1.: Physically allowed phase space region in two parameterizations.

where mt is the top-quark mass. With these momenta three Lorentz invariants can be
formed

s ≡ (p1 + p2)2 , t ≡ m2
t − (p1 − p3)2 , u ≡ m2

t − (p2 − p3)2 . (3.3)

Only two of them are independent due to momentum conservation which implies s−t−u =
0. The invariants can be expressed through the scattering angle θ of the top-quark with
respect to p1 and the 'velocity' β of the top-quark

t =
s

2
(1− β cos θ) , u =

s

2
(1 + β cos θ) , with β =

√
1− 4

m2
t

s
. (3.4)

The physical phase space expressed through the di�erent variables is visualised in �gure
3.1. The amplitudes for this process are functions of s, t (or cos(θ), β) and mt. Simple
power counting reveals that the amplitudes have no energy dimension and therefore depend
only on dimensionless ratios. The amplitude can be expanded in a perturbative series in
αs = g2

s/4π. Up to next-to-next-to-leading order the amplitude reads

|Mg,q(αs,mt, ε)〉 =

4παs

[∣∣∣M(0)
g,q(mt, ε)

〉
+
(αs

2π

) ∣∣∣M(1)
g,q(mt, ε)

〉
+
(αs

2π

)2 ∣∣∣M(2)
g,q(mt, ε)

〉]
. (3.5)

The amplitudes depend on the color and spin degrees of freedom of the involved particles. It
is possible to write the amplitude decomposed in terms of scalar coe�cients times structures
|Cg,qi 〉 ⊗ |S

g,q
j 〉 in the color ⊗ spin spin space of external particles

∣∣∣M(l)
g,q(mt, ε)

〉
=
∑

i,j

c
(l)
ij (mt, s, t, ε) |Cg,qi 〉 ⊗ |S

g,q
j 〉 . (3.6)

The color structures |Cg,qi 〉 are vectors in color space such that, if color state of the external
particles is denoted by |a, b, c, d〉, the contraction yields in case of initial state gluons

〈a, b, c, d|Cgi 〉 = (Cgi )abcd (3.7)
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3.1. Decomposition of Amplitudes

and in case of quarks

〈a, b, c, d|Cqi 〉 = (Cqi )abcd . (3.8)

Similar for the spin structures |Sg,qj 〉. An external state is represented by |h1, h2, h3, h4〉,
and the contraction gives

〈h1, h2, h3, h4|Sgi 〉 = ε1(h1)µε2(h2)ν ū3(h3)(Si)
gµνv4(h4) , (3.9)

〈h1, h2, h3, h4|Sqi 〉 = v̄2(h2)Γiu1(h1)ū3(h3)Γ′iv4(h4) . (3.10)

Color structures. To determine which color structures are necessary to decompose the
amplitude it is su�cient to examine the external indices of Cg,qi .
In case of gluons there are two indices of adjoint representation a, b (gluons) and two
of the fundamental representation (top-quarks). One can simply write down all linear
independent combinations of generators and color structure constants, with this external
index structure. This set is also a natural basis for the color decomposition.

Cg1 = (T aT b)cd, Cg2 = (T bT a)cd, Cg3 = Tr{T aT b}δcd . (3.11)

This particular choice is the one used for the calculation presented in this chapter, but is
not unique. A di�erent, but also useful color basis is used in the evaluation of the spin-
summed matrix-elements in [51]. This basis can be obtained through linear combinations
of the structures in (3.11)

Cg8S
=

√
2NC

(N2
C − 1)(N2

C − 4)

(
Cg1 + Cg2 −

2

NC
Cg3

)
, (3.12)

Cg8A
=

√
2

NC(NC − 1)

(
Cg1 − Cg2

)
, (3.13)

Cg1 =
2√

NC(NC − 1)
Cg3 . (3.14)

Here 8S, 8A denote the symmetric and anti-symmetric octet states respectively, while
1 denotes the singlet state. This basis has the neat property that the structures are
orthogonal to each other, such that there is no mixing between color coe�cients when
contracting the amplitudes when, for instance, color-summed quantities need to evaluated.
The same procedure applies to the quark amplitude. Here four fundamental indices have
to be represented by a combination of generators and structure constants. It turns out
that the basis is particular simple in this case

Cq1 = δabδcd , C
q
2 = δadδcb . (3.15)

Spin structures. After color decomposition, each of the coe�cients of Cq,gi is further de-
composed into a set of spin-structures. Even though the calculation of the amplitudes
is performed completely in CDR, let us assume that the external particles are con�ned
to the 4-dimensional space, onshell, and are in a physical polarization state. With other
words they obey the four-dimensional equation of motion. Then there are 24 = 16 di�erent
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3. Polarized Double Virtual Top-Quark Pair Production

helicity con�guration for both partonic processes. This translates to 16 linear independent
spin-structures. However, there are further symmetries of the amplitude that reduce this
number. Since only QCD interactions are considered, the amplitudes are invariant under
parity transformations. The parity transformation does not e�ect the color-structure, but
the helicity of all particles is �ipped. This leaves only 8 independent structures. Also,
charge conjugation is a valid symmetry of QCD amplitudes. However, C-symmetry inter-
feres with the color-structures and is therefore not used to further constrain the independent
structures. In case of gluons, there is even a further symmetry, the Bose-symmetry. The
symmetry is not used in the calculation, but rather serves as a check of obtained results.

In the gluon case the 8 structures

Sgµν1 =
1

s
(γµpν3 + γνpµ3 ) , Sgµν2 =

mt

s
gµν1 ,

Sgµν3 =
1

smt
pµ3 p

ν
31 , Sgµν4 =

1

sm2
t
/p1
pµ3p

ν
3 ,

Sgµν5 =
1

s
/p1
gµν , Sgµν6 =

1

smt
/p1

(γνpµ3 + γµpν3) ,

Sgµν7 =
1

s
(γµpν3 − γνpµ3 ) , Sgµν8 =

1

s

(
/p1
gµν − /p1

γµγν
)
. (3.16)

form a suitable set for decomposition. Here the spinor indices are suppressed. It is also
assumed that the gluons are transverse and the polarization vectors ful�ll, in addition to
the equation of motion,

ε1 · p2 = ε2 · p1 = 0 . (3.17)

This can be implemented by using the following polarization sum when the amplitude is
contracted

∑

h

ε∗µ(h)εν(h) =

(
−gµν +

p1µp2ν + p1νp2µ

p1 · p2

)
≡ dµν . (3.18)

Also, some normalization factors in form of mt and s are included to make the structures
dimensionless. That this set of structures is indeed linear independent can be tested
through through the Gram-determinant. The Gram-determinant is de�ned as

∆ = det
((
〈Si|Sj〉

)
ij

)
(3.19)

where the 'scalar-product' 〈Si|Sj〉 is de�ned through

〈Si|Sj〉 =
∑

spin states

〈Si|h1, h2, h3, h4〉 〈h1, h2, h3, h4|Sj〉 . (3.20)

The spin-sum in case of gluons is then given by
〈
Sgi

∣∣∣Sgj
〉

=
∑

spin

ε∗1(h1)αε
∗
2(h2)β v̄4(h4)

(
(Si)

αβ
)†
u3(h3)ε1(h1)µ

ε2(h2)ν ū3(h3)(Si)
µνv4(h4)
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3.1. Decomposition of Amplitudes

Figure 3.2.: Generic structure of qq̄ → tt̄ amplitudes.

= Tr
{

(/p4
−m)

(
(Si)

αβ
)†

(/p3
+m)(Si)

µν
}
dµαdνβ (3.21)

The particular choice of basis was made because of the symmetry property when exchanging
µ ↔ ν. The structures S1, . . . , S6 are symmetric under this symmetry and S7 and S8 are
anti-symmetric. This property leads to the fact that the �scalar-product� of a symmetric
and anti-symmetric structure vanished

〈
Sgsym

∣∣Sgasym.

〉
= 0 . (3.22)

Now the quark process. Before specifying the basis, a special feature of the quark
amplitudes needs to be discussed. Since only QCD couplings are considered the heavy
top-quark fermion line and the light fermion line are disconnected, see �gure 3.2. In QCD,
chirality is conserved and therefore half of the structures can be independent of each other,
since only half of the light-quark helicity combinations can contribute. Consequently, the
basis only consists of four structures

Sq1 =
1

smt
/p3
⊗ 1 , Sq2 =

1

sm2
t
/p3
⊗ /p1

,

Sq3 =
1

s
γµ ⊗ γµ , Sq4 =

1

smt
γµ ⊗ (/p1

γµ) , (3.23)

which are of the general form S = Γ⊗ Γ′ (Γ denotes a string of γ-matrices). The �scalar-
product� of two quark structures is given by

〈
Sqi

∣∣∣Sqj
〉

= Tr
{
/p2(Γi)

†
/p1Γj

}
Tr
{

(/p4
−m)(Γ′i)

†(/p3
+m)Γ′j

}
(3.24)

Spin structures beyond four dimensions The determined set of spin structure relies on
the 4-dimensional polarization states of the external particle. However, the calculation
of the loop-amplitudes is done in d = 4 − 2ε dimensions. Since the d dimensional space
is in�nite dimensional, one can also �nd an in�nite amount of linear independent spin-
structures in d dimensions. This however does not cause any problems, due to the following
argument. Assume that an in�nitely large set of independent spin-structures is added to
the already existing �four-dimensional� set. By basis transformation, this set can be made
orthogonal to the �four-dimensional� set. In this way, they do not mix and in the limit
ε→ 0 they have to vanish after infrared renormalization, since the chosen spin structures
form a basis in 4 dimensions.
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3. Polarized Double Virtual Top-Quark Pair Production

3.1.2. Projection method

The actual decomposition of the tree-,one- and two-loop amplitudes is done with a projec-
tion approach. The basic idea is to construct projectors 〈P | acting on color and/or spin
space such that they single out a speci�c coe�cient of the decomposition in (3.6). The
color and spin states live in di�erent spaces and thus the projectors can be constructed
independently for color and spin structures. Assume an amplitude A can be written as a
decomposition of independent spin structures

A =
∑

ci |Si〉 . (3.25)

A proper ansatz for a projector for the coe�cient cj is

〈Pj | =
∑

i

bji 〈Si| (3.26)

as long as the Si's build up a basis. By demanding that

〈Pj |A〉 !
= cj (3.27)

a system of algebraic equations of the coe�cients bji is obtained. Inversion yields the
projectors 〈Pj |. The same concept applies for the color structures. Combining color and
spin projectors, the �nal form of the projector for a coe�cient cij is

〈Pij | =
(∑

k

bcik 〈Ck|
)
⊗
(∑

l

bsjl 〈Sl|
)
. (3.28)

The expression for the projector coe�cients for the two partonic process are quite lengthy
and are given in the appendix D. The coe�cients are functions of the variable s, t,mt,
as well as the dimensional regularization parameter ε since the calculation is done com-
pletely in d dimensions. Also, starting at one-loop, scalar Feynman integrals appear in the
coe�cients. At one-loop 68 and at two-loop 9350 di�erent scalar integrals appear in the
gg-channel.

3.2. Evaluation of Feynman Integrals

A huge amount of scalar integrals appear in the coe�cients. It is not feasible to evaluate
them one-by-one. One method quite often used in practical calculations is the reduction to
a set of master integrals using Integration-by-Parts identities (IBP-identities) [149]. Any
scalar Nl-loop integral might be written in the following form

I({pk}, {ml}, {nj}) = NNl2ε
l

∫ Nl∏

i

ddki
(2π)d

∏

j

1

(Dj({pk}, {ml}, {kn}))nj
, (3.29)

with the normalization factor Nl = µ2
Re

γE/4π, where the denominators Dj can depend
on the set of external momenta {pk}, external and internal masses {ml} and on the loop
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3.2. Evaluation of Feynman Integrals

momenta {kn}. They do not necessary have to be propagators of form

D =
(∑

qi

)2
−m2 with qi ∈ {pk} ∪ {kn} , (3.30)

but also can be scalar products

D = kn · pk . (3.31)

Using translation invariance and integration-by-parts, it is evident that

0 = NNl2ε
l

∫ Nl∏

i

ddki
(2π)d

∂

∂kµ
qµ
∏

j

1

(Dj({pk}, {ml}, {kn}))nj
, (3.32)

where k is any of the loop momenta and q any occurring momentum. The application of
the derivative leads to a linear combination of scalar integrals with powers nj increased
or decreased by at most 1, and thus relates di�erent scalar integrals. Generating many
di�erent of these relations leads to a system of equations. The reduction of this system
down to a small set of linear independent integrals is called the IBP reduction. The Laporta
algorithm [150] is a method specially designed for this type of equations. There are many
publicly available software packages that implement this algorithm (for example Reduze
[151], FIRE [152] or KIRA [153]). An in-house implementation was used to perform the
IBP reduction in the tt̄ case. The left-over integrals are called the master integrals of
the system. The master integrals build up a basis for the functions space spanned by the
scalar-integrals. If the master integrals are known, all the scalar integrals are also known.
In addition to �nding and reducing to a set of master integrals, IBP relations can be used
to evaluate them, by generating a system of di�erential equations. The master integral
basis is not unique. This freedom can be used to optimize the set of master integrals such
that their evaluation, for example through di�erential equations, is as simple as possible.
Fortunately, in the case at hand, i.e. the scalar-integrals appearing in the coe�cients of

the structure decomposition 3.6, the same set of master integrals appear as in the calcula-
tion of the spin-summed two-loop matrix-elements. They are not known analytically, even
though progress is made in that direction [154�158]. With the use of di�erential equations
they can evaluated numerically with high precision. In total there are 422 master integrals
[133] to be evaluated.
As discussed in [133] there is an enhancement of the amplitudes in the limit of high energy
and large/small scattering angles due to diagrams with the topology indicated in Fig. 3.3.
This enhancement increases the demand on precision in the numerical evaluation. To
improve on the numerical stability, a change of the master integral basis was performed. A
basis obeying di�erential equations which are in the so called ε-form seemed to be especially
useful.

3.2.1. Canonicalization

It has been shown [159], that under certain circumstances the di�erential equations of
master integrals can be brought into a special form, where the right-hand side is propor-
tional to ε and the divergences appearing in the di�erential equations are single poles in
the kinematic variables. The variables in the case at hand would be x and ms. This form
is particularly useful since it allows for straightforward evaluation of the di�erential equa-
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3. Polarized Double Virtual Top-Quark Pair Production

Figure 3.3.: Class of diagrams leading to enhanced matrix elements at high energy and low
scattering angle.

tions. The basic idea is to achieve this form by basis transformations. The transformation
can be given in terms of a transformation matrix whose coe�cients are rational functions
of the kinematic variables. It is not always possible to obtain the ε-form with these ra-
tional transformations and not even with more general transformations like the change of
kinematic variables [160�162]. In the work presented in Ref. [162] a criterion in case of one
kinematic variable was given that such a ε-form exist. There are many examples where it
is not possible to reach the canonical form, for instance the di�erential equations of the
master of the two-loop sunset topology with equal masses [163, 164]. The solution involves
elliptic integrals, which are a good sign that a ε-form is not possible. Unfortunately, the
same topology appears in gg → tt̄ master integral set. Therefore it is not possible to bring
all of them into the canonical form. Many of the master integrals can be brought to the ε-
form only by additional coordinate transformations. The existing setup, however, requires
to integrate the hole system at once and thus these kind of transformations can not be
applied. This restricts the number of integrals that can be brought into the ε-form quite
drastically. Basically all master integrals that ful�ll one of the following three conditions
are not touched

1) their expressions involve elliptic integrals;

2) coordinate transformations are required in order to reach their ε-form;

3) their derivatives involve any one of the aforementioned two kinds of master integrals.

This leaves in total 65 out of 422 master integrals that can be brought directly into ep-form
without any coordinate changes. The package CANONICA [165] was used to perform this
task. This 65-by-65 system was moved to the top of the system of the di�erential system
such that all other integrals can pro�t from the more stable evaluation of those masters.

3.2.2. Evaluation of master integrals

Using the partially canonicalized basis, the di�erential equations are used extensively to
obtain numerical values for the master integrals over the full phase space. The scalar
integrals can be written as functions of two dimensionless variables

x =
t

s
and ms =

m2
t

s
, (3.33)

and potentially an overall trivial factor of s to some power. Di�erentiating the master
integrals with respect to those and performing another IBP reduction, yields a coupled
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system of di�erential equations of the form

ms
∂

∂ms

~I(ms, x, ε) = Ams(ms, x, ε)~I(ms, x, ε) (3.34)

x
∂

∂x
~I(ms, x, ε) = Ax(ms, x, ε)~I(ms, x, ε) (3.35)

with~I representing the vector of all master integrals. The matrices Ams and Ax are rational
functions of ms, x, ε. The evaluation is done in three stages:

1. Determination of high precision boundary values

2. The numerical integration to �xed points across the phase space

3. Matching of numerical result to threshold expansion in order to cover singular thresh-
old region

The boundary conditions. For the numerical integration are obtained in the high energy
limit ms → 0, from the original set of master-integrals, with the help of the rational trans-
formation matrix obtained with CANONICA. In the high-energy limit the masters can
be expanded in a power-logarithmic expansion in ms. A few terms of this expansions can
be obtained with Mellin-Barns (MB) techniques. The MB.m package [166] was employed
for this task. In most case the obtained expansions are exact in x, but in some cases it was
necessary to employ the di�erential equations to extract the exact dependence from the
limit x→ 0. This was done as follows. In this double limit ms → 0 and x→ 0 it is possible
to evaluate the integrals numerically with very high precision. The numerical values then
can be resummed, where the PSLQ algorithm [167] and XSummer [168] were used. The
idea behind this is simple. Suppose it is known that an integral, or its coe�cients of an
asymptotic expansion, evaluates to certain set of real numbers such as ζ(2) with rational
coe�cients. Then one can make an ansatz in form of a linear combination of all these
real numbers and try to match the numerical value. With this method and high enough
numerical precision, the analytic form of the integrals can be restored. The high-energy
expansions obtained this way are not precise enough in a reasonable distance to the actual
boundary. However, the di�erential equations can be used to improve the series expansion.
Inserting an ansatz for the master integrals as a very deep power-logarithmic expansion in
di�erential equation and consistently expanding the equations, yields an algebraic system
of equations for the coe�cients of the ansatz. Most of the coe�cients are constrained
through the system and the remaining ones can be matched to expansions obtained before.
This allows for a very precise numerical evaluation at some point reasonably close to the
boundary. By expanding in ms, it was implicitly assumed that x is reasonable far away
from 0 (or 1). The expansions fail to give reliable approximations of the integrals in these
limits. Therefore the starting point for the numerical integration has to be chosen with
moderate x. In practice x = 0.35, (x = 0.45 for cross-checks) was used.

The numerical integration. The solution of the di�erential equations starts from the
boundary and evolves the system of master-integrals along contours in the complex-plane
to speci�ed points in the physical phase space. An example for such a contour is given
in �gure 3.4. To solve the di�erential equations numerically, software from [169] was
incorporated, while the high precision numerics was handle with the QUAD package [170].
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Figure 3.4.: Schematic contour of numeric integration (left). Positions of grid points for
representative β value (right). All other points are obtained by shifting to
β = i/80 with i ∈ {1, · · · , 79} and to β = 999/1000 and β = 9997/10000.

By performing this numerical integration to a set of points an interpolation grid is created.
The position of the points {βi, (cos θ)j} in the β and cos θ plane is given by the following
set:

βi = i/80 with i ∈ {1, · · · , 79} (3.36)

(cos θ)j = ±xj with j ∈ {1, · · · , 21} (3.37)

where the xi are obtained from the Gauss-Kronrod integration rule. They can be obtained
for instance with Mathematica [171]. Two points in the high-energy limit β80 = 0.999
and β81 = 0.9997 were added to have better control over the cos θ → ±1 limits. The
position of the points in physical phase space is visualized in �gure 3.4. The results of the
numerical integration were checked against the original set on amplitude level.

Threshold expansions. Close to the production threshold, β → 0 some of the integrals
show divergent behavior. The numerical integration method does not work well in such
cases, due to increasing demand on numerical precision. To obtain reliable results in that
limit, a power-logarithmic expansions in β was performed. Using the same technique as in
the high-energy case, the di�erential equations were expanded together with an ansatz for
integrals. The unconstrained coe�cients are matched to results of the numerical integration
at β = 1/10. With this method a deep expansion up to O

(
β50
)
and O

(
ln10 β

)
is obtained

for several �xed values of the angle cos θ.

3.3. Renormalization

The virtual amplitudes contain infrared and ultraviolet divergences. A �nite result is
obtained after performing ultraviolet and infrared renormalization. This way, so-called
�nite-remainder functions are obtained. They are scheme dependent due to freedom in
the �nite part of the infrared renormalization procedure. First, the UV renormalization is
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performed. The amplitude reads

∣∣∣∣Mg,q(α
(nf )
s ,m, µ, ε)

〉
=

(
µ2eγE

4π

)−2ε

Zg,qZQ
∣∣M0

g,q(α
0
s,m

0, ε)
〉
. (3.38)

For wave functions on-shell renormalization is employed with the renormalization constants
Zg, Zq and ZQ, see Appendix B. The coupling constant is renormalized in the MS scheme
with nf = nl + nh active �avors (equation 2.12

α0
s =

(
eγE

4π

)ε
µ2εZ

(nf )
αs α

(nf )
s (µ) . (3.39)

As argued in section 2.1.2, the top-quark mass is decoupled from the running of αs. The
decoupling can be achieved by the replacement

α
(nf )
s = ζαsα

(nl)
s , (3.40)

where ζαs is the decoupling constant. Both renormalizations act multiplicatively on the
amplitude and therefore on the coe�cients of the color- and spin-decomposed amplitude.
The mass renormalization enters with additional insertions of top-quark propagators. Thus
they are not purely multiplicative and term arising from the expansion 2.19 have to be
projected on the structures. In terms of the coe�cients the UV renormalized coe�cients
c

(l)
ij is given by

c
(l)
ij = c

0(l)
ij + c

UV (l)
ij (3.41)

where c0(l)
ij is the bare coe�cient and cUV (l)

ij the collection of UV counter terms.

Finite remainder After UV renormalization, the amplitude still contains infrared singu-
larities. As discussed in more detail in section 2.1.2, the structure of these divergences is
completely known [172]. They can be extracted from the UV renormalized amplitude

∣∣∣M(0)
g,q

〉
=
∣∣∣F (0)

g,q

〉
, (3.42)

∣∣∣M(1)
g,q

〉
= Z(1)

g,q

∣∣∣M(0)
g,q

〉
+
∣∣∣F (1)

g,q

〉
, (3.43)

∣∣∣M(2)
g,q

〉
= Z(2)

g,q

∣∣∣M(0)
g,q

〉
+ Z(1)

g,q

∣∣∣F (1)
g,q

〉
+
∣∣∣F (2)

g,q

〉
(3.44)

=
(
Z(2)
g,q − Z(1)

g,qZ
(1)
g,q

) ∣∣∣M(0)
g,q

〉
+ Z(1)

g,q

∣∣∣M(1)
g,q

〉
+
∣∣∣F (2)

g,q

〉
, (3.45)

using the infrared renormalization constant Z = 1 + Z(1) + Z(2) + O
(
αs

3
)
. Z

(l)
g,q can be

obtained from the anomalous dimension Γg,q which read for qq̄/gg → tt̄:

Γg,q =T1 ·T2γcusp ln
µ2

−s + 2γg,q −T3 ·T4γcusp(β) + 2γQ

+ (T3 ·T1 + T4 ·T2) γcusp ln
2mtµ

t
+ (T3 ·T2 + T4 ·T1) γcusp ln

2mtµ

u

+ i2fabcT a3 T
b
4T

c
1f2

(
b, ln

u

t

)
+ i2fabcT a3 T

b
4T

c
2f2

(
b, ln

t

u

)
(3.46)
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3. Polarized Double Virtual Top-Quark Pair Production

Of special interest are the terms with triple-correlators. In spin and color summed QCD
matrix elements this term does not contribute [173]. The reason is that up to two-loops
the triple-correlator is only contracted with tree-level matrix elements, which are real as
long as no complex-coupling occur. At three loops however they would be contracted with
one loop matrix elements and their imaginary part would give rise to contributing terms.
Since spin and color information is kept here, they do contribute in this calculation. Due
to the absence of a third massive quark, only the triple-correlator term (the last line in
3.46

∑

(I,J)

∑

k

i fabc Ta
I Tb

J Tc
k f2

(
βIJ , ln

−σJk vJ · pk
−σIk vI · pk

)
,

contributes. This is the �rst calculation in which this contribution is needed to obtain all
poles correctly, and therefore the �rst non-trivial cross-check of the corresponding part in
the anomalous dimension matrix, which were calculated in [118].

Since Z acts on color space, the Z
(k)
g,q

∣∣∣M(l)
g,q

〉
terms need to be projected to the color

and spin structures again. Thus the l-loop IR counter term c
IR,(l)
ij for the coe�cient c(l)

ij is
given by

c
IR,(1)
ij = 〈Pij |Z(1)

g,q

∣∣∣M(0)
g,q

〉
(3.47)

c
IR,(2)
ij = 〈Pij |

(
Z(2)
g,q − Z(1)

g,qZ
(1)
g,q

) ∣∣∣M(0)
g,q

〉
+ 〈Pij |Z(1)

g,q

∣∣∣M(1)
g,q

〉
(3.48)

The �nite remainder coe�cient cF,(l)ij is then given by

c
F,(l)
ij = c

(l)
ij + c

IR,(l)
ij (3.49)

3.4. Finite-remainder functions

Application of the descripted projection and renormalization procedure yields �nite re-
mainder for all the coe�cients at tree ,one-loop and two-loop level. There are in total
3 × 8 = 24 gluon and 2 × 4 = 8 quark coe�cients. Starting at one-loop the coe�cients
obtain a imaginary part and are polynominals in nl (the number of light quarks). At one
loop a n1

l term appears where at two-loops potentially n2
l terms contribute. Thus at two-

loops there would be 32× 2× 3 = 224 di�erent real contributions. From these quantities
various representations of the spin-information can be obtained. A representation within
the spin-density approach is given in section 3.5. For the application to top-quark decays,
which is the �nal goal of this work, the representation in form of correlators of the top- and
anti-top-quark helicity is used to cross check implementation of the polarized amplitudes,
see section 3.6.2. As 224 di�erent plots are far to much to visualise, the other representa-
tions are condenced since color and spin sums over the intial state are performed. However,
some general properties of the coe�cients cF (l)

ij can be discussed.

At tree-level the following coe�cients are found in case of gg → tt̄

c
(0)
11 =

−1

x
, c

(0)
21 =

−1

1− x , (3.50)
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c
(0)
15 =

2x− 1

x
, c

(0)
25 =

2x− 1

1− x , (3.51)

c
(0)
17 = c

(0)
18 = −c(0)

11 , c
(0)
27 = c

(0)
28 = −c(0)

21 . (3.52)

where all other coe�cients vanish. As expected, these coe�cients are symmetric under the
replacement cos θ → − cos θ or x→ 1−x. For the qq̄ → tt̄ process only the two coe�cients

c
(0)
13 =

1

2
, c

(0)
23 =

−1

6
. (3.53)

contribute at tree-level. Beyond tree-level all coe�cients are non-vanishing except the
coe�cients ci6 in case of gluons and ci4 in case of quarks. A further pattern emerging here,
is that only the Sg5 and Sq3 obtain contributions from the highest avaible power of nl. This
means that all diagrams with one at 1-loop and all diagrams with two seperated closed
light fermion loops are projected to the same spin structure.
At two-loop the master integrals are avaible in di�erent forms for di�erent phase space
regions.

High-energy region A high energy expansion of the �nite remainder coe�cients is ob-
tained after inserting the corresponding expansion of the master integrals and renormal-
ization. The expansion was performed up to O

(
m4
s

)
for each coe�cient. The quality of

the expansions can be investigated by comparing the results with those obtained from the
numerical integration. In �gure 3.5 the relative di�erences of the real part

cdi�ij =
∣∣c

HEij

cnumij

− 1
∣∣ (3.54)

between both results for �xed, quite central value of cos θ are shown. The coe�cients
are evaluated for nl = 5. A reasonable description of the amplitude by the expansion is
only obtained in the central region. The same quantity is shown in �gure 3.5 for �xed
β = 9997/10000. The di�erence grows in the limit cos θ → ±1. In the forward/backward
scattering region the applied expansion in ms is not valid anymore, as expected. A nec-
essary simultaneous expansion in ms and x (or 1 − x, respectively), is left for future
investigation.

