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ABSTRACT
Radiative corrections to the electron scattering from nucleons and
nuclei at high enefgies (> 50 MeV) are considered. Many formulas in

—— e

the Mo and Tsai's article in Review of Modern Physics are improved
and better derivations of them are presented. '£‘he effects o;:' tﬁe strag-
gling of electrons in the medium due to both the external bremsstrahlung
and the ionization are included in the radiative corrections. A method
for dealing with the radiative corrections to the scattering from a target
material with a large Z is proposed. We suggest that the proper way

to deal with the radiative corrections to the coincidence experiments is
in terms of the energy-momentum distribution and the density matrix

of the virtual photon exchanged; formulas needed for dealing with the

problem this way are presented.

(Lectures given at '""Nato Advanced Institute on Electron Scattering
and Nuclear Structure at Cagliari, Italy, September 1970.)
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given for the elastic scattering.

1. INTRODUCTION

Professor Bosco asked me to give a course in radiative corrections to the

electron scatterings from nuclei including those to the coincidence experiments.

This note is an expénded version(of the lectures I gave at the summer institute.

The author benefited greatly from the discussions with many people at the institute.
The note was expanded and altered considerably from the original one in order to
answer many questions raised at the institute.

Why do we need radiative corrections? Let us consider an electron scattering
from a nucleus. The Feynman diagram representing the process in the lowest

order of « is given by Fig. 1. The theoretical analysis of the process is most

—

convenient in terms of Fig. 1 (see Appendix A). However if one a'ctlially scatters

an electron from a nucleus, the probability of the process described by Fig. 1
occurring is strictly speaking zero. Several corrections have to be applied to the

experimental data before one can extract the idealized cross section represented

by Fig. 1. In the first place it is impossible to scatter a charged particle without

emitting an infinite number of soft photons (Bloch and Nordsieckl) . Because of its

‘ small mass the photon emission by the electron is much more important than the

photon emission by the hadron target system. This is especially true for experi-
m'ents designed to investigate the nuclear structure where the targét particle is
usually heavier than the proton and the incident electron beam energy is usually

less than one GeV. The photon emission by hadrons is negligible compared with that
by electrons untii the energies of these hadrons become relativistic. 2 We shall
ignore the bremsstrahlung emission by the target system except when treating the
elastic scattering. The order of magnitude of the effects of the bremsstrahlung
emission by the target system can bé inferred from the results of the calculation

2,3,4 The formulas for the radiative corrections
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are usually derived under the assumption of one photon exchange between the electron
current and the hadron current. S For a target with a high atomic number Z, it is

well" known that one photon exchange is a bad approximation and the method of phase

* shift analysis using the exact Coulomb wave function (with form factors) must be

'{ used. 6 It is also known that a good approximation to the results of the phase shift

analysis can be obtained by a distorted wave Born7 approximation in which most of
the energy and momentum transfer from the electron to the nuclear system is
carried by a single photon and the rest of the Coulomb interaction consists of ex-
changes of infinite number of soft photons between the electron and the hadron.

It is well known that the probability of soft photon emission is proportional to
the cross section for no photon emission (see Egs. (2.3) and (2.4)) and the propor-
tionality constant depends upon ‘q?, E s ‘(—the incident electron energy) and Ep (the
outgoing electron energy) only logarithmically. Since the distorted wave Born
approximation shows that the effective Es’ Ep and q2 in the problem are not appreci-

ably changed by the Coulomb distortion, we expect this proportionality constant,

which we shall refer to as radiative corrections, should not change appreciably.

For a hard photon emission the situation is less clear. In Chapter 3, we propose

a prbcedure to handle this problem based on the following observations:
1. The Coulomb distortion can in a certain sense be regarded as some
~ change in form factors. |

2. One can2 always cook up a peaking approximation formula which
reproduces the exact Born approximation calculation of the radiative
tail corresponding to a particular set of form factors, even though
it is difficult to find a universal peaking approximation formula which
is good for all form factors.

3. Since the Born approximation does give gross features of the electron-

nucleus scattering even for a large Z material, we expect the peaking
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approximation formula which reproduces the Born approximation
result well will also be good for the Coulomb distorted cross sections.

The Coulomb distortion does not represent the entire effects of multiple photon

exchange. For exa:mple it does not take into account the possibility that in the two-

photon exchanges, the hadron intermediate states can be an excited state instead of
the ground state. 8 The estimate of this effect is highly model dependent. However
some model calculations9 show that the effect is significant only in the region of
diffraction minima. Since all the calculations are numerically unreliable, all one
has learned from this type of model calculation up to now is that when doing a phase
shift analysis it is illusory to try to fit the region of diffraction minimum beyond
the accuracy comparable t‘o‘ﬁle m_;gnitude of the dispersion effects. Similar to

the fact that one-photon exchange formalism gives the gross features of the electron
scattering, one real photon emission gives the gross features of the radiatiye cor-

rections except in the infrared limit. Suppose a charged particle lost a certain

amount of energy A by radiation. We know from Bloch—Nordsiek1 theorem that A

is shared by an infinite number of photons. However because of l/ki dependence

| for the probability of emitting the ith photon, it is much more probable for one of

the photons to take up practically all the energy available and only a small fraction
of A is shared by the rest of the photons than many photons sharing almost equally
the available energy. This phenomenon is very similar to the fact that in Coulomb
scattering it is most probable that most of the energy and momentum transfer is
carried by a single virtual photon. All the corrections mentioned above are higher
order ¢ corrections to the process under consideration. In practice it is convenient
(actually necessary) to consider at the same time the straggling of the electrons in

10,11,12

passing through the medium before and after the scattering. The brems-

strahlung emission of the electron in passing through the medium before and after
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the scattering is called the external bremsstrahlung whereas the bremsstrahlung
Vemissi'on during the collision is called the internal bremsstrahlung. The internal
brerﬁsstrahlung is proportional to the target thickness T, but the external brems-
strahlung is proportional tc; Tz. AnotheI: T2 effect is the ionization, which is some-
times c;alled the Landau straggling. 13 The internal and external bremsstrahlungs
have almost identical dependence on the energy loss A, but the ionization loss
behaves quite differently from the bremsstrahlung. The straggling of an electron

in passing through a medium due to the combined effects of the external bremsstrahlung
and the ionization is discussed in Appendix B. In Appendix C, we show that the
effect of the straggling can be approximated by assuming that the scattering took
place at exactly half the path lengtﬁ:.b the e;ror is less than 1%, if T is less than

0.1. We also show how the two-dimensional integration with respect to dEI') and
MdE; can be approximated by two line integrations. The reader is advised to read
the hppendices before reading the teﬁ. In the text we deal mainly with how to put
tdgether various pieces of formulas, derived in the appendices and elsewhere, in

order to actually carry out the radiative corrections to the experimental data.

There are some differences in the treatment of the radiative corrections to
the multi-GeV ep scattering and the low energy (100 MeV) e-nucleus scattering.
In the ep scattering there are only about three or four broad bumps (1238, 1525,
1700 and 1900 MeV ?) each with a width of around 100 MeV. These bumps are all
above the pion threshold and hence lie on top of the continuum (see Fig. 2). In the
electron nucleus scattering the levels are much more numerous, the intrinsic width
of these levels are in general negligible, and many of these levels are below the
threshold of the continuum. In the ep scatterings only the elastic peak needs a
special treatment, and all the resonances can be treated the same way — as we

treat the continuum. In the e nucleus scattering all experimentally resolvable
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levels are narrow and can be regarded as discrete, the apparent widths of tﬁese
lévels are mostly due to internal and external bremsstrahlung, Landau straggling,
the energy width in the incident beam and the energy resolution in the detection
system. h |

It should be emphasized that experiments should be planned from the beginning
so that the radiative correction can be carried out reliably. For example in order
to carry out the radiative corrections we need to have many spectra (each with a
different incident energy) at each scattering angle. The greater the number of
spectra the more reliable are the interpolations and extrapolations needed to carry

out the radiative corrections. 2 Now in order to separate out the two form factors

—

and determine their q2 and v dependence it is neces;ary to perfc;rni experiments
at different scattering angles and different incident energies. The two kinematical
regions covered by the two above requirements should have a maximum overlap. 2
The effect of the internal bremsstrahlung is roughly the same as that given by two
external radiators with one placed before and one after the scattering, each of
'chickness2

t, =b" @/m [;(/m? - 1

radiation lengths, where b is a number very close to 4/3.

Hence in order to reduce the effect due to the straggling, the target thickness
should be chosen less then 2 tr.

It is also important to place the target so that the path length of the target is
constant for a fixed scattering angle independent of where the interaction takes
place in order to simplify the calculation of the straggling effects. This can be
accomplished easily by rotating the target of a uniform thickness such that the
angle between the incident electron and the target surface is equal to the angle

between the outgoing electron and the target surface. 1 We follow closely the
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notations of MT;2 they are summarized below for easy reference. We use the

convention h=c=1. The metric used is such that p-s=E sEp -p-s. Components of

four vectors and angles are all in the laboratory system.

S=(Es, 8): four momentum of the incident electron.
p=(Ep,g): four momentum of the outgoing electron.
t=(M, 0): four momentum of the target particle.
k=(w,Kk): four momentum of the real photon emitted.
pf=s+t—p—k: four momentum of the final hadronic system.

u=(u0,13.) = s+t - p=pf+k

u2= 2m2+ M2 -2(s*p)+ 2M(ES—ET)), = missing mass squared.

2_ 2
M =pg

o=(s-p-k) %= (pg-t) 2

0 =scattering angle

T=total path length in unit of radiation length X of the electron in the
target before and after the scattering.

Z =atomic number of the target nucleus.

A=atomic weight of the target nucleus.

N=6. 023><1023 =avogadro's number.

13

r.=2.818x10"*° em = classical radius of an electron.

0

do(E _,E
o(E s’ Ep) = HWESITJ_E) = cross section with the incident electiron energy
p

Es and the outgoing electron energy Ep after the radiative corrections.
When Z is small this cross section is given by the lowest order Born
approximation. WhenZ is large, this is the cross section to be

analyzed by the distorted wave Born approximation.



do (E ,E
‘a'r('Es’ Ep) = mlﬁﬁs—i = the measured cross section if the target has zero
p .

