
SLAC-PUB-848 
January 197 1 

$4 

i - -- 
5 

RADIATIVE CORRECTIONS TO ELECTRON SCATTERINGS* 

Yung-Su Tsai 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305, U. S, A. 

ABSTRACT 

Radiative corrections to the electron scattering from nucleons and 

nuclei at high energies ( > 50 MeV) are considered. Many formulas in 

the MO and Tsai’s article in-Review of Modern Physics are improved --rc-- * . 
and better derivations of them are presented. The effects of the strag- 

gling of electrons in the medium due to both the external bremsstrahlung 

and the i.onization are included in the radiative corrections. A method 

for dealing with the radiative corrections to the scattering from a target 

material with a large Z is proposed, We suggest that the proper way 

to deal with the radiative corrections to the coincidence experiments is 

in terms of the energy-momentum distribution and the density matrix 

of the virtual photon exchanged; formulas needed for dealing with the 

problem this way are presented. 

(Lectures given at “Nat0 Advanced Institute on Electron Scattering 
and Nuclear Structure at Cagliari, Italy, September i970.) 
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1. INTRODUC TIO N 

Professor Bosco asked me to give a course in radiative corrections to the 

electron scatterings from nuclei including those to the coincidence experiments. 

This note is an expanded version’of the lectures I gave at the summer institute. 
. 

The author benefited greatly from the discussions with many people at the institute. 

The note was expanded and altered considerably from the original one in order to 

answer many questions raised at the institute. 

Why do we need radiative corrections? Let us consider an electron scattering 

from a nucleus. The Feynman diagram representing the process in the lowest 

order of a! is given by Fig. 1. The theoretical analysis of the process is most 
-*- - 

convenient in terms of Fig. 1 (see Appendix A). However if one actually scatters 

- 

an electron from a nucleus, the probability of the process described by Fig. 1 

occurring is strictly speaking zero. Several corrections have to be applied to the 

experimental data before one can extract the idealized cross section represented 

by Fig. 1. In the first place it is impossible to scatter a charged particle without 

emitting an infinite number of soft photons (Bloch and Nordsieck 3 o Because of its 

small mass the photon emission by the electron is much more important than the 

photon emission by the hadron target system. This is especially true for experi- 

ments designed to investigate the nuclear structure where the target particle is 

usually heavier than the proton and the incident electron beam energy is usually 

. 

less than one GeV. The photon emission by hadrons is negligible compared with that 

by electrons until the energies of these hadrons become relativistic. 2 We shall 

t 
ignore the bremsstrahlung emission by the target system except when treating the 

elastic scattering. The order of magnitude of the effects of the bremsstrahlung 

emission by the target system can be inferred from the results of the calculation 

given for the elastic scattering. 2,394 The formulas for the radiative corrections 
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are usually derived under the assumption of one photon exchange between the electron 

current and the hadron current. 5 For a target with a high atomic number Z, it is 

i well known that one photon exchange is a bad approximation and the method of phase 

shift analysis using the exact Coulomb wave function (with form factors) must be 
: 

used. 6 It is also known that a good approximation to the results of the phase shift 

analysis can be obtained by a distorted wave Born7 approximation in which most of 

the energy and momentum transfer from the electron to the nuclear system is 

carried by a single photon and the rest of the Coulomb interaction consists of ex- 

changes of infinite number of soft photons between the electron and the hadron, 

It is well known that the probability of soft photon emission is proportional to 

the cross section for no photon emission (see Eqs. (2.3) and (2.4)) and the propor- 
-T- - tionality constant depends upon q , Es (the incident electron energy) and Ep (the 

outgoing electron energy) only logarithmically. Since the distorted wave Born 

- approximation shows that the effective Es, Ep and q2 in the problem are not appreci- 

ably changed by the Coulomb distortion, we expect this proportionality constant, 

which we shall refer to as radiative corrections, should not change appreciably. 

For a hard photon emission the situation is less clear. In Chapter 3, we propose 
-i-. 

a procedure to handle this problem based on the following observations: 

1. The Coulomb distortion can in a certain sense be regarded as some 

change in form factors. 

2. One can2 always cook up a peaking approximation formula which 

reproduces the exact Born approximation calculation of the radiative 

tail corresponding to a particular set of form factors, even though 

it is difficult to find a universal peaking approximation formula which 
? 

is good for all form factors. 

3. Since the Born approximation does give gross features of the electron- 

nucleus scattering even for a large Z material, we expect the peaking 
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approximation formula which reproduces the Born approximation 

i result well will also be good for the Coulomb distorted cross sections. 

. The Coulomb distortion does not represent the entire effects of multiple photon 

exchange. For example it does not take into account the possibility that in the two- 

photon exchanges, the hadron intermediate states can be an excited state instead of 

the ground state. 8 The estimate of this effect is highly model dependent. However 

some model calculations’ show that the effect is significant only in the region of 

diffraction minima. Since all the calculations are numerically unreliable, all one 

’ has learned from this type of model calculation up to now is that when doing a phase 

shift analysis it is illusory to try to fit the region of diffraction minimum beyond 
--i. - 

the accuracy comparable to the magnitude of the dispersion effects. Similar to 

the fact that one-photon exchange formalism gives the gross features of the electron 

scattering, one real photon emission gives the gross features of the radiative cor- 

rections except in the infrared limit. Suppose a charged particle lost a certain 

amount of energy A by radiation. We know from Bloch-Nordsiekl theorem that A 

is shared by an infinite number of photons. However because of l/ki dependence 

for the probability of emitting the ith photon, it is much more probable for one of 

the photons to take up practically all the energy available and only a small fraction 

of A is shared by the rest of the photons than many photons sharing almost equally 

the available energy. This phenomenon is very similar to the fact that in Coulomb 

scattering it is most probable that most of the energy and momentum transfer is 

carried by a single virtual photon. All the corrections mentioned above are higher 

order cy corrections to the process under consideration. In practice it is convenient 

(actually necessary) to consider at the same time the straggling of the electrons in 

passing through the medium before and after the scattering. lO,ll, 12 The brems- 

strahlung emission of the electron in passing through the medium before and after 
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i 

the scattering is called the external bremsstrahlung whereas the bremsstrahlung 

emission during the collision is called the internal bremsstrahlung. The internal i 

bremsstrahlung is proportional to the target thickness T, but the external brems- 

strahlung is proportional to T2. Another T2 effect is the ionization, which is some- 

times called the Landau straggling. 13 The internal and external bremsstrahlungs 

have almost identical dependence on the energy loss A, but the ionization loss 

behaves quite differently from the bremsstrahlung. The straggling of an electron 

in passing through a medium due to the combined effects of the external bremsstrahlung 

and the ionization is discussed in Appendix B. In Appendix C, we show that the 

effect of the straggling can be approximated by assuming that the scattering took 

place at exactly half the path 1engthFthe error is less than l%-if T is less-than 

0.1. We also show how the two-dimensional integration with respect to dE;1 and 

dEA can be approximated by two line integrations. The reader is advised to read - 

the appendices before reading the text. In the text we deal mainly with how to put 

together various pieces of formulas, derived in the appendices and elsewhere, in 

order to actually carry out the radiative corrections to the experimental data. 

There are some differences in the treatment of the radiative corrections to 

the multi-GeV ep scattering and the low energy (100 MeV) e-nucleus scattering. 

In the ep scattering there are only about three or four broad bumps (1238, 1525, 

1700 and 1900 MeV?) each with a width of around 100 MeV. These bumps are all 

above the pion threshold and hence lie on top of the continuum (see Fig. 2) D In the 

electron nucleus scattering the levels are much more numerous, the intrinsic width 

of these levels are in general negligible, and many of these levels are below the 

threshold of the continuum. In the ep scatterings only the elastic peak needs a 

specia.l treatment, and all the resonances can be treated the same way - as we 

treat the continuum. In the e nucleus scattering all experimentally resolvable 
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levels are narrow and can be regarded as discrete, the apparent widths of these 

i levels are mostly due to internal and external bremsstrahlung, Landau straggling, 

. the energy width in the incident beam and the energy resolution in the detection 
: 

system. 
. 

It should be emphasized that experiments should be planned from the beg-inning 

so that the radiative correction can be carried out reliably. For example in order 

to carry out the radiative corrections we need to have many spectra (each with a 

different incident energy) at each scattering angle. The greater the number of 

spectra the more reliable are the interpolations and extrapolations needed to carry 

out the radiative corrections. 2 Now in order to separate out the two form factors 
-)- - * . 

and determine their q2 and u dependence it is necessary to perform experiments 

at different scattering angles and different incident energies. The two kinematical 

regions covered by the two above requirements should have a maximum overlap. 2 

The effect of the internal bremsstrahlung is roughly the same as that given by two 

- 

external radiators with one placed before and one after the scattering, each of 

thickness2 

tr = b-l(&) [b (-q2/m2) - l] 

radiation lengths, where b is a number very close to 4/3. 

Hence in order to reduce the effect due to the straggling, the target thickness 

should be chosen less then 2 tr. . 

It is also important to place the target so that the path length of the target is 
. constant for a fixed scattering angle independent of where the interaction takes 

place in order to simplify the calculation of the straggling effects. This can be 

accomplished easily by rotating the target of a uniform thickness such that the 

angle between the incident electron and the target surface is equal to the angle 

between the outgoing electron and the target surface. 11 We follow closely the 
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notations of MT;2 they are summarized below for easy reference. We use the 
i 

convention h=c=l. The metric used is such that p*s=E E s p-$2* Components of 

four vectors and angles are all in the laboratory system. 

S=(Es, E) : four momentum of the incident electron. 

P=(E~, ~1: four momentum of the outgoing electron. 

t=(M, 0) : four momentum of the target particle. 

k=(w&): four momentum of the real photon emitted. 

pf=s+t-p-k: four momentum of the final hadronic system. 

u=(ug , $) = s+t-p=pf+k 

u2=2m2+M2 - 2(s*p) +2M(Es-9. = missing mass squared. 