Bulk region. In the region where the numerical integration is feasible, the �nite remainder
coe�cients are obtained at the same points as the master integrals in form of an interpo-
lation grid. A visualisation is of the large set of coe�cients is omitted here. In the form of
the spin density matrix in the next section this region is visualised in from of 3D plots.

The Threshold region Similar to the high-energy expansion of the coe�cient, an ex-
pansion in β was performed using the threshold expression for the master integrals. The
master integral expansions were done for �xed angles cos θn, thus an expansion

cij(β, cos θn) =

2∑

k=−2

2∑

l=0

c̃ij,kl,nβ
k lnl β
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Figure 3.5.: Di�erence between the high energy expansion and the results of the numerical
integration of the �nite remainder coe�cients for −(cos θ)14 ≈ −0.7166976.
(a) qq (b) gg color structure C1 (c) gg color structure C2 (d)gg color structure
C3. Stopping lines indicate that all digits of cnumij match the result from the
expansion.
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Figure 3.6.: Di�erence between the high energy expansion and the results of the numer-
ical integration of the �nite remainder coe�cients for β = 9997/10000. (a)
qq (b) gg color structure C1 (c) gg color structure C2 (d)gg color structure
C3. Stopping lines indicate that all digits of cnumij match the result from the
expansion.
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of the coe�cients, was obtained. To restore the dependence on cos θ a �t to a polynomial

c̃ij,kl =
2+k∑

n=0

an cosn θ (3.55)

was performed for the imaginary and real part and each nl coe�cient separately.

3.5. Spin-Density Matrix

A di�erent way to represent spin dependent matrix elements is given by the spin density
matrix. In the rest frames of the top-quarks the spin can be described by two 3-vectors

ŝt and ŝt̄ (3.56)

which are normalized to 1. The corresponding four-vectors are

srt =

(
0
ŝt

)
and srt̄ =

(
0
ŝt̄

)
(3.57)

In the center of mass system of a top-quark pair these correspond to two four-vectors st
and st̄, with

s2
t = s2

t̄ = −1 and p3 · st = p4 · st̄ = 0 . (3.58)

A corresponding projector can be applied on the top-quark spinors to obtain the amplitude
for a top-quark with spin in st direction. When calculating matrix elements, this results
in the insertion of the following projector in the spin sum

u(p3, st)ū(p3, st) =
(
/p3

+m
) 1

2

(
1 + γ5/st

)
, (3.59)

v(p4, st̄)v̄(p4, st̄) =
(
/p4
−m

) 1

2

(
1 + γ5/st̄

)
. (3.60)

A matrix element with this projector insertion is denoted by

〈M|M〉 (st, st̄) (3.61)

and is related to the spin density matrix as de�ned in [174]

〈M|M〉 (st, st̄) =
1

4
Tr [Rq,g(1 + ŝtσ)⊗ (1 + ŝt̄σ)]

∣∣∣∣
2−loop

. (3.62)

The two-loop �nite remainder contribution to this matrix element can be decomposed in
the following way

RF
q,g(st, st̄) = 2 Re

〈
M0

q,g

∣∣F2
q,g

〉
(st, st̄) (3.63)

=Aq,g + (C)q,g

(
(st · st̄)

)
+

(Bt)q,g

(
εµναβp1µp2νp3αstβ

)
+ (Bt̄)q,g

(
εµναβp1µp2νp3αst̄β

)
+
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7.: Finite remainder coe�cient functions of the spin-density matrix in case of
initial state gluons for nl = 5.

(D1)q,g

(
(p1 · st)(p1 · st̄)

)
+ (D2)q,g

(
(p2 · st)(p2 · st̄)

)
+

(E12)q,g

(
(p1 · st)(p2 · st̄)

)
+ (E21)q,g

(
(p2 · st)(p1 · st̄)

)
. (3.64)
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Figure 3.8.: Finite remainder coe�cient functions of the spin-density matrix in case of
initial state quarks for nl = 5.

Since the �nite remainder coe�cients are completely free of poles in ε, the treatment of γ5

does not cause any problems, and everything can be treated in 4 dimensions.
Since in QCD parity (P), charge conjugation (C) and the combination (CP) are good

symmetries, the transformation properties of the structures imply constraints on the coef-
�cients[174]:

Bt = Bt̄ = B and D1 = D2 = D . (3.65)
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Thus, the decomposition can be simpli�ed to

RF
q,g = Aq,g + (B)q,g

(
εµναβp1µp2νp3αstβ + εµναβp1µp2νp3αst̄β

)

+ (C)q,g

(
(st · st̄)

)
+ (D)q,g

(
(p1 · st)(p1 · st̄) + (p2 · st)(p2 · st̄)

)

+ (E12)q,g

(
(p1 · st)(p2 · st̄)

)
+ (E21)q,g

(
(p2 · st)(p1 · st̄)

)
. (3.66)

The additional Bose-symmetry in case of gluon initiated top-pair production induces an-
other symmetry in the coe�cient. The Bose-symmetry amounts to interchanging the two
gluons and replacing cos θ → − cos θ in the coe�cients. This implies that the functions
Ag, Cg, Dg are symmetric in cos θ and that Bg has to be an antisymmetric function in cos θ.
Additionally this implies the relation E12g(cos θ) = E21g(− cos θ). The coe�cient Aq,g it
the spin summed matrix-element and thus can be obtained from the original calculation.
However, this coe�cient was re-calculated using the decomposed amplitude. The original
calculation then constituted as a check for the new result. The coe�cients Bq,g describe
the transverse polarization with respect to the scattering plane spanned by p1, p2, p3, p4.
Only absorbative parts of the amplitudes can contribute this coe�cient. Thus, at tree-
level this coe�cient vanishes. All others describe spin-correlation between the top- and
anti-top-quark.
To present the results the two normalization factors

Ng =
β(1− β2)

4096π
and Nq =

β(1− β2)

576π
, (3.67)

are introduced to damp the singular behaviour close to threshold and in the high energy
limit. The normalized coe�cient functions of RFg and RFq are visualised in Figs. 3.7 and
3.8 for nl = 5.

3.5.1. Threshold expansions

From the threshold expansion of the structure coe�cients, a threshold expansion of the
spin-density matrix can be derived. Due to the smaller number of di�erent coe�cients,
the spin-density matrix is a good quantity to study the threshold expansion. To do so,
threshold expansions of the coe�cients up to O

(
β6
)
are derived for a �xed point for cos θ.

The point was arbitrarily chosen to be cos θ = x9. In the region where the numerical inte-
gration of the master integrals was successful, e.g β > 0.1, a comparison with the threshold
expansion can be made. The di�erence1 between the expansion and the integration result
is given by

(
X
nl=5

diff

)
(β, x9) =

(
X
nl=5

thres

)
(β, x9)−

(
X
nl=5

grid

)
(β, x9) , (3.68)

with X ∈ {Ag, Bg, Cg, Dg, E12g} for di�erent expansion depths of
(
X
nl=5

thres

)
(β, x9). This

comparison is shown if �gure 3.9 and 3.10. The series converges quite nicely and a decent
prescription of the coe�cients with expansion is possible up to β ∼ 0.3, when expanding

1The relative di�erence is not used, because the coe�cient functions have a zero in the plotted region.
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3.5. Spin-Density Matrix
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Figure 3.9.: The di�erence between the threshold expansion for coe�cient Ag up to βn

with n = 0, 2, 4, 6 and results from numerical integration for a �xed angle θ.
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Figure 3.10.: The di�erence between the threshold expansion for coe�cient
Bg, Cg, Dg, E12g up to βn with n = 0, 2, 4, 6 and results from numeri-
cal integration for a �xed angle θ.
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3. Polarized Double Virtual Top-Quark Pair Production

up to O
(
β6
)
. In practice however, the threshold expansion of the coe�cients is used only

for β < 1/80.

3.6. Spin structures and correlation matrices

In order to use the results generated above for the actual calculation of top-quark produc-
tion and decays (see chapter 5) it is necassary to be able to evaluate the �nite remainder∣∣F lq,g

〉
explicitly, for a speci�ed spin state. On the one hand, the coe�cients are trivial

in this context since they are just functions of kinematic invariants. On the other hand,
the spin-structures can be evaluated using spin-helicity methods. Since �nally only color-
summed quantities are of interest in this calculation, the color sum can be done analytically.
The derivation of the amplitude decomposition was wholly general in the sense that any
spin-helicity method with any convention can be used to evaluate the spin structures. In
order to obtain correlation matrices that can easlily be combined with decay amplitude,
the WvdW formalism discussed in section 2.1.5 was used. The reason for this choice is
that massive external spinors are helicity eigenstates. The advantage arises from simple
properties of appearing objects when investigating symmertries like parity.

3.6.1. Spin-structures

The wave-functions for the top-quarks can be directly read o� equation 2.77. For the two
helicity states of the top-quark there are

ū3(+) =
(
−κA2 (p3) κ1,Ȧ(p3)

)
, ū3(−) =

(
κA1 (p3) κ2,Ȧ(p3)

)
. (3.69)

And similar for the anti-top the states read

v4(−) =

(
κ1,A(p4)

κȦ2

)
, v4(+) =

( −κ2,A(p4)

κȦ1

)
. (3.70)

For the gluon amplitude the two polarization vectors εµ±(p1) and εµ±(p2) can be expressed
through WvdW spinors in the following way

ε+,ȦB(p1) =

√
2p2Ȧp1B

〈p2p1〉∗
, ε−,ȦB(p1) =

√
2p1Ȧp2B

〈p2p1〉
, (3.71)

ε+,ȦB(p2) =

√
2p1Ȧp2B

〈p1p2〉∗
, ε−,ȦB(p2) =

√
2p2Ȧp1B

〈p1p2〉
. (3.72)

In case of the quark amplitude the spinors of the massless quarks are given by

u1(+) =

(
κA(p1)

0

)
u1(−) =

(
0

κȦ(p1)

)
(3.73)

v̄2(−) =
(
0 κȦ(p2)

)
v̄2(+) =

(
κA(p2) 0

)
(3.74)

To write the spin structures in terms of spinor products the following identity needs to
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3.6. Spin structures and correlation matrices

be employed

/p =

(
0 pAḂ
pȦB 0

)
. (3.75)

In case of the quark structures, the contraction between the light and heavy quark line
needs to be performed. This is also straight forward, due to the following relation

γµ
(DĊ)

v̄2(+)γµu1(−) = γµκA(p2)σAḂ,µκ
Ḃ(p1) =

(
0 2κD(p2)κĊ(p1)

2κḊ(p1)κC(p2) 0

)

(3.76)

and a similar one for �ipped helicities. Straightforward application of these rules provides
a set of expressions for all helicity combinations. A �nal remark on complex phases. Due
to the de�nition of the of the spinor κ(p), the angle φ describing the rotation around the
z-axis enters the amplitude. However, the dependence is only through a phase factor eiφ

which cancels when calculating quantities like

〈M|h1, h2, h3, h4〉 〈h1, h2, h3, h4|M〉 , (3.77)

but when calculating the o�-diagonal contributions for a correlation matrix such like

〈M|h1, h2, h3,−h4〉 〈h1, h2, h3, h4|M〉 (3.78)

this phase stays and has to be taken into account. Conversely, when contracting the
correlator with decay-correlators, i.e. when the o�-diagonal parts matter, this phase factor
cancels against a similar phase factor in the decay correlator. Since the whole system is
invariant under rotation of the z-axis, this is of course expected.

3.6.2. Helicity correlation matrices

When calculating matrix elements in NWA naturally correlation matrices are encountered,
see section 2.1.4. For the top-quark pair the following matrix is of interest

Mcor.(h3, h4, h
′
3, h
′
4) =

∑

h1,h2

〈M|h1, h2, h3, h4〉
〈
h1, h2, h

′
3, h
′
4

∣∣M
〉

(3.79)

with hi ∈ {+1,−1}. Due to symmetry under the parity transformation this matrix has
the property

Mcor.(h3, h4, h
′
3, h
′
4) = h3h4h

′
3h
′
4Mcor.(−h3,−h4,−h′3,−h′4) (3.80)

Thus only half of the signatures are independent. For both channels eight coe�cients are
independent. As an example the coe�cients for the gg-channel are visualized with nl = 5
in �gure 3.11. For the plots a normalization of β(1 − β2)/(576π) has been applied. This
method of including the decays was used to cross check the implementation of the polarized
amplitudes. In practice the method of decay spinors (see section 2.2.2) is used since it is
more �exible and allows also for polarized gluons needed for collinear subtraction in case
of one-loop matrix element appearing in NNLO calculations.
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3. Polarized Double Virtual Top-Quark Pair Production

Figure 3.11.: Real part of the coe�cients of the correlation matrixMcor. in the gg-channel
for nl = 5.
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4. Real radiation contribution

Calculations beyond the lowest order in perturbation theory consist, for a given process,
of many contributions which only together provide a �nite and meaningful calculation.
The task of a subtraction scheme is to facilitate this combination. The di�culty arises
through the divergences present in the various contributions. Considering higher order
calculations in QCD, two types of contributions for the case of one additional power in
αs can be identi�ed, on one hand the (un-)resolved emission of one additional parton
and on the other hand corrections from one additional quantum-loop. Also, as discussed
in section 2.1.1 there are potential contributions from collinear factorization if there are
composite objects in the initial state. Each contribution is divergent on their own in four
space-time dimensions and by working with convention dimensional regularization, thus
in d = 4 − 2ε dimensions, the divergences manifest as poles of a Laurent-series in ε for
di�erent contributions separately. Due to the KLN theorem these divergences cancel for all
infrared safe observables if one combines all necessary parts. The di�cult part here is the
extraction of the Laurent-series for each contribution. In case of the virtual contribution,
many di�erent methods directly yield a Laurent-series expansion. Conceptually, in case of
the real radiation, it would necessary to evaluate the d dimensional phase space integral over
additional emissions in an analytic form within all kinematic constraints to obtain a similar
series. This is sometimes possible for inclusive enough quantities like total cross-sections,
but becomes increasingly more challenging for di�erential observables. The feasibility of
such a calculation depends strongly on the process and/or observable under consideration.
A further issue here is that it is not directly possible to switch to a numerical evaluation
approach due to the divergent nature of these integrals. However, in the past two decades
methods were developed to handle the problem of numerical evaluation of real-radiation
contribution. There are two main classes of approaches: slicing and subtraction. Both
approaches use factorization of QCD amplitudes in infrared limits (see section 2.1.3) to
regularize the divergences in the real radiation contribution and evaluate the divergent part
separately in a less complicated kinematic con�guration either numerically or analytically.
In case of slicing methods, a cuto� in the real radiation phase space is introduced, which

cuts out the divergent region. Close to the divergent region the integrand, phase-space
weight, and matrix element can be simpli�ed by applying factorization formulae for the
corresponding kinematic limit. These resulting expressions are then simple enough to
evaluate them analytically or numerically. This of course introduces logarithms of the
cuto� parameter in the real as well as in the integrated part, which have to cancel between
both objects.
Subtraction methods take a di�erent path. In these methods, one adds and subtracts

approximations of the matrix elements in divergent infra-red regions, using again some
form of matrix-element factorization. These approximations are done in such a way, that
an integrand, consisting of the matrix-element and the approximation, is �nite in the
complete phase space, while the subtraction term should be simple enough that the term
which is added back can be evaluated either analytically or numerically in the form of a
Laurent expansion in ε.
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4. Real radiation contribution

The automation of these procedures was a crucial building block of the broad success
of next-to-leading order calculations. Together with automated one-loop amplitudes the
paved the way for the �NLO-revolution�. Automated frameworks allow for convenient
and �exible NLO QCD calculations. Also combinations with NLO EW corrections are
accessible. Looking at the NNLO QCD, the situation is di�erent. On the real radiation
side a vast landscape of techniques are in development and step to full automatization and
generality is some cases already possible as discussed in the next section. But the practical
applicability of a certain method for a given problem is still not guaranteed. On the loop
side there are two important aspects. The main issue towards automated NNLO QCD
calculations are the two-loop amplitudes. Even though progress is made with di�erent
techniques, the automation seems not reachable in the near future. Another issue is given
by the requirement of numerically stable one-loop amplitudes which allow for phase space
integration close to infrared regions.

4.1. Subtraction Schemes at NNLO

In this section an overview over the di�erent ideas and methods that are used for the task
of handling real-radiation contributions is given. The sector-improved residue subtraction
scheme is discussed in great detail afterwards.

4.1.1. Slicing methods

The qT subtraction/slicing method The idea of the qT subtraction was originally for-
mulated for a speci�c class of processes at hadron colliders [175]. The processes that are
considered are productions of colorless �nal states F at lowest order in perturbation theory
with an invariant mass Q

h1h2 → F (Q) +X (4.1)

where Q2 = (
∑
qi)

2. The qi are the momenta of the particles in F . The scheme is com-
pletely general for �nal states that meet this requirement. If there is no further radiation
the total transverse momentum

qT =
∑

qT,i (4.2)

has to vanish due to momentum conservation. To the NNLO cross section dσF(N)NLO double
real, real virtual and double virtual corrections contribute. If qT 6= 0 is required the double
virtual vanishes due to its born kinematics, Fn parts from real radiation contributions
vanish too. Indeed, as long qT 6= 0 the NLO cross-section to a F+jet �nal state is obtained

dσF(N)NLO

∣∣∣∣
qT 6=0

= dσF+jet
(N)LO (4.3)

The NNLO contributions and their divergences are obtained in the limit qT → 0. The idea
is now to perform a subtraction of these divergences in the limit qT → 0 with the help of
factorization formula obtained from resummation techniques. The subtraction term may
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4.1. Subtraction Schemes at NNLO

be written as

dσCT = dσFLO ⊗ ΣF (qT /Q)d2qT . (4.4)

thus in terms of the LO cross section combined with an approximation of the higher
multiplicity matrix elements in qT → 0 limit. With this the full NNLO cross section can
be written as

dσF(N)NLO = HF(N)NLO ⊗ dσFLO +
[
dσF+jet

(N)LO − dσCT(N)LO

]
(4.5)

where the hard function HF represents the contribution that needed to be added back at
qT = 0 to obtain the full NNLO cross-section. It contains the information of the one and
two-loop matrix-elements with tree-level kinematics. The exact form is �xed through the
speci�c form of the counter term. The �rst application of this scheme was Higgs-boson
production at LHC [175] but meanwhile it was applied to various processes with colorless
�nal-states at the LHC. In a series of calculations the production of vector bosons (WH
[176], V [177], W+W− [178], ZZ [179],Z γ[180]) was extensively studied. The results were
combined in the programMatrix [181] which allows for NNLO calculations for all 2→ 1, 2
vector and vector-pair production processes. Also an extension for massive colored states
was investigated in [182]. The implementation of this scheme is done in practice as a slicing
method, where the real-radiation part is evaluated for a �nite but small cut-o� qcutT and
the phase space region below approximated by the resummation formula.

N-jettiness subtraction/slicing. A quite similar method is the N -jettiness subtraction
�rst presented in [183]. The crucial idea of the qT subtraction was the separation of NNLO
contributions from the NLO contribution using the transverse momentum observable. The
idea works also for other observables that can accomplish this job, as long as corresponding
resummation and factorization formula are known. The N -jettiness observable is such a
candidate, for Born con�guration with N jets it is de�ned as

TN =
∑

k

min
i

{
2pi · qk
Qi

}
(4.6)

where the sum is over all �nal state parton. The momenta pi on the other hand are
the N -jettiness axes and are obtained from a projection of the full phase space point
to a Born phase space point. A suitable projection would be a cluster algorithm which
terminates when all partons are clustered in N jets, combined with a projection of the
massive jet momenta to massless ones. The initial state momenta are included as beam
jets in the evaluation of the minimum, while the normalization factors Qi can be �xed to
the corresponding jet energy such that pi/Qi gives the direction of the i-th jet. For the
Born kinematics the variable vanishes always since each parton momentum is associated
with one jet. If there is additional resolved radiation the N -jettiness variable becomes
larger then zero since at least of the minima is unequal to zero. The total cross-section
might be written as

σ =

∫
dTN

dσ

dTN
=

∫ T cut

N

0
dTN

dσ

dTN
+

∫

T cut

N

dTN
dσ

dTN
. (4.7)
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4. Real radiation contribution

For TN ≥ T cut
N > 0 at least one additionally emitted partons forms a resolved jet and

therefore the integral over this region may be evaluated with standard NLO techniques,
similar to the qT case. For a small enough cut T cut

N the other integrals might be expanded
as

∫ T cut

N

0
dTN

dσ

dTN
= σsing(T cut

N ) +O
(
T cut
N

)
(4.8)

where the singular cross section σsing can be obtained from soft-collinear e�ective �eld
theory (SCET) [184]. It contains double virtual contributions as well as contributions from
the unresolved double real and real-virtual radiation. From the infrared divergences large
logarithm of the cuto� variable arise in both integrals which need to be cancel against each
other. Therefore, in practice it is necessary to introduce a further subtraction on integrand
level. A suitable subtraction term is given by the singular cross section itself close to the
cuto�. With the introduction of another cuto� T o�

N

σ = σsing(T o�
N ) +

∫

T cut

N

dTN
[

dσ

dTN
− dσsing

dTN
Θ(TN < T o�

N )

]
+O

(
T cut
N

)
(4.9)

In contrast to the qT subtraction this method can be applied directly to colored �nal states,
as long as the singular part is known. It was successfully applied to processes like Higgs
or vector boson plus jet production [185�188].

4.1.2. Subtraction methods

CoLoRFulNNLO. The �Completely Local subtRaction for Fully di�erential Predicitions
at NNLO� method is a subtraction method in the more traditional sense. Formulated for
colorless initial states, local subtraction terms matching the infrared limits of the double
real radiation contribution as well as real-virtual contributions are obtained from factoriza-
tion formulae. The overlap between di�erent singularities is taken into account such that
the method provides completely integrable contributions to the cross section. Moreover,
the subtraction terms are designed in such a way that the analytical integration is con-
ceptually possible. In a series a publications [189�196] all necessary integrated subtraction
terms were derived. Due to the absence of colored initial states, the NNLO contribution
to the cross section is divided in three contributions

σNNLO = σNNLOn+2 + σNNLOn+1 + σNNLOn (4.10)

which contain the double real, real virtual and double virtual contribution, respectively.
Local subtraction terms are introduced such that they can be organised like

σNNLOn+2 =

∫ [
dσ̂RRn+2Fn+2 − dσ̂RR,S2

n+2 Fn −
(

dσ̂RR,S1
n+1 Fn+1 − dσ̂RR,S12

n+2 Fn

)]
ε=0

(4.11)

σNNLOn+1 =

∫ [(
dσ̂RVn+1 +

∫

1
dσ̂RR,S1

n+2

)
Fn+1 +

(
dσ̂RVn+1 +

(∫

1
dσ̂RR,S1

n+2

)S1
)
Fn

]

ε=0

(4.12)

σNNLOn =

∫ [
dσ̂V Vn +

∫

2

(
dσ̂RR,S2

n+1 − dσ̂RR,S12
n+2

)
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+

∫

1

(
dσ̂RV,S1

n+1 +

(∫

1
dσ̂RR,S1

n+2

)S1
)]

ε=0

Fn (4.13)

The symbols S1, S2, S12 denote single, double and iterated double unresolved limits. The
subscript of the measurement function Fm denotes the number of resolved momenta enter-
ing the hard matrix-element in the various contributions. The appearing integrals

∫
1,
∫

2
represent the analytic integrations over the unresolved particles. The CoLoRFulNNLO
method was applied to Higgs decays into bb̄ pairs [197, 198] as well as electron-positron
annihilation to jets [199]. The extension to colored initial states is in progress [200].

Antenna Subtraction at NNLO. The Antenna Subtraction method was introduced for
NLO calculations [201, 202] and later generalized to NNLO [203]. The subtraction here is
based on the usage of color-ordered amplitudes |Mk〉 which are de�ned such that

|Mn〉 =
∑

k

Cn,k(NC) |Mk〉 . (4.14)

The sum is performed over all non-cyclic permutations of the external partons. The color-
ordered amplitudes have simpler factorization formulae which allow for a simpli�ed analyt-
ical integration. The subtraction term are written in terms of so-called antenna functions
X0
ijk for single andX

0
ijkl for double unresolved limits of the parton �avors i, j, k, l ∈ {g, q, q̄}.

They can be calculated from ratios of color-ordered matrix elements

X0
ijk(pi, pj , pk) ∼

|M(0)
ijk|2

|M(0)
IK |2

, X0
ijkl(pi, pj , pk, pl) ∼

|M(0)
ijkl|2

|M(0)
IL |2

. (4.15)

The color-ordered matrix elements entering these expressions are chosen in such a way
that they allow for an easy evaluation and analytical integration over the unresolved phase
space

X (0)
ijk =

∫

1
X0
ijk , X (0)

ijkl =

∫

2
X0
ijkl . (4.16)

Similar expression are obtained for the real virtual contribution. The integrated con-
tributions are then combined in a similar way as in the CoLoRFulNNLO scheme. The
prescription to obtain the subtraction terms does not allow for spin correlation, which are
however needed to have a fully local subtraction. To obtain nevertheless stable results,
such cases need to be treated in a special way. A possibility is a average out the correla-
tion by combining suitable phase space points. Up to now only the leading color parts of
this subtraction scheme are known. But nevertheless the scheme was applied to various
processes. The �rst application was in e+e− → jets [204, 205]. After the extension of the
scheme to heavy �nal state particles also the production of top-quark pairs in e+e− colli-
sion was considered [206, 207]. The production of the top-quark pairs at hadron colliders
however, was performed only in qq̄ channel so far [208�210]. More recently the scheme was
used to evaluated the NNLO corrections to Higgs production [211]. Another important
application was calculation of the NNLO corrections to the dijet [212] and single inclusive
jet [213] observables.
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4. Real radiation contribution

4.2. Sector-improved Residue Subtraction Scheme

The sector-improved residue subtraction scheme (STRIPPER) has been proposed a few
years ago as general method of handling real-radiation contributions up to next-to-next-
to-leading order [131, 132]. It combines ideas from the FKS-approach [23] with the sector-
decomposition method [214�216] to a general scheme which provides a set of subtraction
and integrated subtraction terms for arbitrary processes. Originally formulated completely
in CDR [131], the scheme was reformulated in four dimensions [217] a few years later. The
scheme was applied successfully in calculations of di�erential distributions at next-to-next-
to-leading order for various processes [31, 51, 136, 218�220], most prominently to the
production of top-quark pairs at hadron colliders. The STRIPPER scheme is used as well
to perform the calculation of top-quark production including their decays in this work. A
conceptual new phase space parameterization is introduced to overcome ine�ciencies in
convergence of di�erential distributions. The four dimensional formulation presented in
[217] depends on the speci�c parameterization used in the construction, and is therefore
not compatible with the new phase space approach. In this chapter, the new phase space
parameterization is presented and combined with some of the original concepts that re-
main unchanged. For completeness these concepts are reviewed in necessary detail, closely
following the original construction.