. thickness so that no straggling occurs.
- ‘ dO’b(Es, E
a'b(Es, Ep) = —{04dE = a hypothetical cross section where a-(ES, Ep) was

altered by the external bremsstrahlung only.

do_(E,E o
o (E,E)= Xp = the measured cross section containing effects
exp' s deEp

due to virtual photon, internal and external bremsstrahlung and ionization.

1 2 — - .
w3 W-MD/ [M+Ep(‘f—cos e)] (L.
= The maximum energy of a photon which can be emitted along
- the direction of the incident electron if the mass of the final

hadron system is Mf.

w = % (uz-Mf)/ [M+ES(1—cos e)] (1.2

= The maximum energy of a photon which can be emitted along
the direction of the outgoing electron if the mass of the final

hadron system is Mf.

— q§= ~2(Eg- @ E, (1-cos 0) | (1.3)

q12)= -2E (E + @ ) (1-cos 6) (1.4

. s~ “s’Fq (1.5)
) v=oy Ep+wp) (1.6)

A A T S N e e - e 5o



S

We would like to introduce a very useful quantity called the effective non-

radiative cross section:

Tosi{Egr E)) = ?(q'z,n O'(ES{-AS,E1+Ap) (1.7)

We first introduce a few quantities which were used in the discussion of the stragg-

ling effect
2
_2mNe” 7 . -2 _ z
a=-—0 A (centimeter) =~ = 0.154 MeV A

= a parameter used in the ionization loss, see Eq. (B.1).

=unit radiation length in gm/cmz.

X0
T 3x109 a%xOEi—#r - . L
A =azx|m — - 0.5772 (1.8)
m 7

= the most probable energy loss of the incident electron due to the
ionization after passing through a target material of thickness T/2.

Ap.= similar quantity as above except that ES is replaced by Ep. (1.9)
b =~ 4/3 (see Eq. (B.5)).

As will be shown in Appendix C, when T<1 the effect of the external bremsstrahlung
can be approximated by assuming that the scattering took place at exactly half the
path length. The error involved is less than 1% when T <0.1. We shall make this
approximation in order to avoid the integration with respect to the path of the
electron. Under this approximation the effective incident energy is equal to ES—AS
and the effective outgoing energy is equal to Ep+A o This explains why we have

Es-As and Ep+Ap in Eq. (1.7 . The momentum transfer squared for the nonradiative

process corresponding these effective incident and outgoing energies is

q'2=_4(ES—As)(Ep+A ) sin® 6/2 . (1.10)
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The factor F(q'z,T) in Eq. (1.7) is defined in Eq. (2.8). This factor is inde-
pendent of the photon energy in the infrared limit.” This factor occurs independently
of whether photons are emitted by electrons or not, and hence it behaves as if it
were a part of the hadron form factors; Therefore it is convenient to use T off
instead of o in performing the radiative correction to the peak and in calculating
the radiative tail. After all the experimental data are reduced into O g We may
divide it by F(q'z,T) and obtain o. The best way to handle AS and Ap is to redefine
the incident and outgoing electron energy from the beginning as ES-AS and Ep+Ap
respectively. If this is done we can forget about AS and Ap in all the subsequent
calculations. We shall assume that this is done in order to save writing and com-

e~ - -

putation time. In other words we shall adopt a convention that whenever AS and

ép are absent from the formula, it is to be understood that E and Ep really mean

E _-A_and E +A respectively.
=8—S8—p—7p

Examples: E'-E =w_really means E'-E_-A =w .
P P P P P P P

~Fl= - ~F!=
Es ES wg really means Es AS ES W .
O'(ES,Ep) really means O'(ES-AS, Ep+Ap),

Let us give the order of magnitude of As, . The ionization loss AO for a
particle of energy E, is quite insensitive to Ej» and is roughly préportional to the
target thickness in g'm/cmz as can be seen from Egs. (1.8) and (1.9). For most
materials other than hydrogen, AO/x, where x is the thickness in gm/ cmz, is
roughly 1 (for lead) to 2 (for deuterium) MeV per gm/cmz° Hydrogen is an ex-

ceptional case because Z/A=1, whereas for most other materials Z/A~0.5. For

hydrogen AO/X is 4 to 5 MeV per gm/ cm2 depending upon the energy.

- 10 -
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2. RADIATIVE CORRECTION TO THE DISCRETE LEVELS

Let pg be the four momentum of the final hadron system and k be the four

momentum of the photons emitted, then obviously

2 2 2
u’ = pf+k) 2py = M; . (2.1

measurement of heavier Mf but not vice versa. The elastic scattering has the
smallest M., hence the radiative tail from the elastic peak affects all the higher

M, states in the experiment. Thus we first apply the radiative corrections to the

f
elastic peak, then calculate the radiative tail from the elastic peak. The elastic
radiative tail is then subtracted from the gpectrum. Apply the same protedure
to the first excited state and then to the second and so forth until we reach the
threshold of the continuum state or until the energy levels become so closely
spaced that it is impossible to resoive these levels experimentally. The continuum
state can be regarded as a summation of many discrete levels hence the principle
involved is the same as the discrete case but in practice it can be handled in a
more efficient way (see Chart 4 and Appendix C).

In Fig. 3 an elastic peak and two other discrete peaks are shown. As men-
tioned previously, in nuclear physics (not in elementary particle physics), the
intrinsic Qidths of the excited states are usually negligible compared with the width
due to

a. Internal bremsstrahlung

b. External bremsstrahlung

c. Landau straggling

d. Finite energy spread in the incident beam and the finite momentum

resolution in the detection system.
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Suppose we are interested in the radiative corrections to the jth peak. Let

us arbitrarily choose a point Ep min between the jth peak and the j+1th peak and

define
rE max
do. e p - do, o
—dn(AB)= a0-aE. Fp (2.2
E p p
p min
_ peak _ . peak .
where AE —Ep Ep min® Notice that Ep max# Ep . The expression for the

radiative corrections is relatively simple if two neighboring levels are separated
by a distance much greater than the width due to the Landau straggling and the
experimental resolution. If this is so, AE in Fig. 3 can always be chosen much
larger than the width but-small enough so that the cross section at incident energies
Es and -ES—RAE are not appreciably different (less than 10%) and we can write the

radiative corrections to the jth peak as (see Appendix C)

eff
do, doNE) [rAE\T T'
ex _ j S AE §
—S7 (AR) = —ig <Es> <Epea.k> X < “AE) (2.3)
p
where
£f
do¥N(E ) do(E)
2
—s—= = F D 5= . (2.4

dO'j/dQ is the nonradiative cross section we want to deduce from ;che data.
cia?ff(Es) /dQ is the effective nonradiative cross section needed in Chapter 3 to calculate
the radiative tail. R AE is the maximum energy of photons which can be emitted
along the incident electron direction. R is defined in Eq. (C.19). § is a param-
eter in Landau straggling and is given by
§ =0.154Z/A Tx, MeV , (2.5)
T =target thickness in units of radiation length,

Xy = unit radiation length in gm/cmz.
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T'Eb(l"’tr): tr=b_1% <m3%2)-1> . (2.7

F(qz,r‘T) represents all other corrections which are independent of AE:

F(qz,T) =1+ 0.5772 bT

2

20|14 13, -9
+1r[9 +12’anz]

E
2(7s
-
()
+2 [-1- n - ¢ (cos” g)] : , . (@8

The term 0.5772 bT comes from the normalization factor

1/(1+bT) = 1+ 0.5772 bT 2.9) -

in the external bremsstrahlung. (See Appendix B for further discussion on this

factor.)
The factor
20 |14 13 -2
T |9 12 —2
m

is the sum of the vacuum polarization (efe— bubble in the photon propagatdr) and

the noninfrared pa.r’c3 of the vertex correction:

avac; = Ta [( -5/9) + = m( q /mz)] (2.10)
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and

- 2a [—1+% ln(-qz/m?‘)] . (2.11)

s =
vertex T

The termz’ 3,4,5 < (a/2m) ﬂnz (Eé/ Ep> is an approximation to a sum of two Spence

‘functionS:
E -ES ES—E 1 2 Es
¢ —E———E +¢ —————EE z—Eﬂn -E— . (2°12)
P s p

This tel-‘m can be regarded as a correction to the peaking approximation in the
internal bremsstrahlung. This term will be the only correction necessary if the
nonradiative cross section is assumed to be constant when integrating with respect
to the energy and angle of thie photon. The smallness-of this term-indicates that
the peaking approximation is indeed good if the variation of the nonradiative cross
section can be ignored.

The last term in Eq. (2'., 8) is the term in the Schwinger15 corrections some-
times ignored. It was written in terms of the Spence function by Kallen. 14 This
term is zero at 0 =0 and monotonically increases with 8. When 6=r, the Spence

" function vanishes and this term has the maximum value of arn/6 = 0.0037. Hence
the correction due to this term is at most 0.37%.

The Spence func’cion16 is defined as
* _m1-yl
o) = - dy (2.13)

The following properties of @(x) are useful for its numerical evaluation:

q)(x)—x+ix2+%—x +...+(x/n?)+ ee 5 if 1XI £1;
-1.2 =L 2
¢(1)—61r and @(-1) = 127r ;




forx > 1,

< - . d(x) _—.-%m2|x|+-§-“2‘¢(1/x);

énd for x < -1

P(x) = - -;— mzlxl -% x° - d(1/x) .

‘From the above we can show easily
<SP - P < P(}) (1-x) , whenO0<x<1 .

Hence the last term in Eq. (2.8) satisfies the inequality,

0< %[é - Pos. /z)], o7 sin® 2 . (214

The equality in the second < is satisfied when 0=0 and 7. This term was originally

derived by Schwinger15 for the nonrecoil case. If ES > Ep in the laboratory system,
i oné would not obtain this simple expression. This term comes from the noninfrared
divergent part of the soft photon emission cross section. The general expression

corresponding to this term for an arbitrary recoil and energy loss can be written

- as (see YFSH)

2 (s-p) f (x) (2.15)

where s and p are four momenta of the incident and outgoing electrons respectively.

