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Since the existence of quantum mechanics there are two schemes for the

description of physical systems each with its own advantage.

Method one uses bounded operators and has the advantage of using mathe-
matically nice objects so that a great technical machinery is at hand. Fundamen-
tal physical objects, however, do not belong to this class. By rewriting a physical
theory in terms of bounded operators some detailed information is usually getting
lost and one ends up with a scheme of quite general nature. This setting is extreme-
1y helpful for answering questions of general nature, but, I believe, that it is use-

less for constructing models.

The second method uses unbounded operators and has the advantage that
we can formulate the physical principles better than in the first scheme. This
leads to the fact that the objects of interest are usually explicitly defined. The
disadvantage lies purely on the mathematical side since one runs into all kinds of

problems and pathologies associated with unbounded operators.

In relativistic field theory the first scheme is known as Araki[1] - Haag-
Kastler[zj theory of local rings. The second scheme exists in two versions, the
LSZ formalism [3] and the Wightman field theory [4] . Since 1962 it is known[5]
that a Wightman field theory is nothing else than representation of a well defined
algebra, the so called test-function algebra. So the "only" problem which remains
is the study of the representation theory of this algebra. In my lecture I will try

to give a report on our knowledge of this algebra.

Let ?(R“) be the Schwartz space of strongly decreasing (¢ * functions
then ..Z will denote the tensor algebra with identity generated by ‘?(R") , i.e,
g consists of terminating sequences of functions {fo, fl’ v fn . } with foe C
and fn € f('Rk")_ g’ is a topological ¥ -algebra furnished with the direct
sum topology. For details see e.g. W.Wyss[8), G.Lassner and A, Uhlmann [7],
H,J, Borchers {8} A Wightman field theory can be identified with a eyclic repre-

sentation of this algebra given by a state W which is invariant and which anihi-
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lates the twosided locality-ideal and the spectral-left-ideal.

The topology on f ig a locally convex vector-space topology so that addi-
tion and multiplication by scalars are continuous operations. The product, however,

is only separately continuous.

When we talk about a representation we will assume that we have a dense
subspace J) in a Hilbert-space '}{ and in general unbounded operators T
fe f , which are defined on 9 having the property T(H D ¢ D and
('Y; T F) 'f) = (T¢ ()‘f , ?) . This seems to be the most general notation of
#. representations. One can define more restricted representations as it is done
for instance by R.Powers[9] [1 0] which leads to results which are closer to re-
sults similar to those of rings of bounded operators, see also Y.Itagaki [11] . But
since we want to stay with Wightman’s axioms we have to stick to our definition

of representations,

One further requirement is the assumption that the representation is weakly

continuous, This means the mapping
f — (Y,T{f-’)«() ; "y)«ng

shall be continuous. If the ¥- algebra is barrelled, ag it is the case for _f and

the representation is weakly continuous then it is also strongly continuous i.e.
[ prad
(’ — V) gl i fe D

ig continuous [12] thm 4.1 or [13] thm 3.7. A more detailed discussion of the whole
problematic of continuity of representations can be found by G. Lassner [13].
Before discussing the representations of ¥ more thoroughly let us first look at

the algebra itself.

Let us first look at the purely algebraic properties. One knows:
a) _é" contains an identity
b) is free of divisors of zero
¢} has a trivial center
d) only multiples of the identity are invertible
e) the identity is the only idempotent element
f} has a trivial radical.
Furthermore A, Uhlmann showed[14]

g) In _._7 exists an euclidian algorithm,
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This allows to define prime elements in f and to disentangle the structure of

left ideals which are generated by a finite number of elements.

If we denote by _5"“ the real subspace of hermitian elements, then one

defines the positive cone by

_f+ = { Z f; f; : the sum is convergent }
L

Since ¥ = contains the‘identity follows that f*a f*- fk . Furthermore 9’+
is a proper cone this means §+ﬂ - _fh fo]l . W.Wyss [6] observed that 2*-"
is a strict b-cone that is for every bounded set B¢ :fh exists a bounded set
B'c f‘ cuch that B¢ B - B . H.J.Borchers [15] proved that f‘ is a closed
cone, J.Yngvason [16] showed that _f_fﬂ is a cone with base, F.Brauer [17] and
H. J. Borchers [18] showed that the positive cone _3_‘?’ is generated by its extremal

rays, more precisely every element ' £ can be written in the form
* X
ri = Z g &

where g‘i' g lies on an extremal ray and the sum converges in _3_" .- Finally one
has to mention that the positive cone jf * hasno topological (and algebraical)

interior point, This fact has the consequence that almost all extension problems

of states are unsolvable.

Extremely little is known about the structure of closed left ideals. In particular
one would like to have an algebraic characterization of those left ideals which are
the interseetion of left kernels of states. This properiy is automatic for closed
left ideals in C‘l -algebras, but not for f since one can construct examples of
left-ideals which do not have this property. But the two interesting ideals have
the property that they are intersections of left-kernels. This can be derived using

the explicit structure of these ideals,

’ ’
Next we are turning to the dual-space ¥ . We will denote by f * the set
* ¢
of o€ P’ with the property @ (i )2 0 forall fe ¥ andby §, the set

of real functionals.