M;=pf2 

q2=(s-p-k) 2 = (pf-t)2 

8 =scattering angle 

T=total path length in unit of radiation length x0 of the electron in the 

target before’and after the scattering. 

Z&atomic number of the target nucleus. 

A=atomic weight of the target nucleus. 

N=6. O23x1O23 = avogadro ‘s number. 

r0=2. 8 18X10-l3 cm = classical radius of an electron. 

a(Es, Ep) E .F = cross section with the incident electron energy 

Es and the outgoing electron energy Ep after the radiative corrections. 

When Z is small this cross section is given by the lowest order Born 

approximation. WhenZ is large, this is the cross section to be 

analyzed by the distorted wave Born approximation. 
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i 
qEs’ Eds d-s the measured cross section if the target has zero 

t thickness so that no straggling occurs. 

. ir (E 
d=#$s EP’ 

b spEP) = dndE = a hypothetical cross section where a(Es, E was 
P d 

altered by the external bremsstrahlung only. 

g-&E& G daexp(Es’ 
dI-kdE = the measured cross section containing effects 

P 

due to virtual photon-, internal and external bremsstrahlung and ionization. 

1 
us= 5 (u2-Mf / M+E-#%os g) 

‘[ 1 - - 
(1.1) 

= The maximum energy of a photon which can be emitted along 

- the direction of the incident electron if the mass of the final 

hadron system is Mf. 

wp= 2 L (u2-Ma/ [M+Es(l-cos O;] 

= The maximum energy of a photon which can be emitted along 

the direction of the outgoing electron if the mass of the final 

hadron system is Mf. 

.__.- . q;= -2(E s- us) EP( 1-cos 0) 

+ d 2Es(Ep+ w (1-cos 6) 

Y 

(1.3) 

(14 

(1.5) 

(1.6) 
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We would like to introduce a very useful quantity called the effective non- 

radiative cross section: i 

Q-&, EP) ,2 = F(q ,‘JJ HE+, El+AJ (1.7) 
: 

We first introduce a few quantities which were used in the discussion of the stragg- 

ling effect 

a 2nNcr2 Z -2 = - K m (centimeter) = 0.154 MeV 2 

= a parameter used in the ionization loss, see Eq. (B. 1). 

x0 =unit radiation length in gm/cm2. 

3~10~ ax x E2-- - 2 0 s 
.m2Z2 I 

- 0.5772 
- 

(1.8) 

= the most probable energy loss of the incident electron due to the 

ionization after passing through a target material of thickness T/2. 

Ap=similar quantity as above except that Es is replaced by Ep. 61* 9) 

b w 4/3 (see Eq. (B.5)). 

As will be shown in Appendix C, when T<<l the effect of the external bremsstrahlung 

can be approximated by assuming that the scattering took place at exactly half the 

path length. The error involved is less than lo/C when T < 0.1. We shall make this 

approximation in order to avoid the integration with respect to the path of the 

electron. Under this approximation the effective incident energy is equal to Es-As 

and the effective outgoing energy is equal to E +A p p. This explains why we have 

Es-As and Ep+Ap in Eq. (1.7). The momentum transfer squared for the nonradiative 

- process corresponding these effective incident and outgoing energies is 

q 12 =4(Es-As)(EpiAJ Sm2 e/2 . (1.10) 
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. 

The factor F(qt2,T) in Eq. (1.7) is defined in Eq. (2.8). This factor is mde- 

pendent of the photon energy in the infrared limit.’ This factor occurs independently 

of whether photons are emitted by electrons or not, and hence it behaves as if it 

were a part of the hadron form factors. Therefore it is convenient to use oeff 

instead of o- in performing the radiative correction to the peak and in calculating 

the radiative tail. After all the experimental data are reduced into ueff, we may 

divide it by F(qf2, T) and obtain cr. The best way to handle As and Ap is to redefine 

the incident and outgoing electron energy from the beginning as Es-As and Ep+Ap 

respectively. If this is done we can forget about As and Ap in all the subsequent 

calculations. We shall assume that this is done in order to save writing and com- -&- - - . 
putation time. In other words we shall adopt a convention that whenever As& 

A 
-P 

are absent from the formula, it is to be understood that Es and Ep really mean 

_Es-As and Ep+Ap respectively. 

Examples : E’p-Ep=~p really means E’-E -A =w 0 
P P P P 

Es-E;= ws really means Es-As-E’s= ws. 

a(Es, EP) really means u( Es-As, Ep+Ap) D 

Let us give the order of magnitude of A 
%P’ 

The ionization loss A0 for a 

particle of energy EO is quite insensitive to EO, and is roughly proportional to the 

target thickness in gm/cm2 as can be seen from Eqs. (1.8) and (1.9) o For most 

materials other than hydrogen, AO/x, where x is the thickness in gm/cm2, is 

roughly 1 (for lead) to 2 (for deuterium) MeV per grn/cm2. Hydrogen is an ex- 

ceptional case because Z/A=l, whereas for most other materials Z/A - 0.5. For 

hydrogen Ao/x is 4 to 5 MeV per g&cm2 depending upon the energy. 
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2. RADIATIVE CORRECTION TO THE DISCRETE LEVELS 

i Let pf be the four momentum of the final hadron system and k be the four 

momentum of the photons emitted, then obviously : 

u2 = (pf+kj2 2 pf2 = M;. (2.1) 

This relation tells us that the radiative tail from the lighter Mf can affect the 

measurement of heavier M f but not vice versa. The elastic scattering has the 

smallest &If, hence the radiative tail from the elastic peak affects all the higher 

Mf states in the experiment. Thus we first apply the radiative corrections to the 

elastic peak, then calculate the radiative tail from the elastic peak. The elastic 
- 

radiative tail is then subtracted fr%$the spectrum. Apply the same procedure 

to the first excited state and then to the second and so forth until we reach the 

threshold of the continuum state or until the energy levels become so closely 

spaced that it is impossible to resolve these levels experimentally. The continuum 

state can be regarded as a summation of many discrete levels hence the principle 

involved is the same as the discrete case but in practice it can be handled in a 
‘i-- 

more efficient way (see Chart 4 and Appendix C). 

In Fig. 3 an elastic peak and two other discrete peaks are shown. As men- 

tioned previously, in nuclear physics (not in elementary particle physics), the 

intrinsic widths of the excited states are usually negligible compared with the width 

due to 

a. Internal bremsstrahlung 

b. External bremsstrahlung 

c. Landau straggling 

d. Finite energy spread in the incident beam and the finite momentum 

resolution in the detection system. 
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Suppose we are interested in the radiative corrections to the jth peak. Let 

i us arbitrarily choose a point E pmin between the jth peak and the j+l th peak and 

. define 

. 

‘ST- 

. 

’ J 
E 

du. pmax dcr. 
+(+ ’ 

E pmin 

(2.2) 

where AE = EPeak - Epmin. 
P 

Notice that Epmax# Eze** The expression for the 

radiative corrections is relatively simple if two neighboring levels are separated 

by a distance much greater than the width due to the Landau straggling and the 

experimental resolution. If this is so, AE in Fig. 3 can always be chosen much 

larger than the width but-small enough so that the cross section at incident energies 

Es and Es-RAE are not appreciably different (less than 10%) and we can write the 

radiative corrections to the jth peak as (see Appendix C) 

where 

do-eff( Es) du.(E ) 
dR = F(q2,T) + o 

(2.3) 

(2.4) 

duj/dO is the nonradiative cross section we want to deduce frorn the data. 

d&yff(Es)/dn is the effective nonradiative cross section needed in Chapter 3 to calcula.te 

the radiative tail. RAE is the maximum energy of photons which can be emitted 

along the incident electron direction. R is defined in Eq. (C. 19) 0 4 is a param- 

eter in Landau straggling and is given by 

6 = 0.154Z/A Txo MeV , (2.5) 

T = target thickness in units of radiation length, 

xO = unit radiation length in gm/cm2. 
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i 
‘I”= b($+tr), tr = b-l ; (by-l). (2.7) 

.- 
: F(q2,T) represents all other corrections which are independent of AE: 

W2, T) = 1+ 0.5772 bT 

+g -14.13 

[ 

2 
T 9 +n-g 

m2 1 

The term 0.5772 bT comes from the normalization factor 

l/r(l+bT) x 1 + 0.5772 bT - (2.9) 

in the external bremsstrahlung. (See Appendix B for further discussion on this 

factor .) 

The factor 

is the sum of the vacuum polarization (e+e- bubble in the photon propagator) and 

the noninfrared part3 of the vertex correction: 

6 =2! 
vat n [(-5/g) + + 4t-n t-q2/m7] (2.10) 
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and 

i 6 =- “,” [-I + a ln (-q2/mZ;] a 
vertex 

(2.11) 

. 

The term2’ 3’ 4’ 5 . : - (a;2111 in2 (Es/E d 
is an approximation to a sum of two Spence 

* functions : 

This term can be regarded as a correction to the peaking approximation in the 

internal bremsstrahlung. This term will be the only correction necessary if the 

nonradiative cross section is assumed to be constant when integrating with respect 

to the energy and angle of %l&pho~n. The smallness -of this term- indicates that 

the peaking approximation is indeed good if the variation of the nonradiative cross 

. section can be ignored. 
- 

The last term in Eq. (2.8) is the term in the Schwinger 
15 corrections some- 

‘i-- 

It was written in terms of the Spence function by Kallen. 
14 

times ignored. This 

term is zero at 0 =0 and monotonically increases with 6. When 8=~, the Spence 

function vanishes and this term has the maximum value of on/6 = 0.0037. Hence 

the correction due to this term is at most 0.37%. 