= (I+x)s + (1-X)p ,

o2 =3 [aed) w®+ 1) (oop)

and
E-p E._+|p )
}‘?'s(")=2|I’L“EX-IIJ"”l 2IEI'
P 1Py 5 [Pyl
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If we ignore the mass of the electron and the recoil, we have

: o ‘ _ 2 6\1/2 _
‘ E,~E,=E, and [B|=E (1 (1- x)s 2) =E¢,
- and Eq. (2.20) can then be reduced into
' £
20 . 0 1, 1+& 1, 1-¢ d
"st/O [1-5”‘ 5 " TR 2}(2 29)1/2
-COS o
coSs o 2
2
15

which is precisely Eqs. (2.97) and(2.105) of Schwinger.

We have ignored the bremsstrahlung emission from the hadron system in
Eq. (2.3) because we would like to use this equation for all the discrete levels.
The effect of the bremsstrahlung'emission by hadrons in the elastic .scattering
can be seen from the numerical examples given in Tables I and II of Mo and Tsai. 2
If you think the effect is important, then the following formula must be used instead

- of Eq. (2.3):

E Epeak AE

do bT/2 bT/2
~a 288 = 6,1 5 5<AER> <——AE> x (1-25) @19
S
p

where & is given by Eq. (II.6) of Mo and Tsai and

D G, T) =1+ 0.5772bT + & [% n - ¢<coszg>]. (2.17)

- 16 ~
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3. RADIATIVE TAIL FROM A DISCRETE LEVEL

: In: this chapter we calculate the radiative tail from the peak da?ff/ d() obtained
m the previous chapter, so that its contxfibution to the spectrum can be subtracted.
;‘\s shown in Appendix A we can calculate the radiative tail exactly in terms of two
form factors describing do-j/ dQ) if we assume (a) only one photon is exchanged
between the electron current and the hadron current and (b) only one photon is
emitted by the electron. However when Z is large, neither do*J./ d{) obtained in the
previous chapter nor the bremsstrahlung process is given adequately by one photon
exchange. Also in reality an infinite number of photons are emitted instead of just

one photon. The rigorous derivation of radiative tails containing the effects due to

—

multiple photon exchange and multiple photon emission does not exist. Inw géneral
the radiative tail from the elastic peak is much more important than the radiative
tai}s from the inelastic events. The reasons are twofold:
1. The elastic cross sections at a fixed angle is much larger than the
inelastic cross sections in most of the experiments.
2.‘ At a fixed angle the elastic cross section increases much more
rapidly than the inelastic cross sections when the incident electron
energy is reduced by the emission of photons.
In other words the tail from the elastic peak is large and long and its effect is felt
all the way to the end of the spectrum but the tails from the inelastic events are
small and short and its effect is felt only by their neighbors'. From the numerical
examples given in MT all versions of peaking approximations give excellent results
when the energy loss due to radiation is smaller than 10% of the electron energy. Hencethe
peaking approximation canbe safely used when calculating the tail from the inelastic events.
In the peaking approximation the radiative tail is proportional to the nonradiative cross sec-

tion, therefore we expect the effect due to the Coulomb distortion is automatically taken
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care of if we use the nonradiative cross sectionobtained in the previous chapter,

For the tail from the elastic peak, there is again no problem when the energy

loss is small (10%). When the atomic number Z is small so that one-photon ex-

. change is a good approximation, we can calculate the probability of one-photon

emission according to the formula given in Appendix A. The effects of the multiple
photon emission is then obtained by multiplying the factors (see Appendix B)

o (3, o P b(Tas
<i_> <_p__> (7+%)

= (v v .
B+ ?

In Appendix C, Eq. (C.13), we have shown how to calculate the radiative tail
assuming only the external bremsstrahlung. Using the results of Appendix B,
Eq. (B.39), we can generalize Eq. (C.13) to include the effects due to the ionization,

the internal bremsstrahlung and the virtual photon and obtain the radiative tail from

“the jth discrete level:

d0'. <p (B (T ) (E EP)
18 dE =(v sp , deE
p
M+ (E - )(1-cos 6) dO' (E ~99 | bT 1 §
N > ¢( Jt 3
M- Ep(l cos 0) dQ 2w2
do eff(E )
SN | S R +__€__ (3.1
- %p “p

where ¢(v) is the shape of the bremsstrahlung multiplied by v and normalized such

that ¢(0)=1. For example when the complete screening is applicable it can be
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written as Eq. (B.6). ¢ is defined in Eq. (2.5). ws,wp,vs and vp were defined

in Egs. (1.1, (1.2), (1.5) and (1.6). tr was defined in Eq. (2.7).

do;.eff/dﬂ is the cross section obtained in Eq. (2.4). Now we see why it is

- convenient to use o_eff instead of o in all of our intermediate steps. Had we not

used deff, our Eq. (3.1) would have looked much uglier and we would have wasted

much computer time to compute F(qz, T, F(q_i,T) AS and Ap mentioned in the

" introduction.

doff‘i/ dQ is the radiative tail due to one-photon emission in the absence of
]

straggling. This cross section can be calculated in the following way:

1. When j represents an ime¥astic ‘excitation (i.e., Mj#M) , We may use

the equivalent radiator method, because the radiative tail from an

inelastic level is in general small and short, and the method gives

. an excellent result. This method is equivalent to dropping dof’fi_/d().
from Eq. (3.1) and replacing T/2 by T/2+tr inside the square bracket
in Eq. (3.1).

2. When j represents the elastic scattering (i.e., Mj=M) , we first apply
the equivalent radiator method to obtain the order of magnitude of the
tail. In the region where A and vp are less than 0.1, the equivalent

. radiator method (ERM) gives a good result even for the elastic scat-
tering. However when Vg is larger than 0.1, this method can give
as much as 30% error according to the numerical examples given by
MTz. If the elastic radiative tail contributes less than 10% of the

cross section, we might as well use ERM because the resultant error

is at most 3% of the cross section.
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3. I« Zoa <« 1,-we may use the Born approximation, Eq. (A.24), to calculate
eff

daj’r/dﬂ . le(qz) and W;(q?) in Eq. (A.24) have to be multiplied by
F(qz,T) in order to calculate the effective cross sections.
4. TFor heavy nuclei we have to include the Coulomb distortion in order to
obtain something similar to Eq. (A.24). Since this has never been
done, we propose a temporary solution. The remarks made in 1 and
2 are applicable in heavy nuclei also. If ERM indicates a substantial
radiative tail, a more reliable calculation is required.

We notice that in the method of equivalent radiators we have assumed that the
shape of the spectrum for the internal bremsstrahlung is equal to that of the external
bremsstrahlung ¢(v). This 15 of course totally ad hoc except when v is small com-
pared with one. We can choose a better shape function using the Born approximation
as a guide in the following way (see Chapter 1).

(i Obtain an approximé.te expression for WlF and W2F using Eqs. (2.3)

and (A.17) for the elastic peak. Strictly speaking this cannot be done
when za is large. Since for our present purpose only an approximately
correct behavior of W1 and W2 is required, this can always be done.

(i) Insert FWl(qz) and FWz(qz) obtained above into Eq. (A.24) and obtain

the tail of the elastic peak in the Born approximation.

(iii) Write the elastic radiative tail in the form

do-gff M+ (E_-w )(1-cos ) doS(E -w)
2T _ bt S s 0 s 8 1 £(v.)
deEp T M-Ep(l-cos 6) df) w, s

dcrgﬁ(Es) 1
+ ——m—— a— f(VQ (3. 2)
P

f(v) is the function we want to determine. For example, it can be

parameterized by

- . 2
f(v) = 1+c vie, v .
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~ Determine numerically ¢, and ¢ o by comparing the tail obtained from

1
Eq. (3.2) and that obtained in step (if). FW, and FW,, obtained in
step (i) must be used to calculate dcrgff/dﬂ in Eq. (3.2) when making
this comparison.

(iv) We claim that the correct radiative tail is obtained by using the
original do'gff/dﬂ in Eq. (3.2).

There is some uncertainty in the validity of the factor (vsvp)b(T/ 2+ty) in

Eq. (3.1)). We know that this factor is correct when Vg and vp are small.

R. Ea_rly's19 numerical work-suggests that this factor is correct even for large

A and vp for the external brem_s_sixjahlugg. Whether this is, true or not _forf the

internal bremsstrahlung is an open question. Yennie18 suggested that this can

be tested by calculating the cross section for emitting two real photons using |

p_erturbation theory. However in nuclear physics the value of 2 s-p=2EsEp( 1-cos 9)

is usually less than 1 GeVz, hence btr is less than 0.033. Ignoring the recoil we

have vs=vp=v, hence for the internal bremsstrahlung alone this factor can be

written as V2Pt =y,

When v=0.5 and btr=0. 033, we have ¥=1-0.045.
When v=0.9 and btr=0. 033, we have =1-0.0066.
These numerical examples show that the correction is minor, and it is unlikely

that this factor contains a gross error.




4. RADIATIVE CORRECTIONS TO CONTINUOUS SPECTRA

After all the radiative tails from the discrete states have been subtracted
from the spectrum we can proceed to do radiative corrections to the continuum.
'For the continuum it is safe to apply the equivalent radiator method. Since a
continuum can be regarded as a sum of many discrete states we obtain the result

by integrating Eq. (3.1) with respect to M? This was done in Appendix C

(Eq. (C.23)). The result is

] . 1
exp _(RAYT (AN & ) o,
ade, "\E,) |E, 1-2TYA s*Ep
BgRA E_-E!\T' /E_-E!\T'
t
+/ 7 (Es’Ep) EpR E_
B I‘::smin(Ep)

E -E'
T' s s §
X —= ¢< > + dE'
[Es Es Eg 2(Es-E;)2 ] s

E
p max E!'-E \T' /(E'-E)R\T'
+/‘ s o E) <_r;3_'_2> <“BE'P')_>
S

p

1_
x [EE:E ¢<EPE,EE> + '5 2] dE) (4.1)
PP p 2E,-EY
where T' is given by Eq. (2.7 . A should be chosen small enough so that o-(ES-RA, Ep)
and o-(ES, Ep+A) are not appreciably (< 10%) different frpm O'(Es, Ep) , but should be
large enough so that §/A is less 0.1. The bremsstrahlung part is a convergent
integration, hence the expression is correct even when A=0. The ionization part is
a nonconvergent integration because we have used an asymptotic form. (See Eq. (B.34).)
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However our result is quite independent of the choice of A. This can be verified

. by differentiating Eq. (4.1) with respect to A; we see that the result is equal to

. Zero.