4.2.1. General setup

The STRIPPER scheme is general in the sense that it can be used for next-to-next-to-
leading calculations in QCD for arbitrary processes, in hadron-hadron, hadron-lepton or
lepton-lepton collisions or heavy-particle decays. The most complicated type, and most
complete in terms on necessary considerations, are the hadron-hadron collisions. Consider-
ing the (di�erential) production cross section of some �nal state Y consisting of n particles,
the process in mind is h1(P1)h2(P2)→ Y , where h1, h2 denote the incoming hadrons with
momentum P1, P2. The construction starts with the well-known factorization of a hadronic
process

σh1h2(P1, P2) =

∑

ab

∫∫ 1

0
dx1dx2φ

1
a(x1, µ

2
F )φ2

b(x2, µ
2
F )σ̂ab

(
x1P1, x2P2, αs(µ

2
R), µ2

R, µ
2
F

)
(4.17)

into partonic cross sections σ̂ab convoluted with PDFs φi of the incoming hadrons. The
PDFs are evaluated at the factorization scale µF . The renormalization scale µR enters
through the running of αs and higher order contributions. The partonic cross-section is a
quantity which can be calculated in perturbative QFT (at least conceptually) to the desired
order. At next-to-next-to-leading order σ̂ab has to be expanded up to two additional orders
in αs(µ2

R),

σ̂ab = σ̂
(0)
ab + σ̂

(10
ab + σ̂

(2)
ab . (4.18)

The lowest order consist of the Born process only:

σ̂
(0)
ab = σ̂Bab . (4.19)
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4.2. Sector-improved Residue Subtraction Scheme

The expression of σ̂Bab is given in the Appendix A.3, together with all contributions appear-
ing at higher order. At next-to-leading order three contributions arise:

σ̂
(1)
ab = σ̂Rab + σ̂Vab + σ̂Cab . (4.20)

In the real contribution σ̂Rab the contribution from one additional parton emission is in-
cluded, while in σ̂Vab the contribution from one quantum-loop appears. The σ̂Cab contains
all terms originating from collinear renormalization of initial state singularities. Finally at
next-to-next-to-leading order there is

σ̂
(2)
ab = σ̂RRab + σ̂RVab + σ̂V Vab + σ̂C1

ab + σ̂C2
ab . (4.21)

The emission of two additional partons (σ̂RRab ), the emission of one additional parton com-
bined with one quantum loop (σ̂RVab ) and two quantum loops (σ̂V Vab ) contribute. The fac-
torization contributions σ̂C1

ab and σ̂C2
ab contain various convolutions, needed for the collinear

renormalization.

The measurement function All previously mentioned contributions are de�ned together
with a measurement function Fm where m = n, n+ 1, n+ 2, compare Appendix A.3. The
function F de�nes an infrared safe observable, such as total cross sections or di�erential
distributions. The measurement function Fn depends on the momenta of a n-particle
con�guration and ensures that these are well out-side any infrared singular limit, otherwise
the tree-level cross section would not be de�ned. The Fn+1 function on the other hand
allows for one unresolved momentum, e.g. one momentum that approaches a singular limit,
either soft or collinear. Such a con�guration cannot be distinguished from an n-particle
con�guration such that Fn+1 → Fn in any infrared limit. The same is true for Fn+2

but with up to two unresolved momenta allowed. If one momentum becomes unresolved,
Fn+2 → Fn+1 holds and obvious extension in case of two unresolved momenta.

Selector function Since single/double unresolved limits are allowed in contributions with
Fn+1/Fn+2 measurement functions, these contributions are not �nite. These allowed diver-
gences are need to be canceled against divergences of other contributions. In CDR, these
divergences manifest in terms of poles when expanding the contribution in a Laurent-series
in ε. Since an analytical extraction is not always feasible, numerical methods are required.
However, these cannot deal with the divergent behaviour of the integrals. In order to
extract the Laurent expansion the phase space is decomposed with the help of a selector
function. The selector function selects speci�c partons (two in case of a contribution com-
ing with Fn+1 and three or two pairs of two partons in case of Fn+2) and allows only the
infrared limit of one(two) of them. Either of the chosen unresolved parton(s) can become
soft or collinear to the other parton(s). All other collinear and soft limits of partons are
suppressed such that the corresponding divergence is regulated. The selector function is
not unique, but does also not e�ect the further construction of the scheme. There are two
properties of this selector functions that are important. The selector function has to be a
partition of unity

∑

ik

Si,k = 1 and
∑

ij

(∑

k

Sij,k +
∑

kl

Si,k;j,l

)
= 1 . (4.22)
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4. Real radiation contribution

The single-collinear selector function Si,k allows only for the soft limit of parton i and the
collinear limit of i and k. Whereas the triple-collinear selector function Sij,k allows only
for the soft limit of parton i and j as well as all possible collinear limits between i,j and
k. The double collinear selector function Si,k;j,l similarly allows for the soft limits of i and
j but only for the collinear limits of the pairs i, k and j, l. One implementation of such
a function, which is also used in the calculations presented in section 5, can be found in
[217].

4.3. Phase Space Parameterization

So far, all contributions containing additional radiation are decomposed into sectors, while
in each sector two, three or four particles are singled out. In case of a single-collinear
decomposition in each sector Si,k the momentum of parton i is named u and that of parton
k, r. In case of triple-collinear sector Sij,k the momenta of i, j and k are labeled as u1,u2

and r. Finally, in a double-collinear sector Si,k;j,l the momenta u1 and r1 are assigned to
parton i and k while u2 and r2 are assigned to j and l. In each sector, a parameterization
of the phase space needs to be speci�ed such that an easy extraction of the ε in each
sector is possible. Since the divergences are related to the soft and collinear limits, a direct
parameterization of the energy and the angular distance to the reference is desirable.

Note on notation The momenta u,ui are frequently called unresolved momenta in the
following, even when they are well separated. Accordingly, the corresponding phase space
is called unresolved phase. If a momentum actually is unresolved in some discussion, this
should be clear from the context.

4.3.1. Original phase space parameterization

In the original formulation of the STRIPPER scheme the phase space of the unresolved
partons can be found in [217]. Schematically, the parameterization start from �xed incom-
ing momenta, determined by the initial state. After �xing the direction of the reference
momenta, the unresolved phase space is parameterized with respect to the reference mo-
mentum (momenta), potentially using the complete available energy. This restricts the
energy available for the reference momentum as well as the rest of the phase space. When
generating the subtraction terms needed to make the integrals integrable, this procedure
lead to the phenomenon that many di�erent kinematics con�gurations are obtained. This
is not a conceptual issue but might have practical consequences in terms of miss-binning.
In table 4.5 the numbers of di�erent kinematic con�gurations in each sector are given. A
more detailed discussion follows together with the subtraction kinematics of the alternative
phase space parameterization.

Miss-binning

The term miss-binning refers to a practical problem apparent in all subtraction schemes
when calculating binned di�erential distributions. Suppose, for a real-radiation contri-
bution, one generates a well-separated full con�guration, which enters some bin with its
weight. The weight contains besides the phase space, initial and/or integration weights
the matrix element. The important feature of this weight is that if the full con�guration
approaches a singular limit this weight will become large. The subtraction then regulates
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4.3. Phase Space Parameterization

this divergent behaviour in the infrared limit. In the well-separated case, the weight is
not especially large, however subtraction terms are still present. They also come with
a small weight but might enter completely di�erent bins. Only in the infrared limit the
subtraction terms are bound to end up in the same bin as the full con�guration. Suppose
now, that the full con�guration is indeed quite close to a singular con�guration that lies
quite near the boundary of a bin. Then it can happen that the weight becomes already
sizeable but nevertheless the subtraction term can enter a neighbouring bin, also with a
sizeable weight with opposite sign. In each bin this will be observed as a �uctuation in
the accumulated weights and thus will increase the estimated error and will shift the esti-
mated value of the binned quantity. This does not spoil the integrability but may spoil the
convergence. It is intuitive that frequency of this miss-binning may depend on the number
of di�erent kinematic con�gurations present in the subtraction. There is no apparent way
of proving this statement; rather it is a matter of experimentation. This is the reason for
the new attempt to formulate a parameterization which minimizes this problem within the
STRIPPER scheme.

4.3.2. New phase space parameterization

The phase space parameterization presented here is a conceptually new idea, worked out
by Michal Czakon. Some concepts already appear in phase space parameterizations and
mappings for the Powheg box in the context of parton shower matching [221, 222]. The
guiding idea is to �nd a parameterization which is de�ned in such a way that the sub-
traction term terms generated within the Stripper scheme automatically come with a
minimal number of di�erent kinematics. That there is only a small number of necessary
con�gurations to regulate all infrared limits in one sector follows from the simple obser-
vation that the physical limits are described by one or two partons become unresolved.
Thus, naively for the double real contribution there one might expect that one n+ 1 and
one n con�guration should be enough.

General considerations

Consider the n-particle phase space where certain momenta are labeled according to their
role within an sector. In this sector nr reference partons are identi�ed, of which nfr are in
the �nal state. Furthermore nu unresolved partons and nq = n − nfr − nu Born partons
are speci�ed with the help of the selector function. The type of the decomposition (single-,
double-, or triple-collinear) �xes nr, nfr and nu. The full phase space might be written in
the following form:

dΦn =

nq∏

i=1

dµmi(qi)

nfr∏

j=1

dµ0(rj)

nu∏

k=1

dµ0(uk) (2π)dδ(d)
( nq∑

i=1

qi +

nfr∑

j=1

rj +

nu∑

k=1

uk − P
)

(4.23)

where P is the total initial state momentum and the single particle measures are de�ned
as

dµm(k) ≡ ddk

(2π)d
2πδ

(
k2 −m2

)
θ
(
k0
)
≡ ddk

(2π)d
2πδ+

(
k2 −m2

)
, (4.24)
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4. Real radiation contribution

where the δ+ function was introduced as a short hand for the on-shell and positive energy
condition. The phase space for the reference and unresolved momenta can be decoupled
from the remaining momenta by introducing an integration over a auxiliary momentum q
with invariant mass Q ≥∑nq

i=1mi.

dΦn =
dQ2

2π
dµQ(q)

nfr∏

j=1

dµ0(rj)

nu∏

k=1

dµ0(uk) (2π)dδ(d)
(
q +

nfr∑

j=1

rj +

nu∑

k=1

uk − P
)

·
nq∏

i=1

dµmi(qi) (2π)dδ(d)
( nq∑

i=1

qi − q
)

(4.25)

The integration over q can be used to eliminate the delta function containing the reference
and unresolved momenta to achieve the following form

dΦn =dQ2

[ nfr∏

j=1

dµ0(rj)

nu∏

k=1

dµ0(uk) δ+

((
P −

nfr∑

j=1

rj −
nu∑

k=1

uk

)2
−Q2

)]

·
nq∏

i=1

dµmi(qi) (2π)dδ(d)
( nq∑

i=1

qi − q
)
. (4.26)

The full phase space can be mapped to the Born phase space with n− nu particles,

{P, rj , uk} → {P̃ , r̃j} . (4.27)

This mapping is by no means unique and there are possibly many ways to do this. By
imposing additional constraints on the mapping, it can be uniquely de�ned. In this case
the following three constraints are imposed:

• The mapping is invertible for �xed unresolved momenta,

{P̃ , r̃j , uk} → {P, rj , uk} . (4.28)

• The invariant mass of the auxiliary momentum is preserved

q̃2 = q2 , where q̃ = P̃ −
nfr∑

j=1

r̃j . (4.29)

• The reference momenta are transformed only by rescaling.

The last condition is the key idea of the parameterization which will lead to a reduced
set of subtraction kinematics. This condition reads a little bit di�erent depending on the
position of the reference parton. If it is in the �nal state it can be written as

r = xr̃ , (4.30)

where x is determined by the full kinematics. Denoting by fx(r) the function that deter-
mines the value of x, the phase space measure can be written in the following form

dµ0(r) = dµ0(r) dx δ
(
x− fx(r)

)
ddr̃ δ(d)(r̃ − r/x) (4.31)
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4.3. Phase Space Parameterization

= dµ0(r̃) dx θ(x)xd−2 δ
(
x− fx(x r̃)

)
(4.32)

= dµ0(r̃) θ(x)xd−3

[
− ∂

∂x

fx(x r̃)

x

]−1∣∣∣∣∣
x=fx(x r̃)

. (4.33)

And similar, in case of initial state references, the rescaling is de�ned as

r = r̃/z . (4.34)

In this case the integration over the parton distribution functions needs to be taken into
account. The incoming momentum is parameterized by the momentum fraction x of the
momentum of the hadrons. Similar to the �nal state case, the rescaling factor z depends on
the full kinematics described through the function fz(xph), which depends on the original
momentum fraction x,

dxφ(x) = dxφ(x) dx̃ δ
(
x̃− fz(x ph)x

)
(4.35)

= dx̃ φ(x̃/z) θ(z − x̃)

[
− z2 ∂

∂z

f(r̃/z)

z

]−1∣∣∣∣∣
z=f(r̃/z)

. (4.36)

Using this speci�c transformation, the full phase space can be written as

dΦn =dQ2

[ nfr∏

j=1

dµ0(r̃j) δ+

((
P̃ −

nfr∑

j=1

r̃j

)2
−Q2

) nu∏

k=1

dµ0(uk) θ
(
{ul} ∈ U

)
J
]

·
nq∏

i=1

dµmi(q̃i) (2π)dδ(d)
( nq∑

i=1

q̃i − q̃
)
, (4.37)

where J represents the necessary Jacobians for the transformation. For a speci�c Born
con�guration {P̃ , r̃} the integration volume over the unresolved momenta is constrained by
θ({ul}). The set U is the collection of unresolved momenta. The relation q2 = q̃2 implies
that there is a Lorentz transformation which transforms q̃ into q. Since the one particle
measures dµmi(qi) are Lorentz invariant the phase space measure can be written as

dΦn =dQ2

[ nfr∏

j=1

dµ0(r̃j) δ+

((
P̃ −

nfr∑

j=1

r̃j

)2
−Q2

) nu∏

k=1

dµ0(uk) θ
(
{ul} ∈ U

)
J
]

nq∏

i=1

dµmi(qi) (2π)dδ(d)
( nq∑

i=1

qi − q̃
)
. (4.38)

The Jacobian depends clearly on the sector under consideration and can be constructed
from the general derivations. The constraints for the unresolved phase space can be derived
from equation (4.29) and the requirement that the Born con�guration remains physical.
The details of this constraints can be found in the following discussion, where the di�erent
placements of the references are separately investigated.
At this point it is instructive to change the point view. In formula (4.38) the integration

over the full Born phase space is factorized from the integration over the unresolved phase
space. This, together with the inverse of the transformation, suggests that the phase space
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4. Real radiation contribution

construction can be viewed in the following way: Instead of generating a full con�guration
and derive some Born con�guration from there, create �rst a Born con�guration and derive
the full con�guration from that. To be able to do this, the unresolved momenta need to
be generated in a way that the constraints are ful�lled.
The full con�guration is then determined by rescaling parameters x and/or z which are

again �xed by the condition 4.29. The important feature here is that the conditions only
involve the sum, in case of �nal state references, or the di�erence, in case of initial state
references, of the reference and the unresolved momenta, r ± u. In the infrared limits,
where u becomes soft u → 0 or collinear u → αr, the conditions become independent of
u. In other words, it does not matter if u is soft, collinear or soft-collinear with respect
to r, the full con�guration obtained from r̃, P̃ and {q} are always the same. As shown
in the next section, this leads to the minimal number of subtraction con�guration in each
sector, except in case of a single unresolved con�guration in two triple collinear sectors.
The details about the obtained con�gurations are discussed after de�ning further details
of the phase space parameterization.

Parameterization in single-collinear sectors

In case of a n + 1 particle phase spaces a single-collinear sector decomposition is used. If
the reference parton is an initial state parton, the integration over the momentum fraction
x is incorporated in the phase space integral over some function f(r, u) (dependence on
the other Born momenta is suppressed)

∫
dxdΦn+1φk(x)f(r, u) =

∫
dx̃dµ0(u)θ(u)φ(x̃/z)θ(z − x̃)J dΦn(q̃)f(r̃/z, u) (4.39)

where q̃2 = (r̃+p)2 where p is the other initial state momentum and r̃ = x̃ph. The function
θ(u) encodes the constraints on the unresolved phase space originating from Born map-
ping. Equation (4.29) implies the relation which yields the constraints on the unresolved
momentum:

(
r + p− u

)2
=
(
r̃ + p

)2
, (4.40)

replacing either r by r̃/z or vice versa, yields the following expressions for the rescaling
parameter z

z =
(r + p) · (r − u)

p · r , z =
(p− u) · r̃
p · (r̃ + u)

. (4.41)

Di�erentiating the �rst equation with respect to z after replacing r → r̃/z yields, combined
with equation (4.36), the Jacobian

J =
p · r̃

(p− u) · r̃ . (4.42)

Writing u = u0û and noting that r + p is a time-like four-vector it is evident that z is a
monotonically decreasing function of u0. Together with the fact that it is de�ned for any
full con�guration, this ensures that the transformation can be inverted and that any full
con�guration has a well de�ned Born con�guration. Using the fact that z has to be larger
than x̃, the maximum energy (u0)max is given for speci�ed r̃, p and û through equation
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(4.41)

(
u0
)

max
= (1− x̃)

p · r̃/x̃
(r̃/x̃+ p) · û . (4.43)

Thus the phase space integral reads
∫

dxdΦn+1φk(x)f(r, u) =

∫
dx̃dµ0(u)φ(x̃/z)

p · r̃
(p− u) · r̃dΦn(q̃)f(r̃/z, u) , (4.44)

where the constraints on the unresolved phase space are hidden in the unresolved phase
space measure

dµ0(u) = N εµ2ε
R

∫
d2−2εΩ

∫ 1

0
dη

∫ (u0)max(η)

0
du0 (u0)1−2ε

2(2π)(3−2ε)
. (4.45)

The normalization factor N is de�ned as
(
eγE
4π

)
.

In case of a �nal state reference the relation

(
P − r − u

)2
=
(
P − r̃

)2
(4.46)

�xes x and the maximum of unresolved parton energy (obtained at x = 0) in a similar way
to be

x =
P · r

(P − r) · (r + u)
, x =

P · (r̃ − u)

(P − u) · r̃ ,
(
u0
)

max
=
P · r̃
P · û (4.47)

where the Jacobian evaluates to

J =
xd−3 P · r̃
(P − u) · r̃ . (4.48)

Also, x is a monotonically decreasing function of u0 since (P − r)2 > 0 and it is de�ned
for any full con�guration.

In both cases the direction of the unresolved momentum is parameterized with respect
to the reference parton. Writing

r = r0r̂ = r0

(
1
r̂

)
with r̂ = n̂(3−2ε)(α1, α2, . . . ) , (4.49)

û is given by

û =

(
1
û

)
with û = R

(3−2ε)
1 (α1, α2, . . . )n̂

(3−2ε)(θ, φ, ρ1) . (4.50)

Details on the de�nition of the versors n̂ and matrices R can be found in appendix A.2.
After introducing the variables η and ξ

η =
1

2
(1− cos θ) , u0 = ξ(u0)max , (4.51)
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the unresolved phase space integral can then be written as

dµ0(u) = N ε

∫
d1−2εΩ(φ, ρ1, . . . )

(2π)1−2ε

∫ 1

0
dη

∫ 1

0
dξ

(u0)2
max

(2π)2

(
(u0)max

µR

)2ε

(1− η)εη−εξ1−2ε

(4.52)

≡
∫

dµ̃(u)ηξ2 (4.53)

where dµ̃(u) is de�ned for convenience in later expressions. It can be divided into a regular
and a singular part (in the limits η/ξ → 0)

dµ̃(u) =
dη

η1+ε

dξ

ξ1+2ε
dµ̃reg(η, ξ) . (4.54)

Triple-collinear sector parameterization

The phase space parameterization in triple-collinear sectors follows, at �rst, the same lines
as the single-collinear parameterization. The triple-collinear selector function Sij,k allows
to identify three partons, the reference momentum r of parton k and the two unresolved
momenta u1 (�i�) and u2 (�j�). Following the general construction in section 4.38 a phase
space integral over some function f(r, u1, u2) can be written as

∫
dxdΦn+2φk(x)f(r, u1, u2) =

∫
dx̃dµ0(u1)dµ0(u2)θ(u1, u2) (4.55)

φ(x̃/z)θ(z − x̃)J dΦn(q̃)f(r̃/z, u1, u2) (4.56)

in case of a initial state reference, and as
∫

dΦn+2f(r, u1, u2) =

∫
dµ0(u1)dµ0(u2)dµ0(r̃)θ(u1, u2)J dΦn−1(q̃)f(xr̃, u1, u2) (4.57)

in case of a �nal state reference. Again equation (4.29) provides the constraints that �x x
or z.

�nal:
(
P − r − u1 − u2

)2
=
(
P − r̃

)2 ⇒ x =
P · r

(P − r) · (r + u1 + u2)− u1 · u2
(4.58)

x =
P · (r̃ − u1 − u2) + u1 · u2

(P − u1 − u2) · r̃ (4.59)

initial:
(
r + p− u1 − u2

)2
=
(
r̃ + p

)2 ⇒ z =
(r + p) · (r − u1 − u2) + u1 · u2

p · r (4.60)

z =
(p− u1 − u2) · r̃

p · (r̃ + u1 + u2)− u1 · u2
(4.61)

Expressing the unresolved momentum as u1 = u0
1û1 and u2 = u0

2û2, the �rst thing to note
is that x and z are monotonically decreasing functions of u0

i if u
0
j with i 6= j is �xed, which

follows again from the fact that r + p or P − r are time-like vectors. The transformation
is de�ned for any full con�guration which re�ects in the fact that x, z, q̃0 ≥ 0 and x, z ≤ 1.
The monotonic dependence of x and z allows to parameterize energies of u1 and u2 in an
iterative way to cover full phase space volume. This iterative parameterization leads to

70



4.3. Phase Space Parameterization

the following energy bounds for u1 and u2

�nal:
(
u0

1

)
max

=
P · r̃
P · û1

,
(
u0

2

)
max

=
P · (r̃ − u1)

(P − u1) · û2
, (4.62)

initial:
(
u0

1

)
max

= (1− x̃)
p · r̃/x̃

(r̃/x̃+ p) · û1
,
(
u0

2

)
max

=
(r̃/x̃+ p) ·

(
(1− x̃) r̃/x̃− u1

)

(r̃/x̃+ p− u1) · û2
.

(4.63)

From equation (4.33) and (4.36) the Jacobians

�nal: J =
xd−3 P · r̃

(P − u1 − u2) · r̃ (4.64)

initial: J =
p · r̃

(p− u1 − u2) · r̃ (4.65)

can be derived. The directions of u1 and u2 are parameterized in with respect to the
reference momentum r

û1 =

(
1
û1

)
with û1 = R

(3−2ε)
1 (α1, α2, . . . )n̂

(3−2ε)(θ1, φ1, ρ1, ρ2, . . . ) (4.66)

û2 =

(
1
û2

)
with û2 = R

(3−2ε)
1 (α1, α2, . . . )R

(3−2ε)
2 (φ1, ρ1, ρ2, . . . )n̂

(3−2ε)(θ2, φ2, σ1, σ2)

(4.67)

Furthermore, as discussed in section 2.1.3, the double soft limits require a hierarchy in the
unresolved partons energy u0

1 ≥ u0
2 and therefore the phase space is split up by introducing

the partition of unity

1 = θ(u0
1 − u0

2) + θ(u0
2 − u0

1) . (4.68)

Together with the constraints on the maximum energies from equation (4.63), the following
parameterization for the energies can be employed

u0
1 =

(
u0

1

)
max

ξ1 , u0
2 = ξ1ξ2

(
u0

1

)
max

min

[
1,

1

ξ1

(
u0

2

)
max(

u0
1

)
max

]

︸ ︷︷ ︸
≡(u02)max(u1,û2)

, ξ1,2 ∈ [0, 1] , (4.69)

which covers the part of the phase space where u0
1 > u0

2. Instead of introducing a similar
parameterization to cover the u0

2 > u0
1 case, the same contribution can be obtained from

the sector where u1 and u2 are swapped, thus only the u0
1 > u0

2 case needs to considered.
In addition, parameterizations of the angular variables θ1,2 and φ2 by η̂1,2 and ζ

cos θ1 = 1− 2η̂1 , cos θ2 = 1− 2η̂2 , cosφ2 =
1− 2η3 − (1− 2η̂1)(1− 2η̂2)

4
√

(1− η̂1)η̂1(1− η̂2)η̂2

, (4.70)

η3 =
û1 · û2

2
=

1− cos θ12

2
=

(η̂1 − η̂2)2

η̂1 + η̂2 − 2η̂1η̂2 − 2(1− 2ζ)
√
η̂1(1− η̂1)η̂2(1− η̂2)

, (4.71)
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4. Real radiation contribution

sector η̂1 η̂2 (r + u1 + u2)2

S1 η1 η1η2/2 ξ1η1 × regular
S23 η1η2/2 η2 ξ1η2 × regular
S4 η1 η1(1− η2/2) ξ1η1 × regular
S5 η1(1− η2/2) η2 ξ1η2 × regular

Table 4.1.: Sector parameterization and factorization of the three particle invariant s123

are introduced. It is convenient to write ζ in terms of an angle φζ such that

ζ =
1

2
(1 + cos(πφζ)) and (4.72)

dφ2 sin−2ε φ2 = dφζd(φ)1−2ε (4.73)

where the function d(φ) contains the Jacobian which depends on φζ , η̂1 and η̂2. The
phase space needs to be further decomposed to factorize all triple collinear limits. There
are four invariants that appear in the amplitudes as propagators or equivalently in the
corresponding triple-collinear splitting functions which give rise to the divergent behaviour
in these limits

(r + u1)2 = 4r0(u0
1)maxξ1η̂1 (4.74)

(r + u2)2 = 4r0(u0
2)max(u1, û2)ξ1ξ2η̂2 (4.75)

(u1 + u2)2 = 4(u0
1)max(u0

2)max(u1, û2)ξ2
1ξ2η3 (4.76)

(r + u1 + u2)2 = 4ξ1

(
r0(u0

1)maxη̂1 + r0(u0
2)max(u1, û2)ξ2η̂2

+(u0
1)max(u0

2)max(u1, û2)ξ1ξ2η3

)
(4.77)

The soft and collinear limit of the �rst and second invariant is directly factorized. Due to
the introduction of ζ the third invariant vanishes if η̂1 = η̂2, while the last one vanishes
in various ways, depending how the two angles η̂1 and η̂2 are related to each other. The
phase space can be decomposed into four regions (sub-sectors) θ(0 < η̂2 < η̂1/2) (S1),
θ(0 < η̂1 < η̂2/2) (S23, the origin of this numbering has historical reasons), θ(η̂1/2 < η̂2 <
η̂1) (S4) and θ(η̂2/2 < η̂1 < η̂2) (S5), which translates to the prescription in �gure 4.1. In
each sub-sector the invariants fully factorize (see table 4.1).

In the original formulation the sector S23 was further decomposed into two sectors S2

and S3 (which is the origin of the strange naming). In [219] it was pointed out that this
decomposition is not necessary to factorize all singular limits. The reason is commutativity
of the soft and collinear limits, also called color-coherence. Originally the collinear limit
of u1 was assumed to be correlated with the soft limit of u2, such so that in S2 a single
limit of collinear u1 implied a soft (and not collinear) limit of u2 and vice versa in S3. This
makes the factorization of (r + u1 + u2)2 explicit in this soft-collinear limit. However, the
factorization also occurs in S23.

With parameterizations (4.71) the unresolved phase space integrals can be expressed in
each sector as

dµ0(u1)dµ0(u2) =

∫
dµ̃i(u1)dµ̃i(u2)ηa11 ξa21 ηa32 ξa42 (4.78)
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•
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•
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•
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I

II

III

ξ1 > ξ2

ξ2 → ξ2ξ2maxξ1

ξ2 > ξ1

η1 > η2

η2 → η2η1

η1 > η2

η2 → η2η1

1
2
> η2

η2 → 1
2
η2

η2 >
1
2

η2 → 1− 1
2
η2

1
2
> η1

η1 → 1
2
η1

η1 >
1
2

η1 → 1− 1
2
η1

Figure 4.1.: Sector decomposition in triple-collinear sectors

with

dµ̃i(u1)dµ̃i(u2) =
dη1

η1+b1ε
1

dξ1

ξ1+b2ε
1

dη2

η1+b3ε
2

dξ2

ξ1+b4ε
2

dµ̃1
reg({x})dµ̃2

reg({x}) (4.79)

with sector dependent values for ai and bi (see table 4.2). The set of all four variables
{η1, ξ1, η2, ξ2} is denoted by {x}. The explicit forms of dµ̃ireg({x}) also depends on the
sector, but are, as indicated, functions of the sector variables and further angular param-
eterizations. As in the single collinear case, these measures are completely regular in all
limits ηi, ξi → 0 and contain integrals over the 1 − 2ε dimensional unit sphere. Using the
φζ replacement the general structure is

dµ̃1
reg({x}) = N ε

∫
d1−2εΩ(φ1, ρ1, . . . )

(2π)1−2ε

(u0
1)2

max

(2π)2

(
(u0

1)max

µR

)2ε

(1− η̂1)εη̂−ε1,reg (4.80)

dµ̃2
reg({x}) = N ε

∫
dφζ

d−2εΩ(σ1, . . . )

(2π)−2ε

d(φ)1−2ε
reg

2

(u0
2)2

max

(2π)2

(
(u0

2)max

µR

)2ε

(1− η̂2)εη̂−ε2,reg .