The Spence function 16 is defined as 

x !m) = -!h 1 l-y1 dy 
Y 

The following properties of e(x) are useful for its numerical evaluation: 

12 13 @(x)=x+zx +5x +...+(,“/n +... , if 1x1 51; 

(2.13) 

Q(1) = 5 7r2 1 2 and @(-1) =-=1r ; 
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for x > 1, 

i 
I$@) +n21Xl + 3 L lr2 - @(l/x) ; 

and for x < -1 

.From the above we can show easily 

0 -I @(I) - @(x) i e(1) (1-x) , when 0 < x < 1 - 

Hence the last term in Eq. (2.8) satisfies the inequality, 

(2.14) - 

The equality in the second I is satisfied when 8=0 and ?r. This term was originally 

derived by Schwinger 15 for the nonrecoil case. If Es >> Ep in the laboratory system, 
- 

one would not obtain this simple expression. This term comes from the noninfrared 

divergent part of the soft photon emission cross section, The general expression 

corresponding to this term for an arbitrary recoil and energy loss can be written 

T- as (see YFS17) 

f (s*~)l; Gs, ,(x) $ 
pX 

(2.15) 

where s and p are four momenta of the incident and outgoing electrons respectively. 

2pX = (l+x)s + (1-x)p , 

pz =; [ 3 (1+x m2 + (l-x 5 1 (sop) 

and 
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If we ignore the mass of the electron and the recoil, we have 

EX =Es=E = E, 1-(1-x2) sin 2 0 2) l/2 
P 

‘Ext, 

. 
and Eq. (2.20) can then be reduced into 

1 
2C.Y e piIl-- 2 j 

1+5 
0 1-t 2 l+t 

cos - 
[ -bn 

2 
--+--&VT 

which is precisely Eqs. (2.97) and(2.105) of Schwinger. 15 

We have ignored the bremsstrahlung emission from the hadron system in 

Eq. (2.3) because we would like to use this equation for all the discrete levels. 

The effect of the bremsstrahhmg~mission by hadrons in the elastic scattering 

can be seen from the numerical examples given in Tables I and II of MO and Tsai. 2 

- 
If you think the effect is important, then the following formula must be used instead 

of Eq. (2.3) : 

(-$q2x (1-A) (2.16) 

where 6 is given by Eq. (II. 6) of MO and Tsai and 

G(q2,q = 1 + 0.5772bT + g [; 2 -,(cosy-j. (2.17) 
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3. RADIATIVE TAIL FROM A DISCRETE LEVEL 

In this chapter we calculate the radiative tail from the peak du lefr,dfl obtained 

in the previous chapter, so that its contribution to the spectrum can be subtracted. 
: 
Xs shown in Appendix A we can calculate the radiative tail exactly in terms of two 

form factors describing duj/dfI if we assume (a) only one photon is exchanged 

between the electron current and the hadron current and (b) only one photon is 

emitted by the electron. However when Z is large, neither duj/dfl obtained in the 

previous chapter nor the bremsstrahlung process is given adequately by one photon 

exchange. Also in reality an infinite number of photons are emitted instead of just 

one photon. The rigorous derivation of radiative tails containing the effects due to -)- - r - 
multiple photon exchange and multiple photon emission does not exist. In general 

the radiative tail from the elastic peak is much more important than the radiative 

- tails from the inelastic events. The reasons are twofold: 

1. The elastic cross sections at a fixed angle is much larger than the 

inelastic cross sections in most of the experiments. 

2. =i- At a fixed angle the elastic cross section increases much more 

rapidly than the inelastic cross sections when the incident electron 

energy is reduced by the emission of photons. 

In other words the tail from the elastic peak is large and long and its effect is felt 

all the way to the end of the spectrum but the tails from the inelastic events are 

small and short and its effect is felt only by their neighbors. From the numerical 

examples given in MT all versions of peaking approximations give excellent results 

when the energy loss due to radiation is smaller than 10% of the electron energy. Hence the 

_ peaking approximation.can be safely used when calculating the tail from the inelastic events. 

In the peaking approximation the radiative tail is proportional to the nonradiative cross sec- 

tion, therefore we expect the effect due to the Coulomb distortion is automatically taken 
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care of if we use the nonradiative cross sectionobtainedin the previous chapter 0 

i For the tail from the elastic peak, there is again no problem when the energy 
. 

loss is small (10%). When the atomic number Z is small so that one-photon ex- 
: 

. change is a good approximation, we can calculate the probability of one-photon 

emission according to the formula given in Appendix A. The effects of the multiple 

photon emission is then obtained by multiplying the factors (see Appendix B) 

In Appendix C, Eq. (C. 13), we have shown how to calculate the radiative tail 

assuming only the external bremsstrahlung. Using the results of Appendix B, 

Eq. (B. 39), we can generalize Eq. (C. 13) to include the effects due to the ionization, 

the internal bremsstrahlung and the virtual photon and obtain the radiative tail from 

the jth discrete level: 

du. J, exp(Es) b($+tr) 

dR dEp = tvsvp) 
du;,; (Es, Ep) 

dRdEp 

+ 
M+ (Es-ws)(l-cos 0) dufff(Es-us) 

M - EP( 1-cos e) da 

eff 
+ d”j cEs) 

dR (30 1) 

where e(v) is the shape of the bremsstrahhmg multiplied by v and normalized such 

that +(O)=l. For example when the complete screening is applicable it can be 
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written as Eq. (B. 6). 4 is defined in Eq. (2.5). ws, wp, vs and vp were defined 

in Eqs. (l.l), (1.2), (1.5) and (1.6). tr was defined in Eq. (2.7). 
i 

duyff/dfi is the cross section obtained in Eq. (2.4). Now we see why it is 

-. convenient to use o eff instead of u in all of our intermediate steps. Had we not 

eff used u , our Eq. (3.1) would have looked much uglier and we would have wasted 

much computer time to compute F(qi, T) , F({, T) As and Ap mentioned in the 

introduction. 

durfp/dn is the radiative tail due to one-photon emission in the absence of 
, 

straggling. This cross section can be calculated in the following way: 

1. When j represents an in&astic%xcitation (i.e., Mj#M), we may use 

the equivalent radiator method, because the radiative tail from an 

- 
inelastic level is in general small and short, and the method gives 

an excellent result. This method is equivalent to dropping do j”ffr/dn 
, 

from Eq. (3.1) and replacing T/2 by T/2 + tr inside the square bracket 

in Eq. (3.1) o 
‘i-- 2. When j represents the elastic scattering (Le., Mj=M), we first apply 

the equivalent radiator method to obtain the order of magnitude of the 

tail. In the region where vs and v P 
are less than 0.1, the equivalent 

radiator method (ERM) gives a good result even for the elastic scat- 

tering. However when vs is larger than 0.1, this method can give 

as much as 30% error according to the numerical examples given by 

MT2. If the elastic radiative tail contributes less than 10% of the 

cross section, we might as weIl use ERM because the resultant error 

is at most 3% of the cross section. 

- 19 - 



3. If ZLY << 1,-we may use the Born approximation, Eq. (A. 24)) to calculate 

du;f;/dfl 0 ; WJ (q2) 
, 

and W$q2) in Eq. (A. 24) have to be multiplied by 

F(q2,T) in order to calculate the effective cross sections. 

. 
4. For heavy nuclei we have to include the Coulomb distortion in order to 

obtain something similar to Eq. (A. 24) o Since this has never been 

done, we propose a temporary solution. The remarks made in 1 and 

2 are applicable in heavy nuclei also. If ERM indicates a substantial 

radiative tail, a more reliable calculation is required. 

We notice that in the method of equivalent radiators we have assumed that the 

shape of the spectrum for the internal bremsstrahlung is equal to that of the external 

bremsstrahlung q(v) o Thisfrs-of course totally ad hoc-except when v is small com- 

pared with one. We can choose a better shape function using the Born approximation 

as a guide in the following way (see Chapter 1) 0 - 
(3 Obtain an approximate expression for WIF and W2F using Eqs. (2.3) 

and (A. 17) for the elastic peak. Strictly speaking this cannot be done 

when ZQ! is large. Since for our present purpose only an approximately 

correct behavior of WI and W2 is required, this can always be done. 

Insert FWl(q2) and FW2(q2) bt o ained above into Eq. (A. 24) and obtain 

‘i-- 

09 

the tail of the elastic peak in the Born approximation. 

(iii) Write the elastic radiative tail in the form 

eff 
duosr = bt 

M+ (E~-wJ(~ -COS e) dotff(Es- us) 1 
dndEp r 

M-EP(l-cos e, 
dR w f(v& 

S 

I 
(3.2) 

f(v) is the function we want to determine. For example, it can be 

parameterized by 
f(v) = 1+c1v+c2v2 * 
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Determine numerically cl and c2 by comparing the tail obtained from 

Eq. (3.2) and that obtained in step (ii). FWl and FW2 obtained in 

step (i) must be used to calculate duo eff/dfI in Eq. (3.2) when making 

this comparison. 

(iv) We claim that the correct radiative tail is obtained by using the 

original doiff/dn in Eq. (3.2). 

There is some uncertainty in the validity of the factor (vsv W/2 +b) in 
d 

Eq. (3.1)) 0 We know that this factor is correct when vs and vp are small. 

R. Early’s 19 numerical work suggests that this factor is correct even for large 

vs and vp for the external brem@rahlqg. Whether this is true or not for the 
18 - 

- 

internal bremsstrahlung is an open question. Yennie suggested that this can 

be tested by calculating the cross section for emitting two real photons using 

- perturbation theory. However in nuclear physics the value of 2 s*p=2EsEp(l-cos 0) 

is usually less than 1 GeV2, hence btr is less than 0.033. Ignoring the recoil we 

have vs=vp=v, hence for the internal bremsstrahlung alone this factor can be 

written as v ‘i-- 2btr = $I. 