Our objective is to obtain a-eff(ES,Ep) from the experimental cross section
. ; . eff ., eff .
O exp” Since the desired cross sections o (ES,Ep) and o (ES,Ep) are also .
contained in the integrations, a procedure for unfolding is necessary. There are
two ways of doing this. One is when the gross features of O'(ES, Ep) are known
one can parameterize it and insert it into Eq. (4.1), adjusting the parameters

until a satisfactory fit to the éxperimental data is obtained. Another method is to

write Eq. (4.1) in the following form

-T! -T! -1
eff _(RA A 3
7 (B By “(—E;) (ﬁ;) (t - 2va)
E_-RA E (E)
do (B E) s pmax
exp S _ -
d0dE f («+ ) f (« )| “.2
Esmin(Ep) Ep+A

where the two integrations have the same expressions as those in Eq. (4.1). This
equation implies that if O'eff(Eé, EI') is known for Eé < ES—RA at constant Ep and
El')'> (Ep+A) at constant Es’ then O'(Es, Ep) can be obtained from the measured
cross section o (E ,Ep), The cross section cr[E' <E_ _. (Ep), E ] and
exp' s S smin p

o-[E ,E! >E (E )] are equal to zero if the radiative tails from all the discrete

s’p pmax'’ s
levels have been subtracted from the measured cross section. Hence one can
obtain the nonradiative cross section in the neighborhood of the threshold for the
continuum along the line a2b in Fig. 4. Knowing the cross sections on this strip

we can calculate the cross section for the next strip and so forth until we unfold

the cross sections within the entire area abc in Fig. 4.
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Due to limitations on available accelerator time, usually the cross section is
measured at many values of the outgoing electron energy Ep but only at a few values
of the incident electron energy ES. Hence the integration with respect to dEI') can

be carried out over the spectrum already unfolded. However some interpolations

and extrapolations of the cross sections are required in performing the integration
with respect to dEé. Since the cross section for a fixed value of the missing mass
Mf varies only monotonically as a function of incident energy at a fixed angle, the
interpolations and extrapolations should be carried out along the equimissing mass
line rather than directly along the constant Ep line. There is no essential difficulty
involved in the procedure just described. The only thing one needs is an efficient
computer program to handle the entire unfolding automatically. For more details
about unfolding and numerical examples, the reader should refer to MT. (Note
that our Egqs. (4.1) and (4.2) are improved versions of the corresponding equations
in MT.)

It should be emphasized that the first method mentioned is much simpler than
the second. Another advantage of the first method is that after one is through with
the analysis, O'(ES, Ep) is already in a nice parameterized form. Let us call the

first method "the folding method" and the second method "the unfolding method".
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‘5. RADIATIVE CORRECTIONS TO COINCIDENCE EXPERIMENTS

Suppose there are n hadrons in the final state in the ‘inelastic electron scat-

terings

s+t — p+p1+p2+ cea pn+photons

s and p are four momenta of incident and outgoing electrons respectively. t is the
four momentum of the target particle. Py Pye- .pn represent four momenta of n

final hadrons. As mentioned previously, even though the actual number of photons
emitted is infinite, most of the radiation loss is taken up by one photon, hence for

the kinematical consideration one may approximate the infinite number of photons

by one photon: ——
k1+k2+ +k°° -k

The phase space for the final state is
3

) a3 p a® P d’p
d'k 1 2 n 4
3(n+2)f2E ./ BE, ' ZE_ 87 (Ptpy*Py. - P rk-s=H) (3.1)

We have assumed that the masses of all particles are known, hence each
particle has only three degrees of freedom. We may use the & function to eliminate
the d?’pn integration resulting in one dimentional & function 8(pr21—M121) . Hence if we
detect the particles PsPysPosee«sP) 15 the cross section would be a é function, if
no photons are emitted. If photons are emitted, this & function enables us to
determine the phase space of the photon from the momentum bites of PsP1sPgsevesPp 4
detectors. When n=1, the experiment corresponds to a single arm spectrometer

case for the excitation of a discrete level. The case for n=2 has been worked out

- by C. DeCalan and G. Fuchs.20 Their results are given in terms of AEp, AE1

and Mz. As n becomes larger than 2, the radiative corrections become an unwieldy

function of AEp, AE., AE and M_M_... . Not only are these corrections

1, 2,00. 1 2
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~ difficult to calculate, they may be useless in practical applications for the following

reasons:

1. When there are so many AE's, the phase space becomes so small that
there may be too few events available for doing any analysis.
2. When there are many particles in the final state, very often some
particles are neutral and escape detection.
3. The masses of the particles are often not known.
Apparently this approaqh to the problem is not very fruitful.

The work of DeCalan and Fuchs20 can be generalized to

T st - p+py + all undetected hadrons -~
The technique must be similar to the way we generalized the radiétive coi‘rections
to a discrete peak into the ones for
s+t — p+ all undetected hadrons .
Similar to the latter case the unfolding procedures will be involved. The details

have not been worked out. However even if the details are worked out, it is

~ doubtful that fhey can be used in practice.

I would like to suggest an alternative way to look at the problems of radiative
corrections when the hadrons are detected in addition to the scattered electrons.
ﬁ we ignore the interference between the bremsstrahlung emissions from electrons
and hadrons and ignore the multiple photon exchange between them, the behavior
of the hadron final states is completely determined by the density matrix and four-
momentum distribution of the virtual photon. In the absence of the radiative cor-
rections the four momentum of thé virtual photon is q=s-p and the density matrix

of the virtual photon is determined by the tensor:

2
= Ir = q_
tuv 7 (£+m) ay“(ﬁ+m) Y, = s”pu +Supp+ 5 g‘w (5.2)
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When the radiative corrections and the straggling effects are included, both the

four momentum of the virtual photon and the density matrix are given by certain

distributions. Let us use the equivalent radiators to approximate the effects of
_the internal bremsstrahlung. The effects of the radiative corrections and straggling

“can then be simulated by placing one radiator of thickness %+tr before the scat-

nd another with the same thickness after the scattering. As mentioned

tering
hatiadindan - ]

-previously it is convenient to treat the factor F(2s.p,T), which contains the vacuum

polarization and vertex corrections etc., as if it were part of the hadron form
factors when doing radiative corrections and only at the very end this factor is
divided out from the result. We also use the convention that Es represents the
incident electron energy minus A;*and E; means the actual outgoing electron energy
plus Ap. Figure 5 gives a pictorial representation of our approximation. Because

of the initial radiator ( %‘+tr> , the ehergy distribution of the electron just before

the scattering is given by (see Appendix B)

Es-Eé>b<12+tr) b(l +tr> <E -E!
¢

T 2 S S 1
h >dES (5.3)

w4 t
I(Es’Es’ 2+tr>dEs < ES

Tt
ES ES

where ¢(v) represents the shape of the bremsstrahlung. We have ignored the
straggling due to the ionization for simplicity. Similarly if the outgoing electron
has energy Ep, then the energy distribution of the electron just after the scattering
must be given by

I(EI'), E, 12+tr> dE;, (5.4)

Knowing the energy distribution of the incident (Eé) and outgoing (E£)) electron

energies, we can calculate the four-momentum distribution and the density matrix
of the virtual photons immediately. Let us normalize the four-momentum distri-
bution of the virtual photons by

s%a'-q d’q’ (5.6)
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when the radiative corrections are absent. The corresponding distribution when

both the radiative corrections and the straggling are included can be calculated

from
4 { - 1 ’_r_ 1 _T, ! 1
D(@) d'q' = 1(Eg.EL, +t,) LELE, 3 +t ) dE] dE} 5.7
where
t -t ! .
qo ES Ep (5.8)
and
1t~ gt - !
g Ese§ Epep . (5.9)
Since
a4 = ES— Ep 7(5. 10)
and
g = Ese_s.,_ Epep , (5.11)
" we may write
—al! = T r_ =
99 (ES ES) + (Ep Ep) w_ + wp (6.12)
and
- t - - ! '— —
3 9 (Es Es) e§+ (Ep Ep) ep‘ = wse§+ wpep . (5.13)

Equation (5.7) shows that only two variables in d4q’ are independent. Since the
vect;)r Q' must be in the scattering plane, if we choose the direction of Q to be the
z axis and let s and p be on the xz plane then Q' must be also on the xz plane (Fig. 6).

From Eq. (5.13), the magnitude of Q' is given by
L [Qz-ZQ(w cos @ +w cos 8 + wz + wz + 2w W 0 1/2 (5.14)
8 gs P QP) S P S p cos )
and the angle between Q and Q' is given by
. 1 . .
sin qu, = Q (wg sin Gqs + wp sin qu) . (5.15)
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q(') is given by
T — - —_ .
qy =9 - W wp . (5.16)

:;Hence we may regard qo—q(') = Aand Q' sin qu, = q)'( as the independent variables,

.and obtain
1
dE'dE' =dw_dw_= — — dAdq' , (5.17)
s ' p s p sin qu sin eqs X
Asinfé -q'
W = — qp,qx , (5.18)
s sin 6 _-sin 6§
qp gs
and
q}'{-sin eqs :
w_ = = 4 . {(5.19)
6 - 8
P8I Cgp o S0 Fys - -

From the elementary trigonometry, we obtain
- sin  _ =E Q'1 sin § ,
qp s
and
sinf =E_Q Tsiné
gs p

“- Hence the four momentum distribution of the virtual photon is

. . T T QdAdq,
D(A,q)) dAdg! = I<ES,ES+ W, 2—+tr> I<Ep—wp,Ep, —2-+tr> EEysin 0

(5.20)

where W and wp are given by Egs. (5.18) and (5.19) respectively.
Since I'sare very peaked at ws=0 and wp=0, we see that D(A, q"() must be very
! — : L .
peaked at 9 Asin qu and q Asin Oqs. From Egs. (5.18) and (5.19) and

> > ! i
w2 0, wp 2 0, we see that Q. must satisfy

» ' »
A sin qu < qX < A sin qu (5.21)
or
EpA, sin 8/Q < q)'{ < ESA sin 6/Q . (5.22)
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‘The density matrix t“V is changed from Eq. (5.2) into a distribution

1 _TITr 1 T
t;w d%ch— 4 (é +m) Yy(z‘ +m) Yy I<Es’Es+ “s* 2 +tr)

QdAdq)'{
(E_-E p) Sin 0

' T
-w L,E —+t>
I<Ep pP’p 2 T

In order to understand the behavior of D(A,q"() better, let us integrate

1
dAf dq' D(A,q’
A . a! D(A,q))
Xmin
A - ) T .\
max max s 2 w b(—+t
f T, [T e RG] 2 L (SR !
0 0 s P\ sDp

E E 2 A

T
A A b(‘z‘ +tr) T E_ E
= zl-b<—+tr) n +4n _A_L
s P max max

dq'

where q' min

- Tot)=
X max are given by Eq. (5.22). Suppose b( > +tr = 0,025, then

in order to have 80% of the probability we must have

ES Ep
fin + =8
Amax Ama,x
or
(ESE E1,(2
= 55 L]
max

This example shows the extent of energy spread of the virtual photon beam. The

angular spread can be evaluated from Eq. (5.22).
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The average angular spread for a fixed A is

. ' 1/2 1/2
(qx max clx min) - (EsEp)
2

Q Q Q

)

Asing .

