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Since the ex i s t ence  of quan tum m e c h a n i c s  t he re  a re  two s c h e m e s  for  the 

d e s c r i p t i o n  of phys i ca l  s y s t e m s  each with i ts  own advantage .  

Method one u s e s  bounded o p e r a t o r s  and has  the advantage  of u s i n g  m a t h e -  

m a t i c a l l y  n ice  ob jec t s  so that a g rea t  t echn ica l  m a c h i n e r y  is  at hand. F u n d a m e n -  

ta l  phys i ca l  ob jec t s ,  however ,  do not be long  to th is  c l a s s ,  By r e w r i t i n g  a phys i ca l  

t heo ry  in t e r m s  of bounded o p e r a t o r s  some deta i led  i n f o r m a t i o n  is u sua l l y  ge t t ing  

los t  and one ends up with a s c h e m e  of quite g e n e r a l  n a t u r e .  This  se t t ing  is  e x t r e m e -  

ly  helpful  for  a n s w e r i n g  ques t i ons  of g e n e r a l  n a t u r e ,  but ,  I be l i eve ,  that  it is  u s e -  

l e s s  for  c o n s t r u c t i n g  mode l s .  

The second  method  u s e s  unbounded  o p e r a t o r s  and has  the advantage that  

we can fo rmu la t e  the phys i ca l  p r i n c i p l e s  b e t t e r  than in the f i r s t  s cheme .  This  

l eads  to the fact  that  the ob jec t s  of i n t e r e s t  a re  u s u a l l y  exp l i c i t l y  defined.  The 

d i sadvan tage  l i e s  p u r e l y  on the m a t h e m a t i c a l  s ide s ince  one runs  into al l  k inds  of 

p r o b l e m s  and pa thologies  a s soc i a t ed  with unbounded  o p e r a t o r s .  

In r e l a t i v i s t i c  f ie ld  theory  the f i r s t  s cheme  is known as A r a k i ~ l ]  - Haag-  

K a s t l e r ~ 2 ]  t heo ry  of loca l  r ings .  The second scheme  ex i s t s  in two v e r s i o n s ,  the 

LSZ f o r m a l i s m [ 3 ]  and the Wightman  f ie ld  theo ryL4  ] . Since 1962 it is  known~5J  

that  a Wightrnan f ie ld  theo ry  is  noth ing  e l se  than  r e p r e s e n t a t i o n  of a wel l  def ined 

a lgeb ra ,  the so ca l led  t e s t - f u n c t i o n  a lgebra .  So the "only"  p r o b l e m  which r e m a i n s  

is  the study of the r e p r e s e n t a t i o n  theory  of this  a lgeb ra .  In my l e c t u r e  I wi l l  t r y  

to give a r e p o r t  on our  knowledge of th is  a lgebra .  

Let  ~ ( ~ )  be the Schwar tz  space  of s t~ongly  d e c r e a s i n g  C °" func t ions  

then f will  denote the t e n s o r  a l geb ra  with iden t i ty  g e n e r a t e d  by ~ ( ~ )  , i . e .  

f c o n s i s t s  of t e r m i n a t i n g  s equences  of func t ions  {fo,  f l . . . .  f n ' "  t with fo ~ C 

y(~'*~, f is a topological ~ -algebra furnished with the direct and fn 

sum topology. For details see e.g.W. Wyss ~6], G. Lassner and A. Uhlmann fvT, 
H. J. Borchers fS]. A Wightmm] field theory can be identified with a cyclic repre- 

senlation of this algebra given by a state W which is invariant and which anihi- 
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lates the twosided locality-ideal and the spectral-left-ideal. 

The topology on ~ is a locally convex vector-space topology so that addi- 

tion and multiplication by scalars are continuous operations. The product, however, 

is  only s e p a r a t e l y  con t inuous .  

When we talk about a representation we will assume that we have a dense 

subspace ~D in a Hilbert-space ~ and in general unbounded operators ~" (f); 

f £ 5 O , which are defined on ~ having the property ¢~" (f) ~ C ~ and 

(~., ~-(~) ~) = (ca- (~)~J ~ ) . This seems to be the most general notation of 

$. representations. One can define more restricted representations as it is done 

for instance by R. Powers[gJ,/107 which leads to results which are closer to re- 

sults similar to those of rings of bounded operators, see also Y. Itagaki [llJ . But 

since we want to stay with Wightman' s axioms we have to stick to our definition 

of representations. 