When v=O. 5 and btr=O. 033, we have @=1-O. 045. 

When v=O. 9 and btr=O. 033, we have @=1-O. 0066. 

These numerical examples show that the correction is minor, and it is unlikely 

that this factor contains a gross error. 
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4. RADIATIVE CORRECTIONS TO CONTINUOUS SPECTRA 

i After all the radiative tails from the discrete states have been subtracted 
. 

: from the spectrum we can proceed to do radiative corrections to the continuum. 

. For the continuum it is safe to apply the equivalent radiator method. Since a 

continuum can be regarded as a sum of many discrete states we obtain the result 

by integrating Eq. (3.1) with respect to M”. This was done in Appendix C 

(Eq. (C. 23)). The result is 

x [& f$) + 2(E;Ed2]dE6 ’ (4.1) 

where T’ is given by Eq. (2.7). A should be chosen small enough so that u(Es-RA, E d 

and u(Es, Ep+A) are not appreciably (< 10%) different from u(Es, E d , but should be 

large enough so that t/A is less 0.1. The bremsstrahlung part is a convergent 

integration, hence the expression is correct even when A=O. The ionization part is 

a nonconvergent integration because we have used an asymptotic form. (See Eq. (B. 34).) 
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However our result is quite independent of the choice of A. This can be verified 

i by differentiating Eq. (4.1) with respect to A, we see that the result is equal to 

zero. 
.- 

Our objective is to obtain u eff(Es, Ed f rom the experimental cross section 

uexp’ Since the desired cross sections u eff(Ek, Ep) and ueff(Es,E;l’ are also 

contained in the integrations, a procedure for unfolding is necessary. There are 

two ways of doing this. One is when the gross features of u(Es, Ed are known 

one can parameterize it and insert it into Eq. (4. l), adjusting the parameters 

until a satisfactory fit to the experimental data is obtained. Another method is to 

write Eq. (4.1) in the following form -d.- - 

ueff(Es,Ed = (gT’ ($jT’ (1- &fl 

- 

yEs-, (. . .) -jEpmaxo (. . .) (4.2) 

E smin ‘Ed 
Ep+A 1 ‘i-- 

where the two integrations have the same expressions as those in Eq. (4.1) * This 

equation implies that if ueff( Ei, p) E’ is known for EA < Es-PA at constant, Ep and 

Eb > (Ep+A) at constant Es, then u(Es,E d 
can be obtained from the measured 

cross section u exp(Es’ EP) ’ The cross section u Esmm (Ep)’ Ep] and 

>E p max(Es)] are equal to zero if the radiative tails from all the discrete 

levels have been subtracted from the measured cross section. Hence one can 

obtain the nonradiative cross section in the neighborhood of the threshold for the 

continuum along the line ab in Fig. 4. Knowing the cross sections on this strip 

we can calculate the cross section for the next strip and so forth until we unfold 

the cross sections within the entire area abc in Fig. 4. 
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Due to limitations on available accelerator time, usually the cross section is 

measured at many values of the outgoing electron energy Ep but only at a few.vaIues 

of the incident electron energy ,Es. Hence the integration with respect to dEk can 

be carried out over the spectrum already unfolded. However some interpolations 

and extrapolations of the cross sections are required in performing the integration 

with respect to dEL. Since the cross section for a fixed value of the missing mass 

Mf varies only monotonically as a function of incident energy at a fixed angle, the 

interpolations and extrapolations should be carried out along the equimissing mass : 

line rather than directly along the constant Ep line. There is no essential difficulty 

involved in the procedure&& described. The only thing one needs is an efficient - 

- 

computer program to handle the entire unfolding automatically. For more details 

about unfolding and numerical examples, the reader should refer to MT. (Note 

that our Eqs. (4.1) and (4.2) are improved versions of the corresponding equations 

in MT.) ., 

It should be emphasized that the first method mentioned is much simpler than 

the second. Another advantage of the first method is that after one is through with 

the analysis, u(Es, p) E is already in a nice parameterized form. Let us call the 

first method ‘the folding method” and the second method ‘the unfolding method”. 

I’--rr-- -, ._. .  .-_---. -._ .“- .  . ._ 
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.5. RADIATIVE CORRECTIONS TO COINCIDENCE EXPERIIVIENTS 

Suppose there are n hadrons in the final state in the ‘inelastic electron scat- 

terings 
: 

s+t * p+p,+p,+ . . . + pn+photons 

s and p are four momenta of incident and outgoing electrons respectively. t is the 

four momentum of the target particle. pi,p2’ e ‘pn represent four momenta of n 

final hadrons D As mentioned previously, even though the actual number of photons 

emitted is infinite, most of the radiation loss is taken up by one photon, hence for 

the kinematical consideration one may approximate the infinite number of photons 

by one photon: -A. - r - 

kl+k2+ ooo +km-.k 

The phase space for the final state is 
- 

1 
(2n)3(n+2) 

& d3pl d3P2 
2w 7 q ’ ’ l 

. o .pn+k-s-t) (5.1) 
n 

‘i-. We have assumed that the masses of all particles are known, hence each 

particle has only three degrees of freedom. We may use the 6 function to eliminate 

the d3pn integration resulting in one dimentional 6 function S(pi-M$ . Hence if we 

detect the particles p, pl, p2, . . . ,p,-I, the cross section would be a 6 function, if 

no photons are emitted. If photons are emitted, this 6 function enables us to 

determine the phase space of the photon from the momentum bites of p, PI, p2, . . . , pnel 

detectors. When n=l, the experiment corresponds to a single arm spectrometer 

case for the excitation of a discrete level. The case for n=2 has been worked out 

by C. DeCalan and G. Fuchs. 20 
_ Their results are given in terms of AE P’ 

AE1 

and M2. As n becomes larger than 2, the radiative corrections become an unwieldy 

function of AE 
P’ 

AEi, AE2,. 0. and MlM2. *. . Not only iire these corrections 
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difficult to calculate, they may be useless in practical applications for the following 

reasons : 

1. When there are so many AE’s, the phase space becomes so small that 

there may be too few events available for doing any analysis. 

2. When there are many particles in the final state, very often some 

particles are neutral and escape detection. 

3. The masses of the particles are often not known. 

Apparently this approach to the problem is not very fruitful. 

The work of DeCalan and Fuchs 20 can be generalized to 

-“-s+tz ptpl + all undetected hadrons : 

The technique must be similar to the way we generalized the radiative corrections 

- 
to a discrete peak into the ones for 

s+t - p+ all undetected hadrons . 

Similar to the latter case the unfolding procedures will be involved. The details 

have not been worked out. However even if the details are worked out, it is 

doubtful that they can be used in practice. 

I would like to suggest an alternative way to look at the problems of radiative 

corrections when the hadrons are detected in addition to the scattered electrons. 

If we ignore the interference between the bremsstrahlung emissions from electrons 

and hadrons and ignore the multiple photon exchange between them, the behavior 

of the hadron final states is completely determined by the density matrix and four- 

momentum distribution of the virtual photon. In the absence of the radiative cor- 

rections the four momentum of the virtual photon is q=s-p and the density matrix 

of the virtual photon is determined by the tensor: 
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When the radiative corrections and the straggling effects are included, both the 

four momentum of the virtual photon and the density matrix are given by certain 

-distributions. Let us use the equivalent radiators to approximate the effects of 

_ -the internal brems strahlung . The effects of the radiative corrections and straggling 

.can then be simulated by placing one radiator of thickness $ + tr before the scat- 

tering and another with the same thickness after the scattering. As mentioned 

previously it is convenient to treat the factor F(2se p, T) , which contains the vacuum 

polarization and vertex corrections etc., as if it were part of the hadron form 

factors when doing radiative corrections and only at the very end this factor is 

divided out from the result. We also use the convention that Es represents the 

incident electron energy minus $%nd E;I means the actual outgoing electron energy 

plus Ap. Figure 5 gives a pictorial representation of our approximation. Because 

of the initial radiator ( ) $+t r ’ the energy distribution of the electron just before 
- 

the scattering is given by (see Appendix B) 

where 9(v) represents the shape of the bremsstrahlung. We have ignored the 

straggling due to the ionization for simplicity. Similarly if the outgoing electron 

has energy Ep, then the energy distribution of the electron just after the scattering 

must be given by 

Knowing the energy distribution of the incident (Ek) and outgoing (E> electron 

energies, we can calculate the four-momentum distribution and the density matrix 

of the virtual photons immediately. Let us normalize the four-momentum distri- 

bution of the virtual photons by 

S4(q’-q) d4q’ (5. s) 
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when the radiative corrections are absent. The corresponding distribution when 

both the radiative corrections and the straggling are included can be calculated 
. 

from 

where 

? - q. - E;-E; (5.6) 

Since 
-c- - 

40 = Es-E 
P 

and 

- Q = Eses - Epep , & c M 
we may write 

go-q;, = (Es-E;) + (Ep-E 
d = ws+w P 

‘G-. and 

GyJf = (Es-E;) es + (Ei-Ep) ep = uses + Wpep . 
-c C’ Ic m.’ 

(5.9) 

- 
(5.10) 

(5.11) 

(5.12) 

(5.13) 

. 

Equation (5. ‘7) shows that only two variables in d4q’ are independent. Since the 

vector Q’ must be in the scattering plane, if we choose the direction of Q to be the n* .- 

z axis and let 2 and F be on the xz plane then 2’ must be also on the xz plane (Fig. 6). 