., =

qq

“If we use the value of A obtained above, we have

5 _ZsPpsimo
qq’ Q2 55

The important thing to remember is that the angular spread of the virtual photon
is in the scattering plane only. Hence if we measure the hadron production angle
in the plane perpendicular to the plane of the electron scattering, the error to this

angular spread is minimized.

o

In conclusion, the energy and angular spreads of the virtual photon beaﬁ due
to the radiative corrections and stragglings are not worse than the experiment using
the semimonochromatic photon beamzoal from e’ e — 2vy. I the photon beam from -
the latter can be used in performing the experiments, there is no reason why the
virtual photon beam with known energy and angular spread cannot be successfully
used.

Our expression can be simplified further if we assume that only one photon is

emitted. In this case q"{ can take only two values: - when A=wp, and q;(min
when A=ws. Hence under this approximation the distribution of the virtual photon
is a function of only one variable A or q}'{ This approximation is not bad because,
as we stated in the introduction, it is most probable that most of the energy loss A
is taken up by one photon even though infinitely many soft photons are always emitted
at the same time.

In order to make our presentation as simple as possible, we have used the

angular peaking approximation for the internal bremsstrahlung and also ignored

the Landau straggling. The latter effect can be restored into our consideration
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- easily. The effect due to the deviation from the peaking approximation can be

computed exactly if we assume that only one photon is emitted by using the standard

perturbation theory. 5 All we have to do is to relate the momentum distribution of

" the photon to that of q' using the relation q'=q-k and d3q '=d3k. If one photon emission

is assumed, the probability distribution of the virtual photon becomes unnormalizable.
However we know how to take care of this; all we have to do is to multiply the result
by a factor (stp)btr as we did in Eq. (3.1).

The point of view expressed in this chapter can obviously be used in the e++e-
colliding beam experiments. In this case s=-p, hence Q=0 (see Fig. 6). An

expanded version of the c¢oinifent of this chapter will be published elsewhere.
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6. CONCLUDING REMARKS

Radiative corrections are indispensible in any electron scatterings because

~the raw data is hard to inferpret theoretically. The procedures for the radiative

corrections as presented in these lectures are the results of accumulated efforts

Tice wmm mrmce svamen]
0y many peopie.

‘ many people who have contributed to this effort. More comprehensive lists of

references can be found in the review articles by H. Uberall31 and L. C. Maximon.32

A short summary by D. B. Isabelle33 on the present status of the art can be found
in this proceedings. The author would like to thank Prof. B. Basco for inviting
him to the institute. Conversations with W. Bertozzi, L. C. Biedenbarn, -
H. S. Caplan, S. Kowalski at the institute influenced greatly the writing of this |
note. Finally I would like to thank D. R. Yennie, B. Chertok, R. Early, E. Bloom
and G. Miller at SLAC for discussions on this subject. |
The preliminary consideration on the radiative corrections to the coincidence
experiments as presented in Chapter 5 was greatly motivated by the experiments
being carried out at Cornell by Berkelman et al., Mo and Selove et al., and the
experiment being carried out at SLAC by Toner et al. The author wishes to thank

these gentlemen for discussions.
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APPENDIX A

BORN APPROXIMATIONS

In this appendfx, we summai'ize the results of the Born approximations for the

nonradiative and the radiative cross sections.

1. Nonradiative Cross Sections

In the single arm inelastic e nucleus scattering where only the outgoing electron

is detected, the cross section can be written in terms of Drell and Walecka's21

w,(a%, M3 and Wy(a®, M) :

do do- e o 26 2 T
dOdE_ ~ m) [Wz(q ,sz) +2tan 5 W,(q ,M2f)] (A.1)
P Mott
i where
- 2 2 26
d0'> 7Z @ COS 3
ot 4E§ sm4g

2 .26 2 2
q ——4ESEpSIIl E—V -Q

2_ 2
Mf—q

q=s-p=(v,Q) in the lab system, W

+2Mp + M2 is the missing mass squared, v and Q are components of
x
1 and W2 are two invariant functions of q2 and

Mf , and are related to the matrix elements by

-2
W =M (-, (t/a% (t,-q, (t-a)/a) Wy - (g, -9, /dd W,

D <t Oe> <t 01> 2n° ez shart-py (A.2
f .
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where t is the four momentum of the target particle (not Madelstam's t). The
. summation over the final states is automatically confined to a specific missing
mass state M -(q+t) by the 8 functmn. We have normalized the states |t) and
1/2 3/2

|£> such that all the factors such as (m/ B’ ° @mn associated with a fermion

and (1/2E) 1/2 (277)_3/ 2 associated with a boson have been taken out from the matrix
elements and given to the phase space so that both the matrix elements and the

phase space become covariant. In any Lorentz frame where tx=qx=%=0 and

q=(q0,qzéz), we have from Eq. (A.2)

1(q :N[z) = (A.3)
and — - -
wya?, M) = Mt -q, (t-a/ad 7 [w,, - @/ w ] (A.4)

— In the laboratory system t=(M, 0), q=(v ’9) we have
2
Wz(q ,Mfz) = q4/(Q2v2) [Wf;b - (v 2/qz) Wxx] . (A.5)

Instead of W1 and W, the experimental results are sometimes parameterized

in terms of L. Ha.nd's long1tudma1 and transversal cross sections, O'S(QZM?) and

o-T(qz, Mfz) respectively. They are related to W1 and W2 by

2

k -q
W, = (cptoy) (A.6)

2 41r2aZ2 <—q2+u2> T S
W=~ O s (4.7
a1 aZ
where

k=v +q2/2M . (A.8)




In terms of matrix elements Wp.v , 0. and crs can be written as

T
2 _2
_41"aZ
T &k Wxx (A.9)
2 2 2
_ AT aZ -q ab
%= Tk <V2>Wiz (A.10)
O and og are defined such that in the limit q2 — 0, T reduces to the total photo-
nuclear cross section at energy k, and og ™ 0. The factor k comes from the flux

density. Since the incident flux is an ill defined concept for space like photons
there is no compelling reason to use Hand's definition. Personally I would rather

use the standard coval;iant/ﬂux density

[(frt)2 - szz]l/z M=q (A.11)
instead of k, because when q is time like, the flux density is a well defined concept
and is given by Q in the laboratory system.

In terms of matrix elements we have
&7 -2 Kiﬁ+2tan2—e->w +—-‘14—wlab] (A.12)
XX 2V2 ZZ '

deEp dQ) Mott QZ 2 Q

. The Weissacker William's formula can be derived readily from this formula. We
note that Wxx and WZZ are not singular when q2 — 0, Hence as q2 — 0 we may

drop W;a;b in Eq. (A.12) and obtain (we have used Q instead of k in Eq. (A.9))

‘ 2 2 .20
do- . o .Es+Ep+2EsEp sin 3 . (A.19)
dQdE 2 2 .20 2 v '
P 4 —0 8m Qsin 3 ES

The energy of the real photon has to be k=u+q2/ 2M in order to excite the same

missing mass state.
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When the missing mass is discrete, we define form factors W{ 2 (qz) by
' H]
2 ol 2 2
Wy @ Mp) = W) (@) B(M-DL) 2 (A-19

“When the discrete state has a finite width the & function is replaced by a covariant

Breit Wigner's formula23
S -M) —> M, 7/ [t -2 + FZsz] (A.15)
where I~ is the width which is a function of Mf2 . For example the width of the 3.3

resonance can be written as

—w- 0.85 (p*/mﬂ)3 - .

F(M;Z) = 0.1293 GeV . (A.16)

1+ [0.85 (p4/mﬂ)]2

. p* = [(Mfz-Mg+ mf')/(sz)]2 - m>

Substituting Eq. (A.14) into Eq. (A.1) and integrating the expression with

respect to dEp, we obtain the differential cross section for excitation of the jth

- level -
Ei:.@ﬂ') 2M wi@?+2 tan® £ wl(qh A.1
a0 " )y ., 2M+2ZE (I-cos 6) 2(d an 5 Wild - (A9

For the elastic scattering from a proton (j=0)

Wg(qz) - (Gg 7 Glzn)/(1+7) , (A.18)
wiah =7 2 (A.19)
r = -q2/4M> (A. 20)
and
G, ® G /2.793 = [1 ~ (q2/.71 Gev?)] -2 (A.21)
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~ Equation (A.2) is the starting point of many of the theoretical discussions. Since

Eq. (A.2) is true only in the first order Born approximation, all data has to be
reduced into this form by applying the radiative corrections, Coulomb distortion
corrections and the dispersion corrections.

Equation (A.2) can also be written in a slightly different form:

Wi =f eI el 15, (0 £ d*x @n ™t ezy (A.22)

=feiq‘x<t|[ju(x), jV(O)]lt) a4k (2m 71 (ezy 2 (A.23)

Equation (A.22) shows th?;t..‘y#,, is essentially a fourirer transform gf the ground
state expectation value of the space time correlation function. After inserting a
complete set of statés between j#(x) and jV(O) we see that Eq. (A.23) has an extra
term proportional to 64(q —t+pf) , but this & function is zero anyway so Eq. (A.23)
is equivalent to Eq. (A.22). The commutation properties of two currents are of

fundamental interest to theoretical physicists. It is hoped that by investigating

- the behavior of such commutators one may be able to find out what are the funda-

mental constituents of the elementary particles and whether field theory is necessary
to describe a hadron.