Using the fact that f * is a proper cone it follows directly that 5°’+._ (p’ t
’ . - 2
ig a dense subspace of _3_’,. . But J, ¥Yngvason [17] gave an example of a continuous
linear functional which cannot be decomposed into positive ones. In the same

paper he derived a necessary and sufficient condition that a functional can be de-
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composed into positive functionals, We know already that the produet is only sepa-
rately continuous, Let 7= be the original topology and «# be the final topology
such that the product map

Ferrx Lo — L

is simultaneous continuous, then a functional is decomposable iff it is continuous
in the # topology. This result is in agreement with the earlier result that for any

A,
state @ the function f-» w (ft f)/“ is continuous.

That there exist linear functionals on ¥ which are not linear combina-
tions of states follows from the fact that ¥ admits representations by unbounded
operators, Namely if T is such a representation and vy & D but ¢ is

arbitrary in ‘¥ then the matrixelement
f — (¢, Tpry)

is continuous on ¥ but if it is not continuous in ¥ then one cannot make a decom-
position into states, One further result of Yngvason [17] is that every continuous
linear functional is of thig form showing that there exist no strange continuous func-

tionals on __Jf .

Since g ig an algebra with identity follows that the set of states (norma-
lized positive functionals) form a base of the cone !“ . One also can show that
this cone contains no topological interior point. More interesting is the fact that
the cone _f,* is generated by its extremal rays., This has been proved by Bor-

chers and Yngvason [12] and I think I should make some remarks about the results

of this paper,

If w is a state and T, the representation given by the G.N. S, construc-

tion and if «w can be decomposed this means

wchw1+ (4-1.’099_ i O<A<4

then exists a bounded positive operator € on ¥, such that w, (f* - g =
(‘ﬂ";tf).ﬂ., c 'fl;(si .Q) . Bince the operators T;(f) are generally unbounded
follows that the expression cﬂ;(r) ca must not necessarily be defined.
With other words the operator C belongs only to the weak commutant of Mo

As in the case of bounded operators the weak commutant is invariant under taking
the adjoint of an operator and it is also closed in the weak operator topolegy. But

in contrast to the bounded case it is not an algebra in general. This has the con-
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sequence that one has to alter the decomposition theory in such a way that it is
also applicable to rings of unbounded operators. The main clue to this program is
following observation: If ‘ﬂ; and Cﬂ;‘ are two cyclic representations and if ‘TI‘;
and ‘37'2 are strange then the‘vector /,?_Qq + /4_—:1_‘ -Q,, need not necessarily
be a cyclic vector for T @ Te , with other words the cyclic subspace gene-
rated by the vector ﬁ L, +/;T "Ql need not be dense in % @9(2 A
Therefore if one wants to decompose the restriction of ‘ﬂ_" @ ‘713 to the cyclic
subspace one first has to recover the full Hilbert-space 'X{‘ & M.‘L . That this

can be done is essential part of the paper [12] . The ouicome is the following:

Theorem: LetT be a representation of j defined on a dense nuclear domain
:D of a separable Hilbert space 7( . Then exists a standard measure space

(A " ) a separable Hilbert space

®
’}({ = J 3(1 J(M'U
A

w,

such that there exist dense domains Ql < q(,\ , representations de-

fined on fDl with :

P

a) if § ~> (ﬁ efD;, is /M -measurable then also

A~ T, (ﬁ % is/.q -measurable
1
and fulfills some continuity property.

'
b) M is a closed subspace of 4 such that the projection of iD into %).
is g};.
¢} The representations qi', have a trivial weak commutant,

(all these properties hold A a.e.)

That one can also decompose unbounded representations is probably only
true when :D is a nuclear space which is the case for cyclic representations
of nuclear algebras. Since this is the case for f we can decompose every state

on _f into extremal ones :

_( w 0‘( tA)
w - y O
A
where u)a are /4 - a,e, extremal states that is the represgentation <ﬂ:0 all

A
have a trivial weak commutant.

If the state &  is a Wightman functional then all the states Q}l in the
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above decomposition are also Wightman functionals. This shows that the set of
Wightman states form a face in the set of all states. If in a eyclic Wightman theory
with cyclic vector L& this L is also the only invariant vector in the repre-
sentation Hilbert space then this representation has a trivial weak commutant,
which means that the corresponding Wightman state is extremal, As one can show
by examples the converse conclusion is not correct this means there exists extre-
mal Wightman functionals such that the corresponding representation has an infi-
nite dimensional subspace as invariant subspace. This effect does not occur in

the theory of local rings, and is due to pathologies in the theory of commuting

unbounded operators.