(4.81)

The variables ηi,reg are obtained after factoring out all vanishing parts from η̂i in the ηi → 0
limit, e.g

sector η1,reg η2,reg

S1 1 1
2

S23
1
2 1

S4 1 1
2(2− η2)

S5
1
2(2− η1) 1

and the η̂ variables are replaced by the corresponding parameterization from table 4.1.

Special energy parameterization of sector S4 and S5 The sectors S4 and S5 parameter-
ize the limits where the two unresolved partons can become collinear to each other. The
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4. Real radiation contribution

sector ai bi
S1 {2, 4, 1, 2} {2, 4, 1, 2}
S23 {1, 4, 2, 2} {1, 4, 2, 2}
S4 {2, 4, 2, 2} {2, 4, 2, 2}
S5 {2, 4, 2, 2} {2, 4, 2, 2}

Table 4.2.: Sector parameterization and factorization of the three particle invariant s123

iterative energy parameterization discussed before would results in non unique con�gura-
tions. In these limits the resolved parton is described by the sum and ratio of the energies
and the sum of the energies depend on the u2. Thus the single collinear and single soft-
collinear limit would result in di�erent u1 + u2. This can be circumvented by discarding
the iterative approach and directly parameterize the sum and the energy ratio

u0
12 ≡ u0

1 + u0
2 , ξ2 =

2u0
2

u0
1 + u0

2

. (4.82)

The requirement that u0
1 > u0

2 can be build in by restricting ξ2 ∈ [0, 1]. Inserting this
parameterization in the equations for x and z (4.61), both quantities are found to be
decreasing functions of u0

12 for �xed ξ2. The maximum value of u0
12 can then be achieved

in the same manner as in iterated parameterization by inverting the equations for x = 0
(or z = x̃). There is

�nal:
(
u0

12

)
max

=
2P · r̃

P · ū12 +
√

(P · ū12)2 − 2ū2
12P · r̃

, (4.83)

initial:
(
u0

12

)
max

=
2p · r̃/x̃

(r̃/x̃+ p) · ū12 +
√

((r̃/x̃+ p) · ū12)2 − 2ū2
12p · (1− x̃)r̃/x̃

(4.84)

with the de�nition

ū12 = (1− ξ2/2)û1 + ξ2/2û2 . (4.85)

The energies of u1 and u2 are then parameterized as

u0
1 =

(
u0

12

)
max

ξ1(1− ξ2/2) u0
2 =

(
u0

12

)
max

ξ2/2 (4.86)

withdu0
1du0

2 =
1

2

(
u0

12

)2
max

ξ1dξ1dξ2 . (4.87)

Double-collinear sector parameterization

In the following, it us assumed that n > nfr + nu and the special case n = nfr + nu
is discussed at the end of the section. Since there are two reference momenta in double-
collinear sectors, four di�erent possibilities of their placement arise: initial-initial, �nal-
initial, initial-�nal, �nal-�nal. In all cases two scaling parameters have to be �xed, but
there is only one condition (equation (4.29)). Thus, a second condition has to be imposed
to specify the mapping to the Born con�guration uniquely. Since the double-collinear is
similar to the combination of two single-collinear cases, a natural choice for the second
condition would be that single-collinear condition for u1 and r1 has to hold, too. The
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4.3. Phase Space Parameterization

�nal-�nal:(
P − r1 − u1 − r2 − u2

)2
=

(
P − r̃1 − r̃2

)2
,

(
P − r1 − u1

)2
=

(
P − r̃1

)2
,

x1 =
P · r1

(P − u1) · (r1 + u1)
, x2 =

(P − r1/x1) · r2
(P − r1 − u1 − u2) · (r2 + u2)

,

x1 =
P · (r̃1 − u1)

(P − u1) · r̃1
, x2 =

(P − r̃1) · r̃2 − (P − x1r̃1 − u1) · u2

(P − x1r̃1 − u1 − u2) · r̃2
,

(
u0
1

)
max

=
P · r̃1
P · û1

,
(
u0
2

)
max

=
(P − r̃1) · r̃2

(P − x1r̃1 − u1) · û2
,

J =
xd−3
1 P · r̃1

(P − u1) · r̃1
xd−3
2 (P − r̃1) · r̃2

(P − x1r̃1 − u1 − u2) · r̃2
,

�nal-initial:(
p + r2 − r1 − u1 − u2

)2
=

(
p + r̃2 − r̃1

)2
,

(
p + r̃2 − r1 − u1

)2
=

(
p + r̃2 − r̃1

)2
,

z2 =
(p− r1 − u1 − u2) · (r2 − u2)

(p− r1 − u1) · r2
, x1 =

(p + z2r2) · r1
(p + z2r2 − u1) · (r1 + u1)

,

x1 =
(p + r̃2) · (r̃1 − u1)

(p + r̃2 − u1) · r̃1
, z2 =

(p− x1r̃1 − u1 − u2) · r̃2
(p− x1r̃1 − u1) · (r̃2 + u2)

,

(
u0
1

)
max

=
(p + r̃2) · r̃1
(p + r̃2) · û1

,
(
u0
2

)
max

= (1− x̃2)
(p− x1r̃1 − u1) · r̃2/x̃2

(p + r̃2/x̃2 − x1r̃1 − u1) · û2
,

J =
xd−3
1 (p + r̃2) · r̃1

(p + r̃2 − u1) · r̃1
(p− x1r̃1 − u1) · r̃2

(p− x1r̃1 − u1 − u2) · r̃2
.

Table 4.3.: Rescaling parameters, Jacobians and mapping condition for the double collinear
phase space parameterization for �nal-�nal and �nal-initial reference momen-
tum con�gurations.

actual conditions for the various cases are collected in table 4.3 and 4.4, together with the
results for the rescaling parameter, the Jacobian, and the boundaries for the unresolved
partons energies. Here, the energy parameterization can also be done in an iterative way.
The scaling parameters x1, z1 are monotonically decreasing functions of u0

1, completely
independent of u2 as a consequence of the additional condition. The rescaling parameter
x2, z2 in their turn are also monotonically decreasing functions of u0

2 as soon as u1 is �xed.
As in the triple-collinear case a hierarchy in the unresolved parton energies needs to be
imposed. Only the u0

1 > u0
2 case needs to be considered when adding the contribution with

swapped references instead of introducing a parameterization with u0
1 < u0

2. Evidently this
swapping leads to di�erent Born frames if at least one of the references is in the initial
state. Since the problem does not arise when the parameterization is done directly in the
laboratory frame, this is the reason for the choice of the laboratory frame as starting point.
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4. Real radiation contribution

initial-�nal:(
r1 + p− u1 − r2 − u2

)2
=

(
r̃1 + p− r̃2

)2
,

(
r1 + p− u1

)2
=

(
r̃1 + p

)2
,

z1 =
(r1 + p) · (r1 − u1)

p · r1
, x2 =

(z1r1 + p) · r2
(r1 + p− u1 − u2) · (r2 + u2)

,

z1 =
(p− u1) · r̃1
p · (r̃1 + u1)

, x2 =
(r̃1 + p) · r̃2 − (r̃1/z1 + p− u1) · u2

(r̃1/z1 + p− u1 − u2) · r̃2
,

(
u0
1

)
max

= (1− x̃1)
p · r̃1/x̃1

(r̃1/x̃1 + p) · û1
,

(
u0
2

)
max

=
(r̃1 + p) · r̃2

(r̃1/z1 + p− u1) · û2
,

J =
p · r̃1

(p− u1) · r̃1
xd−3
2 (r̃1 + p) · r̃2

(r̃1/z1 + p− u1 − u2) · r̃2
,

initial-initial:(
r1 + r2 − u1 − u2

)2
=

(
r̃1 + r̃2

)2
,

(
r1 + r̃2 − u1

)2
=

(
r̃1 + r̃2

)2
,

z2 =
(r1 − u1 − u2) · (r2 − u2)

(r1 − u1) · r2
, z1 =

(z2r2 − u1) · (r1 − u1)

z2r2 · r1
,

z1 =
(r̃2 − u1) · r̃1
r̃2 · (r̃1 + u1)

, z2 =
(r̃1/z1 − u1 − u2) · r̃2

(r̃1/z1 − u1) · (r̃2 + u2)
,

(
u0
1

)
max

= (1− x̃1)
r̃2 · r̃1/x̃1

(r̃1/x̃1 + r̃2) · û1
,

(
u0
2

)
max

= (1− x̃2)
(r̃1/z1 − u1) · r̃2/x̃2

(r̃1/z1 + r̃2/x̃2 − u1) · û2
,

J =
r̃2 · r̃1

(r̃2 − u1) · r̃1
(r̃1/z1 − u1) · r̃2

(r̃1/z1 − u1 − u2) · r̃2
.

Table 4.4.: Rescaling parameters, Jacobians and mapping condition for the double collinear
phase space parameterization for initial-�nal and initial-initial reference mo-
mentum con�gurations.

With this in mind, the energies of the unresolved partons can be parameterized as

u0
1 =

(
u0

1

)
max

ξ1 , u0
2 = ξ1ξ2

(
u0

1

)
max

min

[
1,

1

ξ1

(
u0

2

)
max(

u0
1

)
max

]

︸ ︷︷ ︸
≡(u02)max(u1,û2)

, ξ1,2 ∈ [0, 1] . (4.88)

The angular parameterization of u1 is identical to the single-collinear case, while u2 is
parameterized with respect r2, for the �rst �ve dimensions and with respect u1 in all
(−1− 2ε)-dimensional angles.

r1 = r0
1 r̂1 = r0

1

(
1
r̂1

)
with r̂1 = n̂(3−2ε)(α1, α2, . . . ) , (4.89)

r2 = r0
2 r̂2 = r0

2

(
1
r̂2

)
with r̂2 = n̂(3−2ε)(β1, β2, . . . ) , (4.90)
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4.3. Phase Space Parameterization

u1 = u0
1û1 = u0

1

(
1
û1

)

with û1 = R
(3−2ε)
1 (α1, α2, . . . )n̂

(3−2ε)(θ1, φ1, ρ1, ρ2, . . . ) , (4.91)

u2 = u0
2û2 = u0

2

(
1
û2

)

with û2 = R
(3−2ε)
1 (β1, β2, . . . )R

(3−2ε)
4 (ρ2, ρ3 . . . )n̂

(3−2ε)(θ2, φ2, σ1, σ2, . . . ) . (4.92)

For two initial state references the phase space integral over some function f(r1, u1, r2, u2)
reads

∫
dx1dx2dΦn+2φk(x1)φl(x2)f(r1, u1, r2, u2) =
∫

dx̃dµ0(u1)dµ0(u2)θ(u1, u2)φ(x̃1/z1)θ(z1 − x̃1)φ(x̃2/z2)θ(z2 − x̃2)

· J dΦn(q̃)f(r̃1/z1, u1, r̃2/z2, u2) (4.93)

while for the initial-�nal con�guration it is
∫

dx1dΦn+2φk(x1)f(r1, u1, r2, u2) =
∫

dx̃1dµ0(r2)dµ0(u1)dµ0(u2)θ(u1, u2)φ(x̃1/z1)θ(z1 − x̃1)J

· dΦn−1(q̃)f(r̃1/z1, u1, x2r̃2, u2) (4.94)

and a corresponding expression of the �nal-initial case. Finally, the �nal-�nal case is given
by
∫

dΦn+2f(r1, u1, r2, u2) =
∫

dµ0(r1)dµ0(r2)dµ0(u1)dµ0(u2)θ(u1, u2)J dΦn−1(q̃)f(x1r̃1, u1, x2r̃2, u2) (4.95)

The function θ(u1, u2) denotes the phase space constraints from the mapping on the un-
resolved phase space. With the replacement for the angles η1,2 = 1

2(1 − cos θ1,2) the
unresolved phase space can written as

dµ0(u1)dµ0(u2) =

∫
dµ̃i(u1)dµ̃i(u2)η1ξ

4
1η2ξ

2
2 (4.96)

with

dµ̃i(u1)dµ̃i(u2) =
dη1

η1+ε
1

dξ1

ξ1+4ε
1

dη2

η1+2ε
2

dξ2

ξ1+2ε
2

dµ̃1
reg({x})dµ̃2

reg({x}) . (4.97)

The regular parts of the phase space measures read

dµ̃1
reg({x}) = N ε

∫
d1−2εΩ(φ1, ρ1, . . . )

(2π)1−2ε

(u0
1)2

max

(2π)2

(
(u0

1)max

µR

)2ε

(1− η1)ε (4.98)
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4. Real radiation contribution

dµ̃2
reg({x}) = N ε

∫
d1−2εΩ(φ2, σ1, . . . )

(2π)−2ε

(u0
2)2

max

(2π)2

(
(u0

2)max

µR

)2ε

(1− η2)ε . (4.99)

Special case with n = nfr + nu A special situation arises in a double collinear sector
when all �nal state momenta are picked to be reference or unresolved. This system is
more constrained than the other cases and it is not possible to apply the new phase space
construction in this case, since it is assumed that a boost can be performed to recoil against
the reference and unresolved momenta. Therefore, the original parameterization in [217]
of this sector is used without any changes and a derivation is omitted here.

Transverse momenta

Splitting functions that occur in subtraction terms depend on the transverse components of
the collinear momenta. For the single collinear parameterization the transverse momentum

uµ⊥ =

(
0

û⊥

)
, û⊥ = lim

θ→0

û− r̂

||û− r̂|| =
∂û

∂θ

∣∣
θ=0

(4.100)

is constructed. For the double and triple collinear case similarly ui⊥ (i = 1, 2) are de�ned

uµi⊥ =

(
0

ûi⊥

)
, ûi⊥ = lim

θi→0

ûi − r̂i
||ûi − r̂i||

=
∂ûi
∂θi

∣∣
θi=0

(4.101)

Additionally, for collinear limits of the two unresolved partons in the triple-collinear sector
parameterization a third transverse momentum is necessary. u3⊥ is determined through
the limit

û±3⊥ = lim
θ2→θ±1

û2 − û1

||û2 − û1||
(4.102)

4.4. Subtraction terms

4.4.1. Generation of subtraction terms

All contributions incorporating emissions of one or two particles needs subtraction terms
to be numerically accessible. After introducing the partition of unity with the selector
function like

∫
dΦn+1 =

∑

ik

∫
dΦn+1Si,k or (4.103)

∫
dΦn+2 =

∑

ij

∑

k

∫
dΦn+2Sij,k +

∑

ij

∑

kl

∫
dΦn+2Si,k;j,l (4.104)

and the phase space parameterizations discussed in the previous section, the integrals over
the unresolved phase spaces within each sector look like

σ̂R,RV,C1 =

∫ 1

0

∫ 1

0

dη

η1+ε

dξ

ξ1+2ε
dµ̃ηξ2MFn+1 (4.105)
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in case of the single sector parameterization and

σ̂RR =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dη1

η1+b1ε
1

dξ1

ξ1+b2ε
1

dη2

η1+b3ε
2

dξ2

ξ1+b4ε
2

dµ̃1
regdµ̃

2
regη

a1
1 ξa21 ηa32 ξa42 MFn+2 (4.106)

in case of double- and triple collinear parameterizations. The symbol M stands for the
matrix elements in the di�erent contributions including the selector function, further phase
space measures and integrations, convolutions, Jacobians and normalization factors. They
contain no divergences not related to the ηi, ξi. The measurement function F depends on
the full kinematics. In each case the infrared structure of QCD ensures that the combina-
tion

Mreg =
∏

i

xaii M (4.107)

is a �nite quantity in all limits xi → 0 where xi ∈ {η1, ξ1, η2, ξ2} or xi ∈ {η, ξ}.
The subtraction terms are generated by applying the relation

1

x1+aε
= − 1

aε
δ(x) +

[
1

x1+aε

]

+

(4.108)

where the �+�-prescription is de�ned by

∫ 1

0
dx

[
1

x1+aε

]

+

f(x) =

∫ 1

0
dx
f(x)− f(0)

x1+aε
. (4.109)

In the further discussion the end-point term of the �+�-distribution is called the subtraction
term while the δ function part is called the integrated subtraction term or pole term.
Applying this formula recursively to the integrals above generates subtraction terms for
all divergent limits and a bunch of integrated subtraction terms which themselves need
subtraction terms obtained in the same manner. Once there are no singular limits left,
this recursion terminates and left are integrals of regularized integrands as well as explicit
poles in ε times integrals with less integration variables. The procedure is slightly more
complicated in case of the real-virtual contribution. The virtual loop integration creates
terms whose scaling in the limit xi → 0 di�er from the naive expectations. Schematically
this look as follows

lim
x→0

f(x)→ f0 + x−bεfε (4.110)

The prescription for generating subtraction terms needs to be modi�ed to

∫ 1

0

dx

x1+aε
f(x) = − 1

aε
f0 −

1

(a+ b)ε
fε +

∫ 1

0

dx

x1+aε

(
f(x)− f0 − x−bεfε

)
. (4.111)

Again recursive application of the formula lead to set of integrable expressions.

4.4.2. Subtraction kinematics

In the end-point and pole terms (the subtraction and integrated subtraction terms) one or
more variables xi are set to zero. Besides setting the corresponding variable in the regular
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4. Real radiation contribution

Original parameterization
S unresolved con�g. number

single {r}, {r + u} 2
triple double unres.

{r}, {r + u1}, {r + u1 + u2} 3
single unres.

S1 {u1, r}, {u1, r + u2} 2
S2 {u1, r} 1
S3 {u2, r + u1} 1
S4 {u1, r}, {u1 + u2, r} 2
S5 {u1, r}, {u1 + u2, r},

{u1 + softu2, r} 3
double double unres.

{r1, r2}, {r1 + u1, r2},
{r1 + u1, r2 + u2} 3
single unres.
{u1, r1, r2}, {u1, r1, r2 + u2},
{r1 + u1, r2, u2} 3

New parameterization
S unresolved con�g. number

single {r + u} 1
triple double unres.

{r + u1 + u2} 1
single unres.

S1 {u1, r + u2} 1
S2,3 {u1, r}/{u2, r + u1} 2
S4 {u1 + u2, r} 1
S5 {u1, r}, {u1 + u2, r} 2
double double unres.

{r1 + u1, r2 + u2} 1
single unres.
{u1, r1, r2 + u2},
{u2, r1 + u1, r2}, 2

Table 4.5.: Listing of the subtraction kinematics for the original and new phase space
parameterization. The notation is discussed in the text.

phase space weights to zero, this changes the kinematic con�guration entering the matrix
element as well as the measurement function F . Each vanishing of a variable corresponds
to a physical limit, which depends on the sector parameterization.

Single-collinear The following limits are obtained, following straightforwardly from the
parameterization:

ξ → 0 ⇒ u→ 0 {r} (4.112)

η → 0 ⇒ u||r {r + u} (4.113)

the expression in the curly brackets indicates the resolved momenta, omitting the momenta
{qi}. The special feature of the new parameterization is that the two di�erent looking
kinematic con�gurations are actually the same. Indeed, inspecting the equation in the soft
and collinear limit yields (for the �nal state reference case, initial state analogous)

xsoft =
P · (r̃ − 0)

(P − 0) · r̃ = 1 ⇒ r = r̃ (4.114)

xcol. =
P · r̃(1− ξ)

P · r̃ = 1− ξ ⇒ r + u = xcol.r̃ + u = (1− ξ)r̃ + ξr̃ = r̃ (4.115)

Furthermore, the obtained con�guration corresponds to the original Born con�guration
from which the phase space construction started.

Double- and triple-collinear In the triple- and double-collinear case much more limits are
possible, and due to the sector decomposition, di�erent limits arise in di�erent sub-sectors.
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4.4. Subtraction terms

There are single and double unresolved subtraction kinematics, with one or two partons
become unresolved. Considering the double unresolved kinematics, there are naively three
�di�erent� resolved con�gurations possible

{r + u1 + u2} , {r + u1} , {r} (4.116)

in triple collinear sectors and also three

{r1 + u1, r2 + u2} , {r1 + u1, r2} , {r1, r2} (4.117)

in double-collinear sectors. Since soft particles do not in�uence the kinematics, other
con�gurations are not possible, due to the iterative energy parameterization. It can be
shown analogous to the single-collinear case that all these double unresolved limits are the
same con�guration, which is again the Born con�guration from which the construction
started. In �gure 4.2 the evolution of the momenta when approaching the triple-collinear
(η1 → 0) and the double-soft(ξ1 → 0) limit is demonstrated for sector S1.

η1 → 0

ξ1 → 0

Figure 4.2.: Triple-collinear and double soft limit in sector S1 from the same full con�g-
uration (left �gure). The limit con�guration (right �gure) is the same and
coincides with the underlying Born con�guration (grey shaded).

The discussion of the single-unresolved limits depends on the sector. In table 4.5 the list
of all single-unresolved con�gurations is given. The table can be summarized as follows:

• There is only 1 single-unresolved con�guration in sectors 1 and 4
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4. Real radiation contribution

• There are 2 single-unresolved con�gurations in sector 2, 3 and 5, as well as in the
double-collinear sector

That there are two single-unresolved contributions arising in S5 originates from the soft u2

limit. In this case, the angular parameterization of u2 determines the direction of u1. When
comparing this with the original parameterization, the number of subtraction kinematics
is signi�cantly reduced. Another advantageous feature follows from the fact that there
is only one double unresolved con�guration across all sectors which coincides with the
Born con�guration. In the four-dimensional formulation presented below, all contributions
containing poles in the regularization parameter ε are shifted to contributions which contain
doubly unresolved kinematics only. Since there is only one con�guration it is possible to
�x the Born con�guration and check the pole cancellation numerically. While the pole
cancellation in the original formulation was also checked numerically, the advantage is that
here the integration over Born phase space is not necessary. This results in a strong test
of the implementation of the subtraction scheme.

4.4.3. Azimuthal averaging

In collinear limits the generated subtraction terms possibly contain spin-correlations. They
are necessary for point-wise convergence of the integrands. However, in the corresponding
pole terms the spin correlation is not needed (since the term is not needed as a subtraction)
and can be averaged out as demonstrated in [217]. Since the angular parameterization is not
changed, the original description how to deal with those splitting functions also applies
for the construction presented here. The integral over the correlator can be performed
explicitly by

[∫
d1−2εΩ

]−1 ∫
d1−2εΩ(φ, ρ1, ρ2, . . . )

uµ⊥u
ν
⊥

u2
⊥

=
1

2(1− ε)

(
gµν − rµr̄ν + rν r̄µ

r · r̄

)
, (4.118)

in case of the single collinear parameterization. In case of two unresolved momenta the
higher dimensional angles depend on each other, compare de�nitions (4.67) and (4.92).
In the triple collinear limit (u1||u2||r) or double-collinear limit (u1||r1 and u2||r2), the
directions can be decoupled using rotational invariance of the measure. Then the same
formula for the averaging applies for each parton. In the single collinear limits one can
proceed similarly, except in sector S4 and S5. There the special treatment of the case
u1||u2 ∦ r presented in [217], has to be performed.

4.5. Four-Dimensional Formulation

Up to here everything was de�ned and constructed in CDR, by numerical evaluation of
the various integrals all contributions are obtained in from of Laurent-series expansions
in ε. The divergences present cancel among all contributions, which is a consequence of
the �niteness of the next-to-next-to-leading order cross-section. However, the situation
is not optimal in terms of computational e�ciency. With increasing multiplicity the d-
dimensional phase space parameterization becomes more and more complicated and num-
ber of e�ective dimensions grows. With the aim of developing a general framework the
invocation of a automated generator for tree-level and maybe one-loop matrix-elements is
necessary. But the CDR formulation requires the ε expansions of matrix elements beyond
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4.5. Four-Dimensional Formulation

ε0, which are usually not provided in such programs. This motivates a four-dimensional
formulation of the scheme, which allows to circumvent the aforementioned bottlenecks.

4.5.1. Separately �nite contributions

A crucial step towards a four-dimensional formulation is the identi�cation of combinations
of contributions that are �nite by themselves. The application of master formula (4.108) to
the various contributions yields a vast landscape of di�erent integrals containing suitable
subtractions. Everything is de�ned in d dimensions. Therefore each integral corresponds
to Laurent series in ε, with poles up to ε−4. The sum over all integrals and contributions
then yields a �nite result in the limit ε→ 0 for any infrared safe observable de�ned through
the measurement function. However, it is possible to organize the integrals in such a way
that di�erent subsets are separately �nite in d dimensions, in other words, all poles in ε
cancel among these smaller set of integrals.
At leading order, this statement is trivial since no poles are present at all and σ̂B is

�nite on its own. At next-to-leading order, the whole construction is formed by three
contributions σ̂R, σ̂V and σ̂C . Only σ̂R needs subtraction, and after application of the
master formula, the integrals are organised in two contributions

σ̂R = σ̂RF + σ̂RU where (4.119)

σ̂RF =
1

2ŝ

1

N

∫ [
dΦn+1

〈
M

(0)
n+1

∣∣∣M (0)
n+1

〉
Fn+1 + subt. terms with Fn

]
. (4.120)

The integrated subtraction terms are collected in σ̂RU . They are all proportional to the
n-particle measurement Fn and due to the speci�c parameterization one might write them
in following form

σ̂RU =
1

2ŝ

1

N

∫
dΦn

∑

pole terms

dµ̃ [pole terms with Fn + subt. to pole terms with Fn]

(4.121)

The measure dµ̃ denotes integrations over remaining parameters of the unresolved parton,
which depends on the speci�c sector and pole term. The virtual contribution can also be
split up into the �nite remainder part and the Z operator as de�ned in section 2.1.2. Thus
two contributions are obtained:

σ̂VF =
1

2ŝ

1

N

∫
dΦn2 Re

〈
M(0)

n

∣∣∣F (1)
n

〉
Fn (4.122)

σ̂VU =
1

2ŝ

1

N

∫
dΦn2 Re

〈
M(0)

n

∣∣∣Z(1)
∣∣∣M(0)

n

〉
Fn . (4.123)

Since σ̂VF and σ̂RF are �nite by construction and σ̂C is not decomposed further, three
separately �nite contributions can be identi�ed

σ̂RF , σ̂VF , σ̂U = σ̂RU + σ̂VU + σ̂C . (4.124)

One detail to emphasize here is the fact that all contribution with poles in ε, e.g. within σ̂U ,
have a n-particle measurement function and n-particle phase space integral, plus possibly
further integration over unresolved momenta.
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4. Real radiation contribution

The formulation at next-to-next-to-leading order starts with �ve contributions. The
double-real radiation can be organized in three parts, determined by the multiplicity of
the resolved particle phase space

σ̂RR = σ̂RRF + σ̂RRSU + σ̂RRDU . (4.125)

The full n + 2 particle phase space integral, together with the corresponding subtraction
terms, is contained in the real-radiation �nite part σ̂RRF

σ̂RRF =
1

2ŝ

1

N

∫
dΦn+2

[〈
M(0)

n+2

∣∣∣M(0)
n+2

〉
Fn+2 + subt. terms with Fn+1 and Fn

]
(4.126)

which is, as the name suggests, by construction �nite and does not contain any poles in ε.
The other two parts containing poles in ε and by adapting the notation from the σ̂RU case,
the single (SU) and double (DU) unresolved double-real-radiation contribution σ̂RRSU and
σ̂RRDU might be written as

σ̂RRSU =
1

2ŝ

1

N

∫
dΦn+1

∑

pole terms

dµ̃ [pole terms ×Fn+1 + subt. with Fn+1 and Fn] ,

(4.127)

σ̂RRDU =
1

2ŝ

1

N

∫
dΦn

∑

pole terms

dµ̃ [pole terms ×Fn + subt. with Fn] . (4.128)

The real-virtual contribution can be split up in a similar manner. It contains the one-
loop matrix element which can be decomposed into a �nite remainder function and the
corresponding divergent part given by the Z operator

2 Re
〈
M(0)

n+1

∣∣∣M(1)
n+1

〉
= 2 Re

〈
M(0)

n+1

∣∣∣F (1)
n+1

〉
+ 2 Re

〈
M(0)

n+1

∣∣∣Z(1)
∣∣∣M(0)

n+1

〉
. (4.129)

Generating corresponding subtraction terms yields the following decomposition

σ̂RV = σ̂RVF + σ̂RVSU + σ̂RVFR + σ̂RVDU (4.130)

with

σ̂RVF =
1

2ŝ

1

N

∫
dΦn+1

[
2 Re

〈
M(0)

n+1

∣∣∣F (1)
n+1

〉
Fn+1 + subt. with Fn

]
(4.131)

σ̂RVSU =
1

2ŝ

1

N

∫
dΦn+1

[
2 Re

〈
M(0)

n+1

∣∣∣Z(1)
∣∣∣M(0)

n+1

〉
Fn+1 + subt. with Fn

]
(4.132)

σ̂RVFR =
1

2ŝ

1

N

∫
dΦn

∑

pole terms with
∣∣∣F(1)
n

〉dµ̃ [pole terms ×Fn + subt. with Fn] (4.133)

σ̂RVDU =
1

2ŝ

1

N

∫
dΦn

∑

pole terms with
∣∣∣M(0)

n

〉dµ̃ [pole terms ×Fn + subt. with Fn] (4.134)

The reason for distinguishing σ̂RVDU and σ̂RVFR becomes evident in the discussion of separately
�nite contributions. Here all contributions except σ̂RVF contain poles in ε.
The double virtual contribution is treated similarly to the virtual contribution. In this
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case one �nite (σ̂V VF ) and two ε pole containing contributions are formed

σ̂V VF =
1

2ŝ

1

N

∫
dΦn

[
2 Re

〈
M(0)

n

∣∣∣F (2)
n

〉
+
〈
F (1)
n

∣∣∣F (1)
n

〉]
Fn , (4.135)

σ̂V VFR =
1

2ŝ

1

N

∫
dΦn

[
2 Re

〈
M(0)

n

∣∣∣ (Z(1)† + Z(1))
∣∣∣M(0)

n

〉]
Fn , (4.136)

σ̂V VDU =
1

2ŝ

1

N

∫
dΦn

[
2 Re

〈
M(0)

n

∣∣∣Z(2)
∣∣∣M(0)

n

〉
+
〈
M(0)

n

∣∣∣Z(1)†Z(1)
∣∣∣M(0)

n

〉]
Fn . (4.137)

The single convolution contribution σ̂C1 splits into two part after applying the decompo-
sition for σ̂R

σ̂C1 = σ̂C1
SU + σ̂C1

DU (4.138)

where σ̂C1
SU contains σ̂RF while σ̂C1

DU keeps σ̂RU . However, both contributions contain however
divergences in ε. The double convolution contribution contains double convolutions over
tree-level matrix-elements as well as single convolutions over one-loop virtual contributions.
The decomposition of σ̂V is applied and all terms containing the �nite remainder function∣∣F (1)

〉
are put into σ̂C2

FR, and all those without it into σ̂C2
DU . Both parts have explicit poles

ε and are proportional to the n-particle measurement function.