The Weissacher-William's limit of the inelastic electron cross section, Eq. (A.13)
is useful in estimating the small momentum transfer inelastic electron scattering
cross section whén the total photon cross section, o-y(k) , is known. It is also useful
in experimentally determining o:y(k) by doing small angle inelastic electron scat-
terings. 24

When the final state is discrete it is sometimes convenient to further decompose
sz into Coulomb multipoles and Wxx into magnetic and electric multipoles. This

has been worked out in great detail by Durand et al. 25,23
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2. Radiative Cross Sections

\ It-has been pointed out by many people26 that as long as one-photon exchangé
le assumed and the hadron fmal states are unobserved, one can write any cross
—sect1on in terms of W1 and WZ’ or og a.nd Ope If we assume one-photon exchange
the bremsstrahlung cross section can also be written in terms of W1 and Wz.

Assuming one-photon emission, the radiative tail from the jth level can be written

2
d Tir _q_ < )/' 2Mwd (cos 6))
dep (2m q4(u0~ lul cos @

T 2 1 "2 -
( (q2>[ Y [ZES<Ep+w)+32-]-%[zEp(Es_w)+q_2.]

y

5
as

)

- -2+ 2y (x—l-y-l) [mz(s-_p—wz)+(s-p) [ZEsEp— (s-p+ w(Es—Ep)]]

12EE+}3: w+ E +9—2-- . —m2]
(EgE,+Eg 5 - (s'P)

- 2
“;__ . ! - —1 - q_ - . _ 2
y [2(EsEp Epw+E§) + ) (s-p) -m ]}

+w3(q2) [< >m 2mZ+q%) +4

+4v (x| -y—-]) (s*Dp) (s-p-2m2) + (x_1~y—1) (2s-p+ 2m2—qz)]> (A.24)
where w is the photon energy in the lab system

= %(u —Mz)/(u -1ul cos 0,)

u=stt-p= pf+k

u,=E +M-E

0 s p
at = <u2 - uz) 1/2
- 0
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u2 = 2m2 + M2 - 2(s*p) + 2M(Es—Ep)

q2 = 2m2 - 2(s*p) - 2w(ES-Ep) + 2w lul cos 9k
a= w(Ep—|g_q cos Op cos _Gk)

a'=w(E_ -18l cos 0 cos 6,

b =-wipl sin Gp sin 6,

1

v =(a'-a)

cos B = ISl _cos 6 - pl
p

ul

cos § = J8l - 1plcos 6
S

lul

x=(212-b2)1/2 ST T . -

y=(@?-p3Y?

We have used the coordinate system as shown in Fig. 7. There is an uncertainty
of zero divided zero when a'=a in Eq. (A.24). This happens just because of the
particular factorization used in the (‘bk integration, and there is nothing wrong with -

it. It occurs at an angle (notice a misprint in MT)

cos 6 = [(ES/'E’,') sin Bp - (Ep/|g|) sin GS] ,

sin 0
which corresponds to the position of the minimum between the s and p peaks. 2 In
numerical integration, a small area near this point should be ignored. In Eq. (A.24)
we have eliminated all the redundant notations in MT because b=b' and v=y' in this
reference. We have also used W, and W instead of G and F which were used in my

1 2

- S5
original paper.
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APPENDIX B

STRAGGLING OF AN ELECTRON IN MATTER

In the electron scattering we are interested in the collision of an electron with
a nucleus at an angle much larger than m/E where E is the energy of the incident
or outgoing electron. However the electron has to pass through a medium of finite
thickness before and after this large angle scattering. When an electron passes
through a target, it loses some energy by ionization and bremsstrahlung. Ignoring
the binding energy of the atomiq electrons, the probability of the electron losing

energy € (per gm/cmz) can be obtained from the Mgller cross section and can be

written as ——— B} .
2 2 72
=2tNa Z 1 €
2 2
- = -2 £ :
- =2 [“ E(E—e)] (B.1) -
23

where N=6x10"" is the Avogadro's number, m is the mass of the electron, Z and A
are the atomic number and the atomic weight of the target material. The square

" bracket in Eq. (B.1) is due to the spin of the electrons. When ¢ is small this
factor reduces to one,resulting in the Rutherford cross section. The corresponding

quantity due to the bremsstrahlung emission can be written as27

3
~1/3 b
W, (E, €) = 4:1;‘ Z(i“‘"’ﬂ m(183z" V3 2 ¢(%) (B.2)
_ 1 Db €
"% < () (B.3)

where 7 is due to the bremsstrahlung emission in the ee scattering and is given by

1/3) s (B.4

7= (1440 2723 /m 183 2"
b= % [1 + % [(z+1)/(z+n)] [fn (183 z’l/?’]‘l] s (B.5)
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and ¢(v) is the shape of the bremsstrahlung spectrum normalized such that ¢(0)=1.
When E > 100 MeV and v < 0.8, the intermediate screening formula can be used.

When v is small, the screening is always complete, we have then

o(V) = 1—v+-:;iv2 . (B. 6)

x,. is the unit radiation leng’ch27 in gm/cmz.

0
From Egs. (B.1) and (B.2) we see that even though the bremsstrahlung emission
is proportional to a3 compared with oz2 for the ionization, the former will dominate

over the latter when

—1/3) €

22 (z+7) m (183 Z £ >1. (B.7)

— e U,

This means that when the energy loss is large (small) compared with ~ 20 MeV/(Z+1),
the bremsstrahlung process becomes more (less) important than the ionization. In
our application, we expect the ionization is more important in affecting the shapes
of discrete peaks, whereas the bremsstrahlung is more important when we are
considering th_e tails far away from them. We also note that the ionization has a
. much sﬁorter tail than the bremsstrahlung (1/ 62 versus 1/¢€). When € is so small
that it is comparable to the binding energy of the electrons, we have to take into
account of the binding of the electrons and the screening. This will in general make
LA less divergent than 1/ 62 when € approaches the binding energy.

Let us denote the probability of finding an electron in the energy interval

between E and E+dE at a depth t (in units of radiation length) by I(E 0’ E,t) dE where

EO is the energy of the electron at t=0. I(EO, E,t) satisfies the diffusion equation:
MELEY ,roF
_}_(;r = de I(EO, Ete,t) [Wi (Ete,e) + Wb(E+e R e)]
0
E
- (E,, E, 1) f de [Wi(E, €) + W, (E, e)] , (B.8)
0
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With the boundary condition,
I(EO,E, 0) = 8(E0—E) . . (B.9)

When Wi=0, we obtain the straggling function due to the bremsstrahlung alone,

’;IbkEO,‘E,t) . When Wb=0, we obtain the straggling function due to the ionization

alone, Ii(EO’E’t) . Let us define A = EO-—E and the Laplace transform of I(EO, EO—A, 1)

- with respect to A as

o0

L(Ey:PsY = f e PA KEj, Ej-A, 1) dA . (B. 10)
0

Multiplying Eq. (B.8) by e-pA and integrating with respect to A from 0 to =, we

L —

AL(Ey, P, 1 |
x —x.3t L(Eo,p,t) / W(€)+ (e)] de

obtain

E -A 00

0 oA
-f [wi(e) + Wb(e)] de [e P KEq: Ey-A,t) da
0

0 (B.11)

Landau13 approximated EO-A by e in one of the upper limits of the second integration.
We cannot do this because Wb(e) is proportional to 1/¢ and the integration diverges
if we Iet.EO—A—» ©,

Let us obtain the solution for KE,, E, 1) by a more intuitive method. When
(EO—@/EO 1, we expect

E
~ 0
KEy, E, = f L(Ey, E',t) L (E', E,t) dE'
E

E .
0
zé Ib(EO’ E':t) Ii(Erv Eat) dE' * (B‘ 12)
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- This must be so because both Ii(EO’ EO—A, t) and Ib(EO, EO—A,t) are relatively in-

sensitive to the variation of E, when A< E_ . If we accept (B.12), then from the

0 0

convolution theorem of Laplace transform28 we obtain

L(EgsPs D) = Ly (Ep, P, 1) Li(Ej,p,1)

where
- [- -]
-pA
L (EgP,t) = / e P L (Ey Ey-A,t) dA
0 ~
) [- ]
_ -pA
L(Eq,P, 1) = / e P L(Eq Ey-A,D dA .
0
Let T

bt-1
S | 1 A
L(Eg: Eg-AY = g B (“E_) .

0 0

We obtain from Egs. (B.14) and (B.16),
-1
Lb(EOsp’t) N
(PEy)

- According to Landau, 13

-atxop(l—O. 5772 - (pe'))

L(Eg.p,t) = e

where a is defined in Eq. (B. 1),

2

_2tNo~ Z -2 _ Z
a—_m Acm —0.154MeVA
2
m—€'=m—1———+1 ,
m 2
v 2E0

and I = 13.5 eV Z.
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Using the inverse Laplace transform, we obtain

C+ioo

1
I(Eo’ EO-A’t) = '2-1?{ eAp L(Eoyp,t) dp
c—jco
c+ioo Ap-atx p(1-0.5772-fnp €)
-1 e 0 4
= o bt p (B.21)
i (PEy

Landau13 also showed that the most probable energy loss due to the ionization alone

is given by

atxO
Ao = atxo in °_eT'+ 1-0.5772 (B.22)

e - -

In terms of A, we have

0’

A-AO
(axot)bt-l c+ico p =i + (p-bty np

= 0
UEq» Eg-41 = —‘""BF‘/ °
27iE .
0 c-ie

dp (B.23)

‘When b=0, we obtain Landau's result for Ii' The integration (A = (A—AO)/€ ’

§=axgh)

C+ioo
+(p-bt
FQut) = %f A E-PY P g, (B. 24)

Cc~ioo

has beeri carried out by J. Bergstrom, 11 assuming a small bt, bt < 0.1. His

result11 is: when) <10

2 .
Fuby = 0y {1+bten |+ B {-1eaen® 10 + v}

when A 2 10,

bt
W 1
F(A,bt) = (1+w) r(l'l'bt) [bt +c_u'] (B.26)

F ot



where

() = F(A, 0) = L(Eg, E-8y- éA 1) (B.27)
and
[- ]
Yy = f f(A) da’ (B.28)
. A -

" are two universal functions given by Landau13 in graphic forms. w is the solution

of the equation

A=w+Mm w - 0,4228 . (B.29)