From Eq. (5.13)) the magnitude of 2’ is given by 

. 
+ wf + b$ + 2wswp cos 1 m 

cos 6 
q d 

e (5.14) 
w 

+ up cos 8 

and the angle between Q and 9.’ is given by L 

sin e = 1 (us sin 8 
qq’ Q’ 

+wsinO . 
qs P d 
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qh is given by 

q;, = q. - Us-Up . (5.16) 

--Hence we may regard go-q6 = A and Q’ sin eqql _ = 9; as the independent variables, 

.and obtain 

dE’sdE’p = dos dWp = 1 
sin 8 - sin 8 dA dq’ x ’ 

Qp qs 

w = S sin e - sin 0 , 
w qs 

and 

9; -sin 8 
“P = 

qs 
sin 8 

‘SJ 
~~sirla * 

qs 

(5.17) 

(5.18) 

(5.19) 
- .! 

From the elementary trigonometry, we obtain 

- sin 8 W=EsQ-l sine , 

and 

sin 9 qs = Ep Q-l sine 0 

“-- Hence the four momentum distribution of the virtual photon is 

D(A,q$ dAd$ = I(Es,Es+ ws, $+tr) I(E,-w,,Ep, $+tr) 
&a dq; 

(E s-E 
d 

sin 9 

(5.20) 
where ws and wp are given by Eqs. (5.18) and (5.19) respectively. 

Since I’sare very peaked at ws=O and wp=O, we see that D(A, q”J must be very 

peaked at qi = Asin 6’ and ’ -Asin Bqs. From Eqs. (5.18) and (5.19) and 

ws L 0, w 
P 

2 0, we seythat :must satisfy 

or 

Asin 19 qs< s:,s Asin ew (5.21) 

EpA,sin 0/Q 5 q; < EsAsin e/Q . (5.22) 
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-The density matrix t 
WJ 

is changed from Eq. (5.2) into a distribution 

I E -0 ,E ( ‘+ tr > 
&a &; 

P P P’2 (Es-Ed sin 6 

In order to understand the behavior of D(A, q’J better, let us integrate 

‘i- 

where qkmax and qkmin are given by Eq. (5.22) o Suppose b($ + t,) = 0.025, then 

in order to have 80% of the probability we must have 

or 

-++=8 ES 
* Amax max 

. tEsEdY2 _ 55 
A . 

max 

. This example shows the extent of energy spread of the virtual photon beam. The 

angular spread can be evaluated from Eq. (5.22). 
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The average angular spread for a fixed A is 

‘I2 
e’ 

<($ ‘I= max ‘xmin 
qq’ z &= Q 

tEsEf2 Asin e 

Q2 
. 

-‘If we use the value of A obtained above; we have 

7 - EsE~ sF5e . 
qq’ Q2 

The important thing to remember is that the angular spread of the virtual photon 

is in the scattering plane only. Hence if we measure the hadron production angle 

in the plane perpendicular to the plane of the electron scattering, the error to this 

angular spread is minimized. -+- - - 
In conclusion, the energy and angular spreads of the virtual photon beam due 

to the radiative corrections and stragglings are not worse than the experiment using 

the semimonochromatic photon beam 20a .- from e+e’ + 2~. If the photon beam from 

the latter can be used in performing the experiments, there is no reason why the 

virtual photon beam with known energy and angular spread cannot be successfully 

Our expression can be simplified further if we assume that only one photon is 

emitted. In this case < can take only two values : qkmax when A=w 
P 

, and q$ min 

when A=w s. Hence under this approximation the distribution of the virtual photon 

is a function of only one variable A or %a This approximation is not bad because, 

as we stated in the introduction, it is most probable that most of the energy loss A 

is taken up by one photon even though infinitely many soft photons are always emitted 

at the same time. 

In order to make our presentation as simple as possible, we have used the 

angular peaking approximation for the internal bremsstrahlung and also ignored 

the Landau straggling. The latter effect can be restored into our consideration 
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easily. The effect due to the deviation from the peaking approximation can be 

. computed exactly if we assume that only one photon is emitted by using the standard 

perturbation theory. 5 All we have to do is to relate the momentum distribution of 

the photon to that of q’ using the relation q’=q-k and d3q’=d3k. If one photon emission 

is assumed, the probability distribution of the virtual photon becomes unnormalizable. 

However we know how to take care of this; all we have to do is to multiply the result 

by a factor btr (vsvp) as we did in Eq. (3.1). 

The point of view expressed in this chapter can obviously be used in the e++e- 

colliding beam experiments. Jn this case s,= -p, hence Q=O (see Fig. 6). An 

expanded version of the cGSent oFthis chapter will be published elsewhere. 

. 

l 
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6. CONCLUDING REMARKS 

Radiative corrections are indispensible in any electron scatterings because 

.. the raw data is hard to interpret theoretically. The procedures for the radiative 

corrections as presented in these lectures are the results of accumulated efforts 

by many people. The list of references given in this note did not do justice to 

many people who have contributed to this effort. More comprehensive lists of 

references can be found in the review articles by H. Uberall 31 and L. C. Maximon. 32 

A short summary by D. B. Isabelle 33 on the present status of the art can be found 

in this proceedings. The author would like to thank Prof. B. Basco for inviting 

him to the institute. ConversatiZ?swithW. Bertozzi, L. C; Biedenbarn, 

H. S. Caplan, S. Kowalski at the institute influenced greatly the writing of this 

note. Finally I would like to thank D. R. Yennie, B. Chertok, R. Early, E. Bloom _- 
and G. Miller at SLAC for discussions on this subject. 

The preliminary consideration on the radiative corrections to the coincidence 

experiments as presented in Chapter 5 was greatly motivated by the experiments 

being carried out at Cornell by Berkelman et al., MO and Selove et al., and the -- A- 

experiment being carried out at SLAC by Toner et al. The author wishes to thank -- 

these gentlemen for discussions. 
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APPENDIX A 

BORN APPROXIMATIONS 

. 
In this appendix, we summarize the results of the Born approximations for the 

nonradiative and the radiative cross sections. 

1. Nonradiative Cross Sections 

In the single arm inelastic e nucleus scattering where only the outgoing electron 

is detected, the cross section can be written in terms of Drell and Walecka’s 21 

Wlts2, M) and w2ts2, Ma : 

-&- - 
,$$Ep = $Lott [w,tq2, 4 + 2 tan2 ; wl(s2S 4] (A. 1) 

where 
26 

z2a2 cos 3 

4E2 sin4; ’ S 

q2 = -4ESEpsin2; = v2-Q2, 

Mf” = q2+21& + M2 is the missing mass squared, v and Q are components of F 
q= s-p =(v ,s) in the lab system, WI and W2 are two invariant functions of q2 and 

Mf2, and are related to the matrix elements by 

. w G 
P M-2ttp-qp (t-d‘?) ttv -q,, (W/q? w2 - ‘gpv - yiv /qT w1 

z c <tljp(o)lf> <fljv(0)lt> (2q3 (ezF2 a4(q+t-Pf) 
f 

(A-2) 
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where t is the four momentum of the target particle (not Madelstam’s t). The 

summation over the final states is automatically confined’to a specific missing 

mass state Mf=(q+t)2 by the 6 function. We have normalized the states 1 t> and 
: 
: If > such that all the factors such as (m/E) l/2 c2q-3/2 associated with a fermion 

and (1/291’2 (2x)-3/2 associated with a boson have been taken out from the matrix 

elements and given to the phase space so that both the matrix elements and the 

phase space become covariant. In any Lorentz frame where t = 
x R’sI=O and 

q=(qo, qzdz), we have from Eq. (A. 2) 

w,(s2, gf) = wxx (A.3 
and 

W2(q2, Mf2) = M2(tz-qz (t*s)/q2)-2 [Wzz - (q;/q2) Wxx] l 

_- In the laboratory system t=(M, 0) , q=(v , C$ we have 

W2(q2, M;) = q4/(Q2v 2, [dz;b - (v 2/q2) W=] l 

(A.41 

(A. 5) 

Instead of WI and W2, the experimental results are sometimes parameterized ‘rL- 
in terms of L. Hand’s22 longitudinal and transversal cross sections, as(q2Mf2) and 

+q2, Mf 9 respectively. They are related to WI and W2 by 

w2 = k 
4r2 CYZ 2 

tQT+cS) 9 

WI= k 

4r2aZ 2 oT ’ 

where 

66) 

(A* 7) 

k = v + q2/2M . (A. 8) 
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. 

-In terms of matrix elements W  u and u pv’ T S can be written as 

= 4a2cnZ2 w 
“T k xx (A. 9) 

(A. 10) 

uT and as are defined such that in the limit q2 --* 0, crT reduces to the total photo- 

nuclear cross section at energy k , and os -+ 0. The factor k comes from the flux 

r density. Since the incident flux is an ill defined concept for space like photons 

there is no compelling reason to use Hand’s definition. Personally I would rather 
-+- - - - 

use the standard covariant flux density 

_ q2~2 1 1/2 M-l = Q  (A. 11) 

instead of k, because when q is time like, the flux density is a well defined concept 

and is given by Q in the laboratory system. 

In terms of matrix elements we have 

- The Weissacker William’s formula can 

note that W, and Wzz are not singular 
lab 

drop Wzz in Eq. (A. 12) and obtain (we 

du a! 
dndE + 

P q2+0 
26 87r2Qsin 2 

The energy of the real photon has to be k = v+q2/2M in order to excite the same 

missing mass state. 

2tan2 : 
> 

w +Ld& xx &2 2 zz 
I 

(A- 12) 
V 

be derived readily from this formula. We 

when q2 -0. 
2 Hence as q * 0 we may 

have used Q instead of k in Eq. (A. 9)) 
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When the missing mass is discrete, we define form factors WI, 2 (q2) by 

W 1, ,(s2, Mf”, = W ;  ,(s2) ~(M;-Mj2)2M l P 
(A. 14) 

IWhen the discrete state has a finite width the 6 function is replaced by a covariant 

Breit Wigner ‘s formula 23 

S(M;-I$ - rMj n-l/ (M; -M;)2 + r2hIf 1 (A. 15) 

where f is the width which is a function of Mf2- For example the width of the 3.3 

resonance can be written as 

--- 0.85 (p*/mJ3 
T(Mf2) = 0.1293 GeV 

l+ [O. 85 (p4/m,J12 

. 
(A. 16) 

_- P * = [(Mf2_M:+m2&/(2Mf)]2 - mz l 

Substituting Eq. (A. 14) into Eq. (A. 1) and integrating the expression with 

respect to dE 
P’ 

we obtain the differential cross section for excitation of the jth 
. 