One further requirement is the assumption that the representation is weakly 

continuous. This means the mapping 

sha l l  be cont inuous .  If the ~- a l geb ra  is b a r r e l l e d ,  as it  is the case  for  ~ and 

the r e p r e s e n t a t i o n  is  weak ly  con t inuous  then it  i s  a l so  s t r o n g l y  con t inuous  i . e .  

i s  c o n t i n u o u s  C.12~7 t h i n  4. I or.P133 thin 3 .7 .  A m o r e  d e t a i l e d  d i s c u s s i o n  o f  the  w h o l e  

p r o b l e m a t i c  of con t inu i ty  of r e p r e s e n t a t i o n s  can be found by G. L a s s n e r  ~ 13J .  

Before  d i s c u s s i n g  the r e p r e s e n t a t i o n s  of ~ m o r e  thoroughly  le t  us  f i r s t  look at 

the a l g e b r a  i t se l f .  

Let  us  f i r s t  look at the pu re ly  a l g e b r a i c  p r o p e r t i e s .  One knows:  

a) ~P con ta ins  an iden t i ty  

b) is  f ree  of d i v i s o r s  of ze ro  

c) has  a t r i v i a l  c e n t e r  

d) only m u l t i p l e s  of the iden t i ty  a re  i n v e r t i b l e  

e) the iden t i ty  is  the only i dempo ten t  e l e m e n t  

f) has  a t r i v i a l  r ad i ca l .  

F u r t h e r m o r e  A. Uh lmann  showed ~ 14J 

g) In ~ ex i s t s  an euc l id i an  a lgo r i t hm.  
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This allows to define prime elements in ~ and to disentangle the structure of 

left ideals which are generated by a finite number of elements. 

If we denote  b y  ~ the  r e a l  s u b s p a c e  of h e r m i t i a n  e l e m e n t s ,  then  one 

de f i ne s  the  p o s i t i v e  cone  by  

~÷ { ~ ¢4¢I ; the surn is convergent } 

2* __ Since f contains the identity follows that -- - _5~ k . Furthermore ~+ 

is a p oper °one this means f% - !'" M - W. Wyss observed that $* 
is a strict b-cone that is for every bounded set ~ Zh exists a bounded set 

C such  that  BC ]3' ]3' H . J .  B o r c h e r s  [15]  p r o v e d  tha t  i s  a c l o s e d  

cone. J. Yngvason [16] showed that 5 °4 is a cone with base. F.Brauer [17] and 

T* H. J. Borchers [18] showed that the positive cone _ is generated by its extremal 

rays, more precisely every element f' f can be written in the form 

f f = ~ gi gi 

where g~ gi lies on an extremal ray and the sum converges in ~ . Finally one 

9'" has %o mention that the positive cone -- has no topological (and algebraical) 

interior point. This fact has the consequence that almost all extension problems 

of states are unsolvable. 

Extremely little is known about the structure of closed left ideals. In particular 

one would like to have an algebraic characterization of those left ideals which are 

the intersection of left kernels of states. This property is automatic for closed 

left ideals in C * -algebras, but not for ~ since one can construct examples of 

left-ideals which do not have this property. But the two interesting ideals have 

the property that they are intersections of left-kernels. This can be derived using 

the explicit structure of these ideals. 

Next we are turning to the dual-space ~t. We will denote by --~t* the set 

of ¢D g 2 / with the property ¢.~ (f'f)~ 0 for all f~ ~ and by __~: the sel 

of real functionals. 

Using the fact that ~,~+ is a proper cone it follows directly that _~F+ --5o, + 

is a dense subspace of ~ . But J, Yngvason/17] gave an example of a continuous 

linear functional which cannot be decomposed into positive ones. In the same 

paper he derived a necessary and sufficient condition that a functional can be de- 
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composed into positive functionals. We know already that the product is only sepa- 

rately continuous. Let 7 be the original topology and u4 ~ be the final topology 

such that the product map 

#ors ,, Z 7, - . . ,  

is simultaneous continuous, then a functional is decomposable iff it is continuous 

in the ~¢" topology. This result is in agreement with the earlier result that for any 

state ~ the function f-~ ~ (f" f) 44~ is continuous. 