A useful approximation for w is given by Borsch-Supanzgz
_ fn A - 0.4228

w = (1— T ) (B. 30)
Landau showed that when A > 10,

A ~ = (B.31)

w(w+l) '
and
o1 ’

Y ~ S - (B.32)

For the calculation near the elastic peak we need an expression for
E0 EO—AO—AE
I(EO,E',t) dE=1- I(EO’ E,t) dE (B.33)
EO—AO—AE 0

This relation is true if I(EO, E,t) is nomﬂﬁed correctly. Equation (B.12) shows
that I will be normalized correctly if Ii and Ib are normalized correctly. Landau's
L is normalized correctly but our Eq. (B.16) for L is not. This shows that if we
want to calculate the left-hand side of Eq. (B. 33) by using Eq. (B.26) in the right-
hand side we must replace 1 in Eq. (B.33) by 1//°(1+bt). Hence

E E /¢
-0 0 bt .
1 dw w 1
dE KE,,E,t) = === 1—] — (= bt+ —
'/E-O-AO_AE 0 ) I'(1+bt) A w <E0> ( w)

min

1 § “min bt 1
o\ E, LT T e ) (B.34)
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where @ hin 18 the value of w, when A=AE/§ . Using Eq. (B.30), we have

AE
- 0. 2
w_.-=4E 1-!ln-Z -2 . (B. 35)
min ¢ 1_'_%@_

Since Eq. (B.34) is true only when é&E— 2 10, we may approximately let' W = AT .

- Thus

on AE bt< ¢ >
KE,E' ) ~ (1+0.5722bt) (o) (1- ——pre (B.36)
B -Ay-AE <E0> (I-bHAE |

In order to satisfy AE/¢ 2 10, we must ghoose AE such that™ "

AE 2 1.54 MeVZ xt . \ (B.37)

On the other hand AE must be chosen small enough so that the cross section does
mnot vary appreciably between E-AO and E—AO-AE. Especially in nuclear physics
AE has to be chosen so that it is smaller than the distance between two neighboring
levels if we want to resolve them. In order to simplify our presentation, we shall
assume that the target thickness t is always chosen small enough so that in inequality
(B.37) is satisfied.

" For the calculation of a radiative tail, we need an expression for I(EO, E,t) in

the interval E -A -AE < E < 0.9 EOQ The expression for I(E,, E',t) obtained in

0
Egs. (B.23) and (B.26) can be written as
bt
N S %) 1) dw
KEq EH4E = mrs <Eo> (bt+ 1) < (B. 38)

This equation is true only when
10§/E, < (E,~B)/Ej<1 ,
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- hence it cannot be used to calculate the tail far away from the peak. However we
know that in the limit of zero thickness, I(E 0’ E,t) must be proportional to the sum

of the bremsstrahlung and ionization cross sections, hence

tx, [E,-A,~E\bt
T(1+h) E, [Wb(Eo'Ao’ Eg-AgE) + Wi(Ey=Ay, EO'AO'E)] dE

KE,, E,t)dE =

(B.39)
Equations (B.36) and (B.39) are the two formulas we need for dealing with the
straggling effects. The physical meaning of Eq. (B.39) is as follows: When an
electron goes through a medium it always suffers multiple scatterings accompanied
by emission of soft photons gnd energy loss AO due to the ionization which is pro-
portional to the target thickness. When the energy loss is large compared with AO,
most of the energy is lost either due to emission of a single photon or a single e-e
scattering, and only a small fraction of the energy loss is due to the multiplé photon
emission and the ionization of many atoms. The gross features of I(EO’ E,t) is thus
determined by the sum of the cross sections for a single bremsstrahlung emission
‘and a single e-e collision. The small correction due to the ionization of many
atoms can be represented by substituting E 0 by EO—AO everywhere in the formula

and the correction due to multiple photon emission is given to the factor

1 E,-8,-E\bt Ey-8,-E\bt 540
T (1+bt) E, ~ (1+0.5772 bt) E ’ :

0
which has an effect of depleting the high energy component and increasing the low

energy component of the electron spectrum.

-

The correction factor (B.40) is not very important in many experiments when

E is far away from E However in experiments such as obtaining the total y +

0.
nucleus cross section by extrapolating the small angle e+nucleus scattering cross

section, 24 the radiative tail from the elastic peak is sometimes responsible for
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80 or 90% of the counting rate, and an error of 3% in the calculation of the radiative
tail ca.ﬁ caﬁse an error of 30% in the experimental result. "As mentionéd previously
x&hen the energy loss is large the ionization loss is completely negligible compared
w1th the bremsstrahlung los;s, hence the l;ncertainty in its treatment will not cause

a grave error. Eyges30 showed that if the shape of the bremsstrahlung spectrum

were given by (see Eq. (B.3)

a -1 : :
¢V = (1-v)“ [n (1-v)] . (B.41)
then Eq. (B.8), with Wi=0’ can be solved analytically and be obtained

_tx0(1+a)bt g\ [ Eg\bt
L,(Egs B: O = =155 EQ)‘ o 5| Wy(Eg Eg-B)

Now the actual shape of the bremsstrahlung spectrum does not look like (B.41),

(B.42)

but looks more like Eq. (B.6), when E. >1GeV and v < 0.8. Dr. R. Ear1y19

0
of SLAC solved Eq. (B.8) numerically by a computer, with Wi=0 and Wb given by
the completely screened from, Eq. (B.6). His numerical results show that in this

case the form

| (E Et—txo EO-EbtWEE- B.4
b(For B9 = Fiemy | 7E, p(Fo o™ B (B.43)

is accurate to within 0.5% for t=0.1 and for a thinner target the error is proportionally
smaller. In this paper we shall use Eq. (B.43); the important thing to remember is

to use a correct expression for the bremsstrahlung shape ¢(v). 21
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APPENDIX C

TRIANGLE, HALF PATH LENGTH AND ENERGY PEAKING APPROXIMATION

Due to the straégling the observed cross section O-exp(Es’ Ep) is related to

O‘r(Es, Ep) by

T E E (Eé)
- dt s ' pmax ' '
o'exp(Es’Ep) f T f dES/ dEp I(ES,ES,t)

0 ES min(Ep) Ep
o'r(Eé’ EI')) I(EI'), Ep, T-t) , (C.1
3 - » - ' ‘ .
where I(EO, E,t) is defined in Appendix B, ES min(Ep) and Ep max(Es) are determined

by the kinematic boundary of O’r(Eé, EI’) . This boundary is determined by the kine-

matics of the elastic scattering (u2=M? =M2§ , hence

El
E (E) = — , (C.2)
pmax- s 1+ EsM 1(1—cos 8)
-and
EP
Esmin(Ep) = . (C.3)

1- EpM_l(l-cos 9)

This boundary is shown by the curved line labeled Mf=M in Fig. 4. Equation (C.1)
means that the observed cross section o-exp(Es’ Ep) at point ¢ in Fig. 4 is related
to the magnitude of the cross section o-r(E;, EI'J) in the entire area a'b'c shown in
Fig. 4. This area is called a triangle even though one of its side is a curve instead
of a straight line. The curve becomes a straight line if we ignore the recoil as

can be seen from Eq. (C.2). By definition o (E_, Ep) is equal to o-exp(Eé, EI')) in
the limit T — 0. We shall use the trick repeatedly used in this paper. Namely we

use an approximate expression for o-r(ES, Ep) in order to simplify Eq. (C.1) and
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then at the end put the correct expression for o*r(ES, Ep) back into the resultant
*_formula. If we use the peaking approximation for o, and approximate the shape

éf the internal bremsstrahlung by that of the external bremsstrahlung (i.e., the
method of equivalent radiators), then Eq. (C.1) is equal to replacing o-r(Eé, EI'))

by a’(Eé, El') times the factor F(-2s'-p', 0) introduced in Eq. (2. 3) and adding two
external radiators, each of thickness 1:r defined in Eq. (2.7), one before and one
after the scattering. In order to simplify the presentation we shall replace o by
oin Eq. (C.1) and do all the modifications mentioned above later. We shall also
ignore the ionization temporariiy and only after Eq. (C.1) is reduced into a simpler

-

form we put this effect back. e -

We first consider the contribution to Eq. (C.1) from a discrete state Mf2 = MJ2 .

After this is done we can integrate the resultant with respect to Mf2 and obtain the
“entire contribution. When M? is a discrete state M? =M?, the cross section
Of(Eé, EI'>) contains a & function (see A.14 and A.17)

El El - do—](Eé) 1 '+t z_MZ) C 4
7B Bp = —dn 2M+2E. (1-cos 0) 8((s*t-p)~-M,) . (C.4)

The & function reduces the surface integration dE_ dEI') in the area a'b'c into a line

integration along a curve labeled a'b" in Fig. 4.1. The integrand of (C.1) is very
peaked near a" and b". We shall use this very peaked character of the integrand

to simplify the expression. Let us consider a simple mathematical example. The
behavior of our integrand is very similar to the integrand of the following integration:

fl xTi—l T-1 [T [T

(1-x) dx = W . (C.5)

‘

The answer happens to be the well known Beta function. Suppose we do not know

how to do this integration and want to perform this integration by the peaking
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approximation:

. Lr1 1041 1 T,-1 1 T-1 L1
- X (1-x) dx = (1-x) dx + X dx=T- +== . (C.6)
T.
- . 0 0 0 f i

" When T is small, we have

I(T) = —(ED (1 0.5772 T + O(T) (C.7)
Hence
(T) I'(TY 11
r 2Ti‘“Tf) i <Tf T > (1 O f)> (C.8)

Thus the error of the peaking approximation is O(T.2 f) cdmpared with unity. In

-

our case T +Tf—bT < 0.1, hence the error involved 1s less than 1% Let us

call this approximation the energy peaking approximation in contrast to the angle

peaking approximation used in the calculation for the internal bremsstrahlung2
(see Appendix C of MT). Using the energy peaking approximation Eq. (C.1) can

be written as

dt ' Epma.x(E') ' 1 da'.(Eé)
— opEgEYS f f dES dE} |L(E,ELY) —dg™
smm s Ep

1 2 2 , i '
2M+2E] (1-cos 0) (b ~M; +2M(E-E))-2E_E (1-cos 9)) (E}, E, T-)
(C.9)
[T | e,
~ —_— - 1 '
| T |Tan By BT L 9B LEs Ee
. s s
+dtJ'j(Es-wS) M+ (E_-w )(1-cos 6) B LE v
a0 M~ E (1-cos 0 L(Eg Egmve
E_ +w
PP - t
X E E_,T- 10
p p(Fp Epr T-Y (C.10)
P
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where (see Fig. 4)

I
Nhﬂ

32) [M -E (l-cos 0)] : (C.ll)

and

NIH

Jz) [M+E (1-cos 6)] (C.12)

Equation (C.10) can be reduced further, and we finally obtain

: do.(E) W
o’ ~ s’ bT 1
p(Eg Bp) = (1+0.5772BT) [_dJﬂ__ LN ¢<qur>

+

s - Ep+w

(C.13)
After including the effects due to the ionization, the internal bremsstrahlung and the
virtual photons, Eq. (C.13) becomes Eq. (3.1) in the text to calculate the radiative

tail from a discrete state.