By construction three contributions can be easily identi�ed to be separately �nite:

σ̂RRF , σ̂RVF , σ̂V VF . (4.139)

As the next-to-next-to-leading order cross-section is also �nite, it can be concluded that
all remaining parts together have to be �nite in d dimensions

σ̂DU + σ̂SU + σ̂FR = �nite (4.140)

with the de�nitions

σ̂FR = σ̂RVFR + σ̂V VFR + σ̂C2
FR , (4.141)

σ̂SU = σ̂RRSU + σ̂RVSU + σ̂C1
SU , (4.142)

σ̂DU = σ̂RRDU + σ̂RVDU + σ̂C1
DU + σ̂V VDU + σ̂C2

DU . (4.143)

Further, it can be argued that σFR has to be �nite separately. As discussed above in
the σcFR (with c ∈ {RV, V V,C2}) contributions appear only term with one-loop �nite-
remainder matrix-elements. One can easily convince one-self that the only way they arise
they give the same terms as the next-to-leading order contribution σ̂U with the replacement

〈
M(0)

n

∣∣∣M(0)
n

〉
→ 2 Re

〈
M(0)

n

∣∣∣F (1)
n

〉
. (4.144)

In this sense σ̂RVFR corresponds to σ̂RU , σ̂
V V
FR to σ̂VU and σ̂C2

FR to σ̂C . The functional de-
pendence of the n-particle matrix-elements (at least after azimuthal averaging) does not
in�uence the �niteness of the next-to-leading order cross-section. This only depends on
the unresolved integrals over the soft and splitting functions, as well explicit poles from
the virtual contribution. Therefore the �niteness of the next-to-leading order cross-section
implies the �niteness of σFR. The mechanism behind this argument can be made more ob-
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vious with the new phase space parameterization. Since there is only one fully unresolved
con�guration the cancellation in σ̂U happens for a �xed Born con�guration. For �xed Born
momenta all the matrix elements across all contributions are just the same number (or to
be more precise, an expansion in ε with constant coe�cients) which could be taken out of
the contributions, without spoiling the pole cancellation. The same holds for the n-particle
�nite remainder functions appearing in σ̂FR. A detailed discusion can be found in [217].

This leaves σ̂DU+σ̂SU as a �nite quantity in d dimensions. As discussed at the end of this
section, a four-dimensional formulation would yield four-dimensional resolved momenta and
polarizations. Its not possible to go to four-dimensions directly, since σ̂SU contains inclusive
d-dimensional phase space integrals over the resolved additional radiation. The terms of
order up to O

(
ε2
)
of this integral contribute to the �nite part of the cross section as long

as the poles in σ̂SU do not cancel separately. Consequently, a direct four dimensional limit
would yield wrong and not even �nite quantities. However, as demonstrated in [217], it is
possible to construct special counter terms that allow to render σ̂SU and σ̂DU separately
�nite. The construction of the counter terms depends on the speci�c choice of the phase
space parameterization. Since a di�erent phase space parameterization is employed, new
counter terms need to be calculated (see section 4.6).

Assuming for now that a set of terms exists, such that

σ̂S̃U = σ̂SU − σ̂HV and (4.145)

σ̂D̃U = σ̂DU + σ̂HV (4.146)

are separately �nite and the HV regularization can be �nally constructed.

In the HV regularization scheme all resolved momenta and polarizations are taken to be
four dimensional, in contrast to d dimensions in CDR. This has a number of non-trivial
consequences. It has to be ensured that the �nite result, hence the ε0 coe�cient of the sum
over all contributions is correct. The HV scheme will introduce errors at O(ε) in the �nal
result, which are, however, not of interest for physical predictions. The �rst thing to note
is, that for four-dimensional polarizations all tree-level matrix elements have no expansions
in ε, since the dependence can only enter through spin sums of external particles. In case
of �nite remainder functions this is not so easy anymore since virtual integrations also
introduce an ε dependence. That terms of the �nite remainder functions of order ε or
higher are not necessary to correctly calculate the ε0 is discussed below. The second thing
is a modi�cation of the phase space due to the four-dimensional resolved momenta, which
schematically will lead to a partially four dimensional resolved phase space and a partially
d-dimensional phase space wherever unresolved momenta appear.

All contributions which do not contain poles in ε, namely

σ̂B, σ̂RF , σ̂
V
F , σ̂

RR
F , σ̂RVF , σ̂V VF , (4.147)

can simply be evaluated for ε = 0 and immediately yield the correct ε0 results. All
contributions that contain only Fn measurement functions as well as poles in ε are

σ̂U , σ̂FR, σ̂DU . (4.148)

The ε expansion of the matrix elements can be dropped, since the cancellation of the ε-poles
in each contribution does not depend on the functional dependence on the kinematics of the
amplitudes, but rather on the unresolved phase space integrals over factorization formulae
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and the form of Z(1,2), similar to the discussion of �niteness of σ̂FR. Another way to see this
is that phase space parameterization results in a unique Born con�guration, independent of
unresolved phase space integrals and across all sectors. Since the Fn measurement function
could be used to single out a speci�c Born con�guration, the �niteness of the cross-section
implies that for each Born con�guration the poles have to cancel (after integration over
unresolved degrees of freedom) within each separately �nite contribution. But for a speci�c
Born con�guration the n-particle matrix-elements are �xed numbers (or expansions in
ε with constant coe�cients), which cannot in�uence the pole cancellation. Indeed the
dropped terms would add up to zero at ε0 as long as the poles cancel. Removing the ε
terms of the matrix elements corresponds to four dimensional polarizations. The four-
dimensional momenta are obtained using a modi�ed measurement function

Fn → FnN−(n−1)ε

[
n−1∏

i=1

(2π)−2εδ(−2ε)(qi)

]
(4.149)

which sets all resolved momenta to four dimensions after performing the integrals over the
δ functions. In case of no or only initial state references this idea directly applies. In case
of �nal state references, it is not the reference alone which appears in the δ function but
rather the resolved momentum combination which amounts to

single-collinear sectors: δ(−2ε)(r + u) =
(
r0 + u0

)2ε
δ(−2ε)(r̂) , (4.150)

triple-collinear sectors: δ(−2ε)(r + u1 + u2) =
(
r0 + u0

1 + u0
2

)2ε
δ(−2ε)(r̂) , (4.151)

double-collinear sectors:
∏

i=1,2

δ(−2ε)(ri + ui) =
∏

i=1,2

(
r0
i + u0

i

)2ε
δ(−2ε)(r̂i) . (4.152)

While the direction of the reference are restricted to four dimensions, the energy factor
together with the factor (r0)(−2ε) from the phase space measure of the reference parton give
rise to a non-trivial ε depending factor which needs to be included. Since the form of the
measurement function does not a�ect the pole cancellation, the replacement in equation
(4.149) does not change the �nite result at ε0 since removed integrals are at least of order
ε and thus vanish in the limit ε→ 0.

The contribution σ̂SU is slightly more involved since here two di�erent types of matrix
elements appear: n and n + 1 particle ones. The complication arise due to the subtrac-
tion terms which consist of factorization formula for d dimensional matrix-elements. If
the resolved parton, whose soft and collinear limits are regularized by these factorization
formula, is set to four dimensions using the replacement (4.149) the factorization formula
do not match anymore. This can be circumvented by evaluating the factorization formula
at ε = 0. This is straight-forward in case of σ̂RVSU and σ̂C1

SU . Both contributions are sim-
ply evaluated with a four-dimensional phase space and four-dimensional matrix-elements
(and four-dimensional factorization formula). In case of σ̂RRSU it is important to note that
the splitting function arising from taking a pole has still to be treated in d dimensions
since it belongs to the limit of the still unresolved momentum which is not a�ected by
the replacement (4.149). The subtraction terms to these terms on the other hand need
to be evaluated at ε = 0 since those belong to limit of the four dimensional momentum.
This triple-collinear limit is an iterated one and thus the triple-collinear splitting function
factorizes into the product of two splitting functions. Similar to the previous case, the
δ functions appearing in replacement might contain combinations of reference and unre-
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Sector(pole) δ-function energy factor
triple collinear:
S1(η1) δ(−2ε)(r + u2)δ(−2ε)(u1) (r0 + u0

2)2ε(u0
1)2ε

S23(η2) δ(−2ε)(r + u1)δ(−2ε)(u2) (r0 + u0
1)2ε(u0

2)2ε

S4(η1) δ(−2ε)(r)δ(−2ε)(u1 + u2) (r0)2ε(u0
1 + u0

2)2ε

S5(η2) δ(−2ε)(r)δ(−2ε)(u1 + u2) (r0)2ε(u0
1 + u0

2)2ε

Si(ξ2) i ∈ {1, 23, 4, 5} δ(−2ε)(r)δ(−2ε)(u1) (r0)2ε(u0
1)2ε

double collinear
(η1) δ(−2ε)(r1 + u1)δ(−2ε)(r2)δ(−2ε)(u2) (r0

1 + u0
1)2ε(r0

2)2ε(u0
2)2ε

(η2) δ(−2ε)(r1)δ(−2ε)(r2)δ(−2ε)(u1) (r0
1)2ε(r0

2 + u0
2)2ε(u0

1)2ε

(ξ2) δ(−2ε)(r1)δ(−2ε)(r2 + u2)δ(−2ε)(u1) (r0
1)2ε(r0

2)2ε(u0
1)2ε

Table 4.6.: Energy factors arising from −2ε-dimensional delta function in σ̂RRSU .

solved momenta if the reference is in the �nal state. Which combination arises depends on
the sector and the pole taken to end up in σ̂RRSU , but they lead to similar expressions as in
(4.152). They are listed in table 4.6

A last remark on the number of dimensions for the unresolved phase spaces should be
made. In collinear poles the integration over the angles of the collinear parton can be
performed analytically since nothing depends on them. One has to be careful in some
cases arising in the σRR, since the angular parameterization of u1 and u2 is not fully
independent. In these cases one has to decouple them. In case of soft limits this situation
is di�erent since scalar products between the resolved and the unresolved partons depend
on their angles beyond four dimensions. If there is only one soft non-collinear parton, there
is an additional �fth dimension to be integrated over. In case of double-soft, non-collinear
limits, a sixth dimension needs to be taken into account.

4.6. 't Hooft-Veltman Corrections

The discussion of the 't Hooft-Veltman regularization relied on the assumption that it is
possible to identify or construct a set of corrections σ̂HV such that

σ̂SU,HV = σ̂SU − σ̂HV = �nite , (4.153)

σ̂DU,HV = σ̂DU + σ̂HV = �nite . (4.154)

Indeed it is possible to formulate an algorithmic approach which generates such a set of
corrections. This set, or distinct terms inside the set, will be called 't Hooft-Veltman
corrections. The algorithm presented below is in a certain sense independent of the exact
details of phase space parameterization as long as some general assumptions about the
parameterization hold. The details of this assumptions become clear during the derivation.
The way seperately �nite SU and DU contributions are obtained is completely di�erent
and independent from that presented in [217]. After outlining the general idea the 't Hooft-
Veltman corrections for the parameterization, presented in section 4.3, are derived.
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4.6.1. Measurement function based approach

The approach of generating the correction terms will make extensive use of the measure-
ment function Fm. Assume that the next-to-next-to-leading order measurement function
F appearing in all the contributions is replaced by a next-to-leading order measurement
function which would have the property Fn+1 6= 0 and Fn = 0. Obviously, this would
render σ̂DU and σ̂FR to zero since they are proportional to Fn. This also implies, through
the �niteness of the next-to-leading order cross section that σ̂SU has to be �nite. Indeed
σ̂SU then corresponds to contributions of a next-to-leading order calculation with a n+ 1
particle Born process:

σ̂RUSU → σ̂RU , σ̂RVSU → σ̂VU , σ̂C1
SU → σ̂C . (4.155)

The contributions σ̂RU ,σ̂
V
U and σ̂C may be written in the following form

σ̂VU =

∫
ddΦn+1IVn+1Fn+1 (4.156)

σ̂C =

∫
ddΦn+1ICn+1Fn+1 (4.157)

σ̂RU =
∑

pole terms

∫
ddΦn+1IRn+1Fn+1 . (4.158)

The sum in the σ̂RU case is performed over all sectors and all pole terms therein. That the
phase space integral Φn+1 can factorized out in real emission case, is a non trivial state-
ment and one requirement on the phase space parameterization. In case of the proposed
parameterization this feature can easily achieved, details follow in the next section. The
integrands Icn+1 are quite di�erent. In case of IVn+1 the expression can be obtained from
the Z(1) operator. The essential point here is that IVn+1 are only the explicit poles given
in expression (2.29) together with d dimensional (color-correlated) matrix-elements. If one
would expand IVn+1 in ε while keeping the matrix-elements unexpanded, the series would
terminate at O

(
ε−1
)
:

IVn+1 =
IV (−2)
n+1

ε2
+
IV (−1)
n+1

ε
. (4.159)

The convolution integrand ICn+1 contains an explicit pole in ε while the only other ε de-
pendent term is the scale ratio (µ2

R/µF )ε. An expansion in ε could be written as

ICn+1 =
IC(−1)
n+1

ε
+ IC(0)

n+1 +O(ε) (4.160)

the coe�cients IC(i)
n+1 still contain the convolution integrals over z and unexpanded d-

dimensional matrix-elements. Note that the coe�cient IC(0)
n+1 is proportional to ln

(
µ2
R/µ

2
F

)

and vanishes if both scales are chosen to be the same.

The integrand IRn+1 is slightly more complicated. Due to sector decomposition, this
term is build up from pole terms from possibly many di�erent sectors indicated by the
unspeci�ed sum in front. It includes the selector functions, factorization formulae and
(color-correlated) n+1 particle matrix elements. In addition, there might be further phase
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space integrations over the unresolved momentum. The pole terms come with explicit
poles in ε, which might reach ε−2. In each sector the integrand IRn+1 could be written as

IRn+1 =
IR(−2)
n+1

ε2
+
IR(−1)
n+1

ε
+ IR(0)

n+1 +O(ε) . (4.161)

Here again the d dimensional matrix elements are not expanded. However, the factorization
formula generated by writing these terms down are expanded in ε, as well as the unresolved
phase space integral dµ̃.
The matrix-elements are kept d-dimensional because in case of the next-to-next-to-

leading order calculation a further parton can be unresolved and the full d-dimensional
factorization formula are needed in order to not modify the �nite part with the 't Hooft-
Veltman corrections. As argued before, the �niteness of the next-to-leading order cross-
section implies that the pole cancellation does not depend on some special dependence on
the kinematics pf the matrix elements, and therefore pole cancellation, also hold without
taking their expansion in ε into account. The statement of �niteness of the next-to-leading
order cross-section can now be phrased in the following way

∑

c

∫
dΦn+1

[
Ic(−2)
n+1

ε2
+
Ic(−1)
n+1

ε

]
Fn+1 ≡

∑

c

Ic = 0 (4.162)

where c ∈ {R, V,C}. The sum over di�erent sectors in the R case is implicit. The NNLO
case with a next-to-leading order measurement function can be recovered by replacing
R → RR, V → RV and C → C1. There is no di�erence in the structure, nor changes in
the argumentation in that case.

Parameterized measurement function Before returning to the next-to-next-to-leading
order case, a tool in form of a parameterized measurement needs to be introduced. Let
Fαn+1 be a family of measurement functions with the following properties:

• Like all measurement functions it has to be infrared safe.

• If α 6= 0 then Fαn ≡ 0, while for α = 0, F 0
n can be any measurement function.

In other words, α 6= 0 corresponds to a next-to-leading order calculation within
a next-to-next-to-leading order calculation, a general next-to-next-to-leading order
calculation otherwise.

There are various ways to de�ne an explicit measurement functions which ful�lls these
properties. However, the following form allows for a simple construction of the 't Hooft-
Veltman corrections. The explicit form is motivated by phase space slicing methods. In
order to distinguish a n+ 1 and n particle con�gurations, a set of global infrared sensitive
observables is introduced. Here the variables used are the minimum angle between any
partons and the minimal energy-fraction of any parton with respect to some arbitrary
energy-scale Enorm

αη = min
i,j

ηij , with ηij =
1

2
(1− cos θij) , (4.163)

αξ = min
i
ξi , with ξi =

p0
i

Enorm
, (4.164)
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are used, i, j run over all resolved momenta entering the measurement function. The
parameterized measurement function can then be implemented as

Fαn+1 = Fn+1θ(αη − α)θ(αξ − α) ≡ Fn+1θηθξ (4.165)

with the usual Heaviside function θ and a usual measurement function Fn+1. For α 6= 0
this is a well-de�ned next-to-leading order measurement function and a proper next-to-
next-to-leading order measurement function for α = 0 which is inherited from Fn+1.

Identi�cation of 't Hooft-Veltman corrections Using the parameterized measurement
function the �niteness of the next-to-leading order statement becomes

∑

c

∫
dΦn+1

[
Ic(−2)
n+1

ε2
+
Ic(−1)
n+1

ε

]
Fn+1θ(αη − α)θ(αξ − α) ≡

∑

c

Ic = 0 . (4.166)

Returning to the full next-to-next-to-leading order case the structure of the contributions
σ̂cSU becomes slightly more complicated. Mainly, due to the presence of further subtraction
terms needed for the additional infrared limits which are now allowed again. The subtrac-
tion terms are valid for each term in the ε expansion such that the contribution can be
written as

σ̂cSU =

∫
ddΦn+1

[
Icn+1Fn+1 + IcnFn

]
(4.167)

=

∫
ddΦn+1

{[
Ic(−2)
n+1

ε2
+
Ic(−1)
n+1

ε
+ Ic(0)

n+1

]
Fn+1 +

[
Ic(−2)
n

ε2
+
Ic(−1)
n

ε
+ Ic(0)

n

]
Fn

}
.

(4.168)

The factorization formulae arising from the limits of the d-dimensional n + 1 matrix ele-
ments in Ic(i)n+1 coe�cients are also kept unexpanded in the corresponding Ic(i)n terms. Lets
investigate the di�erence σ̂cSU − Ic. Reshu�eling the di�erent terms one �nds

σ̂cSU − Ic =

∫
ddΦn+1

[
Ic(−2)
n+1 Fn+1 + Ic(−2)

n Fn

ε2
+
Ic(−1)
n+1 Fn+1 + Ic(−1)

n Fn

ε

]
(1− θηθξ)

(4.169)

+

∫
ddΦn+1

[
Ic(0)
n+1Fn+1 + Ic(0)

n Fn

]
+

∫
ddΦn+1

[
Ic(−2)
n

ε2
+
Ic(−1)
n

ε

]
Fnθηθξ

(4.170)

≡ Zc(α) + Cc +N c(α) . (4.171)

Nothing happened except reordering di�erent terms. However, the functions Zc(α), Cc and
N c(α) have some remarkable properties. Firstly, Cc does not depend on the parameter
α at all and it does not contain any poles in ε. Secondly, Zc(α) consist of a phase space
integral over an integrable function times the factor (1 − θηθξ) which restricts the phase
space domain. If α now would tend to zero, the integration volume and therefore Zc(α)
vanish, i.e. limα→0 Z

c(α) = 0. All contributions to poles in ε that do not vanish in the
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limit α→ 0 are located in the function

N c(α) =

∫
ddΦn+1

[
Ic(−2)
n

ε2
+
Ic(−1)
n

ε

]
Fnθηθξ (4.172)

The phase space integral over dΦn+1 contains the integration over the angle and energy
variables η and ξ of an unresolved momentum which give rise to divergences, which are
regulated by α. The integrals are all of the form

∫ 1

0

dx

x1+aε
θ(x− fα) . (4.173)

Thus the integration gives rise to logarithms of the parameter α, similar to those in slicing
methods, and N c can be expressed as a power log series

N c(α) =

lmax∑

k=0

lnk(α)N c
k(α) . (4.174)

where the coe�cientsN c
k(α) are regular functions in α. In particular, the limit limα→0N

c
k(α)

must exist.

For the complete single unresolved contribution σ̂SU the following rearrangement can be
made:

σ̂SU = σ̂SU −
∑

c

Ic

︸ ︷︷ ︸
=0

=
∑

c

(σ̂cSU − Ic) =
∑

c

(Zc(α) + Cc +N c(α)) (4.175)

Since the left-hand side of this equation does not depend on α, also the right-hand side has
to be independent of α. The Zc(α) are regular functions of α; in particular they vanish in
the limit α→ 0. This leads to the conclusion that the logarithms appearing in expression
4.174 have to cancel across the di�erent contributions c. Therefore all terms proportional
to a logarithm can be safely removed and an expression arises where the limit α→ 0 can
be performed safely. In this limit only

∑

c

N c
0(0) ≡ σ̂HV (4.176)

remains. After subtracting σ̂HV from σ̂SU , all poles are removed and �nite quantity is
obtained. Adding them back to σ̂DU , which is possible since σ̂HV is also proportional to
Fn, yields the two separately �nite contributions

σ̂SU,HV = σ̂SU − σ̂HV and , σ̂DU,HV = σ̂DU + σ̂HV . (4.177)

This evaluation has to be done completely in d dimensions. However after this procedure
the 't Hooft-Veltman regularization discussed in the previous section can be applied. The
last missing pieces are the functions N c

0(0). Their form depends on the parameterization
and the explicit form of the θ function used. For the speci�c choice for θ in equation (4.165)
and the phase space parameterization their derivation can be found in the next section.
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4.6.2. Calculation of 't Hooft-Veltman corrections

In order to obtain N c
0(0), the integrals in N c(α) over the angle and energy of the unre-

solved parton have to be evaluated, whose limits are regulated by the θ step functions.
Fortunately, the integrands are end-point subtraction terms generated through the master
formula. Therefore the subtraction term f(0) for variable x depends only trivially on x
through the denominator. The minimum condition in the de�nition (4.164) needs some
additional discussion, since the step functions are not a�ected by the plus description. It
is essential that only the relevant angle and energy fraction in each sector give rise to a
non vanishing contribution in the limit α→ 0. This is true since all other singular limits,
i.e. ηij → 0 and/or ξi → 0 with i 6= u and j 6= r, are regulated by the selector function.
Thus they give a contribution ∼ α after integration which can therefore be neglected and
the αη and αξ variables adapt to the relevant expression in each sector. A toy-model for
such a situation would be a function f(x) that depends only on one variable x and after
the procedure described above the following integral needs to be evaluated

N(α) =

∫ 1

0

dxf(0)

x1+aε
θ(x− α) . (4.178)

The integral can be simply performed and yields

N(α) = −1− α−aε
aε

. (4.179)

Thus the calculation of the 't Hooft-Veltman corrections boils down to integrals over step
functions. There are two important aspects that have to be taken into account, especially
in the double real contribution. As one can see in the toy-model, the simple form of the
step function there generates only logarithms α. If such an integral is encountered in the
evaluation of the corrections, this term can immediately be dropped, since the logarithms
have to cancel in the �nal result. This is certainly not the case if, for instance, the step
function would look like θ(x− cα) where c is some constant or even a function of x. If it is
a constant in x, logarithms of c are generate in addition to those of α. It is slightly more
complicated if the functions depends on x. The �rst thing to note is, that this function
has to have a non-vanishing limit for x → 0 ,e.g. c(0) = c0 6= 0. If this would not be the
case the θ function would not regulated the infrared limits, and the construction would not
make any sense, therefore it is assumed by construction. This then leads to the following
way to handle such situations

N(α) = f(0)

∫ 1

0

dx

x1+aε
θ(x− c(x)α) (4.180)

= f(0)

∫ 1

0

dx

x1+aε
θ(x− c(0)α) + f(0)

∫ 1

0

dx

x1+aε
(θ(x− c(x)α)− θ(x− c(0)α)) .

(4.181)

The �rst term can be evaluated easily while the second vanishes in the limit α→ 0. With
this general considerations the evaluation of corrections can be performed.

Notation Some notation needs to be introduced to organize the calculation. The relevant
variables are x = {η1, ξ1, η2, ξ2} in the double real contribution and x = {η, ξ} in real-
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virtual and single-convolution contributions. The object x is used to identify the various
terms. Whenever there is a pole term the corresponding variable is replaced by �Pole�, if
it is an endpoint-subtraction the variable is replaced by �Subt�. The explicit integrations
are always over �Subt�-terms and performed integrations will be denoted by �Int� for the
corresponding variable. If the variable is not treated in any way the label is �Reg�. For
example denotes

{Reg, Int,Pole, Subt} (4.182)

a term which is obtained from taking the subtraction term in ξ2 and ξ1 for pole term
generated by the �+�-prescription in the variable η2 and integrate explicitly over ξ1.

Double-real contributions

The contribution from single-unresolved double-real radiation to σ̂HV is split up across
di�erent sectors. Fortunately, the correction terms can be written in a form such that they
can applied for any process under consideration. Process and sector speci�c information
like the �avor structure and position of the reference momentum do not in�uence the
derivation and can be restored afterwards. The structure of double pole terms (xi = xj =
"pole") with no further subtraction appearing in σ̂RRSU is the following

· · ·
∫ 1

0

∫ 1

0
dxidxj

∏

k 6=i,j

∫ 1

0

dxk

x1−bkε
k

dµ̃1
reg(x)dµ̃2

reg(x)MregFn+2

(−δ(xi)
biε

)(−δ(xj)
bjε

)
.