That there exist linear functionals on ,~ which are not linear combina- 

tions of states follows from the fact that ~ admits representations by unbounded 

operators. Namely if ~" is such a representation and ~¢ ~ ~ but ~ is 

arbitrary in ~ then the matrixeiement 

i~ ~ C y ,  V C p ~ )  

i s  con t inuous  on ~ but  i f  i t  i s  not  cont inuous  in  ~, then  one cannot  m a k e  a d e c o m -  

p o s i t i o n  into s t a t e s .  One f u r t h e r  r e s u l t  of Y n g v a s o n  [17] i s  tha t  e v e r y  con t inuous  

l i n e a r  func t iona l  is  of th i s  f o r m  showing  that  t h e r e  e x i s t  no s t r a n g e  cont inuous  func-  

tionals on ~ . 

Since ~ is an algebra with identity follows that the set of states (norma- 

lized positive functionals) form a base of the cone ~4 . One also can show that 

this cone contains no topological interior point. More interesting is the fact that 

the cone -- is generated by its extremal rays, This has been proved by Bor- 

chers and Yngvason [12J and I think I should make some remarks about the results 

of this paper. 

If ~ is a state and Ii'~ the representation given by the G.N. S, construc- 

tion and if ~ can he decomposed this means 

then exists a bounded positive operator C on ~ such that ~4 ( f~ " g) = 

¢i~l~l.t~).l'l, C %(~) -~) Since the operators ~T~.,(f) are generally unbounded 

follows that the expression %[¢~ ~ -~ must not necessarily be defined. 

With other words the operator C belongs only to the weak eommutant of ~'c.~ 

As in the case of bounded operators the weak commutant is invarJant under taking 

the ad~oint of an operator and it is also closed in the weak operator topology. But 

in contrast to the bounded case it is not an algebra in general. This has the con- 
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sequence  that one has  to a l t e r  the decompos i t ion  t heo ry  in such a way  that  it is 

a l so  appl icable  to r ings  of unbounded o p e r a t o r s .  The main  clue to this p r o g r a m  is 

fol lowing obse rva t ion :  If ~ and q~ a re  two cyc l i c  r e p r e s e n t a t i o n s  and if q~ 

and ¢~ a re  s t r ange  then the vec to r  ~ . f / 4  * ~ "  C / ~  need  not  n e c e s s a r i l y  

be a cyc l i c  v e c t o r  f o r  ~ ,  (~) q[a , with o the r  words  the cyc l i c  subspace  gene-  

r a t ed  by the v e c t o r  ~ - f l  I + ~ -('2 ~ need not be dense  in ~ (~ )  ~ 

T h e r e f o r e  if one wants  to decompose  the r e s t r i c t i o n  of ~ (.~ % to the cyc l i c  

su spaee o n e  f i r s t  h a s  t o  r e o o v e r  t h e  fu l  ilhert-spaee . T h a t  th s 

can be done is e s sen t i a l  p a r t  of  the p a p e r  ~12~ . The ou tcome is  the fol lowing:  

Theorem: 

(. / [  

Let~ 

of a separable Hilbert space ~ . Then exists a standard measure space 

J~4 ) a separable Hilbert space 

be a representation of ~ defined on a dense nuclear domain 

./% 

representations ~ de- such that there exist dense domains ~% C ~] , 

fined on ~l with : 

a) if )£ ~ ~ • ~l is /~ -measurable then also 

A --~ ~[~ |~) ~, is ~ -measurable 

and fulfills some continuity property. 

b) ~ is a closed subspace of ~' such that the projection of 

is D~. 

e) The representations ~'~ have a trivial weak eommutant. 

(all these properties hold /~ a.e.) 

into ~l 

That one can also decompose unbounded representations is probably only 

true when ~ is a nuclear space which is the case for cyclic representations 

of nuclear algebras. Since this is the case for ! we can decompose every state 

on ff into extremal ones • 

where ~2 are /~- a.e. extremal states that is the representation ~ all 

have a trivial weak commutant. 