‘f-- level 

2M 
2M+2Es(l-cos 6) + 2 tall2 ; wj1(9”, 1 (A. 17) 

For the elastic scattering from a proton (j=O) 

w;(sT = tGi + T G;)/(l+r) , (A. 18) 

and 

w;(q2) = r G; (A. 19) 

r = -q2/4M2 (A. 20) 

Ge z Gm/2. 793 = [l - (‘x2/. 71 Ge?)] -2 (A. 21) 
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: 

Equation (A. 2) is the starting point of many of the theoretical discussions. Since 

Eq. (A. 2) is true only in the first order Born approximation, all data has to be 

reduced into this form by applying the radiative corrections, Coulomb distortion 

corrections and the dispersion corrections e 

Equation (A-2) can also be written in a slightly different form: 

w = .iq*x 
PV J 

<tljg(x)I jv (0) t> d4x Pjml teZje2 

=leiqex <tl[jP(x), jv(0)]l t> d4x (Zn)-’ (eZ)-2 (A.23) ’ 

(A-22) 

Equation (A. 22) shows that W --j&v is essentially a fourier transform of the ground * . . 
state expectation value of the space time correlation function. After inserting a 

_- 
complete set of states between jP(x) and jv(0) we see that Eq. (A.23) has an extra 

term proportional to S4(q -t +pf) , but this 6 function is zero anyway so Eq. -(A. 23) 

is equivalent to Eq. (A.22). The commutation properties of two currents are of 

fundamental interest to theoretical physicists. It is hoped that by investigating 

I.._- the behavior of such commutators one may be able to find out what are the funda- 

mental constituents of the elementary particles and whether field theory is necessary 

to describe a hadron. 

- The Weissacher-William’s limit of the inelastic electron cross section, Eq. (A. 13) 

is useful in estimating the small momentum transfer inelastic electron scattering 

cross section when the total photon cross section, u?(k), is known. It is also useful 

in experimentally determining u?(k) by doing small angle inelastic electron scat- 

. 

When the final state is discrete it is sometimes convenient to further decompose 

Wzz into Coulomb multipoles and W xx into magnetic and electric multipoles. This 

has been worked out in great detail by Durand et al. 25,23 
-- 
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2. Radiative Cross Sections 

It has been pointed out by many people 
26 

i that as long as one-photon exchange 

is assumed and the hadron final states are unobserved, one can write any cross . . 
-section in terms of W1 and W2, or crS and crT. If we assume one-photon exchange 

the bremsstrahlung cross section can also be written in terms of Wl and W2’ 

Assuming one-photon emission, the radiative tail from the jth level can be written 

as5 

1 2Mwd (cos Ok) 

q4(uo - I$ cos Bk) 

-)- - 

(w$d ( =$ [2Es(Ep+u) + {] - > [2Ep(Es-U) +$] - 

‘: 

_- 

-i-- 

-1 -2+2V(x -y- m2 (s*p-u2) + (s-p) 
[ 2EsEp- (s-p) + qEs-E 

+x -1 
E 
2(EsEp+ Es w+ E 3 

+< - (sop)-m2 1 
-’ 

E 

2 
-Y 2(EsEp-Epu+Ej +%-(sop)-m2 

II 

2 m (2m2+q 7 +4 

+ 4V (x -1 -y-. 3 (s*p) (s-p-2m2) + (x-l-y-5 (2S*p+2m2-q (A. 24) 

where w is the photon energy in the lab system 

o= - 2’ (u2-M>/(u, - 121 cos Ok) 

u = s+t-p =pf+k 
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u2 =2m2+M2 - 2(s*p) + 2M(Es-Ep) 

q2 = 2m2 - 2(s*p) - 2w(Es-E 
d 

+ 2w IUI cos 8’ - k 
. 

: 
a =w(E p-~g~ cos e P ‘OS fk) 

. a ‘=w(Es - 151 cos es cos ek) 

. 
b =-WIPI sin 8 sin e 

Y P k 
-1 

V = (a’- a) 

cos eP = 
181 cos e - I&I 

lu,1 

cos 8 = 
I~I - IPI cos 8 

S 1%’ 

x=(a2-b~1/2 -6- - 

y = (aI2 - b!$1/2 

We have used the coordinate system as shown in Fig. 7. There is an uncertainty 

of zero divided zero when a’=a in Eq. (A. 24). This happens just because of the 

particular factorization used in the Gk integration, and there is nothing wrong with 

it. R occurs at an angle (notice a misprint in MT) 

1 
c0se =- k sin8 (E&I) sin ep - (Ep/lgl) Sin es 

I 
, 

which corresponds to the position of the minimum between the s and p peaks. 2 In 

numerical integration, a small area near this point should be ignored. In Eq. (A. 24) 

we have eliminated all the redundant notations in MT because b=b’ and V=V’ in this 

. 

reference. We have also used WI and W2 instead of G and F which were used in my 

original paper. 5 
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APPENDIX B 

i STRAGGLING OF AN ELECTRON IN MATTER 

: In the electron scattering we are interested in the collision of an electron with 

a nucleus at an angle much larger than m/E where E is the energy of the incident 

or outgoing electron. However the electron has to pass through a medium of finite 

thickness before and after this large angle scattering. When an electron passes 

through a target, it loses some energy by ionization and bremsstrahlung. Ignoring 

the binding energy of the atomic electrons, the probability of the electron losing 

energy E (per gm/cm2) can be obtained from the Mdller cross section and can be 

written as 

(B.l) 

where N=6XlO 23 is the Avogadro’s number, m is the mass of the electron, Z and A 

are the atomic number and the atomic weight of the target material. The square 
=r‘-- 

bracket in Eq. (B. 1) is due to the spin of the electrons. When E is small this 

factor reduces to one,resulting in the Rutherford cross section. The corresponding 

quantity due to the bremsstrahlung emission can be written as 27 

3 
Wb(E, E) = 4Na! y b(l83Z 

m2 

=- - 

(B.2) 

where 77 is due to the bremsstrahlung emission in the ee scattering and is given by 

q = by (1440 Z-2’3)/ln (183 Z-l’“, , (B* 4) 

b=; [l+$[(Z+l),(Z+~)j [h(183Z-1/31-1] , 
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and C/J(~) is the shape of the bremsstrahlung spectrum normalized such that $(O)=l. 

* 
I When E 2 100 MeV and v I 0.8, the intermediate screening formula can be used. 

. When v is small, the screening is always complete, we have then 

. 40 = l-v + 2 v2 4 l 

x0 is the unit radiation length 27 in gm/cm2. 

From Eqs. (B. 1) and (B.2) we see that even though the bremsstrahlung emission 

is proportional to a3 compared with (r2 for the ionization, the former will dominate 

over the latter when 

g(Z+v) in (183 Z-1’3) ; >> 1 . (B* 7) 
-)- - - 

This means that when the energy loss is large (small) compared with - 20 MeV/(Z+l), 

the bremsstrahlung process becomes more (less) important than the ionization. In 
_- 

our application, we expect the ionization is more important in affecting the shapes 

of discrete peaks, whereas the bremsstrahlung is more important when we are 

considering the tails far away from them. We also note that the ionization has a 
n 

much shorter tail than the bremsstrahlung (l/e’ versus l/c) 0 When E is so small 

that it is comparable to the binding energy of the electrons, we have to take into 

account of the binding of the electrons and the screening. This will in general make 

Wi less divergent than l/e2 when E approaches the binding energy. 

Let us denote the probability of finding an electron in the energy interval 

between E and E+dE at a depth t (in units of radiation length) by I(EO, E,t) dE where 

E. is the energy of the electron at t=O. I(EO, E, t) satisfies the diffusion equation: 

~I(E,, E, t) 

xOat 
= 

/ 

EO-E 
de I(EO, E+e, t) (E+e 9 e) + Wb(E+E 9 e) 1 0 

- I(Eo, E, t) E) + Wb(E, E) s 1 (B* 8) 
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With the boundary condition, 

i IWO, E, 0) = 6(EO-E) . . tB.9) 

-.When Wi=O, we obtain the straggling function due to the bremsstrahlung alone, 

‘k( Eo, E, t) o When Wb=O, we obtain the straggling function due to the ionization 

alone, Ii(Eo, E, t). Let us define A G EO-E and the Laplace transform of I(EO, EO-A, t) 

with respect to A as 

L(EO,p,t) = fewpA I(EO, Eo-A, t) dA . (B* lo) 

Multiplying Eq. (B. 8) by e -PA and integrating 
-+- - 

obtain 

with respect to A from 0 to oo, we 
- - 

iX4E,, p, t) 
a0 

1 

xOat = L(EOdb t) 
/L 

Wi(s) + Wb(e)] e-‘e de 
0 

00 

_- 

+ Wb(e) de I/ ewpA I(EO, Eo-A, t) dA 
0 (B. 11) 

Landau 13 approximated E. -A by oa in one of the upper limits of the second integration. 

We cannot do this because W,(e) is proportional to l/e and the integration diverges 

if we 1et.E 0 -A--, 00, 

Let us obtain the solution for I(EO, E, t) by a more intuitive method. When 

E. c 1, we expect 

IWO, Ed)= 
/ 

EO Ii(Eo, E’,t) Ib(E’, E,t) dE’ 
E 

Ib(Eo, E’,t) $(E:E,t) dE’ . 
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This must be so because both Ii(Eo, Eo-A, t) and Ib.(Eo, EO-A,t) are relatively in- 
i 

sensitive to the variation of E. when A << Eo. If we accept (B. 12), then from the 
. 