(4.183)

The integration over the δ functions results in one of the momenta entering the matrix
element become soft-collinear to the reference. Let us assume that u2 is the unresolved
momentum. The matrix element then factorizes

Mreg = freg(x)M′reg (4.184)

where the function freg(x) denotes the factorization formula describing limit of |M0
n+2|2

regularized by suitable powers of the xi. Expanding freg and dµ̃2
reg together with the ε−2

pole in ε up to ε−1 yields the expression for IRR,(−1,−2)
n+1 . Since this is a soft limit freg = f0

reg

does not depend on ε,

· · ·
∏

k 6=i,j

∫ 1

0

dxk

x1+bkε
k

dµ̃1
reg(x)




dµ̃
2,(0)
reg (x)f0

reg(x)M′reg
ε2︸ ︷︷ ︸

IRR,(−2)
n+1 (x)

+
dµ̃

2,(1)
reg (x)f0

reg(x)M′reg
ε1︸ ︷︷ ︸

IRR,(−1)
n+1 (x)



Fn+1

(4.185)

Using the master-formula on the remaining xi's generates then the corresponding IRR,(−1,−2)
n

terms. Renaming the remaining two variables y and z, one �nds

IRR,(i)n = −IRR,(i)n+1 (y, 0)− IRR,(i)n+1 (0, z) + IRR,(i)n+1 (0, 0) . (4.186)
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Due to the additional limit (y and/or z → 0) the coe�cients IRR,(i)n+1 take the form

dµ̃2,(0)
reg f0

regf
′
regM′′ (4.187)

with a tree-level matrix-element M′′. Putting this formula into (4.172) the contribution
to NRR(α) is

NRR(α) 3
∫ 1

0

dy

y1+byε

dz

z1+bzε

(
−f (i)(y, 0)− f (i)(0, z) + f (i)(0, 0)

)
θα (4.188)

the function f (i) abbreviates the unresolved phase space weight dµ̃1
reg(x),IRR,(i)n+1 , the mea-

surement function Fn and the tree-level phase space integration, while θα are the regular-
izing step functions. This integral can now be evaluated by simple reshu�ing of terms of
three integrals.

−
∫ 1

0

dy

y1+byε

dz

z1+bzε

(
f (i)(y, 0)− f (i)(0, 0)

)
θα (4.189)

−
∫ 1

0

dy

y1+byε

dz

z1+bzε

(
f (i)(0, z)− f (i)(0, 0)

)
θα (4.190)

+

∫ 1

0

dy

y1+byε

dz

z1+bzε
f (i)(0, 0)θα (4.191)

In the last integral nothing depends on the integration variables, except the step-function.
Therefore the integration can be performed directly. In the other cases, one integration
variable is regulated by a subtraction term. The corresponding integration can not be
performed in general since the dependence might be complicated, but the step-function
does not have to regularize the corresponding limit anymore. This means that there are no
logarithm connected to this variable after integration. The other integration can however
be performed and give rise to corresponding logarithms and other terms.

After discussing this at length all other cases are following along the same lines. Single-
pole contributions are simpler in respect of the expansion in ε since only the lowest order
contributes there. But they become more complicated due to an additional integrations
over the angle or energy of the unresolved momentum. However, the same procedure works
for all contributions. Only in the special case, further discussion is necessary due to the
di�erent way of constructing the phase space.

Since the integrals over the step-functions are trivial, only the pole and subtraction
combinations that will contribute to the corrections which do not cancel are stated in
table 4.7. Some of the details for each sector are discussed below.

Sector S1 In sector S1 u1 is the resolved momentum in the single-unresolved con�gura-
tions and therefore the step-functions in all pole-terms are

θ(η1 − α)θ(ξ1(u0
1)max(η1)/Enorm − α) . (4.192)

Thus, whenever an integration over η1 can be performed, the result will always be propor-
tional to logarithms of α, and therefore it cancels.
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Sector SU pole contributing terms {η1, ξ1, η2, ξ2}
S1 {η2, ξ2} {Reg, Int,Pole,Pole}

{η2} {Reg, Int,Pole,Reg}
{ξ2} {Reg, Int,Reg,Pole}

S23 {η1} {Pole, Int,Reg, Int}, {Pole, Int,Reg,Reg}, {Pole,Reg,Reg, Int}
{ξ2} {Int, Int, Int,Pole}, {Reg, Int, Int,Pole}, {Int,Reg, Int,Pole}

{Int, Int,Reg,Pole}, {Reg,Reg, Int,Pole}, {Reg, Int,Reg,Pole}
{Int,Reg,Reg,Pole}

S4 {η2, ξ2} {Reg, Int,Pole,Pole}
{η2} {Reg, Int,Pole,Reg}
{ξ2} {Reg, Int,Reg,Pole}

S5 {η1, ξ2} {Pole, Int,Reg,Pole}
{η1} {Pole, Int,Reg,Reg}
{ξ2} {Reg∗, Int, Int,Pole}, {Reg, Int,Reg,Pole}

S6 {η2, ξ2} {Reg, Int,Pole,Pole}
{η2} {Reg, Int,Pole,Reg}
{ξ2} {Reg, Int,Reg,Pole}
{η1} {Pole, Int,Reg, Int}, {Pole, Int,Reg,Reg}, {Pole,Reg,Reg, Int}

special case : all terms contribute

Table 4.7.: Contributing terms from triple-collinear sectors. All Reg's can also be Subt,
except for Reg∗ which is only Reg.

Sector S23 In sector S23 two di�erent situations arise depending one the pole that has to
be taken. In case of the ξ2 pole, u1 is resolved in SU and the step-function reads

θ(η1η2/2− α)θ(ξ1(u0
1)max(η1η2/2)/Enorm − α) . (4.193)

Both step functions contain non trivial functions and therefore all possible integrations
contribute. In case of a η1 pole, u2 is the resolved momentum and the step function is

θ(η2 − α)θ(ξ2ξ1(u0
2)max(0, η2, ξ1)/Enorm − α) . (4.194)

Therefore all integrations over η2 generate only logarithms. The other integrations, how-
ever, give non-trivial terms.

Sector S4 The situation in sector S4 is identical to S1, since the resolved parton is either
u1 (soft pole in ξ2) or u1 + u2 (collinear pole in η2) which behaves in both cases like u1 in
sector S1 due to the special energy parameterization.

Sector S5 Here the resolved parton, similar to S4 is either u1 or u1 + u2. As discussed
in section 4.4.2, in the soft case the directions of the unresolved parton determines the
direction of the resolved parton which leads to a special pattern in the θ functions. They
are in case of a collinear or soft-collinear pole

θ(η2 − α)θ(ξ1(u0
12)/Enorm − α) (4.195)
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similar to sector S4. But in the soft case they read

θ(η2(1− η1/2)− α)θ(ξ1(u0
12)/Enorm − α) . (4.196)

the dependence in the �rst θ-function is such that in case of a subtraction term in η1 only
logarithms arise from the η2 integration. Therefore, only for regular η1 there is a non trivial
contribution to the correction terms.

Sector S6 Here two case have to distinguished. If the SU pole is not η1, u1 is the resolved
momentum and the same θ-functions as in sector S1 are found, with the same corrections.
Otherwise the case of the η1 pole in sector S23 is recovered with the same conclusions.

Sector S6 - special case In all other cases the parameterization of the unresolved and
reference momenta is done directly in the laboratory frame. Therefore the angular and
energy variables correspond directly to the variables entering the step function. In the
special case, where n = 2 and both references are located in the �nal state, this is di�erent
as discussed in section 4.3. The angles and energies are parameterized in the center-of-
mass frame of the references. The momenta are boosted afterwards to the lab-frame.
The boosted angles and energies then enter the θ-functions. This a�ects the corrections
obtained. The laboratory and center-of-mass system are connected by a boost in z direction
with a rapidity y, where

exp(y) =
|~q|+ q0

q2
withq = r1 + r2 (4.197)

The e�ect of this boost on the unresolved momenta can be written as

u0
lab = u0

cms

(
cosh(y) + ~̂u~̂z sinh(y)

)
(4.198)

~ulab = ~ucms + u0
cms~̂z

(
sinh(y) + ~̂u~̂z(cosh(y)− 1)

)
(4.199)

ant thus the θ-function can be written as

θ(ηlab − α)θ(ξlab − α) = θ

(
η

[
r0
lab

r0
cms

u0
lab

u0
cms

]−1

− α
)
θ(ξu0

lab/Enorm − α) (4.200)

The additional factor in front of η will result in more terms contributing across all pole
cases, since this integral does not create only pure logarithms of α anymore.

Real-virtual contribution

The real-virtual contribution is given by

σ̂RV =
1

2s

1

N

∫
dΦn+1

[
2 Re

〈
M(0)

n+1

∣∣∣M(1)
n+1

〉
Fn+1 + (subt. terms ∼ Fn)

]
(4.201)

In each sector the phase space is parameterized with the single-collinear parameterization
and the one-loop matrix element can be viewed as a function f(ξ, η). The dependence
on the other angular variables as well as the Born kinematic is suppressed here. Due to
the virtual integrations the scaling behaviour of this function is not trivial in the infrared
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4. Real radiation contribution

limits η, ξ → 0. Relevant for the discussion of the 't Hooft-Veltman corrections are only
the parts proportional to tree-level matrix elements, since only those contribute to σ̂RVSU . In
the collinear limit, the one-loop matrix element factorizes as in formula (2.49). The terms

(s12)−ε and

(
z

1− z

)ε
(4.202)

give rise to altered scaling, schematically

lim
η→0

f(η, ξ) = f (η,0)(ξ) + η−εξ−εf (η,1)(ξ) + η−εξ−2εf (η,2)(ξ) . (4.203)

In the soft limit ξ → 0 the formula (2.47) applies and a term with

(Sij)
ε (4.204)

arises and introduces the following limit behaviour

lim
ξ→0

f(η, ξ) = f (ξ,0)(η) + ξ−2εf (ξ,1)(η) . (4.205)

By investigating, for instance, the soft limit of the collinear limit the scaling of the soft-
collinear limit can be determined to be

lim
η→0,ξ→0

f(η, ξ) = f (ηξ,0) + η−εξ−2εf (ηξ,1) (4.206)

with f (ηξ,0) ≡ f (η,0)(0) and f (ηξ,1) ≡ f (η,2)(0). Furthermore, one can show that f (η,1)(0) =
0. The soft and the collinear commute and therefore the following relation holds for the
soft subtraction terms

lim
η→0

f (ξ,1)(η) = η−εf (ηξ,1) (4.207)

or, equivalently, a function f (ξ,reg) = f (ξ,1)(η) − η−εf (ηξ,1) can be de�ned which vanishes
in the η → 0 limit. Using the above limit expression as subtraction terms, expanding
everything in ε up to ε−1 and keeping the part contributing to NRV (α), results in

NRV (α)|ε−2 =

∫

ξη

1

ε2

[
−fη,0(−2) − fη,1(−2) − fη,2(−2) − f ξ,0(−2) − f ξ,reg(−2) + fηξ,0(−2)

]

(4.208)

NRV (α)|ε−1 =

∫

ξη

1

ε1

[
−fη,0(−1) − fη,1(−1) − fη,2(−1) − f ξ,0(−1) − f ξ,reg(−1) + fηξ,0(−1)

+ ln(η)
(
fη,1(−2) + fη,2(−2)

)

− ln(µ)
(
fη,1(−2) + fη,2(−2) + f (ξ,reg)(−2)

)

+ ln(ξ)
(
fη,1(−2) + 2fη,2(−2) + 2f ξ,reg(−2)

)]
(4.209)
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4.6. 't Hooft-Veltman Corrections

where the ε expansions

fa =
∑

i=−2

fa(i)εi (4.210)

are used. Additionally, the dependence on the renormalization scale through the one-loop
splitting and soft function is made explicit. Similar to the double-pole case in the double-
real contribution the di�erent terms can be rearranged such that the either integrals over
η and/or ξ can be performed or are regulated by subtraction terms. Whenever an integral
over η can be performed the result is proportional to lnα. For functions not related to
altered scaling, the f c,0(i) functions, one �nds

NRV
0 (0) 3−1

2ε

(
f ξ,0(−2)(η)

ε2
+
f ξ,0(−1)(η)

ε

)
·
[(

Enorm

u0
max(η)

)−2ε

− 1

]

− −1

2ε

(
fηξ,0(−2)

ε2
+
fηξ,0(−1)

ε

)
·
[(

Enorm

u0
max(0)

)−2ε

− 1

]
. (4.211)

The functions f ξ,1 and fηξ,1 also contribute to the 't Hooft-Veltman corrections:

NRV
0 (0) 3−1

2ε

(
f ξ,0(−2)(η)

ε2

)
·
[

2ε

(
Enorm

u0
max(η)

)−2ε

ln

(
Enorm

u0
max(η)

)]

+

(
f ξ,0(−1)(η)

ε

)
·
[(

Enorm

u0
max(η)

)−2ε

− 1

]
(4.212)

and

NRV
0 (0) 3 − −1

2ε

(
fηξ,0(−2)(0)

ε2

)
·
[

2ε

(
Enorm

u0
max(0)

)−2ε

ln

(
Enorm

u0
max(η)

)

+

((
Enorm

u0
max(η)

)−2ε

− 1

)
ln η

]
+

(
fηξ,0(−1)(0)

ε

)
·
[(

Enorm

u0
max(0)

)−2ε

− 1

]
.

(4.213)

Finally, the following set of terms involving the renormalization scale concludes the real-
virtual corrections

NRV
0 (0) 3−1

2ε

(
f ξ,1(−2)(η)

ε
lnµ2

)
·
[(

Enorm

u0
max(η)

)−2ε

− 1

]

− −1

2ε

(
fηξ,1(−2)

ε
lnµ2

)
·
[(

Enorm

u0
max(0)

)−2ε

− 1

]
. (4.214)
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4. Real radiation contribution

Collinear factorization contribution

Finally, there is the collinear factorization contribution. The contribution σ̂C1
SU starts at

ε−1 and since the matrix elements are not expanded, only

σ̂C1
SU ∼

1

ε

(
µF
µR

)ε
=

1

ε
+O

(
ε0
)

(4.215)

has to be considered. Since the convolution does not interfere with the integration over η
or ξ, the contribution, similar to the real-virtual case, can be considered as

σ̂C1
SU ∼

∫
dξdη (f(η, ξ)− f(η, 0)− f(0, ξ) + f(0, 0)) (4.216)

One immediately �nds by applying the same techniques as discussed above

NC1
0 (0) =

−1

2ε

f(η, 0)

ε

[(
Enorm

u0
max(η)

)−2ε

− 1

]
− −1

2ε

f(0, 0)

ε

[(
Enorm

u0
max(0)

)−2ε

− 1

]
(4.217)

Final remarks

The derived corrections need to be subtracted from σ̂SU and added back σ̂DU . However,
the corrections are similar to terms already contained in σ̂RRDU ,σ̂

RV
DU and σ̂C1

DU . They can be
matched by identifying integrated variables with pole terms. Then the corrections amount
to multiplications of the derived factors without the function placeholder f .
The �nite results of a next-to-next-to-leading order calculation does not depend on the

introduced energy scale Enorm. Thus it can be set to an arbitrary value. This on the one
hand can be used to check the implementation by varying the value and on the other hand
to steer a little bit the cancellation of the corresponding logarithms.

100



5. Top-pair production and decay at

NNLO in QCD

In the previous three chapters, all necessary components for top-quark pair production and
decay in NWA were presented. Consider the following processes

pp→ tt̄→ bb̄W+W− → b¯̀+`
′−ν`ν̄`′ (5.1)

with ` = {e, µ}. The top-quarks, as well as the W -bosons, are treated within the Narrow-
Width-Approximation. In this chapter the calculation of this process through NNLO in
QCD is presented. The implementation of the four-dimensional STRIPPER scheme was
modi�ed in such a way that it can handle decaying massive particles and spin-correlations.

5.1. Treament of top-quark width in perturbation theory

The width of the top-quark Γt entering the calculation needs an additional discussion.
As discussed, the width can be evaluated in perturbation theory and enteres within the
Narrow-Width-Approximation through the on-shell top quark propagators. Schematically
the (di�erential) cross section might be written as follows

dσ = dσtt̄ ×
dΓt
Γt
× dΓt̄

Γt
(5.2)

with the total top-decay width Γt, the on-shell top-quark production σtt̄ and the di�erential
decay rate dΓt,l to leptons. The × symbol represents the treatment of the spin-correlation
which is taken into account here. Since also the W -bosons are also treated within the
NWA the total decay rate can be further factorized to

Γt = Γ(t→ bW+)
∑

ff ′

Γ(W+ → ff ′)
ΓW

, (5.3)

assuming a diagonal CKM matrix. When interested in leptonic �nal states, the di�erential
decay rate is given by

dΓt = dΓ(t→ bW+)
∑

f∈{e,µ}

dΓ(W+ → fνf )

ΓW
; (5.4)

and similiar for the anti-top-quark. Assuming that there are no phase space cuts involved,
the integration over the phase space would yield

σ = σtt̄


 ∑

f,f ′∈{e,µ}
BR(W+ → f+νf )BR(W− → f

′−ν̄ ′f )


 (5.5)
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5. Top-pair production and decay at NNLO in QCD

Thus just the production cross section times the branching fractions of the channel are
under condsideration. This property should hold in perturbation theory to all orders. This
can be achieved by consitently expanding expression 5.2 in αs [60]. Each component can
be written as an expansion in αs

dσtt̄ = dσ
(0)
tt̄

+ αsdσ
(1)
tt̄

+ αs
2dσ

(2)
tt̄

(5.6)

dΓt(t̄) = dΓ
(0)
t(t̄)

+ αsdΓ
(1)
t(t̄)

+ αs
2dΓ

(2)
t(t̄)

(5.7)

Γt = Γ
(0)
t + αsΓ

(1)
t + αs

2Γ
(2)
t . (5.8)

Up to NNLO the expansion to the full expression reads

dσ = dσLO + αsdσ
NLO + αs

2dσNNLO (5.9)

with

dσLO =≡ σLOxLO (5.10)

dσNLO = dσNLOxLO + dσLOxNLO − 2Γ
(1)
t

Γ
(0)
t

dσLO (5.11)

dσNNLO = dσNNLOxLO + dσNLOxNLO + dσLOxNNLO

− 2Γ
(1)
t

Γ
(0)
t

dσNLO +

(
3Γ

(1)2
t

Γ
(0)2
t

− 2Γ
(0)
t Γ

(2)
t

Γ
(0)2
t

)
dσLO (5.12)

where contributions are combined according to whether the corrections are located in the
production and/or decays, which gives

dσLOxLO = dσ
(0)
tt̄
× dΓ

(0)
t

Γ
(0)
t

× dΓ
(0)
t̄

Γ
(0)
t

(5.13)

dσNLOxLO = dσ
(1)
tt̄
× dΓ

(0)
t

Γ
(0)
t

× dΓ
(0)
t̄

Γ
(0)
t

(5.14)

dσNNLOxLO = dσ
(2)
tt̄
× dΓ

(0)
t

Γ
(0)
t

× dΓ
(0)
t̄

Γ
(0)
t

(5.15)

dσLOxNLO = dσ
(0)
tt̄
×
(

dΓ
(1)
t

Γ
(0)
t

× dΓ
(0)
t̄

Γ
(0)
t

+
dΓ

(0)
t

Γ
(0)
t

× dΓ
(1)
t̄

Γ
(0)
t

)
(5.16)

dσLOxNNLO = dσ
(0)
tt̄
×
(

dΓ
(2)
t

Γ
(0)
t

× dΓ
(0)
t̄

Γ
(0)
t

+
dΓ

(0)
t

Γ
(0)
t

× dΓ
(2)
t̄

Γ
(0)
t

+
dΓ

(1)
t

Γ
(0)
t

× dΓ
(1)
t̄

Γ
(0)
t

)
(5.17)

dσNLOxNLO = dσ
(1)
tt̄
×
(

dΓ
(1)
t

Γ
(0)
t

× dΓ
(0)
t̄

Γ
(0)
t

+
dΓ

(0)
t

Γ
(0)
t

× dΓ
(1)
t̄

Γ
(0)
t

)
. (5.18)

It can be checked explicitly that this treatment preserves the property 5.5. A further
advantage of this approach is that all calculations can be performed with the leading order
width, and the additional terms can be obtained by simple rescaling. The dependence of
the width on the renormalization scale is kept and the complete expression 5.12 is evaluated
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conistently at the same scale µ.

The total top decay width with µ = mt = 173.3 GeV, is up to O
(
αs

2
)
, given by

Γ(t→ bW+) = Γ(0)
(
1− 1.20αs(µ)− αs2(µ)2.67

)
. (5.19)

For an on-shell renormalized top-quark mass, only αs depends on µ and the RGE equation

dΓ

d lnµ2
= 0 (5.20)

holds. From this the scale dependence can easily be restored.

5.2. Dipole subtraction for decay corrections

The next-to-leading order corrections to the decay is done in a special way. The reason is
their appeareance in the contribution

dσNLOxNLO = dσ
(1)
tt̄
×
(

dΓ
(1)
t

Γ
(0)
t

× dΓ
(0)
t̄

Γ
(0)
t

+
dΓ

(0)
t

Γ
(0)
t

× dΓ
(1)
t̄

Γ
(0)
t

)
. (5.21)

Here, next-to-leading order contributions from the production and the decay have to be
handled at the same time. There is no conceptual problem in performing this calculation
with the STRIPPER scheme, but it became evident that it is not very convenient to build
this in the existing code. Therefore the NLO corrections to the decay are treated outside
the STRIPPER scheme. Writing the NLO contribution of the decay width as

Γ
(1)
t = ΓRt + ΓVt (5.22)

=

∫
ddΦ3

〈
M(0)

3

∣∣∣M(0)
3

〉
+

∫
ddΦ22 Re

〈
M(0)

2

∣∣∣M(1)
2

〉
(5.23)

the infrared divergencies are handled with the methods presented in [223], i.e. with a
dipole subtraction scheme.

To the real radiation contribution ΓR only the process

t→ bW+g (5.24)

contributes. The matrix element can be written in a factorized form

〈Γ+1|Γ+1〉 = g2CF

{[ 1

pb.pg

( 2

1− z − 1− z
)
− m2

t

(pt.pg)2

]
〈Γ|Γ〉

+ 8m2
t

GF√
2

[ y

1− z
( 3

(1 + r)
− r2 + 2r − 5

2

)
+

(1 + 2r2)

(1− z) − 1
]}

.

(5.25)

Two singular limits need to be regulated. The soft limit of the gluon, were pt · pg and
pb · pg vanish, as well as the collinear limit of the gluon and the b-quark, where only pb · pg
generates a divergence. Following the form of the matrix element, the subtraction term is
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5. Top-pair production and decay at NNLO in QCD

chosen to be

D((pt + pg)
2, (pb + pg)

2,m2
t ,m

2
W ) =

4πCF

[
1

pb · pg

(
2

1− z − 1− z − ε(1− z)
)
− m2

t

(pt · pg)2

]
(5.26)

such that
∫

ddΦ3

(〈
M(0)

3

∣∣∣M(0)
3

〉
−D ·

〈
M(0)

2

∣∣∣M(0)
2

〉)
(5.27)

is integrable. The momenta p̃b and p̃W entering the matrix-element
〈
M(0)

2

∣∣∣M(0)
2

〉
are

obtained by a mapping from the full kinematics. One can achieve this by a Lorentz-
transformation such that

p̃W = α

(
pW −

pt · pW
p2
t

)
+ βpt with α =

p2
t − p2

W

2
√

(pt · pW )2 − p2
W p

2
t

β =
p2
t + p2

W

2p2
t

(5.28)

and p̃b is �xed through p̃b = pt− p̃W . The integrated dipole can then be obtained from the
integration over the gluon phase space. Due to the Lorentz invariance of the phase space
measure the integrated dipole can be written as

dΓI = dΦ3D · 〈M2|M2〉 = dΦ2(p̃w, p̃b) 〈M2|M2〉
∫

dµ0(pg)D (5.29)

where the integral evaluates to

∫
dµ0(pg)D =

αsCF
2π

(4π)ε

Γ(1− ε)

(
µ2

m2
t

)ε [
1

ε2
+

1

ε

(
5

2
− 2 ln(1− x)

)

+
25

4
+

1

2

(
1

(1− x)2
− 8

1− x + 7

)
lnx+

1

2(1− x)
+ 2Li2(1− x)

−5π2

6
− 5 ln(1− x) + 2 ln2(1− x) +

1

2

]
. (5.30)

The virtual corrections at one-loop are given in terms of a form-factor, see equation 2.87
in section 2,

〈ht, hb, hW |Γ2〉 = ū(hb, pb)F
µu(ht, pt)εµ(hW , pW ) (5.31)

withFµ = γµPL

[
1 +

αs
4π
C0

]
+ PRp

µ
b

[αs
4π
C1

]
(5.32)

The virtual contribution needs to be combined with the integrated dipole in equation 5.30
and the cancellation of poles can be performed on form factor level, since one might write
the integrated dipole as

dΓI = dΦ22 Re
〈

Γ(0)
∣∣∣I
〉

(5.33)

due to the absence of an imaginary part in 5.30. The next-to-leading order decay rate can
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then be phrased as

Γ
(1)
t = ΓRS + ΓV I (5.34)

=

∫
ddΦ3

(〈
Γ

(0)
3

∣∣∣Γ(0)
3

〉
−D

〈
Γ

(2)
0

∣∣∣Γ(2)
0

〉)
+

∫
ddΦ22 Re

〈
Γ(0)

∣∣∣Γ(1) + I
〉
. (5.35)

The construction holds in a similar manner in case of polarized top-quarks and can therefore
be incorporated in a straight forward manner in the Narrow-Width-Approximation.

5.3. Results for LHC

Equipped with the methods discussed so far, many di�erent particle phenomena can be
investigated and the phenomology discussed here is only the starting point for various
investigations. In this section, a �rst application of the developed framework to LHC
phenomenology is presented. All results are prelimary in the sense that they are checked
for consistency and also a set of cross-checks of di�erent parts against existing calculations
were performed, but they are not published yet. This is the �rst calculation of this process
(within NWA) through NNLO in QCD, even though the production and the decay at NNLO
are known already for quite some time. The double polarized matrix-element, were the
missing piece to perform the combination of the known results. The setup presented below
is chosen such that a comparision with CMS [135] data and the approximate calculation
presented in [224] can be performed.

mt 173.3 GeV
mW 80.385 GeV
mZ 91.1876 GeV
ΓW 2.0928 GeV
GF 1.16379 · 10−5 Gev2

Table 5.1.: Input parameters for calculation

For all calculations presented in the following, the input parameters listed in table 5.1
were used. The GF -scheme for the electro-weak sector is imployed. Then the electo-weak
coupling and mixing-angle are de�ned by mZ , mW and GF

sin θW =
mW

mZ
(5.36)

gw =

√
GF 8m2

W√
2

. (5.37)

The leading order decay width of the top-quark evaluated with this input amounts to

Γ(0) = 1.5048GeV (5.38)

while equation 5.19 can be used to obtained higher order coe�cients appearing in 5.12 and
their scale dependence. The width is evaluated at the same scale as all other contributions
and is subject to the scale variations for the uncertainty estimation. The MMHT2014 LO,
NLO, NNLO PDF sets together with their values for αs(mZ) were used for the correspond-
ing predictions.
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Setup LO [pb] NLO [pb] NNLO [pb] ˆNNLO [pb] CMS [pb]

CMS @ 8TeV 3.780+37%
−25% 4.48+9%

−11% 4.61+1%
−4% 4.87+2.5%

−6.8% 4.73+4.7%
−4.7%

Table 5.2.: Fiducial cross section predictions for the CMS setup at LO, NLO, NNLO in
QCD as well as ˆNNLO predictions from [224]. The theory is compared to
measurements of CMS [135].

The estimation of the theoretical uncertainty is made with the help of scale variations.
Formally, the dependence of a theory prediction from perturbation theory up to given or-
der on the renormalization and factorization scale is of one order higher in the coupling.
Concequently, the dependence of the results are expected to become smaller when moving
to higher orders in perturbation theory. The residual scale dependence might be used to
estimate the e�ect of higher orders. Heuristically this method provides resonable error es-
timates and in many cases the next order lies within the uncertainty bands of the previous
order. In the case at hand, the uncertainty bands are estimated by varying the renormal-
ization and factorization scale simultanously with µ = µR = µF ∈ [mt/2, 2mt]. A more
rigorous estimation of the error, including o�-diagonal variations and PDF uncertainties,
is left for further investigations.