If the state 60 is a Wightman functional then all the states ~3 in the 
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above decomposition are also Wightman functionals. This shows that the set of 

Wightman states form a face in the set of all states. If in a cyclic Wightman theory 

with cyclic vector .t~ this ~ is also the only invariant vector in the repre- 

sentation Hilbert space then this representation has a trivial weak commutant, 

which means that the corresponding Wightman state is extremo_l. As one can show 

by examples the converse conclusion is not correct this means there exists extre- 

real Wightman funetionals such that the corresponding representation has an infi- 

nite dimensional subspace as invariant subspace. This effect does not occur in 

the theory of local rings, and is due to pathologies in the theory of commuting 

unbounded operators. 

Symanzik []9] introduced euclidean fields as some kind of "analytic conti- 

nuation" of Wightman fields. It is natural to apply the above decomposition theory 

also to such fields. This has been done by Borchers and Yngvason [209 . The 

question here is not the decomposition of a state on an abelian algebra into extre- 

real states but rather the question when can a state of an abelian algebra be decom- 

posed into characters. This is not always the case, but necessary and sufficient 

for this is that the state must be strictly positive, that is, if P(x]...Xn) ~ 0 is 

a positive polynomial then t~ (P(fl~... fn) ) has to be non negative for all 

~ ( ~ . If the Schwinger functional is strict positive then it can be represented 

by a cylinder-measure over ~s(~) 

If one starts from a Wightman state then we can analytically eontinuate 

to the Sehwinger points. This, however, defines a continuous linear functional 

only on some subspaee of the symmetric part of _9 ~ . As Osterwalder and Schrader 

r22] remarked this can be extended to a continuous linear functional to the whole 

symmetric part of ~ . Since the positive cone in 5~ has now interior points it 

seems to me a hopeless problem to show (except in eonerete examples) that there 

exists an extension as positive functional. Since one does not know explicitly the 

structure of all positive polynomials,it is even much more hopeless to the exten- 

sion as a strict positive functional. The beauty of strict positive funetionals is 

that they can be represented by cylinder measures. In order to get a wider class 

one can study functionals which are representable by not necessarily positive cy- 

linder measures, i.e. functionals which can be decomposed into strict positive 

ones. This program is under investigation in Gbttingen and we could already say 

that such functionals can be characterized by pure continuity property. The question 

whether every analytic continuation of a Wightman functional has this continuity 
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p r o p e r t y  i s  unse t t l ed .  

One group  of p r o b l e m s  which  is s t i l l  c o m p l e t e l y  in the dark  is  the ex t en -  

s ion  of p o s i t i v e  func t iona l s  g iven  on s u b s p a c e s  o r  s u b a l g e b r a s  to a p o s i t i v e  func-  

t iona l  on al l  of ~ . F o r  Wigh tman  func t iona l s  W. Wyss  ~22J could  g ive  s o m e  con-  

d i t ions .  They  a r e  s t i l l  in such  a f o r m  that  i t  is  p r a c t i c a l l y  i m p o s s i b l e  to u se  t hem.  

But n e v e r t h e l e s s  L a s s n e r  and Hofmann  [23J could use  t h e s e  condi t ions  and g ive  

an a b s t r a c t  p roo f  that  t h e r e  ex i s t  Wigh tman  f i e lds  d i f f e r en t  ~rom one g e n e r a l i z e d  

f r e e  f i e ld s .  

It i s  known that  f o r  Wigh tman  f i e ld s  only unbounded r e p r e s e n t a t i o n s  of 

a r e  of i n t e re s to  But ,  n e v e r t h e l e s s ,  it is  known f r o m  ~8~ and E15J that  .~ ad-  

m i t s  a l a r g e  n u m b e r  of r e p r e s e n t a t i o n s  by bounded o p e r a t o r s .  Th is  m e a n s  we 

have  on JF a g r e a t  f a m i l y  of cont inuous  n o r m s  and s e m i - n o r m s  which  a re  a l so  

C* - n o r m s .  M. D u b o i s - V i o l e t t e  [24]  i s  t r y i n g  to e x p l o r e  th i s  fact .  His  p r e s e n t  in -  

v e s t i g a t i o n s  a r e  in the d i r e c t i o n  of the inf in i te  d i m e n s i o n a l  m o m e n t  p r o b l e m .  But  

I think that  h e r e  is  a new techn ique  which  migh t  add to the u n d e r s t a n d i n g  of  the 

a l g e b r a  ~ and which has  to be e x p l o r e d  in the fu ture .  