28 : convolution theorem of Laplace transform we obtain 

L(EO,P,t) = Lb(EO’P,t) Li(EO,P,t) (B* 13) 

where c a0 

L,JE0,p4 = 
/ 

e-” Ib( Eo, Eo-A, t) dA (B. 14) 
0 \ 

00 

Let 

Li(EO,p,t) = 
/ 

eepA Ii(Eo, EO-A,t) dA . 
0 

-+- - - 

(B. 15) 

- 

+,tEo, EO-Ad) = 

We obtain from Eqs. (B. 14) and (B. 16)) 

Lb(EO,p,t) = _Lbt . 
(PEO) 

(Be 17) 

‘,-- According to Landau, 13 

Li(EO,P,t) = e 
-atxOp(l-0.5772 -h(p~ 9) 

, (B. 18) 

where a is defined in Eq. (B. l), 

a = 2nN0!2 zcmm2 = 0 154 MeV ’ 
m A * x ’ 

In8 
2 

-= 
m !2n1 -+1 , 

2E; 

andI= 13.5 eVZ. 

(B. 19) 

(B. 20) 
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Using the inverse Laplace transform, we obtain 

: 

1 
/ 

c+iw 
I(EOs EO-A,t) = 2ai em L(EO,P,t) dp ’ 

c-i- 

1 
/ 

c+iao .Ap-atxop( 1-O. 5772 - b p 8) 
=21i dp (B. 21) 

c-i- 

Landau13 also showed that the most probable energy loss due to the ionization alone 

is given by 

In terms of Ao, we have 

atx 
--$ + l-O.5772 

I 
-4,. - 

W-22) 
- - 

dp (B. 23) 

When b=O, we obtain Landau’s result for I ie The integration (A = (A-Ad/t , 

s = axot> ‘.- - 
F(A,t) = + 

/ 

c+iwep~+(p-bt) h P ,.Jp (B. 24) 
c-i= 

has been carried out by J. Bergstrom, 11 assuming a small bt, bt 5 0.1. His 

resultll is: when A 5 10 

F(A,bt) = f(h) { l+bt(l+A) 
I 

+ $ { -l+(h+1)2 f(h) + G(A)] ; 

when A 5 10, 
bt 
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where 

f(A) = F(h,O) = Ii(EO’EO-AO- I’,‘) (B* 27) 

and 

_ #(A) = [-f(A, dh’ (B. 28) 
h ‘. 

are two universal functions given by Landau 
13 in graphic forms. w is the solution 

of the equation 

~=w+lnw-0.4228 e 

A useful approximation for o is given by Borsch-Supan 
29 : 

(B. 29) 

tJ.l=A (l- hh- 0.4228 
> l+A l 

(B.30) ’ 

Landau showed that when A _> 10, 
-)- - 

1 f0-l - - w(w+l) 
(B. 31) 

For the calculation near the elastic peak we need an expression for 

fEO 
TEo-Ao-AE 

J I(EO, E’,t) dE = 1 - 
EO-AO-AE J 0 

I(EO, E, t) dE (B. 33) 

. 

This relation is true if I(EO, E, t) is normalized correctly. Equation (B. 12) shows 

that I will be normalized correctly if Ii and Ib are normalized correctly. Landau’s 

Ii is normalized correctly but our Eq. (B. 16) for Ib is not. This shows that if we 

want to calculate the left-hand side of Eq. (B. 33) by using Eq. (B. 26) in the right- 

hand side we must replace 1 in Eq. (B.33) by l/r(l+bt). Hence 

. 

/ 

Eg 

EO-AO-AE 
dE IWO, Est) = $+bt) [l-i:: e (CT cbt+;jl 

l-( :bt) (@&i$bt (l - (l-bt;~min) ’ (B. 34) 
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: 

where w m in is the value of w , when h=AE/t o Using Eq. (B. 30)) we have 

_- (B. 35) 

Since Eq. (B. 34) is true only when L!6 > 10, we may approximately let, urnin = E. 
I - I 

Thus 

EO 

/ EO-AO-AE 
I(EO,E’,t) x (1+0.5722bt) (fr (- (I-L)AE) (B*3q 

In order to satisfy AE/{ > 10; w<%ust choose AE such that- - 

Z AE L l-54 MeV x xot . 1 
(B.37) 

On the other hand AE must be chosen small enough so that the cross section does 

not vary appreciably between E-A0 and E-AO-AE. Especially in nuclear physics 

AE has to be chosen so that it is smaller than’ the distance between two neighboring 

“‘-- levels if we want to resolve them . In order to simplify our presentation, we shall 

assume that the target thickness t is always chosen small enough so that in inequality 

(B-37) is satisfied. 

For the calculation of a radiative tail, we need an expression for I(EO, E, t) in 

the interval Eo-ho-AE < E  < 0.9 EO’ The expression for I(EO, E’,t) obtained in 

Eqs. (B. 23) and (B. 26) can be written as 

I(Eo, E,t)dE = l-( 1:bt) (bt+ ;) g 

This equation is true only when 

(B. 38) 

lot/E0 5 (EO-E)/EOa 1 , 
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hence it cannot be used to calculate the tail far away from the peak. However we 

c 
know that in the limit of zero thickness, I( Eo, E, t) must be proportional to the sum 

: of the bremsstrahlung and ionization cross sections, hence 

. 

I(EO, E,t)dE = txo 
r( l+bt) 

( Eo-;-Er [Wb(Eo-Ao, Eo-Ao-E) + Wi(EO-AO, Eo-A,-E)] dE 

(B. 39) 

Equations (B. 36) and (B. 39) are the two formulas we need for dealing with the 

straggling effects. The physical meaning of Eq. (B. 39) is as follows: When an 

electron goes through a medium it always suffers multiple scatterings accompanied 

by emission of soft photonaj&nd energy loss A0 due tothe ionization which is pro- 

portional to the target thickness. When the energy loss is large compared with Ao, 

most of the energy is lost either due to emission of a single photon or a single e-e 

scattering, and only a small fraction of the energy loss is due to the multiple photon 

emission and the ionization of many atoms. The gross features of I(EO,E,t) is thus 

determined by the sum of the cross sections for a single bremsstrahlung emission 

- 

I,-- - and a single e-e collision. The small correction due to the ionization of many 

atoms can be represented by substituting E. by Eo-A0 everywhere in the formula 

and the correction due to multiple photon emission is given to the factor 

1 
I-( l+bt) = (1+0,5772 bt) , (B.40) 

which has an effect of depleting the high energy component and increasing the low 

energy component of the electron spectrum. 
. 

The correction factor (B. 40) is not very important in many experiments when 

E is far away from Eo. However in experiments such as obtaining the total y + 

nucleus cross section by extrapolating the small angle e+nucleus scattering cross 

section, 24 the radiative tail from the elastic peak is sometimes responsible for 
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80 or 90% of the counting rate, and an error of 3% in the calculation of the radiative 

tail can cause an error of 30% in the experimental result. .As mentioned previously 

when the energy loss is large the ionization loss is completely negligible compared 
: 

with the bremsstrahlung loss, hence the uncertainty in its treatment will not cause 
30 a grave error. Eyges showed that if the shape of the bremsstrahlung spectrum 

were given by (see Eq. (B.3) 

(p(v) = (1-v)“[pn (l-31-l ’ (B. 41) 

then Eq. (B. 8), with Wi=O, can be solved analytically and be obtained 

txo( l+a)bt 
Ib(Eo’E’t) =r(l+bt) U-2) - 

Now the actual shape of the bremsstrahlung spectrum does not look like (B. 41)) 

but looks more like Eq. (B. 6), when E. > 1 GeV and v < 0.8. Dr. R. Early” 
_- 
of SLAC solved Eq. (B. 8) numerically by a computer, with Wi=O and Wb given by 

the completely screened from, Eq. (B. 6) a His numerical results show that in this 

case the form 

‘.-- -  

txO 
btEOs E, t, = r( l+bt) (B-43) 

is accurate to within 0.5% for t=O. 1 and for a thinner target the error is proportionally 

smaller 0 m this paper we shall use Eq. (B. 43); the important thing to remember is 

to use a correct expression for the bremsstrahlung shape 4(v). 27 
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APPENDIX C 

. 

TRIANGLE, HALF PATH LENGTH AND ENERGY PEAKING APPROXIMATION 

Due to the straggling the observed cross section u exptEs’ EP) is related to 

qrtEss Ed by 

aexp(Es,Ed =lT $lEs ,;j~max(E2dE; I(Es,E;,t) 

smin 

ar(E;, E;3 I(E;, Ep, T-t) , (C.1) 
- -6 

where I(EO, E, t) is defined in Appendix B, E smjpp) -aId Epmax(Ea are determined 

by the kinematic boundary of a,(EL, E’J . This boundary is determined by the kine- 

_- matics of the elastic scattering (u2 = Mf” = M? , hence 

E pmmtEA) = 
EH 

l+ EsM-‘(l-cos 0) 

‘.-- - and 

E s min(Ep) 
=Ep 

l- EpM-‘(l-cos 0) 

, w-2) 

. (C-3) 

This boundary is shown by the curved line labeled Mf=M in Fig. 4. Equation (C . 1) 

means that the observed cross section (+ exp(Es, Ed at point c in Fig. 4 is related 

to the magnitude of the cross section a,(Ek, EA) in the entire area a’b’c shown in 

Fig. 4. This area is called a triangle even though one of its side is a curve instead 

of a straight line. The curve becomes a straight line if we ignore the recoil as 

can be seen from Eq. (C. 2). By definition or(Es, EP) is equal to o,,(Ek, E> m 

the limit T -+ 0. We shall use the trick repeatedly used in this paper. Namely we 

use an approximate expression for ar(Es, E 
d 

in order to simplify Eq. (C. 1) and 
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then at the end put the correct expression for ur(Es, Ed back into the resultant 
* formula. If we use the peaking approximation for (T and approximate the shape r 

of the internal bremsstrahhmg by that of,.the external bremsstrahlung (i. e., the _’ 
method of equivalent radiators), then Eq. (C. 1) is equal to replacing a,(EA, E ’ 

d 
by o(EA, E;S times the factor F(-Bs’=p’, 0) introduced in Eq. (2.3) and adding two 

external radiators, each of thickness tr defined in Eq. (2.7)) one before and one 

after the scattering. In order to simplify the presentation we shall replace cry by 

o in Eq. (C. 1) and do all the modifications mentioned above later. We shall also 

ignore the ionization temporarily and only after Eq. (C. 1) is reduced into a simpler I 
form we put this effect back. - -- r - 

We first consider the contribution to Eq. (C. 1) from a discrete state Mf” = My . 