5.3.1. Fiducial cross sections

The most inclusive observable is the total cross-section. From a theory point of view, no
phase space cuts are necessary to de�ne the �nal state. However, at CMS and ATLAS only
�ducial cross-sections are measured, since the detectors do not cover the full phase space.
In table 5.2 �ducial cross-section predictions for various �ducial volumes are presented.
They are compared to measurements from CMS [135]. Predictions for CMS are presented
in the full dilepton channel at 8TeV. The �ducial volumes are de�ned through cuts on the
�nal state lepton and reconstructed b-jets. For the leptons a pT of 20 Gev and |η(`)| < 2.4 is
required. Additionally, two b-jets (anti-kt, R = 0.5) with pT (Jb) > 30 GeV and |η(Jb)| < 2.4
have to be present.
The transverse momentum pT of a particle (or jet) with momentum p is de�ned as

pT =
√
p2
x + p2

y . (5.39)

The rapidity is de�ned for massless particles as

y =
1

2
ln

(
p0 + pz
p0 − pz

)
(5.40)

and corresponds to the boost that has to be applied in z direction to bring the particle in
the transverse plane with respect to the beam. It can be generalized to massive particles,
by de�ning

η =
1

2
ln

( |~p|+ pz
~p− pz

)
, (5.41)

which concides with the rapidity de�nition for massless particles.
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Figure 5.1.: Predictions for di�erential distributions inside the �ducial volume of the CMS
setup in table for LO, NLO and NNLO in QCD. The uncertainty bands are
obtained from scale variations µ = µR = µF ∈ [mt/2, 2mt].

The dependence on the scale µ nicely reduces with increasing perturbative order down
to O(5%) and an improving description of the measured cross-section.

5.3.2. Di�erential distributions

Besides cross sections for �ducial volumes, di�erential cross sections are of particular in-
terest in general. The dependence of the cross section on various kinematic observables
encodes fundamental properties of the particles involved in the process under consider-
ation. In the case of top-quark pair production they are extremely important for many
measurements, ranging from determination of the top quark mass, through template �ts,
to the investigation of spin properties [225]. As mentioned in previous discussions about
the motivation of this project, due to its short lifetime, the top-quark is not observed
directly but rather reconstructed from the decay products. Properties of the top-quark
are inferred through the modelling of production and decay. The more accurate the mod-
elling the more accurate are the measurements. The most precise prediction for di�erential
properties of top-quarks are performed at NNLO QCD plus NLO EW corrections[31], for
stable top-quarks. One crucial problem in comparing these predictions to measurements
is the reconstruction of the top-quarks and their four-momenta. Including the decays in
the calculation allows to directly model the decay products and their kinematic distribu-
tion and so improves the measurements. Most importantly, keeping the spin-correlation
between production and decay in this calculation may provide a direct handle on the
spin-properties of the top-quarks.
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Figure 5.2.: Comparison of LO,NLO and NNLO predictions for lepton observables to CMS
measurements. The theory uncertainty bands are obtained from scale varia-
tions µ = µR = µF ∈ [mt/2, 2mt], while the data presented here are taken
from [135].

For the CMS setups di�erential distributions were calculated. The focus is here on the
momenta of the leptons and b-jets. Since the neutrinos are unobserved, only imbalances in
the measured momentum con�guration of the leptons and b-jets can be related to them,
as for instance the missing transverse energy ET . However, neutrino related observables
are not discussed here in further detail. In �gure 5.1 the dependencies of the cross sec-
tion on the pseudo-rapidity of the lepton averaged over all considered lepton species, the
∆R(`+, `−) distance between the oppositely charged leptons, as well as the transverse mo-
mentum of the lepton pair pT (`+, `−) and the two reconstructed b-jets are demonstrated
at LO, NLO and NNLO in perturbation theory. The uncertainty bands are obtained with
the same scale variation as is udes for the total cross section. One observes a reducing scale
dependence with increasing order in perturbation theory, which indicates that the pertur-
bative expansion converges well. In the pT distribution, the NNLO prediction stabilises the
tail while a signi�cant change in shape happened between LO and NLO. At leading order,
there is no real radiation and only the distribution of the balanced transverse momentum
between the decay products is observed, while starting at NLO, additional radiation recoils
from the top-quark pair system.
Additionally, a comparison to CMS measurements of di�erential level is performed. In

[135], measurements of normalized di�erential cross-sections for the di-lepton channel are
presented for observables related to the b-jets and leptons. For the comparisons the data
were normalized again to the measured �ducial cross-section in table 5.2. The error on the
�ducial cross-section is propagated with quadrature. The reason for this is that the way
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Figure 5.3.: Comparison of LO,NLO and NNLO predictions for b-jet observables to CMS
measurements. The theory uncertainty bands are obtained from scale varia-
tions µ = µR = µF ∈ [mt/2, 2mt], while the data presented here are taken
from [135].

the theory uncertainty is estimated in this calculation is not feasible for normalized distri-
butions. For instance, at leading order only the value of αs and the evolution of the PDFs
depend on the scale. Due to the �xed scale choice, the e�ect on αs is just a normalization
and in normalized distribution only the di�erence between the PDF evaluated at di�erent
scales is visible. Since the variation of the PDF evaluated at scales in [mt/2, 2mt] is not
very strong the error estimate would basically amount to zero. Also for NLO and NNLO
the cancellation in normalization reduces the error to a small unreliable value. Dynamical
scales and more rigorous study of the scale dependence as well as the PDF uncertainties
needs to be discussed in the future.
A comparison of lepton-related observables can be found in �gure 5.2. Shown are the

transverse momentum pT (`), the rapidity y` averaged over both charged leptons, as well as
their invariant massM`` and combined transverse momentum pT (`, `). In all cases striking
agreement between the NNLO calculation and the CMS measurement can be found. In
combination with the fact that the theory uncertainties become visibly smaller, one can
conclude that a signi�cantly better description of the data is found.
In �gure 5.3 a similar comparison is made for b-jet observables. Here also, the NNLO

prediction provides a very competitive description of the measurements with small uncer-
tainties in comparison with NLO. Both cases show that the higher order calculations are
needed to obtain a reasonable description of the data. Especially in the tails of transverse
momentum distributions the improvements are quite impressive.
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6. Summary and Conclusions

The motivation of the work presented in this thesis originated from the observation that
higher order perturbative calculations are the backbone of theoretical descriptions at
hadron colliders, in particular the LHC. The production of top-quark pairs, the heavi-
est known particle, was identi�ed as a window to precision physics in the Standard Model
and searches beyond it. The accurate modelling of top-quarks is essential to gain the max-
imum use out of the large amount of data available. The calculation of the production and
the decay into the di-leptonic �nal state of a top-quark pair within the Narrow-Width-
Approximation was presented through NNLO in QCD. All necessary components were dis-
cussed in detail. The starting point were the foundations of top-quark physics at hadron
colliders and the separation of partonic physics, accessible through perturbation theory,
from hadronic physics was presented by facilitating a factorization theorem. The pertur-
bative treatment of the partonic cross section in terms of higher order QCD corrections
was investigated.
The polarised two-loop amplitude of the tt̄-pair production is a necessary building block
of tt̄ production with decays. Its calculation was a substantial part of this work and was
discussed in detail. A broad band of computational techniques for multi-loop amplitudes
were employed. The reduction of tensor to scalar integrals was performed by a projection
approach which kept the spin and color information. Integration-by-parts identities were
used for the reduction of the occurring scalar integrals to master integrals. The master
integrals were evaluated by numerical integration of the system of di�erential equations
obeyed by the master integrals. The preparation of the amplitude for implementation was
also discussed.
The handling of real-radiation contributions in NNLO calculations is a dynamically devel-
oping �eld of research. In this work the STRIPPER scheme was presented in a modi�ed
version. A new phase space parameterization was introduced with the intension to opti-
mize the convergence in di�erential distributions. The change of parameterization needed
a reevaluation of the four dimensional formulation of this scheme. The introduction of
� 't Hooft-Veltman�-corrections is necessary to correctly evaluate the occurring integrals. A
method to identify the necessary modi�cations was developed and its application discussed.
The C++ implementation of the original scheme was modi�ed to the new parameterization
and the determined corrections were implemented. The STRIPPER implementation thus
now represents a fully general NNLO QCD subtraction framework.
The �rst application of this framework is the calculation of tt̄ production with leptonic
decays. The framework was enhanced by the possibility to treat decays of on-shell top-
quarks and W bosons within the NWA. First phenomenological results in terms of �ducial
and di�erential cross sections were presented and compared to CMS data. Improving
theoretical error estimates from scale variations and astonishing agreement with CMS
data have been found.
This work marks the starting point for a broad band of phenomenological studies for

top-quark physics and application of the obtained STRIPPER framework. The presented
top-quark pair calculation can be used for a variety of measurements, and due to the high
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6. Summary and Conclusions

order in perturbation theory combined with the included modelling of the decay a reduction
of the theory error in many measurements is to be expected. Many of the applications of
NNLO top-quark phenomenology can now be repeated based on the new predictions. For
example, the top-quark mass extraction based on di�erential distribution or the extraction
of PDFs are going to pro�t from this new result. The inclusion of the decay allows to reduce
systematic uncertainties in the �ts and comparisons. The results can be used to investigate
spin-correlation observables like the angular separation between the two charged leptons at
a new level of precision. In this work the leptonic decays were presented, but the extension
to also include the hadronic decay channels of the W -boson (as long as likewise treated in
NWA) is straightforward.
The automatised STRIPPER framework is the ideal basis for phenomenological applica-

tions at NNLO for a variety of processes. The development of the framework has two main
perspectives. An important goal is going to be the inclusion of further available two-loop
matrix elements. An example could be the amplitudes needed for vector pair production
which are publicly available. Moreover, matrix elements for di-jet, vector-boson plus jet,
Higgs-boson with or without jet, or lepton pair production are known and available. The
framework would directly allow for the inclusion of heavy particle decays, like W , Z and
H decays. This would provide the most comprehensive collection of available processes
at NNLO. In the same context, one might think about the inclusion of automatised one-
loop matrix elements provided by libraries like OpenLoops or Recola. As soon as they
are stable and �exible enough to provide matrix elements in the infrared limits and spin
correlated matrix elements for subtraction terms, this will be a sensible item to incorpo-
rate in the STRIPPER framework. Since the subtraction is completely automatised, the
framework is conceptually ready for higher multiplicity processes. The bottle-neck is the
availability of two-loop matrix-elements. The only candidate process exhibiting 2 → 3
kinematics whose two-loop matrix elements are known is the three-jet production. At
some point these matrix elements will be fast enough for phenomenological applications.
However, practice must show if the subtraction scheme can handle this complicated pro-
cess with reasonable e�ciency and/or convergence. This leads to the next, even more
important prospect: e�ciency. Even though the set of subtraction terms provided in the
software is general and can be used for any process, this does not necessarily mean that
the subtraction scheme results in good performance. The newly implemented phase space
parameterization needs to be investigated in terms of its impact on the convergence. This
is a critical point for future investigations, since the demand on computing power increases
dramatically for progressively complex processes and thus an e�cient way to perform the
calculations is essential. A starting point for improving on this, is not only the phase
space parameterization, but also other ideas like event smearing, a method where several
events close in the phase space are averaged over to improve convergence, are waiting for
implementation and testing.
As shown above, the number of prospective processes to be integrated, and the possibilities
of further improvement are vast. All this summarizes the prospects for the near future:
There are interesting times ahead!
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A. General Notation and conventions

A.1. Notation

Conventions, notations and de�nitions that appear in various places are collected in this
section. The notation is as far as possible oriented on the notation in [217] and many
formula and conventions are directly from that work.

Spacetime dimension
d = 4− 2ε . (A.1)

Bare strong coupling

α0
s =

(
µ2
Re

γE

4π

)ε
Zαsζαsαs , (A.2)

µR − renormalization scale ,

Zαs − MS renormalization constant ,

ζαs − heavy-quark decoupling constant [226] .

Matrix elements

Mc1,...,cn;s1,...,sn
a1,...,an (p1, . . . , pn) =

(
〈c1, . . . , cn| ⊗ 〈s1, . . . , sn|

)
|Ma1,...,an (p1, . . . , pn)〉 , (A.3)

|Mn〉 = |Ma1,...,an (p1, . . . , pn)〉 ,
∑

color
spin

|Mn|2 = 〈Mn|Mn〉 , (A.4)

|Mn〉 =

(
µ2
Re

γE

4π

)−lε(
|M(0)

n 〉+ |M(1)
n 〉+ |M(2)

n 〉+ . . .
)
. (A.5)

ci − color of parton i, ai − �avor of parton i,
si − spin of parton i, pi − momentum of parton i,
|c1, . . . , cn〉 − color basis vectors, |s1, . . . , sn〉 − spin basis vectors,
l − αs power of Born approximation.

Phase spaces

∫
dΦn

(
p1+p2 →

n∑

i=1

qi

)
=

(
µ2
Re

γE

4π

)(n−1)ε ∫ n∏

i=1

dd−1qi
(2π)d−12q0

i

(2π)dδ(d)
( n∑

i=1

qi−p1−p2

)
.

(A.6)
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Sums over partons

∑

ij...

− sum over all indices i, j, . . . ,
∑

(i,j,... )

− sum over distinct indices i, j, . . . .

i, j, k, . . . − indices for arbitrary partons, both massless and massive,

i0, j0, k0, . . . − indices for massless partons,

I, J,K, . . . − indices for massive partons.

Kinematic invariants

p2
I = m2

I , vI = pI/mI , vIJ =

√
1− m2

Im
2
J

(pIpJ)2
, (A.7)

sij = 2σijpi · pj + i0+ . (A.8)

σij = +1 − if the momenta pi and pj are both incoming or outgoing , σij = −1 − otherwise.

Color charge operators [22]

〈c1, . . . , ci, . . . , cn, c|Ti|b1, . . . , bi, . . . , bn〉 = 〈c1, . . . , ci, . . . , cn|T ci |b1, . . . , bi, . . . , bn〉
= δc1b1 . . . T

c
cibi

. . . δcnbn . (A.9)

∑

i

Ti|Mn〉 = 0 , T ci T
c
j = Ti ·Tj = Tj ·Ti, Ti ·Ti = T2

i = Ci = Cai , (A.10)

Cg = CA , Cq = Cq̄ = CF . (A.11)

T cc1c2 = if c1cc2 − emitter is a gluon ,

T cc1c2 = tcc1c2(= −tcc2c1) − emitter is an outgoing quark (anti-quark) ,

T cc1c2 = −tcc2c1(= tcc1c2) − emitter is an ingoing quark (anti-quark) .

Tr
[
tatb
]

= TF δ
ab =

1

2
δab . (A.12)

A.2. Spherical coordinates in d dimensions

Let ddr be the Euclidean integration measure in Rd. It can be decomposed into a radial
and an angular part with the help of a δ-function insertion, if the r vector is rescaled as
r = r n̂

∫

Rd
ddr =

∫ ∞

0
dr rd−1

∫

Rd
ddn̂ δ(1− ‖n̂‖) =

∫ ∞

0
dr rd−1

∫

Sd−1
1

dΩ . (A.13)

In this way a rotationally invariant measure, dΩ, on the unit (d − 1)-sphere, Sd−1
1 is

de�ned. From now on the dimensionality is included in the notation of the versors n̂. Let
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A.2. Spherical coordinates in d dimensions

us introduce a recursive parameterization in terms of angles

n̂(d)(θ1, θ2, . . . , θd−1) =




cos θ1

sin θ1 n̂(d−1)(θ2, . . . , θd−1)


 , n̂(1) = 1 , (A.14)

where
θ1, . . . , θd−2 ∈ [0, π] , θd−1 ∈ [0, 2π] . (A.15)

An important property of this parameterization is

n̂(d)(θ1, . . . , θn−1, 0, θn+1, . . . , θd−1) = n̂(d)(θ1, . . . , θn−1, 0, 0, . . . ) ,

n̂(d)(θ1, . . . , θn−1, π, θn+1, . . . , θd−1) = n̂(d)(θ1, . . . , θn−1, π, 0, 0, . . . ) . (A.16)

The recursive de�nition of the versor can be implemented in the integration measure
∫

Sd−1
1

dΩ(θ1, θ2, . . . , θd−1) =

∫ π

0
dθ1 sind−2 θ1

∫

Sd−2
1

dΩ(θ2, . . . , θd−1) . (A.17)

The volume of the unit (d− 1)-sphere is

∫

Sd−1
1

dΩ 1 =
2π

d
2

Γ
(
d
2

) . (A.18)

The following result
∫

Sd−1
1

dΩ δ(d)
(
αn̂(d)

)
= α1−d

∫

Rd
dd
(
αn̂(d)

)
δ
(
α−

∥∥∥αn̂(d)
∥∥∥
)
δ(d)

(
αn̂(d)

)
=

1

αd−1
δ(α) ,

(A.19)
implies the correct reduction of the dimensionality of space

∫

Sd−1
1

dΩ δ(d−n)
(
n̂(d)

)
=

∫

Sn−1
1

dΩ , (A.20)

Furthermore a representation of the angular versor parameterization through rotations of
a basis vector is introduced. A basis versor is de�ned

n̂
(d)
0 =




1
0
0
...


 , (A.21)
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and a d× d rotation matrix transforming the coordinates i and j

R
(d)
ij (θ) =

i j






1
. . .

1
cos θ sin θ i

1
. . .

1
− sin θ cos θ j

1
. . .

1

, (A.22)

where the unspeci�ed entries are null. If the rotations act in di�erent planes, then the
respective rotation matrices commute

{i, j} ∩ {k, l} = ∅ =⇒
[
R

(d)
ij (θ1), R

(d)
kl (θ2)

]
= 0 . (A.23)

The versor parameterization can be expressed through rotations as

n̂(d)(θ1, . . . , θd−1) = R
(d)
1 (θ1, . . . , θd−1)n̂

(d)
0 , (A.24)

where the shorthand notation has been introduced

R(d)
n (θ1, . . . , θd−n) = R

(d)
d,d−1(θd−n). . .R

(d)
n+1,n(θ1) . (A.25)

Due to the commutation properties of the rotation matrices, there is
[
R

(d)
1 (θ1, . . . , θn−1, 0, 0, . . . ), R

(d)
n+1(θn+1, . . . , θd−1)

]
= 0 . (A.26)

A.3. De�nitions of contributions

The LO contribution is de�nied as:

σ̂
(0)
ab = σ̂B

ab =
1

2ŝ

1

Nab

∫
dΦn 〈M(0)

n |M(0)
n 〉Fn . (A.27)

At next-to-leading order there are the following contributions:

σ̂R
ab =

1

2ŝ

1

Nab

∫
dΦn+1 〈M(0)

n+1|M
(0)
n+1〉Fn+1 , (A.28)

σ̂V
ab =

1

2ŝ

1

Nab

∫
dΦn 2Re 〈M(0)

n |M(1)
n 〉Fn , (A.29)
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σ̂C
ab(p1, p2) =

αs
2π

1

ε

(
µ2
R

µ2
F

)ε∑

c

∫ 1

0
dz
[
P (0)
ca (z) σ̂B

cb(zp1, p2) + P
(0)
cb (z) σ̂B

ac(p1, zp2)
]
,

(A.30)

and �nally the contributions arising at NNLO:

σ̂RR
ab =

1

2ŝ

1

Nab

∫
dΦn+2 〈M(0)

n+2|M
(0)
n+2〉Fn+2 , (A.31)

σ̂RV
ab =

1

2ŝ

1

Nab

∫
dΦn+1 2Re 〈M(0)

n+1|M
(1)
n+1〉Fn+1 , (A.32)

σ̂VV
ab =

1

2ŝ

1

Nab

∫
dΦn

(
2Re 〈M(0)

n |M(2)
n 〉+ 〈M(1)

n |M(1)
n 〉
)

Fn , (A.33)

with the collinear factorization contributions:

σ̂C1
ab (p1, p2) =

αs
2π

1

ε

(
µ2
R

µ2
F

)ε∑

c

∫ 1

0
dz
[
P (0)
ca (z) σ̂R

cb(zp1, p2) + P
(0)
cb (z) σ̂R

ac(p1, zp2)
]
,

σ̂C2
ab (p1, p2) =

αs
2π

1

ε

(
µ2
R

µ2
F

)ε∑

c

∫ 1

0
dz
[
P (0)
ca (z) σ̂V

cb(zp1, p2) + P
(0)
cb (z) σ̂V

ac(p1, zp2)
]

+
(αs

2π

)2 1

2ε

(
µ2
R

µ2
F

)2ε∑

c

∫ 1

0
dz
[
P (1)
ca (z) σ̂B

cb(zp1, p2) + P
(1)
cb (z) σ̂B

ac(p1, zp2)
]

+
(αs

2π

)2 β0

4ε2

[(
µ2
R

µ2
F

)2ε

− 2

(
µ2
R

µ2
F

)ε]

·
∑

c

∫ 1

0
dz
[
P (0)
ca (z) σ̂B

cb(zp1, p2) + P
(0)
cb (z) σ̂B

ac(p1, zp2)
]

+
(αs

2π

)2 1

2ε2

(
µ2
R

µ2
F

)2ε

·
∑

cd

∫ 1

0
dz
[(
P

(0)
cd ⊗ P

(0)
da

)
(z) σ̂B

cb(zp1, p2) +
(
P

(0)
cd ⊗ P

(0)
db

)
(z) σ̂B

ac(p1, zp2)
]

+
(αs

2π

)2 1

ε2

(
µ2
R

µ2
F

)2ε∑

cd

∫∫ 1

0
dz dz̄

[
P (0)
ca (z)P

(0)
db (z̄) σ̂B

cd(zp1, z̄p2)
]
,

(A.34)

where

(f ⊗ g) (x) =

∫∫ 1

0
dy dz f(y)g(z) δ(x− yz) . (A.35)
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B. Renormalization Constants

B.1. UV renormalization constants

The necessary renormalization constants for UV renormalization of the polarized double
virtual tt̄ amplitude are collected here. The on-shell renormalization constants are
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s
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− 2
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3
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+F
[
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+
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, (B.1)

where lµ = lnµ2/m2. The on-shell wave-function renormalization constants for the gluon
and light quark �elds have been taken from [227, 228].

For the heavy-quark wave-function and mass renormalization constants we used ex-
pressions from [229]. The MS renormalization constant for the strong coupling up to

O
(
α

(nf )
s

2
)
is given in terms of beta-function coe�cients
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where

b0 =
11

3
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4

3
TFnf , b1 =
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3
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2 − 20

3
CATFnf − 4FTFnf . (B.3)

The two-loop decoupling constant for the strong coupling is given by [230]
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B.2. Supplements for IR renormalization

A list of all the anomalous dimensions occurring in Eq. (2.25) necessary to obtain the �nite
remainders of the two-loop amplitudes are listed here. The anomalous dimensions related
to a single parton (collinear in origin for massless partons and soft in origin for massive
partons) are [116, 117]
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The cusp anomalous dimensions are given by [231, 232]
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The two functions F1 and f2 are given by

F1(β12, β23, β31) =
1
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with the function
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C. Factorization Formula

The factorization formula collected here are the same as in [217]. They are reproduced
here for completeness and for reference of some discussions.

C.1. Infrared limits of tree-level amplitudes

C.1.1. Collinear limits

The explicit formulae of the splitting functions discussed in secion 2.1.3

P̂ (0), µν
gg (z, k⊥; ε) = 2CA

[
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, (C.1)

P̂
(0), µν
qq̄ (z, k⊥; ε) = P̂
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[
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]
, (C.3)

P̂ (0), ss′
gq (z, k⊥; ε) = P̂

(0), ss′
gq̄ (z, k⊥; ε) = P̂ (0), ss′

qg (1− z, k⊥; ε) . (C.4)

Additionally to the averaged version of the collinear factorization formula is need and given
by
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2

s12
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with the averaged splitting functions
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[
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]
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〈P̂(0)
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, (C.8)

〈P̂(0)
gq (z; ε)〉 = 〈P̂(0)

gq̄ (z; ε)〉 = 〈P̂(0)
qg (1− z; ε)〉 . (C.9)

Also polarized splitting functions are required for polarized �nal state gluons with momen-
tum p1 and polarization vector εµ1 , which can be chosen to be real,
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C. Factorization Formula

a(p1 + p2)
a1(p1)

a2(p2)a2(p2)

a2(p2)

a1(p1)

a(p1 + p2)

Figure C.1.: Final state collinear splitting con�guration (left) vs. initial state collinear
splitting con�guration (right).
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µ
⊥k

ν
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]
, (C.10)
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. (C.11)

The crossings needed to obtain the splitting functions can read of the �gure C.1. Essentially
it amounts to a sign in front of the splitting function:

P̂a1a2 −→
(
−
)2sa+2sa1 P̂a1a2 , (C.12)

where sa and sa1 are the spins of partons a and a1 respectively, and a replacement of the
energy fractions z:
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1
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1 + p0

2

∈ [0, 1] −→ z =
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1
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1 − p0

2

∈ [1,+∞[ . (C.13)

In the triple collinear limit the splitting functions are parameterized through invariants
and the following set of variables

zi =
xi∑3
j=1 xj

, k̃µi = kµ⊥i −
xi∑3
k=1 xk

3∑

j=1

kµ⊥j , tij,k = 2
zisjk − zjsik
zi + zj

+
zi − zj
zi + zj

sij .

(C.14)
The complete set of splitting functions is taken from Ref. [122] (see also [233, 234]). If
spin conservation holds for certain �avor combination, only the averaged splitting function
〈P̂a1a2a3〉 is given, where

P̂ ss
′

a1a2a3 = δss
′〈P̂a1a2a3〉 . (C.15)

First splittings involving only quarks:
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(C.16)
For identical quark �avors symetrization has to be taken into account

〈P̂q̄1q2q3〉 =
[
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]
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where
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The remaining functions are
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Similarly
P̂µνg1q2q̄3 = CFTF P̂
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with
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Finally
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The averaged splitting functions are

〈P̂(ab)
g1q2q̄3〉 = −2− (1− ε)s23

(
1

s12
+

1

s13

)
+ 2

s2
123

s12s13

(
1 + z2

1 −
z1 + 2z2z3

1− ε

)

−s123

s12

(
1 + 2z1 + ε− 2

z1 + z2

1− ε

)
− s123

s13

(
1 + 2z1 + ε− 2

z1 + z3

1− ε

)
, (C.26)
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126



C.1. Infrared limits of tree-level amplitudes
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Initial state collinear limits are recovered by crossing (C.12).

C.1.2. Soft limits

The function Iij(q1, q2) needed for the double soft-function in case of a �nal state qq̄-pair,
is given by

Iij(q1, q2) =
(pi · q1) (pj · q2) + (pj · q1) (pi · q2)− (pi · pj) (q1 · q2)

(q1 · q2)2 [pi · (q1 + q2)] [pj · (q1 + q2)]
. (C.29)

And the soft function Sij(q1, q2) can be writtne in terms of massive and a massless contri-
bution

Sij(q1, q2) = Sm=0
ij (q1, q2) +
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m2
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ij (q1, q2) +m2
j Sm 6=0

ji (q1, q2)
)
, (C.30)

where the �rst term has been given in [122] and reads

Sm=0
ij (q1, q2) =

(1− ε)
(q1 · q2)2

pi · q1 pj · q2 + pi · q2 pj · q1

pi · (q1 + q2) pj · (q1 + q2)

− (pi · pj)2

2 pi · q1 pj · q2 pi · q2 pj · q1

[
2− pi · q1 pj · q2 + pi · q2 pj · q1

pi · (q1 + q2) pj · (q1 + q2)

]

+
pi · pj

2 q1 · q2

[
2

pi · q1 pj · q2
+

2

pj · q1 pi · q2
− 1

pi · (q1 + q2) pj · (q1 + q2)

×
(

4 +
(pi · q1 pj · q2 + pi · q2 pj · q1)2

pi · q1 pj · q2 pi · q2 pj · q1

)]
. (C.31)

The massive contribution in Eq. (C.30) was derived in Ref. [132] and reads

Sm6=0
ij (q1, q2) = − 1

4 q1 · q2 pi · q1 pi · q2
+

pi · pj pj · (q1 + q2)

2 pi · q1 pj · q2 pi · q2 pj · q1 pi · (q1 + q2)

− 1

2 q1 · q2 pi · (q1 + q2) pj · (q1 + q2)

(
(pj · q1)2

pi · q1 pj · q2
+

(pj · q2)2

pi · q2 pj · q1

)
.

(C.32)
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C.2. Infrared limits of one-loop matrix elements

A one-loop matrix element can be decomposed 2.1.2 into divergent part and the �nite
remainder function

2Re 〈M(0)
n+1|M

(1)
n+1〉 = 2Re 〈M(0)

n+1|Z(1)|M(0)
n+1〉+ 2Re 〈M(0)

n+1|F
(1)
n+1〉 . (C.33)

The di�erent parts have di�erent factorization formula which are collected in the following.
Note that the splitting and soft function for the �nite remainder hold only at ε = 0.