As f ina l  sub jec t  I wi l l  t a lk  on combina t ion  of s t a t e s .  Th i s  i s  a m e t h o d  of 

c o m b i n i n g  two s t a t e s  to a new one in a n o n l i n e a r  fash ion .  T h e s e  c o m b i n a t i o n s  

a r e  m a i n l y  p o s s i b l e  b e c a u s e  - ~  is a g r aded  a l g e b r a .  The f i r s t  sub jec t  is  the 

s - p r o d u c t  which is w e l l  known in s t a t i s t i c a l  m e c h a n i c s  to obtain  the M e y e r  expan-  

s ion  f r o m  c o r r e l a t i o n  funct ion .  In f i e ld  t h e o r y  i t  i s  u s e d  f o r  ob ta in ing  the t r u n c a t e d  

func t iona l  ~ f r o m  O) • The  r e l a t i o n  is  

4 

where we have to take the powers in the s-product. If now ¢~4 and eO~ are two 

states on ~J~ then 

defines a new state on ~' . This operation amounts in the language of operators 

to the fo l lowing :  Le t  A(x) and B(x) be the f ie ld  ob ta ined  f r o m  e~  and ~ 

and C(x) the f i e ld  ob ta ined  f r o m  ~ then we have :  

C(x) = cyclic part of (A(x) 12 + 11 B(x)~. 

( F o r  the p r o o f s  see  [ 8 ] ) ,  Of i n t e r e s t  is  now the i n v e r s e  p r o c e s s  n a m e l y  the d e c o m -  

pos i t ion  of s t a t e s  into s - p r o d u c t s .  The r e a s o n  fo r  th is  is  an o b s e r v a t i o n  made  by 
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Symanzik, namely, if A(x) is a field which has complete asymptotic fields and if 

W is the Wightman functional belonging to A(x) then the field B(x) constructed 

from the functional W s W has in general no longer complete asymptotic fields. 

This makes the interest in the s-product evident. Some results in this direction 

have been obtained by Hegerfeldt [25] ~ butj I need some notations before I can 

describe them. A state ¢~ on .~ is called a prime state if it cannot be written 

as the s-product of two other states. On the other hand a state is called infinitely 

divisible if it is the n-th s-power of another state for every n = I~ 2 ..... Heger- 

feldt" s result is now the following: Every state ~ on _~ can be decomposed into 

the s-product of at most a countable number of prime states and a rest where the 

rest is either t]~ivial or infinitely divisible. 

His proof is a pure existence proof. What would be of great interest, any 

characterisation of prime statesj is still missing. But nevertheless one can prove 

the existence of prime states since one can characterize the infinitely divisible 

states and show that the Wick polynomials do not belong to this class. The charac- 

terization of this class is by means of the truncated functional ~a . The result is: 

A state r~ is infinitely divisible if and only if ~ is positive on the ideal of ele- 

ment with vanishing zeroth component. The generalized free fields belong to this 

class. 

There is still another combination of states which works only for Wightman 

funetionals. But since nothing has been done with it I will refrain from explaining 

it. There is also another group of results which I will not bring here. These are 

results obtained in connection with constructive field theory. Most of them start 

from additional assumptions suggested by models and not from a general axiomatic. 
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Discussion 

Question by R. Arens: 

On the algebra ~ , is the map x ÷ xx* perhaps continuous? 

Answer: 

No, since the algebra contains an identity, continuity of the 

map x + xx* and joint continuity of the product are the same. 

Question by M. Winnink: 

Can the decompositions you have been discussing be related to 

a simplicial structure of the set of states of interest? 

Answer: 

For the decomposition treated here the set of states do not form 

a simplex even not for the set of Wightman states. I expect that no 

face of the set of states, which might appear in physics, will form a 

simplex. The reason for this is that the moment problem has a unique 

solution only under very restrictive conditions. And I cannot imagine 

that such condition will appear naturally. 