After this is done we can integrate the resultant with respect to Mf” and obtain the 

-entire contribution. When Mf” is a discrete state Mf” = My, the cross section 

o$EL, Eg contains a 6 function (see A. 14 and A. 17) 

I.-- -  

u(E;, E’ 
d 

du.(E’) ’ 1 
=+ 

2M+ 2E; (l-cos 19) s((s’+t-p?2-M> . (C.4) 

The 6 function reduces the surface integration dE:dEb in the area a%% into a line 

integration along a curve labeled a%” in Fig. 4.1. The integrand of (C. 1) ‘is very 

peaked ne-ar a” and b”. We shall use this very peaked character of the integrand 

to simplify the expression. Let us consider a simple mathematical example. The 

behavior of our integrand is very similar to the integrand of the following integration: 

1 Ti-1 

/ 

Tf-1 I-Vi) IV,) 
X (1-x) (CJ) 

0 

dx = r(Ti+Td l 

*  

The answer happens to be the well known Beta function. Suppose we do not know 

how to do this integration and want to perform this integration by the peaking 
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approximation: 

. When T is small, we have 

‘.-- 

c 

. 

/ 

’ Ti-1 
X 

0 

Tf-1 1 

(l-x) 
Tf-1 

(l-x) dx+ 
Ti-1 

x dx=-L +$ . (C.6) 
Tf i 

~(T,+J= $ (1- 0.5772 T + O(T2)) 

Hence 

tc*7) 

(C.8) 

Thus the error of the peaking approximation is O(Tf f) compared with unity. In 
-rc- - , 

our case Ti+Tf=bT C 0.1, hence the error involved is less than 1%. Let us 

call this approximation the energy peaking approximation in contrast to the angle 

peaking approximation used in the calculation for the internal bremsstrahlung2 

(see Appendix C of MT) e Using the energy peaking approximation Eq. (C. 1) can 

be written as 

u;tEst Ed 
E 

/ 

pmax(E3 du.(E’) 
dE; dE; + 

Ep 

1 
2M+2E;( 1-cos 0) 6 (M2-M; + 2M(E;-Eg -2E;Ep’(1-cos e))Ib(E;, Ep,T-t) 

I 

IbtEp+Wp, Ep, T-t) dE; $,tE,, E;,t, 

+ 
du.(Es-ws) M+ (Es-us) (1-cos 0) 

da M - EP( 1-cos @) 

E +w 
P P 

X dE; Ib(E;, Ep. T-t) 

P I 

(C.9) 

(C. 10) 
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where (see Fig. 4) 

i w s = $ (u2 - M>/[M-Ep(l-cos e)] 

- and 

wp = 4 (u2-M$/[M+Es(l-cos 8)] 

(C. 11) 

tc.12) 

Equation (C. 10) can be reduced further, and we finally obtain 

+s$ EP) z (1+0.5772 bT) 1 d”jtEs) bT dR 2 op 

+ 
du.(Es-ws) M+(Es-us) (1-cos 0) 

dR -M-Ep(+cos 6) 

After including the effects due to the ionization, the internal bremsstrahlung and the 

virtual photons, Eq. (C 0 13) becomes Eq. (3.1) in the text to calculate the radiative 

tail from a discrete state. 

Equation (C. 13) shows that the integration with respect to t can be approximated 
I<-- 

by assuming that the scattering took place exactly at WIT/Z. The error involved in 

this approximation is discussed below. The integration with respect to t for the 

term proportional to duj(Es)/dn is 

T 

/ 
dt 1 
T r(b(T-t)) r(l+bt) E + w 

0 

( ,yp p)b(T-t)-l($jbt (C. 14) 
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The correction to the half path length approximation must be proportional to 

* bT for small T, hence we put 

* 
: l+xbT = -1im 

bT + 0 1 . 

. 

/ 

1 
= lim 2 dy(l-y) vt1/2-fibT v(Y-l/Z)bT . 

bT+O 0 P S 

Therefore, 

x= 2[&( wl/2-z) p-r]bT-v 

(C. 15) 

_- Similarly the term proportional to doj(Es-tis)/dQ is multiplied by a factor (l-x bT) . 

Hence two corrections tends to cancel each other. 1x1 is a very small number in 

general ( < 0.1) , hence the half path length approximation is indeed a very good 

approximation when bT < 0.1. 

In the radiative correction to the jth peak we need an expression 

/ 

E AE pmax . 
u: (Es, EP) dEp = 

/ 
u’(E b s’Epmax-o P) 

dw p 
E 0 

Pmax 

where E 
Pmax 

is by definition (see Fig. 4) 

E 
pm= =EP+W o P 

tc. 17) 

(C. 18) 

Hence instead of integrating with respect to E 
P’ 

we may integrate with respect to w P 

Let 

R=%= 
M+ Es(l-cos f3) 

“P 
M - Ep( 1-cos 0) 

M+ Es(l - cos 8, 

= M-E p maxtl-cos 4 
(C. 19) 
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which is almost a constant, because E z E Substituting Eq. (C. 13) into 
P pmax’ 

i Eq. (C. 17) with the help of Eqs. (C. 18) and (C. 19), we obtain 

: / 

E : pmax . 
o;(Es, Ep’ dEp = (1+0*5772bT) 

E -AE 
pm= 

After including the effects due to the ionization, the internal bremsstrahlung and the 

virtual photons, Eq. (C.20) becomes Eq. (2.3) in the text to calculate the radiative 

corrections to a discrete level. 

Since we know how to handle the contribution from a discrete state to the inte- 

gration in Eq. (C D 1) , the result can& .generalized readily to the contribution from 

the entire triangle a’b’c in Fig. 4.1. All we have to do is to integrate Eq. (13) 

with respect to M2 from M2 to u2 
2 

f which is the value of M f corresponding to the point c in 

Fig. -4. However it is a good idea to subtract all the contributions from the radiative 

tails of the discrete levels first before we untangle the continuum states. If this is 

done, Mf should be integrated from the threshold of the continuum, ME, instead of 

-,M2. In contrast to the Born approximation, our integration with,respect to Mf2 

converges at the point c in Fig. 4. However it is convenient to separate the inte- 

gration with respect to Mf” into two regions (see Fig. 4) : 

ME < Mf” < u2-Au2 = M2+ 2M(Es-RA-Ep-A) - 2(Es-RA)(Ep+4 (1-cos 0) 

and 

u2-Au2 < M; 5- u2 = M2 + 2M(ES-E 
d 

- 2EsEp(l-cos 6) , 

where R is defined by Eq. (C .19) e 

We have shown that if the energy peaking approximation is used, then in order 

to calculate the radiative tail from the jth peak, only the information of the nonradiative 

cross sections at points a” and b” is required. Hence for the continuum state, we 
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need orily the information of the cross sections on the lines a to c and b to c in 
i 

Fig. 4. 
s 

: 
On the line ac: Mf2=M2+2M(EA-E d 

- 2E;Ep(l-cos 0) (C.21) 
. 

On the line bc: Mf2 =M2+2M(Es-E’ - 2EsEA(1-cos 0) 0 d (C-22) 

Using these relations we obtain finally the folding formula for the continuum 

region 

= (1+0.5772bT) 

E 

/ 

pmaxtEst-- - 
+ 

Ep+A 

+ 
/ 

Es-RA 

E s min(Ep) 

dE; u(E;, Ed obT/P cE+jbT” 2(;;E;) $I rq) 

(C.23) 

where R is given by Eq. (C. 19) o 

Substituting Eq. (C. 4) into Eq. (C. 23) we obtain Eq. (C. 13), hence the former 

is indeed the generalization of the latter. After including the effects due to the 

ionization, the internal bremsstrahlung and the virtual photons, Eq. (C.23) becomes 

Eq. (4.1) to calculate the radiative corrections to the continuum. 

. Equations (A. 15)) (A. 16) and (A. 17) of MT2 should be replaced by Eqs. (C. 20)) 

(C. 13) and (C. 23) respectively of this paper 0 
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FIGURE CAPTIONS 

1. Born approximation graph in the electron scattering. 

22. A typical example of spectrum in ep scattering. Both the raw data and the 

radiatively corrected data are shown. Only part of the elastic radiative tail 

is shown. It should be noted that after the subtraction of the elastic tail, the 

cross section between the elastic peak and the pion threshold becomes zero 

as it should. This graph was taken from Ref e 2. 

3. The definition of AE. Notice that EFax # E pea 
P 

in the definition of AE, but 

when integrating the cross section in Eq. (2.2) the limits of integration are 
-6. - 

E pmin and E pmax’ AE should be chosen much larger than the width to- the 

right of the peak. 

_- 4. Triangles: Kinematic region necessary for radiative corrections to inelastic 

electron scattering. 

5. Equivalent radiator method. 

6. Kinematics of a virtual photon. 
:--- 

7. The coordinate system used in the integration with respect to the solid angle 

of the photon. 
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