Equation (C.13) shows that the integration with respect to t can be approximated

by assuming that the scattering took place exactly at t=T/2. The error involved in

this approximation is discussed below. The integration with respect to t for the

term proportional to dcrj(ES) /dQ is
T

dt - 1 W) \(T-t)-1 /@ \bt
f T F(b(I-t) [ (1+bY) <E +wp> <§;> (C. 14)
0

. =83~

S A I e

bT/2 b
do, (E —ws) M+(E -w )(1-cos6) bT 1 w \ | [@g w
LF N S S P _
Yo wE JEcosh) 2w ¢<Es E) < >

T/2



The correction to the half path length approximation must be proportional to

< a bT for small T, hence we put

bT , bT

T 1+xbT = lim  (Eq.(14)/ 1 22

bT — 0 P(%bT)F(l—!% T) p s
) .

= lim 2 f dy(1-y) (/20T [(y-1/2bT (C. 15)
br—0 Jo p S
Therefore, 1
d /‘E y vy zZbT
X= 2|3 dz(1/2-z) | —
d(bT) 1 vp bT=0
2
L "w:’ E +w ’ T

Similarly the term proportional to do-j(ES-ws) /dQ is mﬁltiplied by a factor (1-xbT).
Hence two corrections tends to cancel each other. ixi is a very small number in
general (< 0.1), hence the half path length approximation is indeed a very good
approximation when bT < 0.1.

In the radiative correction to the jth peak we need an expression

E AE

pmax j |
E) max 0

where Ep max 15 by definition (see Fig. 4)

E =E +w_ . C.18
p max p P ( )

Hence instead of integrating with respect to Ep, we may integrate with respect to wp

Let
w M+ Es(l—cose) M+ Es(l—cos )

R B M- E_(i-cos 0) ¥ M-E (I-cos )

L -
w
p

(C.19)
pmax
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which is almost a constant, because Ep ~ Ep max’ Substituting Eq. (C.13) into

Eq. (C.17) with the help of Egs. (C.18) and (C. 19), we obtain

pmax ; g
| op(Eg,E) dE_ = (1+0.5772bT) (=g E el

, - pm
Epma.x AE

RAE)bT/2< AE T/2 d0'.(ES)
S

(C.20)
After including the effects due to the ionization, the internal bremsstrahlung and the
virtual photons, Eq. (C.20) becomes Eq. (2.3) in the text to calculate the radiative
corrections to a discrete level.

Since we know how to handle the contribution from a discrete state to the inte-
gration in Eq. (C.1), the result can he generalized readily to the contribution from
the entire triangle a'b'c in Fig. 4.1. All we have to do is to integrate Eq. (13)
with respect to Mf from M2 to u2 which is the value of M? corresponding to the point ¢ in
Fig. 4. However it is a good idea to subtract all the contributions from the radiative
tails of the discrete levels first before we untangle the continuum states. If this is |
done, M? should be integrated from the threshold of the continuum, M(Z:, instead of

f€~M2‘ In contrast to the Born approximation, our integration with ,respect to M?

converges at the point ¢ in Fig. 4. However it is convenient to separate the inte-

gration with respect to M? into two regions (see Fig. 4):

M: < Mf2 < u?au? = M2+ 2M(Eg-RA-E -8) - 2(E-RA)(E +(1-cos 6)

and

- < = + - - -
u ~Au < Mf su M ZM(E E ) 2E E (1 COS 9) N

where R is defined by Eq. (C.19).
We have shown that if the energy peaking approximation is used, then in order
to calculate the radiative tail from the jth peak, only the information of the nonradiative

cross sections at points a" and b" is required. Hence for the continuum state, we
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need only the information of the cross sections on the lines a to ¢ and b to ¢ in

Fig. 4.
On the line ac: Mf2 M2+2M(E' Ep) - 2E E (l—cos 6) (C.21)
. . 2= 2 TN - t{1-
On the line be: Mf M +2M(ES Ep) 2EsEp(1 cos 0) . (C.22

Using these relations we obtain finally the folding formula for the continuum

region

bT/2 bT/2
of (Eg,E) = (1+0.5772bT) <—%—‘9—> <’EA;> o(Eg E)

S

E'
p

E (E )—"" - 1 1
p max E'-E\bT/2 (E \bT/2
+f dE' o(Eg Ep)< > __Li
P

E_+A
p

2(E' Ep) <

s

-RA
+/ dE' a'(E' Ep) <
E

min'Ey

‘ . (C.23)
where R is given by Eq. (C.19).

Substituting Eq. (C.4) into Eq. (C.23) we obtain Eq. (C.13), hence the former
is indeed the generalization of the latter. After including the effects due to the
ionization, the internal bremsstrahlung and the virtual photons, Eq. (C.23) becomes

- Eq. (4.1) to calculate the radiative corrections to the continuum.
Equations (A.15), (A.16) and (A.17) of MT2 should be replaced by Egs. (C.20),

(C.13) and (C.23) respectively of this paper.

-~ 56 -

bT/2 ES-E;bT/Z bT Es_Eé
E 2(E, E)¢ E

S

=



10.

11

12,
13.
14.
15.
16.

17.

18.

19.

20.

REFERENCES

F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969), hereafter

referred to as MT.

Y. S. Tsai, Phys. Rev. 122, 1898 (1961).
N. T. Meister and D. R. Yennie, Phys. Rev. 130, 1210 (1963).

Y. S. Tsai, in Proceedings of the International Conference on Nuclear Structure,

(1963), (Stanford University Press, Stanford, California, 1964) p. 221.

T. A. Griffy, D. S. Onley,r ,J*T Reynolds, and L.. C. Bie.denharn, Phys.

Rev. 128, 833 (1962). |

D. R. Yennie, F. L. Boos, Jr., D. G. Ravenhall, Phys. Rev. 137, B882, (1965).
G. H. Rawitscher, Phys. Rev. 151, 846 (1966).

Lectures in this proceeding by D. Drechsel, E. Kujawski, and Molinari.

J. D. Bjorken, Ann. Phys. (New York) 24, 201 (1963).

J. Bergstrom, in MIT 1967 Summer Study (Laboratory for Nuclear Science,

MIT) 1967, p. 251.
. Nguyen-Ngoc and J. P. Perez-y-Jorba, Phys. Rev. 136, B1036 (1964).
. Landau, J. Phys. (USSR) 8, 201 (1944). ’
. Killen, Encyclopedia of Physics Vol. 5/1 (Spinger Verlay, Berlin, 1958); p. 169.

. Schwinger, Phys. Rev. 76, 790 (1949).

. R. Yennie, S. Frautchi, and H. Suura, Ann. Phys. (N.Y.) 13, 379 (1961).
. R. Yennie (private conversation).

H

L

G

J

K. Mitchell, Phil. Mag. 40, 351 (1949).

D

D

R. Early (SLAC Internal Memo, 1970, unpublished).
C

. DeCalan and G. Fuchs, Nuovo Cimento 38, 1594 (1965).

) - 57 -




21.

22'

23.

24.

25.

26.

27.

28.

29.

30.

31,

32,

33.

' 20a. Y. S. Tsai, Phys. Rev. 137, B730 (1965).

S. D. Drell and J. D. Walecka, Ann. Phys. 28, 18 (1964).

L. N. Hand, i)hys. Rev. _1_é_9, 1834 (1963).

A. J. Duffner and Y. S. Tsai, Phys. Rev. 168, 1801 (1968).

E. D. Bloom et al., International Symposium on Electrons and Photons at
Liverpool (1969); p. 297, p. 251.

L. Durand, I, P. C. DeCelles and R. B. Marr, Phys. Rev. 126, 1882 (1962).
R. Von Gehlen, Phys. Rev. 118, 1455 (1960); M. Gourdin, Nuovo Cimento 21,

1094 (1961).

o —

H. A. Bethe and J. Ashkin, Experimental Nuclear Physics,-E; Segre, ed.,

(John Wiley and Sons, Inc., New York, 1953).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics, (McGraw-Hill,
Co., New York). “

W. Bérsh-Supan, J. Res. Nat. Bur. Stand. 65B, 245 (1961).

L. Eyges, Phys. Rev. 76, 264 (1949).

H. ﬁbefall, Radiative Corrections to Electron Scattering From Complex Nuclei,
NRL Report 7080 (1970).

L. C. Maximon, Rev. Mod. Phys., 41, 193 (1969).

D. B. Isabelle and J. Berthot, Lecture at this institute.

- 58 -



FIGURE CAPTIONS

Born approximation graph in the electron scattering.

A typical example of s;pectrum in el; scattering. Both the raw data and the
radiatively corrected data are shown. Only part of the elastic radiative tail
is shown. It should be noted that after the subtraction of the elastic tail, the
cross section between the elastic peak and the pion threshold becomes zero
as it should. This graph was taken from Ref. 2.

max 4 Egeak in the definition of AE, but

The definition of AE. Notice that Ep

when integrating the cross section in Eq. (2.2) the limits of integration are

—

E . and E . AE should be chosen much larger than the width to the
pmin pmax

right of the peak.

Triangles: Kinematic region necessary for radiative corrections to inelastic

electron scattering.

Equivalent radiator method.

Kinematics of a virtual photon.

The coordinate system used in the integration with respect to the solid angle

of the photon.
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