C.2.1. Collinear limit

The factorization of the one-loop matrix element was derived in [190, 235�239]

2Re 〈M(0)
a1,a2,...(p1, p2, . . . )|M(1)

a1,a2,...(p1, p2, . . . )〉 '

4παs
2

s12

[
2Re 〈M(0)

a,...(p, . . . )|P̂
(0)
a1a2(z, k⊥; ε)|M(1)

a,...(p, . . . )〉

+
αs
4π
〈M(0)

a,...(p, . . . )|P̂
(1)
a1a2(z, k⊥; ε)|M(0)

a,...(p, . . . )〉
]
. (C.34)

The tree-level splitting function occur as well as the one-loop splitting functions P̂
(1)
a1a2(z, k⊥; ε),

〈s|P̂(1)
a1a2(z, k⊥; ε)|s′〉 = P̂ (1), ss′

a1a2 (z, k⊥; ε) , (C.35)

with

P̂
(1), µν
qq̄ (z, k⊥; ε) = P̂

(1), µν
q̄q (z, k⊥; ε) = rq̄qSR(z) P̂

(0),µν
qq̄ (z, k⊥; ε) ,

P̂ (1), ss′
qg (z, k⊥; ε) = P̂

(1), ss′
q̄g (z, k⊥; ε) = rqgSR(z) P̂ (0),ss′

qg (z, k⊥; ε) + CF r
qg
NS [1− ε(1− z)] δss′ ,

P̂ (1), ss′
gq (z, k⊥; ε) = P̂

(1), ss′
gq̄ (z, k⊥; ε) = P̂ (1), ss′

qg (1− z, k⊥; ε) .

(C.36)

In the expression appears the renormalized singular coe�cients ra1a2SR . The are obtained
from the unrenormalized singular coe�cients ra1a2S by

ra1a2SR (z) = 2Re

(
−µ

2
R

s12

)ε
cΓ r

a1a2
S (z)− β0

ε
, (C.37)

where

Re

(
−µ

2
R

s12

)ε
=

(
µ2
R

s12

)ε
cos(πε) , cΓ = eεγE

Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
, (C.38)

and

rggS (z) = −CA
ε2

[(
z

1− z

)ε πε

sin(πε)
−
∞∑

m=1

2ε2m−1Li2m−1

(
−1− z

z

)]
, (C.39)

128



C.2. Infrared limits of one-loop matrix elements

rq̄qS (z) =
1

ε2
(CA − 2CF ) +

CA
ε2

∞∑

m=1

εm
[
Lim

(
− z

1− z

)
+ Lim

(
−1− z

z

)]
(C.40)

+
1

1− 2ε

[
1

ε
(γq0 − γg0) + CA − 2CF +

CA + 4TFnl
3(3− 2ε)

]
, (C.41)

rqgS (z) = − 1

ε2

[
CA

(
z

1− z

)ε πε

sin(πε)

+

∞∑

m=1

εm [(1 + (−1)m)CA − 2CF ] Lim

(
−1− z

z

)]
. (C.42)

The non-singular coe�cients read

rggNS = 2Re

(
−µ

2
R

s12

)ε
cΓ

CA(1− ε)− 2TFnl
(1− 2ε)(2− 2ε)(3− 2ε)

, rqgNS = 2Re

(
−µ

2
R

s12

)ε
cΓ
CA − CF

1− 2ε
.

(C.43)
The initial state crossing is a little bit more evolved and besides the crossing (C.12) the
following analytical continuation need to be considered

Re

(
−µ

2
R

s12

)ε
=

(
−µ

2
R

s12

)ε
, Re

( z

1− z
)ε

=
(
− z

1− z
)ε

cos(πε) . (C.44)

Also the the polylogarithms of −z/(1 − z) ∈ [1,+∞[ develop an imaginary part in this
case. For the next-to-next-to-leading order calculation only the real parts are needed:

Re (Li1 (1/x)) = −Re (ln (1− 1/x)) = − ln(1− x) + ln(x) ,

Re (Li2 (1/x)) =
π2

3
− ln2(x)

2
− Li2(x) ,

Re (Li3 (1/x)) = −π
2

3
ln(x) +

ln3(x)

6
+ Li3(x) ,

Re (Li4 (1/x)) =
π4

45
+
π2

6
ln2(x)− ln4(x)

24
− Li4(x) , (C.45)

with x = −(1− z)/z ∈ [0, 1].

C.2.2. Soft limit

In the soft limit, the coe�cients of the function

g
(1)
ij = −1

2
abS

(
2(pI · pJ)µ2

2(pI · q)2(pJ · q)

)ε [
1

ε2
+

1∑

n=−1

εn
(
R

(n)
ij + iπI

(n)
ij

)]
, (C.46)

appear. The results have been originately obtained in [240] and reformulated in [241]. The
coe�cients are given in the timelike (TL) case where both momenta pi and pj are in- or
outgoing (the incoming case has an additional minus sign in front of the imaginary part
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C. Factorization Formula

(Iij)) and the spacelike (SL) case were pi is outgoing and pj is incoming.

R
(−1)[SL]
ij =R

(−1)[TL]
ij ,

R
(0)[SL]
ij =R

(0)[TL]
ij − 12ζ2

v−
v
,

R
(1)[SL]
ij =R

(1)[TL]
ij + 12ζ2

1

v

[
2

(di + dj)

(
αJv+ − αIv−

)
ln
(αJ
v+

)
+
(
v+ ln(v+)− ln(v)

)
]
,

(C.47)
with the imaginary part

I
(−1)[SL]
ij = 1 ,

I
(0)[SL]
ij =

2

v(di + dj)

((
αI − v−

)
ln
(αI
v+

)
−
(
div− + αJv

)
ln
(αJ
v+

))
+ ln(v+) ,

I
(1)[SL]
ij =

1

(di + dj)

{
(
1− (di + dj)

)

[
2 ln

(αI
v+

)
ln
(

1− αI
v+

)
− ln

(αJ
v+

)(
2 ln

(
1− αJ

v+

)
+ ln(v+)

)

− 2Li2

(αJ
v+

)
+ 2Li2

(αI
v+

)]
+

1

v

[
(
αI − v−

)
ln2
(αI
v+

)
+
(
div− + αJv

)
ln2
(αJ
v+

)

+ 2 ln
(αI
v+

)((
v+ − αI

)
ln(v+)− di ln(v)

)
+ di ln

(αJ
v+

)(
ln(v+)− 2 ln(v)

)

− 2diLi2(x)− 2ζ2dj

]}
+

1

2
ln2(v+)− ζ2

(3

2
− 2

v

)
.

And the time-like results read:
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R
(−1)[TL]
ij = ln(v+)− v−

v

(
ln
(αI
v+

)
+ ln

(αJ
v+

))
,

R
(0)[TL]
ij =

1

v

[
1

(di + dj)

(
(αIv+ − αJv−) ln2

(αI
v+

)
+
(
αJv+ − αIv−

)
ln2
(αJ
v+

))

+
(

ln
(αI
v+

)
+ ln

(αJ
v+

))(
v+ ln(v+)− ln(v)

)
− Li2(x)

]
+

1

2
ln2(v+)

+ ζ2

(7

v
− 19

2

)
,

R
(1)[TL]
ij =

1

(di + dj)

{
(
1− (di + dj)

)
[

ln
(

1− αI
v+

)
ln2
(αI
v+

)
+ ln

(
1− αJ

v+

)
ln2
(αJ
v+

)

+ 2
(

ln
(αI
v+

)
Li2

(αI
v+

)
+ ln

(αJ
v+

)
Li2

(αJ
v+

))
− Li2(x)

(
ln
(αI
v+

)
+ ln

(αJ
v+

))

+ 2
(

Li3(x)− Li3

(αI
v+

)
− Li3

(αJ
v+

)
+ ζ3

)]
− 7ζ2

(
ln
(αI
v+

)
+ ln

(αJ
v+

))

+
1

v

[((
αJv+ − αIv−

)
ln2
(αI
v+

)
+
(
αIv+ − αJv−

)
ln2
(αJ
v+

))
ln(v+)

+
(
αI − αJ

)(
ln2
(αI
v+

)
− ln2

(αJ
v+

))
ln(v)

−
(
di ln

(αI
v+

)
+ dj ln

(αJ
v+

))(
Li2(x)− 7ζ2

)
]}

+
1

v

{[
ln(v+)

(3 + v

4
ln(v+)− ln(v)

)
− 9v−

2
ζ2

](
ln
(αI
v+

)
+ ln

(αJ
v+

))

− v−
6

(
ln3
(αI
v+

)
+ ln3

(αJ
v+

))
+ 2Li3(1− x) + Li3(x)

−
[

Li2(x) + ζ2

(
5 +

19

2
v
)]

ln(v+)

+ 12ζ2 ln(v)

}
+

1

6
ln3(v+)−

(7

3
+

1

v

)
ζ3 ,
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and

I
(−1)[TL]
ij = 2− 1

v
,

I
(0)[TL]
ij =

2

v

[
1

(di + dj)

((
αI − v−

)
ln
(αI
v+

)
+
(
αJ − v−

)
ln
(αJ
v+

))

+
(1

2
+ v
)

ln(v+)− ln(v)

]
,

I
(1)[TL]
ij =

1

(di + dj)

{
2
(
1− (di + dj)

)(
ln
(αI
v+

)
ln
(

1− αI
v+

)
+ ln

(αJ
v+

)
ln
(

1− αJ
v+

)

+ Li2

(αI
v+

)
+ Li2

(αJ
v+

))
+
(

ln
(αI
v+

)
+ ln

(αJ
v+

))
ln(v+)− 2

(
Li2(x) + ζ2

)

+
1

v

[((
αI − v−

)
ln2
(αI
v+

)

+
(
αJ − v−

)
ln2
(αJ
v+

))
+
(
di ln

(αI
v+

)
+ dj ln

(αJ
v+

))(
ln(v+)− 2 ln(v)

)
]}

− 1

v

(
4v−Li2(x) +

1

2

(
ln(v+)− 2 ln(v)

)2)
+ ln2(v+)− ζ2

(
1− 3

2v

)
.

(C.48)
The appearing variables are de�ned as

αI ≡
m2
i 2(pJ · q)

2(pI · pJ)2(pI · q)
, αJ ≡

m2
j 2(pI · q)

2(pI · pJ)2(pJ · q)
, di ≡ 1− 2αI , dj ≡ 1− 2αJ ,

v ≡
√

1− 4αIαJ , v± ≡
1± v

2
, x ≡ v−

v+
,

(C.49)
This results are not UV renormalized, the precription to do so can be found in [240].
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C.2. Infrared limits of one-loop matrix elements

C.2.3. Limits of matrix elements of Z(1)

The solution of the RGE equation for Z(1) 2.29 sandwiched between tree-level amplitudes
read

2Re 〈M(0)
n+1|Z(1)|M(0)

n+1〉 =

αs
4π

1

ε

[(
−2

ε

∑

i0

Ci0 +
∑

i

γi0

)
|M(0)

n+1|2

+ 2
∑

(i0,j0)

ln

∣∣∣∣
µ2
R

si0j0

∣∣∣∣ 〈M
(0)
n+1|Ti0 ·Tj0 |M

(0)
n+1〉

−
∑

(I,J)

1

vIJ
ln

(
1 + vIJ
1− vIJ

)
〈M(0)

n+1|TI ·TJ |M(0)
n+1〉

+ 4
∑

I,j0

ln

∣∣∣∣
mIµR
sIj0

∣∣∣∣ 〈M
(0)
n+1|TI ·Tj0 |M

(0)
n+1〉

]
.

(C.50)

This matrix elemetn factorizes in the collinear limit as

2Re 〈M(0)
a1,a2,...(p1, p2, . . . )|Z(1)|M(0)

a1,a2,...(p1, p2, . . . )〉 '

4παs
2

s12

{
2Re 〈M(0)

a,...(p, . . . )|P̂
(0)
a1a2(z, k⊥; ε) Z(1)|M(0)

a,...(p, . . . )〉

+
αs
4π

1

ε

[
2 (Ca − Ca1 − Ca2)

(
1

ε
+ ln

∣∣∣∣
µ2
R

s12

∣∣∣∣

)
− (γa0 − γa10 − γa20 )

+ 2Ca ln
∣∣z(1− z)

∣∣+ 2 (Ca1 − Ca2) ln

∣∣∣∣
z

1− z

∣∣∣∣

]

× 〈M(0)
a,...(p, . . . )|P̂

(0)
a1a2(z, k⊥; ε)|M(0)

a,...(p, . . . )〉
}
.

(C.51)

The initial state case is again obtained by crossing (C.12)
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The soft limit of Eq. (C.50), q → 0, reads

2Re 〈M(0)
g,a1,...(q, p1, . . . )|Z(1)|M(0)

g,a1,...(q, p1, . . . )〉 '

−4παs

{∑

(i,j)

(
Sij(q)− Sii(q)

)
2Re 〈M(0)

a1,...(p1, . . . )|Ti ·Tj Z(1)|M(0)
a1,...(p1, . . . )〉

+
αs
4π

1

ε

[∑

(i,j)

(
Sij(q)− Sii(q)

)

·
(
−2CA

(
1

ε
+ ln

(
1
2µ

2
RSij(q)

))
+ γg0

)
〈M(0)

a1,...(p1, . . . )|Ti ·Tj |M(0)
a1,...(p1, . . . )〉

− CA
∑

(I,J)

(
SIJ(q)− SII(q)

)(
1

vIJ
ln

(
1 + vIJ
1− vIJ

)
+ 2 ln

(
mImJ

sIJ

))

· 〈M(0)
a1,...(p1, . . . )|TI ·TJ |M(0)

a1,...(p1, . . . )〉

− 4π
∑

(i,j,k)

Sik(q)
(

1

vij
θ(σij)− θ(σiq)− θ(σjq)

)

〈M(0)
a1,...(p1, . . . )|fabcT ai T bj T ck |M(0)

a1,...(p1, . . . )〉
]}

.

(C.52)

C.2.4. Limits of the �nite remainder

Finally the collinear limit of the �nite remainder:

2Re 〈M(0)
a1,a2,...(p1, p2, . . . )|F (1)

a1,a2,...(p1, p2, . . . )〉 '

4παs
2

s12

[
2Re 〈M(0)

a,...(p, . . . )|P̂
(0)
a1a2(z, k⊥; ε = 0)|F (1)

a,...(p, . . . )〉

+
αs
4π
〈M(0)

a,...(p, . . . )|P̂
(1)
Fa1a2(z, k⊥)|M(0)

a,...(p, . . . )〉
]
.

(C.53)

The �nite one-loop splitting functions, P̂
(1)
Fa1a2(z, k⊥) operate on spin space as thier tree-

level counterparts

〈s|P̂(1)
Fa1a2(z, k⊥)|s′〉 = P̂

(1), ss′

Fa1a2
(z, k⊥) , (C.54)

with

P̂
(1), µν
Fgg (z, k⊥) = rggSF (z) P̂ (0),µν

gg (z, k⊥; ε = 0)− 4

3
CA
(
CA − 2TFnl

)kµ⊥kν⊥
k2
⊥

,

P̂
(1), µν
Fqq̄ (z, k⊥) = P̂

(1), µν
F q̄q (z, k⊥) = rq̄qSF (z) P̂

(0),µν
qq̄ (z, k⊥; ε = 0) ,

P̂
(1), ss′

Fqg (z, k⊥) = P̂
(1), ss′

F q̄g (z, k⊥) = rqgSF (z) P̂ (0),ss′
qg (z, k⊥; ε = 0) + 2CF

(
CA − CF

)
δss
′
,

P̂
(1), ss′

Fgq (z, k⊥) = P̂
(1), ss′

Fgq̄ (z, k⊥) = P̂
(1), ss′

Fqg (1− z, k⊥) .

(C.55)
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The �nite coe�cients ra1a2SF (z) are given by

rggSF (z) = CA

(
5π2

6
− ln2

∣∣∣∣
z

1− z

∣∣∣∣+ 2 ln
∣∣z(1− z)

∣∣ ln
∣∣∣∣
µ2
R

s12

∣∣∣∣− ln2

∣∣∣∣
µ2
R

s12

∣∣∣∣
)
, (C.56)

rq̄qSF (z) = CA

(
152

9
− 3π2

2

)
+ CF

(
7π2

3
− 16

)
− 40

9
TFnl − CA ln2

∣∣∣∣
z
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∣∣∣∣

+2
(
β0 − 3CF + CA ln
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R

s12

∣∣∣∣+
(
CA − 2CF

)
ln2

∣∣∣∣
µ2
R

s12

∣∣∣∣(C.57)

+2
(
CA − CF

)
π2 θ(−s12) , (C.58)

rqgSF (z) =
5π2

6
CA + 4CF ln |z| ln

∣∣∣∣
µ2
R

s12

∣∣∣∣− CA
(

ln

∣∣∣∣
z

1− z

∣∣∣∣+ ln

∣∣∣∣
µ2
R

s12

∣∣∣∣

)2

(C.59)

+4
(
CF − CA

)
Re Li2

(
−1− z

z

)
. (C.60)

Again the crossing relation (C.12) can be used to obtain the initial state case. Additionally
the analytic continuation in Eq. (C.45) needs to be employed.

The soft limit of the �nite remainder function is given by

2Re 〈M(0)
g,a1,...(q, p1, . . . )|F (1)

g,a1,...(q, p1, . . . )〉 '

−4παs




∑

(i,j)

(
Sij(q)− Sii(q)

)
2Re 〈M(0)

a1,...(p1, . . . )|Ti ·Tj |F (1)
a1,...(p1, . . . )〉

+
αs
4π


∑

(i,j)

(Sij(q)− Sii(q)) RFij 〈M(0)
a1,...(p1, . . . )|Ti ·Tj |M(0)

a1,...(p1, . . . )〉

−4π
∑

(i,j,k)

Sik(q) IFij 〈M(0)
a1,...(p1, . . . )|fabcT ai T bj T ck |M(0)

a1,...(p1, . . . )〉





 ,

(C.61)

The the functions RFij and I
F
ij are the O(ε0) coe�cients discussed in (C.2.2) after expansion

in ε

C.3. Splitting functions

The collinear factorization contributions require the splitting functions up to O(αs) [242]

Pqiqj (x, αs) = δijP
(0)
qq (x) +

αs
2π
P (1)
qiqj (x) + . . . , (C.62)

Pqg(x, αs) = P (0)
qg (x) +

αs
2π
P (1)
qg (x) + . . . , (C.63)

Pgq(x, αs) = P (0)
gq (x) +

αs
2π
P (1)
gq (x) + . . . , (C.64)

Pgg(x, αs) = P (0)
gg (x) +

αs
2π
P (1)
gg (x) + . . . . (C.65)
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The leading order contributions are

P (0)
qq (x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
, (C.66)

P (0)
qg (x) = TF

[
x2 + (1− x)2

]
, (C.67)

P (0)
gq (x) = CF

[
1 + (1− x)2

x

]
, (C.68)

P (0)
gg (x) = 2CA

[
x

(1− x)+
+

1− x
x

+ x(1− x)

]
+ δ(1− x)

11CA − 4TFnl
6

. (C.69)

The splitting functions Pqiqj are written terms of a �avor singlet (S) and non-singlet (V)
contribution starting at NLO

Pqiqj (x, αs) = δijP
V
qq(x, αs) + P S

qq(x, αs) , (C.70)

Pqiq̄j (x, αs) = δijP
V
qq̄(x, αs) + P S

qq̄(x, αs) . (C.71)

The NLO part of the splitting functions is given by

PV(1)
qq (x) = C2

F

{
−
[
2 lnx ln(1− x) +

3

2
lnx

]
pqq(x)−

(
3

2
+

7

2
x

)
lnx

−1

2
(1 + x) ln2 x− 5(1− x)

}

+CFCA

{[
1

2
ln2 x+

11

6
lnx+

67

18
− π2

6

]
pqq(x) + (1 + x) lnx+

20

3
(1− x)

}

+CFTFnl

{
−
[

2

3
lnx+

10

9

]
pqq(x)− 4

3
(1− x)

}
+ δP (1)

qq (x) , (C.72)

P
V(1)
qq̄ (x) = CF

(
CF −

CA
2

)
{2pqq(−x)S2(x) + 2(1 + x) lnx+ 4(1− x)} , (C.73)

P S(1)
qq (x) = P

S(1)
qq̄ (x) = CFTF

[
−2 +

20

9x
+ 6x− 56

9
x2 +

(
1 + 5x+

8

3
x2

)
lnx

−(1 + x) ln2 x
]
, (C.74)

(C.75)

P (1)
qg (x) =

CFTF
2

{
4− 9x− (1− 4x) lnx− (1− 2x) ln2 x+ 4 ln(1− x)

+

[
2 ln2

(
1− x
x

)
− 4 ln

(
1− x
x

)
− 2

3
π2 + 10

]
pqg(x)

}

+
CATF

2

{
182

9
+

14

9
x+

40

9x
+

(
136

3
x− 38

3

)
lnx− 4 ln(1− x)

−(2 + 8x) ln2 x+ 2pqg(−x)S2(x)
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+

[
− ln2 x+

44

3
lnx− 2 ln2(1− x) + 4 ln(1− x) +

π2

3
− 218

9

]
pqg(x)

}
,(C.76)

P (1)
gq (x) = C2

F

{
−5

2
− 7x

2
+

(
2 +

7

2
x

)
lnx−

(
1− 1

2
x

)
ln2 x− 2x ln(1− x)

−
[
3 ln(1− x) + ln2(1− x)

]
pgq(x)

}

+CFCA

{
28

9
+

65

18
x+

44

9
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(
12 + 5x+

8

3
x2

)
lnx+ (4 + x) ln2 x

+2x ln(1− x) + S2(x)pgq(−x)

+

[
1

2
− 2 lnx ln(1− x) +

1

2
ln2 x+

11

3
ln(1− x) + ln2(1− x)− π2

6

]
pgq(x)

}

+CFTFnl

{
−4

3
x−

[
20

9
+

4

3
ln(1− x)

]
pgq(x)

}
, (C.77)

P (1)
gg (x) = CFTFnl

{
−16 + 8x+

20

3
x2 +

4

3x
− (6 + 10x) lnx− (2 + 2x) ln2 x

}

+CATFnl

{
2− 2x+

26

9

(
x2 − 1

x

)
− 4

3
(1 + x) lnx− 20

9
pgg(x)

}

+C2
A

{
27

2
(1− x) +

67

9

(
x2 − 1

x

)
−
(

25

3
− 11

3
x+

44

3
x2

)
lnx

+4(1 + x) ln2 x+ 2pgg(−x)S2(x)+[
67

9
− 4 lnx ln(1− x) + ln2 x− π2

3

]
pgg(x)

}
+ δP (1)

gg (x) , (C.78)

where

S2(x) = −2Li2(−x) +
1

2
ln2 x− 2 lnx ln(1 + x)− π2

6
. (C.79)

The functions pqq, pqg, pgq and pgg read

pqg(x) = x2 + (1− x)2 , pgq(x) =
1 + (1− x2)

x
, (C.80)

pqq(x) =
2

(1− x)+
− 1− x , pqq(−x) =

2

1 + x
− 1 + x , (C.81)

pgg(x) =
1

(1− x)+
+

1

x
− 2 + x(1− x) , pgg(−x) =

1

(1 + x)
− 1

x
− 2− x(1 + x) .

(C.82)

The terms proportional to the δ-functions are

δP (1)
qq (x) =

[
C2
F

{
3

8
− π2

2
+ 6ζ3

}
+ CFCA

{
17

24
+

11π2

18
− 3ζ3

}
− CFTFnl

{
1

6
+

2π2

9

}]
δ(1− x)(C.83)
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and

δP (1)
gg (x) =

[
C2
A

{
8

3
+ 3ζ3

}
− CFTFnl −

4

3
CATFnl

]
δ(1− x) . (C.84)
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D.1. Projectors

The in section 3.1 constructed projectors read in the gg-channel:

〈P1| =
(ms − x− 1) (ms − x)

4(2ε− 1) ((ms − x) 2 + x) 2
〈S1|+

ms (−2ms + 2x+ 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S4|

+
ms

4(2ε− 1) ((ms − x) 2 + x) 2
〈S6| (D.1)

〈P2| = −
(ms − x− 1) (ms − x)

2(2ε− 1)ms ((ms − x) 2 + x)
〈S2|+

(ms − x− 1) (ms − x)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S3|

+
ms (−2ms + 2x+ 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S4|+

2ms − 2x− 1

2(2ε− 1) ((ms − x) 2 + x)
〈S5| (D.2)

〈P3| =
(ms − x− 1) (ms − x)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S2|+

(ε− 2)ms (ms − x− 1) (ms − x)

(2ε− 1) ((ms − x) 2 + x) 3
〈S3|

+− (ε− 2)m2
s (2ms − 2x− 1)

(2ε− 1) ((ms − x) 2 + x) 3
〈S4|+

ms (−2ms + 2x+ 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S5|

+− ms

2(2ε− 1) ((ms − x) 2 + x) 2
〈S6| (D.3)

〈P4| =
ms (−2ms + 2x+ 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S1|+

ms (−2ms + 2x+ 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S2|

+− (ε− 2)m2
s (2ms − 2x− 1)

(2ε− 1) ((ms − x) 2 + x) 3
〈S3|

+
m2
s

(
4 (ms − x) 2 + ε (4ms − 1)− 8ms + 4x+ 2

)

(2ε− 1) ((ms − x) 2 + x) 3
〈S4|

+
ms (4ms − 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S5| (D.4)

〈P5| =
2ms − 2x− 1

2(2ε− 1) ((ms − x) 2 + x)
〈S2|+

ms (−2ms + 2x+ 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S3|

+
ms (4ms − 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S4|+

1− 4ms

2(2ε− 1) ((ms − x) 2 + x)
〈S5| (D.5)

〈P6| =
ms

4(2ε− 1) ((ms − x) 2 + x) 2
〈S1|+−

ms

2(2ε− 1) ((ms − x) 2 + x) 2
〈S3|

+− ms

4(2ε− 1) ((ms − x) 2 + x) 2
〈S6| (D.6)

〈P7| =
(ε− 1) (ms − x− 1) (ms − x)

4(2ε− 1) ((ms − x) 2 + x) (−ms(2xε+ ε− 1) + εm2
s + x(x+ 1)ε)

〈S7|

+− 1

4(2ε− 1) (−ms(2xε+ ε− 1) + εm2
s + x(x+ 1)ε)

〈S8| (D.7)
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〈P8| = −
1

4(2ε− 1) (−ms(2xε+ ε− 1) + εm2
s + x(x+ 1)ε)

〈S7|

+− 1

4(2ε− 1) (−ms(2xε+ ε− 1) + εm2
s + x(x+ 1)ε)

〈S8| (D.8)

The following four projectors have been found for the qq̄ channel:

〈P1| = −
(ε− 1)ms (ms − x− 1) (ms − x)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S1|+

(ε− 1)m2
s (2ms − 2x− 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S2|

+
ms

4(2ε− 1) ((ms − x) 2 + x)
〈S4|

〈P2| =
(ε− 1)m2

s (2ms − 2x− 1)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S1|

+
m2
s

(
−2 (ms − x) 2 − 4εms + 4ms − 2x+ ε− 1

)

2(2ε− 1) ((ms − x) 2 + x) 2
〈S2| (D.9)

+
ms (2ms − 2x− 1)

4(2ε− 1) ((ms − x) 2 + x)
〈S3| (D.10)

〈P3| =
ms (2ms − 2x− 1)

4(2ε− 1) ((ms − x) 2 + x)
〈S2|+−

(ms − x− 1) (ms − x)

4(2ε− 1) ((ms − x) 2 + x)
〈S3|

+− ms

4(2ε− 1) ((ms − x) 2 + x)
〈S4| (D.11)

〈P4| =
ms

4(2ε− 1) ((ms − x) 2 + x)
〈S1|+−

ms

4(2ε− 1) ((ms − x) 2 + x)
〈S3|

+
ms

4(2ε− 1) ((ms − x) 2 + x)
〈S4| (D.12)

The appearing 〈Si| and the kinematic variables have benn de�ned in section 3.1.
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