Symanzik [19] introduced euclidean fields as some kind of 'analytic conti-
nuation' of Wightman fields. It is natural to apply the above decomposition theory
also to such fields., This has been done by Borchers and Yngvason [20] ., The
question here is not the decomposition of a state on an abelian algebra into extre-
mal states but rather the question when can a state of an abelian algebra be decom-
posed into characters, This is not always the case, but necessary and sufficient
for this is that the state must be strictly positive, that is, if P(x]‘. . .xn) 2 0 is
a positive polynomial then w (P(fl, .. .fn) } has to be non negative for all
F; € __‘ﬁ . If the Schwinger functional is sirict positive then it can be represented

1, b
by a cylinder-measure over FU(R)

If one starts from a Wightman state then we can analytically continuate
to the Schwinger points, This, however, defines a continuous linear functional
only on some subspace of the symmetric part of _S_P . As Osterwalder and Schrader
[22] remarked this can be extended to a continuous linear functional to the whole
symmetric part of_f . Since the positive cone in g has now interior points it
seems to me a hopeless problem to show (except in concrete examples) that there
exists an extension as positive functional. Since one does not know explicitly the
structure of all positive polynomials,it is even much more hopeless to the exten-
sion as a strict positive functional. The beauty of strict positive functionals is
that they can be represented by cylinder measures., In order to get a wider class
one can study functionals which are representable by not necessarily positive cy-
linder measuresg, i.e, functionals which can be decomposed into sirict positive
ones. This program is under investigation in Géttingen and we could already say
that such functionals can be characterized by pure continuity property. The guestion

whether every analytic continuation of a Wightman functional has this continuity
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property is unseitled.

One group of problems which is still completely in the dark is the exten-
sion of positive functionals given on gubspaces or subalgebras to a positive func-
tional on all ofj . For Wightzﬁan functionals W, Wyss [22] could give some con-
ditions. They are still in such a form that it is practically impossible to use them.
But nevertheless Lassner and Hofmann [23] could use thegge conditions and give
an abstract proof that there exist Wightman fields different rrom tne generalized

free fields,

It ig known that for Wightman fields only unbounded representations of
are of interest, But, nevertheless, it is known from [8] and [15] that ;Cf ad-
mits a large number of representations by bounded operators. This means we
have on ! ‘a great family of continuous norms and semi-norms which are also
c* -norms. M. Dubois-Violette [24] is trying to explore this fac;t. His present in-
vestigations are in the direction of the infinite dimensional moment problem. But
I think that here is a new technique which might add to the understanding of the
algebra _f and which has to be explored in the future.

As final subject I will talk on combination of states, This is a method of
combining two states to a new one in a nonlinear fashion. These combinations
are mainly possible because _f is a graded algebra. The first subject is the
s-product which is well known in statistical mechanics to obtain the Meyer expan-
sion from correlation function. In field theory it is used for obtaining the fruncated
functional a)é from ¢ . The relation is

&) = e’xp w‘l;

where we have to take the powers in the s-product. If now o, and &), aretwo
states on _f then

W = 601 s wg
defines a new state on _ff . This operation amounts in the language of operators

to the following: Let A(x) and B(x) be the field obtained from <), and &,
and C{(x) the field obtained from then we have:

C(x) = cyclic part of (A(x) 1, + L B(x)).

{For the proofs see [8]). Of interest is now the inverse process namely the decom-

position of states into s-products, The reason for this is an observation made by
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Symanzik, namely, if A(x) is a field which has complete asymptotic fields and if
W is the Wightman functional belonging to A(x) then the field B({x) constructed
from the functional Ws W has in general no longer complete asymplotic fields,
This makes the interest in the s-product evident, Some results in this direction
have been obtained by Hegerfeldt [25] , but, I need some notations before I can
describe them, A state @ on _,_? is called a prime state if it cannot be written
as the s-product of two other states., On the other hand a state is called infinitely
divigible if it is the n-th s-power of another state for everyn =1,2,.,.. Heger-
feldt’ s result is now the following: Every state 2 on ¥ can be decomposed into
the s-product of at most a countable number of prime states and a rest where the

regt ig either trivial or infinitely divisible,

His proof ig a pure existence proof, What would be of great interest, any
characterisation of prime states, is still missing. But nevertheless one can prove
the existence of prime states since one can characterize the infinitely divisible
states and show that the Wick polynomials do not belong to this class. The charac-
terization of this class is by means of the truncated functional w* . The result is:
A state @ is infinitely divisible if and only if wt is-positive on the ideal of ele-
ment with vanishing zeroth component, The generalized free fields belong to this
class.

There is still another combination of stateg which works only for Wightman
functionals, But since nothing has been done with it I will refrain from explaining
it, There is also another group of results which I will not bring here. These are
results obtained in connection with constructive field theory, Most of them start

from additional assumptions suggested by models and not from a general axiomatic.
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Discussion

Question by R. Arens:

On the algebra ¢, is the map x + xx* perhaps continuous?
Answer:

No, since the algebra contains an identity, continuity of the
map x + xx¥* and joint continuity of the product are the same.
Question by M. Winnink:

Can the decompositions you have been discussing be related to
a simplicial structure of the set of states of interest?
Answer:

For the decomposition treated here the set of states do not form
a simplex even not for the set of Wightman states. I expect that no
face of the set of states, which might appear in physics, will form a
simplex. The reason for this is that the moment problem has a unique
soclution only under very restrictive conditions. And I cannot imagine
that such condition will appear naturally.



